]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/ata/libata-core.c
Merge tag 'audit-pr-20200226' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[mirror_ubuntu-jammy-kernel.git] / drivers / ata / libata-core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Maintained by: Tejun Heo <tj@kernel.org>
6 * Please ALWAYS copy linux-ide@vger.kernel.org
7 * on emails.
8 *
9 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
10 * Copyright 2003-2004 Jeff Garzik
11 *
12 * libata documentation is available via 'make {ps|pdf}docs',
13 * as Documentation/driver-api/libata.rst
14 *
15 * Hardware documentation available from http://www.t13.org/ and
16 * http://www.sata-io.org/
17 *
18 * Standards documents from:
19 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
20 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
21 * http://www.sata-io.org (SATA)
22 * http://www.compactflash.org (CF)
23 * http://www.qic.org (QIC157 - Tape and DSC)
24 * http://www.ce-ata.org (CE-ATA: not supported)
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/mm.h>
33 #include <linux/spinlock.h>
34 #include <linux/blkdev.h>
35 #include <linux/delay.h>
36 #include <linux/timer.h>
37 #include <linux/time.h>
38 #include <linux/interrupt.h>
39 #include <linux/completion.h>
40 #include <linux/suspend.h>
41 #include <linux/workqueue.h>
42 #include <linux/scatterlist.h>
43 #include <linux/io.h>
44 #include <linux/async.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/libata.h>
62
63 #include "libata.h"
64 #include "libata-transport.h"
65
66 /* debounce timing parameters in msecs { interval, duration, timeout } */
67 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
68 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
69 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70
71 const struct ata_port_operations ata_base_port_ops = {
72 .prereset = ata_std_prereset,
73 .postreset = ata_std_postreset,
74 .error_handler = ata_std_error_handler,
75 .sched_eh = ata_std_sched_eh,
76 .end_eh = ata_std_end_eh,
77 };
78
79 const struct ata_port_operations sata_port_ops = {
80 .inherits = &ata_base_port_ops,
81
82 .qc_defer = ata_std_qc_defer,
83 .hardreset = sata_std_hardreset,
84 };
85
86 static unsigned int ata_dev_init_params(struct ata_device *dev,
87 u16 heads, u16 sectors);
88 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
89 static void ata_dev_xfermask(struct ata_device *dev);
90 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
91
92 atomic_t ata_print_id = ATOMIC_INIT(0);
93
94 struct ata_force_param {
95 const char *name;
96 unsigned int cbl;
97 int spd_limit;
98 unsigned long xfer_mask;
99 unsigned int horkage_on;
100 unsigned int horkage_off;
101 unsigned int lflags;
102 };
103
104 struct ata_force_ent {
105 int port;
106 int device;
107 struct ata_force_param param;
108 };
109
110 static struct ata_force_ent *ata_force_tbl;
111 static int ata_force_tbl_size;
112
113 static char ata_force_param_buf[PAGE_SIZE] __initdata;
114 /* param_buf is thrown away after initialization, disallow read */
115 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
116 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
117
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162
163
164 static bool ata_sstatus_online(u32 sstatus)
165 {
166 return (sstatus & 0xf) == 0x3;
167 }
168
169 /**
170 * ata_link_next - link iteration helper
171 * @link: the previous link, NULL to start
172 * @ap: ATA port containing links to iterate
173 * @mode: iteration mode, one of ATA_LITER_*
174 *
175 * LOCKING:
176 * Host lock or EH context.
177 *
178 * RETURNS:
179 * Pointer to the next link.
180 */
181 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
182 enum ata_link_iter_mode mode)
183 {
184 BUG_ON(mode != ATA_LITER_EDGE &&
185 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
186
187 /* NULL link indicates start of iteration */
188 if (!link)
189 switch (mode) {
190 case ATA_LITER_EDGE:
191 case ATA_LITER_PMP_FIRST:
192 if (sata_pmp_attached(ap))
193 return ap->pmp_link;
194 /* fall through */
195 case ATA_LITER_HOST_FIRST:
196 return &ap->link;
197 }
198
199 /* we just iterated over the host link, what's next? */
200 if (link == &ap->link)
201 switch (mode) {
202 case ATA_LITER_HOST_FIRST:
203 if (sata_pmp_attached(ap))
204 return ap->pmp_link;
205 /* fall through */
206 case ATA_LITER_PMP_FIRST:
207 if (unlikely(ap->slave_link))
208 return ap->slave_link;
209 /* fall through */
210 case ATA_LITER_EDGE:
211 return NULL;
212 }
213
214 /* slave_link excludes PMP */
215 if (unlikely(link == ap->slave_link))
216 return NULL;
217
218 /* we were over a PMP link */
219 if (++link < ap->pmp_link + ap->nr_pmp_links)
220 return link;
221
222 if (mode == ATA_LITER_PMP_FIRST)
223 return &ap->link;
224
225 return NULL;
226 }
227
228 /**
229 * ata_dev_next - device iteration helper
230 * @dev: the previous device, NULL to start
231 * @link: ATA link containing devices to iterate
232 * @mode: iteration mode, one of ATA_DITER_*
233 *
234 * LOCKING:
235 * Host lock or EH context.
236 *
237 * RETURNS:
238 * Pointer to the next device.
239 */
240 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
241 enum ata_dev_iter_mode mode)
242 {
243 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
244 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
245
246 /* NULL dev indicates start of iteration */
247 if (!dev)
248 switch (mode) {
249 case ATA_DITER_ENABLED:
250 case ATA_DITER_ALL:
251 dev = link->device;
252 goto check;
253 case ATA_DITER_ENABLED_REVERSE:
254 case ATA_DITER_ALL_REVERSE:
255 dev = link->device + ata_link_max_devices(link) - 1;
256 goto check;
257 }
258
259 next:
260 /* move to the next one */
261 switch (mode) {
262 case ATA_DITER_ENABLED:
263 case ATA_DITER_ALL:
264 if (++dev < link->device + ata_link_max_devices(link))
265 goto check;
266 return NULL;
267 case ATA_DITER_ENABLED_REVERSE:
268 case ATA_DITER_ALL_REVERSE:
269 if (--dev >= link->device)
270 goto check;
271 return NULL;
272 }
273
274 check:
275 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
276 !ata_dev_enabled(dev))
277 goto next;
278 return dev;
279 }
280
281 /**
282 * ata_dev_phys_link - find physical link for a device
283 * @dev: ATA device to look up physical link for
284 *
285 * Look up physical link which @dev is attached to. Note that
286 * this is different from @dev->link only when @dev is on slave
287 * link. For all other cases, it's the same as @dev->link.
288 *
289 * LOCKING:
290 * Don't care.
291 *
292 * RETURNS:
293 * Pointer to the found physical link.
294 */
295 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
296 {
297 struct ata_port *ap = dev->link->ap;
298
299 if (!ap->slave_link)
300 return dev->link;
301 if (!dev->devno)
302 return &ap->link;
303 return ap->slave_link;
304 }
305
306 /**
307 * ata_force_cbl - force cable type according to libata.force
308 * @ap: ATA port of interest
309 *
310 * Force cable type according to libata.force and whine about it.
311 * The last entry which has matching port number is used, so it
312 * can be specified as part of device force parameters. For
313 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
314 * same effect.
315 *
316 * LOCKING:
317 * EH context.
318 */
319 void ata_force_cbl(struct ata_port *ap)
320 {
321 int i;
322
323 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
324 const struct ata_force_ent *fe = &ata_force_tbl[i];
325
326 if (fe->port != -1 && fe->port != ap->print_id)
327 continue;
328
329 if (fe->param.cbl == ATA_CBL_NONE)
330 continue;
331
332 ap->cbl = fe->param.cbl;
333 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
334 return;
335 }
336 }
337
338 /**
339 * ata_force_link_limits - force link limits according to libata.force
340 * @link: ATA link of interest
341 *
342 * Force link flags and SATA spd limit according to libata.force
343 * and whine about it. When only the port part is specified
344 * (e.g. 1:), the limit applies to all links connected to both
345 * the host link and all fan-out ports connected via PMP. If the
346 * device part is specified as 0 (e.g. 1.00:), it specifies the
347 * first fan-out link not the host link. Device number 15 always
348 * points to the host link whether PMP is attached or not. If the
349 * controller has slave link, device number 16 points to it.
350 *
351 * LOCKING:
352 * EH context.
353 */
354 static void ata_force_link_limits(struct ata_link *link)
355 {
356 bool did_spd = false;
357 int linkno = link->pmp;
358 int i;
359
360 if (ata_is_host_link(link))
361 linkno += 15;
362
363 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
364 const struct ata_force_ent *fe = &ata_force_tbl[i];
365
366 if (fe->port != -1 && fe->port != link->ap->print_id)
367 continue;
368
369 if (fe->device != -1 && fe->device != linkno)
370 continue;
371
372 /* only honor the first spd limit */
373 if (!did_spd && fe->param.spd_limit) {
374 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
375 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
376 fe->param.name);
377 did_spd = true;
378 }
379
380 /* let lflags stack */
381 if (fe->param.lflags) {
382 link->flags |= fe->param.lflags;
383 ata_link_notice(link,
384 "FORCE: link flag 0x%x forced -> 0x%x\n",
385 fe->param.lflags, link->flags);
386 }
387 }
388 }
389
390 /**
391 * ata_force_xfermask - force xfermask according to libata.force
392 * @dev: ATA device of interest
393 *
394 * Force xfer_mask according to libata.force and whine about it.
395 * For consistency with link selection, device number 15 selects
396 * the first device connected to the host link.
397 *
398 * LOCKING:
399 * EH context.
400 */
401 static void ata_force_xfermask(struct ata_device *dev)
402 {
403 int devno = dev->link->pmp + dev->devno;
404 int alt_devno = devno;
405 int i;
406
407 /* allow n.15/16 for devices attached to host port */
408 if (ata_is_host_link(dev->link))
409 alt_devno += 15;
410
411 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
412 const struct ata_force_ent *fe = &ata_force_tbl[i];
413 unsigned long pio_mask, mwdma_mask, udma_mask;
414
415 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
416 continue;
417
418 if (fe->device != -1 && fe->device != devno &&
419 fe->device != alt_devno)
420 continue;
421
422 if (!fe->param.xfer_mask)
423 continue;
424
425 ata_unpack_xfermask(fe->param.xfer_mask,
426 &pio_mask, &mwdma_mask, &udma_mask);
427 if (udma_mask)
428 dev->udma_mask = udma_mask;
429 else if (mwdma_mask) {
430 dev->udma_mask = 0;
431 dev->mwdma_mask = mwdma_mask;
432 } else {
433 dev->udma_mask = 0;
434 dev->mwdma_mask = 0;
435 dev->pio_mask = pio_mask;
436 }
437
438 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
439 fe->param.name);
440 return;
441 }
442 }
443
444 /**
445 * ata_force_horkage - force horkage according to libata.force
446 * @dev: ATA device of interest
447 *
448 * Force horkage according to libata.force and whine about it.
449 * For consistency with link selection, device number 15 selects
450 * the first device connected to the host link.
451 *
452 * LOCKING:
453 * EH context.
454 */
455 static void ata_force_horkage(struct ata_device *dev)
456 {
457 int devno = dev->link->pmp + dev->devno;
458 int alt_devno = devno;
459 int i;
460
461 /* allow n.15/16 for devices attached to host port */
462 if (ata_is_host_link(dev->link))
463 alt_devno += 15;
464
465 for (i = 0; i < ata_force_tbl_size; i++) {
466 const struct ata_force_ent *fe = &ata_force_tbl[i];
467
468 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
469 continue;
470
471 if (fe->device != -1 && fe->device != devno &&
472 fe->device != alt_devno)
473 continue;
474
475 if (!(~dev->horkage & fe->param.horkage_on) &&
476 !(dev->horkage & fe->param.horkage_off))
477 continue;
478
479 dev->horkage |= fe->param.horkage_on;
480 dev->horkage &= ~fe->param.horkage_off;
481
482 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
483 fe->param.name);
484 }
485 }
486
487 /**
488 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
489 * @opcode: SCSI opcode
490 *
491 * Determine ATAPI command type from @opcode.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
498 */
499 int atapi_cmd_type(u8 opcode)
500 {
501 switch (opcode) {
502 case GPCMD_READ_10:
503 case GPCMD_READ_12:
504 return ATAPI_READ;
505
506 case GPCMD_WRITE_10:
507 case GPCMD_WRITE_12:
508 case GPCMD_WRITE_AND_VERIFY_10:
509 return ATAPI_WRITE;
510
511 case GPCMD_READ_CD:
512 case GPCMD_READ_CD_MSF:
513 return ATAPI_READ_CD;
514
515 case ATA_16:
516 case ATA_12:
517 if (atapi_passthru16)
518 return ATAPI_PASS_THRU;
519 /* fall thru */
520 default:
521 return ATAPI_MISC;
522 }
523 }
524
525 /**
526 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
527 * @tf: Taskfile to convert
528 * @pmp: Port multiplier port
529 * @is_cmd: This FIS is for command
530 * @fis: Buffer into which data will output
531 *
532 * Converts a standard ATA taskfile to a Serial ATA
533 * FIS structure (Register - Host to Device).
534 *
535 * LOCKING:
536 * Inherited from caller.
537 */
538 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
539 {
540 fis[0] = 0x27; /* Register - Host to Device FIS */
541 fis[1] = pmp & 0xf; /* Port multiplier number*/
542 if (is_cmd)
543 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
544
545 fis[2] = tf->command;
546 fis[3] = tf->feature;
547
548 fis[4] = tf->lbal;
549 fis[5] = tf->lbam;
550 fis[6] = tf->lbah;
551 fis[7] = tf->device;
552
553 fis[8] = tf->hob_lbal;
554 fis[9] = tf->hob_lbam;
555 fis[10] = tf->hob_lbah;
556 fis[11] = tf->hob_feature;
557
558 fis[12] = tf->nsect;
559 fis[13] = tf->hob_nsect;
560 fis[14] = 0;
561 fis[15] = tf->ctl;
562
563 fis[16] = tf->auxiliary & 0xff;
564 fis[17] = (tf->auxiliary >> 8) & 0xff;
565 fis[18] = (tf->auxiliary >> 16) & 0xff;
566 fis[19] = (tf->auxiliary >> 24) & 0xff;
567 }
568
569 /**
570 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
571 * @fis: Buffer from which data will be input
572 * @tf: Taskfile to output
573 *
574 * Converts a serial ATA FIS structure to a standard ATA taskfile.
575 *
576 * LOCKING:
577 * Inherited from caller.
578 */
579
580 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
581 {
582 tf->command = fis[2]; /* status */
583 tf->feature = fis[3]; /* error */
584
585 tf->lbal = fis[4];
586 tf->lbam = fis[5];
587 tf->lbah = fis[6];
588 tf->device = fis[7];
589
590 tf->hob_lbal = fis[8];
591 tf->hob_lbam = fis[9];
592 tf->hob_lbah = fis[10];
593
594 tf->nsect = fis[12];
595 tf->hob_nsect = fis[13];
596 }
597
598 static const u8 ata_rw_cmds[] = {
599 /* pio multi */
600 ATA_CMD_READ_MULTI,
601 ATA_CMD_WRITE_MULTI,
602 ATA_CMD_READ_MULTI_EXT,
603 ATA_CMD_WRITE_MULTI_EXT,
604 0,
605 0,
606 0,
607 ATA_CMD_WRITE_MULTI_FUA_EXT,
608 /* pio */
609 ATA_CMD_PIO_READ,
610 ATA_CMD_PIO_WRITE,
611 ATA_CMD_PIO_READ_EXT,
612 ATA_CMD_PIO_WRITE_EXT,
613 0,
614 0,
615 0,
616 0,
617 /* dma */
618 ATA_CMD_READ,
619 ATA_CMD_WRITE,
620 ATA_CMD_READ_EXT,
621 ATA_CMD_WRITE_EXT,
622 0,
623 0,
624 0,
625 ATA_CMD_WRITE_FUA_EXT
626 };
627
628 /**
629 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
630 * @tf: command to examine and configure
631 * @dev: device tf belongs to
632 *
633 * Examine the device configuration and tf->flags to calculate
634 * the proper read/write commands and protocol to use.
635 *
636 * LOCKING:
637 * caller.
638 */
639 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
640 {
641 u8 cmd;
642
643 int index, fua, lba48, write;
644
645 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
646 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
647 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
648
649 if (dev->flags & ATA_DFLAG_PIO) {
650 tf->protocol = ATA_PROT_PIO;
651 index = dev->multi_count ? 0 : 8;
652 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
653 /* Unable to use DMA due to host limitation */
654 tf->protocol = ATA_PROT_PIO;
655 index = dev->multi_count ? 0 : 8;
656 } else {
657 tf->protocol = ATA_PROT_DMA;
658 index = 16;
659 }
660
661 cmd = ata_rw_cmds[index + fua + lba48 + write];
662 if (cmd) {
663 tf->command = cmd;
664 return 0;
665 }
666 return -1;
667 }
668
669 /**
670 * ata_tf_read_block - Read block address from ATA taskfile
671 * @tf: ATA taskfile of interest
672 * @dev: ATA device @tf belongs to
673 *
674 * LOCKING:
675 * None.
676 *
677 * Read block address from @tf. This function can handle all
678 * three address formats - LBA, LBA48 and CHS. tf->protocol and
679 * flags select the address format to use.
680 *
681 * RETURNS:
682 * Block address read from @tf.
683 */
684 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
685 {
686 u64 block = 0;
687
688 if (tf->flags & ATA_TFLAG_LBA) {
689 if (tf->flags & ATA_TFLAG_LBA48) {
690 block |= (u64)tf->hob_lbah << 40;
691 block |= (u64)tf->hob_lbam << 32;
692 block |= (u64)tf->hob_lbal << 24;
693 } else
694 block |= (tf->device & 0xf) << 24;
695
696 block |= tf->lbah << 16;
697 block |= tf->lbam << 8;
698 block |= tf->lbal;
699 } else {
700 u32 cyl, head, sect;
701
702 cyl = tf->lbam | (tf->lbah << 8);
703 head = tf->device & 0xf;
704 sect = tf->lbal;
705
706 if (!sect) {
707 ata_dev_warn(dev,
708 "device reported invalid CHS sector 0\n");
709 return U64_MAX;
710 }
711
712 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
713 }
714
715 return block;
716 }
717
718 /**
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
725 * @tag: tag
726 * @class: IO priority class
727 *
728 * LOCKING:
729 * None.
730 *
731 * Build ATA taskfile @tf for read/write request described by
732 * @block, @n_block, @tf_flags and @tag on @dev.
733 *
734 * RETURNS:
735 *
736 * 0 on success, -ERANGE if the request is too large for @dev,
737 * -EINVAL if the request is invalid.
738 */
739 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
740 u64 block, u32 n_block, unsigned int tf_flags,
741 unsigned int tag, int class)
742 {
743 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
744 tf->flags |= tf_flags;
745
746 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
747 /* yay, NCQ */
748 if (!lba_48_ok(block, n_block))
749 return -ERANGE;
750
751 tf->protocol = ATA_PROT_NCQ;
752 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
753
754 if (tf->flags & ATA_TFLAG_WRITE)
755 tf->command = ATA_CMD_FPDMA_WRITE;
756 else
757 tf->command = ATA_CMD_FPDMA_READ;
758
759 tf->nsect = tag << 3;
760 tf->hob_feature = (n_block >> 8) & 0xff;
761 tf->feature = n_block & 0xff;
762
763 tf->hob_lbah = (block >> 40) & 0xff;
764 tf->hob_lbam = (block >> 32) & 0xff;
765 tf->hob_lbal = (block >> 24) & 0xff;
766 tf->lbah = (block >> 16) & 0xff;
767 tf->lbam = (block >> 8) & 0xff;
768 tf->lbal = block & 0xff;
769
770 tf->device = ATA_LBA;
771 if (tf->flags & ATA_TFLAG_FUA)
772 tf->device |= 1 << 7;
773
774 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
775 if (class == IOPRIO_CLASS_RT)
776 tf->hob_nsect |= ATA_PRIO_HIGH <<
777 ATA_SHIFT_PRIO;
778 }
779 } else if (dev->flags & ATA_DFLAG_LBA) {
780 tf->flags |= ATA_TFLAG_LBA;
781
782 if (lba_28_ok(block, n_block)) {
783 /* use LBA28 */
784 tf->device |= (block >> 24) & 0xf;
785 } else if (lba_48_ok(block, n_block)) {
786 if (!(dev->flags & ATA_DFLAG_LBA48))
787 return -ERANGE;
788
789 /* use LBA48 */
790 tf->flags |= ATA_TFLAG_LBA48;
791
792 tf->hob_nsect = (n_block >> 8) & 0xff;
793
794 tf->hob_lbah = (block >> 40) & 0xff;
795 tf->hob_lbam = (block >> 32) & 0xff;
796 tf->hob_lbal = (block >> 24) & 0xff;
797 } else
798 /* request too large even for LBA48 */
799 return -ERANGE;
800
801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 return -EINVAL;
803
804 tf->nsect = n_block & 0xff;
805
806 tf->lbah = (block >> 16) & 0xff;
807 tf->lbam = (block >> 8) & 0xff;
808 tf->lbal = block & 0xff;
809
810 tf->device |= ATA_LBA;
811 } else {
812 /* CHS */
813 u32 sect, head, cyl, track;
814
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block, n_block))
817 return -ERANGE;
818
819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 return -EINVAL;
821
822 /* Convert LBA to CHS */
823 track = (u32)block / dev->sectors;
824 cyl = track / dev->heads;
825 head = track % dev->heads;
826 sect = (u32)block % dev->sectors + 1;
827
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32)block, track, cyl, head, sect);
830
831 /* Check whether the converted CHS can fit.
832 Cylinder: 0-65535
833 Head: 0-15
834 Sector: 1-255*/
835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 return -ERANGE;
837
838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 tf->lbal = sect;
840 tf->lbam = cyl;
841 tf->lbah = cyl >> 8;
842 tf->device |= head;
843 }
844
845 return 0;
846 }
847
848 /**
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
853 *
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
856 *
857 * LOCKING:
858 * None.
859 *
860 * RETURNS:
861 * Packed xfer_mask.
862 */
863 unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 unsigned long mwdma_mask,
865 unsigned long udma_mask)
866 {
867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
870 }
871
872 /**
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
878 *
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL destination masks will be ignored.
881 */
882 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 unsigned long *mwdma_mask, unsigned long *udma_mask)
884 {
885 if (pio_mask)
886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 if (mwdma_mask)
888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 if (udma_mask)
890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
891 }
892
893 static const struct ata_xfer_ent {
894 int shift, bits;
895 u8 base;
896 } ata_xfer_tbl[] = {
897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
900 { -1, },
901 };
902
903 /**
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
906 *
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
909 *
910 * LOCKING:
911 * None.
912 *
913 * RETURNS:
914 * Matching XFER_* value, 0xff if no match found.
915 */
916 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
917 {
918 int highbit = fls(xfer_mask) - 1;
919 const struct ata_xfer_ent *ent;
920
921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 return ent->base + highbit - ent->shift;
924 return 0xff;
925 }
926
927 /**
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
930 *
931 * Return matching xfer_mask for @xfer_mode.
932 *
933 * LOCKING:
934 * None.
935 *
936 * RETURNS:
937 * Matching xfer_mask, 0 if no match found.
938 */
939 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
940 {
941 const struct ata_xfer_ent *ent;
942
943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 & ~((1 << ent->shift) - 1);
947 return 0;
948 }
949
950 /**
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
953 *
954 * Return matching xfer_shift for @xfer_mode.
955 *
956 * LOCKING:
957 * None.
958 *
959 * RETURNS:
960 * Matching xfer_shift, -1 if no match found.
961 */
962 int ata_xfer_mode2shift(unsigned long xfer_mode)
963 {
964 const struct ata_xfer_ent *ent;
965
966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 return ent->shift;
969 return -1;
970 }
971
972 /**
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
975 *
976 * Determine string which represents the highest speed
977 * (highest bit in @modemask).
978 *
979 * LOCKING:
980 * None.
981 *
982 * RETURNS:
983 * Constant C string representing highest speed listed in
984 * @mode_mask, or the constant C string "<n/a>".
985 */
986 const char *ata_mode_string(unsigned long xfer_mask)
987 {
988 static const char * const xfer_mode_str[] = {
989 "PIO0",
990 "PIO1",
991 "PIO2",
992 "PIO3",
993 "PIO4",
994 "PIO5",
995 "PIO6",
996 "MWDMA0",
997 "MWDMA1",
998 "MWDMA2",
999 "MWDMA3",
1000 "MWDMA4",
1001 "UDMA/16",
1002 "UDMA/25",
1003 "UDMA/33",
1004 "UDMA/44",
1005 "UDMA/66",
1006 "UDMA/100",
1007 "UDMA/133",
1008 "UDMA7",
1009 };
1010 int highbit;
1011
1012 highbit = fls(xfer_mask) - 1;
1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 return xfer_mode_str[highbit];
1015 return "<n/a>";
1016 }
1017
1018 const char *sata_spd_string(unsigned int spd)
1019 {
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
1023 "6.0 Gbps",
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029 }
1030
1031 /**
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1034 *
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 * LOCKING:
1040 * None.
1041 *
1042 * RETURNS:
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045 */
1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047 {
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
1051 *
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1061 * SerialATA.
