]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/ata/libata-core.c
[ARM] fix xm_x2xx_defconfig build errors
[mirror_ubuntu-zesty-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
65
66 #include "libata.h"
67
68
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
73
74 const struct ata_port_operations ata_base_port_ops = {
75 .prereset = ata_std_prereset,
76 .postreset = ata_std_postreset,
77 .error_handler = ata_std_error_handler,
78 };
79
80 const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
82
83 .qc_defer = ata_std_qc_defer,
84 .hardreset = sata_std_hardreset,
85 };
86
87 static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
90 static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
92 static void ata_dev_xfermask(struct ata_device *dev);
93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
94
95 unsigned int ata_print_id = 1;
96 static struct workqueue_struct *ata_wq;
97
98 struct workqueue_struct *ata_aux_wq;
99
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
108 };
109
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
114 };
115
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
118
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
127
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
131
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
135
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
139
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
155
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
159
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION);
164
165
166 /*
167 * Iterator helpers. Don't use directly.
168 *
169 * LOCKING:
170 * Host lock or EH context.
171 */
172 struct ata_link *__ata_port_next_link(struct ata_port *ap,
173 struct ata_link *link, bool dev_only)
174 {
175 /* NULL link indicates start of iteration */
176 if (!link) {
177 if (dev_only && sata_pmp_attached(ap))
178 return ap->pmp_link;
179 return &ap->link;
180 }
181
182 /* we just iterated over the host master link, what's next? */
183 if (link == &ap->link) {
184 if (!sata_pmp_attached(ap)) {
185 if (unlikely(ap->slave_link) && !dev_only)
186 return ap->slave_link;
187 return NULL;
188 }
189 return ap->pmp_link;
190 }
191
192 /* slave_link excludes PMP */
193 if (unlikely(link == ap->slave_link))
194 return NULL;
195
196 /* iterate to the next PMP link */
197 if (++link < ap->pmp_link + ap->nr_pmp_links)
198 return link;
199 return NULL;
200 }
201
202 /**
203 * ata_dev_phys_link - find physical link for a device
204 * @dev: ATA device to look up physical link for
205 *
206 * Look up physical link which @dev is attached to. Note that
207 * this is different from @dev->link only when @dev is on slave
208 * link. For all other cases, it's the same as @dev->link.
209 *
210 * LOCKING:
211 * Don't care.
212 *
213 * RETURNS:
214 * Pointer to the found physical link.
215 */
216 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
217 {
218 struct ata_port *ap = dev->link->ap;
219
220 if (!ap->slave_link)
221 return dev->link;
222 if (!dev->devno)
223 return &ap->link;
224 return ap->slave_link;
225 }
226
227 /**
228 * ata_force_cbl - force cable type according to libata.force
229 * @ap: ATA port of interest
230 *
231 * Force cable type according to libata.force and whine about it.
232 * The last entry which has matching port number is used, so it
233 * can be specified as part of device force parameters. For
234 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
235 * same effect.
236 *
237 * LOCKING:
238 * EH context.
239 */
240 void ata_force_cbl(struct ata_port *ap)
241 {
242 int i;
243
244 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
245 const struct ata_force_ent *fe = &ata_force_tbl[i];
246
247 if (fe->port != -1 && fe->port != ap->print_id)
248 continue;
249
250 if (fe->param.cbl == ATA_CBL_NONE)
251 continue;
252
253 ap->cbl = fe->param.cbl;
254 ata_port_printk(ap, KERN_NOTICE,
255 "FORCE: cable set to %s\n", fe->param.name);
256 return;
257 }
258 }
259
260 /**
261 * ata_force_link_limits - force link limits according to libata.force
262 * @link: ATA link of interest
263 *
264 * Force link flags and SATA spd limit according to libata.force
265 * and whine about it. When only the port part is specified
266 * (e.g. 1:), the limit applies to all links connected to both
267 * the host link and all fan-out ports connected via PMP. If the
268 * device part is specified as 0 (e.g. 1.00:), it specifies the
269 * first fan-out link not the host link. Device number 15 always
270 * points to the host link whether PMP is attached or not. If the
271 * controller has slave link, device number 16 points to it.
272 *
273 * LOCKING:
274 * EH context.
275 */
276 static void ata_force_link_limits(struct ata_link *link)
277 {
278 bool did_spd = false;
279 int linkno = link->pmp;
280 int i;
281
282 if (ata_is_host_link(link))
283 linkno += 15;
284
285 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
286 const struct ata_force_ent *fe = &ata_force_tbl[i];
287
288 if (fe->port != -1 && fe->port != link->ap->print_id)
289 continue;
290
291 if (fe->device != -1 && fe->device != linkno)
292 continue;
293
294 /* only honor the first spd limit */
295 if (!did_spd && fe->param.spd_limit) {
296 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
297 ata_link_printk(link, KERN_NOTICE,
298 "FORCE: PHY spd limit set to %s\n",
299 fe->param.name);
300 did_spd = true;
301 }
302
303 /* let lflags stack */
304 if (fe->param.lflags) {
305 link->flags |= fe->param.lflags;
306 ata_link_printk(link, KERN_NOTICE,
307 "FORCE: link flag 0x%x forced -> 0x%x\n",
308 fe->param.lflags, link->flags);
309 }
310 }
311 }
312
313 /**
314 * ata_force_xfermask - force xfermask according to libata.force
315 * @dev: ATA device of interest
316 *
317 * Force xfer_mask according to libata.force and whine about it.
318 * For consistency with link selection, device number 15 selects
319 * the first device connected to the host link.
320 *
321 * LOCKING:
322 * EH context.
323 */
324 static void ata_force_xfermask(struct ata_device *dev)
325 {
326 int devno = dev->link->pmp + dev->devno;
327 int alt_devno = devno;
328 int i;
329
330 /* allow n.15/16 for devices attached to host port */
331 if (ata_is_host_link(dev->link))
332 alt_devno += 15;
333
334 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
335 const struct ata_force_ent *fe = &ata_force_tbl[i];
336 unsigned long pio_mask, mwdma_mask, udma_mask;
337
338 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
339 continue;
340
341 if (fe->device != -1 && fe->device != devno &&
342 fe->device != alt_devno)
343 continue;
344
345 if (!fe->param.xfer_mask)
346 continue;
347
348 ata_unpack_xfermask(fe->param.xfer_mask,
349 &pio_mask, &mwdma_mask, &udma_mask);
350 if (udma_mask)
351 dev->udma_mask = udma_mask;
352 else if (mwdma_mask) {
353 dev->udma_mask = 0;
354 dev->mwdma_mask = mwdma_mask;
355 } else {
356 dev->udma_mask = 0;
357 dev->mwdma_mask = 0;
358 dev->pio_mask = pio_mask;
359 }
360
361 ata_dev_printk(dev, KERN_NOTICE,
362 "FORCE: xfer_mask set to %s\n", fe->param.name);
363 return;
364 }
365 }
366
367 /**
368 * ata_force_horkage - force horkage according to libata.force
369 * @dev: ATA device of interest
370 *
371 * Force horkage according to libata.force and whine about it.
372 * For consistency with link selection, device number 15 selects
373 * the first device connected to the host link.
374 *
375 * LOCKING:
376 * EH context.
377 */
378 static void ata_force_horkage(struct ata_device *dev)
379 {
380 int devno = dev->link->pmp + dev->devno;
381 int alt_devno = devno;
382 int i;
383
384 /* allow n.15/16 for devices attached to host port */
385 if (ata_is_host_link(dev->link))
386 alt_devno += 15;
387
388 for (i = 0; i < ata_force_tbl_size; i++) {
389 const struct ata_force_ent *fe = &ata_force_tbl[i];
390
391 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
392 continue;
393
394 if (fe->device != -1 && fe->device != devno &&
395 fe->device != alt_devno)
396 continue;
397
398 if (!(~dev->horkage & fe->param.horkage_on) &&
399 !(dev->horkage & fe->param.horkage_off))
400 continue;
401
402 dev->horkage |= fe->param.horkage_on;
403 dev->horkage &= ~fe->param.horkage_off;
404
405 ata_dev_printk(dev, KERN_NOTICE,
406 "FORCE: horkage modified (%s)\n", fe->param.name);
407 }
408 }
409
410 /**
411 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
412 * @opcode: SCSI opcode
413 *
414 * Determine ATAPI command type from @opcode.
415 *
416 * LOCKING:
417 * None.
418 *
419 * RETURNS:
420 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
421 */
422 int atapi_cmd_type(u8 opcode)
423 {
424 switch (opcode) {
425 case GPCMD_READ_10:
426 case GPCMD_READ_12:
427 return ATAPI_READ;
428
429 case GPCMD_WRITE_10:
430 case GPCMD_WRITE_12:
431 case GPCMD_WRITE_AND_VERIFY_10:
432 return ATAPI_WRITE;
433
434 case GPCMD_READ_CD:
435 case GPCMD_READ_CD_MSF:
436 return ATAPI_READ_CD;
437
438 case ATA_16:
439 case ATA_12:
440 if (atapi_passthru16)
441 return ATAPI_PASS_THRU;
442 /* fall thru */
443 default:
444 return ATAPI_MISC;
445 }
446 }
447
448 /**
449 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
450 * @tf: Taskfile to convert
451 * @pmp: Port multiplier port
452 * @is_cmd: This FIS is for command
453 * @fis: Buffer into which data will output
454 *
455 * Converts a standard ATA taskfile to a Serial ATA
456 * FIS structure (Register - Host to Device).
457 *
458 * LOCKING:
459 * Inherited from caller.
460 */
461 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
462 {
463 fis[0] = 0x27; /* Register - Host to Device FIS */
464 fis[1] = pmp & 0xf; /* Port multiplier number*/
465 if (is_cmd)
466 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
467
468 fis[2] = tf->command;
469 fis[3] = tf->feature;
470
471 fis[4] = tf->lbal;
472 fis[5] = tf->lbam;
473 fis[6] = tf->lbah;
474 fis[7] = tf->device;
475
476 fis[8] = tf->hob_lbal;
477 fis[9] = tf->hob_lbam;
478 fis[10] = tf->hob_lbah;
479 fis[11] = tf->hob_feature;
480
481 fis[12] = tf->nsect;
482 fis[13] = tf->hob_nsect;
483 fis[14] = 0;
484 fis[15] = tf->ctl;
485
486 fis[16] = 0;
487 fis[17] = 0;
488 fis[18] = 0;
489 fis[19] = 0;
490 }
491
492 /**
493 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
494 * @fis: Buffer from which data will be input
495 * @tf: Taskfile to output
496 *
497 * Converts a serial ATA FIS structure to a standard ATA taskfile.
498 *
499 * LOCKING:
500 * Inherited from caller.
501 */
502
503 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
504 {
505 tf->command = fis[2]; /* status */
506 tf->feature = fis[3]; /* error */
507
508 tf->lbal = fis[4];
509 tf->lbam = fis[5];
510 tf->lbah = fis[6];
511 tf->device = fis[7];
512
513 tf->hob_lbal = fis[8];
514 tf->hob_lbam = fis[9];
515 tf->hob_lbah = fis[10];
516
517 tf->nsect = fis[12];
518 tf->hob_nsect = fis[13];
519 }
520
521 static const u8 ata_rw_cmds[] = {
522 /* pio multi */
523 ATA_CMD_READ_MULTI,
524 ATA_CMD_WRITE_MULTI,
525 ATA_CMD_READ_MULTI_EXT,
526 ATA_CMD_WRITE_MULTI_EXT,
527 0,
528 0,
529 0,
530 ATA_CMD_WRITE_MULTI_FUA_EXT,
531 /* pio */
532 ATA_CMD_PIO_READ,
533 ATA_CMD_PIO_WRITE,
534 ATA_CMD_PIO_READ_EXT,
535 ATA_CMD_PIO_WRITE_EXT,
536 0,
537 0,
538 0,
539 0,
540 /* dma */
541 ATA_CMD_READ,
542 ATA_CMD_WRITE,
543 ATA_CMD_READ_EXT,
544 ATA_CMD_WRITE_EXT,
545 0,
546 0,
547 0,
548 ATA_CMD_WRITE_FUA_EXT
549 };
550
551 /**
552 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
553 * @tf: command to examine and configure
554 * @dev: device tf belongs to
555 *
556 * Examine the device configuration and tf->flags to calculate
557 * the proper read/write commands and protocol to use.
558 *
559 * LOCKING:
560 * caller.
561 */
562 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
563 {
564 u8 cmd;
565
566 int index, fua, lba48, write;
567
568 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
569 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
570 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
571
572 if (dev->flags & ATA_DFLAG_PIO) {
573 tf->protocol = ATA_PROT_PIO;
574 index = dev->multi_count ? 0 : 8;
575 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
576 /* Unable to use DMA due to host limitation */
577 tf->protocol = ATA_PROT_PIO;
578 index = dev->multi_count ? 0 : 8;
579 } else {
580 tf->protocol = ATA_PROT_DMA;
581 index = 16;
582 }
583
584 cmd = ata_rw_cmds[index + fua + lba48 + write];
585 if (cmd) {
586 tf->command = cmd;
587 return 0;
588 }
589 return -1;
590 }
591
592 /**
593 * ata_tf_read_block - Read block address from ATA taskfile
594 * @tf: ATA taskfile of interest
595 * @dev: ATA device @tf belongs to
596 *
597 * LOCKING:
598 * None.
599 *
600 * Read block address from @tf. This function can handle all
601 * three address formats - LBA, LBA48 and CHS. tf->protocol and
602 * flags select the address format to use.
603 *
604 * RETURNS:
605 * Block address read from @tf.
606 */
607 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
608 {
609 u64 block = 0;
610
611 if (tf->flags & ATA_TFLAG_LBA) {
612 if (tf->flags & ATA_TFLAG_LBA48) {
613 block |= (u64)tf->hob_lbah << 40;
614 block |= (u64)tf->hob_lbam << 32;
615 block |= (u64)tf->hob_lbal << 24;
616 } else
617 block |= (tf->device & 0xf) << 24;
618
619 block |= tf->lbah << 16;
620 block |= tf->lbam << 8;
621 block |= tf->lbal;
622 } else {
623 u32 cyl, head, sect;
624
625 cyl = tf->lbam | (tf->lbah << 8);
626 head = tf->device & 0xf;
627 sect = tf->lbal;
628
629 block = (cyl * dev->heads + head) * dev->sectors + sect;
630 }
631
632 return block;
633 }
634
635 /**
636 * ata_build_rw_tf - Build ATA taskfile for given read/write request
637 * @tf: Target ATA taskfile
638 * @dev: ATA device @tf belongs to
639 * @block: Block address
640 * @n_block: Number of blocks
641 * @tf_flags: RW/FUA etc...
642 * @tag: tag
643 *
644 * LOCKING:
645 * None.
646 *
647 * Build ATA taskfile @tf for read/write request described by
648 * @block, @n_block, @tf_flags and @tag on @dev.
649 *
650 * RETURNS:
651 *
652 * 0 on success, -ERANGE if the request is too large for @dev,
653 * -EINVAL if the request is invalid.
654 */
655 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
656 u64 block, u32 n_block, unsigned int tf_flags,
657 unsigned int tag)
658 {
659 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
660 tf->flags |= tf_flags;
661
662 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
663 /* yay, NCQ */
664 if (!lba_48_ok(block, n_block))
665 return -ERANGE;
666
667 tf->protocol = ATA_PROT_NCQ;
668 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
669
670 if (tf->flags & ATA_TFLAG_WRITE)
671 tf->command = ATA_CMD_FPDMA_WRITE;
672 else
673 tf->command = ATA_CMD_FPDMA_READ;
674
675 tf->nsect = tag << 3;
676 tf->hob_feature = (n_block >> 8) & 0xff;
677 tf->feature = n_block & 0xff;
678
679 tf->hob_lbah = (block >> 40) & 0xff;
680 tf->hob_lbam = (block >> 32) & 0xff;
681 tf->hob_lbal = (block >> 24) & 0xff;
682 tf->lbah = (block >> 16) & 0xff;
683 tf->lbam = (block >> 8) & 0xff;
684 tf->lbal = block & 0xff;
685
686 tf->device = 1 << 6;
687 if (tf->flags & ATA_TFLAG_FUA)
688 tf->device |= 1 << 7;
689 } else if (dev->flags & ATA_DFLAG_LBA) {
690 tf->flags |= ATA_TFLAG_LBA;
691
692 if (lba_28_ok(block, n_block)) {
693 /* use LBA28 */
694 tf->device |= (block >> 24) & 0xf;
695 } else if (lba_48_ok(block, n_block)) {
696 if (!(dev->flags & ATA_DFLAG_LBA48))
697 return -ERANGE;
698
699 /* use LBA48 */
700 tf->flags |= ATA_TFLAG_LBA48;
701
702 tf->hob_nsect = (n_block >> 8) & 0xff;
703
704 tf->hob_lbah = (block >> 40) & 0xff;
705 tf->hob_lbam = (block >> 32) & 0xff;
706 tf->hob_lbal = (block >> 24) & 0xff;
707 } else
708 /* request too large even for LBA48 */
709 return -ERANGE;
710
711 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
712 return -EINVAL;
713
714 tf->nsect = n_block & 0xff;
715
716 tf->lbah = (block >> 16) & 0xff;
717 tf->lbam = (block >> 8) & 0xff;
718 tf->lbal = block & 0xff;
719
720 tf->device |= ATA_LBA;
721 } else {
722 /* CHS */
723 u32 sect, head, cyl, track;
724
725 /* The request -may- be too large for CHS addressing. */
726 if (!lba_28_ok(block, n_block))
727 return -ERANGE;
728
729 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
730 return -EINVAL;
731
732 /* Convert LBA to CHS */
733 track = (u32)block / dev->sectors;
734 cyl = track / dev->heads;
735 head = track % dev->heads;
736 sect = (u32)block % dev->sectors + 1;
737
738 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
739 (u32)block, track, cyl, head, sect);
740
741 /* Check whether the converted CHS can fit.
742 Cylinder: 0-65535
743 Head: 0-15
744 Sector: 1-255*/
745 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
746 return -ERANGE;
747
748 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
749 tf->lbal = sect;
750 tf->lbam = cyl;
751 tf->lbah = cyl >> 8;
752 tf->device |= head;
753 }
754
755 return 0;
756 }
757
758 /**
759 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
760 * @pio_mask: pio_mask
761 * @mwdma_mask: mwdma_mask
762 * @udma_mask: udma_mask
763 *
764 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
765 * unsigned int xfer_mask.
766 *
767 * LOCKING:
768 * None.
769 *
770 * RETURNS:
771 * Packed xfer_mask.
772 */
773 unsigned long ata_pack_xfermask(unsigned long pio_mask,
774 unsigned long mwdma_mask,
775 unsigned long udma_mask)
776 {
777 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
778 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
779 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
780 }
781
782 /**
783 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
784 * @xfer_mask: xfer_mask to unpack
785 * @pio_mask: resulting pio_mask
786 * @mwdma_mask: resulting mwdma_mask
787 * @udma_mask: resulting udma_mask
788 *
789 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
790 * Any NULL distination masks will be ignored.
791 */
792 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
793 unsigned long *mwdma_mask, unsigned long *udma_mask)
794 {
795 if (pio_mask)
796 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
797 if (mwdma_mask)
798 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
799 if (udma_mask)
800 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
801 }
802
803 static const struct ata_xfer_ent {
804 int shift, bits;
805 u8 base;
806 } ata_xfer_tbl[] = {
807 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
808 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
809 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
810 { -1, },
811 };
812
813 /**
814 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
815 * @xfer_mask: xfer_mask of interest
816 *
817 * Return matching XFER_* value for @xfer_mask. Only the highest
818 * bit of @xfer_mask is considered.
819 *
820 * LOCKING:
821 * None.
822 *
823 * RETURNS:
824 * Matching XFER_* value, 0xff if no match found.
825 */
826 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
827 {
828 int highbit = fls(xfer_mask) - 1;
829 const struct ata_xfer_ent *ent;
830
831 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
832 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
833 return ent->base + highbit - ent->shift;
834 return 0xff;
835 }
836
837 /**
838 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
839 * @xfer_mode: XFER_* of interest
840 *
841 * Return matching xfer_mask for @xfer_mode.
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Matching xfer_mask, 0 if no match found.
848 */
849 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
850 {
851 const struct ata_xfer_ent *ent;
852
853 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
854 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
855 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
856 & ~((1 << ent->shift) - 1);
857 return 0;
858 }
859
860 /**
861 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
862 * @xfer_mode: XFER_* of interest
863 *
864 * Return matching xfer_shift for @xfer_mode.
865 *
866 * LOCKING:
867 * None.
868 *
869 * RETURNS:
870 * Matching xfer_shift, -1 if no match found.
871 */
872 int ata_xfer_mode2shift(unsigned long xfer_mode)
873 {
874 const struct ata_xfer_ent *ent;
875
876 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
877 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
878 return ent->shift;
879 return -1;
880 }
881
882 /**
883 * ata_mode_string - convert xfer_mask to string
884 * @xfer_mask: mask of bits supported; only highest bit counts.
885 *
886 * Determine string which represents the highest speed
887 * (highest bit in @modemask).
888 *
889 * LOCKING:
890 * None.
891 *
892 * RETURNS:
893 * Constant C string representing highest speed listed in
894 * @mode_mask, or the constant C string "<n/a>".
895 */
896 const char *ata_mode_string(unsigned long xfer_mask)
897 {
898 static const char * const xfer_mode_str[] = {
899 "PIO0",
900 "PIO1",
901 "PIO2",
902 "PIO3",
903 "PIO4",
904 "PIO5",
905 "PIO6",
906 "MWDMA0",
907 "MWDMA1",
908 "MWDMA2",
909 "MWDMA3",
910 "MWDMA4",
911 "UDMA/16",
912 "UDMA/25",
913 "UDMA/33",
914 "UDMA/44",
915 "UDMA/66",
916 "UDMA/100",
917 "UDMA/133",
918 "UDMA7",
919 };
920 int highbit;
921
922 highbit = fls(xfer_mask) - 1;
923 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
924 return xfer_mode_str[highbit];
925 return "<n/a>";
926 }
927
928 static const char *sata_spd_string(unsigned int spd)
929 {
930 static const char * const spd_str[] = {
931 "1.5 Gbps",
932 "3.0 Gbps",
933 };
934
935 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
936 return "<unknown>";
937 return spd_str[spd - 1];
938 }
939
940 void ata_dev_disable(struct ata_device *dev)
941 {
942 if (ata_dev_enabled(dev)) {
943 if (ata_msg_drv(dev->link->ap))
944 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
945 ata_acpi_on_disable(dev);
946 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
947 ATA_DNXFER_QUIET);
948 dev->class++;
949 }
950 }
951
952 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
953 {
954 struct ata_link *link = dev->link;
955 struct ata_port *ap = link->ap;
956 u32 scontrol;
957 unsigned int err_mask;
958 int rc;
959
960 /*
961 * disallow DIPM for drivers which haven't set
962 * ATA_FLAG_IPM. This is because when DIPM is enabled,
963 * phy ready will be set in the interrupt status on
964 * state changes, which will cause some drivers to
965 * think there are errors - additionally drivers will
966 * need to disable hot plug.
967 */
968 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
969 ap->pm_policy = NOT_AVAILABLE;
970 return -EINVAL;
971 }
972
973 /*
974 * For DIPM, we will only enable it for the
975 * min_power setting.
976 *
977 * Why? Because Disks are too stupid to know that
978 * If the host rejects a request to go to SLUMBER
979 * they should retry at PARTIAL, and instead it
980 * just would give up. So, for medium_power to
981 * work at all, we need to only allow HIPM.
982 */
983 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
984 if (rc)
985 return rc;
986
987 switch (policy) {
988 case MIN_POWER:
989 /* no restrictions on IPM transitions */
990 scontrol &= ~(0x3 << 8);
991 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
992 if (rc)
993 return rc;
994
995 /* enable DIPM */
996 if (dev->flags & ATA_DFLAG_DIPM)
997 err_mask = ata_dev_set_feature(dev,
998 SETFEATURES_SATA_ENABLE, SATA_DIPM);
999 break;
1000 case MEDIUM_POWER:
1001 /* allow IPM to PARTIAL */
1002 scontrol &= ~(0x1 << 8);
1003 scontrol |= (0x2 << 8);
1004 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1005 if (rc)
1006 return rc;
1007
1008 /*
1009 * we don't have to disable DIPM since IPM flags
1010 * disallow transitions to SLUMBER, which effectively
1011 * disable DIPM if it does not support PARTIAL
1012 */
1013 break;
1014 case NOT_AVAILABLE:
1015 case MAX_PERFORMANCE:
1016 /* disable all IPM transitions */
1017 scontrol |= (0x3 << 8);
1018 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1019 if (rc)
1020 return rc;
1021
1022 /*
1023 * we don't have to disable DIPM since IPM flags
1024 * disallow all transitions which effectively
1025 * disable DIPM anyway.
1026 */
1027 break;
1028 }
1029
1030 /* FIXME: handle SET FEATURES failure */
1031 (void) err_mask;
1032
1033 return 0;
1034 }
1035
1036 /**
1037 * ata_dev_enable_pm - enable SATA interface power management
1038 * @dev: device to enable power management
1039 * @policy: the link power management policy
1040 *
1041 * Enable SATA Interface power management. This will enable
1042 * Device Interface Power Management (DIPM) for min_power
1043 * policy, and then call driver specific callbacks for
1044 * enabling Host Initiated Power management.
1045 *
1046 * Locking: Caller.
1047 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1048 */
1049 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1050 {
1051 int rc = 0;
1052 struct ata_port *ap = dev->link->ap;
1053
1054 /* set HIPM first, then DIPM */
1055 if (ap->ops->enable_pm)
1056 rc = ap->ops->enable_pm(ap, policy);
1057 if (rc)
1058 goto enable_pm_out;
1059 rc = ata_dev_set_dipm(dev, policy);
1060
1061 enable_pm_out:
1062 if (rc)
1063 ap->pm_policy = MAX_PERFORMANCE;
1064 else
1065 ap->pm_policy = policy;
1066 return /* rc */; /* hopefully we can use 'rc' eventually */
1067 }
1068
1069 #ifdef CONFIG_PM
1070 /**
1071 * ata_dev_disable_pm - disable SATA interface power management
1072 * @dev: device to disable power management
1073 *
1074 * Disable SATA Interface power management. This will disable
1075 * Device Interface Power Management (DIPM) without changing
1076 * policy, call driver specific callbacks for disabling Host
1077 * Initiated Power management.
1078 *
1079 * Locking: Caller.
1080 * Returns: void
1081 */
1082 static void ata_dev_disable_pm(struct ata_device *dev)
1083 {
1084 struct ata_port *ap = dev->link->ap;
1085
1086 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1087 if (ap->ops->disable_pm)
1088 ap->ops->disable_pm(ap);
1089 }
1090 #endif /* CONFIG_PM */
1091
1092 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1093 {
1094 ap->pm_policy = policy;
1095 ap->link.eh_info.action |= ATA_EH_LPM;
1096 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1097 ata_port_schedule_eh(ap);
1098 }
1099
1100 #ifdef CONFIG_PM
1101 static void ata_lpm_enable(struct ata_host *host)
1102 {
1103 struct ata_link *link;
1104 struct ata_port *ap;
1105 struct ata_device *dev;
1106 int i;
1107
1108 for (i = 0; i < host->n_ports; i++) {
1109 ap = host->ports[i];
1110 ata_port_for_each_link(link, ap) {
1111 ata_link_for_each_dev(dev, link)
1112 ata_dev_disable_pm(dev);
1113 }
1114 }
1115 }
1116
1117 static void ata_lpm_disable(struct ata_host *host)
1118 {
1119 int i;
1120
1121 for (i = 0; i < host->n_ports; i++) {
1122 struct ata_port *ap = host->ports[i];
1123 ata_lpm_schedule(ap, ap->pm_policy);
1124 }
1125 }
1126 #endif /* CONFIG_PM */
1127
1128 /**
1129 * ata_dev_classify - determine device type based on ATA-spec signature
1130 * @tf: ATA taskfile register set for device to be identified
1131 *
1132 * Determine from taskfile register contents whether a device is
1133 * ATA or ATAPI, as per "Signature and persistence" section
1134 * of ATA/PI spec (volume 1, sect 5.14).
1135 *
1136 * LOCKING:
1137 * None.
1138 *
1139 * RETURNS:
1140 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1141 * %ATA_DEV_UNKNOWN the event of failure.
1142 */
1143 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1144 {
1145 /* Apple's open source Darwin code hints that some devices only
1146 * put a proper signature into the LBA mid/high registers,
1147 * So, we only check those. It's sufficient for uniqueness.
1148 *
1149 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1150 * signatures for ATA and ATAPI devices attached on SerialATA,
1151 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1152 * spec has never mentioned about using different signatures
1153 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1154 * Multiplier specification began to use 0x69/0x96 to identify
1155 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1156 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1157 * 0x69/0x96 shortly and described them as reserved for
1158 * SerialATA.
1159 *
1160 * We follow the current spec and consider that 0x69/0x96
1161 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1162 */
1163 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1164 DPRINTK("found ATA device by sig\n");
1165 return ATA_DEV_ATA;
1166 }
1167
1168 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1169 DPRINTK("found ATAPI device by sig\n");
1170 return ATA_DEV_ATAPI;
1171 }
1172
1173 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1174 DPRINTK("found PMP device by sig\n");
1175 return ATA_DEV_PMP;
1176 }
1177
1178 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1179 printk(KERN_INFO "ata: SEMB device ignored\n");
1180 return ATA_DEV_SEMB_UNSUP; /* not yet */
1181 }
1182
1183 DPRINTK("unknown device\n");
1184 return ATA_DEV_UNKNOWN;
1185 }
1186
1187 /**
1188 * ata_id_string - Convert IDENTIFY DEVICE page into string
1189 * @id: IDENTIFY DEVICE results we will examine
1190 * @s: string into which data is output
1191 * @ofs: offset into identify device page
1192 * @len: length of string to return. must be an even number.
1193 *
1194 * The strings in the IDENTIFY DEVICE page are broken up into
1195 * 16-bit chunks. Run through the string, and output each
1196 * 8-bit chunk linearly, regardless of platform.
1197 *
1198 * LOCKING:
1199 * caller.
1200 */
1201
1202 void ata_id_string(const u16 *id, unsigned char *s,
1203 unsigned int ofs, unsigned int len)
1204 {
1205 unsigned int c;
1206
1207 BUG_ON(len & 1);
1208
1209 while (len > 0) {
1210 c = id[ofs] >> 8;
1211 *s = c;
1212 s++;
1213
1214 c = id[ofs] & 0xff;
1215 *s = c;
1216 s++;
1217
1218 ofs++;
1219 len -= 2;
1220 }
1221 }
1222
1223 /**
1224 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1225 * @id: IDENTIFY DEVICE results we will examine
1226 * @s: string into which data is output
1227 * @ofs: offset into identify device page
1228 * @len: length of string to return. must be an odd number.
1229 *
1230 * This function is identical to ata_id_string except that it
1231 * trims trailing spaces and terminates the resulting string with
1232 * null. @len must be actual maximum length (even number) + 1.
1233 *
1234 * LOCKING:
1235 * caller.
1236 */
1237 void ata_id_c_string(const u16 *id, unsigned char *s,
1238 unsigned int ofs, unsigned int len)
1239 {
1240 unsigned char *p;
1241
1242 ata_id_string(id, s, ofs, len - 1);
1243
1244 p = s + strnlen(s, len - 1);
1245 while (p > s && p[-1] == ' ')
1246 p--;
1247 *p = '\0';
1248 }
1249
1250 static u64 ata_id_n_sectors(const u16 *id)
1251 {
1252 if (ata_id_has_lba(id)) {
1253 if (ata_id_has_lba48(id))
1254 return ata_id_u64(id, 100);
1255 else
1256 return ata_id_u32(id, 60);
1257 } else {
1258 if (ata_id_current_chs_valid(id))
1259 return ata_id_u32(id, 57);
1260 else
1261 return id[1] * id[3] * id[6];
1262 }
1263 }
1264
1265 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1266 {
1267 u64 sectors = 0;
1268
1269 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1270 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1271 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1272 sectors |= (tf->lbah & 0xff) << 16;
1273 sectors |= (tf->lbam & 0xff) << 8;
1274 sectors |= (tf->lbal & 0xff);
1275
1276 return sectors;
1277 }
1278
1279 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1280 {
1281 u64 sectors = 0;
1282
1283 sectors |= (tf->device & 0x0f) << 24;
1284 sectors |= (tf->lbah & 0xff) << 16;
1285 sectors |= (tf->lbam & 0xff) << 8;
1286 sectors |= (tf->lbal & 0xff);
1287
1288 return sectors;
1289 }
1290
1291 /**
1292 * ata_read_native_max_address - Read native max address
1293 * @dev: target device
1294 * @max_sectors: out parameter for the result native max address
1295 *
1296 * Perform an LBA48 or LBA28 native size query upon the device in
1297 * question.
1298 *
1299 * RETURNS:
1300 * 0 on success, -EACCES if command is aborted by the drive.
1301 * -EIO on other errors.
1302 */
1303 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1304 {
1305 unsigned int err_mask;
1306 struct ata_taskfile tf;
1307 int lba48 = ata_id_has_lba48(dev->id);
1308
1309 ata_tf_init(dev, &tf);
1310
1311 /* always clear all address registers */
1312 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1313
1314 if (lba48) {
1315 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1316 tf.flags |= ATA_TFLAG_LBA48;
1317 } else
1318 tf.command = ATA_CMD_READ_NATIVE_MAX;
1319
1320 tf.protocol |= ATA_PROT_NODATA;
1321 tf.device |= ATA_LBA;
1322
1323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1324 if (err_mask) {
1325 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1326 "max address (err_mask=0x%x)\n", err_mask);
1327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1328 return -EACCES;
1329 return -EIO;
1330 }
1331
1332 if (lba48)
1333 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1334 else
1335 *max_sectors = ata_tf_to_lba(&tf) + 1;
1336 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1337 (*max_sectors)--;
1338 return 0;
1339 }
1340
1341 /**
1342 * ata_set_max_sectors - Set max sectors
1343 * @dev: target device
1344 * @new_sectors: new max sectors value to set for the device
1345 *
1346 * Set max sectors of @dev to @new_sectors.
1347 *
1348 * RETURNS:
1349 * 0 on success, -EACCES if command is aborted or denied (due to
1350 * previous non-volatile SET_MAX) by the drive. -EIO on other
1351 * errors.
1352 */
1353 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1354 {
1355 unsigned int err_mask;
1356 struct ata_taskfile tf;
1357 int lba48 = ata_id_has_lba48(dev->id);
1358
1359 new_sectors--;
1360
1361 ata_tf_init(dev, &tf);
1362
1363 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1364
1365 if (lba48) {
1366 tf.command = ATA_CMD_SET_MAX_EXT;
1367 tf.flags |= ATA_TFLAG_LBA48;
1368
1369 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1370 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1371 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1372 } else {
1373 tf.command = ATA_CMD_SET_MAX;
1374
1375 tf.device |= (new_sectors >> 24) & 0xf;
1376 }
1377
1378 tf.protocol |= ATA_PROT_NODATA;
1379 tf.device |= ATA_LBA;
1380
1381 tf.lbal = (new_sectors >> 0) & 0xff;
1382 tf.lbam = (new_sectors >> 8) & 0xff;
1383 tf.lbah = (new_sectors >> 16) & 0xff;
1384
1385 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1386 if (err_mask) {
1387 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1388 "max address (err_mask=0x%x)\n", err_mask);
1389 if (err_mask == AC_ERR_DEV &&
1390 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1391 return -EACCES;
1392 return -EIO;
1393 }
1394
1395 return 0;
1396 }
1397
1398 /**
1399 * ata_hpa_resize - Resize a device with an HPA set
1400 * @dev: Device to resize
1401 *
1402 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1403 * it if required to the full size of the media. The caller must check
1404 * the drive has the HPA feature set enabled.
1405 *
1406 * RETURNS:
1407 * 0 on success, -errno on failure.
1408 */
1409 static int ata_hpa_resize(struct ata_device *dev)
1410 {
1411 struct ata_eh_context *ehc = &dev->link->eh_context;
1412 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1413 u64 sectors = ata_id_n_sectors(dev->id);
1414 u64 native_sectors;
1415 int rc;
1416
1417 /* do we need to do it? */
1418 if (dev->class != ATA_DEV_ATA ||
1419 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1420 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1421 return 0;
1422
1423 /* read native max address */
1424 rc = ata_read_native_max_address(dev, &native_sectors);
1425 if (rc) {
1426 /* If device aborted the command or HPA isn't going to
1427 * be unlocked, skip HPA resizing.
1428 */
1429 if (rc == -EACCES || !ata_ignore_hpa) {
1430 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1431 "broken, skipping HPA handling\n");
1432 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1433
1434 /* we can continue if device aborted the command */
1435 if (rc == -EACCES)
1436 rc = 0;
1437 }
1438
1439 return rc;
1440 }
1441
1442 /* nothing to do? */
1443 if (native_sectors <= sectors || !ata_ignore_hpa) {
1444 if (!print_info || native_sectors == sectors)
1445 return 0;
1446
1447 if (native_sectors > sectors)
1448 ata_dev_printk(dev, KERN_INFO,
1449 "HPA detected: current %llu, native %llu\n",
1450 (unsigned long long)sectors,
1451 (unsigned long long)native_sectors);
1452 else if (native_sectors < sectors)
1453 ata_dev_printk(dev, KERN_WARNING,
1454 "native sectors (%llu) is smaller than "
1455 "sectors (%llu)\n",
1456 (unsigned long long)native_sectors,
1457 (unsigned long long)sectors);
1458 return 0;
1459 }
1460
1461 /* let's unlock HPA */
1462 rc = ata_set_max_sectors(dev, native_sectors);
1463 if (rc == -EACCES) {
1464 /* if device aborted the command, skip HPA resizing */
1465 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1466 "(%llu -> %llu), skipping HPA handling\n",
1467 (unsigned long long)sectors,
1468 (unsigned long long)native_sectors);
1469 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1470 return 0;
1471 } else if (rc)
1472 return rc;
1473
1474 /* re-read IDENTIFY data */
1475 rc = ata_dev_reread_id(dev, 0);
1476 if (rc) {
1477 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1478 "data after HPA resizing\n");
1479 return rc;
1480 }
1481
1482 if (print_info) {
1483 u64 new_sectors = ata_id_n_sectors(dev->id);
1484 ata_dev_printk(dev, KERN_INFO,
1485 "HPA unlocked: %llu -> %llu, native %llu\n",
1486 (unsigned long long)sectors,
1487 (unsigned long long)new_sectors,
1488 (unsigned long long)native_sectors);
1489 }
1490
1491 return 0;
1492 }
1493
1494 /**
1495 * ata_dump_id - IDENTIFY DEVICE info debugging output
1496 * @id: IDENTIFY DEVICE page to dump
1497 *
1498 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1499 * page.
1500 *
1501 * LOCKING:
1502 * caller.
1503 */
1504
1505 static inline void ata_dump_id(const u16 *id)
1506 {
1507 DPRINTK("49==0x%04x "
1508 "53==0x%04x "
1509 "63==0x%04x "
1510 "64==0x%04x "
1511 "75==0x%04x \n",
1512 id[49],
1513 id[53],
1514 id[63],
1515 id[64],
1516 id[75]);
1517 DPRINTK("80==0x%04x "
1518 "81==0x%04x "
1519 "82==0x%04x "
1520 "83==0x%04x "
1521 "84==0x%04x \n",
1522 id[80],
1523 id[81],
1524 id[82],
1525 id[83],
1526 id[84]);
1527 DPRINTK("88==0x%04x "
1528 "93==0x%04x\n",
1529 id[88],
1530 id[93]);
1531 }
1532
1533 /**
1534 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1535 * @id: IDENTIFY data to compute xfer mask from
1536 *
1537 * Compute the xfermask for this device. This is not as trivial
1538 * as it seems if we must consider early devices correctly.
1539 *
1540 * FIXME: pre IDE drive timing (do we care ?).
1541 *
1542 * LOCKING:
1543 * None.
1544 *
1545 * RETURNS:
1546 * Computed xfermask
1547 */
1548 unsigned long ata_id_xfermask(const u16 *id)
1549 {
1550 unsigned long pio_mask, mwdma_mask, udma_mask;
1551
1552 /* Usual case. Word 53 indicates word 64 is valid */
1553 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1554 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1555 pio_mask <<= 3;
1556 pio_mask |= 0x7;
1557 } else {
1558 /* If word 64 isn't valid then Word 51 high byte holds
1559 * the PIO timing number for the maximum. Turn it into
1560 * a mask.
1561 */
1562 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1563 if (mode < 5) /* Valid PIO range */
1564 pio_mask = (2 << mode) - 1;
1565 else
1566 pio_mask = 1;
1567
1568 /* But wait.. there's more. Design your standards by
1569 * committee and you too can get a free iordy field to
1570 * process. However its the speeds not the modes that
1571 * are supported... Note drivers using the timing API
1572 * will get this right anyway
1573 */
1574 }
1575
1576 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1577
1578 if (ata_id_is_cfa(id)) {
1579 /*
1580 * Process compact flash extended modes
1581 */
1582 int pio = id[163] & 0x7;
1583 int dma = (id[163] >> 3) & 7;
1584
1585 if (pio)
1586 pio_mask |= (1 << 5);
1587 if (pio > 1)
1588 pio_mask |= (1 << 6);
1589 if (dma)
1590 mwdma_mask |= (1 << 3);
1591 if (dma > 1)
1592 mwdma_mask |= (1 << 4);
1593 }
1594
1595 udma_mask = 0;
1596 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1597 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1598
1599 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1600 }
1601
1602 /**
1603 * ata_pio_queue_task - Queue port_task
1604 * @ap: The ata_port to queue port_task for
1605 * @data: data for @fn to use
1606 * @delay: delay time in msecs for workqueue function
1607 *
1608 * Schedule @fn(@data) for execution after @delay jiffies using
1609 * port_task. There is one port_task per port and it's the
1610 * user(low level driver)'s responsibility to make sure that only
1611 * one task is active at any given time.
1612 *
1613 * libata core layer takes care of synchronization between
1614 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1615 * synchronization.
1616 *
1617 * LOCKING:
1618 * Inherited from caller.
1619 */
1620 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1621 {
1622 ap->port_task_data = data;
1623
1624 /* may fail if ata_port_flush_task() in progress */
1625 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1626 }
1627
1628 /**
1629 * ata_port_flush_task - Flush port_task
1630 * @ap: The ata_port to flush port_task for
1631 *
1632 * After this function completes, port_task is guranteed not to
1633 * be running or scheduled.
1634 *
1635 * LOCKING:
1636 * Kernel thread context (may sleep)
1637 */
1638 void ata_port_flush_task(struct ata_port *ap)
1639 {
1640 DPRINTK("ENTER\n");
1641
1642 cancel_rearming_delayed_work(&ap->port_task);
1643
1644 if (ata_msg_ctl(ap))
1645 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1646 }
1647
1648 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1649 {
1650 struct completion *waiting = qc->private_data;
1651
1652 complete(waiting);
1653 }
1654
1655 /**
1656 * ata_exec_internal_sg - execute libata internal command
1657 * @dev: Device to which the command is sent
1658 * @tf: Taskfile registers for the command and the result
1659 * @cdb: CDB for packet command
1660 * @dma_dir: Data tranfer direction of the command
1661 * @sgl: sg list for the data buffer of the command
1662 * @n_elem: Number of sg entries
1663 * @timeout: Timeout in msecs (0 for default)
1664 *
1665 * Executes libata internal command with timeout. @tf contains
1666 * command on entry and result on return. Timeout and error
1667 * conditions are reported via return value. No recovery action
1668 * is taken after a command times out. It's caller's duty to
1669 * clean up after timeout.
1670 *
1671 * LOCKING:
1672 * None. Should be called with kernel context, might sleep.
1673 *
1674 * RETURNS:
1675 * Zero on success, AC_ERR_* mask on failure
1676 */
1677 unsigned ata_exec_internal_sg(struct ata_device *dev,
1678 struct ata_taskfile *tf, const u8 *cdb,
1679 int dma_dir, struct scatterlist *sgl,
1680 unsigned int n_elem, unsigned long timeout)
1681 {
1682 struct ata_link *link = dev->link;
1683 struct ata_port *ap = link->ap;
1684 u8 command = tf->command;
1685 int auto_timeout = 0;
1686 struct ata_queued_cmd *qc;
1687 unsigned int tag, preempted_tag;
1688 u32 preempted_sactive, preempted_qc_active;
1689 int preempted_nr_active_links;
1690 DECLARE_COMPLETION_ONSTACK(wait);
1691 unsigned long flags;
1692 unsigned int err_mask;
1693 int rc;
1694
1695 spin_lock_irqsave(ap->lock, flags);
1696
1697 /* no internal command while frozen */
1698 if (ap->pflags & ATA_PFLAG_FROZEN) {
1699 spin_unlock_irqrestore(ap->lock, flags);
1700 return AC_ERR_SYSTEM;
1701 }
1702
1703 /* initialize internal qc */
1704
1705 /* XXX: Tag 0 is used for drivers with legacy EH as some
1706 * drivers choke if any other tag is given. This breaks
1707 * ata_tag_internal() test for those drivers. Don't use new
1708 * EH stuff without converting to it.
1709 */
1710 if (ap->ops->error_handler)
1711 tag = ATA_TAG_INTERNAL;
1712 else
1713 tag = 0;
1714
1715 if (test_and_set_bit(tag, &ap->qc_allocated))
1716 BUG();
1717 qc = __ata_qc_from_tag(ap, tag);
1718
1719 qc->tag = tag;
1720 qc->scsicmd = NULL;
1721 qc->ap = ap;
1722 qc->dev = dev;
1723 ata_qc_reinit(qc);
1724
1725 preempted_tag = link->active_tag;
1726 preempted_sactive = link->sactive;
1727 preempted_qc_active = ap->qc_active;
1728 preempted_nr_active_links = ap->nr_active_links;
1729 link->active_tag = ATA_TAG_POISON;
1730 link->sactive = 0;
1731 ap->qc_active = 0;
1732 ap->nr_active_links = 0;
1733
1734 /* prepare & issue qc */
1735 qc->tf = *tf;
1736 if (cdb)
1737 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1738 qc->flags |= ATA_QCFLAG_RESULT_TF;
1739 qc->dma_dir = dma_dir;
1740 if (dma_dir != DMA_NONE) {
1741 unsigned int i, buflen = 0;
1742 struct scatterlist *sg;
1743
1744 for_each_sg(sgl, sg, n_elem, i)
1745 buflen += sg->length;
1746
1747 ata_sg_init(qc, sgl, n_elem);
1748 qc->nbytes = buflen;
1749 }
1750
1751 qc->private_data = &wait;
1752 qc->complete_fn = ata_qc_complete_internal;
1753
1754 ata_qc_issue(qc);
1755
1756 spin_unlock_irqrestore(ap->lock, flags);
1757
1758 if (!timeout) {
1759 if (ata_probe_timeout)
1760 timeout = ata_probe_timeout * 1000;
1761 else {
1762 timeout = ata_internal_cmd_timeout(dev, command);
1763 auto_timeout = 1;
1764 }
1765 }
1766
1767 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1768
1769 ata_port_flush_task(ap);
1770
1771 if (!rc) {
1772 spin_lock_irqsave(ap->lock, flags);
1773
1774 /* We're racing with irq here. If we lose, the
1775 * following test prevents us from completing the qc
1776 * twice. If we win, the port is frozen and will be
1777 * cleaned up by ->post_internal_cmd().