1062 *
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1068 */
1069 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1070 DPRINTK("found ATA device by sig\n");
1071 return ATA_DEV_ATA;
1072 }
1073
1074 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1075 DPRINTK("found ATAPI device by sig\n");
1076 return ATA_DEV_ATAPI;
1077 }
1078
1079 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080 DPRINTK("found PMP device by sig\n");
1081 return ATA_DEV_PMP;
1082 }
1083
1084 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1085 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086 return ATA_DEV_SEMB;
1087 }
1088
1089 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1090 DPRINTK("found ZAC device by sig\n");
1091 return ATA_DEV_ZAC;
1092 }
1093
1094 DPRINTK("unknown device\n");
1095 return ATA_DEV_UNKNOWN;
1096 }
1097
1098 /**
1099 * ata_id_string - Convert IDENTIFY DEVICE page into string
1100 * @id: IDENTIFY DEVICE results we will examine
1101 * @s: string into which data is output
1102 * @ofs: offset into identify device page
1103 * @len: length of string to return. must be an even number.
1104 *
1105 * The strings in the IDENTIFY DEVICE page are broken up into
1106 * 16-bit chunks. Run through the string, and output each
1107 * 8-bit chunk linearly, regardless of platform.
1108 *
1109 * LOCKING:
1110 * caller.
1111 */
1112
1113 void ata_id_string(const u16 *id, unsigned char *s,
1114 unsigned int ofs, unsigned int len)
1115 {
1116 unsigned int c;
1117
1118 BUG_ON(len & 1);
1119
1120 while (len > 0) {
1121 c = id[ofs] >> 8;
1122 *s = c;
1123 s++;
1124
1125 c = id[ofs] & 0xff;
1126 *s = c;
1127 s++;
1128
1129 ofs++;
1130 len -= 2;
1131 }
1132 }
1133
1134 /**
1135 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1136 * @id: IDENTIFY DEVICE results we will examine
1137 * @s: string into which data is output
1138 * @ofs: offset into identify device page
1139 * @len: length of string to return. must be an odd number.
1140 *
1141 * This function is identical to ata_id_string except that it
1142 * trims trailing spaces and terminates the resulting string with
1143 * null. @len must be actual maximum length (even number) + 1.
1144 *
1145 * LOCKING:
1146 * caller.
1147 */
1148 void ata_id_c_string(const u16 *id, unsigned char *s,
1149 unsigned int ofs, unsigned int len)
1150 {
1151 unsigned char *p;
1152
1153 ata_id_string(id, s, ofs, len - 1);
1154
1155 p = s + strnlen(s, len - 1);
1156 while (p > s && p[-1] == ' ')
1157 p--;
1158 *p = '\0';
1159 }
1160
1161 static u64 ata_id_n_sectors(const u16 *id)
1162 {
1163 if (ata_id_has_lba(id)) {
1164 if (ata_id_has_lba48(id))
1165 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1166 else
1167 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1168 } else {
1169 if (ata_id_current_chs_valid(id))
1170 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1171 id[ATA_ID_CUR_SECTORS];
1172 else
1173 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1174 id[ATA_ID_SECTORS];
1175 }
1176 }
1177
1178 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1179 {
1180 u64 sectors = 0;
1181
1182 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1183 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1184 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1185 sectors |= (tf->lbah & 0xff) << 16;
1186 sectors |= (tf->lbam & 0xff) << 8;
1187 sectors |= (tf->lbal & 0xff);
1188
1189 return sectors;
1190 }
1191
1192 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1193 {
1194 u64 sectors = 0;
1195
1196 sectors |= (tf->device & 0x0f) << 24;
1197 sectors |= (tf->lbah & 0xff) << 16;
1198 sectors |= (tf->lbam & 0xff) << 8;
1199 sectors |= (tf->lbal & 0xff);
1200
1201 return sectors;
1202 }
1203
1204 /**
1205 * ata_read_native_max_address - Read native max address
1206 * @dev: target device
1207 * @max_sectors: out parameter for the result native max address
1208 *
1209 * Perform an LBA48 or LBA28 native size query upon the device in
1210 * question.
1211 *
1212 * RETURNS:
1213 * 0 on success, -EACCES if command is aborted by the drive.
1214 * -EIO on other errors.
1215 */
1216 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1217 {
1218 unsigned int err_mask;
1219 struct ata_taskfile tf;
1220 int lba48 = ata_id_has_lba48(dev->id);
1221
1222 ata_tf_init(dev, &tf);
1223
1224 /* always clear all address registers */
1225 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1226
1227 if (lba48) {
1228 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1229 tf.flags |= ATA_TFLAG_LBA48;
1230 } else
1231 tf.command = ATA_CMD_READ_NATIVE_MAX;
1232
1233 tf.protocol = ATA_PROT_NODATA;
1234 tf.device |= ATA_LBA;
1235
1236 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1237 if (err_mask) {
1238 ata_dev_warn(dev,
1239 "failed to read native max address (err_mask=0x%x)\n",
1240 err_mask);
1241 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1242 return -EACCES;
1243 return -EIO;
1244 }
1245
1246 if (lba48)
1247 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1248 else
1249 *max_sectors = ata_tf_to_lba(&tf) + 1;
1250 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1251 (*max_sectors)--;
1252 return 0;
1253 }
1254
1255 /**
1256 * ata_set_max_sectors - Set max sectors
1257 * @dev: target device
1258 * @new_sectors: new max sectors value to set for the device
1259 *
1260 * Set max sectors of @dev to @new_sectors.
1261 *
1262 * RETURNS:
1263 * 0 on success, -EACCES if command is aborted or denied (due to
1264 * previous non-volatile SET_MAX) by the drive. -EIO on other
1265 * errors.
1266 */
1267 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1268 {
1269 unsigned int err_mask;
1270 struct ata_taskfile tf;
1271 int lba48 = ata_id_has_lba48(dev->id);
1272
1273 new_sectors--;
1274
1275 ata_tf_init(dev, &tf);
1276
1277 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1278
1279 if (lba48) {
1280 tf.command = ATA_CMD_SET_MAX_EXT;
1281 tf.flags |= ATA_TFLAG_LBA48;
1282
1283 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1284 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1285 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1286 } else {
1287 tf.command = ATA_CMD_SET_MAX;
1288
1289 tf.device |= (new_sectors >> 24) & 0xf;
1290 }
1291
1292 tf.protocol = ATA_PROT_NODATA;
1293 tf.device |= ATA_LBA;
1294
1295 tf.lbal = (new_sectors >> 0) & 0xff;
1296 tf.lbam = (new_sectors >> 8) & 0xff;
1297 tf.lbah = (new_sectors >> 16) & 0xff;
1298
1299 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1300 if (err_mask) {
1301 ata_dev_warn(dev,
1302 "failed to set max address (err_mask=0x%x)\n",
1303 err_mask);
1304 if (err_mask == AC_ERR_DEV &&
1305 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1306 return -EACCES;
1307 return -EIO;
1308 }
1309
1310 return 0;
1311 }
1312
1313 /**
1314 * ata_hpa_resize - Resize a device with an HPA set
1315 * @dev: Device to resize
1316 *
1317 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1318 * it if required to the full size of the media. The caller must check
1319 * the drive has the HPA feature set enabled.
1320 *
1321 * RETURNS:
1322 * 0 on success, -errno on failure.
1323 */
1324 static int ata_hpa_resize(struct ata_device *dev)
1325 {
1326 struct ata_eh_context *ehc = &dev->link->eh_context;
1327 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1328 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1329 u64 sectors = ata_id_n_sectors(dev->id);
1330 u64 native_sectors;
1331 int rc;
1332
1333 /* do we need to do it? */
1334 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1335 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1336 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1337 return 0;
1338
1339 /* read native max address */
1340 rc = ata_read_native_max_address(dev, &native_sectors);
1341 if (rc) {
1342 /* If device aborted the command or HPA isn't going to
1343 * be unlocked, skip HPA resizing.
1344 */
1345 if (rc == -EACCES || !unlock_hpa) {
1346 ata_dev_warn(dev,
1347 "HPA support seems broken, skipping HPA handling\n");
1348 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1349
1350 /* we can continue if device aborted the command */
1351 if (rc == -EACCES)
1352 rc = 0;
1353 }
1354
1355 return rc;
1356 }
1357 dev->n_native_sectors = native_sectors;
1358
1359 /* nothing to do? */
1360 if (native_sectors <= sectors || !unlock_hpa) {
1361 if (!print_info || native_sectors == sectors)
1362 return 0;
1363
1364 if (native_sectors > sectors)
1365 ata_dev_info(dev,
1366 "HPA detected: current %llu, native %llu\n",
1367 (unsigned long long)sectors,
1368 (unsigned long long)native_sectors);
1369 else if (native_sectors < sectors)
1370 ata_dev_warn(dev,
1371 "native sectors (%llu) is smaller than sectors (%llu)\n",
1372 (unsigned long long)native_sectors,
1373 (unsigned long long)sectors);
1374 return 0;
1375 }
1376
1377 /* let's unlock HPA */
1378 rc = ata_set_max_sectors(dev, native_sectors);
1379 if (rc == -EACCES) {
1380 /* if device aborted the command, skip HPA resizing */
1381 ata_dev_warn(dev,
1382 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1386 return 0;
1387 } else if (rc)
1388 return rc;
1389
1390 /* re-read IDENTIFY data */
1391 rc = ata_dev_reread_id(dev, 0);
1392 if (rc) {
1393 ata_dev_err(dev,
1394 "failed to re-read IDENTIFY data after HPA resizing\n");
1395 return rc;
1396 }
1397
1398 if (print_info) {
1399 u64 new_sectors = ata_id_n_sectors(dev->id);
1400 ata_dev_info(dev,
1401 "HPA unlocked: %llu -> %llu, native %llu\n",
1402 (unsigned long long)sectors,
1403 (unsigned long long)new_sectors,
1404 (unsigned long long)native_sectors);
1405 }
1406
1407 return 0;
1408 }
1409
1410 /**
1411 * ata_dump_id - IDENTIFY DEVICE info debugging output
1412 * @id: IDENTIFY DEVICE page to dump
1413 *
1414 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1415 * page.
1416 *
1417 * LOCKING:
1418 * caller.
1419 */
1420
1421 static inline void ata_dump_id(const u16 *id)
1422 {
1423 DPRINTK("49==0x%04x "
1424 "53==0x%04x "
1425 "63==0x%04x "
1426 "64==0x%04x "
1427 "75==0x%04x \n",
1428 id[49],
1429 id[53],
1430 id[63],
1431 id[64],
1432 id[75]);
1433 DPRINTK("80==0x%04x "
1434 "81==0x%04x "
1435 "82==0x%04x "
1436 "83==0x%04x "
1437 "84==0x%04x \n",
1438 id[80],
1439 id[81],
1440 id[82],
1441 id[83],
1442 id[84]);
1443 DPRINTK("88==0x%04x "
1444 "93==0x%04x\n",
1445 id[88],
1446 id[93]);
1447 }
1448
1449 /**
1450 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1451 * @id: IDENTIFY data to compute xfer mask from
1452 *
1453 * Compute the xfermask for this device. This is not as trivial
1454 * as it seems if we must consider early devices correctly.
1455 *
1456 * FIXME: pre IDE drive timing (do we care ?).
1457 *
1458 * LOCKING:
1459 * None.
1460 *
1461 * RETURNS:
1462 * Computed xfermask
1463 */
1464 unsigned long ata_id_xfermask(const u16 *id)
1465 {
1466 unsigned long pio_mask, mwdma_mask, udma_mask;
1467
1468 /* Usual case. Word 53 indicates word 64 is valid */
1469 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1470 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1471 pio_mask <<= 3;
1472 pio_mask |= 0x7;
1473 } else {
1474 /* If word 64 isn't valid then Word 51 high byte holds
1475 * the PIO timing number for the maximum. Turn it into
1476 * a mask.
1477 */
1478 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1479 if (mode < 5) /* Valid PIO range */
1480 pio_mask = (2 << mode) - 1;
1481 else
1482 pio_mask = 1;
1483
1484 /* But wait.. there's more. Design your standards by
1485 * committee and you too can get a free iordy field to
1486 * process. However its the speeds not the modes that
1487 * are supported... Note drivers using the timing API
1488 * will get this right anyway
1489 */
1490 }
1491
1492 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1493
1494 if (ata_id_is_cfa(id)) {
1495 /*
1496 * Process compact flash extended modes
1497 */
1498 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1499 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1500
1501 if (pio)
1502 pio_mask |= (1 << 5);
1503 if (pio > 1)
1504 pio_mask |= (1 << 6);
1505 if (dma)
1506 mwdma_mask |= (1 << 3);
1507 if (dma > 1)
1508 mwdma_mask |= (1 << 4);
1509 }
1510
1511 udma_mask = 0;
1512 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1513 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1514
1515 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1516 }
1517
1518 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1519 {
1520 struct completion *waiting = qc->private_data;
1521
1522 complete(waiting);
1523 }
1524
1525 /**
1526 * ata_exec_internal_sg - execute libata internal command
1527 * @dev: Device to which the command is sent
1528 * @tf: Taskfile registers for the command and the result
1529 * @cdb: CDB for packet command
1530 * @dma_dir: Data transfer direction of the command
1531 * @sgl: sg list for the data buffer of the command
1532 * @n_elem: Number of sg entries
1533 * @timeout: Timeout in msecs (0 for default)
1534 *
1535 * Executes libata internal command with timeout. @tf contains
1536 * command on entry and result on return. Timeout and error
1537 * conditions are reported via return value. No recovery action
1538 * is taken after a command times out. It's caller's duty to
1539 * clean up after timeout.
1540 *
1541 * LOCKING:
1542 * None. Should be called with kernel context, might sleep.
1543 *
1544 * RETURNS:
1545 * Zero on success, AC_ERR_* mask on failure
1546 */
1547 unsigned ata_exec_internal_sg(struct ata_device *dev,
1548 struct ata_taskfile *tf, const u8 *cdb,
1549 int dma_dir, struct scatterlist *sgl,
1550 unsigned int n_elem, unsigned long timeout)
1551 {
1552 struct ata_link *link = dev->link;
1553 struct ata_port *ap = link->ap;
1554 u8 command = tf->command;
1555 int auto_timeout = 0;
1556 struct ata_queued_cmd *qc;
1557 unsigned int preempted_tag;
1558 u32 preempted_sactive;
1559 u64 preempted_qc_active;
1560 int preempted_nr_active_links;
1561 DECLARE_COMPLETION_ONSTACK(wait);
1562 unsigned long flags;
1563 unsigned int err_mask;
1564 int rc;
1565
1566 spin_lock_irqsave(ap->lock, flags);
1567
1568 /* no internal command while frozen */
1569 if (ap->pflags & ATA_PFLAG_FROZEN) {
1570 spin_unlock_irqrestore(ap->lock, flags);
1571 return AC_ERR_SYSTEM;
1572 }
1573
1574 /* initialize internal qc */
1575 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1576
1577 qc->tag = ATA_TAG_INTERNAL;
1578 qc->hw_tag = 0;
1579 qc->scsicmd = NULL;
1580 qc->ap = ap;
1581 qc->dev = dev;
1582 ata_qc_reinit(qc);
1583
1584 preempted_tag = link->active_tag;
1585 preempted_sactive = link->sactive;
1586 preempted_qc_active = ap->qc_active;
1587 preempted_nr_active_links = ap->nr_active_links;
1588 link->active_tag = ATA_TAG_POISON;
1589 link->sactive = 0;
1590 ap->qc_active = 0;
1591 ap->nr_active_links = 0;
1592
1593 /* prepare & issue qc */
1594 qc->tf = *tf;
1595 if (cdb)
1596 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1597
1598 /* some SATA bridges need us to indicate data xfer direction */
1599 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1600 dma_dir == DMA_FROM_DEVICE)
1601 qc->tf.feature |= ATAPI_DMADIR;
1602
1603 qc->flags |= ATA_QCFLAG_RESULT_TF;
1604 qc->dma_dir = dma_dir;
1605 if (dma_dir != DMA_NONE) {
1606 unsigned int i, buflen = 0;
1607 struct scatterlist *sg;
1608
1609 for_each_sg(sgl, sg, n_elem, i)
1610 buflen += sg->length;
1611
1612 ata_sg_init(qc, sgl, n_elem);
1613 qc->nbytes = buflen;
1614 }
1615
1616 qc->private_data = &wait;
1617 qc->complete_fn = ata_qc_complete_internal;
1618
1619 ata_qc_issue(qc);
1620
1621 spin_unlock_irqrestore(ap->lock, flags);
1622
1623 if (!timeout) {
1624 if (ata_probe_timeout)
1625 timeout = ata_probe_timeout * 1000;
1626 else {
1627 timeout = ata_internal_cmd_timeout(dev, command);
1628 auto_timeout = 1;
1629 }
1630 }
1631
1632 if (ap->ops->error_handler)
1633 ata_eh_release(ap);
1634
1635 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1636
1637 if (ap->ops->error_handler)
1638 ata_eh_acquire(ap);
1639
1640 ata_sff_flush_pio_task(ap);
1641
1642 if (!rc) {
1643 spin_lock_irqsave(ap->lock, flags);
1644
1645 /* We're racing with irq here. If we lose, the
1646 * following test prevents us from completing the qc
1647 * twice. If we win, the port is frozen and will be
1648 * cleaned up by ->post_internal_cmd().
1649 */
1650 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1651 qc->err_mask |= AC_ERR_TIMEOUT;
1652
1653 if (ap->ops->error_handler)
1654 ata_port_freeze(ap);
1655 else
1656 ata_qc_complete(qc);
1657
1658 if (ata_msg_warn(ap))
1659 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1660 command);
1661 }
1662
1663 spin_unlock_irqrestore(ap->lock, flags);
1664 }
1665
1666 /* do post_internal_cmd */
1667 if (ap->ops->post_internal_cmd)
1668 ap->ops->post_internal_cmd(qc);
1669
1670 /* perform minimal error analysis */
1671 if (qc->flags & ATA_QCFLAG_FAILED) {
1672 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1673 qc->err_mask |= AC_ERR_DEV;
1674
1675 if (!qc->err_mask)
1676 qc->err_mask |= AC_ERR_OTHER;
1677
1678 if (qc->err_mask & ~AC_ERR_OTHER)
1679 qc->err_mask &= ~AC_ERR_OTHER;
1680 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1681 qc->result_tf.command |= ATA_SENSE;
1682 }
1683
1684 /* finish up */
1685 spin_lock_irqsave(ap->lock, flags);
1686
1687 *tf = qc->result_tf;
1688 err_mask = qc->err_mask;
1689
1690 ata_qc_free(qc);
1691 link->active_tag = preempted_tag;
1692 link->sactive = preempted_sactive;
1693 ap->qc_active = preempted_qc_active;
1694 ap->nr_active_links = preempted_nr_active_links;
1695
1696 spin_unlock_irqrestore(ap->lock, flags);
1697
1698 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699 ata_internal_cmd_timed_out(dev, command);
1700
1701 return err_mask;
1702 }
1703
1704 /**
1705 * ata_exec_internal - execute libata internal command
1706 * @dev: Device to which the command is sent
1707 * @tf: Taskfile registers for the command and the result
1708 * @cdb: CDB for packet command
1709 * @dma_dir: Data transfer direction of the command
1710 * @buf: Data buffer of the command
1711 * @buflen: Length of data buffer
1712 * @timeout: Timeout in msecs (0 for default)
1713 *
1714 * Wrapper around ata_exec_internal_sg() which takes simple
1715 * buffer instead of sg list.
1716 *
1717 * LOCKING:
1718 * None. Should be called with kernel context, might sleep.
1719 *
1720 * RETURNS:
1721 * Zero on success, AC_ERR_* mask on failure
1722 */
1723 unsigned ata_exec_internal(struct ata_device *dev,
1724 struct ata_taskfile *tf, const u8 *cdb,
1725 int dma_dir, void *buf, unsigned int buflen,
1726 unsigned long timeout)
1727 {
1728 struct scatterlist *psg = NULL, sg;
1729 unsigned int n_elem = 0;
1730
1731 if (dma_dir != DMA_NONE) {
1732 WARN_ON(!buf);
1733 sg_init_one(&sg, buf, buflen);
1734 psg = &sg;
1735 n_elem++;
1736 }
1737
1738 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739 timeout);
1740 }
1741
1742 /**
1743 * ata_pio_need_iordy - check if iordy needed
1744 * @adev: ATA device
1745 *
1746 * Check if the current speed of the device requires IORDY. Used
1747 * by various controllers for chip configuration.
1748 */
1749 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1750 {
1751 /* Don't set IORDY if we're preparing for reset. IORDY may
1752 * lead to controller lock up on certain controllers if the
1753 * port is not occupied. See bko#11703 for details.
1754 */
1755 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1756 return 0;
1757 /* Controller doesn't support IORDY. Probably a pointless
1758 * check as the caller should know this.
1759 */
1760 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1761 return 0;
1762 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1763 if (ata_id_is_cfa(adev->id)
1764 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1765 return 0;
1766 /* PIO3 and higher it is mandatory */
1767 if (adev->pio_mode > XFER_PIO_2)
1768 return 1;
1769 /* We turn it on when possible */
1770 if (ata_id_has_iordy(adev->id))
1771 return 1;
1772 return 0;
1773 }
1774
1775 /**
1776 * ata_pio_mask_no_iordy - Return the non IORDY mask
1777 * @adev: ATA device
1778 *
1779 * Compute the highest mode possible if we are not using iordy. Return
1780 * -1 if no iordy mode is available.
1781 */
1782 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1783 {
1784 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1785 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1786 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1787 /* Is the speed faster than the drive allows non IORDY ? */
1788 if (pio) {
1789 /* This is cycle times not frequency - watch the logic! */
1790 if (pio > 240) /* PIO2 is 240nS per cycle */
1791 return 3 << ATA_SHIFT_PIO;
1792 return 7 << ATA_SHIFT_PIO;
1793 }
1794 }
1795 return 3 << ATA_SHIFT_PIO;
1796 }
1797
1798 /**
1799 * ata_do_dev_read_id - default ID read method
1800 * @dev: device
1801 * @tf: proposed taskfile
1802 * @id: data buffer
1803 *
1804 * Issue the identify taskfile and hand back the buffer containing
1805 * identify data. For some RAID controllers and for pre ATA devices
1806 * this function is wrapped or replaced by the driver
1807 */
1808 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1809 struct ata_taskfile *tf, u16 *id)
1810 {
1811 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1812 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1813 }
1814
1815 /**
1816 * ata_dev_read_id - Read ID data from the specified device
1817 * @dev: target device
1818 * @p_class: pointer to class of the target device (may be changed)
1819 * @flags: ATA_READID_* flags
1820 * @id: buffer to read IDENTIFY data into
1821 *
1822 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1823 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1824 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1825 * for pre-ATA4 drives.
1826 *
1827 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1828 * now we abort if we hit that case.
1829 *
1830 * LOCKING:
1831 * Kernel thread context (may sleep)
1832 *
1833 * RETURNS:
1834 * 0 on success, -errno otherwise.
1835 */
1836 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1837 unsigned int flags, u16 *id)
1838 {
1839 struct ata_port *ap = dev->link->ap;
1840 unsigned int class = *p_class;
1841 struct ata_taskfile tf;
1842 unsigned int err_mask = 0;
1843 const char *reason;
1844 bool is_semb = class == ATA_DEV_SEMB;
1845 int may_fallback = 1, tried_spinup = 0;
1846 int rc;
1847
1848 if (ata_msg_ctl(ap))
1849 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1850
1851 retry:
1852 ata_tf_init(dev, &tf);
1853
1854 switch (class) {
1855 case ATA_DEV_SEMB:
1856 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1857 /* fall through */
1858 case ATA_DEV_ATA:
1859 case ATA_DEV_ZAC:
1860 tf.command = ATA_CMD_ID_ATA;
1861 break;
1862 case ATA_DEV_ATAPI:
1863 tf.command = ATA_CMD_ID_ATAPI;
1864 break;
1865 default:
1866 rc = -ENODEV;
1867 reason = "unsupported class";
1868 goto err_out;
1869 }
1870
1871 tf.protocol = ATA_PROT_PIO;
1872
1873 /* Some devices choke if TF registers contain garbage. Make
1874 * sure those are properly initialized.
1875 */
1876 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1877
1878 /* Device presence detection is unreliable on some
1879 * controllers. Always poll IDENTIFY if available.
1880 */
1881 tf.flags |= ATA_TFLAG_POLLING;
1882
1883 if (ap->ops->read_id)
1884 err_mask = ap->ops->read_id(dev, &tf, id);
1885 else
1886 err_mask = ata_do_dev_read_id(dev, &tf, id);
1887
1888 if (err_mask) {
1889 if (err_mask & AC_ERR_NODEV_HINT) {
1890 ata_dev_dbg(dev, "NODEV after polling detection\n");
1891 return -ENOENT;
1892 }
1893
1894 if (is_semb) {
1895 ata_dev_info(dev,
1896 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1897 /* SEMB is not supported yet */
1898 *p_class = ATA_DEV_SEMB_UNSUP;
1899 return 0;
1900 }
1901
1902 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1903 /* Device or controller might have reported
1904 * the wrong device class. Give a shot at the
1905 * other IDENTIFY if the current one is
1906 * aborted by the device.
1907 */
1908 if (may_fallback) {
1909 may_fallback = 0;
1910
1911 if (class == ATA_DEV_ATA)
1912 class = ATA_DEV_ATAPI;
1913 else
1914 class = ATA_DEV_ATA;
1915 goto retry;
1916 }
1917
1918 /* Control reaches here iff the device aborted
1919 * both flavors of IDENTIFYs which happens
1920 * sometimes with phantom devices.
1921 */
1922 ata_dev_dbg(dev,
1923 "both IDENTIFYs aborted, assuming NODEV\n");
1924 return -ENOENT;
1925 }
1926
1927 rc = -EIO;
1928 reason = "I/O error";
1929 goto err_out;
1930 }
1931
1932 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1933 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1934 "class=%d may_fallback=%d tried_spinup=%d\n",
1935 class, may_fallback, tried_spinup);
1936 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1937 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1938 }
1939
1940 /* Falling back doesn't make sense if ID data was read
1941 * successfully at least once.