1778 */
1779 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1780 qc->err_mask |= AC_ERR_TIMEOUT;
1781
1782 if (ap->ops->error_handler)
1783 ata_port_freeze(ap);
1784 else
1785 ata_qc_complete(qc);
1786
1787 if (ata_msg_warn(ap))
1788 ata_dev_printk(dev, KERN_WARNING,
1789 "qc timeout (cmd 0x%x)\n", command);
1790 }
1791
1792 spin_unlock_irqrestore(ap->lock, flags);
1793 }
1794
1795 /* do post_internal_cmd */
1796 if (ap->ops->post_internal_cmd)
1797 ap->ops->post_internal_cmd(qc);
1798
1799 /* perform minimal error analysis */
1800 if (qc->flags & ATA_QCFLAG_FAILED) {
1801 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1802 qc->err_mask |= AC_ERR_DEV;
1803
1804 if (!qc->err_mask)
1805 qc->err_mask |= AC_ERR_OTHER;
1806
1807 if (qc->err_mask & ~AC_ERR_OTHER)
1808 qc->err_mask &= ~AC_ERR_OTHER;
1809 }
1810
1811 /* finish up */
1812 spin_lock_irqsave(ap->lock, flags);
1813
1814 *tf = qc->result_tf;
1815 err_mask = qc->err_mask;
1816
1817 ata_qc_free(qc);
1818 link->active_tag = preempted_tag;
1819 link->sactive = preempted_sactive;
1820 ap->qc_active = preempted_qc_active;
1821 ap->nr_active_links = preempted_nr_active_links;
1822
1823 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1824 * Until those drivers are fixed, we detect the condition
1825 * here, fail the command with AC_ERR_SYSTEM and reenable the
1826 * port.
1827 *
1828 * Note that this doesn't change any behavior as internal
1829 * command failure results in disabling the device in the
1830 * higher layer for LLDDs without new reset/EH callbacks.
1831 *
1832 * Kill the following code as soon as those drivers are fixed.
1833 */
1834 if (ap->flags & ATA_FLAG_DISABLED) {
1835 err_mask |= AC_ERR_SYSTEM;
1836 ata_port_probe(ap);
1837 }
1838
1839 spin_unlock_irqrestore(ap->lock, flags);
1840
1841 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1842 ata_internal_cmd_timed_out(dev, command);
1843
1844 return err_mask;
1845 }
1846
1847 /**
1848 * ata_exec_internal - execute libata internal command
1849 * @dev: Device to which the command is sent
1850 * @tf: Taskfile registers for the command and the result
1851 * @cdb: CDB for packet command
1852 * @dma_dir: Data tranfer direction of the command
1853 * @buf: Data buffer of the command
1854 * @buflen: Length of data buffer
1855 * @timeout: Timeout in msecs (0 for default)
1856 *
1857 * Wrapper around ata_exec_internal_sg() which takes simple
1858 * buffer instead of sg list.
1859 *
1860 * LOCKING:
1861 * None. Should be called with kernel context, might sleep.
1862 *
1863 * RETURNS:
1864 * Zero on success, AC_ERR_* mask on failure
1865 */
1866 unsigned ata_exec_internal(struct ata_device *dev,
1867 struct ata_taskfile *tf, const u8 *cdb,
1868 int dma_dir, void *buf, unsigned int buflen,
1869 unsigned long timeout)
1870 {
1871 struct scatterlist *psg = NULL, sg;
1872 unsigned int n_elem = 0;
1873
1874 if (dma_dir != DMA_NONE) {
1875 WARN_ON(!buf);
1876 sg_init_one(&sg, buf, buflen);
1877 psg = &sg;
1878 n_elem++;
1879 }
1880
1881 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1882 timeout);
1883 }
1884
1885 /**
1886 * ata_do_simple_cmd - execute simple internal command
1887 * @dev: Device to which the command is sent
1888 * @cmd: Opcode to execute
1889 *
1890 * Execute a 'simple' command, that only consists of the opcode
1891 * 'cmd' itself, without filling any other registers
1892 *
1893 * LOCKING:
1894 * Kernel thread context (may sleep).
1895 *
1896 * RETURNS:
1897 * Zero on success, AC_ERR_* mask on failure
1898 */
1899 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1900 {
1901 struct ata_taskfile tf;
1902
1903 ata_tf_init(dev, &tf);
1904
1905 tf.command = cmd;
1906 tf.flags |= ATA_TFLAG_DEVICE;
1907 tf.protocol = ATA_PROT_NODATA;
1908
1909 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1910 }
1911
1912 /**
1913 * ata_pio_need_iordy - check if iordy needed
1914 * @adev: ATA device
1915 *
1916 * Check if the current speed of the device requires IORDY. Used
1917 * by various controllers for chip configuration.
1918 */
1919
1920 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1921 {
1922 /* Controller doesn't support IORDY. Probably a pointless check
1923 as the caller should know this */
1924 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1925 return 0;
1926 /* PIO3 and higher it is mandatory */
1927 if (adev->pio_mode > XFER_PIO_2)
1928 return 1;
1929 /* We turn it on when possible */
1930 if (ata_id_has_iordy(adev->id))
1931 return 1;
1932 return 0;
1933 }
1934
1935 /**
1936 * ata_pio_mask_no_iordy - Return the non IORDY mask
1937 * @adev: ATA device
1938 *
1939 * Compute the highest mode possible if we are not using iordy. Return
1940 * -1 if no iordy mode is available.
1941 */
1942
1943 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1944 {
1945 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1946 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1947 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1948 /* Is the speed faster than the drive allows non IORDY ? */
1949 if (pio) {
1950 /* This is cycle times not frequency - watch the logic! */
1951 if (pio > 240) /* PIO2 is 240nS per cycle */
1952 return 3 << ATA_SHIFT_PIO;
1953 return 7 << ATA_SHIFT_PIO;
1954 }
1955 }
1956 return 3 << ATA_SHIFT_PIO;
1957 }
1958
1959 /**
1960 * ata_do_dev_read_id - default ID read method
1961 * @dev: device
1962 * @tf: proposed taskfile
1963 * @id: data buffer
1964 *
1965 * Issue the identify taskfile and hand back the buffer containing
1966 * identify data. For some RAID controllers and for pre ATA devices
1967 * this function is wrapped or replaced by the driver
1968 */
1969 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1970 struct ata_taskfile *tf, u16 *id)
1971 {
1972 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1973 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1974 }
1975
1976 /**
1977 * ata_dev_read_id - Read ID data from the specified device
1978 * @dev: target device
1979 * @p_class: pointer to class of the target device (may be changed)
1980 * @flags: ATA_READID_* flags
1981 * @id: buffer to read IDENTIFY data into
1982 *
1983 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1984 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1985 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1986 * for pre-ATA4 drives.
1987 *
1988 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1989 * now we abort if we hit that case.
1990 *
1991 * LOCKING:
1992 * Kernel thread context (may sleep)
1993 *
1994 * RETURNS:
1995 * 0 on success, -errno otherwise.
1996 */
1997 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1998 unsigned int flags, u16 *id)
1999 {
2000 struct ata_port *ap = dev->link->ap;
2001 unsigned int class = *p_class;
2002 struct ata_taskfile tf;
2003 unsigned int err_mask = 0;
2004 const char *reason;
2005 int may_fallback = 1, tried_spinup = 0;
2006 int rc;
2007
2008 if (ata_msg_ctl(ap))
2009 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2010
2011 retry:
2012 ata_tf_init(dev, &tf);
2013
2014 switch (class) {
2015 case ATA_DEV_ATA:
2016 tf.command = ATA_CMD_ID_ATA;
2017 break;
2018 case ATA_DEV_ATAPI:
2019 tf.command = ATA_CMD_ID_ATAPI;
2020 break;
2021 default:
2022 rc = -ENODEV;
2023 reason = "unsupported class";
2024 goto err_out;
2025 }
2026
2027 tf.protocol = ATA_PROT_PIO;
2028
2029 /* Some devices choke if TF registers contain garbage. Make
2030 * sure those are properly initialized.
2031 */
2032 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2033
2034 /* Device presence detection is unreliable on some
2035 * controllers. Always poll IDENTIFY if available.
2036 */
2037 tf.flags |= ATA_TFLAG_POLLING;
2038
2039 if (ap->ops->read_id)
2040 err_mask = ap->ops->read_id(dev, &tf, id);
2041 else
2042 err_mask = ata_do_dev_read_id(dev, &tf, id);
2043
2044 if (err_mask) {
2045 if (err_mask & AC_ERR_NODEV_HINT) {
2046 ata_dev_printk(dev, KERN_DEBUG,
2047 "NODEV after polling detection\n");
2048 return -ENOENT;
2049 }
2050
2051 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2052 /* Device or controller might have reported
2053 * the wrong device class. Give a shot at the
2054 * other IDENTIFY if the current one is
2055 * aborted by the device.
2056 */
2057 if (may_fallback) {
2058 may_fallback = 0;
2059
2060 if (class == ATA_DEV_ATA)
2061 class = ATA_DEV_ATAPI;
2062 else
2063 class = ATA_DEV_ATA;
2064 goto retry;
2065 }
2066
2067 /* Control reaches here iff the device aborted
2068 * both flavors of IDENTIFYs which happens
2069 * sometimes with phantom devices.
2070 */
2071 ata_dev_printk(dev, KERN_DEBUG,
2072 "both IDENTIFYs aborted, assuming NODEV\n");
2073 return -ENOENT;
2074 }
2075
2076 rc = -EIO;
2077 reason = "I/O error";
2078 goto err_out;
2079 }
2080
2081 /* Falling back doesn't make sense if ID data was read
2082 * successfully at least once.
2083 */
2084 may_fallback = 0;
2085
2086 swap_buf_le16(id, ATA_ID_WORDS);
2087
2088 /* sanity check */
2089 rc = -EINVAL;
2090 reason = "device reports invalid type";
2091
2092 if (class == ATA_DEV_ATA) {
2093 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2094 goto err_out;
2095 } else {
2096 if (ata_id_is_ata(id))
2097 goto err_out;
2098 }
2099
2100 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2101 tried_spinup = 1;
2102 /*
2103 * Drive powered-up in standby mode, and requires a specific
2104 * SET_FEATURES spin-up subcommand before it will accept
2105 * anything other than the original IDENTIFY command.
2106 */
2107 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2108 if (err_mask && id[2] != 0x738c) {
2109 rc = -EIO;
2110 reason = "SPINUP failed";
2111 goto err_out;
2112 }
2113 /*
2114 * If the drive initially returned incomplete IDENTIFY info,
2115 * we now must reissue the IDENTIFY command.
2116 */
2117 if (id[2] == 0x37c8)
2118 goto retry;
2119 }
2120
2121 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2122 /*
2123 * The exact sequence expected by certain pre-ATA4 drives is:
2124 * SRST RESET
2125 * IDENTIFY (optional in early ATA)
2126 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2127 * anything else..
2128 * Some drives were very specific about that exact sequence.
2129 *
2130 * Note that ATA4 says lba is mandatory so the second check
2131 * shoud never trigger.
2132 */
2133 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2134 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2135 if (err_mask) {
2136 rc = -EIO;
2137 reason = "INIT_DEV_PARAMS failed";
2138 goto err_out;
2139 }
2140
2141 /* current CHS translation info (id[53-58]) might be
2142 * changed. reread the identify device info.
2143 */
2144 flags &= ~ATA_READID_POSTRESET;
2145 goto retry;
2146 }
2147 }
2148
2149 *p_class = class;
2150
2151 return 0;
2152
2153 err_out:
2154 if (ata_msg_warn(ap))
2155 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2156 "(%s, err_mask=0x%x)\n", reason, err_mask);
2157 return rc;
2158 }
2159
2160 static inline u8 ata_dev_knobble(struct ata_device *dev)
2161 {
2162 struct ata_port *ap = dev->link->ap;
2163
2164 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2165 return 0;
2166
2167 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2168 }
2169
2170 static void ata_dev_config_ncq(struct ata_device *dev,
2171 char *desc, size_t desc_sz)
2172 {
2173 struct ata_port *ap = dev->link->ap;
2174 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2175
2176 if (!ata_id_has_ncq(dev->id)) {
2177 desc[0] = '\0';
2178 return;
2179 }
2180 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2181 snprintf(desc, desc_sz, "NCQ (not used)");
2182 return;
2183 }
2184 if (ap->flags & ATA_FLAG_NCQ) {
2185 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2186 dev->flags |= ATA_DFLAG_NCQ;
2187 }
2188
2189 if (hdepth >= ddepth)
2190 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2191 else
2192 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2193 }
2194
2195 /**
2196 * ata_dev_configure - Configure the specified ATA/ATAPI device
2197 * @dev: Target device to configure
2198 *
2199 * Configure @dev according to @dev->id. Generic and low-level
2200 * driver specific fixups are also applied.
2201 *
2202 * LOCKING:
2203 * Kernel thread context (may sleep)
2204 *
2205 * RETURNS:
2206 * 0 on success, -errno otherwise
2207 */
2208 int ata_dev_configure(struct ata_device *dev)
2209 {
2210 struct ata_port *ap = dev->link->ap;
2211 struct ata_eh_context *ehc = &dev->link->eh_context;
2212 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2213 const u16 *id = dev->id;
2214 unsigned long xfer_mask;
2215 char revbuf[7]; /* XYZ-99\0 */
2216 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2217 char modelbuf[ATA_ID_PROD_LEN+1];
2218 int rc;
2219
2220 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2221 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2222 __func__);
2223 return 0;
2224 }
2225
2226 if (ata_msg_probe(ap))
2227 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2228
2229 /* set horkage */
2230 dev->horkage |= ata_dev_blacklisted(dev);
2231 ata_force_horkage(dev);
2232
2233 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2234 ata_dev_printk(dev, KERN_INFO,
2235 "unsupported device, disabling\n");
2236 ata_dev_disable(dev);
2237 return 0;
2238 }
2239
2240 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2241 dev->class == ATA_DEV_ATAPI) {
2242 ata_dev_printk(dev, KERN_WARNING,
2243 "WARNING: ATAPI is %s, device ignored.\n",
2244 atapi_enabled ? "not supported with this driver"
2245 : "disabled");
2246 ata_dev_disable(dev);
2247 return 0;
2248 }
2249
2250 /* let ACPI work its magic */
2251 rc = ata_acpi_on_devcfg(dev);
2252 if (rc)
2253 return rc;
2254
2255 /* massage HPA, do it early as it might change IDENTIFY data */
2256 rc = ata_hpa_resize(dev);
2257 if (rc)
2258 return rc;
2259
2260 /* print device capabilities */
2261 if (ata_msg_probe(ap))
2262 ata_dev_printk(dev, KERN_DEBUG,
2263 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2264 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2265 __func__,
2266 id[49], id[82], id[83], id[84],
2267 id[85], id[86], id[87], id[88]);
2268
2269 /* initialize to-be-configured parameters */
2270 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2271 dev->max_sectors = 0;
2272 dev->cdb_len = 0;
2273 dev->n_sectors = 0;
2274 dev->cylinders = 0;
2275 dev->heads = 0;
2276 dev->sectors = 0;
2277
2278 /*
2279 * common ATA, ATAPI feature tests
2280 */
2281
2282 /* find max transfer mode; for printk only */
2283 xfer_mask = ata_id_xfermask(id);
2284
2285 if (ata_msg_probe(ap))
2286 ata_dump_id(id);
2287
2288 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2289 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2290 sizeof(fwrevbuf));
2291
2292 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2293 sizeof(modelbuf));
2294
2295 /* ATA-specific feature tests */
2296 if (dev->class == ATA_DEV_ATA) {
2297 if (ata_id_is_cfa(id)) {
2298 if (id[162] & 1) /* CPRM may make this media unusable */
2299 ata_dev_printk(dev, KERN_WARNING,
2300 "supports DRM functions and may "
2301 "not be fully accessable.\n");
2302 snprintf(revbuf, 7, "CFA");
2303 } else {
2304 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2305 /* Warn the user if the device has TPM extensions */
2306 if (ata_id_has_tpm(id))
2307 ata_dev_printk(dev, KERN_WARNING,
2308 "supports DRM functions and may "
2309 "not be fully accessable.\n");
2310 }
2311
2312 dev->n_sectors = ata_id_n_sectors(id);
2313
2314 if (dev->id[59] & 0x100)
2315 dev->multi_count = dev->id[59] & 0xff;
2316
2317 if (ata_id_has_lba(id)) {
2318 const char *lba_desc;
2319 char ncq_desc[20];
2320
2321 lba_desc = "LBA";
2322 dev->flags |= ATA_DFLAG_LBA;
2323 if (ata_id_has_lba48(id)) {
2324 dev->flags |= ATA_DFLAG_LBA48;
2325 lba_desc = "LBA48";
2326
2327 if (dev->n_sectors >= (1UL << 28) &&
2328 ata_id_has_flush_ext(id))
2329 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2330 }
2331
2332 /* config NCQ */
2333 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2334
2335 /* print device info to dmesg */
2336 if (ata_msg_drv(ap) && print_info) {
2337 ata_dev_printk(dev, KERN_INFO,
2338 "%s: %s, %s, max %s\n",
2339 revbuf, modelbuf, fwrevbuf,
2340 ata_mode_string(xfer_mask));
2341 ata_dev_printk(dev, KERN_INFO,
2342 "%Lu sectors, multi %u: %s %s\n",
2343 (unsigned long long)dev->n_sectors,
2344 dev->multi_count, lba_desc, ncq_desc);
2345 }
2346 } else {
2347 /* CHS */
2348
2349 /* Default translation */
2350 dev->cylinders = id[1];
2351 dev->heads = id[3];
2352 dev->sectors = id[6];
2353
2354 if (ata_id_current_chs_valid(id)) {
2355 /* Current CHS translation is valid. */
2356 dev->cylinders = id[54];
2357 dev->heads = id[55];
2358 dev->sectors = id[56];
2359 }
2360
2361 /* print device info to dmesg */
2362 if (ata_msg_drv(ap) && print_info) {
2363 ata_dev_printk(dev, KERN_INFO,
2364 "%s: %s, %s, max %s\n",
2365 revbuf, modelbuf, fwrevbuf,
2366 ata_mode_string(xfer_mask));
2367 ata_dev_printk(dev, KERN_INFO,
2368 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2369 (unsigned long long)dev->n_sectors,
2370 dev->multi_count, dev->cylinders,
2371 dev->heads, dev->sectors);
2372 }
2373 }
2374
2375 dev->cdb_len = 16;
2376 }
2377
2378 /* ATAPI-specific feature tests */
2379 else if (dev->class == ATA_DEV_ATAPI) {
2380 const char *cdb_intr_string = "";
2381 const char *atapi_an_string = "";
2382 const char *dma_dir_string = "";
2383 u32 sntf;
2384
2385 rc = atapi_cdb_len(id);
2386 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2387 if (ata_msg_warn(ap))
2388 ata_dev_printk(dev, KERN_WARNING,
2389 "unsupported CDB len\n");
2390 rc = -EINVAL;
2391 goto err_out_nosup;
2392 }
2393 dev->cdb_len = (unsigned int) rc;
2394
2395 /* Enable ATAPI AN if both the host and device have
2396 * the support. If PMP is attached, SNTF is required
2397 * to enable ATAPI AN to discern between PHY status
2398 * changed notifications and ATAPI ANs.
2399 */
2400 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2401 (!sata_pmp_attached(ap) ||
2402 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2403 unsigned int err_mask;
2404
2405 /* issue SET feature command to turn this on */
2406 err_mask = ata_dev_set_feature(dev,
2407 SETFEATURES_SATA_ENABLE, SATA_AN);
2408 if (err_mask)
2409 ata_dev_printk(dev, KERN_ERR,
2410 "failed to enable ATAPI AN "
2411 "(err_mask=0x%x)\n", err_mask);
2412 else {
2413 dev->flags |= ATA_DFLAG_AN;
2414 atapi_an_string = ", ATAPI AN";
2415 }
2416 }
2417
2418 if (ata_id_cdb_intr(dev->id)) {
2419 dev->flags |= ATA_DFLAG_CDB_INTR;
2420 cdb_intr_string = ", CDB intr";
2421 }
2422
2423 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2424 dev->flags |= ATA_DFLAG_DMADIR;
2425 dma_dir_string = ", DMADIR";
2426 }
2427
2428 /* print device info to dmesg */
2429 if (ata_msg_drv(ap) && print_info)
2430 ata_dev_printk(dev, KERN_INFO,
2431 "ATAPI: %s, %s, max %s%s%s%s\n",
2432 modelbuf, fwrevbuf,
2433 ata_mode_string(xfer_mask),
2434 cdb_intr_string, atapi_an_string,
2435 dma_dir_string);
2436 }
2437
2438 /* determine max_sectors */
2439 dev->max_sectors = ATA_MAX_SECTORS;
2440 if (dev->flags & ATA_DFLAG_LBA48)
2441 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2442
2443 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2444 if (ata_id_has_hipm(dev->id))
2445 dev->flags |= ATA_DFLAG_HIPM;
2446 if (ata_id_has_dipm(dev->id))
2447 dev->flags |= ATA_DFLAG_DIPM;
2448 }
2449
2450 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2451 200 sectors */
2452 if (ata_dev_knobble(dev)) {
2453 if (ata_msg_drv(ap) && print_info)
2454 ata_dev_printk(dev, KERN_INFO,
2455 "applying bridge limits\n");
2456 dev->udma_mask &= ATA_UDMA5;
2457 dev->max_sectors = ATA_MAX_SECTORS;
2458 }
2459
2460 if ((dev->class == ATA_DEV_ATAPI) &&
2461 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2462 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2463 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2464 }
2465
2466 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2467 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2468 dev->max_sectors);
2469
2470 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2471 dev->horkage |= ATA_HORKAGE_IPM;
2472
2473 /* reset link pm_policy for this port to no pm */
2474 ap->pm_policy = MAX_PERFORMANCE;
2475 }
2476
2477 if (ap->ops->dev_config)
2478 ap->ops->dev_config(dev);
2479
2480 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2481 /* Let the user know. We don't want to disallow opens for
2482 rescue purposes, or in case the vendor is just a blithering
2483 idiot. Do this after the dev_config call as some controllers
2484 with buggy firmware may want to avoid reporting false device
2485 bugs */
2486
2487 if (print_info) {
2488 ata_dev_printk(dev, KERN_WARNING,
2489 "Drive reports diagnostics failure. This may indicate a drive\n");
2490 ata_dev_printk(dev, KERN_WARNING,
2491 "fault or invalid emulation. Contact drive vendor for information.\n");
2492 }
2493 }
2494
2495 return 0;
2496
2497 err_out_nosup:
2498 if (ata_msg_probe(ap))
2499 ata_dev_printk(dev, KERN_DEBUG,
2500 "%s: EXIT, err\n", __func__);
2501 return rc;
2502 }
2503
2504 /**
2505 * ata_cable_40wire - return 40 wire cable type
2506 * @ap: port
2507 *
2508 * Helper method for drivers which want to hardwire 40 wire cable
2509 * detection.
2510 */
2511
2512 int ata_cable_40wire(struct ata_port *ap)
2513 {
2514 return ATA_CBL_PATA40;
2515 }
2516
2517 /**
2518 * ata_cable_80wire - return 80 wire cable type
2519 * @ap: port
2520 *
2521 * Helper method for drivers which want to hardwire 80 wire cable
2522 * detection.
2523 */
2524
2525 int ata_cable_80wire(struct ata_port *ap)
2526 {
2527 return ATA_CBL_PATA80;
2528 }
2529
2530 /**
2531 * ata_cable_unknown - return unknown PATA cable.
2532 * @ap: port
2533 *
2534 * Helper method for drivers which have no PATA cable detection.
2535 */
2536
2537 int ata_cable_unknown(struct ata_port *ap)
2538 {
2539 return ATA_CBL_PATA_UNK;
2540 }
2541
2542 /**
2543 * ata_cable_ignore - return ignored PATA cable.
2544 * @ap: port
2545 *
2546 * Helper method for drivers which don't use cable type to limit
2547 * transfer mode.
2548 */
2549 int ata_cable_ignore(struct ata_port *ap)
2550 {
2551 return ATA_CBL_PATA_IGN;
2552 }
2553
2554 /**
2555 * ata_cable_sata - return SATA cable type
2556 * @ap: port
2557 *
2558 * Helper method for drivers which have SATA cables
2559 */
2560
2561 int ata_cable_sata(struct ata_port *ap)
2562 {
2563 return ATA_CBL_SATA;
2564 }
2565
2566 /**
2567 * ata_bus_probe - Reset and probe ATA bus
2568 * @ap: Bus to probe
2569 *
2570 * Master ATA bus probing function. Initiates a hardware-dependent
2571 * bus reset, then attempts to identify any devices found on
2572 * the bus.
2573 *
2574 * LOCKING:
2575 * PCI/etc. bus probe sem.
2576 *
2577 * RETURNS:
2578 * Zero on success, negative errno otherwise.
2579 */
2580
2581 int ata_bus_probe(struct ata_port *ap)
2582 {
2583 unsigned int classes[ATA_MAX_DEVICES];
2584 int tries[ATA_MAX_DEVICES];
2585 int rc;
2586 struct ata_device *dev;
2587
2588 ata_port_probe(ap);
2589
2590 ata_link_for_each_dev(dev, &ap->link)
2591 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2592
2593 retry:
2594 ata_link_for_each_dev(dev, &ap->link) {
2595 /* If we issue an SRST then an ATA drive (not ATAPI)
2596 * may change configuration and be in PIO0 timing. If
2597 * we do a hard reset (or are coming from power on)
2598 * this is true for ATA or ATAPI. Until we've set a
2599 * suitable controller mode we should not touch the
2600 * bus as we may be talking too fast.
2601 */
2602 dev->pio_mode = XFER_PIO_0;
2603
2604 /* If the controller has a pio mode setup function
2605 * then use it to set the chipset to rights. Don't
2606 * touch the DMA setup as that will be dealt with when
2607 * configuring devices.
2608 */
2609 if (ap->ops->set_piomode)
2610 ap->ops->set_piomode(ap, dev);
2611 }
2612
2613 /* reset and determine device classes */
2614 ap->ops->phy_reset(ap);
2615
2616 ata_link_for_each_dev(dev, &ap->link) {
2617 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2618 dev->class != ATA_DEV_UNKNOWN)
2619 classes[dev->devno] = dev->class;
2620 else
2621 classes[dev->devno] = ATA_DEV_NONE;
2622
2623 dev->class = ATA_DEV_UNKNOWN;
2624 }
2625
2626 ata_port_probe(ap);
2627
2628 /* read IDENTIFY page and configure devices. We have to do the identify
2629 specific sequence bass-ackwards so that PDIAG- is released by
2630 the slave device */
2631
2632 ata_link_for_each_dev_reverse(dev, &ap->link) {
2633 if (tries[dev->devno])
2634 dev->class = classes[dev->devno];
2635
2636 if (!ata_dev_enabled(dev))
2637 continue;
2638
2639 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2640 dev->id);
2641 if (rc)
2642 goto fail;
2643 }
2644
2645 /* Now ask for the cable type as PDIAG- should have been released */
2646 if (ap->ops->cable_detect)
2647 ap->cbl = ap->ops->cable_detect(ap);
2648
2649 /* We may have SATA bridge glue hiding here irrespective of the
2650 reported cable types and sensed types */
2651 ata_link_for_each_dev(dev, &ap->link) {
2652 if (!ata_dev_enabled(dev))
2653 continue;
2654 /* SATA drives indicate we have a bridge. We don't know which
2655 end of the link the bridge is which is a problem */
2656 if (ata_id_is_sata(dev->id))
2657 ap->cbl = ATA_CBL_SATA;
2658 }
2659
2660 /* After the identify sequence we can now set up the devices. We do
2661 this in the normal order so that the user doesn't get confused */
2662
2663 ata_link_for_each_dev(dev, &ap->link) {
2664 if (!ata_dev_enabled(dev))
2665 continue;
2666
2667 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2668 rc = ata_dev_configure(dev);
2669 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2670 if (rc)
2671 goto fail;
2672 }
2673
2674 /* configure transfer mode */
2675 rc = ata_set_mode(&ap->link, &dev);
2676 if (rc)
2677 goto fail;
2678
2679 ata_link_for_each_dev(dev, &ap->link)
2680 if (ata_dev_enabled(dev))
2681 return 0;
2682
2683 /* no device present, disable port */
2684 ata_port_disable(ap);
2685 return -ENODEV;
2686
2687 fail:
2688 tries[dev->devno]--;
2689
2690 switch (rc) {
2691 case -EINVAL:
2692 /* eeek, something went very wrong, give up */
2693 tries[dev->devno] = 0;
2694 break;
2695
2696 case -ENODEV:
2697 /* give it just one more chance */
2698 tries[dev->devno] = min(tries[dev->devno], 1);
2699 case -EIO:
2700 if (tries[dev->devno] == 1) {
2701 /* This is the last chance, better to slow
2702 * down than lose it.
2703 */
2704 sata_down_spd_limit(&ap->link);
2705 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2706 }
2707 }
2708
2709 if (!tries[dev->devno])
2710 ata_dev_disable(dev);
2711
2712 goto retry;
2713 }
2714
2715 /**
2716 * ata_port_probe - Mark port as enabled
2717 * @ap: Port for which we indicate enablement
2718 *
2719 * Modify @ap data structure such that the system
2720 * thinks that the entire port is enabled.
2721 *
2722 * LOCKING: host lock, or some other form of
2723 * serialization.
2724 */
2725
2726 void ata_port_probe(struct ata_port *ap)
2727 {
2728 ap->flags &= ~ATA_FLAG_DISABLED;
2729 }
2730
2731 /**
2732 * sata_print_link_status - Print SATA link status
2733 * @link: SATA link to printk link status about
2734 *
2735 * This function prints link speed and status of a SATA link.
2736 *
2737 * LOCKING:
2738 * None.
2739 */
2740 static void sata_print_link_status(struct ata_link *link)
2741 {
2742 u32 sstatus, scontrol, tmp;
2743
2744 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2745 return;
2746 sata_scr_read(link, SCR_CONTROL, &scontrol);
2747
2748 if (ata_phys_link_online(link)) {
2749 tmp = (sstatus >> 4) & 0xf;
2750 ata_link_printk(link, KERN_INFO,
2751 "SATA link up %s (SStatus %X SControl %X)\n",
2752 sata_spd_string(tmp), sstatus, scontrol);
2753 } else {
2754 ata_link_printk(link, KERN_INFO,
2755 "SATA link down (SStatus %X SControl %X)\n",
2756 sstatus, scontrol);
2757 }
2758 }
2759
2760 /**
2761 * ata_dev_pair - return other device on cable
2762 * @adev: device
2763 *
2764 * Obtain the other device on the same cable, or if none is
2765 * present NULL is returned
2766 */
2767
2768 struct ata_device *ata_dev_pair(struct ata_device *adev)
2769 {
2770 struct ata_link *link = adev->link;
2771 struct ata_device *pair = &link->device[1 - adev->devno];
2772 if (!ata_dev_enabled(pair))
2773 return NULL;
2774 return pair;
2775 }
2776
2777 /**
2778 * ata_port_disable - Disable port.
2779 * @ap: Port to be disabled.
2780 *
2781 * Modify @ap data structure such that the system
2782 * thinks that the entire port is disabled, and should
2783 * never attempt to probe or communicate with devices
2784 * on this port.
2785 *
2786 * LOCKING: host lock, or some other form of
2787 * serialization.
2788 */
2789
2790 void ata_port_disable(struct ata_port *ap)
2791 {
2792 ap->link.device[0].class = ATA_DEV_NONE;
2793 ap->link.device[1].class = ATA_DEV_NONE;
2794 ap->flags |= ATA_FLAG_DISABLED;
2795 }
2796
2797 /**
2798 * sata_down_spd_limit - adjust SATA spd limit downward
2799 * @link: Link to adjust SATA spd limit for
2800 *
2801 * Adjust SATA spd limit of @link downward. Note that this
2802 * function only adjusts the limit. The change must be applied
2803 * using sata_set_spd().
2804 *
2805 * LOCKING:
2806 * Inherited from caller.
2807 *
2808 * RETURNS:
2809 * 0 on success, negative errno on failure
2810 */
2811 int sata_down_spd_limit(struct ata_link *link)
2812 {
2813 u32 sstatus, spd, mask;
2814 int rc, highbit;
2815
2816 if (!sata_scr_valid(link))
2817 return -EOPNOTSUPP;
2818
2819 /* If SCR can be read, use it to determine the current SPD.
2820 * If not, use cached value in link->sata_spd.
2821 */
2822 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2823 if (rc == 0)
2824 spd = (sstatus >> 4) & 0xf;
2825 else
2826 spd = link->sata_spd;
2827
2828 mask = link->sata_spd_limit;
2829 if (mask <= 1)
2830 return -EINVAL;
2831
2832 /* unconditionally mask off the highest bit */
2833 highbit = fls(mask) - 1;
2834 mask &= ~(1 << highbit);
2835
2836 /* Mask off all speeds higher than or equal to the current
2837 * one. Force 1.5Gbps if current SPD is not available.
2838 */
2839 if (spd > 1)
2840 mask &= (1 << (spd - 1)) - 1;
2841 else
2842 mask &= 1;
2843
2844 /* were we already at the bottom? */
2845 if (!mask)
2846 return -EINVAL;
2847
2848 link->sata_spd_limit = mask;
2849
2850 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2851 sata_spd_string(fls(mask)));
2852
2853 return 0;
2854 }
2855
2856 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2857 {
2858 struct ata_link *host_link = &link->ap->link;
2859 u32 limit, target, spd;
2860
2861 limit = link->sata_spd_limit;
2862
2863 /* Don't configure downstream link faster than upstream link.
2864 * It doesn't speed up anything and some PMPs choke on such
2865 * configuration.
2866 */
2867 if (!ata_is_host_link(link) && host_link->sata_spd)
2868 limit &= (1 << host_link->sata_spd) - 1;
2869
2870 if (limit == UINT_MAX)
2871 target = 0;
2872 else
2873 target = fls(limit);
2874
2875 spd = (*scontrol >> 4) & 0xf;
2876 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2877
2878 return spd != target;
2879 }
2880
2881 /**
2882 * sata_set_spd_needed - is SATA spd configuration needed
2883 * @link: Link in question
2884 *
2885 * Test whether the spd limit in SControl matches
2886 * @link->sata_spd_limit. This function is used to determine
2887 * whether hardreset is necessary to apply SATA spd
2888 * configuration.
2889 *
2890 * LOCKING:
2891 * Inherited from caller.
2892 *
2893 * RETURNS:
2894 * 1 if SATA spd configuration is needed, 0 otherwise.
2895 */
2896 static int sata_set_spd_needed(struct ata_link *link)
2897 {
2898 u32 scontrol;
2899
2900 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2901 return 1;
2902
2903 return __sata_set_spd_needed(link, &scontrol);
2904 }
2905
2906 /**
2907 * sata_set_spd - set SATA spd according to spd limit
2908 * @link: Link to set SATA spd for
2909 *
2910 * Set SATA spd of @link according to sata_spd_limit.
2911 *
2912 * LOCKING:
2913 * Inherited from caller.
2914 *
2915 * RETURNS:
2916 * 0 if spd doesn't need to be changed, 1 if spd has been
2917 * changed. Negative errno if SCR registers are inaccessible.
2918 */
2919 int sata_set_spd(struct ata_link *link)
2920 {
2921 u32 scontrol;
2922 int rc;
2923
2924 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2925 return rc;
2926
2927 if (!__sata_set_spd_needed(link, &scontrol))
2928 return 0;
2929
2930 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2931 return rc;
2932
2933 return 1;
2934 }
2935
2936 /*
2937 * This mode timing computation functionality is ported over from
2938 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2939 */
2940 /*
2941 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2942 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2943 * for UDMA6, which is currently supported only by Maxtor drives.
2944 *
2945 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2946 */
2947
2948 static const struct ata_timing ata_timing[] = {
2949 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2950 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2951 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2952 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2953 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2954 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2955 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2956 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2957
2958 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2959 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2960 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2961
2962 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2963 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2964 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2965 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2966 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2967
2968 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2969 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2970 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2971 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2972 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2973 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2974 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2975 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2976
2977 { 0xFF }
2978 };
2979
2980 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2981 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2982
2983 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2984 {
2985 q->setup = EZ(t->setup * 1000, T);
2986 q->act8b = EZ(t->act8b * 1000, T);
2987 q->rec8b = EZ(t->rec8b * 1000, T);
2988 q->cyc8b = EZ(t->cyc8b * 1000, T);
2989 q->active = EZ(t->active * 1000, T);
2990 q->recover = EZ(t->recover * 1000, T);
2991 q->cycle = EZ(t->cycle * 1000, T);
2992 q->udma = EZ(t->udma * 1000, UT);
2993 }
2994
2995 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2996 struct ata_timing *m, unsigned int what)
2997 {
2998 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2999 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3000 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3001 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3002 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3003 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3004 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3005 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3006 }
3007
3008 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3009 {
3010 const struct ata_timing *t = ata_timing;
3011
3012 while (xfer_mode > t->mode)
3013 t++;
3014
3015 if (xfer_mode == t->mode)
3016 return t;
3017 return NULL;
3018 }
3019
3020 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3021 struct ata_timing *t, int T, int UT)
3022 {
3023 const struct ata_timing *s;
3024 struct ata_timing p;
3025
3026 /*
3027 * Find the mode.
3028 */
3029
3030 if (!(s = ata_timing_find_mode(speed)))
3031 return -EINVAL;
3032
3033 memcpy(t, s, sizeof(*s));
3034
3035 /*
3036 * If the drive is an EIDE drive, it can tell us it needs extended
3037 * PIO/MW_DMA cycle timing.
3038 */
3039
3040 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3041 memset(&p, 0, sizeof(p));
3042 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3043 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3044 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3045 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3046 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3047 }
3048 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3049 }
3050
3051 /*
3052 * Convert the timing to bus clock counts.
3053 */
3054
3055 ata_timing_quantize(t, t, T, UT);
3056
3057 /*
3058 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3059 * S.M.A.R.T * and some other commands. We have to ensure that the
3060 * DMA cycle timing is slower/equal than the fastest PIO timing.
3061 */
3062
3063 if (speed > XFER_PIO_6) {
3064 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3065 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3066 }
3067
3068 /*
3069 * Lengthen active & recovery time so that cycle time is correct.
3070 */
3071
3072 if (t->act8b + t->rec8b < t->cyc8b) {
3073 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3074 t->rec8b = t->cyc8b - t->act8b;
3075 }
3076
3077 if (t->active + t->recover < t->cycle) {
3078 t->active += (t->cycle - (t->active + t->recover)) / 2;
3079 t->recover = t->cycle - t->active;
3080 }
3081
3082 /* In a few cases quantisation may produce enough errors to
3083 leave t->cycle too low for the sum of active and recovery
3084 if so we must correct this */
3085 if (t->active + t->recover > t->cycle)
3086 t->cycle = t->active + t->recover;
3087
3088 return 0;
3089 }
3090
3091 /**
3092 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3093 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3094 * @cycle: cycle duration in ns
3095 *
3096 * Return matching xfer mode for @cycle. The returned mode is of
3097 * the transfer type specified by @xfer_shift. If @cycle is too
3098 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3099 * than the fastest known mode, the fasted mode is returned.
3100 *
3101 * LOCKING:
3102 * None.
3103 *
3104 * RETURNS:
3105 * Matching xfer_mode, 0xff if no match found.
3106 */
3107 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3108 {
3109 u8 base_mode = 0xff, last_mode = 0xff;
3110 const struct ata_xfer_ent *ent;
3111 const struct ata_timing *t;
3112
3113 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3114 if (ent->shift == xfer_shift)
3115 base_mode = ent->base;
3116
3117 for (t = ata_timing_find_mode(base_mode);
3118 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3119 unsigned short this_cycle;
3120
3121 switch (xfer_shift) {
3122 case ATA_SHIFT_PIO:
3123 case ATA_SHIFT_MWDMA:
3124 this_cycle = t->cycle;
3125 break;
3126 case ATA_SHIFT_UDMA:
3127 this_cycle = t->udma;
3128 break;
3129 default:
3130 return 0xff;
3131 }
3132
3133 if (cycle > this_cycle)
3134 break;
3135
3136 last_mode = t->mode;
3137 }
3138
3139 return last_mode;
3140 }
3141
3142 /**
3143 * ata_down_xfermask_limit - adjust dev xfer masks downward
3144 * @dev: Device to adjust xfer masks
3145 * @sel: ATA_DNXFER_* selector
3146 *
3147 * Adjust xfer masks of @dev downward. Note that this function
3148 * does not apply the change. Invoking ata_set_mode() afterwards
3149 * will apply the limit.
3150 *
3151 * LOCKING:
3152 * Inherited from caller.
3153 *
3154 * RETURNS:
3155 * 0 on success, negative errno on failure
3156 */
3157 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3158 {
3159 char buf[32];
3160 unsigned long orig_mask, xfer_mask;
3161 unsigned long pio_mask, mwdma_mask, udma_mask;
3162 int quiet, highbit;
3163
3164 quiet = !!(sel & ATA_DNXFER_QUIET);
3165 sel &= ~ATA_DNXFER_QUIET;
3166
3167 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3168 dev->mwdma_mask,
3169 dev->udma_mask);
3170 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3171
3172 switch (sel) {
3173 case ATA_DNXFER_PIO:
3174 highbit = fls(pio_mask) - 1;
3175 pio_mask &= ~(1 << highbit);
3176 break;
3177
3178 case ATA_DNXFER_DMA:
3179 if (udma_mask) {
3180 highbit = fls(udma_mask) - 1;
3181 udma_mask &= ~(1 << highbit);
3182 if (!udma_mask)
3183 return -ENOENT;
3184 } else if (mwdma_mask) {
3185 highbit = fls(mwdma_mask) - 1;
3186 mwdma_mask &= ~(1 << highbit);
3187 if (!mwdma_mask)
3188 return -ENOENT;
3189 }
3190 break;
3191
3192 case ATA_DNXFER_40C:
3193 udma_mask &= ATA_UDMA_MASK_40C;
3194 break;
3195
3196 case ATA_DNXFER_FORCE_PIO0:
3197 pio_mask &= 1;
3198 case ATA_DNXFER_FORCE_PIO:
3199 mwdma_mask = 0;
3200 udma_mask = 0;
3201 break;
3202
3203 default:
3204 BUG();
3205 }
3206
3207 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3208
3209 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3210 return -ENOENT;
3211
3212 if (!quiet) {
3213 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3214 snprintf(buf, sizeof(buf), "%s:%s",
3215 ata_mode_string(xfer_mask),
3216 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3217 else
3218 snprintf(buf, sizeof(buf), "%s",
3219 ata_mode_string(xfer_mask));
3220
3221 ata_dev_printk(dev, KERN_WARNING,
3222 "limiting speed to %s\n", buf);
3223 }
3224
3225 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3226 &dev->udma_mask);
3227
3228 return 0;
3229 }
3230
3231 static int ata_dev_set_mode(struct ata_device *dev)
3232 {
3233 struct ata_eh_context *ehc = &dev->link->eh_context;
3234 const char *dev_err_whine = "";
3235 int ign_dev_err = 0;
3236 unsigned int err_mask;
3237 int rc;
3238
3239 dev->flags &= ~ATA_DFLAG_PIO;
3240 if (dev->xfer_shift == ATA_SHIFT_PIO)
3241 dev->flags |= ATA_DFLAG_PIO;
3242
3243 err_mask = ata_dev_set_xfermode(dev);
3244
3245 if (err_mask & ~AC_ERR_DEV)
3246 goto fail;
3247
3248 /* revalidate */
3249 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3250 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3251 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3252 if (rc)
3253 return rc;
3254
3255 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3256 /* Old CFA may refuse this command, which is just fine */
3257 if (ata_id_is_cfa(dev->id))
3258 ign_dev_err = 1;
3259 /* Catch several broken garbage emulations plus some pre
3260 ATA devices */
3261 if (ata_id_major_version(dev->id) == 0 &&
3262 dev->pio_mode <= XFER_PIO_2)
3263 ign_dev_err = 1;
3264 /* Some very old devices and some bad newer ones fail
3265 any kind of SET_XFERMODE request but support PIO0-2
3266 timings and no IORDY */
3267 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3268 ign_dev_err = 1;
3269 }
3270 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3271 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3272 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3273 dev->dma_mode == XFER_MW_DMA_0 &&
3274 (dev->id[63] >> 8) & 1)
3275 ign_dev_err = 1;
3276
3277 /* if the device is actually configured correctly, ignore dev err */
3278 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3279 ign_dev_err = 1;
3280
3281 if (err_mask & AC_ERR_DEV) {
3282 if (!ign_dev_err)
3283 goto fail;
3284 else
3285 dev_err_whine = " (device error ignored)";
3286 }
3287
3288 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3289 dev->xfer_shift, (int)dev->xfer_mode);
3290
3291 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3292 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3293 dev_err_whine);
3294
3295 return 0;
3296
3297 fail:
3298 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3299 "(err_mask=0x%x)\n", err_mask);
3300 return -EIO;
3301 }
3302
3303 /**
3304 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3305 * @link: link on which timings will be programmed
3306 * @r_failed_dev: out parameter for failed device
3307 *
3308 * Standard implementation of the function used to tune and set
3309 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3310 * ata_dev_set_mode() fails, pointer to the failing device is
3311 * returned in @r_failed_dev.
3312 *
3313 * LOCKING:
3314 * PCI/etc. bus probe sem.