1942 */
1943 may_fallback = 0;
1944
1945 swap_buf_le16(id, ATA_ID_WORDS);
1946
1947 /* sanity check */
1948 rc = -EINVAL;
1949 reason = "device reports invalid type";
1950
1951 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1952 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1953 goto err_out;
1954 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1955 ata_id_is_ata(id)) {
1956 ata_dev_dbg(dev,
1957 "host indicates ignore ATA devices, ignored\n");
1958 return -ENOENT;
1959 }
1960 } else {
1961 if (ata_id_is_ata(id))
1962 goto err_out;
1963 }
1964
1965 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1966 tried_spinup = 1;
1967 /*
1968 * Drive powered-up in standby mode, and requires a specific
1969 * SET_FEATURES spin-up subcommand before it will accept
1970 * anything other than the original IDENTIFY command.
1971 */
1972 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1973 if (err_mask && id[2] != 0x738c) {
1974 rc = -EIO;
1975 reason = "SPINUP failed";
1976 goto err_out;
1977 }
1978 /*
1979 * If the drive initially returned incomplete IDENTIFY info,
1980 * we now must reissue the IDENTIFY command.
1981 */
1982 if (id[2] == 0x37c8)
1983 goto retry;
1984 }
1985
1986 if ((flags & ATA_READID_POSTRESET) &&
1987 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1988 /*
1989 * The exact sequence expected by certain pre-ATA4 drives is:
1990 * SRST RESET
1991 * IDENTIFY (optional in early ATA)
1992 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1993 * anything else..
1994 * Some drives were very specific about that exact sequence.
1995 *
1996 * Note that ATA4 says lba is mandatory so the second check
1997 * should never trigger.
1998 */
1999 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2000 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2001 if (err_mask) {
2002 rc = -EIO;
2003 reason = "INIT_DEV_PARAMS failed";
2004 goto err_out;
2005 }
2006
2007 /* current CHS translation info (id[53-58]) might be
2008 * changed. reread the identify device info.
2009 */
2010 flags &= ~ATA_READID_POSTRESET;
2011 goto retry;
2012 }
2013 }
2014
2015 *p_class = class;
2016
2017 return 0;
2018
2019 err_out:
2020 if (ata_msg_warn(ap))
2021 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2022 reason, err_mask);
2023 return rc;
2024 }
2025
2026 /**
2027 * ata_read_log_page - read a specific log page
2028 * @dev: target device
2029 * @log: log to read
2030 * @page: page to read
2031 * @buf: buffer to store read page
2032 * @sectors: number of sectors to read
2033 *
2034 * Read log page using READ_LOG_EXT command.
2035 *
2036 * LOCKING:
2037 * Kernel thread context (may sleep).
2038 *
2039 * RETURNS:
2040 * 0 on success, AC_ERR_* mask otherwise.
2041 */
2042 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2043 u8 page, void *buf, unsigned int sectors)
2044 {
2045 unsigned long ap_flags = dev->link->ap->flags;
2046 struct ata_taskfile tf;
2047 unsigned int err_mask;
2048 bool dma = false;
2049
2050 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2051
2052 /*
2053 * Return error without actually issuing the command on controllers
2054 * which e.g. lockup on a read log page.
2055 */
2056 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2057 return AC_ERR_DEV;
2058
2059 retry:
2060 ata_tf_init(dev, &tf);
2061 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2062 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2063 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2064 tf.protocol = ATA_PROT_DMA;
2065 dma = true;
2066 } else {
2067 tf.command = ATA_CMD_READ_LOG_EXT;
2068 tf.protocol = ATA_PROT_PIO;
2069 dma = false;
2070 }
2071 tf.lbal = log;
2072 tf.lbam = page;
2073 tf.nsect = sectors;
2074 tf.hob_nsect = sectors >> 8;
2075 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2076
2077 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2078 buf, sectors * ATA_SECT_SIZE, 0);
2079
2080 if (err_mask && dma) {
2081 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2082 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2083 goto retry;
2084 }
2085
2086 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2087 return err_mask;
2088 }
2089
2090 static bool ata_log_supported(struct ata_device *dev, u8 log)
2091 {
2092 struct ata_port *ap = dev->link->ap;
2093
2094 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2095 return false;
2096 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2097 }
2098
2099 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2100 {
2101 struct ata_port *ap = dev->link->ap;
2102 unsigned int err, i;
2103
2104 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2105 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2106 return false;
2107 }
2108
2109 /*
2110 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2111 * supported.
2112 */
2113 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2114 1);
2115 if (err) {
2116 ata_dev_info(dev,
2117 "failed to get Device Identify Log Emask 0x%x\n",
2118 err);
2119 return false;
2120 }
2121
2122 for (i = 0; i < ap->sector_buf[8]; i++) {
2123 if (ap->sector_buf[9 + i] == page)
2124 return true;
2125 }
2126
2127 return false;
2128 }
2129
2130 static int ata_do_link_spd_horkage(struct ata_device *dev)
2131 {
2132 struct ata_link *plink = ata_dev_phys_link(dev);
2133 u32 target, target_limit;
2134
2135 if (!sata_scr_valid(plink))
2136 return 0;
2137
2138 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2139 target = 1;
2140 else
2141 return 0;
2142
2143 target_limit = (1 << target) - 1;
2144
2145 /* if already on stricter limit, no need to push further */
2146 if (plink->sata_spd_limit <= target_limit)
2147 return 0;
2148
2149 plink->sata_spd_limit = target_limit;
2150
2151 /* Request another EH round by returning -EAGAIN if link is
2152 * going faster than the target speed. Forward progress is
2153 * guaranteed by setting sata_spd_limit to target_limit above.
2154 */
2155 if (plink->sata_spd > target) {
2156 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2157 sata_spd_string(target));
2158 return -EAGAIN;
2159 }
2160 return 0;
2161 }
2162
2163 static inline u8 ata_dev_knobble(struct ata_device *dev)
2164 {
2165 struct ata_port *ap = dev->link->ap;
2166
2167 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2168 return 0;
2169
2170 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2171 }
2172
2173 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2174 {
2175 struct ata_port *ap = dev->link->ap;
2176 unsigned int err_mask;
2177
2178 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2179 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2180 return;
2181 }
2182 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2183 0, ap->sector_buf, 1);
2184 if (err_mask) {
2185 ata_dev_dbg(dev,
2186 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2187 err_mask);
2188 } else {
2189 u8 *cmds = dev->ncq_send_recv_cmds;
2190
2191 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2192 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2193
2194 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2195 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2196 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2197 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2198 }
2199 }
2200 }
2201
2202 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2203 {
2204 struct ata_port *ap = dev->link->ap;
2205 unsigned int err_mask;
2206
2207 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2208 ata_dev_warn(dev,
2209 "NCQ Send/Recv Log not supported\n");
2210 return;
2211 }
2212 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2213 0, ap->sector_buf, 1);
2214 if (err_mask) {
2215 ata_dev_dbg(dev,
2216 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2217 err_mask);
2218 } else {
2219 u8 *cmds = dev->ncq_non_data_cmds;
2220
2221 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2222 }
2223 }
2224
2225 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2226 {
2227 struct ata_port *ap = dev->link->ap;
2228 unsigned int err_mask;
2229
2230 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2231 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2232 return;
2233 }
2234
2235 err_mask = ata_read_log_page(dev,
2236 ATA_LOG_IDENTIFY_DEVICE,
2237 ATA_LOG_SATA_SETTINGS,
2238 ap->sector_buf,
2239 1);
2240 if (err_mask) {
2241 ata_dev_dbg(dev,
2242 "failed to get Identify Device data, Emask 0x%x\n",
2243 err_mask);
2244 return;
2245 }
2246
2247 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2248 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2249 } else {
2250 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2251 ata_dev_dbg(dev, "SATA page does not support priority\n");
2252 }
2253
2254 }
2255
2256 static int ata_dev_config_ncq(struct ata_device *dev,
2257 char *desc, size_t desc_sz)
2258 {
2259 struct ata_port *ap = dev->link->ap;
2260 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2261 unsigned int err_mask;
2262 char *aa_desc = "";
2263
2264 if (!ata_id_has_ncq(dev->id)) {
2265 desc[0] = '\0';
2266 return 0;
2267 }
2268 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2269 snprintf(desc, desc_sz, "NCQ (not used)");
2270 return 0;
2271 }
2272 if (ap->flags & ATA_FLAG_NCQ) {
2273 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2274 dev->flags |= ATA_DFLAG_NCQ;
2275 }
2276
2277 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2278 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2279 ata_id_has_fpdma_aa(dev->id)) {
2280 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2281 SATA_FPDMA_AA);
2282 if (err_mask) {
2283 ata_dev_err(dev,
2284 "failed to enable AA (error_mask=0x%x)\n",
2285 err_mask);
2286 if (err_mask != AC_ERR_DEV) {
2287 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2288 return -EIO;
2289 }
2290 } else
2291 aa_desc = ", AA";
2292 }
2293
2294 if (hdepth >= ddepth)
2295 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2296 else
2297 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2298 ddepth, aa_desc);
2299
2300 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2301 if (ata_id_has_ncq_send_and_recv(dev->id))
2302 ata_dev_config_ncq_send_recv(dev);
2303 if (ata_id_has_ncq_non_data(dev->id))
2304 ata_dev_config_ncq_non_data(dev);
2305 if (ata_id_has_ncq_prio(dev->id))
2306 ata_dev_config_ncq_prio(dev);
2307 }
2308
2309 return 0;
2310 }
2311
2312 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2313 {
2314 unsigned int err_mask;
2315
2316 if (!ata_id_has_sense_reporting(dev->id))
2317 return;
2318
2319 if (ata_id_sense_reporting_enabled(dev->id))
2320 return;
2321
2322 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2323 if (err_mask) {
2324 ata_dev_dbg(dev,
2325 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2326 err_mask);
2327 }
2328 }
2329
2330 static void ata_dev_config_zac(struct ata_device *dev)
2331 {
2332 struct ata_port *ap = dev->link->ap;
2333 unsigned int err_mask;
2334 u8 *identify_buf = ap->sector_buf;
2335
2336 dev->zac_zones_optimal_open = U32_MAX;
2337 dev->zac_zones_optimal_nonseq = U32_MAX;
2338 dev->zac_zones_max_open = U32_MAX;
2339
2340 /*
2341 * Always set the 'ZAC' flag for Host-managed devices.
2342 */
2343 if (dev->class == ATA_DEV_ZAC)
2344 dev->flags |= ATA_DFLAG_ZAC;
2345 else if (ata_id_zoned_cap(dev->id) == 0x01)
2346 /*
2347 * Check for host-aware devices.
2348 */
2349 dev->flags |= ATA_DFLAG_ZAC;
2350
2351 if (!(dev->flags & ATA_DFLAG_ZAC))
2352 return;
2353
2354 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2355 ata_dev_warn(dev,
2356 "ATA Zoned Information Log not supported\n");
2357 return;
2358 }
2359
2360 /*
2361 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2362 */
2363 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2364 ATA_LOG_ZONED_INFORMATION,
2365 identify_buf, 1);
2366 if (!err_mask) {
2367 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2368
2369 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2370 if ((zoned_cap >> 63))
2371 dev->zac_zoned_cap = (zoned_cap & 1);
2372 opt_open = get_unaligned_le64(&identify_buf[24]);
2373 if ((opt_open >> 63))
2374 dev->zac_zones_optimal_open = (u32)opt_open;
2375 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2376 if ((opt_nonseq >> 63))
2377 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2378 max_open = get_unaligned_le64(&identify_buf[40]);
2379 if ((max_open >> 63))
2380 dev->zac_zones_max_open = (u32)max_open;
2381 }
2382 }
2383
2384 static void ata_dev_config_trusted(struct ata_device *dev)
2385 {
2386 struct ata_port *ap = dev->link->ap;
2387 u64 trusted_cap;
2388 unsigned int err;
2389
2390 if (!ata_id_has_trusted(dev->id))
2391 return;
2392
2393 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2394 ata_dev_warn(dev,
2395 "Security Log not supported\n");
2396 return;
2397 }
2398
2399 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2400 ap->sector_buf, 1);
2401 if (err) {
2402 ata_dev_dbg(dev,
2403 "failed to read Security Log, Emask 0x%x\n", err);
2404 return;
2405 }
2406
2407 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2408 if (!(trusted_cap & (1ULL << 63))) {
2409 ata_dev_dbg(dev,
2410 "Trusted Computing capability qword not valid!\n");
2411 return;
2412 }
2413
2414 if (trusted_cap & (1 << 0))
2415 dev->flags |= ATA_DFLAG_TRUSTED;
2416 }
2417
2418 /**
2419 * ata_dev_configure - Configure the specified ATA/ATAPI device
2420 * @dev: Target device to configure
2421 *
2422 * Configure @dev according to @dev->id. Generic and low-level
2423 * driver specific fixups are also applied.
2424 *
2425 * LOCKING:
2426 * Kernel thread context (may sleep)
2427 *
2428 * RETURNS:
2429 * 0 on success, -errno otherwise
2430 */
2431 int ata_dev_configure(struct ata_device *dev)
2432 {
2433 struct ata_port *ap = dev->link->ap;
2434 struct ata_eh_context *ehc = &dev->link->eh_context;
2435 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2436 const u16 *id = dev->id;
2437 unsigned long xfer_mask;
2438 unsigned int err_mask;
2439 char revbuf[7]; /* XYZ-99\0 */
2440 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2441 char modelbuf[ATA_ID_PROD_LEN+1];
2442 int rc;
2443
2444 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2445 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2446 return 0;
2447 }
2448
2449 if (ata_msg_probe(ap))
2450 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2451
2452 /* set horkage */
2453 dev->horkage |= ata_dev_blacklisted(dev);
2454 ata_force_horkage(dev);
2455
2456 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2457 ata_dev_info(dev, "unsupported device, disabling\n");
2458 ata_dev_disable(dev);
2459 return 0;
2460 }
2461
2462 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2463 dev->class == ATA_DEV_ATAPI) {
2464 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2465 atapi_enabled ? "not supported with this driver"
2466 : "disabled");
2467 ata_dev_disable(dev);
2468 return 0;
2469 }
2470
2471 rc = ata_do_link_spd_horkage(dev);
2472 if (rc)
2473 return rc;
2474
2475 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2476 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2477 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2478 dev->horkage |= ATA_HORKAGE_NOLPM;
2479
2480 if (ap->flags & ATA_FLAG_NO_LPM)
2481 dev->horkage |= ATA_HORKAGE_NOLPM;
2482
2483 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2484 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2485 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2486 }
2487
2488 /* let ACPI work its magic */
2489 rc = ata_acpi_on_devcfg(dev);
2490 if (rc)
2491 return rc;
2492
2493 /* massage HPA, do it early as it might change IDENTIFY data */
2494 rc = ata_hpa_resize(dev);
2495 if (rc)
2496 return rc;
2497
2498 /* print device capabilities */
2499 if (ata_msg_probe(ap))
2500 ata_dev_dbg(dev,
2501 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2502 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2503 __func__,
2504 id[49], id[82], id[83], id[84],
2505 id[85], id[86], id[87], id[88]);
2506
2507 /* initialize to-be-configured parameters */
2508 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2509 dev->max_sectors = 0;
2510 dev->cdb_len = 0;
2511 dev->n_sectors = 0;
2512 dev->cylinders = 0;
2513 dev->heads = 0;
2514 dev->sectors = 0;
2515 dev->multi_count = 0;
2516
2517 /*
2518 * common ATA, ATAPI feature tests
2519 */
2520
2521 /* find max transfer mode; for printk only */
2522 xfer_mask = ata_id_xfermask(id);
2523
2524 if (ata_msg_probe(ap))
2525 ata_dump_id(id);
2526
2527 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2528 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2529 sizeof(fwrevbuf));
2530
2531 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2532 sizeof(modelbuf));
2533
2534 /* ATA-specific feature tests */
2535 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2536 if (ata_id_is_cfa(id)) {
2537 /* CPRM may make this media unusable */
2538 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2539 ata_dev_warn(dev,
2540 "supports DRM functions and may not be fully accessible\n");
2541 snprintf(revbuf, 7, "CFA");
2542 } else {
2543 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2544 /* Warn the user if the device has TPM extensions */
2545 if (ata_id_has_tpm(id))
2546 ata_dev_warn(dev,
2547 "supports DRM functions and may not be fully accessible\n");
2548 }
2549
2550 dev->n_sectors = ata_id_n_sectors(id);
2551
2552 /* get current R/W Multiple count setting */
2553 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2554 unsigned int max = dev->id[47] & 0xff;
2555 unsigned int cnt = dev->id[59] & 0xff;
2556 /* only recognize/allow powers of two here */
2557 if (is_power_of_2(max) && is_power_of_2(cnt))
2558 if (cnt <= max)
2559 dev->multi_count = cnt;
2560 }
2561
2562 if (ata_id_has_lba(id)) {
2563 const char *lba_desc;
2564 char ncq_desc[24];
2565
2566 lba_desc = "LBA";
2567 dev->flags |= ATA_DFLAG_LBA;
2568 if (ata_id_has_lba48(id)) {
2569 dev->flags |= ATA_DFLAG_LBA48;
2570 lba_desc = "LBA48";
2571
2572 if (dev->n_sectors >= (1UL << 28) &&
2573 ata_id_has_flush_ext(id))
2574 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2575 }
2576
2577 /* config NCQ */
2578 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2579 if (rc)
2580 return rc;
2581
2582 /* print device info to dmesg */
2583 if (ata_msg_drv(ap) && print_info) {
2584 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2585 revbuf, modelbuf, fwrevbuf,
2586 ata_mode_string(xfer_mask));
2587 ata_dev_info(dev,
2588 "%llu sectors, multi %u: %s %s\n",
2589 (unsigned long long)dev->n_sectors,
2590 dev->multi_count, lba_desc, ncq_desc);
2591 }
2592 } else {
2593 /* CHS */
2594
2595 /* Default translation */
2596 dev->cylinders = id[1];
2597 dev->heads = id[3];
2598 dev->sectors = id[6];
2599
2600 if (ata_id_current_chs_valid(id)) {
2601 /* Current CHS translation is valid. */
2602 dev->cylinders = id[54];
2603 dev->heads = id[55];
2604 dev->sectors = id[56];
2605 }
2606
2607 /* print device info to dmesg */
2608 if (ata_msg_drv(ap) && print_info) {
2609 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2610 revbuf, modelbuf, fwrevbuf,
2611 ata_mode_string(xfer_mask));
2612 ata_dev_info(dev,
2613 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2614 (unsigned long long)dev->n_sectors,
2615 dev->multi_count, dev->cylinders,
2616 dev->heads, dev->sectors);
2617 }
2618 }
2619
2620 /* Check and mark DevSlp capability. Get DevSlp timing variables
2621 * from SATA Settings page of Identify Device Data Log.
2622 */
2623 if (ata_id_has_devslp(dev->id)) {
2624 u8 *sata_setting = ap->sector_buf;
2625 int i, j;
2626
2627 dev->flags |= ATA_DFLAG_DEVSLP;
2628 err_mask = ata_read_log_page(dev,
2629 ATA_LOG_IDENTIFY_DEVICE,
2630 ATA_LOG_SATA_SETTINGS,
2631 sata_setting,
2632 1);
2633 if (err_mask)
2634 ata_dev_dbg(dev,
2635 "failed to get Identify Device Data, Emask 0x%x\n",
2636 err_mask);
2637 else
2638 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2639 j = ATA_LOG_DEVSLP_OFFSET + i;
2640 dev->devslp_timing[i] = sata_setting[j];
2641 }
2642 }
2643 ata_dev_config_sense_reporting(dev);
2644 ata_dev_config_zac(dev);
2645 ata_dev_config_trusted(dev);
2646 dev->cdb_len = 32;
2647 }
2648
2649 /* ATAPI-specific feature tests */
2650 else if (dev->class == ATA_DEV_ATAPI) {
2651 const char *cdb_intr_string = "";
2652 const char *atapi_an_string = "";
2653 const char *dma_dir_string = "";
2654 u32 sntf;
2655
2656 rc = atapi_cdb_len(id);
2657 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2658 if (ata_msg_warn(ap))
2659 ata_dev_warn(dev, "unsupported CDB len\n");
2660 rc = -EINVAL;
2661 goto err_out_nosup;
2662 }
2663 dev->cdb_len = (unsigned int) rc;
2664
2665 /* Enable ATAPI AN if both the host and device have
2666 * the support. If PMP is attached, SNTF is required
2667 * to enable ATAPI AN to discern between PHY status
2668 * changed notifications and ATAPI ANs.
2669 */
2670 if (atapi_an &&
2671 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2672 (!sata_pmp_attached(ap) ||
2673 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2674 /* issue SET feature command to turn this on */
2675 err_mask = ata_dev_set_feature(dev,
2676 SETFEATURES_SATA_ENABLE, SATA_AN);
2677 if (err_mask)
2678 ata_dev_err(dev,
2679 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2680 err_mask);
2681 else {
2682 dev->flags |= ATA_DFLAG_AN;
2683 atapi_an_string = ", ATAPI AN";
2684 }
2685 }
2686
2687 if (ata_id_cdb_intr(dev->id)) {
2688 dev->flags |= ATA_DFLAG_CDB_INTR;
2689 cdb_intr_string = ", CDB intr";
2690 }
2691
2692 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2693 dev->flags |= ATA_DFLAG_DMADIR;
2694 dma_dir_string = ", DMADIR";
2695 }
2696
2697 if (ata_id_has_da(dev->id)) {
2698 dev->flags |= ATA_DFLAG_DA;
2699 zpodd_init(dev);
2700 }
2701
2702 /* print device info to dmesg */
2703 if (ata_msg_drv(ap) && print_info)
2704 ata_dev_info(dev,
2705 "ATAPI: %s, %s, max %s%s%s%s\n",
2706 modelbuf, fwrevbuf,
2707 ata_mode_string(xfer_mask),
2708 cdb_intr_string, atapi_an_string,
2709 dma_dir_string);
2710 }
2711
2712 /* determine max_sectors */
2713 dev->max_sectors = ATA_MAX_SECTORS;
2714 if (dev->flags & ATA_DFLAG_LBA48)
2715 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2716
2717 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2718 200 sectors */
2719 if (ata_dev_knobble(dev)) {
2720 if (ata_msg_drv(ap) && print_info)
2721 ata_dev_info(dev, "applying bridge limits\n");
2722 dev->udma_mask &= ATA_UDMA5;
2723 dev->max_sectors = ATA_MAX_SECTORS;
2724 }
2725
2726 if ((dev->class == ATA_DEV_ATAPI) &&
2727 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2728 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2729 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2730 }
2731
2732 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2733 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2734 dev->max_sectors);
2735
2736 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2737 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2738 dev->max_sectors);
2739
2740 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2741 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2742
2743 if (ap->ops->dev_config)
2744 ap->ops->dev_config(dev);
2745
2746 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2747 /* Let the user know. We don't want to disallow opens for
2748 rescue purposes, or in case the vendor is just a blithering
2749 idiot. Do this after the dev_config call as some controllers
2750 with buggy firmware may want to avoid reporting false device
2751 bugs */
2752
2753 if (print_info) {
2754 ata_dev_warn(dev,
2755 "Drive reports diagnostics failure. This may indicate a drive\n");
2756 ata_dev_warn(dev,
2757 "fault or invalid emulation. Contact drive vendor for information.\n");
2758 }
2759 }
2760
2761 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2762 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2763 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2764 }
2765
2766 return 0;
2767
2768 err_out_nosup:
2769 if (ata_msg_probe(ap))
2770 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2771 return rc;
2772 }
2773
2774 /**
2775 * ata_cable_40wire - return 40 wire cable type
2776 * @ap: port
2777 *
2778 * Helper method for drivers which want to hardwire 40 wire cable
2779 * detection.
2780 */
2781
2782 int ata_cable_40wire(struct ata_port *ap)
2783 {
2784 return ATA_CBL_PATA40;
2785 }
2786
2787 /**
2788 * ata_cable_80wire - return 80 wire cable type
2789 * @ap: port
2790 *
2791 * Helper method for drivers which want to hardwire 80 wire cable
2792 * detection.
2793 */
2794
2795 int ata_cable_80wire(struct ata_port *ap)
2796 {
2797 return ATA_CBL_PATA80;
2798 }
2799
2800 /**
2801 * ata_cable_unknown - return unknown PATA cable.
2802 * @ap: port
2803 *
2804 * Helper method for drivers which have no PATA cable detection.
2805 */
2806
2807 int ata_cable_unknown(struct ata_port *ap)
2808 {
2809 return ATA_CBL_PATA_UNK;
2810 }
2811
2812 /**
2813 * ata_cable_ignore - return ignored PATA cable.
2814 * @ap: port
2815 *
2816 * Helper method for drivers which don't use cable type to limit
2817 * transfer mode.
2818 */
2819 int ata_cable_ignore(struct ata_port *ap)
2820 {
2821 return ATA_CBL_PATA_IGN;
2822 }
2823
2824 /**
2825 * ata_cable_sata - return SATA cable type
2826 * @ap: port
2827 *
2828 * Helper method for drivers which have SATA cables
2829 */
2830
2831 int ata_cable_sata(struct ata_port *ap)
2832 {
2833 return ATA_CBL_SATA;
2834 }
2835
2836 /**
2837 * ata_bus_probe - Reset and probe ATA bus
2838 * @ap: Bus to probe
2839 *
2840 * Master ATA bus probing function. Initiates a hardware-dependent
2841 * bus reset, then attempts to identify any devices found on
2842 * the bus.