3315 *
3316 * RETURNS:
3317 * 0 on success, negative errno otherwise
3318 */
3319
3320 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3321 {
3322 struct ata_port *ap = link->ap;
3323 struct ata_device *dev;
3324 int rc = 0, used_dma = 0, found = 0;
3325
3326 /* step 1: calculate xfer_mask */
3327 ata_link_for_each_dev(dev, link) {
3328 unsigned long pio_mask, dma_mask;
3329 unsigned int mode_mask;
3330
3331 if (!ata_dev_enabled(dev))
3332 continue;
3333
3334 mode_mask = ATA_DMA_MASK_ATA;
3335 if (dev->class == ATA_DEV_ATAPI)
3336 mode_mask = ATA_DMA_MASK_ATAPI;
3337 else if (ata_id_is_cfa(dev->id))
3338 mode_mask = ATA_DMA_MASK_CFA;
3339
3340 ata_dev_xfermask(dev);
3341 ata_force_xfermask(dev);
3342
3343 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3344 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3345
3346 if (libata_dma_mask & mode_mask)
3347 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3348 else
3349 dma_mask = 0;
3350
3351 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3352 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3353
3354 found = 1;
3355 if (ata_dma_enabled(dev))
3356 used_dma = 1;
3357 }
3358 if (!found)
3359 goto out;
3360
3361 /* step 2: always set host PIO timings */
3362 ata_link_for_each_dev(dev, link) {
3363 if (!ata_dev_enabled(dev))
3364 continue;
3365
3366 if (dev->pio_mode == 0xff) {
3367 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3368 rc = -EINVAL;
3369 goto out;
3370 }
3371
3372 dev->xfer_mode = dev->pio_mode;
3373 dev->xfer_shift = ATA_SHIFT_PIO;
3374 if (ap->ops->set_piomode)
3375 ap->ops->set_piomode(ap, dev);
3376 }
3377
3378 /* step 3: set host DMA timings */
3379 ata_link_for_each_dev(dev, link) {
3380 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev))
3381 continue;
3382
3383 dev->xfer_mode = dev->dma_mode;
3384 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3385 if (ap->ops->set_dmamode)
3386 ap->ops->set_dmamode(ap, dev);
3387 }
3388
3389 /* step 4: update devices' xfer mode */
3390 ata_link_for_each_dev(dev, link) {
3391 /* don't update suspended devices' xfer mode */
3392 if (!ata_dev_enabled(dev))
3393 continue;
3394
3395 rc = ata_dev_set_mode(dev);
3396 if (rc)
3397 goto out;
3398 }
3399
3400 /* Record simplex status. If we selected DMA then the other
3401 * host channels are not permitted to do so.
3402 */
3403 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3404 ap->host->simplex_claimed = ap;
3405
3406 out:
3407 if (rc)
3408 *r_failed_dev = dev;
3409 return rc;
3410 }
3411
3412 /**
3413 * ata_wait_ready - wait for link to become ready
3414 * @link: link to be waited on
3415 * @deadline: deadline jiffies for the operation
3416 * @check_ready: callback to check link readiness
3417 *
3418 * Wait for @link to become ready. @check_ready should return
3419 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3420 * link doesn't seem to be occupied, other errno for other error
3421 * conditions.
3422 *
3423 * Transient -ENODEV conditions are allowed for
3424 * ATA_TMOUT_FF_WAIT.
3425 *
3426 * LOCKING:
3427 * EH context.
3428 *
3429 * RETURNS:
3430 * 0 if @linke is ready before @deadline; otherwise, -errno.
3431 */
3432 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3433 int (*check_ready)(struct ata_link *link))
3434 {
3435 unsigned long start = jiffies;
3436 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3437 int warned = 0;
3438
3439 /* Slave readiness can't be tested separately from master. On
3440 * M/S emulation configuration, this function should be called
3441 * only on the master and it will handle both master and slave.
3442 */
3443 WARN_ON(link == link->ap->slave_link);
3444
3445 if (time_after(nodev_deadline, deadline))
3446 nodev_deadline = deadline;
3447
3448 while (1) {
3449 unsigned long now = jiffies;
3450 int ready, tmp;
3451
3452 ready = tmp = check_ready(link);
3453 if (ready > 0)
3454 return 0;
3455
3456 /* -ENODEV could be transient. Ignore -ENODEV if link
3457 * is online. Also, some SATA devices take a long
3458 * time to clear 0xff after reset. For example,
3459 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3460 * GoVault needs even more than that. Wait for
3461 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3462 *
3463 * Note that some PATA controllers (pata_ali) explode
3464 * if status register is read more than once when
3465 * there's no device attached.
3466 */
3467 if (ready == -ENODEV) {
3468 if (ata_link_online(link))
3469 ready = 0;
3470 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3471 !ata_link_offline(link) &&
3472 time_before(now, nodev_deadline))
3473 ready = 0;
3474 }
3475
3476 if (ready)
3477 return ready;
3478 if (time_after(now, deadline))
3479 return -EBUSY;
3480
3481 if (!warned && time_after(now, start + 5 * HZ) &&
3482 (deadline - now > 3 * HZ)) {
3483 ata_link_printk(link, KERN_WARNING,
3484 "link is slow to respond, please be patient "
3485 "(ready=%d)\n", tmp);
3486 warned = 1;
3487 }
3488
3489 msleep(50);
3490 }
3491 }
3492
3493 /**
3494 * ata_wait_after_reset - wait for link to become ready after reset
3495 * @link: link to be waited on
3496 * @deadline: deadline jiffies for the operation
3497 * @check_ready: callback to check link readiness
3498 *
3499 * Wait for @link to become ready after reset.
3500 *
3501 * LOCKING:
3502 * EH context.
3503 *
3504 * RETURNS:
3505 * 0 if @linke is ready before @deadline; otherwise, -errno.
3506 */
3507 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3508 int (*check_ready)(struct ata_link *link))
3509 {
3510 msleep(ATA_WAIT_AFTER_RESET);
3511
3512 return ata_wait_ready(link, deadline, check_ready);
3513 }
3514
3515 /**
3516 * sata_link_debounce - debounce SATA phy status
3517 * @link: ATA link to debounce SATA phy status for
3518 * @params: timing parameters { interval, duratinon, timeout } in msec
3519 * @deadline: deadline jiffies for the operation
3520 *
3521 * Make sure SStatus of @link reaches stable state, determined by
3522 * holding the same value where DET is not 1 for @duration polled
3523 * every @interval, before @timeout. Timeout constraints the
3524 * beginning of the stable state. Because DET gets stuck at 1 on
3525 * some controllers after hot unplugging, this functions waits
3526 * until timeout then returns 0 if DET is stable at 1.
3527 *
3528 * @timeout is further limited by @deadline. The sooner of the
3529 * two is used.
3530 *
3531 * LOCKING:
3532 * Kernel thread context (may sleep)
3533 *
3534 * RETURNS:
3535 * 0 on success, -errno on failure.
3536 */
3537 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3538 unsigned long deadline)
3539 {
3540 unsigned long interval = params[0];
3541 unsigned long duration = params[1];
3542 unsigned long last_jiffies, t;
3543 u32 last, cur;
3544 int rc;
3545
3546 t = ata_deadline(jiffies, params[2]);
3547 if (time_before(t, deadline))
3548 deadline = t;
3549
3550 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3551 return rc;
3552 cur &= 0xf;
3553
3554 last = cur;
3555 last_jiffies = jiffies;
3556
3557 while (1) {
3558 msleep(interval);
3559 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3560 return rc;
3561 cur &= 0xf;
3562
3563 /* DET stable? */
3564 if (cur == last) {
3565 if (cur == 1 && time_before(jiffies, deadline))
3566 continue;
3567 if (time_after(jiffies,
3568 ata_deadline(last_jiffies, duration)))
3569 return 0;
3570 continue;
3571 }
3572
3573 /* unstable, start over */
3574 last = cur;
3575 last_jiffies = jiffies;
3576
3577 /* Check deadline. If debouncing failed, return
3578 * -EPIPE to tell upper layer to lower link speed.
3579 */
3580 if (time_after(jiffies, deadline))
3581 return -EPIPE;
3582 }
3583 }
3584
3585 /**
3586 * sata_link_resume - resume SATA link
3587 * @link: ATA link to resume SATA
3588 * @params: timing parameters { interval, duratinon, timeout } in msec
3589 * @deadline: deadline jiffies for the operation
3590 *
3591 * Resume SATA phy @link and debounce it.
3592 *
3593 * LOCKING:
3594 * Kernel thread context (may sleep)
3595 *
3596 * RETURNS:
3597 * 0 on success, -errno on failure.
3598 */
3599 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3600 unsigned long deadline)
3601 {
3602 u32 scontrol, serror;
3603 int rc;
3604
3605 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3606 return rc;
3607
3608 scontrol = (scontrol & 0x0f0) | 0x300;
3609
3610 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3611 return rc;
3612
3613 /* Some PHYs react badly if SStatus is pounded immediately
3614 * after resuming. Delay 200ms before debouncing.
3615 */
3616 msleep(200);
3617
3618 if ((rc = sata_link_debounce(link, params, deadline)))
3619 return rc;
3620
3621 /* clear SError, some PHYs require this even for SRST to work */
3622 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3623 rc = sata_scr_write(link, SCR_ERROR, serror);
3624
3625 return rc != -EINVAL ? rc : 0;
3626 }
3627
3628 /**
3629 * ata_std_prereset - prepare for reset
3630 * @link: ATA link to be reset
3631 * @deadline: deadline jiffies for the operation
3632 *
3633 * @link is about to be reset. Initialize it. Failure from
3634 * prereset makes libata abort whole reset sequence and give up
3635 * that port, so prereset should be best-effort. It does its
3636 * best to prepare for reset sequence but if things go wrong, it
3637 * should just whine, not fail.
3638 *
3639 * LOCKING:
3640 * Kernel thread context (may sleep)
3641 *
3642 * RETURNS:
3643 * 0 on success, -errno otherwise.
3644 */
3645 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3646 {
3647 struct ata_port *ap = link->ap;
3648 struct ata_eh_context *ehc = &link->eh_context;
3649 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3650 int rc;
3651
3652 /* if we're about to do hardreset, nothing more to do */
3653 if (ehc->i.action & ATA_EH_HARDRESET)
3654 return 0;
3655
3656 /* if SATA, resume link */
3657 if (ap->flags & ATA_FLAG_SATA) {
3658 rc = sata_link_resume(link, timing, deadline);
3659 /* whine about phy resume failure but proceed */
3660 if (rc && rc != -EOPNOTSUPP)
3661 ata_link_printk(link, KERN_WARNING, "failed to resume "
3662 "link for reset (errno=%d)\n", rc);
3663 }
3664
3665 /* no point in trying softreset on offline link */
3666 if (ata_phys_link_offline(link))
3667 ehc->i.action &= ~ATA_EH_SOFTRESET;
3668
3669 return 0;
3670 }
3671
3672 /**
3673 * sata_link_hardreset - reset link via SATA phy reset
3674 * @link: link to reset
3675 * @timing: timing parameters { interval, duratinon, timeout } in msec
3676 * @deadline: deadline jiffies for the operation
3677 * @online: optional out parameter indicating link onlineness
3678 * @check_ready: optional callback to check link readiness
3679 *
3680 * SATA phy-reset @link using DET bits of SControl register.
3681 * After hardreset, link readiness is waited upon using
3682 * ata_wait_ready() if @check_ready is specified. LLDs are
3683 * allowed to not specify @check_ready and wait itself after this
3684 * function returns. Device classification is LLD's
3685 * responsibility.
3686 *
3687 * *@online is set to one iff reset succeeded and @link is online
3688 * after reset.
3689 *
3690 * LOCKING:
3691 * Kernel thread context (may sleep)
3692 *
3693 * RETURNS:
3694 * 0 on success, -errno otherwise.
3695 */
3696 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3697 unsigned long deadline,
3698 bool *online, int (*check_ready)(struct ata_link *))
3699 {
3700 u32 scontrol;
3701 int rc;
3702
3703 DPRINTK("ENTER\n");
3704
3705 if (online)
3706 *online = false;
3707
3708 if (sata_set_spd_needed(link)) {
3709 /* SATA spec says nothing about how to reconfigure
3710 * spd. To be on the safe side, turn off phy during
3711 * reconfiguration. This works for at least ICH7 AHCI
3712 * and Sil3124.
3713 */
3714 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3715 goto out;
3716
3717 scontrol = (scontrol & 0x0f0) | 0x304;
3718
3719 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3720 goto out;
3721
3722 sata_set_spd(link);
3723 }
3724
3725 /* issue phy wake/reset */
3726 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3727 goto out;
3728
3729 scontrol = (scontrol & 0x0f0) | 0x301;
3730
3731 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3732 goto out;
3733
3734 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3735 * 10.4.2 says at least 1 ms.
3736 */
3737 msleep(1);
3738
3739 /* bring link back */
3740 rc = sata_link_resume(link, timing, deadline);
3741 if (rc)
3742 goto out;
3743 /* if link is offline nothing more to do */
3744 if (ata_phys_link_offline(link))
3745 goto out;
3746
3747 /* Link is online. From this point, -ENODEV too is an error. */
3748 if (online)
3749 *online = true;
3750
3751 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3752 /* If PMP is supported, we have to do follow-up SRST.
3753 * Some PMPs don't send D2H Reg FIS after hardreset if
3754 * the first port is empty. Wait only for
3755 * ATA_TMOUT_PMP_SRST_WAIT.
3756 */
3757 if (check_ready) {
3758 unsigned long pmp_deadline;
3759
3760 pmp_deadline = ata_deadline(jiffies,
3761 ATA_TMOUT_PMP_SRST_WAIT);
3762 if (time_after(pmp_deadline, deadline))
3763 pmp_deadline = deadline;
3764 ata_wait_ready(link, pmp_deadline, check_ready);
3765 }
3766 rc = -EAGAIN;
3767 goto out;
3768 }
3769
3770 rc = 0;
3771 if (check_ready)
3772 rc = ata_wait_ready(link, deadline, check_ready);
3773 out:
3774 if (rc && rc != -EAGAIN) {
3775 /* online is set iff link is online && reset succeeded */
3776 if (online)
3777 *online = false;
3778 ata_link_printk(link, KERN_ERR,
3779 "COMRESET failed (errno=%d)\n", rc);
3780 }
3781 DPRINTK("EXIT, rc=%d\n", rc);
3782 return rc;
3783 }
3784
3785 /**
3786 * sata_std_hardreset - COMRESET w/o waiting or classification
3787 * @link: link to reset
3788 * @class: resulting class of attached device
3789 * @deadline: deadline jiffies for the operation
3790 *
3791 * Standard SATA COMRESET w/o waiting or classification.
3792 *
3793 * LOCKING:
3794 * Kernel thread context (may sleep)
3795 *
3796 * RETURNS:
3797 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3798 */
3799 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3800 unsigned long deadline)
3801 {
3802 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3803 bool online;
3804 int rc;
3805
3806 /* do hardreset */
3807 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3808 return online ? -EAGAIN : rc;
3809 }
3810
3811 /**
3812 * ata_std_postreset - standard postreset callback
3813 * @link: the target ata_link
3814 * @classes: classes of attached devices
3815 *
3816 * This function is invoked after a successful reset. Note that
3817 * the device might have been reset more than once using
3818 * different reset methods before postreset is invoked.
3819 *
3820 * LOCKING:
3821 * Kernel thread context (may sleep)
3822 */
3823 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3824 {
3825 u32 serror;
3826
3827 DPRINTK("ENTER\n");
3828
3829 /* reset complete, clear SError */
3830 if (!sata_scr_read(link, SCR_ERROR, &serror))
3831 sata_scr_write(link, SCR_ERROR, serror);
3832
3833 /* print link status */
3834 sata_print_link_status(link);
3835
3836 DPRINTK("EXIT\n");
3837 }
3838
3839 /**
3840 * ata_dev_same_device - Determine whether new ID matches configured device
3841 * @dev: device to compare against
3842 * @new_class: class of the new device
3843 * @new_id: IDENTIFY page of the new device
3844 *
3845 * Compare @new_class and @new_id against @dev and determine
3846 * whether @dev is the device indicated by @new_class and
3847 * @new_id.
3848 *
3849 * LOCKING:
3850 * None.
3851 *
3852 * RETURNS:
3853 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3854 */
3855 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3856 const u16 *new_id)
3857 {
3858 const u16 *old_id = dev->id;
3859 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3860 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3861
3862 if (dev->class != new_class) {
3863 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3864 dev->class, new_class);
3865 return 0;
3866 }
3867
3868 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3869 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3870 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3871 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3872
3873 if (strcmp(model[0], model[1])) {
3874 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3875 "'%s' != '%s'\n", model[0], model[1]);
3876 return 0;
3877 }
3878
3879 if (strcmp(serial[0], serial[1])) {
3880 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3881 "'%s' != '%s'\n", serial[0], serial[1]);
3882 return 0;
3883 }
3884
3885 return 1;
3886 }
3887
3888 /**
3889 * ata_dev_reread_id - Re-read IDENTIFY data
3890 * @dev: target ATA device
3891 * @readid_flags: read ID flags
3892 *
3893 * Re-read IDENTIFY page and make sure @dev is still attached to
3894 * the port.
3895 *
3896 * LOCKING:
3897 * Kernel thread context (may sleep)
3898 *
3899 * RETURNS:
3900 * 0 on success, negative errno otherwise
3901 */
3902 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3903 {
3904 unsigned int class = dev->class;
3905 u16 *id = (void *)dev->link->ap->sector_buf;
3906 int rc;
3907
3908 /* read ID data */
3909 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3910 if (rc)
3911 return rc;
3912
3913 /* is the device still there? */
3914 if (!ata_dev_same_device(dev, class, id))
3915 return -ENODEV;
3916
3917 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3918 return 0;
3919 }
3920
3921 /**
3922 * ata_dev_revalidate - Revalidate ATA device
3923 * @dev: device to revalidate
3924 * @new_class: new class code
3925 * @readid_flags: read ID flags
3926 *
3927 * Re-read IDENTIFY page, make sure @dev is still attached to the
3928 * port and reconfigure it according to the new IDENTIFY page.
3929 *
3930 * LOCKING:
3931 * Kernel thread context (may sleep)
3932 *
3933 * RETURNS:
3934 * 0 on success, negative errno otherwise
3935 */
3936 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3937 unsigned int readid_flags)
3938 {
3939 u64 n_sectors = dev->n_sectors;
3940 int rc;
3941
3942 if (!ata_dev_enabled(dev))
3943 return -ENODEV;
3944
3945 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3946 if (ata_class_enabled(new_class) &&
3947 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3948 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3949 dev->class, new_class);
3950 rc = -ENODEV;
3951 goto fail;
3952 }
3953
3954 /* re-read ID */
3955 rc = ata_dev_reread_id(dev, readid_flags);
3956 if (rc)
3957 goto fail;
3958
3959 /* configure device according to the new ID */
3960 rc = ata_dev_configure(dev);
3961 if (rc)
3962 goto fail;
3963
3964 /* verify n_sectors hasn't changed */
3965 if (dev->class == ATA_DEV_ATA && n_sectors &&
3966 dev->n_sectors != n_sectors) {
3967 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3968 "%llu != %llu\n",
3969 (unsigned long long)n_sectors,
3970 (unsigned long long)dev->n_sectors);
3971
3972 /* restore original n_sectors */
3973 dev->n_sectors = n_sectors;
3974
3975 rc = -ENODEV;
3976 goto fail;
3977 }
3978
3979 return 0;
3980
3981 fail:
3982 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3983 return rc;
3984 }
3985
3986 struct ata_blacklist_entry {
3987 const char *model_num;
3988 const char *model_rev;
3989 unsigned long horkage;
3990 };
3991
3992 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3993 /* Devices with DMA related problems under Linux */
3994 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3995 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3996 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3997 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3998 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3999 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4000 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4001 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4002 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4003 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4004 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4005 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4006 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4007 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4008 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4009 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4010 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4011 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4012 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4013 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4014 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4015 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4016 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4017 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4018 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4019 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4020 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4021 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4022 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4023 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4024 /* Odd clown on sil3726/4726 PMPs */
4025 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4026
4027 /* Weird ATAPI devices */
4028 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4029 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4030
4031 /* Devices we expect to fail diagnostics */
4032
4033 /* Devices where NCQ should be avoided */
4034 /* NCQ is slow */
4035 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4036 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4037 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4038 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4039 /* NCQ is broken */
4040 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4041 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4042 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4043 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4044
4045 /* Blacklist entries taken from Silicon Image 3124/3132
4046 Windows driver .inf file - also several Linux problem reports */
4047 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4048 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4049 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4050
4051 /* devices which puke on READ_NATIVE_MAX */
4052 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4053 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4054 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4055 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4056
4057 /* Devices which report 1 sector over size HPA */
4058 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4059 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4060 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4061
4062 /* Devices which get the IVB wrong */
4063 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4064 /* Maybe we should just blacklist TSSTcorp... */
4065 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4066 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4067 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4068 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4069 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4070 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4071
4072 /* Devices that do not need bridging limits applied */
4073 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4074
4075 /* End Marker */
4076 { }
4077 };
4078
4079 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4080 {
4081 const char *p;
4082 int len;
4083
4084 /*
4085 * check for trailing wildcard: *\0
4086 */
4087 p = strchr(patt, wildchar);
4088 if (p && ((*(p + 1)) == 0))
4089 len = p - patt;
4090 else {
4091 len = strlen(name);
4092 if (!len) {
4093 if (!*patt)
4094 return 0;
4095 return -1;
4096 }
4097 }
4098
4099 return strncmp(patt, name, len);
4100 }
4101
4102 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4103 {
4104 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4105 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4106 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4107
4108 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4109 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4110
4111 while (ad->model_num) {
4112 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4113 if (ad->model_rev == NULL)
4114 return ad->horkage;
4115 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4116 return ad->horkage;
4117 }
4118 ad++;
4119 }
4120 return 0;
4121 }
4122
4123 static int ata_dma_blacklisted(const struct ata_device *dev)
4124 {
4125 /* We don't support polling DMA.
4126 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4127 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4128 */
4129 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4130 (dev->flags & ATA_DFLAG_CDB_INTR))
4131 return 1;
4132 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4133 }
4134
4135 /**
4136 * ata_is_40wire - check drive side detection
4137 * @dev: device
4138 *
4139 * Perform drive side detection decoding, allowing for device vendors
4140 * who can't follow the documentation.
4141 */
4142
4143 static int ata_is_40wire(struct ata_device *dev)
4144 {
4145 if (dev->horkage & ATA_HORKAGE_IVB)
4146 return ata_drive_40wire_relaxed(dev->id);
4147 return ata_drive_40wire(dev->id);
4148 }
4149
4150 /**
4151 * cable_is_40wire - 40/80/SATA decider
4152 * @ap: port to consider
4153 *
4154 * This function encapsulates the policy for speed management
4155 * in one place. At the moment we don't cache the result but
4156 * there is a good case for setting ap->cbl to the result when
4157 * we are called with unknown cables (and figuring out if it
4158 * impacts hotplug at all).
4159 *
4160 * Return 1 if the cable appears to be 40 wire.
4161 */
4162
4163 static int cable_is_40wire(struct ata_port *ap)
4164 {
4165 struct ata_link *link;
4166 struct ata_device *dev;
4167
4168 /* If the controller thinks we are 40 wire, we are. */
4169 if (ap->cbl == ATA_CBL_PATA40)
4170 return 1;
4171
4172 /* If the controller thinks we are 80 wire, we are. */
4173 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4174 return 0;
4175
4176 /* If the system is known to be 40 wire short cable (eg
4177 * laptop), then we allow 80 wire modes even if the drive
4178 * isn't sure.
4179 */
4180 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4181 return 0;
4182
4183 /* If the controller doesn't know, we scan.