2843 *
2844 * LOCKING:
2845 * PCI/etc. bus probe sem.
2846 *
2847 * RETURNS:
2848 * Zero on success, negative errno otherwise.
2849 */
2850
2851 int ata_bus_probe(struct ata_port *ap)
2852 {
2853 unsigned int classes[ATA_MAX_DEVICES];
2854 int tries[ATA_MAX_DEVICES];
2855 int rc;
2856 struct ata_device *dev;
2857
2858 ata_for_each_dev(dev, &ap->link, ALL)
2859 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2860
2861 retry:
2862 ata_for_each_dev(dev, &ap->link, ALL) {
2863 /* If we issue an SRST then an ATA drive (not ATAPI)
2864 * may change configuration and be in PIO0 timing. If
2865 * we do a hard reset (or are coming from power on)
2866 * this is true for ATA or ATAPI. Until we've set a
2867 * suitable controller mode we should not touch the
2868 * bus as we may be talking too fast.
2869 */
2870 dev->pio_mode = XFER_PIO_0;
2871 dev->dma_mode = 0xff;
2872
2873 /* If the controller has a pio mode setup function
2874 * then use it to set the chipset to rights. Don't
2875 * touch the DMA setup as that will be dealt with when
2876 * configuring devices.
2877 */
2878 if (ap->ops->set_piomode)
2879 ap->ops->set_piomode(ap, dev);
2880 }
2881
2882 /* reset and determine device classes */
2883 ap->ops->phy_reset(ap);
2884
2885 ata_for_each_dev(dev, &ap->link, ALL) {
2886 if (dev->class != ATA_DEV_UNKNOWN)
2887 classes[dev->devno] = dev->class;
2888 else
2889 classes[dev->devno] = ATA_DEV_NONE;
2890
2891 dev->class = ATA_DEV_UNKNOWN;
2892 }
2893
2894 /* read IDENTIFY page and configure devices. We have to do the identify
2895 specific sequence bass-ackwards so that PDIAG- is released by
2896 the slave device */
2897
2898 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2899 if (tries[dev->devno])
2900 dev->class = classes[dev->devno];
2901
2902 if (!ata_dev_enabled(dev))
2903 continue;
2904
2905 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2906 dev->id);
2907 if (rc)
2908 goto fail;
2909 }
2910
2911 /* Now ask for the cable type as PDIAG- should have been released */
2912 if (ap->ops->cable_detect)
2913 ap->cbl = ap->ops->cable_detect(ap);
2914
2915 /* We may have SATA bridge glue hiding here irrespective of
2916 * the reported cable types and sensed types. When SATA
2917 * drives indicate we have a bridge, we don't know which end
2918 * of the link the bridge is which is a problem.
2919 */
2920 ata_for_each_dev(dev, &ap->link, ENABLED)
2921 if (ata_id_is_sata(dev->id))
2922 ap->cbl = ATA_CBL_SATA;
2923
2924 /* After the identify sequence we can now set up the devices. We do
2925 this in the normal order so that the user doesn't get confused */
2926
2927 ata_for_each_dev(dev, &ap->link, ENABLED) {
2928 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2929 rc = ata_dev_configure(dev);
2930 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2931 if (rc)
2932 goto fail;
2933 }
2934
2935 /* configure transfer mode */
2936 rc = ata_set_mode(&ap->link, &dev);
2937 if (rc)
2938 goto fail;
2939
2940 ata_for_each_dev(dev, &ap->link, ENABLED)
2941 return 0;
2942
2943 return -ENODEV;
2944
2945 fail:
2946 tries[dev->devno]--;
2947
2948 switch (rc) {
2949 case -EINVAL:
2950 /* eeek, something went very wrong, give up */
2951 tries[dev->devno] = 0;
2952 break;
2953
2954 case -ENODEV:
2955 /* give it just one more chance */
2956 tries[dev->devno] = min(tries[dev->devno], 1);
2957 /* fall through */
2958 case -EIO:
2959 if (tries[dev->devno] == 1) {
2960 /* This is the last chance, better to slow
2961 * down than lose it.
2962 */
2963 sata_down_spd_limit(&ap->link, 0);
2964 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2965 }
2966 }
2967
2968 if (!tries[dev->devno])
2969 ata_dev_disable(dev);
2970
2971 goto retry;
2972 }
2973
2974 /**
2975 * sata_print_link_status - Print SATA link status
2976 * @link: SATA link to printk link status about
2977 *
2978 * This function prints link speed and status of a SATA link.
2979 *
2980 * LOCKING:
2981 * None.
2982 */
2983 static void sata_print_link_status(struct ata_link *link)
2984 {
2985 u32 sstatus, scontrol, tmp;
2986
2987 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2988 return;
2989 sata_scr_read(link, SCR_CONTROL, &scontrol);
2990
2991 if (ata_phys_link_online(link)) {
2992 tmp = (sstatus >> 4) & 0xf;
2993 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2994 sata_spd_string(tmp), sstatus, scontrol);
2995 } else {
2996 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2997 sstatus, scontrol);
2998 }
2999 }
3000
3001 /**
3002 * ata_dev_pair - return other device on cable
3003 * @adev: device
3004 *
3005 * Obtain the other device on the same cable, or if none is
3006 * present NULL is returned
3007 */
3008
3009 struct ata_device *ata_dev_pair(struct ata_device *adev)
3010 {
3011 struct ata_link *link = adev->link;
3012 struct ata_device *pair = &link->device[1 - adev->devno];
3013 if (!ata_dev_enabled(pair))
3014 return NULL;
3015 return pair;
3016 }
3017
3018 /**
3019 * sata_down_spd_limit - adjust SATA spd limit downward
3020 * @link: Link to adjust SATA spd limit for
3021 * @spd_limit: Additional limit
3022 *
3023 * Adjust SATA spd limit of @link downward. Note that this
3024 * function only adjusts the limit. The change must be applied
3025 * using sata_set_spd().
3026 *
3027 * If @spd_limit is non-zero, the speed is limited to equal to or
3028 * lower than @spd_limit if such speed is supported. If
3029 * @spd_limit is slower than any supported speed, only the lowest
3030 * supported speed is allowed.
3031 *
3032 * LOCKING:
3033 * Inherited from caller.
3034 *
3035 * RETURNS:
3036 * 0 on success, negative errno on failure
3037 */
3038 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3039 {
3040 u32 sstatus, spd, mask;
3041 int rc, bit;
3042
3043 if (!sata_scr_valid(link))
3044 return -EOPNOTSUPP;
3045
3046 /* If SCR can be read, use it to determine the current SPD.
3047 * If not, use cached value in link->sata_spd.
3048 */
3049 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3050 if (rc == 0 && ata_sstatus_online(sstatus))
3051 spd = (sstatus >> 4) & 0xf;
3052 else
3053 spd = link->sata_spd;
3054
3055 mask = link->sata_spd_limit;
3056 if (mask <= 1)
3057 return -EINVAL;
3058
3059 /* unconditionally mask off the highest bit */
3060 bit = fls(mask) - 1;
3061 mask &= ~(1 << bit);
3062
3063 /*
3064 * Mask off all speeds higher than or equal to the current one. At
3065 * this point, if current SPD is not available and we previously
3066 * recorded the link speed from SStatus, the driver has already
3067 * masked off the highest bit so mask should already be 1 or 0.
3068 * Otherwise, we should not force 1.5Gbps on a link where we have
3069 * not previously recorded speed from SStatus. Just return in this
3070 * case.
3071 */
3072 if (spd > 1)
3073 mask &= (1 << (spd - 1)) - 1;
3074 else
3075 return -EINVAL;
3076
3077 /* were we already at the bottom? */
3078 if (!mask)
3079 return -EINVAL;
3080
3081 if (spd_limit) {
3082 if (mask & ((1 << spd_limit) - 1))
3083 mask &= (1 << spd_limit) - 1;
3084 else {
3085 bit = ffs(mask) - 1;
3086 mask = 1 << bit;
3087 }
3088 }
3089
3090 link->sata_spd_limit = mask;
3091
3092 ata_link_warn(link, "limiting SATA link speed to %s\n",
3093 sata_spd_string(fls(mask)));
3094
3095 return 0;
3096 }
3097
3098 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3099 {
3100 struct ata_link *host_link = &link->ap->link;
3101 u32 limit, target, spd;
3102
3103 limit = link->sata_spd_limit;
3104
3105 /* Don't configure downstream link faster than upstream link.
3106 * It doesn't speed up anything and some PMPs choke on such
3107 * configuration.
3108 */
3109 if (!ata_is_host_link(link) && host_link->sata_spd)
3110 limit &= (1 << host_link->sata_spd) - 1;
3111
3112 if (limit == UINT_MAX)
3113 target = 0;
3114 else
3115 target = fls(limit);
3116
3117 spd = (*scontrol >> 4) & 0xf;
3118 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3119
3120 return spd != target;
3121 }
3122
3123 /**
3124 * sata_set_spd_needed - is SATA spd configuration needed
3125 * @link: Link in question
3126 *
3127 * Test whether the spd limit in SControl matches
3128 * @link->sata_spd_limit. This function is used to determine
3129 * whether hardreset is necessary to apply SATA spd
3130 * configuration.
3131 *
3132 * LOCKING:
3133 * Inherited from caller.
3134 *
3135 * RETURNS:
3136 * 1 if SATA spd configuration is needed, 0 otherwise.
3137 */
3138 static int sata_set_spd_needed(struct ata_link *link)
3139 {
3140 u32 scontrol;
3141
3142 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3143 return 1;
3144
3145 return __sata_set_spd_needed(link, &scontrol);
3146 }
3147
3148 /**
3149 * sata_set_spd - set SATA spd according to spd limit
3150 * @link: Link to set SATA spd for
3151 *
3152 * Set SATA spd of @link according to sata_spd_limit.
3153 *
3154 * LOCKING:
3155 * Inherited from caller.
3156 *
3157 * RETURNS:
3158 * 0 if spd doesn't need to be changed, 1 if spd has been
3159 * changed. Negative errno if SCR registers are inaccessible.
3160 */
3161 int sata_set_spd(struct ata_link *link)
3162 {
3163 u32 scontrol;
3164 int rc;
3165
3166 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3167 return rc;
3168
3169 if (!__sata_set_spd_needed(link, &scontrol))
3170 return 0;
3171
3172 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3173 return rc;
3174
3175 return 1;
3176 }
3177
3178 /*
3179 * This mode timing computation functionality is ported over from
3180 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3181 */
3182 /*
3183 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3184 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3185 * for UDMA6, which is currently supported only by Maxtor drives.
3186 *
3187 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3188 */
3189
3190 static const struct ata_timing ata_timing[] = {
3191 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3192 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3193 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3194 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3195 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3196 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3197 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3198 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3199
3200 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3201 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3202 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3203
3204 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3205 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3206 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3207 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3208 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3209
3210 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3211 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3212 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3213 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3214 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3215 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3216 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3217 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3218
3219 { 0xFF }
3220 };
3221
3222 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3223 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3224
3225 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3226 {
3227 q->setup = EZ(t->setup, T);
3228 q->act8b = EZ(t->act8b, T);
3229 q->rec8b = EZ(t->rec8b, T);
3230 q->cyc8b = EZ(t->cyc8b, T);
3231 q->active = EZ(t->active, T);
3232 q->recover = EZ(t->recover, T);
3233 q->dmack_hold = EZ(t->dmack_hold, T);
3234 q->cycle = EZ(t->cycle, T);
3235 q->udma = EZ(t->udma, UT);
3236 }
3237
3238 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3239 struct ata_timing *m, unsigned int what)
3240 {
3241 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3242 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3243 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3244 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3245 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3246 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3247 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3248 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3249 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3250 }
3251
3252 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3253 {
3254 const struct ata_timing *t = ata_timing;
3255
3256 while (xfer_mode > t->mode)
3257 t++;
3258
3259 if (xfer_mode == t->mode)
3260 return t;
3261
3262 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3263 __func__, xfer_mode);
3264
3265 return NULL;
3266 }
3267
3268 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3269 struct ata_timing *t, int T, int UT)
3270 {
3271 const u16 *id = adev->id;
3272 const struct ata_timing *s;
3273 struct ata_timing p;
3274
3275 /*
3276 * Find the mode.
3277 */
3278
3279 if (!(s = ata_timing_find_mode(speed)))
3280 return -EINVAL;
3281
3282 memcpy(t, s, sizeof(*s));
3283
3284 /*
3285 * If the drive is an EIDE drive, it can tell us it needs extended
3286 * PIO/MW_DMA cycle timing.
3287 */
3288
3289 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3290 memset(&p, 0, sizeof(p));
3291
3292 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3293 if (speed <= XFER_PIO_2)
3294 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3295 else if ((speed <= XFER_PIO_4) ||
3296 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3297 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3298 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3299 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3300
3301 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3302 }
3303
3304 /*
3305 * Convert the timing to bus clock counts.
3306 */
3307
3308 ata_timing_quantize(t, t, T, UT);
3309
3310 /*
3311 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3312 * S.M.A.R.T * and some other commands. We have to ensure that the
3313 * DMA cycle timing is slower/equal than the fastest PIO timing.
3314 */
3315
3316 if (speed > XFER_PIO_6) {
3317 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3318 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3319 }
3320
3321 /*
3322 * Lengthen active & recovery time so that cycle time is correct.
3323 */
3324
3325 if (t->act8b + t->rec8b < t->cyc8b) {
3326 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3327 t->rec8b = t->cyc8b - t->act8b;
3328 }
3329
3330 if (t->active + t->recover < t->cycle) {
3331 t->active += (t->cycle - (t->active + t->recover)) / 2;
3332 t->recover = t->cycle - t->active;
3333 }
3334
3335 /* In a few cases quantisation may produce enough errors to
3336 leave t->cycle too low for the sum of active and recovery
3337 if so we must correct this */
3338 if (t->active + t->recover > t->cycle)
3339 t->cycle = t->active + t->recover;
3340
3341 return 0;
3342 }
3343
3344 /**
3345 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3346 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3347 * @cycle: cycle duration in ns
3348 *
3349 * Return matching xfer mode for @cycle. The returned mode is of
3350 * the transfer type specified by @xfer_shift. If @cycle is too
3351 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3352 * than the fastest known mode, the fasted mode is returned.
3353 *
3354 * LOCKING:
3355 * None.
3356 *
3357 * RETURNS:
3358 * Matching xfer_mode, 0xff if no match found.
3359 */
3360 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3361 {
3362 u8 base_mode = 0xff, last_mode = 0xff;
3363 const struct ata_xfer_ent *ent;
3364 const struct ata_timing *t;
3365
3366 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3367 if (ent->shift == xfer_shift)
3368 base_mode = ent->base;
3369
3370 for (t = ata_timing_find_mode(base_mode);
3371 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3372 unsigned short this_cycle;
3373
3374 switch (xfer_shift) {
3375 case ATA_SHIFT_PIO:
3376 case ATA_SHIFT_MWDMA:
3377 this_cycle = t->cycle;
3378 break;
3379 case ATA_SHIFT_UDMA:
3380 this_cycle = t->udma;
3381 break;
3382 default:
3383 return 0xff;
3384 }
3385
3386 if (cycle > this_cycle)
3387 break;
3388
3389 last_mode = t->mode;
3390 }
3391
3392 return last_mode;
3393 }
3394
3395 /**
3396 * ata_down_xfermask_limit - adjust dev xfer masks downward
3397 * @dev: Device to adjust xfer masks
3398 * @sel: ATA_DNXFER_* selector
3399 *
3400 * Adjust xfer masks of @dev downward. Note that this function
3401 * does not apply the change. Invoking ata_set_mode() afterwards
3402 * will apply the limit.
3403 *
3404 * LOCKING:
3405 * Inherited from caller.
3406 *
3407 * RETURNS:
3408 * 0 on success, negative errno on failure
3409 */
3410 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3411 {
3412 char buf[32];
3413 unsigned long orig_mask, xfer_mask;
3414 unsigned long pio_mask, mwdma_mask, udma_mask;
3415 int quiet, highbit;
3416
3417 quiet = !!(sel & ATA_DNXFER_QUIET);
3418 sel &= ~ATA_DNXFER_QUIET;
3419
3420 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3421 dev->mwdma_mask,
3422 dev->udma_mask);
3423 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3424
3425 switch (sel) {
3426 case ATA_DNXFER_PIO:
3427 highbit = fls(pio_mask) - 1;
3428 pio_mask &= ~(1 << highbit);
3429 break;
3430
3431 case ATA_DNXFER_DMA:
3432 if (udma_mask) {
3433 highbit = fls(udma_mask) - 1;
3434 udma_mask &= ~(1 << highbit);
3435 if (!udma_mask)
3436 return -ENOENT;
3437 } else if (mwdma_mask) {
3438 highbit = fls(mwdma_mask) - 1;
3439 mwdma_mask &= ~(1 << highbit);
3440 if (!mwdma_mask)
3441 return -ENOENT;
3442 }
3443 break;
3444
3445 case ATA_DNXFER_40C:
3446 udma_mask &= ATA_UDMA_MASK_40C;
3447 break;
3448
3449 case ATA_DNXFER_FORCE_PIO0:
3450 pio_mask &= 1;
3451 /* fall through */
3452 case ATA_DNXFER_FORCE_PIO:
3453 mwdma_mask = 0;
3454 udma_mask = 0;
3455 break;
3456
3457 default:
3458 BUG();
3459 }
3460
3461 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3462
3463 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3464 return -ENOENT;
3465
3466 if (!quiet) {
3467 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3468 snprintf(buf, sizeof(buf), "%s:%s",
3469 ata_mode_string(xfer_mask),
3470 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3471 else
3472 snprintf(buf, sizeof(buf), "%s",
3473 ata_mode_string(xfer_mask));
3474
3475 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3476 }
3477
3478 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3479 &dev->udma_mask);
3480
3481 return 0;
3482 }
3483
3484 static int ata_dev_set_mode(struct ata_device *dev)
3485 {
3486 struct ata_port *ap = dev->link->ap;
3487 struct ata_eh_context *ehc = &dev->link->eh_context;
3488 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3489 const char *dev_err_whine = "";
3490 int ign_dev_err = 0;
3491 unsigned int err_mask = 0;
3492 int rc;
3493
3494 dev->flags &= ~ATA_DFLAG_PIO;
3495 if (dev->xfer_shift == ATA_SHIFT_PIO)
3496 dev->flags |= ATA_DFLAG_PIO;
3497
3498 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3499 dev_err_whine = " (SET_XFERMODE skipped)";
3500 else {
3501 if (nosetxfer)
3502 ata_dev_warn(dev,
3503 "NOSETXFER but PATA detected - can't "
3504 "skip SETXFER, might malfunction\n");
3505 err_mask = ata_dev_set_xfermode(dev);
3506 }
3507
3508 if (err_mask & ~AC_ERR_DEV)
3509 goto fail;
3510
3511 /* revalidate */
3512 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3513 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3514 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3515 if (rc)
3516 return rc;
3517
3518 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3519 /* Old CFA may refuse this command, which is just fine */
3520 if (ata_id_is_cfa(dev->id))
3521 ign_dev_err = 1;
3522 /* Catch several broken garbage emulations plus some pre
3523 ATA devices */
3524 if (ata_id_major_version(dev->id) == 0 &&
3525 dev->pio_mode <= XFER_PIO_2)
3526 ign_dev_err = 1;
3527 /* Some very old devices and some bad newer ones fail
3528 any kind of SET_XFERMODE request but support PIO0-2
3529 timings and no IORDY */
3530 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3531 ign_dev_err = 1;
3532 }
3533 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3534 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3535 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3536 dev->dma_mode == XFER_MW_DMA_0 &&
3537 (dev->id[63] >> 8) & 1)
3538 ign_dev_err = 1;
3539
3540 /* if the device is actually configured correctly, ignore dev err */
3541 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3542 ign_dev_err = 1;
3543
3544 if (err_mask & AC_ERR_DEV) {
3545 if (!ign_dev_err)
3546 goto fail;
3547 else
3548 dev_err_whine = " (device error ignored)";
3549 }
3550
3551 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3552 dev->xfer_shift, (int)dev->xfer_mode);
3553
3554 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3555 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3556 ata_dev_info(dev, "configured for %s%s\n",
3557 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3558 dev_err_whine);
3559
3560 return 0;
3561
3562 fail:
3563 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3564 return -EIO;
3565 }
3566
3567 /**
3568 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3569 * @link: link on which timings will be programmed
3570 * @r_failed_dev: out parameter for failed device
3571 *
3572 * Standard implementation of the function used to tune and set
3573 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3574 * ata_dev_set_mode() fails, pointer to the failing device is
3575 * returned in @r_failed_dev.
3576 *
3577 * LOCKING:
3578 * PCI/etc. bus probe sem.
3579 *
3580 * RETURNS:
3581 * 0 on success, negative errno otherwise
3582 */
3583
3584 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3585 {
3586 struct ata_port *ap = link->ap;
3587 struct ata_device *dev;
3588 int rc = 0, used_dma = 0, found = 0;
3589
3590 /* step 1: calculate xfer_mask */
3591 ata_for_each_dev(dev, link, ENABLED) {
3592 unsigned long pio_mask, dma_mask;
3593 unsigned int mode_mask;
3594
3595 mode_mask = ATA_DMA_MASK_ATA;
3596 if (dev->class == ATA_DEV_ATAPI)
3597 mode_mask = ATA_DMA_MASK_ATAPI;
3598 else if (ata_id_is_cfa(dev->id))
3599 mode_mask = ATA_DMA_MASK_CFA;
3600
3601 ata_dev_xfermask(dev);
3602 ata_force_xfermask(dev);
3603
3604 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3605
3606 if (libata_dma_mask & mode_mask)
3607 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3608 dev->udma_mask);
3609 else
3610 dma_mask = 0;
3611
3612 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3613 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3614
3615 found = 1;
3616 if (ata_dma_enabled(dev))
3617 used_dma = 1;
3618 }
3619 if (!found)
3620 goto out;
3621
3622 /* step 2: always set host PIO timings */
3623 ata_for_each_dev(dev, link, ENABLED) {
3624 if (dev->pio_mode == 0xff) {
3625 ata_dev_warn(dev, "no PIO support\n");
3626 rc = -EINVAL;
3627 goto out;
3628 }
3629
3630 dev->xfer_mode = dev->pio_mode;
3631 dev->xfer_shift = ATA_SHIFT_PIO;
3632 if (ap->ops->set_piomode)
3633 ap->ops->set_piomode(ap, dev);
3634 }
3635
3636 /* step 3: set host DMA timings */
3637 ata_for_each_dev(dev, link, ENABLED) {
3638 if (!ata_dma_enabled(dev))
3639 continue;
3640
3641 dev->xfer_mode = dev->dma_mode;
3642 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3643 if (ap->ops->set_dmamode)
3644 ap->ops->set_dmamode(ap, dev);
3645 }
3646
3647 /* step 4: update devices' xfer mode */
3648 ata_for_each_dev(dev, link, ENABLED) {
3649 rc = ata_dev_set_mode(dev);
3650 if (rc)
3651 goto out;
3652 }
3653
3654 /* Record simplex status. If we selected DMA then the other
3655 * host channels are not permitted to do so.
3656 */
3657 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3658 ap->host->simplex_claimed = ap;
3659
3660 out:
3661 if (rc)
3662 *r_failed_dev = dev;
3663 return rc;
3664 }
3665
3666 /**
3667 * ata_wait_ready - wait for link to become ready
3668 * @link: link to be waited on
3669 * @deadline: deadline jiffies for the operation
3670 * @check_ready: callback to check link readiness
3671 *
3672 * Wait for @link to become ready. @check_ready should return
3673 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3674 * link doesn't seem to be occupied, other errno for other error
3675 * conditions.
3676 *
3677 * Transient -ENODEV conditions are allowed for
3678 * ATA_TMOUT_FF_WAIT.
3679 *
3680 * LOCKING:
3681 * EH context.
3682 *
3683 * RETURNS:
3684 * 0 if @link is ready before @deadline; otherwise, -errno.
3685 */
3686 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3687 int (*check_ready)(struct ata_link *link))
3688 {
3689 unsigned long start = jiffies;
3690 unsigned long nodev_deadline;
3691 int warned = 0;
3692
3693 /* choose which 0xff timeout to use, read comment in libata.h */
3694 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3695 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3696 else
3697 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3698
3699 /* Slave readiness can't be tested separately from master. On
3700 * M/S emulation configuration, this function should be called
3701 * only on the master and it will handle both master and slave.
3702 */
3703 WARN_ON(link == link->ap->slave_link);
3704
3705 if (time_after(nodev_deadline, deadline))
3706 nodev_deadline = deadline;
3707
3708 while (1) {
3709 unsigned long now = jiffies;
3710 int ready, tmp;
3711
3712 ready = tmp = check_ready(link);
3713 if (ready > 0)
3714 return 0;
3715
3716 /*
3717 * -ENODEV could be transient. Ignore -ENODEV if link
3718 * is online. Also, some SATA devices take a long
3719 * time to clear 0xff after reset. Wait for
3720 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3721 * offline.
3722 *
3723 * Note that some PATA controllers (pata_ali) explode
3724 * if status register is read more than once when
3725 * there's no device attached.