4184 *
4185 * Note: We look for all 40 wire detects at this point. Any
4186 * 80 wire detect is taken to be 80 wire cable because
4187 * - in many setups only the one drive (slave if present) will
4188 * give a valid detect
4189 * - if you have a non detect capable drive you don't want it
4190 * to colour the choice
4191 */
4192 ata_port_for_each_link(link, ap) {
4193 ata_link_for_each_dev(dev, link) {
4194 if (ata_dev_enabled(dev) && !ata_is_40wire(dev))
4195 return 0;
4196 }
4197 }
4198 return 1;
4199 }
4200
4201 /**
4202 * ata_dev_xfermask - Compute supported xfermask of the given device
4203 * @dev: Device to compute xfermask for
4204 *
4205 * Compute supported xfermask of @dev and store it in
4206 * dev->*_mask. This function is responsible for applying all
4207 * known limits including host controller limits, device
4208 * blacklist, etc...
4209 *
4210 * LOCKING:
4211 * None.
4212 */
4213 static void ata_dev_xfermask(struct ata_device *dev)
4214 {
4215 struct ata_link *link = dev->link;
4216 struct ata_port *ap = link->ap;
4217 struct ata_host *host = ap->host;
4218 unsigned long xfer_mask;
4219
4220 /* controller modes available */
4221 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4222 ap->mwdma_mask, ap->udma_mask);
4223
4224 /* drive modes available */
4225 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4226 dev->mwdma_mask, dev->udma_mask);
4227 xfer_mask &= ata_id_xfermask(dev->id);
4228
4229 /*
4230 * CFA Advanced TrueIDE timings are not allowed on a shared
4231 * cable
4232 */
4233 if (ata_dev_pair(dev)) {
4234 /* No PIO5 or PIO6 */
4235 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4236 /* No MWDMA3 or MWDMA 4 */
4237 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4238 }
4239
4240 if (ata_dma_blacklisted(dev)) {
4241 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4242 ata_dev_printk(dev, KERN_WARNING,
4243 "device is on DMA blacklist, disabling DMA\n");
4244 }
4245
4246 if ((host->flags & ATA_HOST_SIMPLEX) &&
4247 host->simplex_claimed && host->simplex_claimed != ap) {
4248 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4249 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4250 "other device, disabling DMA\n");
4251 }
4252
4253 if (ap->flags & ATA_FLAG_NO_IORDY)
4254 xfer_mask &= ata_pio_mask_no_iordy(dev);
4255
4256 if (ap->ops->mode_filter)
4257 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4258
4259 /* Apply cable rule here. Don't apply it early because when
4260 * we handle hot plug the cable type can itself change.
4261 * Check this last so that we know if the transfer rate was
4262 * solely limited by the cable.
4263 * Unknown or 80 wire cables reported host side are checked
4264 * drive side as well. Cases where we know a 40wire cable
4265 * is used safely for 80 are not checked here.
4266 */
4267 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4268 /* UDMA/44 or higher would be available */
4269 if (cable_is_40wire(ap)) {
4270 ata_dev_printk(dev, KERN_WARNING,
4271 "limited to UDMA/33 due to 40-wire cable\n");
4272 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4273 }
4274
4275 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4276 &dev->mwdma_mask, &dev->udma_mask);
4277 }
4278
4279 /**
4280 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4281 * @dev: Device to which command will be sent
4282 *
4283 * Issue SET FEATURES - XFER MODE command to device @dev
4284 * on port @ap.
4285 *
4286 * LOCKING:
4287 * PCI/etc. bus probe sem.
4288 *
4289 * RETURNS:
4290 * 0 on success, AC_ERR_* mask otherwise.
4291 */
4292
4293 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4294 {
4295 struct ata_taskfile tf;
4296 unsigned int err_mask;
4297
4298 /* set up set-features taskfile */
4299 DPRINTK("set features - xfer mode\n");
4300
4301 /* Some controllers and ATAPI devices show flaky interrupt
4302 * behavior after setting xfer mode. Use polling instead.
4303 */
4304 ata_tf_init(dev, &tf);
4305 tf.command = ATA_CMD_SET_FEATURES;
4306 tf.feature = SETFEATURES_XFER;
4307 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4308 tf.protocol = ATA_PROT_NODATA;
4309 /* If we are using IORDY we must send the mode setting command */
4310 if (ata_pio_need_iordy(dev))
4311 tf.nsect = dev->xfer_mode;
4312 /* If the device has IORDY and the controller does not - turn it off */
4313 else if (ata_id_has_iordy(dev->id))
4314 tf.nsect = 0x01;
4315 else /* In the ancient relic department - skip all of this */
4316 return 0;
4317
4318 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4319
4320 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4321 return err_mask;
4322 }
4323 /**
4324 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4325 * @dev: Device to which command will be sent
4326 * @enable: Whether to enable or disable the feature
4327 * @feature: The sector count represents the feature to set
4328 *
4329 * Issue SET FEATURES - SATA FEATURES command to device @dev
4330 * on port @ap with sector count
4331 *
4332 * LOCKING:
4333 * PCI/etc. bus probe sem.
4334 *
4335 * RETURNS:
4336 * 0 on success, AC_ERR_* mask otherwise.
4337 */
4338 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4339 u8 feature)
4340 {
4341 struct ata_taskfile tf;
4342 unsigned int err_mask;
4343
4344 /* set up set-features taskfile */
4345 DPRINTK("set features - SATA features\n");
4346
4347 ata_tf_init(dev, &tf);
4348 tf.command = ATA_CMD_SET_FEATURES;
4349 tf.feature = enable;
4350 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4351 tf.protocol = ATA_PROT_NODATA;
4352 tf.nsect = feature;
4353
4354 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4355
4356 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4357 return err_mask;
4358 }
4359
4360 /**
4361 * ata_dev_init_params - Issue INIT DEV PARAMS command
4362 * @dev: Device to which command will be sent
4363 * @heads: Number of heads (taskfile parameter)
4364 * @sectors: Number of sectors (taskfile parameter)
4365 *
4366 * LOCKING:
4367 * Kernel thread context (may sleep)
4368 *
4369 * RETURNS:
4370 * 0 on success, AC_ERR_* mask otherwise.
4371 */
4372 static unsigned int ata_dev_init_params(struct ata_device *dev,
4373 u16 heads, u16 sectors)
4374 {
4375 struct ata_taskfile tf;
4376 unsigned int err_mask;
4377
4378 /* Number of sectors per track 1-255. Number of heads 1-16 */
4379 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4380 return AC_ERR_INVALID;
4381
4382 /* set up init dev params taskfile */
4383 DPRINTK("init dev params \n");
4384
4385 ata_tf_init(dev, &tf);
4386 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4387 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4388 tf.protocol = ATA_PROT_NODATA;
4389 tf.nsect = sectors;
4390 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4391
4392 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4393 /* A clean abort indicates an original or just out of spec drive
4394 and we should continue as we issue the setup based on the
4395 drive reported working geometry */
4396 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4397 err_mask = 0;
4398
4399 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4400 return err_mask;
4401 }
4402
4403 /**
4404 * ata_sg_clean - Unmap DMA memory associated with command
4405 * @qc: Command containing DMA memory to be released
4406 *
4407 * Unmap all mapped DMA memory associated with this command.
4408 *
4409 * LOCKING:
4410 * spin_lock_irqsave(host lock)
4411 */
4412 void ata_sg_clean(struct ata_queued_cmd *qc)
4413 {
4414 struct ata_port *ap = qc->ap;
4415 struct scatterlist *sg = qc->sg;
4416 int dir = qc->dma_dir;
4417
4418 WARN_ON(sg == NULL);
4419
4420 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4421
4422 if (qc->n_elem)
4423 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4424
4425 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4426 qc->sg = NULL;
4427 }
4428
4429 /**
4430 * atapi_check_dma - Check whether ATAPI DMA can be supported
4431 * @qc: Metadata associated with taskfile to check
4432 *
4433 * Allow low-level driver to filter ATA PACKET commands, returning
4434 * a status indicating whether or not it is OK to use DMA for the
4435 * supplied PACKET command.
4436 *
4437 * LOCKING:
4438 * spin_lock_irqsave(host lock)
4439 *
4440 * RETURNS: 0 when ATAPI DMA can be used
4441 * nonzero otherwise
4442 */
4443 int atapi_check_dma(struct ata_queued_cmd *qc)
4444 {
4445 struct ata_port *ap = qc->ap;
4446
4447 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4448 * few ATAPI devices choke on such DMA requests.
4449 */
4450 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4451 unlikely(qc->nbytes & 15))
4452 return 1;
4453
4454 if (ap->ops->check_atapi_dma)
4455 return ap->ops->check_atapi_dma(qc);
4456
4457 return 0;
4458 }
4459
4460 /**
4461 * ata_std_qc_defer - Check whether a qc needs to be deferred
4462 * @qc: ATA command in question
4463 *
4464 * Non-NCQ commands cannot run with any other command, NCQ or
4465 * not. As upper layer only knows the queue depth, we are
4466 * responsible for maintaining exclusion. This function checks
4467 * whether a new command @qc can be issued.
4468 *
4469 * LOCKING:
4470 * spin_lock_irqsave(host lock)
4471 *
4472 * RETURNS:
4473 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4474 */
4475 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4476 {
4477 struct ata_link *link = qc->dev->link;
4478
4479 if (qc->tf.protocol == ATA_PROT_NCQ) {
4480 if (!ata_tag_valid(link->active_tag))
4481 return 0;
4482 } else {
4483 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4484 return 0;
4485 }
4486
4487 return ATA_DEFER_LINK;
4488 }
4489
4490 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4491
4492 /**
4493 * ata_sg_init - Associate command with scatter-gather table.
4494 * @qc: Command to be associated
4495 * @sg: Scatter-gather table.
4496 * @n_elem: Number of elements in s/g table.
4497 *
4498 * Initialize the data-related elements of queued_cmd @qc
4499 * to point to a scatter-gather table @sg, containing @n_elem
4500 * elements.
4501 *
4502 * LOCKING:
4503 * spin_lock_irqsave(host lock)
4504 */
4505 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4506 unsigned int n_elem)
4507 {
4508 qc->sg = sg;
4509 qc->n_elem = n_elem;
4510 qc->cursg = qc->sg;
4511 }
4512
4513 /**
4514 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4515 * @qc: Command with scatter-gather table to be mapped.
4516 *
4517 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4518 *
4519 * LOCKING:
4520 * spin_lock_irqsave(host lock)
4521 *
4522 * RETURNS:
4523 * Zero on success, negative on error.
4524 *
4525 */
4526 static int ata_sg_setup(struct ata_queued_cmd *qc)
4527 {
4528 struct ata_port *ap = qc->ap;
4529 unsigned int n_elem;
4530
4531 VPRINTK("ENTER, ata%u\n", ap->print_id);
4532
4533 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4534 if (n_elem < 1)
4535 return -1;
4536
4537 DPRINTK("%d sg elements mapped\n", n_elem);
4538
4539 qc->n_elem = n_elem;
4540 qc->flags |= ATA_QCFLAG_DMAMAP;
4541
4542 return 0;
4543 }
4544
4545 /**
4546 * swap_buf_le16 - swap halves of 16-bit words in place
4547 * @buf: Buffer to swap
4548 * @buf_words: Number of 16-bit words in buffer.
4549 *
4550 * Swap halves of 16-bit words if needed to convert from
4551 * little-endian byte order to native cpu byte order, or
4552 * vice-versa.
4553 *
4554 * LOCKING:
4555 * Inherited from caller.
4556 */
4557 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4558 {
4559 #ifdef __BIG_ENDIAN
4560 unsigned int i;
4561
4562 for (i = 0; i < buf_words; i++)
4563 buf[i] = le16_to_cpu(buf[i]);
4564 #endif /* __BIG_ENDIAN */
4565 }
4566
4567 /**
4568 * ata_qc_new - Request an available ATA command, for queueing
4569 * @ap: Port associated with device @dev
4570 * @dev: Device from whom we request an available command structure
4571 *
4572 * LOCKING:
4573 * None.
4574 */
4575
4576 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4577 {
4578 struct ata_queued_cmd *qc = NULL;
4579 unsigned int i;
4580
4581 /* no command while frozen */
4582 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4583 return NULL;
4584
4585 /* the last tag is reserved for internal command. */
4586 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4587 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4588 qc = __ata_qc_from_tag(ap, i);
4589 break;
4590 }
4591
4592 if (qc)
4593 qc->tag = i;
4594
4595 return qc;
4596 }
4597
4598 /**
4599 * ata_qc_new_init - Request an available ATA command, and initialize it
4600 * @dev: Device from whom we request an available command structure
4601 * @tag: command tag
4602 *
4603 * LOCKING:
4604 * None.
4605 */
4606
4607 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4608 {
4609 struct ata_port *ap = dev->link->ap;
4610 struct ata_queued_cmd *qc;
4611
4612 qc = ata_qc_new(ap);
4613 if (qc) {
4614 qc->scsicmd = NULL;
4615 qc->ap = ap;
4616 qc->dev = dev;
4617
4618 ata_qc_reinit(qc);
4619 }
4620
4621 return qc;
4622 }
4623
4624 /**
4625 * ata_qc_free - free unused ata_queued_cmd
4626 * @qc: Command to complete
4627 *
4628 * Designed to free unused ata_queued_cmd object
4629 * in case something prevents using it.
4630 *
4631 * LOCKING:
4632 * spin_lock_irqsave(host lock)
4633 */
4634 void ata_qc_free(struct ata_queued_cmd *qc)
4635 {
4636 struct ata_port *ap = qc->ap;
4637 unsigned int tag;
4638
4639 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4640
4641 qc->flags = 0;
4642 tag = qc->tag;
4643 if (likely(ata_tag_valid(tag))) {
4644 qc->tag = ATA_TAG_POISON;
4645 clear_bit(tag, &ap->qc_allocated);
4646 }
4647 }
4648
4649 void __ata_qc_complete(struct ata_queued_cmd *qc)
4650 {
4651 struct ata_port *ap = qc->ap;
4652 struct ata_link *link = qc->dev->link;
4653
4654 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4655 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4656
4657 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4658 ata_sg_clean(qc);
4659
4660 /* command should be marked inactive atomically with qc completion */
4661 if (qc->tf.protocol == ATA_PROT_NCQ) {
4662 link->sactive &= ~(1 << qc->tag);
4663 if (!link->sactive)
4664 ap->nr_active_links--;
4665 } else {
4666 link->active_tag = ATA_TAG_POISON;
4667 ap->nr_active_links--;
4668 }
4669
4670 /* clear exclusive status */
4671 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4672 ap->excl_link == link))
4673 ap->excl_link = NULL;
4674
4675 /* atapi: mark qc as inactive to prevent the interrupt handler
4676 * from completing the command twice later, before the error handler
4677 * is called. (when rc != 0 and atapi request sense is needed)
4678 */
4679 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4680 ap->qc_active &= ~(1 << qc->tag);
4681
4682 /* call completion callback */
4683 qc->complete_fn(qc);
4684 }
4685
4686 static void fill_result_tf(struct ata_queued_cmd *qc)
4687 {
4688 struct ata_port *ap = qc->ap;
4689
4690 qc->result_tf.flags = qc->tf.flags;
4691 ap->ops->qc_fill_rtf(qc);
4692 }
4693
4694 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4695 {
4696 struct ata_device *dev = qc->dev;
4697
4698 if (ata_tag_internal(qc->tag))
4699 return;
4700
4701 if (ata_is_nodata(qc->tf.protocol))
4702 return;
4703
4704 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4705 return;
4706
4707 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4708 }
4709
4710 /**
4711 * ata_qc_complete - Complete an active ATA command
4712 * @qc: Command to complete
4713 *
4714 * Indicate to the mid and upper layers that an ATA
4715 * command has completed, with either an ok or not-ok status.
4716 *
4717 * LOCKING:
4718 * spin_lock_irqsave(host lock)
4719 */
4720 void ata_qc_complete(struct ata_queued_cmd *qc)
4721 {
4722 struct ata_port *ap = qc->ap;
4723
4724 /* XXX: New EH and old EH use different mechanisms to
4725 * synchronize EH with regular execution path.
4726 *
4727 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4728 * Normal execution path is responsible for not accessing a
4729 * failed qc. libata core enforces the rule by returning NULL
4730 * from ata_qc_from_tag() for failed qcs.
4731 *
4732 * Old EH depends on ata_qc_complete() nullifying completion
4733 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4734 * not synchronize with interrupt handler. Only PIO task is
4735 * taken care of.
4736 */
4737 if (ap->ops->error_handler) {
4738 struct ata_device *dev = qc->dev;
4739 struct ata_eh_info *ehi = &dev->link->eh_info;
4740
4741 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4742
4743 if (unlikely(qc->err_mask))
4744 qc->flags |= ATA_QCFLAG_FAILED;
4745
4746 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4747 if (!ata_tag_internal(qc->tag)) {
4748 /* always fill result TF for failed qc */
4749 fill_result_tf(qc);
4750 ata_qc_schedule_eh(qc);
4751 return;
4752 }
4753 }
4754
4755 /* read result TF if requested */
4756 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4757 fill_result_tf(qc);
4758
4759 /* Some commands need post-processing after successful
4760 * completion.
4761 */
4762 switch (qc->tf.command) {
4763 case ATA_CMD_SET_FEATURES:
4764 if (qc->tf.feature != SETFEATURES_WC_ON &&
4765 qc->tf.feature != SETFEATURES_WC_OFF)
4766 break;
4767 /* fall through */
4768 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4769 case ATA_CMD_SET_MULTI: /* multi_count changed */
4770 /* revalidate device */
4771 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4772 ata_port_schedule_eh(ap);
4773 break;
4774
4775 case ATA_CMD_SLEEP:
4776 dev->flags |= ATA_DFLAG_SLEEPING;
4777 break;
4778 }
4779
4780 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4781 ata_verify_xfer(qc);
4782
4783 __ata_qc_complete(qc);
4784 } else {
4785 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4786 return;
4787
4788 /* read result TF if failed or requested */
4789 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4790 fill_result_tf(qc);
4791
4792 __ata_qc_complete(qc);
4793 }
4794 }
4795
4796 /**
4797 * ata_qc_complete_multiple - Complete multiple qcs successfully
4798 * @ap: port in question
4799 * @qc_active: new qc_active mask
4800 *
4801 * Complete in-flight commands. This functions is meant to be
4802 * called from low-level driver's interrupt routine to complete
4803 * requests normally. ap->qc_active and @qc_active is compared
4804 * and commands are completed accordingly.
4805 *
4806 * LOCKING:
4807 * spin_lock_irqsave(host lock)
4808 *
4809 * RETURNS:
4810 * Number of completed commands on success, -errno otherwise.
4811 */
4812 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4813 {
4814 int nr_done = 0;
4815 u32 done_mask;
4816 int i;
4817
4818 done_mask = ap->qc_active ^ qc_active;
4819
4820 if (unlikely(done_mask & qc_active)) {
4821 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4822 "(%08x->%08x)\n", ap->qc_active, qc_active);
4823 return -EINVAL;
4824 }
4825
4826 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4827 struct ata_queued_cmd *qc;
4828
4829 if (!(done_mask & (1 << i)))
4830 continue;
4831
4832 if ((qc = ata_qc_from_tag(ap, i))) {
4833 ata_qc_complete(qc);
4834 nr_done++;
4835 }
4836 }
4837
4838 return nr_done;
4839 }
4840
4841 /**
4842 * ata_qc_issue - issue taskfile to device
4843 * @qc: command to issue to device
4844 *
4845 * Prepare an ATA command to submission to device.
4846 * This includes mapping the data into a DMA-able
4847 * area, filling in the S/G table, and finally
4848 * writing the taskfile to hardware, starting the command.
4849 *
4850 * LOCKING:
4851 * spin_lock_irqsave(host lock)
4852 */
4853 void ata_qc_issue(struct ata_queued_cmd *qc)
4854 {
4855 struct ata_port *ap = qc->ap;
4856 struct ata_link *link = qc->dev->link;
4857 u8 prot = qc->tf.protocol;
4858
4859 /* Make sure only one non-NCQ command is outstanding. The
4860 * check is skipped for old EH because it reuses active qc to
4861 * request ATAPI sense.
4862 */
4863 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4864
4865 if (ata_is_ncq(prot)) {
4866 WARN_ON(link->sactive & (1 << qc->tag));
4867
4868 if (!link->sactive)
4869 ap->nr_active_links++;
4870 link->sactive |= 1 << qc->tag;
4871 } else {
4872 WARN_ON(link->sactive);
4873
4874 ap->nr_active_links++;
4875 link->active_tag = qc->tag;
4876 }
4877
4878 qc->flags |= ATA_QCFLAG_ACTIVE;
4879 ap->qc_active |= 1 << qc->tag;
4880
4881 /* We guarantee to LLDs that they will have at least one
4882 * non-zero sg if the command is a data command.
4883 */
4884 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4885
4886 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4887 (ap->flags & ATA_FLAG_PIO_DMA)))
4888 if (ata_sg_setup(qc))
4889 goto sg_err;
4890
4891 /* if device is sleeping, schedule reset and abort the link */
4892 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4893 link->eh_info.action |= ATA_EH_RESET;
4894 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4895 ata_link_abort(link);
4896 return;
4897 }
4898
4899 ap->ops->qc_prep(qc);
4900
4901 qc->err_mask |= ap->ops->qc_issue(qc);
4902 if (unlikely(qc->err_mask))
4903 goto err;
4904 return;
4905
4906 sg_err:
4907 qc->err_mask |= AC_ERR_SYSTEM;
4908 err:
4909 ata_qc_complete(qc);
4910 }
4911
4912 /**
4913 * sata_scr_valid - test whether SCRs are accessible
4914 * @link: ATA link to test SCR accessibility for
4915 *
4916 * Test whether SCRs are accessible for @link.
4917 *
4918 * LOCKING:
4919 * None.
4920 *
4921 * RETURNS:
4922 * 1 if SCRs are accessible, 0 otherwise.
4923 */
4924 int sata_scr_valid(struct ata_link *link)
4925 {
4926 struct ata_port *ap = link->ap;
4927
4928 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4929 }
4930
4931 /**
4932 * sata_scr_read - read SCR register of the specified port
4933 * @link: ATA link to read SCR for
4934 * @reg: SCR to read
4935 * @val: Place to store read value
4936 *
4937 * Read SCR register @reg of @link into *@val. This function is
4938 * guaranteed to succeed if @link is ap->link, the cable type of
4939 * the port is SATA and the port implements ->scr_read.
4940 *
4941 * LOCKING:
4942 * None if @link is ap->link. Kernel thread context otherwise.
4943 *
4944 * RETURNS:
4945 * 0 on success, negative errno on failure.
4946 */
4947 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4948 {
4949 if (ata_is_host_link(link)) {
4950 if (sata_scr_valid(link))
4951 return link->ap->ops->scr_read(link, reg, val);
4952 return -EOPNOTSUPP;
4953 }
4954
4955 return sata_pmp_scr_read(link, reg, val);
4956 }
4957
4958 /**
4959 * sata_scr_write - write SCR register of the specified port
4960 * @link: ATA link to write SCR for
4961 * @reg: SCR to write
4962 * @val: value to write
4963 *
4964 * Write @val to SCR register @reg of @link. This function is
4965 * guaranteed to succeed if @link is ap->link, the cable type of
4966 * the port is SATA and the port implements ->scr_read.
4967 *
4968 * LOCKING:
4969 * None if @link is ap->link. Kernel thread context otherwise.
4970 *
4971 * RETURNS:
4972 * 0 on success, negative errno on failure.
4973 */
4974 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4975 {
4976 if (ata_is_host_link(link)) {
4977 if (sata_scr_valid(link))
4978 return link->ap->ops->scr_write(link, reg, val);
4979 return -EOPNOTSUPP;
4980 }
4981
4982 return sata_pmp_scr_write(link, reg, val);
4983 }
4984
4985 /**
4986 * sata_scr_write_flush - write SCR register of the specified port and flush
4987 * @link: ATA link to write SCR for
4988 * @reg: SCR to write
4989 * @val: value to write
4990 *
4991 * This function is identical to sata_scr_write() except that this
4992 * function performs flush after writing to the register.
4993 *
4994 * LOCKING:
4995 * None if @link is ap->link. Kernel thread context otherwise.
4996 *
4997 * RETURNS:
4998 * 0 on success, negative errno on failure.
4999 */
5000 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5001 {
5002 if (ata_is_host_link(link)) {
5003 int rc;
5004
5005 if (sata_scr_valid(link)) {
5006 rc = link->ap->ops->scr_write(link, reg, val);
5007 if (rc == 0)
5008 rc = link->ap->ops->scr_read(link, reg, &val);
5009 return rc;
5010 }
5011 return -EOPNOTSUPP;
5012 }
5013
5014 return sata_pmp_scr_write(link, reg, val);
5015 }
5016
5017 /**
5018 * ata_phys_link_online - test whether the given link is online
5019 * @link: ATA link to test
5020 *
5021 * Test whether @link is online. Note that this function returns
5022 * 0 if online status of @link cannot be obtained, so
5023 * ata_link_online(link) != !ata_link_offline(link).
5024 *
5025 * LOCKING:
5026 * None.
5027 *
5028 * RETURNS:
5029 * True if the port online status is available and online.
5030 */
5031 bool ata_phys_link_online(struct ata_link *link)
5032 {
5033 u32 sstatus;
5034
5035 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5036 (sstatus & 0xf) == 0x3)
5037 return true;
5038 return false;
5039 }
5040
5041 /**
5042 * ata_phys_link_offline - test whether the given link is offline
5043 * @link: ATA link to test
5044 *
5045 * Test whether @link is offline. Note that this function
5046 * returns 0 if offline status of @link cannot be obtained, so
5047 * ata_link_online(link) != !ata_link_offline(link).
5048 *
5049 * LOCKING:
5050 * None.
5051 *
5052 * RETURNS:
5053 * True if the port offline status is available and offline.
5054 */
5055 bool ata_phys_link_offline(struct ata_link *link)
5056 {
5057 u32 sstatus;
5058
5059 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5060 (sstatus & 0xf) != 0x3)
5061 return true;
5062 return false;
5063 }
5064
5065 /**
5066 * ata_link_online - test whether the given link is online
5067 * @link: ATA link to test
5068 *
5069 * Test whether @link is online. This is identical to
5070 * ata_phys_link_online() when there's no slave link. When
5071 * there's a slave link, this function should only be called on
5072 * the master link and will return true if any of M/S links is
5073 * online.
5074 *
5075 * LOCKING:
5076 * None.
5077 *
5078 * RETURNS:
5079 * True if the port online status is available and online.
5080 */
5081 bool ata_link_online(struct ata_link *link)
5082 {
5083 struct ata_link *slave = link->ap->slave_link;
5084
5085 WARN_ON(link == slave); /* shouldn't be called on slave link */
5086
5087 return ata_phys_link_online(link) ||
5088 (slave && ata_phys_link_online(slave));
5089 }
5090
5091 /**
5092 * ata_link_offline - test whether the given link is offline
5093 * @link: ATA link to test
5094 *
5095 * Test whether @link is offline. This is identical to
5096 * ata_phys_link_offline() when there's no slave link. When
5097 * there's a slave link, this function should only be called on
5098 * the master link and will return true if both M/S links are
5099 * offline.
5100 *
5101 * LOCKING:
5102 * None.
5103 *
5104 * RETURNS:
5105 * True if the port offline status is available and offline.
5106 */
5107 bool ata_link_offline(struct ata_link *link)
5108 {
5109 struct ata_link *slave = link->ap->slave_link;
5110
5111 WARN_ON(link == slave); /* shouldn't be called on slave link */
5112
5113 return ata_phys_link_offline(link) &&
5114 (!slave || ata_phys_link_offline(slave));
5115 }
5116
5117 #ifdef CONFIG_PM
5118 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5119 unsigned int action, unsigned int ehi_flags,
5120 int wait)
5121 {
5122 unsigned long flags;
5123 int i, rc;
5124
5125 for (i = 0; i < host->n_ports; i++) {
5126 struct ata_port *ap = host->ports[i];
5127 struct ata_link *link;
5128
5129 /* Previous resume operation might still be in
5130 * progress. Wait for PM_PENDING to clear.
5131 */
5132 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5133 ata_port_wait_eh(ap);
5134 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5135 }
5136
5137 /* request PM ops to EH */
5138 spin_lock_irqsave(ap->lock, flags);
5139
5140 ap->pm_mesg = mesg;
5141 if (wait) {
5142 rc = 0;
5143 ap->pm_result = &rc;
5144 }
5145
5146 ap->pflags |= ATA_PFLAG_PM_PENDING;
5147 __ata_port_for_each_link(link, ap) {
5148 link->eh_info.action |= action;
5149 link->eh_info.flags |= ehi_flags;
5150 }
5151
5152 ata_port_schedule_eh(ap);
5153
5154 spin_unlock_irqrestore(ap->lock, flags);
5155
5156 /* wait and check result */
5157 if (wait) {
5158 ata_port_wait_eh(ap);
5159 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5160 if (rc)
5161 return rc;
5162 }
5163 }
5164
5165 return 0;
5166 }
5167
5168 /**
5169 * ata_host_suspend - suspend host
5170 * @host: host to suspend
5171 * @mesg: PM message
5172 *
5173 * Suspend @host. Actual operation is performed by EH. This
5174 * function requests EH to perform PM operations and waits for EH
5175 * to finish.
5176 *
5177 * LOCKING:
5178 * Kernel thread context (may sleep).
5179 *
5180 * RETURNS:
5181 * 0 on success, -errno on failure.
5182 */
5183 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5184 {
5185 int rc;
5186
5187 /*
5188 * disable link pm on all ports before requesting
5189 * any pm activity
5190 */
5191 ata_lpm_enable(host);
5192
5193 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5194 if (rc == 0)
5195 host->dev->power.power_state = mesg;
5196 return rc;
5197 }
5198
5199 /**
5200 * ata_host_resume - resume host
5201 * @host: host to resume
5202 *
5203 * Resume @host. Actual operation is performed by EH. This
5204 * function requests EH to perform PM operations and returns.
5205 * Note that all resume operations are performed parallely.
5206 *
5207 * LOCKING:
5208 * Kernel thread context (may sleep).
5209 */
5210 void ata_host_resume(struct ata_host *host)
5211 {
5212 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5213 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5214 host->dev->power.power_state = PMSG_ON;
5215
5216 /* reenable link pm */
5217 ata_lpm_disable(host);
5218 }
5219 #endif
5220
5221 /**
5222 * ata_port_start - Set port up for dma.
5223 * @ap: Port to initialize
5224 *
5225 * Called just after data structures for each port are
5226 * initialized. Allocates space for PRD table.
5227 *
5228 * May be used as the port_start() entry in ata_port_operations.
5229 *
5230 * LOCKING:
5231 * Inherited from caller.
5232 */
5233 int ata_port_start(struct ata_port *ap)
5234 {
5235 struct device *dev = ap->dev;
5236
5237 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5238 GFP_KERNEL);
5239 if (!ap->prd)
5240 return -ENOMEM;
5241
5242 return 0;
5243 }
5244
5245 /**
5246 * ata_dev_init - Initialize an ata_device structure
5247 * @dev: Device structure to initialize
5248 *
5249 * Initialize @dev in preparation for probing.
5250 *
5251 * LOCKING:
5252 * Inherited from caller.
5253 */
5254 void ata_dev_init(struct ata_device *dev)
5255 {
5256 struct ata_link *link = ata_dev_phys_link(dev);
5257 struct ata_port *ap = link->ap;
5258 unsigned long flags;
5259
5260 /* SATA spd limit is bound to the attached device, reset together */
5261 link->sata_spd_limit = link->hw_sata_spd_limit;
5262 link->sata_spd = 0;
5263
5264 /* High bits of dev->flags are used to record warm plug
5265 * requests which occur asynchronously. Synchronize using
5266 * host lock.
5267 */
5268 spin_lock_irqsave(ap->lock, flags);
5269 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5270 dev->horkage = 0;
5271 spin_unlock_irqrestore(ap->lock, flags);
5272
5273 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5274 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5275 dev->pio_mask = UINT_MAX;
5276 dev->mwdma_mask = UINT_MAX;
5277 dev->udma_mask = UINT_MAX;
5278 }
5279
5280 /**
5281 * ata_link_init - Initialize an ata_link structure
5282 * @ap: ATA port link is attached to
5283 * @link: Link structure to initialize
5284 * @pmp: Port multiplier port number
5285 *
5286 * Initialize @link.
5287 *
5288 * LOCKING:
5289 * Kernel thread context (may sleep)
5290 */
5291 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5292 {
5293 int i;
5294
5295 /* clear everything except for devices */
5296 memset(link, 0, offsetof(struct ata_link, device[0]));
5297
5298 link->ap = ap;
5299 link->pmp = pmp;
5300 link->active_tag = ATA_TAG_POISON;
5301 link->hw_sata_spd_limit = UINT_MAX;
5302
5303 /* can't use iterator, ap isn't initialized yet */
5304 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5305 struct ata_device *dev = &link->device[i];
5306
5307 dev->link = link;
5308 dev->devno = dev - link->device;
5309 ata_dev_init(dev);
5310 }
5311 }
5312
5313 /**
5314 * sata_link_init_spd - Initialize link->sata_spd_limit
5315 * @link: Link to configure sata_spd_limit for
5316 *
5317 * Initialize @link->[hw_]sata_spd_limit to the currently
5318 * configured value.
5319 *
5320 * LOCKING:
5321 * Kernel thread context (may sleep).
5322 *
5323 * RETURNS:
5324 * 0 on success, -errno on failure.
5325 */
5326 int sata_link_init_spd(struct ata_link *link)
5327 {
5328 u8 spd;
5329 int rc;
5330
5331 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5332 if (rc)
5333 return rc;
5334
5335 spd = (link->saved_scontrol >> 4) & 0xf;
5336 if (spd)
5337 link->hw_sata_spd_limit &= (1 << spd) - 1;
5338
5339 ata_force_link_limits(link);
5340
5341 link->sata_spd_limit = link->hw_sata_spd_limit;
5342
5343 return 0;
5344 }
5345
5346 /**
5347 * ata_port_alloc - allocate and initialize basic ATA port resources
5348 * @host: ATA host this allocated port belongs to
5349 *
5350 * Allocate and initialize basic ATA port resources.
5351 *
5352 * RETURNS:
5353 * Allocate ATA port on success, NULL on failure.
5354 *
5355 * LOCKING:
5356 * Inherited from calling layer (may sleep).
5357 */
5358 struct ata_port *ata_port_alloc(struct ata_host *host)
5359 {
5360 struct ata_port *ap;
5361
5362 DPRINTK("ENTER\n");
5363
5364 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5365 if (!ap)
5366 return NULL;
5367
5368 ap->pflags |= ATA_PFLAG_INITIALIZING;
5369 ap->lock = &host->lock;
5370 ap->flags = ATA_FLAG_DISABLED;
5371 ap->print_id = -1;
5372 ap->ctl = ATA_DEVCTL_OBS;
5373 ap->host = host;
5374 ap->dev = host->dev;
5375 ap->last_ctl = 0xFF;
5376
5377 #if defined(ATA_VERBOSE_DEBUG)
5378 /* turn on all debugging levels */
5379 ap->msg_enable = 0x00FF;
5380 #elif defined(ATA_DEBUG)
5381 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5382 #else
5383 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5384 #endif
5385
5386 #ifdef CONFIG_ATA_SFF
5387 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5388 #else
5389 INIT_DELAYED_WORK(&ap->port_task, NULL);
5390 #endif
5391 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5392 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5393 INIT_LIST_HEAD(&ap->eh_done_q);
5394 init_waitqueue_head(&ap->eh_wait_q);
5395 init_completion(&ap->park_req_pending);
5396 init_timer_deferrable(&ap->fastdrain_timer);
5397 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5398 ap->fastdrain_timer.data = (unsigned long)ap;
5399
5400 ap->cbl = ATA_CBL_NONE;
5401
5402 ata_link_init(ap, &ap->link, 0);
5403
5404 #ifdef ATA_IRQ_TRAP
5405 ap->stats.unhandled_irq = 1;
5406 ap->stats.idle_irq = 1;
5407 #endif
5408 return ap;
5409 }
5410
5411 static void ata_host_release(struct device *gendev, void *res)
5412 {
5413 struct ata_host *host = dev_get_drvdata(gendev);
5414 int i;
5415
5416 for (i = 0; i < host->n_ports; i++) {
5417 struct ata_port *ap = host->ports[i];
5418
5419 if (!ap)
5420 continue;
5421
5422 if (ap->scsi_host)
5423 scsi_host_put(ap->scsi_host);
5424
5425 kfree(ap->pmp_link);
5426 kfree(ap->slave_link);
5427 kfree(ap);
5428 host->ports[i] = NULL;
5429 }
5430
5431 dev_set_drvdata(gendev, NULL);
5432 }
5433
5434 /**
5435 * ata_host_alloc - allocate and init basic ATA host resources
5436 * @dev: generic device this host is associated with
5437 * @max_ports: maximum number of ATA ports associated with this host
5438 *
5439 * Allocate and initialize basic ATA host resources. LLD calls
5440 * this function to allocate a host, initializes it fully and
5441 * attaches it using ata_host_register().
5442 *
5443 * @max_ports ports are allocated and host->n_ports is
5444 * initialized to @max_ports. The caller is allowed to decrease
5445 * host->n_ports before calling ata_host_register(). The unused
5446 * ports will be automatically freed on registration.
5447 *
5448 * RETURNS:
5449 * Allocate ATA host on success, NULL on failure.
5450 *
5451 * LOCKING:
5452 * Inherited from calling layer (may sleep).
5453 */
5454 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5455 {
5456 struct ata_host *host;
5457 size_t sz;
5458 int i;
5459
5460 DPRINTK("ENTER\n");
5461
5462 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5463 return NULL;
5464
5465 /* alloc a container for our list of ATA ports (buses) */
5466 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5467 /* alloc a container for our list of ATA ports (buses) */
5468 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5469 if (!host)
5470 goto err_out;
5471
5472 devres_add(dev, host);
5473 dev_set_drvdata(dev, host);
5474
5475 spin_lock_init(&host->lock);
5476 host->dev = dev;
5477 host->n_ports = max_ports;
5478
5479 /* allocate ports bound to this host */
5480 for (i = 0; i < max_ports; i++) {
5481 struct ata_port *ap;
5482
5483 ap = ata_port_alloc(host);
5484 if (!ap)
5485 goto err_out;
5486
5487 ap->port_no = i;
5488 host->ports[i] = ap;
5489 }
5490
5491 devres_remove_group(dev, NULL);
5492 return host;
5493
5494 err_out:
5495 devres_release_group(dev, NULL);
5496 return NULL;
5497 }
5498
5499 /**
5500 * ata_host_alloc_pinfo - alloc host and init with port_info array
5501 * @dev: generic device this host is associated with
5502 * @ppi: array of ATA port_info to initialize host with
5503 * @n_ports: number of ATA ports attached to this host
5504 *
5505 * Allocate ATA host and initialize with info from @ppi. If NULL
5506 * terminated, @ppi may contain fewer entries than @n_ports. The
5507 * last entry will be used for the remaining ports.
5508 *
5509 * RETURNS:
5510 * Allocate ATA host on success, NULL on failure.
5511 *
5512 * LOCKING:
5513 * Inherited from calling layer (may sleep).
5514 */
5515 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5516 const struct ata_port_info * const * ppi,
5517 int n_ports)
5518 {
5519 const struct ata_port_info *pi;
5520 struct ata_host *host;
5521 int i, j;
5522
5523 host = ata_host_alloc(dev, n_ports);
5524 if (!host)
5525 return NULL;
5526
5527 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5528 struct ata_port *ap = host->ports[i];
5529
5530 if (ppi[j])
5531 pi = ppi[j++];
5532
5533 ap->pio_mask = pi->pio_mask;
5534 ap->mwdma_mask = pi->mwdma_mask;
5535 ap->udma_mask = pi->udma_mask;
5536 ap->flags |= pi->flags;
5537 ap->link.flags |= pi->link_flags;
5538 ap->ops = pi->port_ops;
5539
5540 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5541 host->ops = pi->port_ops;
5542 }
5543
5544 return host;
5545 }
5546
5547 /**
5548 * ata_slave_link_init - initialize slave link
5549 * @ap: port to initialize slave link for
5550 *
5551 * Create and initialize slave link for @ap. This enables slave
5552 * link handling on the port.
5553 *
5554 * In libata, a port contains links and a link contains devices.
5555 * There is single host link but if a PMP is attached to it,
5556 * there can be multiple fan-out links. On SATA, there's usually
5557 * a single device connected to a link but PATA and SATA
5558 * controllers emulating TF based interface can have two - master
5559 * and slave.
5560 *
5561 * However, there are a few controllers which don't fit into this
5562 * abstraction too well - SATA controllers which emulate TF
5563 * interface with both master and slave devices but also have
5564 * separate SCR register sets for each device. These controllers
5565 * need separate links for physical link handling
5566 * (e.g. onlineness, link speed) but should be treated like a
5567 * traditional M/S controller for everything else (e.g. command
5568 * issue, softreset).
5569 *
5570 * slave_link is libata's way of handling this class of
5571 * controllers without impacting core layer too much. For
5572 * anything other than physical link handling, the default host
5573 * link is used for both master and slave. For physical link
5574 * handling, separate @ap->slave_link is used. All dirty details
5575 * are implemented inside libata core layer. From LLD's POV, the
5576 * only difference is that prereset, hardreset and postreset are
5577 * called once more for the slave link, so the reset sequence
5578 * looks like the following.
5579 *
5580 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5581 * softreset(M) -> postreset(M) -> postreset(S)
5582 *
5583 * Note that softreset is called only for the master. Softreset
5584 * resets both M/S by definition, so SRST on master should handle
5585 * both (the standard method will work just fine).
5586 *
5587 * LOCKING:
5588 * Should be called before host is registered.
5589 *
5590 * RETURNS:
5591 * 0 on success, -errno on failure.
5592 */
5593 int ata_slave_link_init(struct ata_port *ap)
5594 {
5595 struct ata_link *link;
5596
5597 WARN_ON(ap->slave_link);
5598 WARN_ON(ap->flags & ATA_FLAG_PMP);
5599
5600 link = kzalloc(sizeof(*link), GFP_KERNEL);
5601 if (!link)
5602 return -ENOMEM;
5603
5604 ata_link_init(ap, link, 1);
5605 ap->slave_link = link;
5606 return 0;
5607 }
5608
5609 static void ata_host_stop(struct device *gendev, void *res)
5610 {
5611 struct ata_host *host = dev_get_drvdata(gendev);
5612 int i;
5613
5614 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5615
5616 for (i = 0; i < host->n_ports; i++) {
5617 struct ata_port *ap = host->ports[i];
5618
5619 if (ap->ops->port_stop)
5620 ap->ops->port_stop(ap);
5621 }
5622
5623 if (host->ops->host_stop)
5624 host->ops->host_stop(host);
5625 }
5626
5627 /**
5628 * ata_finalize_port_ops - finalize ata_port_operations
5629 * @ops: ata_port_operations to finalize
5630 *
5631 * An ata_port_operations can inherit from another ops and that
5632 * ops can again inherit from another. This can go on as many
5633 * times as necessary as long as there is no loop in the
5634 * inheritance chain.
5635 *
5636 * Ops tables are finalized when the host is started. NULL or
5637 * unspecified entries are inherited from the closet ancestor
5638 * which has the method and the entry is populated with it.
5639 * After finalization, the ops table directly points to all the
5640 * methods and ->inherits is no longer necessary and cleared.
5641 *
5642 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5643 *
5644 * LOCKING:
5645 * None.
5646 */
5647 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5648 {
5649 static DEFINE_SPINLOCK(lock);
5650 const struct ata_port_operations *cur;
5651 void **begin = (void **)ops;
5652 void **end = (void **)&ops->inherits;
5653 void **pp;
5654
5655 if (!ops || !ops->inherits)
5656 return;
5657
5658 spin_lock(&lock);
5659
5660 for (cur = ops->inherits; cur; cur = cur->inherits) {
5661 void **inherit = (void **)cur;
5662
5663 for (pp = begin; pp < end; pp++, inherit++)
5664 if (!*pp)
5665 *pp = *inherit;
5666 }
5667
5668 for (pp = begin; pp < end; pp++)
5669 if (IS_ERR(*pp))
5670 *pp = NULL;
5671
5672 ops->inherits = NULL;
5673
5674 spin_unlock(&lock);
5675 }
5676
5677 /**
5678 * ata_host_start - start and freeze ports of an ATA host
5679 * @host: ATA host to start ports for
5680 *
5681 * Start and then freeze ports of @host. Started status is
5682 * recorded in host->flags, so this function can be called
5683 * multiple times. Ports are guaranteed to get started only
5684 * once. If host->ops isn't initialized yet, its set to the
5685 * first non-dummy port ops.
5686 *
5687 * LOCKING:
5688 * Inherited from calling layer (may sleep).
5689 *
5690 * RETURNS:
5691 * 0 if all ports are started successfully, -errno otherwise.
5692 */
5693 int ata_host_start(struct ata_host *host)
5694 {
5695 int have_stop = 0;
5696 void *start_dr = NULL;
5697 int i, rc;
5698
5699 if (host->flags & ATA_HOST_STARTED)
5700 return 0;
5701
5702 ata_finalize_port_ops(host->ops);
5703
5704 for (i = 0; i < host->n_ports; i++) {
5705 struct ata_port *ap = host->ports[i];
5706
5707 ata_finalize_port_ops(ap->ops);
5708
5709 if (!host->ops && !ata_port_is_dummy(ap))
5710 host->ops = ap->ops;
5711
5712 if (ap->ops->port_stop)
5713 have_stop = 1;
5714 }
5715
5716 if (host->ops->host_stop)
5717 have_stop = 1;
5718
5719 if (have_stop) {
5720 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5721 if (!start_dr)
5722 return -ENOMEM;
5723 }
5724
5725 for (i = 0; i < host->n_ports; i++) {
5726 struct ata_port *ap = host->ports[i];
5727
5728 if (ap->ops->port_start) {
5729 rc = ap->ops->port_start(ap);
5730 if (rc) {
5731 if (rc != -ENODEV)
5732 dev_printk(KERN_ERR, host->dev,
5733 "failed to start port %d "
5734 "(errno=%d)\n", i, rc);
5735 goto err_out;
5736 }
5737 }
5738 ata_eh_freeze_port(ap);
5739 }
5740
5741 if (start_dr)
5742 devres_add(host->dev, start_dr);
5743 host->flags |= ATA_HOST_STARTED;
5744 return 0;
5745
5746 err_out:
5747 while (--i >= 0) {
5748 struct ata_port *ap = host->ports[i];
5749
5750 if (ap->ops->port_stop)
5751 ap->ops->port_stop(ap);
5752 }
5753 devres_free(start_dr);
5754 return rc;
5755 }
5756
5757 /**
5758 * ata_sas_host_init - Initialize a host struct
5759 * @host: host to initialize
5760 * @dev: device host is attached to
5761 * @flags: host flags
5762 * @ops: port_ops
5763 *
5764 * LOCKING:
5765 * PCI/etc. bus probe sem.