3726 */
3727 if (ready == -ENODEV) {
3728 if (ata_link_online(link))
3729 ready = 0;
3730 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3731 !ata_link_offline(link) &&
3732 time_before(now, nodev_deadline))
3733 ready = 0;
3734 }
3735
3736 if (ready)
3737 return ready;
3738 if (time_after(now, deadline))
3739 return -EBUSY;
3740
3741 if (!warned && time_after(now, start + 5 * HZ) &&
3742 (deadline - now > 3 * HZ)) {
3743 ata_link_warn(link,
3744 "link is slow to respond, please be patient "
3745 "(ready=%d)\n", tmp);
3746 warned = 1;
3747 }
3748
3749 ata_msleep(link->ap, 50);
3750 }
3751 }
3752
3753 /**
3754 * ata_wait_after_reset - wait for link to become ready after reset
3755 * @link: link to be waited on
3756 * @deadline: deadline jiffies for the operation
3757 * @check_ready: callback to check link readiness
3758 *
3759 * Wait for @link to become ready after reset.
3760 *
3761 * LOCKING:
3762 * EH context.
3763 *
3764 * RETURNS:
3765 * 0 if @link is ready before @deadline; otherwise, -errno.
3766 */
3767 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3768 int (*check_ready)(struct ata_link *link))
3769 {
3770 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3771
3772 return ata_wait_ready(link, deadline, check_ready);
3773 }
3774
3775 /**
3776 * sata_link_debounce - debounce SATA phy status
3777 * @link: ATA link to debounce SATA phy status for
3778 * @params: timing parameters { interval, duration, timeout } in msec
3779 * @deadline: deadline jiffies for the operation
3780 *
3781 * Make sure SStatus of @link reaches stable state, determined by
3782 * holding the same value where DET is not 1 for @duration polled
3783 * every @interval, before @timeout. Timeout constraints the
3784 * beginning of the stable state. Because DET gets stuck at 1 on
3785 * some controllers after hot unplugging, this functions waits
3786 * until timeout then returns 0 if DET is stable at 1.
3787 *
3788 * @timeout is further limited by @deadline. The sooner of the
3789 * two is used.
3790 *
3791 * LOCKING:
3792 * Kernel thread context (may sleep)
3793 *
3794 * RETURNS:
3795 * 0 on success, -errno on failure.
3796 */
3797 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3798 unsigned long deadline)
3799 {
3800 unsigned long interval = params[0];
3801 unsigned long duration = params[1];
3802 unsigned long last_jiffies, t;
3803 u32 last, cur;
3804 int rc;
3805
3806 t = ata_deadline(jiffies, params[2]);
3807 if (time_before(t, deadline))
3808 deadline = t;
3809
3810 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3811 return rc;
3812 cur &= 0xf;
3813
3814 last = cur;
3815 last_jiffies = jiffies;
3816
3817 while (1) {
3818 ata_msleep(link->ap, interval);
3819 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3820 return rc;
3821 cur &= 0xf;
3822
3823 /* DET stable? */
3824 if (cur == last) {
3825 if (cur == 1 && time_before(jiffies, deadline))
3826 continue;
3827 if (time_after(jiffies,
3828 ata_deadline(last_jiffies, duration)))
3829 return 0;
3830 continue;
3831 }
3832
3833 /* unstable, start over */
3834 last = cur;
3835 last_jiffies = jiffies;
3836
3837 /* Check deadline. If debouncing failed, return
3838 * -EPIPE to tell upper layer to lower link speed.
3839 */
3840 if (time_after(jiffies, deadline))
3841 return -EPIPE;
3842 }
3843 }
3844
3845 /**
3846 * sata_link_resume - resume SATA link
3847 * @link: ATA link to resume SATA
3848 * @params: timing parameters { interval, duration, timeout } in msec
3849 * @deadline: deadline jiffies for the operation
3850 *
3851 * Resume SATA phy @link and debounce it.
3852 *
3853 * LOCKING:
3854 * Kernel thread context (may sleep)
3855 *
3856 * RETURNS:
3857 * 0 on success, -errno on failure.
3858 */
3859 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3860 unsigned long deadline)
3861 {
3862 int tries = ATA_LINK_RESUME_TRIES;
3863 u32 scontrol, serror;
3864 int rc;
3865
3866 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3867 return rc;
3868
3869 /*
3870 * Writes to SControl sometimes get ignored under certain
3871 * controllers (ata_piix SIDPR). Make sure DET actually is
3872 * cleared.
3873 */
3874 do {
3875 scontrol = (scontrol & 0x0f0) | 0x300;
3876 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3877 return rc;
3878 /*
3879 * Some PHYs react badly if SStatus is pounded
3880 * immediately after resuming. Delay 200ms before
3881 * debouncing.
3882 */
3883 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3884 ata_msleep(link->ap, 200);
3885
3886 /* is SControl restored correctly? */
3887 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3888 return rc;
3889 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3890
3891 if ((scontrol & 0xf0f) != 0x300) {
3892 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3893 scontrol);
3894 return 0;
3895 }
3896
3897 if (tries < ATA_LINK_RESUME_TRIES)
3898 ata_link_warn(link, "link resume succeeded after %d retries\n",
3899 ATA_LINK_RESUME_TRIES - tries);
3900
3901 if ((rc = sata_link_debounce(link, params, deadline)))
3902 return rc;
3903
3904 /* clear SError, some PHYs require this even for SRST to work */
3905 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3906 rc = sata_scr_write(link, SCR_ERROR, serror);
3907
3908 return rc != -EINVAL ? rc : 0;
3909 }
3910
3911 /**
3912 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3913 * @link: ATA link to manipulate SControl for
3914 * @policy: LPM policy to configure
3915 * @spm_wakeup: initiate LPM transition to active state
3916 *
3917 * Manipulate the IPM field of the SControl register of @link
3918 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3919 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3920 * the link. This function also clears PHYRDY_CHG before
3921 * returning.
3922 *
3923 * LOCKING:
3924 * EH context.
3925 *
3926 * RETURNS:
3927 * 0 on success, -errno otherwise.
3928 */
3929 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3930 bool spm_wakeup)
3931 {
3932 struct ata_eh_context *ehc = &link->eh_context;
3933 bool woken_up = false;
3934 u32 scontrol;
3935 int rc;
3936
3937 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3938 if (rc)
3939 return rc;
3940
3941 switch (policy) {
3942 case ATA_LPM_MAX_POWER:
3943 /* disable all LPM transitions */
3944 scontrol |= (0x7 << 8);
3945 /* initiate transition to active state */
3946 if (spm_wakeup) {
3947 scontrol |= (0x4 << 12);
3948 woken_up = true;
3949 }
3950 break;
3951 case ATA_LPM_MED_POWER:
3952 /* allow LPM to PARTIAL */
3953 scontrol &= ~(0x1 << 8);
3954 scontrol |= (0x6 << 8);
3955 break;
3956 case ATA_LPM_MED_POWER_WITH_DIPM:
3957 case ATA_LPM_MIN_POWER_WITH_PARTIAL:
3958 case ATA_LPM_MIN_POWER:
3959 if (ata_link_nr_enabled(link) > 0)
3960 /* no restrictions on LPM transitions */
3961 scontrol &= ~(0x7 << 8);
3962 else {
3963 /* empty port, power off */
3964 scontrol &= ~0xf;
3965 scontrol |= (0x1 << 2);
3966 }
3967 break;
3968 default:
3969 WARN_ON(1);
3970 }
3971
3972 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3973 if (rc)
3974 return rc;
3975
3976 /* give the link time to transit out of LPM state */
3977 if (woken_up)
3978 msleep(10);
3979
3980 /* clear PHYRDY_CHG from SError */
3981 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3982 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3983 }
3984
3985 /**
3986 * ata_std_prereset - prepare for reset
3987 * @link: ATA link to be reset
3988 * @deadline: deadline jiffies for the operation
3989 *
3990 * @link is about to be reset. Initialize it. Failure from
3991 * prereset makes libata abort whole reset sequence and give up
3992 * that port, so prereset should be best-effort. It does its
3993 * best to prepare for reset sequence but if things go wrong, it
3994 * should just whine, not fail.
3995 *
3996 * LOCKING:
3997 * Kernel thread context (may sleep)
3998 *
3999 * RETURNS:
4000 * 0 on success, -errno otherwise.
4001 */
4002 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4003 {
4004 struct ata_port *ap = link->ap;
4005 struct ata_eh_context *ehc = &link->eh_context;
4006 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4007 int rc;
4008
4009 /* if we're about to do hardreset, nothing more to do */
4010 if (ehc->i.action & ATA_EH_HARDRESET)
4011 return 0;
4012
4013 /* if SATA, resume link */
4014 if (ap->flags & ATA_FLAG_SATA) {
4015 rc = sata_link_resume(link, timing, deadline);
4016 /* whine about phy resume failure but proceed */
4017 if (rc && rc != -EOPNOTSUPP)
4018 ata_link_warn(link,
4019 "failed to resume link for reset (errno=%d)\n",
4020 rc);
4021 }
4022
4023 /* no point in trying softreset on offline link */
4024 if (ata_phys_link_offline(link))
4025 ehc->i.action &= ~ATA_EH_SOFTRESET;
4026
4027 return 0;
4028 }
4029
4030 /**
4031 * sata_link_hardreset - reset link via SATA phy reset
4032 * @link: link to reset
4033 * @timing: timing parameters { interval, duration, timeout } in msec
4034 * @deadline: deadline jiffies for the operation
4035 * @online: optional out parameter indicating link onlineness
4036 * @check_ready: optional callback to check link readiness
4037 *
4038 * SATA phy-reset @link using DET bits of SControl register.
4039 * After hardreset, link readiness is waited upon using
4040 * ata_wait_ready() if @check_ready is specified. LLDs are
4041 * allowed to not specify @check_ready and wait itself after this
4042 * function returns. Device classification is LLD's
4043 * responsibility.
4044 *
4045 * *@online is set to one iff reset succeeded and @link is online
4046 * after reset.
4047 *
4048 * LOCKING:
4049 * Kernel thread context (may sleep)
4050 *
4051 * RETURNS:
4052 * 0 on success, -errno otherwise.
4053 */
4054 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4055 unsigned long deadline,
4056 bool *online, int (*check_ready)(struct ata_link *))
4057 {
4058 u32 scontrol;
4059 int rc;
4060
4061 DPRINTK("ENTER\n");
4062
4063 if (online)
4064 *online = false;
4065
4066 if (sata_set_spd_needed(link)) {
4067 /* SATA spec says nothing about how to reconfigure
4068 * spd. To be on the safe side, turn off phy during
4069 * reconfiguration. This works for at least ICH7 AHCI
4070 * and Sil3124.
4071 */
4072 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4073 goto out;
4074
4075 scontrol = (scontrol & 0x0f0) | 0x304;
4076
4077 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4078 goto out;
4079
4080 sata_set_spd(link);
4081 }
4082
4083 /* issue phy wake/reset */
4084 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4085 goto out;
4086
4087 scontrol = (scontrol & 0x0f0) | 0x301;
4088
4089 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4090 goto out;
4091
4092 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4093 * 10.4.2 says at least 1 ms.
4094 */
4095 ata_msleep(link->ap, 1);
4096
4097 /* bring link back */
4098 rc = sata_link_resume(link, timing, deadline);
4099 if (rc)
4100 goto out;
4101 /* if link is offline nothing more to do */
4102 if (ata_phys_link_offline(link))
4103 goto out;
4104
4105 /* Link is online. From this point, -ENODEV too is an error. */
4106 if (online)
4107 *online = true;
4108
4109 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4110 /* If PMP is supported, we have to do follow-up SRST.
4111 * Some PMPs don't send D2H Reg FIS after hardreset if
4112 * the first port is empty. Wait only for
4113 * ATA_TMOUT_PMP_SRST_WAIT.
4114 */
4115 if (check_ready) {
4116 unsigned long pmp_deadline;
4117
4118 pmp_deadline = ata_deadline(jiffies,
4119 ATA_TMOUT_PMP_SRST_WAIT);
4120 if (time_after(pmp_deadline, deadline))
4121 pmp_deadline = deadline;
4122 ata_wait_ready(link, pmp_deadline, check_ready);
4123 }
4124 rc = -EAGAIN;
4125 goto out;
4126 }
4127
4128 rc = 0;
4129 if (check_ready)
4130 rc = ata_wait_ready(link, deadline, check_ready);
4131 out:
4132 if (rc && rc != -EAGAIN) {
4133 /* online is set iff link is online && reset succeeded */
4134 if (online)
4135 *online = false;
4136 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4137 }
4138 DPRINTK("EXIT, rc=%d\n", rc);
4139 return rc;
4140 }
4141
4142 /**
4143 * sata_std_hardreset - COMRESET w/o waiting or classification
4144 * @link: link to reset
4145 * @class: resulting class of attached device
4146 * @deadline: deadline jiffies for the operation
4147 *
4148 * Standard SATA COMRESET w/o waiting or classification.
4149 *
4150 * LOCKING:
4151 * Kernel thread context (may sleep)
4152 *
4153 * RETURNS:
4154 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4155 */
4156 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4157 unsigned long deadline)
4158 {
4159 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4160 bool online;
4161 int rc;
4162
4163 /* do hardreset */
4164 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4165 return online ? -EAGAIN : rc;
4166 }
4167
4168 /**
4169 * ata_std_postreset - standard postreset callback
4170 * @link: the target ata_link
4171 * @classes: classes of attached devices
4172 *
4173 * This function is invoked after a successful reset. Note that
4174 * the device might have been reset more than once using
4175 * different reset methods before postreset is invoked.
4176 *
4177 * LOCKING:
4178 * Kernel thread context (may sleep)
4179 */
4180 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4181 {
4182 u32 serror;
4183
4184 DPRINTK("ENTER\n");
4185
4186 /* reset complete, clear SError */
4187 if (!sata_scr_read(link, SCR_ERROR, &serror))
4188 sata_scr_write(link, SCR_ERROR, serror);
4189
4190 /* print link status */
4191 sata_print_link_status(link);
4192
4193 DPRINTK("EXIT\n");
4194 }
4195
4196 /**
4197 * ata_dev_same_device - Determine whether new ID matches configured device
4198 * @dev: device to compare against
4199 * @new_class: class of the new device
4200 * @new_id: IDENTIFY page of the new device
4201 *
4202 * Compare @new_class and @new_id against @dev and determine
4203 * whether @dev is the device indicated by @new_class and
4204 * @new_id.
4205 *
4206 * LOCKING:
4207 * None.
4208 *
4209 * RETURNS:
4210 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4211 */
4212 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4213 const u16 *new_id)
4214 {
4215 const u16 *old_id = dev->id;
4216 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4217 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4218
4219 if (dev->class != new_class) {
4220 ata_dev_info(dev, "class mismatch %d != %d\n",
4221 dev->class, new_class);
4222 return 0;
4223 }
4224
4225 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4226 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4227 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4228 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4229
4230 if (strcmp(model[0], model[1])) {
4231 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4232 model[0], model[1]);
4233 return 0;
4234 }
4235
4236 if (strcmp(serial[0], serial[1])) {
4237 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4238 serial[0], serial[1]);
4239 return 0;
4240 }
4241
4242 return 1;
4243 }
4244
4245 /**
4246 * ata_dev_reread_id - Re-read IDENTIFY data
4247 * @dev: target ATA device
4248 * @readid_flags: read ID flags
4249 *
4250 * Re-read IDENTIFY page and make sure @dev is still attached to
4251 * the port.
4252 *
4253 * LOCKING:
4254 * Kernel thread context (may sleep)
4255 *
4256 * RETURNS:
4257 * 0 on success, negative errno otherwise
4258 */
4259 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4260 {
4261 unsigned int class = dev->class;
4262 u16 *id = (void *)dev->link->ap->sector_buf;
4263 int rc;
4264
4265 /* read ID data */
4266 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4267 if (rc)
4268 return rc;
4269
4270 /* is the device still there? */
4271 if (!ata_dev_same_device(dev, class, id))
4272 return -ENODEV;
4273
4274 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4275 return 0;
4276 }
4277
4278 /**
4279 * ata_dev_revalidate - Revalidate ATA device
4280 * @dev: device to revalidate
4281 * @new_class: new class code
4282 * @readid_flags: read ID flags
4283 *
4284 * Re-read IDENTIFY page, make sure @dev is still attached to the
4285 * port and reconfigure it according to the new IDENTIFY page.
4286 *
4287 * LOCKING:
4288 * Kernel thread context (may sleep)
4289 *
4290 * RETURNS:
4291 * 0 on success, negative errno otherwise
4292 */
4293 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4294 unsigned int readid_flags)
4295 {
4296 u64 n_sectors = dev->n_sectors;
4297 u64 n_native_sectors = dev->n_native_sectors;
4298 int rc;
4299
4300 if (!ata_dev_enabled(dev))
4301 return -ENODEV;
4302
4303 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4304 if (ata_class_enabled(new_class) &&
4305 new_class != ATA_DEV_ATA &&
4306 new_class != ATA_DEV_ATAPI &&
4307 new_class != ATA_DEV_ZAC &&
4308 new_class != ATA_DEV_SEMB) {
4309 ata_dev_info(dev, "class mismatch %u != %u\n",
4310 dev->class, new_class);
4311 rc = -ENODEV;
4312 goto fail;
4313 }
4314
4315 /* re-read ID */
4316 rc = ata_dev_reread_id(dev, readid_flags);
4317 if (rc)
4318 goto fail;
4319
4320 /* configure device according to the new ID */
4321 rc = ata_dev_configure(dev);
4322 if (rc)
4323 goto fail;
4324
4325 /* verify n_sectors hasn't changed */
4326 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4327 dev->n_sectors == n_sectors)
4328 return 0;
4329
4330 /* n_sectors has changed */
4331 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4332 (unsigned long long)n_sectors,
4333 (unsigned long long)dev->n_sectors);
4334
4335 /*
4336 * Something could have caused HPA to be unlocked
4337 * involuntarily. If n_native_sectors hasn't changed and the
4338 * new size matches it, keep the device.
4339 */
4340 if (dev->n_native_sectors == n_native_sectors &&
4341 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4342 ata_dev_warn(dev,
4343 "new n_sectors matches native, probably "
4344 "late HPA unlock, n_sectors updated\n");
4345 /* use the larger n_sectors */
4346 return 0;
4347 }
4348
4349 /*
4350 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4351 * unlocking HPA in those cases.
4352 *
4353 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4354 */
4355 if (dev->n_native_sectors == n_native_sectors &&
4356 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4357 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4358 ata_dev_warn(dev,
4359 "old n_sectors matches native, probably "
4360 "late HPA lock, will try to unlock HPA\n");
4361 /* try unlocking HPA */
4362 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4363 rc = -EIO;
4364 } else
4365 rc = -ENODEV;
4366
4367 /* restore original n_[native_]sectors and fail */
4368 dev->n_native_sectors = n_native_sectors;
4369 dev->n_sectors = n_sectors;
4370 fail:
4371 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4372 return rc;
4373 }
4374
4375 struct ata_blacklist_entry {
4376 const char *model_num;
4377 const char *model_rev;
4378 unsigned long horkage;
4379 };
4380
4381 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4382 /* Devices with DMA related problems under Linux */
4383 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4384 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4385 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4386 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4387 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4388 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4389 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4390 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4391 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4392 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4393 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4394 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4395 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4396 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4397 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4398 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4399 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4400 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4401 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4402 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4403 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4404 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4405 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4406 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4407 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4408 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4409 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4410 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4411 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4412 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4413 /* Odd clown on sil3726/4726 PMPs */
4414 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4415
4416 /* Weird ATAPI devices */
4417 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4418 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4419 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4420 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4421
4422 /*
4423 * Causes silent data corruption with higher max sects.
4424 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4425 */
4426 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4427
4428 /*
4429 * These devices time out with higher max sects.
4430 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4431 */
4432 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4433 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4434
4435 /* Devices we expect to fail diagnostics */
4436
4437 /* Devices where NCQ should be avoided */
4438 /* NCQ is slow */
4439 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4440 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4441 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4442 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4443 /* NCQ is broken */
4444 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4445 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4446 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4447 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4448 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4449
4450 /* Seagate NCQ + FLUSH CACHE firmware bug */
4451 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4452 ATA_HORKAGE_FIRMWARE_WARN },
4453
4454 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4455 ATA_HORKAGE_FIRMWARE_WARN },
4456
4457 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4458 ATA_HORKAGE_FIRMWARE_WARN },
4459
4460 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4461 ATA_HORKAGE_FIRMWARE_WARN },
4462
4463 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4464 the ST disks also have LPM issues */
4465 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
4466 ATA_HORKAGE_NOLPM, },
4467 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4468
4469 /* Blacklist entries taken from Silicon Image 3124/3132
4470 Windows driver .inf file - also several Linux problem reports */
4471 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4472 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4473 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4474
4475 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4476 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4477
4478 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4479 SD7SN6S256G and SD8SN8U256G */
4480 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4481
4482 /* devices which puke on READ_NATIVE_MAX */
4483 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4484 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4485 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4486 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4487
4488 /* this one allows HPA unlocking but fails IOs on the area */
4489 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4490
4491 /* Devices which report 1 sector over size HPA */
4492 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4493 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4494 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4495
4496 /* Devices which get the IVB wrong */
4497 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4498 /* Maybe we should just blacklist TSSTcorp... */
4499 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4500
4501 /* Devices that do not need bridging limits applied */
4502 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4503 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4504
4505 /* Devices which aren't very happy with higher link speeds */
4506 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4507 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4508
4509 /*
4510 * Devices which choke on SETXFER. Applies only if both the
4511 * device and controller are SATA.
4512 */
4513 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4514 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4515 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4516 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4517 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4518
4519 /* Crucial BX100 SSD 500GB has broken LPM support */
4520 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4521
4522 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4523 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4524 ATA_HORKAGE_ZERO_AFTER_TRIM |
4525 ATA_HORKAGE_NOLPM, },
4526 /* 512GB MX100 with newer firmware has only LPM issues */
4527 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4528 ATA_HORKAGE_NOLPM, },
4529
4530 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4531 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4532 ATA_HORKAGE_ZERO_AFTER_TRIM |
4533 ATA_HORKAGE_NOLPM, },
4534 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4535 ATA_HORKAGE_ZERO_AFTER_TRIM |
4536 ATA_HORKAGE_NOLPM, },
4537
4538 /* These specific Samsung models/firmware-revs do not handle LPM well */
4539 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4540 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4541 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, },
4542 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4543
4544 /* devices that don't properly handle queued TRIM commands */
4545 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4546 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4547 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4548 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4549 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4550 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4551 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4552 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4553 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4554 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4555 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4556 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4557 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4558 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4559 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4560 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4562 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563
4564 /* devices that don't properly handle TRIM commands */
4565 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4566
4567 /*
4568 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4569 * (Return Zero After Trim) flags in the ATA Command Set are
4570 * unreliable in the sense that they only define what happens if
4571 * the device successfully executed the DSM TRIM command. TRIM
4572 * is only advisory, however, and the device is free to silently
4573 * ignore all or parts of the request.
4574 *
4575 * Whitelist drives that are known to reliably return zeroes
4576 * after TRIM.
4577 */
4578
4579 /*
4580 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4581 * that model before whitelisting all other intel SSDs.
4582 */
4583 { "INTEL*SSDSC2MH*", NULL, 0, },
4584
4585 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4586 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4587 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4588 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4589 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4590 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4591 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4592 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4593
4594 /*
4595 * Some WD SATA-I drives spin up and down erratically when the link
4596 * is put into the slumber mode. We don't have full list of the
4597 * affected devices. Disable LPM if the device matches one of the
4598 * known prefixes and is SATA-1. As a side effect LPM partial is
4599 * lost too.
4600 *
4601 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4602 */
4603 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4604 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4605 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4606 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4607 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4608 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4609 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4610
4611 /* End Marker */
4612 { }
4613 };
4614
4615 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4616 {
4617 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4618 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4619 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4620
4621 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4622 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4623
4624 while (ad->model_num) {
4625 if (glob_match(ad->model_num, model_num)) {
4626 if (ad->model_rev == NULL)
4627 return ad->horkage;
4628 if (glob_match(ad->model_rev, model_rev))
4629 return ad->horkage;
4630 }
4631 ad++;
4632 }
4633 return 0;
4634 }
4635
4636 static int ata_dma_blacklisted(const struct ata_device *dev)
4637 {
4638 /* We don't support polling DMA.
4639 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4640 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4641 */
4642 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4643 (dev->flags & ATA_DFLAG_CDB_INTR))
4644 return 1;
4645 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4646 }
4647
4648 /**
4649 * ata_is_40wire - check drive side detection
4650 * @dev: device
4651 *
4652 * Perform drive side detection decoding, allowing for device vendors
4653 * who can't follow the documentation.
4654 */
4655
4656 static int ata_is_40wire(struct ata_device *dev)
4657 {
4658 if (dev->horkage & ATA_HORKAGE_IVB)
4659 return ata_drive_40wire_relaxed(dev->id);
4660 return ata_drive_40wire(dev->id);
4661 }
4662
4663 /**
4664 * cable_is_40wire - 40/80/SATA decider
4665 * @ap: port to consider
4666 *
4667 * This function encapsulates the policy for speed management
4668 * in one place. At the moment we don't cache the result but
4669 * there is a good case for setting ap->cbl to the result when
4670 * we are called with unknown cables (and figuring out if it
4671 * impacts hotplug at all).
4672 *
4673 * Return 1 if the cable appears to be 40 wire.
4674 */
4675
4676 static int cable_is_40wire(struct ata_port *ap)
4677 {
4678 struct ata_link *link;
4679 struct ata_device *dev;
4680
4681 /* If the controller thinks we are 40 wire, we are. */
4682 if (ap->cbl == ATA_CBL_PATA40)
4683 return 1;
4684
4685 /* If the controller thinks we are 80 wire, we are. */
4686 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4687 return 0;
4688
4689 /* If the system is known to be 40 wire short cable (eg
4690 * laptop), then we allow 80 wire modes even if the drive
4691 * isn't sure.