5766 *
5767 */
5768 /* KILLME - the only user left is ipr */
5769 void ata_host_init(struct ata_host *host, struct device *dev,
5770 unsigned long flags, struct ata_port_operations *ops)
5771 {
5772 spin_lock_init(&host->lock);
5773 host->dev = dev;
5774 host->flags = flags;
5775 host->ops = ops;
5776 }
5777
5778 /**
5779 * ata_host_register - register initialized ATA host
5780 * @host: ATA host to register
5781 * @sht: template for SCSI host
5782 *
5783 * Register initialized ATA host. @host is allocated using
5784 * ata_host_alloc() and fully initialized by LLD. This function
5785 * starts ports, registers @host with ATA and SCSI layers and
5786 * probe registered devices.
5787 *
5788 * LOCKING:
5789 * Inherited from calling layer (may sleep).
5790 *
5791 * RETURNS:
5792 * 0 on success, -errno otherwise.
5793 */
5794 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5795 {
5796 int i, rc;
5797
5798 /* host must have been started */
5799 if (!(host->flags & ATA_HOST_STARTED)) {
5800 dev_printk(KERN_ERR, host->dev,
5801 "BUG: trying to register unstarted host\n");
5802 WARN_ON(1);
5803 return -EINVAL;
5804 }
5805
5806 /* Blow away unused ports. This happens when LLD can't
5807 * determine the exact number of ports to allocate at
5808 * allocation time.
5809 */
5810 for (i = host->n_ports; host->ports[i]; i++)
5811 kfree(host->ports[i]);
5812
5813 /* give ports names and add SCSI hosts */
5814 for (i = 0; i < host->n_ports; i++)
5815 host->ports[i]->print_id = ata_print_id++;
5816
5817 rc = ata_scsi_add_hosts(host, sht);
5818 if (rc)
5819 return rc;
5820
5821 /* associate with ACPI nodes */
5822 ata_acpi_associate(host);
5823
5824 /* set cable, sata_spd_limit and report */
5825 for (i = 0; i < host->n_ports; i++) {
5826 struct ata_port *ap = host->ports[i];
5827 unsigned long xfer_mask;
5828
5829 /* set SATA cable type if still unset */
5830 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5831 ap->cbl = ATA_CBL_SATA;
5832
5833 /* init sata_spd_limit to the current value */
5834 sata_link_init_spd(&ap->link);
5835 if (ap->slave_link)
5836 sata_link_init_spd(ap->slave_link);
5837
5838 /* print per-port info to dmesg */
5839 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5840 ap->udma_mask);
5841
5842 if (!ata_port_is_dummy(ap)) {
5843 ata_port_printk(ap, KERN_INFO,
5844 "%cATA max %s %s\n",
5845 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5846 ata_mode_string(xfer_mask),
5847 ap->link.eh_info.desc);
5848 ata_ehi_clear_desc(&ap->link.eh_info);
5849 } else
5850 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5851 }
5852
5853 /* perform each probe synchronously */
5854 DPRINTK("probe begin\n");
5855 for (i = 0; i < host->n_ports; i++) {
5856 struct ata_port *ap = host->ports[i];
5857
5858 /* probe */
5859 if (ap->ops->error_handler) {
5860 struct ata_eh_info *ehi = &ap->link.eh_info;
5861 unsigned long flags;
5862
5863 ata_port_probe(ap);
5864
5865 /* kick EH for boot probing */
5866 spin_lock_irqsave(ap->lock, flags);
5867
5868 ehi->probe_mask |= ATA_ALL_DEVICES;
5869 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5870 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5871
5872 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5873 ap->pflags |= ATA_PFLAG_LOADING;
5874 ata_port_schedule_eh(ap);
5875
5876 spin_unlock_irqrestore(ap->lock, flags);
5877
5878 /* wait for EH to finish */
5879 ata_port_wait_eh(ap);
5880 } else {
5881 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5882 rc = ata_bus_probe(ap);
5883 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5884
5885 if (rc) {
5886 /* FIXME: do something useful here?
5887 * Current libata behavior will
5888 * tear down everything when
5889 * the module is removed
5890 * or the h/w is unplugged.
5891 */
5892 }
5893 }
5894 }
5895
5896 /* probes are done, now scan each port's disk(s) */
5897 DPRINTK("host probe begin\n");
5898 for (i = 0; i < host->n_ports; i++) {
5899 struct ata_port *ap = host->ports[i];
5900
5901 ata_scsi_scan_host(ap, 1);
5902 }
5903
5904 return 0;
5905 }
5906
5907 /**
5908 * ata_host_activate - start host, request IRQ and register it
5909 * @host: target ATA host
5910 * @irq: IRQ to request
5911 * @irq_handler: irq_handler used when requesting IRQ
5912 * @irq_flags: irq_flags used when requesting IRQ
5913 * @sht: scsi_host_template to use when registering the host
5914 *
5915 * After allocating an ATA host and initializing it, most libata
5916 * LLDs perform three steps to activate the host - start host,
5917 * request IRQ and register it. This helper takes necessasry
5918 * arguments and performs the three steps in one go.
5919 *
5920 * An invalid IRQ skips the IRQ registration and expects the host to
5921 * have set polling mode on the port. In this case, @irq_handler
5922 * should be NULL.
5923 *
5924 * LOCKING:
5925 * Inherited from calling layer (may sleep).
5926 *
5927 * RETURNS:
5928 * 0 on success, -errno otherwise.
5929 */
5930 int ata_host_activate(struct ata_host *host, int irq,
5931 irq_handler_t irq_handler, unsigned long irq_flags,
5932 struct scsi_host_template *sht)
5933 {
5934 int i, rc;
5935
5936 rc = ata_host_start(host);
5937 if (rc)
5938 return rc;
5939
5940 /* Special case for polling mode */
5941 if (!irq) {
5942 WARN_ON(irq_handler);
5943 return ata_host_register(host, sht);
5944 }
5945
5946 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5947 dev_driver_string(host->dev), host);
5948 if (rc)
5949 return rc;
5950
5951 for (i = 0; i < host->n_ports; i++)
5952 ata_port_desc(host->ports[i], "irq %d", irq);
5953
5954 rc = ata_host_register(host, sht);
5955 /* if failed, just free the IRQ and leave ports alone */
5956 if (rc)
5957 devm_free_irq(host->dev, irq, host);
5958
5959 return rc;
5960 }
5961
5962 /**
5963 * ata_port_detach - Detach ATA port in prepration of device removal
5964 * @ap: ATA port to be detached
5965 *
5966 * Detach all ATA devices and the associated SCSI devices of @ap;
5967 * then, remove the associated SCSI host. @ap is guaranteed to
5968 * be quiescent on return from this function.
5969 *
5970 * LOCKING:
5971 * Kernel thread context (may sleep).
5972 */
5973 static void ata_port_detach(struct ata_port *ap)
5974 {
5975 unsigned long flags;
5976 struct ata_link *link;
5977 struct ata_device *dev;
5978
5979 if (!ap->ops->error_handler)
5980 goto skip_eh;
5981
5982 /* tell EH we're leaving & flush EH */
5983 spin_lock_irqsave(ap->lock, flags);
5984 ap->pflags |= ATA_PFLAG_UNLOADING;
5985 spin_unlock_irqrestore(ap->lock, flags);
5986
5987 ata_port_wait_eh(ap);
5988
5989 /* EH is now guaranteed to see UNLOADING - EH context belongs
5990 * to us. Restore SControl and disable all existing devices.
5991 */
5992 __ata_port_for_each_link(link, ap) {
5993 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol & 0xff0);
5994 ata_link_for_each_dev(dev, link)
5995 ata_dev_disable(dev);
5996 }
5997
5998 /* Final freeze & EH. All in-flight commands are aborted. EH
5999 * will be skipped and retrials will be terminated with bad
6000 * target.
6001 */
6002 spin_lock_irqsave(ap->lock, flags);
6003 ata_port_freeze(ap); /* won't be thawed */
6004 spin_unlock_irqrestore(ap->lock, flags);
6005
6006 ata_port_wait_eh(ap);
6007 cancel_rearming_delayed_work(&ap->hotplug_task);
6008
6009 skip_eh:
6010 /* remove the associated SCSI host */
6011 scsi_remove_host(ap->scsi_host);
6012 }
6013
6014 /**
6015 * ata_host_detach - Detach all ports of an ATA host
6016 * @host: Host to detach
6017 *
6018 * Detach all ports of @host.
6019 *
6020 * LOCKING:
6021 * Kernel thread context (may sleep).
6022 */
6023 void ata_host_detach(struct ata_host *host)
6024 {
6025 int i;
6026
6027 for (i = 0; i < host->n_ports; i++)
6028 ata_port_detach(host->ports[i]);
6029
6030 /* the host is dead now, dissociate ACPI */
6031 ata_acpi_dissociate(host);
6032 }
6033
6034 #ifdef CONFIG_PCI
6035
6036 /**
6037 * ata_pci_remove_one - PCI layer callback for device removal
6038 * @pdev: PCI device that was removed
6039 *
6040 * PCI layer indicates to libata via this hook that hot-unplug or
6041 * module unload event has occurred. Detach all ports. Resource
6042 * release is handled via devres.
6043 *
6044 * LOCKING:
6045 * Inherited from PCI layer (may sleep).
6046 */
6047 void ata_pci_remove_one(struct pci_dev *pdev)
6048 {
6049 struct device *dev = &pdev->dev;
6050 struct ata_host *host = dev_get_drvdata(dev);
6051
6052 ata_host_detach(host);
6053 }
6054
6055 /* move to PCI subsystem */
6056 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6057 {
6058 unsigned long tmp = 0;
6059
6060 switch (bits->width) {
6061 case 1: {
6062 u8 tmp8 = 0;
6063 pci_read_config_byte(pdev, bits->reg, &tmp8);
6064 tmp = tmp8;
6065 break;
6066 }
6067 case 2: {
6068 u16 tmp16 = 0;
6069 pci_read_config_word(pdev, bits->reg, &tmp16);
6070 tmp = tmp16;
6071 break;
6072 }
6073 case 4: {
6074 u32 tmp32 = 0;
6075 pci_read_config_dword(pdev, bits->reg, &tmp32);
6076 tmp = tmp32;
6077 break;
6078 }
6079
6080 default:
6081 return -EINVAL;
6082 }
6083
6084 tmp &= bits->mask;
6085
6086 return (tmp == bits->val) ? 1 : 0;
6087 }
6088
6089 #ifdef CONFIG_PM
6090 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6091 {
6092 pci_save_state(pdev);
6093 pci_disable_device(pdev);
6094
6095 if (mesg.event & PM_EVENT_SLEEP)
6096 pci_set_power_state(pdev, PCI_D3hot);
6097 }
6098
6099 int ata_pci_device_do_resume(struct pci_dev *pdev)
6100 {
6101 int rc;
6102
6103 pci_set_power_state(pdev, PCI_D0);
6104 pci_restore_state(pdev);
6105
6106 rc = pcim_enable_device(pdev);
6107 if (rc) {
6108 dev_printk(KERN_ERR, &pdev->dev,
6109 "failed to enable device after resume (%d)\n", rc);
6110 return rc;
6111 }
6112
6113 pci_set_master(pdev);
6114 return 0;
6115 }
6116
6117 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6118 {
6119 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6120 int rc = 0;
6121
6122 rc = ata_host_suspend(host, mesg);
6123 if (rc)
6124 return rc;
6125
6126 ata_pci_device_do_suspend(pdev, mesg);
6127
6128 return 0;
6129 }
6130
6131 int ata_pci_device_resume(struct pci_dev *pdev)
6132 {
6133 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6134 int rc;
6135
6136 rc = ata_pci_device_do_resume(pdev);
6137 if (rc == 0)
6138 ata_host_resume(host);
6139 return rc;
6140 }
6141 #endif /* CONFIG_PM */
6142
6143 #endif /* CONFIG_PCI */
6144
6145 static int __init ata_parse_force_one(char **cur,
6146 struct ata_force_ent *force_ent,
6147 const char **reason)
6148 {
6149 /* FIXME: Currently, there's no way to tag init const data and
6150 * using __initdata causes build failure on some versions of
6151 * gcc. Once __initdataconst is implemented, add const to the
6152 * following structure.
6153 */
6154 static struct ata_force_param force_tbl[] __initdata = {
6155 { "40c", .cbl = ATA_CBL_PATA40 },
6156 { "80c", .cbl = ATA_CBL_PATA80 },
6157 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6158 { "unk", .cbl = ATA_CBL_PATA_UNK },
6159 { "ign", .cbl = ATA_CBL_PATA_IGN },
6160 { "sata", .cbl = ATA_CBL_SATA },
6161 { "1.5Gbps", .spd_limit = 1 },
6162 { "3.0Gbps", .spd_limit = 2 },
6163 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6164 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6165 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6166 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6167 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6168 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6169 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6170 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6171 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6172 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6173 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6174 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6175 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6176 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6177 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6178 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6179 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6180 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6181 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6182 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6183 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6184 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6185 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6186 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6187 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6188 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6189 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6190 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6191 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6192 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6193 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6194 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6195 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6196 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6197 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6198 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6199 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6200 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6201 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6202 };
6203 char *start = *cur, *p = *cur;
6204 char *id, *val, *endp;
6205 const struct ata_force_param *match_fp = NULL;
6206 int nr_matches = 0, i;
6207
6208 /* find where this param ends and update *cur */
6209 while (*p != '\0' && *p != ',')
6210 p++;
6211
6212 if (*p == '\0')
6213 *cur = p;
6214 else
6215 *cur = p + 1;
6216
6217 *p = '\0';
6218
6219 /* parse */
6220 p = strchr(start, ':');
6221 if (!p) {
6222 val = strstrip(start);
6223 goto parse_val;
6224 }
6225 *p = '\0';
6226
6227 id = strstrip(start);
6228 val = strstrip(p + 1);
6229
6230 /* parse id */
6231 p = strchr(id, '.');
6232 if (p) {
6233 *p++ = '\0';
6234 force_ent->device = simple_strtoul(p, &endp, 10);
6235 if (p == endp || *endp != '\0') {
6236 *reason = "invalid device";
6237 return -EINVAL;
6238 }
6239 }
6240
6241 force_ent->port = simple_strtoul(id, &endp, 10);
6242 if (p == endp || *endp != '\0') {
6243 *reason = "invalid port/link";
6244 return -EINVAL;
6245 }
6246
6247 parse_val:
6248 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6249 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6250 const struct ata_force_param *fp = &force_tbl[i];
6251
6252 if (strncasecmp(val, fp->name, strlen(val)))
6253 continue;
6254
6255 nr_matches++;
6256 match_fp = fp;
6257
6258 if (strcasecmp(val, fp->name) == 0) {
6259 nr_matches = 1;
6260 break;
6261 }
6262 }
6263
6264 if (!nr_matches) {
6265 *reason = "unknown value";
6266 return -EINVAL;
6267 }
6268 if (nr_matches > 1) {
6269 *reason = "ambigious value";
6270 return -EINVAL;
6271 }
6272
6273 force_ent->param = *match_fp;
6274
6275 return 0;
6276 }
6277
6278 static void __init ata_parse_force_param(void)
6279 {
6280 int idx = 0, size = 1;
6281 int last_port = -1, last_device = -1;
6282 char *p, *cur, *next;
6283
6284 /* calculate maximum number of params and allocate force_tbl */
6285 for (p = ata_force_param_buf; *p; p++)
6286 if (*p == ',')
6287 size++;
6288
6289 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6290 if (!ata_force_tbl) {
6291 printk(KERN_WARNING "ata: failed to extend force table, "
6292 "libata.force ignored\n");
6293 return;
6294 }
6295
6296 /* parse and populate the table */
6297 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6298 const char *reason = "";
6299 struct ata_force_ent te = { .port = -1, .device = -1 };
6300
6301 next = cur;
6302 if (ata_parse_force_one(&next, &te, &reason)) {
6303 printk(KERN_WARNING "ata: failed to parse force "
6304 "parameter \"%s\" (%s)\n",
6305 cur, reason);
6306 continue;
6307 }
6308
6309 if (te.port == -1) {
6310 te.port = last_port;
6311 te.device = last_device;
6312 }
6313
6314 ata_force_tbl[idx++] = te;
6315
6316 last_port = te.port;
6317 last_device = te.device;
6318 }
6319
6320 ata_force_tbl_size = idx;
6321 }
6322
6323 static int __init ata_init(void)
6324 {
6325 ata_parse_force_param();
6326
6327 ata_wq = create_workqueue("ata");
6328 if (!ata_wq)
6329 goto free_force_tbl;
6330
6331 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6332 if (!ata_aux_wq)
6333 goto free_wq;
6334
6335 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6336 return 0;
6337
6338 free_wq:
6339 destroy_workqueue(ata_wq);
6340 free_force_tbl:
6341 kfree(ata_force_tbl);
6342 return -ENOMEM;
6343 }
6344
6345 static void __exit ata_exit(void)
6346 {
6347 kfree(ata_force_tbl);
6348 destroy_workqueue(ata_wq);
6349 destroy_workqueue(ata_aux_wq);
6350 }
6351
6352 subsys_initcall(ata_init);
6353 module_exit(ata_exit);
6354
6355 static unsigned long ratelimit_time;
6356 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6357
6358 int ata_ratelimit(void)
6359 {
6360 int rc;
6361 unsigned long flags;
6362
6363 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6364
6365 if (time_after(jiffies, ratelimit_time)) {
6366 rc = 1;
6367 ratelimit_time = jiffies + (HZ/5);
6368 } else
6369 rc = 0;
6370
6371 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6372
6373 return rc;
6374 }
6375
6376 /**
6377 * ata_wait_register - wait until register value changes
6378 * @reg: IO-mapped register
6379 * @mask: Mask to apply to read register value
6380 * @val: Wait condition
6381 * @interval: polling interval in milliseconds
6382 * @timeout: timeout in milliseconds
6383 *
6384 * Waiting for some bits of register to change is a common
6385 * operation for ATA controllers. This function reads 32bit LE
6386 * IO-mapped register @reg and tests for the following condition.
6387 *
6388 * (*@reg & mask) != val
6389 *
6390 * If the condition is met, it returns; otherwise, the process is
6391 * repeated after @interval_msec until timeout.
6392 *
6393 * LOCKING:
6394 * Kernel thread context (may sleep)
6395 *
6396 * RETURNS:
6397 * The final register value.
6398 */
6399 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6400 unsigned long interval, unsigned long timeout)
6401 {
6402 unsigned long deadline;
6403 u32 tmp;
6404
6405 tmp = ioread32(reg);
6406
6407 /* Calculate timeout _after_ the first read to make sure
6408 * preceding writes reach the controller before starting to
6409 * eat away the timeout.
6410 */
6411 deadline = ata_deadline(jiffies, timeout);
6412
6413 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6414 msleep(interval);
6415 tmp = ioread32(reg);
6416 }
6417
6418 return tmp;
6419 }
6420
6421 /*
6422 * Dummy port_ops
6423 */
6424 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6425 {
6426 return AC_ERR_SYSTEM;
6427 }
6428
6429 static void ata_dummy_error_handler(struct ata_port *ap)
6430 {
6431 /* truly dummy */
6432 }
6433
6434 struct ata_port_operations ata_dummy_port_ops = {
6435 .qc_prep = ata_noop_qc_prep,
6436 .qc_issue = ata_dummy_qc_issue,
6437 .error_handler = ata_dummy_error_handler,
6438 };
6439
6440 const struct ata_port_info ata_dummy_port_info = {
6441 .port_ops = &ata_dummy_port_ops,
6442 };
6443
6444 /*
6445 * libata is essentially a library of internal helper functions for
6446 * low-level ATA host controller drivers. As such, the API/ABI is
6447 * likely to change as new drivers are added and updated.
6448 * Do not depend on ABI/API stability.
6449 */
6450 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6451 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6452 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6453 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6454 EXPORT_SYMBOL_GPL(sata_port_ops);
6455 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6456 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6457 EXPORT_SYMBOL_GPL(__ata_port_next_link);
6458 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6459 EXPORT_SYMBOL_GPL(ata_host_init);
6460 EXPORT_SYMBOL_GPL(ata_host_alloc);
6461 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6462 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6463 EXPORT_SYMBOL_GPL(ata_host_start);
6464 EXPORT_SYMBOL_GPL(ata_host_register);
6465 EXPORT_SYMBOL_GPL(ata_host_activate);
6466 EXPORT_SYMBOL_GPL(ata_host_detach);
6467 EXPORT_SYMBOL_GPL(ata_sg_init);
6468 EXPORT_SYMBOL_GPL(ata_qc_complete);
6469 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6470 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6471 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6472 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6473 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6474 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6475 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6476 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6477 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6478 EXPORT_SYMBOL_GPL(ata_mode_string);
6479 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6480 EXPORT_SYMBOL_GPL(ata_port_start);
6481 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6482 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6483 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6484 EXPORT_SYMBOL_GPL(ata_port_probe);
6485 EXPORT_SYMBOL_GPL(ata_dev_disable);
6486 EXPORT_SYMBOL_GPL(sata_set_spd);
6487 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6488 EXPORT_SYMBOL_GPL(sata_link_debounce);
6489 EXPORT_SYMBOL_GPL(sata_link_resume);
6490 EXPORT_SYMBOL_GPL(ata_std_prereset);
6491 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6492 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6493 EXPORT_SYMBOL_GPL(ata_std_postreset);
6494 EXPORT_SYMBOL_GPL(ata_dev_classify);
6495 EXPORT_SYMBOL_GPL(ata_dev_pair);
6496 EXPORT_SYMBOL_GPL(ata_port_disable);
6497 EXPORT_SYMBOL_GPL(ata_ratelimit);
6498 EXPORT_SYMBOL_GPL(ata_wait_register);
6499 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6500 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6501 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6502 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6503 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6504 EXPORT_SYMBOL_GPL(sata_scr_valid);
6505 EXPORT_SYMBOL_GPL(sata_scr_read);
6506 EXPORT_SYMBOL_GPL(sata_scr_write);
6507 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6508 EXPORT_SYMBOL_GPL(ata_link_online);
6509 EXPORT_SYMBOL_GPL(ata_link_offline);
6510 #ifdef CONFIG_PM
6511 EXPORT_SYMBOL_GPL(ata_host_suspend);
6512 EXPORT_SYMBOL_GPL(ata_host_resume);
6513 #endif /* CONFIG_PM */
6514 EXPORT_SYMBOL_GPL(ata_id_string);
6515 EXPORT_SYMBOL_GPL(ata_id_c_string);
6516 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6517 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6518
6519 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6520 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6521 EXPORT_SYMBOL_GPL(ata_timing_compute);
6522 EXPORT_SYMBOL_GPL(ata_timing_merge);
6523 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6524
6525 #ifdef CONFIG_PCI
6526 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6527 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6528 #ifdef CONFIG_PM
6529 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6530 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6531 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6532 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6533 #endif /* CONFIG_PM */
6534 #endif /* CONFIG_PCI */
6535
6536 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6537 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6538 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6539 EXPORT_SYMBOL_GPL(ata_port_desc);
6540 #ifdef CONFIG_PCI
6541 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6542 #endif /* CONFIG_PCI */
6543 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6544 EXPORT_SYMBOL_GPL(ata_link_abort);
6545 EXPORT_SYMBOL_GPL(ata_port_abort);
6546 EXPORT_SYMBOL_GPL(ata_port_freeze);
6547 EXPORT_SYMBOL_GPL(sata_async_notification);
6548 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6549 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6550 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6551 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6552 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6553 EXPORT_SYMBOL_GPL(ata_do_eh);
6554 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6555
6556 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6557 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6558 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6559 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6560 EXPORT_SYMBOL_GPL(ata_cable_sata);