4692 */
4693 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4694 return 0;
4695
4696 /* If the controller doesn't know, we scan.
4697 *
4698 * Note: We look for all 40 wire detects at this point. Any
4699 * 80 wire detect is taken to be 80 wire cable because
4700 * - in many setups only the one drive (slave if present) will
4701 * give a valid detect
4702 * - if you have a non detect capable drive you don't want it
4703 * to colour the choice
4704 */
4705 ata_for_each_link(link, ap, EDGE) {
4706 ata_for_each_dev(dev, link, ENABLED) {
4707 if (!ata_is_40wire(dev))
4708 return 0;
4709 }
4710 }
4711 return 1;
4712 }
4713
4714 /**
4715 * ata_dev_xfermask - Compute supported xfermask of the given device
4716 * @dev: Device to compute xfermask for
4717 *
4718 * Compute supported xfermask of @dev and store it in
4719 * dev->*_mask. This function is responsible for applying all
4720 * known limits including host controller limits, device
4721 * blacklist, etc...
4722 *
4723 * LOCKING:
4724 * None.
4725 */
4726 static void ata_dev_xfermask(struct ata_device *dev)
4727 {
4728 struct ata_link *link = dev->link;
4729 struct ata_port *ap = link->ap;
4730 struct ata_host *host = ap->host;
4731 unsigned long xfer_mask;
4732
4733 /* controller modes available */
4734 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4735 ap->mwdma_mask, ap->udma_mask);
4736
4737 /* drive modes available */
4738 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4739 dev->mwdma_mask, dev->udma_mask);
4740 xfer_mask &= ata_id_xfermask(dev->id);
4741
4742 /*
4743 * CFA Advanced TrueIDE timings are not allowed on a shared
4744 * cable
4745 */
4746 if (ata_dev_pair(dev)) {
4747 /* No PIO5 or PIO6 */
4748 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4749 /* No MWDMA3 or MWDMA 4 */
4750 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4751 }
4752
4753 if (ata_dma_blacklisted(dev)) {
4754 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4755 ata_dev_warn(dev,
4756 "device is on DMA blacklist, disabling DMA\n");
4757 }
4758
4759 if ((host->flags & ATA_HOST_SIMPLEX) &&
4760 host->simplex_claimed && host->simplex_claimed != ap) {
4761 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4762 ata_dev_warn(dev,
4763 "simplex DMA is claimed by other device, disabling DMA\n");
4764 }
4765
4766 if (ap->flags & ATA_FLAG_NO_IORDY)
4767 xfer_mask &= ata_pio_mask_no_iordy(dev);
4768
4769 if (ap->ops->mode_filter)
4770 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4771
4772 /* Apply cable rule here. Don't apply it early because when
4773 * we handle hot plug the cable type can itself change.
4774 * Check this last so that we know if the transfer rate was
4775 * solely limited by the cable.
4776 * Unknown or 80 wire cables reported host side are checked
4777 * drive side as well. Cases where we know a 40wire cable
4778 * is used safely for 80 are not checked here.
4779 */
4780 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4781 /* UDMA/44 or higher would be available */
4782 if (cable_is_40wire(ap)) {
4783 ata_dev_warn(dev,
4784 "limited to UDMA/33 due to 40-wire cable\n");
4785 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4786 }
4787
4788 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4789 &dev->mwdma_mask, &dev->udma_mask);
4790 }
4791
4792 /**
4793 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4794 * @dev: Device to which command will be sent
4795 *
4796 * Issue SET FEATURES - XFER MODE command to device @dev
4797 * on port @ap.
4798 *
4799 * LOCKING:
4800 * PCI/etc. bus probe sem.
4801 *
4802 * RETURNS:
4803 * 0 on success, AC_ERR_* mask otherwise.
4804 */
4805
4806 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4807 {
4808 struct ata_taskfile tf;
4809 unsigned int err_mask;
4810
4811 /* set up set-features taskfile */
4812 DPRINTK("set features - xfer mode\n");
4813
4814 /* Some controllers and ATAPI devices show flaky interrupt
4815 * behavior after setting xfer mode. Use polling instead.
4816 */
4817 ata_tf_init(dev, &tf);
4818 tf.command = ATA_CMD_SET_FEATURES;
4819 tf.feature = SETFEATURES_XFER;
4820 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4821 tf.protocol = ATA_PROT_NODATA;
4822 /* If we are using IORDY we must send the mode setting command */
4823 if (ata_pio_need_iordy(dev))
4824 tf.nsect = dev->xfer_mode;
4825 /* If the device has IORDY and the controller does not - turn it off */
4826 else if (ata_id_has_iordy(dev->id))
4827 tf.nsect = 0x01;
4828 else /* In the ancient relic department - skip all of this */
4829 return 0;
4830
4831 /* On some disks, this command causes spin-up, so we need longer timeout */
4832 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4833
4834 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4835 return err_mask;
4836 }
4837
4838 /**
4839 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4840 * @dev: Device to which command will be sent
4841 * @enable: Whether to enable or disable the feature
4842 * @feature: The sector count represents the feature to set
4843 *
4844 * Issue SET FEATURES - SATA FEATURES command to device @dev
4845 * on port @ap with sector count
4846 *
4847 * LOCKING:
4848 * PCI/etc. bus probe sem.
4849 *
4850 * RETURNS:
4851 * 0 on success, AC_ERR_* mask otherwise.
4852 */
4853 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4854 {
4855 struct ata_taskfile tf;
4856 unsigned int err_mask;
4857 unsigned long timeout = 0;
4858
4859 /* set up set-features taskfile */
4860 DPRINTK("set features - SATA features\n");
4861
4862 ata_tf_init(dev, &tf);
4863 tf.command = ATA_CMD_SET_FEATURES;
4864 tf.feature = enable;
4865 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4866 tf.protocol = ATA_PROT_NODATA;
4867 tf.nsect = feature;
4868
4869 if (enable == SETFEATURES_SPINUP)
4870 timeout = ata_probe_timeout ?
4871 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4872 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4873
4874 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4875 return err_mask;
4876 }
4877 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4878
4879 /**
4880 * ata_dev_init_params - Issue INIT DEV PARAMS command
4881 * @dev: Device to which command will be sent
4882 * @heads: Number of heads (taskfile parameter)
4883 * @sectors: Number of sectors (taskfile parameter)
4884 *
4885 * LOCKING:
4886 * Kernel thread context (may sleep)
4887 *
4888 * RETURNS:
4889 * 0 on success, AC_ERR_* mask otherwise.
4890 */
4891 static unsigned int ata_dev_init_params(struct ata_device *dev,
4892 u16 heads, u16 sectors)
4893 {
4894 struct ata_taskfile tf;
4895 unsigned int err_mask;
4896
4897 /* Number of sectors per track 1-255. Number of heads 1-16 */
4898 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4899 return AC_ERR_INVALID;
4900
4901 /* set up init dev params taskfile */
4902 DPRINTK("init dev params \n");
4903
4904 ata_tf_init(dev, &tf);
4905 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4906 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4907 tf.protocol = ATA_PROT_NODATA;
4908 tf.nsect = sectors;
4909 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4910
4911 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4912 /* A clean abort indicates an original or just out of spec drive
4913 and we should continue as we issue the setup based on the
4914 drive reported working geometry */
4915 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4916 err_mask = 0;
4917
4918 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4919 return err_mask;
4920 }
4921
4922 /**
4923 * atapi_check_dma - Check whether ATAPI DMA can be supported
4924 * @qc: Metadata associated with taskfile to check
4925 *
4926 * Allow low-level driver to filter ATA PACKET commands, returning
4927 * a status indicating whether or not it is OK to use DMA for the
4928 * supplied PACKET command.
4929 *
4930 * LOCKING:
4931 * spin_lock_irqsave(host lock)
4932 *
4933 * RETURNS: 0 when ATAPI DMA can be used
4934 * nonzero otherwise
4935 */
4936 int atapi_check_dma(struct ata_queued_cmd *qc)
4937 {
4938 struct ata_port *ap = qc->ap;
4939
4940 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4941 * few ATAPI devices choke on such DMA requests.
4942 */
4943 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4944 unlikely(qc->nbytes & 15))
4945 return 1;
4946
4947 if (ap->ops->check_atapi_dma)
4948 return ap->ops->check_atapi_dma(qc);
4949
4950 return 0;
4951 }
4952
4953 /**
4954 * ata_std_qc_defer - Check whether a qc needs to be deferred
4955 * @qc: ATA command in question
4956 *
4957 * Non-NCQ commands cannot run with any other command, NCQ or
4958 * not. As upper layer only knows the queue depth, we are
4959 * responsible for maintaining exclusion. This function checks
4960 * whether a new command @qc can be issued.
4961 *
4962 * LOCKING:
4963 * spin_lock_irqsave(host lock)
4964 *
4965 * RETURNS:
4966 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4967 */
4968 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4969 {
4970 struct ata_link *link = qc->dev->link;
4971
4972 if (ata_is_ncq(qc->tf.protocol)) {
4973 if (!ata_tag_valid(link->active_tag))
4974 return 0;
4975 } else {
4976 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4977 return 0;
4978 }
4979
4980 return ATA_DEFER_LINK;
4981 }
4982
4983 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4984 {
4985 return AC_ERR_OK;
4986 }
4987
4988 /**
4989 * ata_sg_init - Associate command with scatter-gather table.
4990 * @qc: Command to be associated
4991 * @sg: Scatter-gather table.
4992 * @n_elem: Number of elements in s/g table.
4993 *
4994 * Initialize the data-related elements of queued_cmd @qc
4995 * to point to a scatter-gather table @sg, containing @n_elem
4996 * elements.
4997 *
4998 * LOCKING:
4999 * spin_lock_irqsave(host lock)
5000 */
5001 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5002 unsigned int n_elem)
5003 {
5004 qc->sg = sg;
5005 qc->n_elem = n_elem;
5006 qc->cursg = qc->sg;
5007 }
5008
5009 #ifdef CONFIG_HAS_DMA
5010
5011 /**
5012 * ata_sg_clean - Unmap DMA memory associated with command
5013 * @qc: Command containing DMA memory to be released
5014 *
5015 * Unmap all mapped DMA memory associated with this command.
5016 *
5017 * LOCKING:
5018 * spin_lock_irqsave(host lock)
5019 */
5020 static void ata_sg_clean(struct ata_queued_cmd *qc)
5021 {
5022 struct ata_port *ap = qc->ap;
5023 struct scatterlist *sg = qc->sg;
5024 int dir = qc->dma_dir;
5025
5026 WARN_ON_ONCE(sg == NULL);
5027
5028 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5029
5030 if (qc->n_elem)
5031 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5032
5033 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5034 qc->sg = NULL;
5035 }
5036
5037 /**
5038 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5039 * @qc: Command with scatter-gather table to be mapped.
5040 *
5041 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5042 *
5043 * LOCKING:
5044 * spin_lock_irqsave(host lock)
5045 *
5046 * RETURNS:
5047 * Zero on success, negative on error.
5048 *
5049 */
5050 static int ata_sg_setup(struct ata_queued_cmd *qc)
5051 {
5052 struct ata_port *ap = qc->ap;
5053 unsigned int n_elem;
5054
5055 VPRINTK("ENTER, ata%u\n", ap->print_id);
5056
5057 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5058 if (n_elem < 1)
5059 return -1;
5060
5061 VPRINTK("%d sg elements mapped\n", n_elem);
5062 qc->orig_n_elem = qc->n_elem;
5063 qc->n_elem = n_elem;
5064 qc->flags |= ATA_QCFLAG_DMAMAP;
5065
5066 return 0;
5067 }
5068
5069 #else /* !CONFIG_HAS_DMA */
5070
5071 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5072 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5073
5074 #endif /* !CONFIG_HAS_DMA */
5075
5076 /**
5077 * swap_buf_le16 - swap halves of 16-bit words in place
5078 * @buf: Buffer to swap
5079 * @buf_words: Number of 16-bit words in buffer.
5080 *
5081 * Swap halves of 16-bit words if needed to convert from
5082 * little-endian byte order to native cpu byte order, or
5083 * vice-versa.
5084 *
5085 * LOCKING:
5086 * Inherited from caller.
5087 */
5088 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5089 {
5090 #ifdef __BIG_ENDIAN
5091 unsigned int i;
5092
5093 for (i = 0; i < buf_words; i++)
5094 buf[i] = le16_to_cpu(buf[i]);
5095 #endif /* __BIG_ENDIAN */
5096 }
5097
5098 /**
5099 * ata_qc_new_init - Request an available ATA command, and initialize it
5100 * @dev: Device from whom we request an available command structure
5101 * @tag: tag
5102 *
5103 * LOCKING:
5104 * None.
5105 */
5106
5107 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5108 {
5109 struct ata_port *ap = dev->link->ap;
5110 struct ata_queued_cmd *qc;
5111
5112 /* no command while frozen */
5113 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5114 return NULL;
5115
5116 /* libsas case */
5117 if (ap->flags & ATA_FLAG_SAS_HOST) {
5118 tag = ata_sas_allocate_tag(ap);
5119 if (tag < 0)
5120 return NULL;
5121 }
5122
5123 qc = __ata_qc_from_tag(ap, tag);
5124 qc->tag = qc->hw_tag = tag;
5125 qc->scsicmd = NULL;
5126 qc->ap = ap;
5127 qc->dev = dev;
5128
5129 ata_qc_reinit(qc);
5130
5131 return qc;
5132 }
5133
5134 /**
5135 * ata_qc_free - free unused ata_queued_cmd
5136 * @qc: Command to complete
5137 *
5138 * Designed to free unused ata_queued_cmd object
5139 * in case something prevents using it.
5140 *
5141 * LOCKING:
5142 * spin_lock_irqsave(host lock)
5143 */
5144 void ata_qc_free(struct ata_queued_cmd *qc)
5145 {
5146 struct ata_port *ap;
5147 unsigned int tag;
5148
5149 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5150 ap = qc->ap;
5151
5152 qc->flags = 0;
5153 tag = qc->tag;
5154 if (ata_tag_valid(tag)) {
5155 qc->tag = ATA_TAG_POISON;
5156 if (ap->flags & ATA_FLAG_SAS_HOST)
5157 ata_sas_free_tag(tag, ap);
5158 }
5159 }
5160
5161 void __ata_qc_complete(struct ata_queued_cmd *qc)
5162 {
5163 struct ata_port *ap;
5164 struct ata_link *link;
5165
5166 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5167 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5168 ap = qc->ap;
5169 link = qc->dev->link;
5170
5171 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5172 ata_sg_clean(qc);
5173
5174 /* command should be marked inactive atomically with qc completion */
5175 if (ata_is_ncq(qc->tf.protocol)) {
5176 link->sactive &= ~(1 << qc->hw_tag);
5177 if (!link->sactive)
5178 ap->nr_active_links--;
5179 } else {
5180 link->active_tag = ATA_TAG_POISON;
5181 ap->nr_active_links--;
5182 }
5183
5184 /* clear exclusive status */
5185 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5186 ap->excl_link == link))
5187 ap->excl_link = NULL;
5188
5189 /* atapi: mark qc as inactive to prevent the interrupt handler
5190 * from completing the command twice later, before the error handler
5191 * is called. (when rc != 0 and atapi request sense is needed)
5192 */
5193 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5194 ap->qc_active &= ~(1ULL << qc->tag);
5195
5196 /* call completion callback */
5197 qc->complete_fn(qc);
5198 }
5199
5200 static void fill_result_tf(struct ata_queued_cmd *qc)
5201 {
5202 struct ata_port *ap = qc->ap;
5203
5204 qc->result_tf.flags = qc->tf.flags;
5205 ap->ops->qc_fill_rtf(qc);
5206 }
5207
5208 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5209 {
5210 struct ata_device *dev = qc->dev;
5211
5212 if (!ata_is_data(qc->tf.protocol))
5213 return;
5214
5215 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5216 return;
5217
5218 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5219 }
5220
5221 /**
5222 * ata_qc_complete - Complete an active ATA command
5223 * @qc: Command to complete
5224 *
5225 * Indicate to the mid and upper layers that an ATA command has
5226 * completed, with either an ok or not-ok status.
5227 *
5228 * Refrain from calling this function multiple times when
5229 * successfully completing multiple NCQ commands.
5230 * ata_qc_complete_multiple() should be used instead, which will
5231 * properly update IRQ expect state.
5232 *
5233 * LOCKING:
5234 * spin_lock_irqsave(host lock)
5235 */
5236 void ata_qc_complete(struct ata_queued_cmd *qc)
5237 {
5238 struct ata_port *ap = qc->ap;
5239
5240 /* Trigger the LED (if available) */
5241 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5242
5243 /* XXX: New EH and old EH use different mechanisms to
5244 * synchronize EH with regular execution path.
5245 *
5246 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5247 * Normal execution path is responsible for not accessing a
5248 * failed qc. libata core enforces the rule by returning NULL
5249 * from ata_qc_from_tag() for failed qcs.
5250 *
5251 * Old EH depends on ata_qc_complete() nullifying completion
5252 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5253 * not synchronize with interrupt handler. Only PIO task is
5254 * taken care of.
5255 */
5256 if (ap->ops->error_handler) {
5257 struct ata_device *dev = qc->dev;
5258 struct ata_eh_info *ehi = &dev->link->eh_info;
5259
5260 if (unlikely(qc->err_mask))
5261 qc->flags |= ATA_QCFLAG_FAILED;
5262
5263 /*
5264 * Finish internal commands without any further processing
5265 * and always with the result TF filled.
5266 */
5267 if (unlikely(ata_tag_internal(qc->tag))) {
5268 fill_result_tf(qc);
5269 trace_ata_qc_complete_internal(qc);
5270 __ata_qc_complete(qc);
5271 return;
5272 }
5273
5274 /*
5275 * Non-internal qc has failed. Fill the result TF and
5276 * summon EH.
5277 */
5278 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5279 fill_result_tf(qc);
5280 trace_ata_qc_complete_failed(qc);
5281 ata_qc_schedule_eh(qc);
5282 return;
5283 }
5284
5285 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5286
5287 /* read result TF if requested */
5288 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5289 fill_result_tf(qc);
5290
5291 trace_ata_qc_complete_done(qc);
5292 /* Some commands need post-processing after successful
5293 * completion.
5294 */
5295 switch (qc->tf.command) {
5296 case ATA_CMD_SET_FEATURES:
5297 if (qc->tf.feature != SETFEATURES_WC_ON &&
5298 qc->tf.feature != SETFEATURES_WC_OFF &&
5299 qc->tf.feature != SETFEATURES_RA_ON &&
5300 qc->tf.feature != SETFEATURES_RA_OFF)
5301 break;
5302 /* fall through */
5303 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5304 case ATA_CMD_SET_MULTI: /* multi_count changed */
5305 /* revalidate device */
5306 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5307 ata_port_schedule_eh(ap);
5308 break;
5309
5310 case ATA_CMD_SLEEP:
5311 dev->flags |= ATA_DFLAG_SLEEPING;
5312 break;
5313 }
5314
5315 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5316 ata_verify_xfer(qc);
5317
5318 __ata_qc_complete(qc);
5319 } else {
5320 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5321 return;
5322
5323 /* read result TF if failed or requested */
5324 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5325 fill_result_tf(qc);
5326
5327 __ata_qc_complete(qc);
5328 }
5329 }
5330
5331 /**
5332 * ata_qc_get_active - get bitmask of active qcs
5333 * @ap: port in question
5334 *
5335 * LOCKING:
5336 * spin_lock_irqsave(host lock)
5337 *
5338 * RETURNS:
5339 * Bitmask of active qcs
5340 */
5341 u64 ata_qc_get_active(struct ata_port *ap)
5342 {
5343 u64 qc_active = ap->qc_active;
5344
5345 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5346 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5347 qc_active |= (1 << 0);
5348 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5349 }
5350
5351 return qc_active;
5352 }
5353 EXPORT_SYMBOL_GPL(ata_qc_get_active);
5354
5355 /**
5356 * ata_qc_complete_multiple - Complete multiple qcs successfully
5357 * @ap: port in question
5358 * @qc_active: new qc_active mask
5359 *
5360 * Complete in-flight commands. This functions is meant to be
5361 * called from low-level driver's interrupt routine to complete
5362 * requests normally. ap->qc_active and @qc_active is compared
5363 * and commands are completed accordingly.
5364 *
5365 * Always use this function when completing multiple NCQ commands
5366 * from IRQ handlers instead of calling ata_qc_complete()
5367 * multiple times to keep IRQ expect status properly in sync.
5368 *
5369 * LOCKING:
5370 * spin_lock_irqsave(host lock)
5371 *
5372 * RETURNS:
5373 * Number of completed commands on success, -errno otherwise.
5374 */
5375 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
5376 {
5377 u64 done_mask, ap_qc_active = ap->qc_active;
5378 int nr_done = 0;
5379
5380 /*
5381 * If the internal tag is set on ap->qc_active, then we care about
5382 * bit0 on the passed in qc_active mask. Move that bit up to match
5383 * the internal tag.
5384 */
5385 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5386 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
5387 qc_active ^= qc_active & 0x01;
5388 }
5389
5390 done_mask = ap_qc_active ^ qc_active;
5391
5392 if (unlikely(done_mask & qc_active)) {
5393 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
5394 ap->qc_active, qc_active);
5395 return -EINVAL;
5396 }
5397
5398 while (done_mask) {
5399 struct ata_queued_cmd *qc;
5400 unsigned int tag = __ffs64(done_mask);
5401
5402 qc = ata_qc_from_tag(ap, tag);
5403 if (qc) {
5404 ata_qc_complete(qc);
5405 nr_done++;
5406 }
5407 done_mask &= ~(1ULL << tag);
5408 }
5409
5410 return nr_done;
5411 }
5412
5413 /**
5414 * ata_qc_issue - issue taskfile to device
5415 * @qc: command to issue to device
5416 *
5417 * Prepare an ATA command to submission to device.
5418 * This includes mapping the data into a DMA-able
5419 * area, filling in the S/G table, and finally
5420 * writing the taskfile to hardware, starting the command.
5421 *
5422 * LOCKING:
5423 * spin_lock_irqsave(host lock)
5424 */
5425 void ata_qc_issue(struct ata_queued_cmd *qc)
5426 {
5427 struct ata_port *ap = qc->ap;
5428 struct ata_link *link = qc->dev->link;
5429 u8 prot = qc->tf.protocol;
5430
5431 /* Make sure only one non-NCQ command is outstanding. The
5432 * check is skipped for old EH because it reuses active qc to
5433 * request ATAPI sense.
5434 */
5435 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5436
5437 if (ata_is_ncq(prot)) {
5438 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5439
5440 if (!link->sactive)
5441 ap->nr_active_links++;
5442 link->sactive |= 1 << qc->hw_tag;
5443 } else {
5444 WARN_ON_ONCE(link->sactive);
5445
5446 ap->nr_active_links++;
5447 link->active_tag = qc->tag;
5448 }
5449
5450 qc->flags |= ATA_QCFLAG_ACTIVE;
5451 ap->qc_active |= 1ULL << qc->tag;
5452
5453 /*
5454 * We guarantee to LLDs that they will have at least one
5455 * non-zero sg if the command is a data command.
5456 */
5457 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5458 goto sys_err;
5459
5460 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5461 (ap->flags & ATA_FLAG_PIO_DMA)))
5462 if (ata_sg_setup(qc))
5463 goto sys_err;
5464
5465 /* if device is sleeping, schedule reset and abort the link */
5466 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5467 link->eh_info.action |= ATA_EH_RESET;
5468 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5469 ata_link_abort(link);
5470 return;
5471 }
5472
5473 qc->err_mask |= ap->ops->qc_prep(qc);
5474 if (unlikely(qc->err_mask))
5475 goto err;
5476 trace_ata_qc_issue(qc);
5477 qc->err_mask |= ap->ops->qc_issue(qc);
5478 if (unlikely(qc->err_mask))
5479 goto err;
5480 return;
5481
5482 sys_err:
5483 qc->err_mask |= AC_ERR_SYSTEM;
5484 err:
5485 ata_qc_complete(qc);
5486 }
5487
5488 /**
5489 * sata_scr_valid - test whether SCRs are accessible
5490 * @link: ATA link to test SCR accessibility for
5491 *
5492 * Test whether SCRs are accessible for @link.
5493 *
5494 * LOCKING:
5495 * None.
5496 *
5497 * RETURNS:
5498 * 1 if SCRs are accessible, 0 otherwise.
5499 */
5500 int sata_scr_valid(struct ata_link *link)
5501 {
5502 struct ata_port *ap = link->ap;
5503
5504 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5505 }
5506
5507 /**
5508 * sata_scr_read - read SCR register of the specified port
5509 * @link: ATA link to read SCR for
5510 * @reg: SCR to read
5511 * @val: Place to store read value
5512 *
5513 * Read SCR register @reg of @link into *@val. This function is
5514 * guaranteed to succeed if @link is ap->link, the cable type of
5515 * the port is SATA and the port implements ->scr_read.
5516 *
5517 * LOCKING:
5518 * None if @link is ap->link. Kernel thread context otherwise.
5519 *
5520 * RETURNS:
5521 * 0 on success, negative errno on failure.
5522 */
5523 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5524 {
5525 if (ata_is_host_link(link)) {
5526 if (sata_scr_valid(link))
5527 return link->ap->ops->scr_read(link, reg, val);
5528 return -EOPNOTSUPP;
5529 }
5530
5531 return sata_pmp_scr_read(link, reg, val);
5532 }
5533
5534 /**
5535 * sata_scr_write - write SCR register of the specified port
5536 * @link: ATA link to write SCR for
5537 * @reg: SCR to write
5538 * @val: value to write
5539 *
5540 * Write @val to SCR register @reg of @link. This function is
5541 * guaranteed to succeed if @link is ap->link, the cable type of
5542 * the port is SATA and the port implements ->scr_read.
5543 *
5544 * LOCKING:
5545 * None if @link is ap->link. Kernel thread context otherwise.
5546 *
5547 * RETURNS:
5548 * 0 on success, negative errno on failure.
5549 */
5550 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5551 {
5552 if (ata_is_host_link(link)) {
5553 if (sata_scr_valid(link))
5554 return link->ap->ops->scr_write(link, reg, val);
5555 return -EOPNOTSUPP;
5556 }
5557
5558 return sata_pmp_scr_write(link, reg, val);
5559 }
5560
5561 /**
5562 * sata_scr_write_flush - write SCR register of the specified port and flush
5563 * @link: ATA link to write SCR for
5564 * @reg: SCR to write
5565 * @val: value to write
5566 *
5567 * This function is identical to sata_scr_write() except that this
5568 * function performs flush after writing to the register.
5569 *
5570 * LOCKING:
5571 * None if @link is ap->link. Kernel thread context otherwise.
5572 *
5573 * RETURNS:
5574 * 0 on success, negative errno on failure.
5575 */
5576 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5577 {
5578 if (ata_is_host_link(link)) {
5579 int rc;
5580
5581 if (sata_scr_valid(link)) {
5582 rc = link->ap->ops->scr_write(link, reg, val);
5583 if (rc == 0)
5584 rc = link->ap->ops->scr_read(link, reg, &val);
5585 return rc;
5586 }
5587 return -EOPNOTSUPP;
5588 }
5589
5590 return sata_pmp_scr_write(link, reg, val);
5591 }
5592
5593 /**
5594 * ata_phys_link_online - test whether the given link is online
5595 * @link: ATA link to test
5596 *
5597 * Test whether @link is online. Note that this function returns
5598 * 0 if online status of @link cannot be obtained, so
5599 * ata_link_online(link) != !ata_link_offline(link).
5600 *
5601 * LOCKING:
5602 * None.
5603 *
5604 * RETURNS:
5605 * True if the port online status is available and online.
5606 */
5607 bool ata_phys_link_online(struct ata_link *link)
5608 {
5609 u32 sstatus;
5610
5611 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5612 ata_sstatus_online(sstatus))
5613 return true;
5614 return false;
5615 }
5616
5617 /**
5618 * ata_phys_link_offline - test whether the given link is offline
5619 * @link: ATA link to test
5620 *
5621 * Test whether @link is offline. Note that this function
5622 * returns 0 if offline status of @link cannot be obtained, so
5623 * ata_link_online(link) != !ata_link_offline(link).
5624 *
5625 * LOCKING:
5626 * None.
5627 *
5628 * RETURNS:
5629 * True if the port offline status is available and offline.
5630 */
5631 bool ata_phys_link_offline(struct ata_link *link)
5632 {
5633 u32 sstatus;
5634
5635 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5636 !ata_sstatus_online(sstatus))
5637 return true;
5638 return false;
5639 }
5640
5641 /**
5642 * ata_link_online - test whether the given link is online
5643 * @link: ATA link to test
5644 *
5645 * Test whether @link is online. This is identical to
5646 * ata_phys_link_online() when there's no slave link. When
5647 * there's a slave link, this function should only be called on
5648 * the master link and will return true if any of M/S links is
5649 * online.
5650 *
5651 * LOCKING:
5652 * None.
5653 *
5654 * RETURNS:
5655 * True if the port online status is available and online.
5656 */
5657 bool ata_link_online(struct ata_link *link)
5658 {
5659 struct ata_link *slave = link->ap->slave_link;
5660
5661 WARN_ON(link == slave); /* shouldn't be called on slave link */
5662
5663 return ata_phys_link_online(link) ||
5664 (slave && ata_phys_link_online(slave));
5665 }
5666
5667 /**
5668 * ata_link_offline - test whether the given link is offline
5669 * @link: ATA link to test
5670 *
5671 * Test whether @link is offline. This is identical to
5672 * ata_phys_link_offline() when there's no slave link. When
5673 * there's a slave link, this function should only be called on
5674 * the master link and will return true if both M/S links are
5675 * offline.
5676 *
5677 * LOCKING:
5678 * None.
5679 *
5680 * RETURNS:
5681 * True if the port offline status is available and offline.
5682 */
5683 bool ata_link_offline(struct ata_link *link)
5684 {
5685 struct ata_link *slave = link->ap->slave_link;
5686
5687 WARN_ON(link == slave); /* shouldn't be called on slave link */
5688
5689 return ata_phys_link_offline(link) &&
5690 (!slave || ata_phys_link_offline(slave));
5691 }
5692
5693 #ifdef CONFIG_PM
5694 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5695 unsigned int action, unsigned int ehi_flags,
5696 bool async)
5697 {
5698 struct ata_link *link;
5699 unsigned long flags;
5700
5701 /* Previous resume operation might still be in
5702 * progress. Wait for PM_PENDING to clear.
5703 */
5704 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5705 ata_port_wait_eh(ap);
5706 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5707 }
5708
5709 /* request PM ops to EH */
5710 spin_lock_irqsave(ap->lock, flags);
5711
5712 ap->pm_mesg = mesg;
5713 ap->pflags |= ATA_PFLAG_PM_PENDING;
5714 ata_for_each_link(link, ap, HOST_FIRST) {
5715 link->eh_info.action |= action;
5716 link->eh_info.flags |= ehi_flags;
5717 }
5718
5719 ata_port_schedule_eh(ap);
5720
5721 spin_unlock_irqrestore(ap->lock, flags);
5722
5723 if (!async) {
5724 ata_port_wait_eh(ap);
5725 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5726 }
5727 }
5728
5729 /*
5730 * On some hardware, device fails to respond after spun down for suspend. As
5731 * the device won't be used before being resumed, we don't need to touch the
5732 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5733 *
5734 * http://thread.gmane.org/gmane.linux.ide/46764
5735 */
5736 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5737 | ATA_EHI_NO_AUTOPSY
5738 | ATA_EHI_NO_RECOVERY;
5739
5740 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5741 {
5742 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5743 }
5744
5745 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5746 {
5747 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5748 }
5749
5750 static int ata_port_pm_suspend(struct device *dev)
5751 {
5752 struct ata_port *ap = to_ata_port(dev);
5753
5754 if (pm_runtime_suspended(dev))
5755 return 0;
5756
5757 ata_port_suspend(ap, PMSG_SUSPEND);
5758 return 0;
5759 }
5760
5761 static int ata_port_pm_freeze(struct device *dev)
5762 {
5763 struct ata_port *ap = to_ata_port(dev);
5764
5765 if (pm_runtime_suspended(dev))
5766 return 0;
5767
5768 ata_port_suspend(ap, PMSG_FREEZE);
5769 return 0;
5770 }
5771
5772 static int ata_port_pm_poweroff(struct device *dev)
5773 {
5774 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5775 return 0;
5776 }
5777
5778 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5779 | ATA_EHI_QUIET;
5780
5781 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5782 {
5783 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5784 }
5785
5786 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5787 {
5788 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5789 }
5790
5791 static int ata_port_pm_resume(struct device *dev)
5792 {
5793 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5794 pm_runtime_disable(dev);
5795 pm_runtime_set_active(dev);
5796 pm_runtime_enable(dev);
5797 return 0;
5798 }
5799
5800 /*
5801 * For ODDs, the upper layer will poll for media change every few seconds,
5802 * which will make it enter and leave suspend state every few seconds. And
5803 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5804 * is very little and the ODD may malfunction after constantly being reset.
5805 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5806 * ODD is attached to the port.
5807 */
5808 static int ata_port_runtime_idle(struct device *dev)
5809 {
5810 struct ata_port *ap = to_ata_port(dev);
5811 struct ata_link *link;
5812 struct ata_device *adev;
5813
5814 ata_for_each_link(link, ap, HOST_FIRST) {
5815 ata_for_each_dev(adev, link, ENABLED)
5816 if (adev->class == ATA_DEV_ATAPI &&
5817 !zpodd_dev_enabled(adev))
5818 return -EBUSY;
5819 }
5820
5821 return 0;
5822 }
5823
5824 static int ata_port_runtime_suspend(struct device *dev)
5825 {
5826 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5827 return 0;
5828 }
5829
5830 static int ata_port_runtime_resume(struct device *dev)
5831 {
5832 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5833 return 0;
5834 }
5835
5836 static const struct dev_pm_ops ata_port_pm_ops = {
5837 .suspend = ata_port_pm_suspend,
5838 .resume = ata_port_pm_resume,
5839 .freeze = ata_port_pm_freeze,
5840 .thaw = ata_port_pm_resume,
5841 .poweroff = ata_port_pm_poweroff,
5842 .restore = ata_port_pm_resume,
5843
5844 .runtime_suspend = ata_port_runtime_suspend,
5845 .runtime_resume = ata_port_runtime_resume,
5846 .runtime_idle = ata_port_runtime_idle,
5847 };
5848
5849 /* sas ports don't participate in pm runtime management of ata_ports,
5850 * and need to resume ata devices at the domain level, not the per-port
5851 * level. sas suspend/resume is async to allow parallel port recovery
5852 * since sas has multiple ata_port instances per Scsi_Host.
5853 */
5854 void ata_sas_port_suspend(struct ata_port *ap)
5855 {
5856 ata_port_suspend_async(ap, PMSG_SUSPEND);
5857 }
5858 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5859
5860 void ata_sas_port_resume(struct ata_port *ap)
5861 {
5862 ata_port_resume_async(ap, PMSG_RESUME);
5863 }
5864 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5865
5866 /**
5867 * ata_host_suspend - suspend host
5868 * @host: host to suspend
5869 * @mesg: PM message
5870 *
5871 * Suspend @host. Actual operation is performed by port suspend.
5872 */
5873 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5874 {
5875 host->dev->power.power_state = mesg;
5876 return 0;
5877 }
5878
5879 /**
5880 * ata_host_resume - resume host
5881 * @host: host to resume
5882 *
5883 * Resume @host. Actual operation is performed by port resume.
5884 */
5885 void ata_host_resume(struct ata_host *host)
5886 {
5887 host->dev->power.power_state = PMSG_ON;
5888 }
5889 #endif
5890
5891 const struct device_type ata_port_type = {
5892 .name = "ata_port",
5893 #ifdef CONFIG_PM
5894 .pm = &ata_port_pm_ops,
5895 #endif
5896 };
5897
5898 /**
5899 * ata_dev_init - Initialize an ata_device structure
5900 * @dev: Device structure to initialize
5901 *
5902 * Initialize @dev in preparation for probing.
5903 *
5904 * LOCKING:
5905 * Inherited from caller.
5906 */
5907 void ata_dev_init(struct ata_device *dev)
5908 {
5909 struct ata_link *link = ata_dev_phys_link(dev);
5910 struct ata_port *ap = link->ap;
5911 unsigned long flags;
5912
5913 /* SATA spd limit is bound to the attached device, reset together */
5914 link->sata_spd_limit = link->hw_sata_spd_limit;
5915 link->sata_spd = 0;
5916
5917 /* High bits of dev->flags are used to record warm plug
5918 * requests which occur asynchronously. Synchronize using
5919 * host lock.
5920 */
5921 spin_lock_irqsave(ap->lock, flags);
5922 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5923 dev->horkage = 0;
5924 spin_unlock_irqrestore(ap->lock, flags);
5925
5926 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5927 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5928 dev->pio_mask = UINT_MAX;
5929 dev->mwdma_mask = UINT_MAX;
5930 dev->udma_mask = UINT_MAX;
5931 }
5932
5933 /**
5934 * ata_link_init - Initialize an ata_link structure
5935 * @ap: ATA port link is attached to
5936 * @link: Link structure to initialize
5937 * @pmp: Port multiplier port number
5938 *
5939 * Initialize @link.
5940 *
5941 * LOCKING:
5942 * Kernel thread context (may sleep)
5943 */
5944 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5945 {
5946 int i;
5947
5948 /* clear everything except for devices */
5949 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5950 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5951
5952 link->ap = ap;
5953 link->pmp = pmp;
5954 link->active_tag = ATA_TAG_POISON;
5955 link->hw_sata_spd_limit = UINT_MAX;
5956
5957 /* can't use iterator, ap isn't initialized yet */
5958 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5959 struct ata_device *dev = &link->device[i];
5960
5961 dev->link = link;
5962 dev->devno = dev - link->device;
5963 #ifdef CONFIG_ATA_ACPI
5964 dev->gtf_filter = ata_acpi_gtf_filter;
5965 #endif
5966 ata_dev_init(dev);
5967 }
5968 }
5969
5970 /**
5971 * sata_link_init_spd - Initialize link->sata_spd_limit
5972 * @link: Link to configure sata_spd_limit for
5973 *
5974 * Initialize @link->[hw_]sata_spd_limit to the currently
5975 * configured value.
5976 *
5977 * LOCKING:
5978 * Kernel thread context (may sleep).
5979 *
5980 * RETURNS:
5981 * 0 on success, -errno on failure.
5982 */
5983 int sata_link_init_spd(struct ata_link *link)
5984 {
5985 u8 spd;
5986 int rc;
5987
5988 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5989 if (rc)
5990 return rc;
5991
5992 spd = (link->saved_scontrol >> 4) & 0xf;
5993 if (spd)
5994 link->hw_sata_spd_limit &= (1 << spd) - 1;
5995
5996 ata_force_link_limits(link);
5997
5998 link->sata_spd_limit = link->hw_sata_spd_limit;
5999
6000 return 0;
6001 }
6002
6003 /**
6004 * ata_port_alloc - allocate and initialize basic ATA port resources
6005 * @host: ATA host this allocated port belongs to
6006 *
6007 * Allocate and initialize basic ATA port resources.
6008 *
6009 * RETURNS:
6010 * Allocate ATA port on success, NULL on failure.
6011 *
6012 * LOCKING:
6013 * Inherited from calling layer (may sleep).
6014 */
6015 struct ata_port *ata_port_alloc(struct ata_host *host)
6016 {
6017 struct ata_port *ap;
6018
6019 DPRINTK("ENTER\n");
6020
6021 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6022 if (!ap)
6023 return NULL;
6024
6025 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
6026 ap->lock = &host->lock;
6027 ap->print_id = -1;
6028 ap->local_port_no = -1;
6029 ap->host = host;
6030 ap->dev = host->dev;
6031
6032 #if defined(ATA_VERBOSE_DEBUG)
6033 /* turn on all debugging levels */
6034 ap->msg_enable = 0x00FF;
6035 #elif defined(ATA_DEBUG)
6036 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6037 #else
6038 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6039 #endif
6040
6041 mutex_init(&ap->scsi_scan_mutex);
6042 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6043 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6044 INIT_LIST_HEAD(&ap->eh_done_q);
6045 init_waitqueue_head(&ap->eh_wait_q);
6046 init_completion(&ap->park_req_pending);
6047 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6048 TIMER_DEFERRABLE);
6049
6050 ap->cbl = ATA_CBL_NONE;
6051
6052 ata_link_init(ap, &ap->link, 0);
6053
6054 #ifdef ATA_IRQ_TRAP
6055 ap->stats.unhandled_irq = 1;
6056 ap->stats.idle_irq = 1;
6057 #endif
6058 ata_sff_port_init(ap);
6059
6060 return ap;
6061 }
6062
6063 static void ata_devres_release(struct device *gendev, void *res)
6064 {
6065 struct ata_host *host = dev_get_drvdata(gendev);
6066 int i;
6067
6068 for (i = 0; i < host->n_ports; i++) {
6069 struct ata_port *ap = host->ports[i];
6070
6071 if (!ap)
6072 continue;
6073
6074 if (ap->scsi_host)
6075 scsi_host_put(ap->scsi_host);
6076
6077 }
6078
6079 dev_set_drvdata(gendev, NULL);
6080 ata_host_put(host);
6081 }
6082
6083 static void ata_host_release(struct kref *kref)
6084 {
6085 struct ata_host *host = container_of(kref, struct ata_host, kref);
6086 int i;
6087
6088 for (i = 0; i < host->n_ports; i++) {
6089 struct ata_port *ap = host->ports[i];
6090
6091 kfree(ap->pmp_link);
6092 kfree(ap->slave_link);
6093 kfree(ap);
6094 host->ports[i] = NULL;
6095 }
6096 kfree(host);
6097 }
6098
6099 void ata_host_get(struct ata_host *host)
6100 {
6101 kref_get(&host->kref);
6102 }
6103
6104 void ata_host_put(struct ata_host *host)
6105 {
6106 kref_put(&host->kref, ata_host_release);
6107 }
6108
6109 /**
6110 * ata_host_alloc - allocate and init basic ATA host resources
6111 * @dev: generic device this host is associated with
6112 * @max_ports: maximum number of ATA ports associated with this host
6113 *
6114 * Allocate and initialize basic ATA host resources. LLD calls
6115 * this function to allocate a host, initializes it fully and
6116 * attaches it using ata_host_register().
6117 *
6118 * @max_ports ports are allocated and host->n_ports is
6119 * initialized to @max_ports. The caller is allowed to decrease
6120 * host->n_ports before calling ata_host_register(). The unused
6121 * ports will be automatically freed on registration.
6122 *
6123 * RETURNS:
6124 * Allocate ATA host on success, NULL on failure.
6125 *
6126 * LOCKING:
6127 * Inherited from calling layer (may sleep).
6128 */
6129 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6130 {
6131 struct ata_host *host;
6132 size_t sz;
6133 int i;
6134 void *dr;
6135
6136 DPRINTK("ENTER\n");
6137
6138 /* alloc a container for our list of ATA ports (buses) */
6139 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6140 host = kzalloc(sz, GFP_KERNEL);
6141 if (!host)
6142 return NULL;
6143
6144 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6145 goto err_free;
6146
6147 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6148 if (!dr)
6149 goto err_out;
6150
6151 devres_add(dev, dr);
6152 dev_set_drvdata(dev, host);
6153
6154 spin_lock_init(&host->lock);
6155 mutex_init(&host->eh_mutex);
6156 host->dev = dev;
6157 host->n_ports = max_ports;
6158 kref_init(&host->kref);
6159
6160 /* allocate ports bound to this host */
6161 for (i = 0; i < max_ports; i++) {
6162 struct ata_port *ap;
6163
6164 ap = ata_port_alloc(host);
6165 if (!ap)
6166 goto err_out;
6167
6168 ap->port_no = i;
6169 host->ports[i] = ap;
6170 }
6171
6172 devres_remove_group(dev, NULL);
6173 return host;
6174
6175 err_out:
6176 devres_release_group(dev, NULL);
6177 err_free:
6178 kfree(host);
6179 return NULL;
6180 }
6181
6182 /**
6183 * ata_host_alloc_pinfo - alloc host and init with port_info array
6184 * @dev: generic device this host is associated with
6185 * @ppi: array of ATA port_info to initialize host with
6186 * @n_ports: number of ATA ports attached to this host
6187 *
6188 * Allocate ATA host and initialize with info from @ppi. If NULL
6189 * terminated, @ppi may contain fewer entries than @n_ports. The
6190 * last entry will be used for the remaining ports.
6191 *
6192 * RETURNS:
6193 * Allocate ATA host on success, NULL on failure.
6194 *
6195 * LOCKING:
6196 * Inherited from calling layer (may sleep).
6197 */
6198 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6199 const struct ata_port_info * const * ppi,
6200 int n_ports)
6201 {
6202 const struct ata_port_info *pi;
6203 struct ata_host *host;
6204 int i, j;
6205
6206 host = ata_host_alloc(dev, n_ports);
6207 if (!host)
6208 return NULL;
6209
6210 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6211 struct ata_port *ap = host->ports[i];
6212
6213 if (ppi[j])
6214 pi = ppi[j++];
6215
6216 ap->pio_mask = pi->pio_mask;
6217 ap->mwdma_mask = pi->mwdma_mask;
6218 ap->udma_mask = pi->udma_mask;
6219 ap->flags |= pi->flags;
6220 ap->link.flags |= pi->link_flags;
6221 ap->ops = pi->port_ops;
6222
6223 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6224 host->ops = pi->port_ops;
6225 }
6226
6227 return host;
6228 }
6229
6230 /**
6231 * ata_slave_link_init - initialize slave link
6232 * @ap: port to initialize slave link for
6233 *
6234 * Create and initialize slave link for @ap. This enables slave
6235 * link handling on the port.
6236 *
6237 * In libata, a port contains links and a link contains devices.
6238 * There is single host link but if a PMP is attached to it,
6239 * there can be multiple fan-out links. On SATA, there's usually
6240 * a single device connected to a link but PATA and SATA
6241 * controllers emulating TF based interface can have two - master
6242 * and slave.
6243 *
6244 * However, there are a few controllers which don't fit into this
6245 * abstraction too well - SATA controllers which emulate TF
6246 * interface with both master and slave devices but also have
6247 * separate SCR register sets for each device. These controllers
6248 * need separate links for physical link handling
6249 * (e.g. onlineness, link speed) but should be treated like a
6250 * traditional M/S controller for everything else (e.g. command
6251 * issue, softreset).
6252 *
6253 * slave_link is libata's way of handling this class of
6254 * controllers without impacting core layer too much. For
6255 * anything other than physical link handling, the default host
6256 * link is used for both master and slave. For physical link
6257 * handling, separate @ap->slave_link is used. All dirty details
6258 * are implemented inside libata core layer. From LLD's POV, the
6259 * only difference is that prereset, hardreset and postreset are
6260 * called once more for the slave link, so the reset sequence
6261 * looks like the following.
6262 *
6263 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6264 * softreset(M) -> postreset(M) -> postreset(S)
6265 *
6266 * Note that softreset is called only for the master. Softreset
6267 * resets both M/S by definition, so SRST on master should handle
6268 * both (the standard method will work just fine).
6269 *
6270 * LOCKING:
6271 * Should be called before host is registered.
6272 *
6273 * RETURNS:
6274 * 0 on success, -errno on failure.
6275 */
6276 int ata_slave_link_init(struct ata_port *ap)
6277 {
6278 struct ata_link *link;
6279
6280 WARN_ON(ap->slave_link);
6281 WARN_ON(ap->flags & ATA_FLAG_PMP);
6282
6283 link = kzalloc(sizeof(*link), GFP_KERNEL);
6284 if (!link)
6285 return -ENOMEM;
6286
6287 ata_link_init(ap, link, 1);
6288 ap->slave_link = link;
6289 return 0;
6290 }
6291
6292 static void ata_host_stop(struct device *gendev, void *res)
6293 {
6294 struct ata_host *host = dev_get_drvdata(gendev);
6295 int i;
6296
6297 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6298
6299 for (i = 0; i < host->n_ports; i++) {
6300 struct ata_port *ap = host->ports[i];
6301
6302 if (ap->ops->port_stop)
6303 ap->ops->port_stop(ap);
6304 }
6305
6306 if (host->ops->host_stop)
6307 host->ops->host_stop(host);
6308 }
6309
6310 /**
6311 * ata_finalize_port_ops - finalize ata_port_operations
6312 * @ops: ata_port_operations to finalize
6313 *
6314 * An ata_port_operations can inherit from another ops and that
6315 * ops can again inherit from another. This can go on as many
6316 * times as necessary as long as there is no loop in the
6317 * inheritance chain.
6318 *
6319 * Ops tables are finalized when the host is started. NULL or
6320 * unspecified entries are inherited from the closet ancestor
6321 * which has the method and the entry is populated with it.
6322 * After finalization, the ops table directly points to all the
6323 * methods and ->inherits is no longer necessary and cleared.
6324 *
6325 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6326 *
6327 * LOCKING:
6328 * None.
6329 */
6330 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6331 {
6332 static DEFINE_SPINLOCK(lock);
6333 const struct ata_port_operations *cur;
6334 void **begin = (void **)ops;
6335 void **end = (void **)&ops->inherits;
6336 void **pp;
6337
6338 if (!ops || !ops->inherits)
6339 return;
6340
6341 spin_lock(&lock);
6342
6343 for (cur = ops->inherits; cur; cur = cur->inherits) {
6344 void **inherit = (void **)cur;
6345
6346 for (pp = begin; pp < end; pp++, inherit++)
6347 if (!*pp)
6348 *pp = *inherit;
6349 }
6350
6351 for (pp = begin; pp < end; pp++)
6352 if (IS_ERR(*pp))
6353 *pp = NULL;
6354
6355 ops->inherits = NULL;
6356
6357 spin_unlock(&lock);
6358 }
6359
6360 /**
6361 * ata_host_start - start and freeze ports of an ATA host
6362 * @host: ATA host to start ports for
6363 *
6364 * Start and then freeze ports of @host. Started status is
6365 * recorded in host->flags, so this function can be called
6366 * multiple times. Ports are guaranteed to get started only
6367 * once. If host->ops isn't initialized yet, its set to the
6368 * first non-dummy port ops.
6369 *
6370 * LOCKING:
6371 * Inherited from calling layer (may sleep).
6372 *
6373 * RETURNS:
6374 * 0 if all ports are started successfully, -errno otherwise.
6375 */
6376 int ata_host_start(struct ata_host *host)
6377 {
6378 int have_stop = 0;
6379 void *start_dr = NULL;
6380 int i, rc;
6381
6382 if (host->flags & ATA_HOST_STARTED)
6383 return 0;
6384
6385 ata_finalize_port_ops(host->ops);
6386
6387 for (i = 0; i < host->n_ports; i++) {
6388 struct ata_port *ap = host->ports[i];
6389
6390 ata_finalize_port_ops(ap->ops);
6391
6392 if (!host->ops && !ata_port_is_dummy(ap))
6393 host->ops = ap->ops;
6394
6395 if (ap->ops->port_stop)
6396 have_stop = 1;
6397 }
6398
6399 if (host->ops->host_stop)
6400 have_stop = 1;
6401
6402 if (have_stop) {
6403 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6404 if (!start_dr)
6405 return -ENOMEM;
6406 }
6407
6408 for (i = 0; i < host->n_ports; i++) {
6409 struct ata_port *ap = host->ports[i];
6410
6411 if (ap->ops->port_start) {
6412 rc = ap->ops->port_start(ap);
6413 if (rc) {
6414 if (rc != -ENODEV)
6415 dev_err(host->dev,
6416 "failed to start port %d (errno=%d)\n",
6417 i, rc);
6418 goto err_out;
6419 }
6420 }
6421 ata_eh_freeze_port(ap);
6422 }
6423
6424 if (start_dr)
6425 devres_add(host->dev, start_dr);
6426 host->flags |= ATA_HOST_STARTED;
6427 return 0;
6428
6429 err_out:
6430 while (--i >= 0) {
6431 struct ata_port *ap = host->ports[i];
6432
6433 if (ap->ops->port_stop)
6434 ap->ops->port_stop(ap);
6435 }
6436 devres_free(start_dr);
6437 return rc;
6438 }
6439
6440 /**
6441 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6442 * @host: host to initialize
6443 * @dev: device host is attached to
6444 * @ops: port_ops
6445 *
6446 */
6447 void ata_host_init(struct ata_host *host, struct device *dev,
6448 struct ata_port_operations *ops)
6449 {
6450 spin_lock_init(&host->lock);
6451 mutex_init(&host->eh_mutex);
6452 host->n_tags = ATA_MAX_QUEUE;
6453 host->dev = dev;
6454 host->ops = ops;
6455 kref_init(&host->kref);
6456 }
6457
6458 void __ata_port_probe(struct ata_port *ap)
6459 {
6460 struct ata_eh_info *ehi = &ap->link.eh_info;
6461 unsigned long flags;
6462
6463 /* kick EH for boot probing */
6464 spin_lock_irqsave(ap->lock, flags);
6465
6466 ehi->probe_mask |= ATA_ALL_DEVICES;
6467 ehi->action |= ATA_EH_RESET;
6468 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6469
6470 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6471 ap->pflags |= ATA_PFLAG_LOADING;
6472 ata_port_schedule_eh(ap);
6473
6474 spin_unlock_irqrestore(ap->lock, flags);
6475 }
6476
6477 int ata_port_probe(struct ata_port *ap)
6478 {
6479 int rc = 0;
6480
6481 if (ap->ops->error_handler) {
6482 __ata_port_probe(ap);
6483 ata_port_wait_eh(ap);
6484 } else {
6485 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6486 rc = ata_bus_probe(ap);
6487 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6488 }
6489 return rc;
6490 }
6491
6492
6493 static void async_port_probe(void *data, async_cookie_t cookie)
6494 {
6495 struct ata_port *ap = data;
6496
6497 /*
6498 * If we're not allowed to scan this host in parallel,
6499 * we need to wait until all previous scans have completed
6500 * before going further.
6501 * Jeff Garzik says this is only within a controller, so we
6502 * don't need to wait for port 0, only for later ports.
6503 */
6504 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6505 async_synchronize_cookie(cookie);
6506
6507 (void)ata_port_probe(ap);
6508
6509 /* in order to keep device order, we need to synchronize at this point */
6510 async_synchronize_cookie(cookie);
6511
6512 ata_scsi_scan_host(ap, 1);
6513 }
6514
6515 /**
6516 * ata_host_register - register initialized ATA host
6517 * @host: ATA host to register
6518 * @sht: template for SCSI host
6519 *
6520 * Register initialized ATA host. @host is allocated using
6521 * ata_host_alloc() and fully initialized by LLD. This function
6522 * starts ports, registers @host with ATA and SCSI layers and
6523 * probe registered devices.
6524 *
6525 * LOCKING:
6526 * Inherited from calling layer (may sleep).
6527 *
6528 * RETURNS:
6529 * 0 on success, -errno otherwise.
6530 */
6531 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6532 {
6533 int i, rc;
6534
6535 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
6536
6537 /* host must have been started */
6538 if (!(host->flags & ATA_HOST_STARTED)) {
6539 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6540 WARN_ON(1);
6541 return -EINVAL;
6542 }
6543
6544 /* Blow away unused ports. This happens when LLD can't
6545 * determine the exact number of ports to allocate at
6546 * allocation time.
6547 */
6548 for (i = host->n_ports; host->ports[i]; i++)
6549 kfree(host->ports[i]);
6550
6551 /* give ports names and add SCSI hosts */
6552 for (i = 0; i < host->n_ports; i++) {
6553 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6554 host->ports[i]->local_port_no = i + 1;
6555 }
6556
6557 /* Create associated sysfs transport objects */
6558 for (i = 0; i < host->n_ports; i++) {
6559 rc = ata_tport_add(host->dev,host->ports[i]);
6560 if (rc) {
6561 goto err_tadd;
6562 }
6563 }
6564
6565 rc = ata_scsi_add_hosts(host, sht);
6566 if (rc)
6567 goto err_tadd;
6568
6569 /* set cable, sata_spd_limit and report */
6570 for (i = 0; i < host->n_ports; i++) {
6571 struct ata_port *ap = host->ports[i];
6572 unsigned long xfer_mask;
6573
6574 /* set SATA cable type if still unset */
6575 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6576 ap->cbl = ATA_CBL_SATA;
6577
6578 /* init sata_spd_limit to the current value */
6579 sata_link_init_spd(&ap->link);
6580 if (ap->slave_link)
6581 sata_link_init_spd(ap->slave_link);
6582
6583 /* print per-port info to dmesg */
6584 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6585 ap->udma_mask);
6586
6587 if (!ata_port_is_dummy(ap)) {
6588 ata_port_info(ap, "%cATA max %s %s\n",
6589 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6590 ata_mode_string(xfer_mask),
6591 ap->link.eh_info.desc);
6592 ata_ehi_clear_desc(&ap->link.eh_info);
6593 } else
6594 ata_port_info(ap, "DUMMY\n");
6595 }
6596
6597 /* perform each probe asynchronously */
6598 for (i = 0; i < host->n_ports; i++) {
6599 struct ata_port *ap = host->ports[i];
6600 async_schedule(async_port_probe, ap);
6601 }
6602
6603 return 0;
6604
6605 err_tadd:
6606 while (--i >= 0) {
6607 ata_tport_delete(host->ports[i]);
6608 }
6609 return rc;
6610
6611 }
6612
6613 /**
6614 * ata_host_activate - start host, request IRQ and register it
6615 * @host: target ATA host
6616 * @irq: IRQ to request
6617 * @irq_handler: irq_handler used when requesting IRQ
6618 * @irq_flags: irq_flags used when requesting IRQ
6619 * @sht: scsi_host_template to use when registering the host
6620 *
6621 * After allocating an ATA host and initializing it, most libata
6622 * LLDs perform three steps to activate the host - start host,
6623 * request IRQ and register it. This helper takes necessary
6624 * arguments and performs the three steps in one go.
6625 *
6626 * An invalid IRQ skips the IRQ registration and expects the host to
6627 * have set polling mode on the port. In this case, @irq_handler
6628 * should be NULL.
6629 *
6630 * LOCKING:
6631 * Inherited from calling layer (may sleep).
6632 *
6633 * RETURNS:
6634 * 0 on success, -errno otherwise.
6635 */
6636 int ata_host_activate(struct ata_host *host, int irq,
6637 irq_handler_t irq_handler, unsigned long irq_flags,
6638 struct scsi_host_template *sht)
6639 {
6640 int i, rc;
6641 char *irq_desc;
6642
6643 rc = ata_host_start(host);
6644 if (rc)
6645 return rc;
6646
6647 /* Special case for polling mode */
6648 if (!irq) {
6649 WARN_ON(irq_handler);
6650 return ata_host_register(host, sht);
6651 }
6652
6653 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6654 dev_driver_string(host->dev),
6655 dev_name(host->dev));
6656 if (!irq_desc)
6657 return -ENOMEM;
6658
6659 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6660 irq_desc, host);
6661 if (rc)
6662 return rc;
6663
6664 for (i = 0; i < host->n_ports; i++)
6665 ata_port_desc(host->ports[i], "irq %d", irq);
6666
6667 rc = ata_host_register(host, sht);
6668 /* if failed, just free the IRQ and leave ports alone */
6669 if (rc)
6670 devm_free_irq(host->dev, irq, host);
6671
6672 return rc;
6673 }
6674
6675 /**
6676 * ata_port_detach - Detach ATA port in preparation of device removal
6677 * @ap: ATA port to be detached
6678 *
6679 * Detach all ATA devices and the associated SCSI devices of @ap;
6680 * then, remove the associated SCSI host. @ap is guaranteed to
6681 * be quiescent on return from this function.
6682 *
6683 * LOCKING:
6684 * Kernel thread context (may sleep).
6685 */
6686 static void ata_port_detach(struct ata_port *ap)
6687 {
6688 unsigned long flags;
6689 struct ata_link *link;
6690 struct ata_device *dev;
6691
6692 if (!ap->ops->error_handler)
6693 goto skip_eh;
6694
6695 /* tell EH we're leaving & flush EH */
6696 spin_lock_irqsave(ap->lock, flags);
6697 ap->pflags |= ATA_PFLAG_UNLOADING;
6698 ata_port_schedule_eh(ap);
6699 spin_unlock_irqrestore(ap->lock, flags);
6700
6701 /* wait till EH commits suicide */
6702 ata_port_wait_eh(ap);
6703
6704 /* it better be dead now */
6705 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6706
6707 cancel_delayed_work_sync(&ap->hotplug_task);
6708
6709 skip_eh:
6710 /* clean up zpodd on port removal */
6711 ata_for_each_link(link, ap, HOST_FIRST) {
6712 ata_for_each_dev(dev, link, ALL) {
6713 if (zpodd_dev_enabled(dev))
6714 zpodd_exit(dev);
6715 }
6716 }
6717 if (ap->pmp_link) {
6718 int i;
6719 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6720 ata_tlink_delete(&ap->pmp_link[i]);
6721 }
6722 /* remove the associated SCSI host */
6723 scsi_remove_host(ap->scsi_host);
6724 ata_tport_delete(ap);
6725 }
6726
6727 /**
6728 * ata_host_detach - Detach all ports of an ATA host
6729 * @host: Host to detach
6730 *
6731 * Detach all ports of @host.
6732 *
6733 * LOCKING:
6734 * Kernel thread context (may sleep).
6735 */
6736 void ata_host_detach(struct ata_host *host)
6737 {
6738 int i;
6739
6740 /* Ensure ata_port probe has completed */
6741 async_synchronize_full();
6742
6743 for (i = 0; i < host->n_ports; i++)
6744 ata_port_detach(host->ports[i]);
6745
6746 /* the host is dead now, dissociate ACPI */
6747 ata_acpi_dissociate(host);
6748 }
6749
6750 #ifdef CONFIG_PCI
6751
6752 /**
6753 * ata_pci_remove_one - PCI layer callback for device removal
6754 * @pdev: PCI device that was removed
6755 *
6756 * PCI layer indicates to libata via this hook that hot-unplug or
6757 * module unload event has occurred. Detach all ports. Resource
6758 * release is handled via devres.
6759 *
6760 * LOCKING:
6761 * Inherited from PCI layer (may sleep).
6762 */
6763 void ata_pci_remove_one(struct pci_dev *pdev)
6764 {
6765 struct ata_host *host = pci_get_drvdata(pdev);
6766
6767 ata_host_detach(host);
6768 }
6769
6770 void ata_pci_shutdown_one(struct pci_dev *pdev)
6771 {
6772 struct ata_host *host = pci_get_drvdata(pdev);
6773 int i;
6774
6775 for (i = 0; i < host->n_ports; i++) {
6776 struct ata_port *ap = host->ports[i];
6777
6778 ap->pflags |= ATA_PFLAG_FROZEN;
6779
6780 /* Disable port interrupts */
6781 if (ap->ops->freeze)
6782 ap->ops->freeze(ap);
6783
6784 /* Stop the port DMA engines */
6785 if (ap->ops->port_stop)
6786 ap->ops->port_stop(ap);
6787 }
6788 }
6789
6790 /* move to PCI subsystem */
6791 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6792 {
6793 unsigned long tmp = 0;
6794
6795 switch (bits->width) {
6796 case 1: {
6797 u8 tmp8 = 0;
6798 pci_read_config_byte(pdev, bits->reg, &tmp8);
6799 tmp = tmp8;
6800 break;
6801 }
6802 case 2: {
6803 u16 tmp16 = 0;
6804 pci_read_config_word(pdev, bits->reg, &tmp16);
6805 tmp = tmp16;
6806 break;
6807 }
6808 case 4: {
6809 u32 tmp32 = 0;
6810 pci_read_config_dword(pdev, bits->reg, &tmp32);
6811 tmp = tmp32;
6812 break;
6813 }
6814
6815 default:
6816 return -EINVAL;
6817 }
6818
6819 tmp &= bits->mask;
6820
6821 return (tmp == bits->val) ? 1 : 0;
6822 }
6823
6824 #ifdef CONFIG_PM
6825 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6826 {
6827 pci_save_state(pdev);
6828 pci_disable_device(pdev);
6829
6830 if (mesg.event & PM_EVENT_SLEEP)
6831 pci_set_power_state(pdev, PCI_D3hot);
6832 }
6833
6834 int ata_pci_device_do_resume(struct pci_dev *pdev)
6835 {
6836 int rc;
6837
6838 pci_set_power_state(pdev, PCI_D0);
6839 pci_restore_state(pdev);
6840
6841 rc = pcim_enable_device(pdev);
6842 if (rc) {
6843 dev_err(&pdev->dev,
6844 "failed to enable device after resume (%d)\n", rc);
6845 return rc;
6846 }
6847
6848 pci_set_master(pdev);
6849 return 0;
6850 }
6851
6852 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6853 {
6854 struct ata_host *host = pci_get_drvdata(pdev);
6855 int rc = 0;
6856
6857 rc = ata_host_suspend(host, mesg);
6858 if (rc)
6859 return rc;
6860
6861 ata_pci_device_do_suspend(pdev, mesg);
6862
6863 return 0;
6864 }
6865
6866 int ata_pci_device_resume(struct pci_dev *pdev)
6867 {
6868 struct ata_host *host = pci_get_drvdata(pdev);
6869 int rc;
6870
6871 rc = ata_pci_device_do_resume(pdev);
6872 if (rc == 0)
6873 ata_host_resume(host);
6874 return rc;
6875 }
6876 #endif /* CONFIG_PM */
6877
6878 #endif /* CONFIG_PCI */
6879
6880 /**
6881 * ata_platform_remove_one - Platform layer callback for device removal
6882 * @pdev: Platform device that was removed
6883 *
6884 * Platform layer indicates to libata via this hook that hot-unplug or
6885 * module unload event has occurred. Detach all ports. Resource
6886 * release is handled via devres.
6887 *
6888 * LOCKING:
6889 * Inherited from platform layer (may sleep).
6890 */
6891 int ata_platform_remove_one(struct platform_device *pdev)
6892 {
6893 struct ata_host *host = platform_get_drvdata(pdev);
6894
6895 ata_host_detach(host);
6896
6897 return 0;
6898 }
6899
6900 static int __init ata_parse_force_one(char **cur,
6901 struct ata_force_ent *force_ent,
6902 const char **reason)
6903 {
6904 static const struct ata_force_param force_tbl[] __initconst = {
6905 { "40c", .cbl = ATA_CBL_PATA40 },
6906 { "80c", .cbl = ATA_CBL_PATA80 },
6907 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6908 { "unk", .cbl = ATA_CBL_PATA_UNK },
6909 { "ign", .cbl = ATA_CBL_PATA_IGN },
6910 { "sata", .cbl = ATA_CBL_SATA },
6911 { "1.5Gbps", .spd_limit = 1 },
6912 { "3.0Gbps", .spd_limit = 2 },
6913 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6914 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6915 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6916 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6917 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6918 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6919 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6920 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6921 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6922 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6923 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6924 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6925 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6926 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6927 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6928 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6929 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6930 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6931 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6932 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6933 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6934 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6935 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6936 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6937 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6938 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6939 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6940 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6941 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6942 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6943 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6944 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6945 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6946 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6947 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6948 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6949 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6950 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6951 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6952 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6953 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6954 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6955 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6956 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6957 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6958 };
6959 char *start = *cur, *p = *cur;
6960 char *id, *val, *endp;
6961 const struct ata_force_param *match_fp = NULL;
6962 int nr_matches = 0, i;
6963
6964 /* find where this param ends and update *cur */
6965 while (*p != '\0' && *p != ',')
6966 p++;
6967
6968 if (*p == '\0')
6969 *cur = p;
6970 else
6971 *cur = p + 1;
6972
6973 *p = '\0';
6974
6975 /* parse */
6976 p = strchr(start, ':');
6977 if (!p) {
6978 val = strstrip(start);
6979 goto parse_val;
6980 }
6981 *p = '\0';
6982
6983 id = strstrip(start);
6984 val = strstrip(p + 1);
6985
6986 /* parse id */
6987 p = strchr(id, '.');
6988 if (p) {
6989 *p++ = '\0';
6990 force_ent->device = simple_strtoul(p, &endp, 10);
6991 if (p == endp || *endp != '\0') {
6992 *reason = "invalid device";
6993 return -EINVAL;
6994 }
6995 }
6996
6997 force_ent->port = simple_strtoul(id, &endp, 10);
6998 if (id == endp || *endp != '\0') {
6999 *reason = "invalid port/link";
7000 return -EINVAL;
7001 }
7002
7003 parse_val:
7004 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7005 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
7006 const struct ata_force_param *fp = &force_tbl[i];
7007
7008 if (strncasecmp(val, fp->name, strlen(val)))
7009 continue;
7010
7011 nr_matches++;
7012 match_fp = fp;
7013
7014 if (strcasecmp(val, fp->name) == 0) {
7015 nr_matches = 1;
7016 break;
7017 }
7018 }
7019
7020 if (!nr_matches) {
7021 *reason = "unknown value";
7022 return -EINVAL;
7023 }
7024 if (nr_matches > 1) {
7025 *reason = "ambiguous value";
7026 return -EINVAL;
7027 }
7028
7029 force_ent->param = *match_fp;
7030
7031 return 0;
7032 }
7033
7034 static void __init ata_parse_force_param(void)
7035 {
7036 int idx = 0, size = 1;
7037 int last_port = -1, last_device = -1;
7038 char *p, *cur, *next;
7039
7040 /* calculate maximum number of params and allocate force_tbl */
7041 for (p = ata_force_param_buf; *p; p++)
7042 if (*p == ',')
7043 size++;
7044
7045 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
7046 if (!ata_force_tbl) {
7047 printk(KERN_WARNING "ata: failed to extend force table, "
7048 "libata.force ignored\n");
7049 return;
7050 }
7051
7052 /* parse and populate the table */
7053 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7054 const char *reason = "";
7055 struct ata_force_ent te = { .port = -1, .device = -1 };
7056
7057 next = cur;
7058 if (ata_parse_force_one(&next, &te, &reason)) {
7059 printk(KERN_WARNING "ata: failed to parse force "
7060 "parameter \"%s\" (%s)\n",
7061 cur, reason);
7062 continue;
7063 }
7064
7065 if (te.port == -1) {
7066 te.port = last_port;
7067 te.device = last_device;
7068 }
7069
7070 ata_force_tbl[idx++] = te;
7071
7072 last_port = te.port;
7073 last_device = te.device;
7074 }
7075
7076 ata_force_tbl_size = idx;
7077 }
7078
7079 static int __init ata_init(void)
7080 {
7081 int rc;
7082
7083 ata_parse_force_param();
7084
7085 rc = ata_sff_init();
7086 if (rc) {
7087 kfree(ata_force_tbl);
7088 return rc;
7089 }
7090
7091 libata_transport_init();
7092 ata_scsi_transport_template = ata_attach_transport();
7093 if (!ata_scsi_transport_template) {
7094 ata_sff_exit();
7095 rc = -ENOMEM;
7096 goto err_out;
7097 }
7098
7099 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7100 return 0;
7101
7102 err_out:
7103 return rc;
7104 }
7105
7106 static void __exit ata_exit(void)
7107 {
7108 ata_release_transport(ata_scsi_transport_template);
7109 libata_transport_exit();
7110 ata_sff_exit();
7111 kfree(ata_force_tbl);
7112 }
7113
7114 subsys_initcall(ata_init);
7115 module_exit(ata_exit);
7116
7117 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7118
7119 int ata_ratelimit(void)
7120 {
7121 return __ratelimit(&ratelimit);
7122 }
7123
7124 /**
7125 * ata_msleep - ATA EH owner aware msleep
7126 * @ap: ATA port to attribute the sleep to
7127 * @msecs: duration to sleep in milliseconds
7128 *
7129 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7130 * ownership is released before going to sleep and reacquired
7131 * after the sleep is complete. IOW, other ports sharing the
7132 * @ap->host will be allowed to own the EH while this task is
7133 * sleeping.
7134 *
7135 * LOCKING:
7136 * Might sleep.
7137 */
7138 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7139 {
7140 bool owns_eh = ap && ap->host->eh_owner == current;
7141
7142 if (owns_eh)
7143 ata_eh_release(ap);
7144
7145 if (msecs < 20) {
7146 unsigned long usecs = msecs * USEC_PER_MSEC;
7147 usleep_range(usecs, usecs + 50);
7148 } else {
7149 msleep(msecs);
7150 }
7151
7152 if (owns_eh)
7153 ata_eh_acquire(ap);
7154 }
7155
7156 /**
7157 * ata_wait_register - wait until register value changes
7158 * @ap: ATA port to wait register for, can be NULL
7159 * @reg: IO-mapped register
7160 * @mask: Mask to apply to read register value
7161 * @val: Wait condition
7162 * @interval: polling interval in milliseconds
7163 * @timeout: timeout in milliseconds
7164 *
7165 * Waiting for some bits of register to change is a common
7166 * operation for ATA controllers. This function reads 32bit LE
7167 * IO-mapped register @reg and tests for the following condition.
7168 *
7169 * (*@reg & mask) != val
7170 *
7171 * If the condition is met, it returns; otherwise, the process is
7172 * repeated after @interval_msec until timeout.
7173 *
7174 * LOCKING:
7175 * Kernel thread context (may sleep)
7176 *
7177 * RETURNS:
7178 * The final register value.
7179 */
7180 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7181 unsigned long interval, unsigned long timeout)
7182 {
7183 unsigned long deadline;
7184 u32 tmp;
7185
7186 tmp = ioread32(reg);
7187
7188 /* Calculate timeout _after_ the first read to make sure
7189 * preceding writes reach the controller before starting to
7190 * eat away the timeout.
7191 */
7192 deadline = ata_deadline(jiffies, timeout);
7193
7194 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7195 ata_msleep(ap, interval);
7196 tmp = ioread32(reg);
7197 }
7198
7199 return tmp;
7200 }
7201
7202 /**
7203 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7204 * @link: Link receiving the event
7205 *
7206 * Test whether the received PHY event has to be ignored or not.
7207 *
7208 * LOCKING:
7209 * None:
7210 *
7211 * RETURNS:
7212 * True if the event has to be ignored.
7213 */
7214 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7215 {
7216 unsigned long lpm_timeout = link->last_lpm_change +
7217 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7218
7219 /* if LPM is enabled, PHYRDY doesn't mean anything */
7220 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7221 return true;
7222
7223 /* ignore the first PHY event after the LPM policy changed
7224 * as it is might be spurious
7225 */
7226 if ((link->flags & ATA_LFLAG_CHANGED) &&
7227 time_before(jiffies, lpm_timeout))
7228 return true;
7229
7230 return false;
7231 }
7232 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7233
7234 /*
7235 * Dummy port_ops
7236 */
7237 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7238 {
7239 return AC_ERR_SYSTEM;
7240 }
7241
7242 static void ata_dummy_error_handler(struct ata_port *ap)
7243 {
7244 /* truly dummy */
7245 }
7246
7247 struct ata_port_operations ata_dummy_port_ops = {
7248 .qc_prep = ata_noop_qc_prep,
7249 .qc_issue = ata_dummy_qc_issue,
7250 .error_handler = ata_dummy_error_handler,
7251 .sched_eh = ata_std_sched_eh,
7252 .end_eh = ata_std_end_eh,
7253 };
7254
7255 const struct ata_port_info ata_dummy_port_info = {
7256 .port_ops = &ata_dummy_port_ops,
7257 };
7258
7259 /*
7260 * Utility print functions
7261 */
7262 void ata_port_printk(const struct ata_port *ap, const char *level,
7263 const char *fmt, ...)
7264 {
7265 struct va_format vaf;
7266 va_list args;
7267
7268 va_start(args, fmt);
7269
7270 vaf.fmt = fmt;
7271 vaf.va = &args;
7272
7273 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7274
7275 va_end(args);
7276 }
7277 EXPORT_SYMBOL(ata_port_printk);
7278
7279 void ata_link_printk(const struct ata_link *link, const char *level,
7280 const char *fmt, ...)
7281 {
7282 struct va_format vaf;
7283 va_list args;
7284
7285 va_start(args, fmt);
7286
7287 vaf.fmt = fmt;
7288 vaf.va = &args;
7289
7290 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7291 printk("%sata%u.%02u: %pV",
7292 level, link->ap->print_id, link->pmp, &vaf);
7293 else
7294 printk("%sata%u: %pV",
7295 level, link->ap->print_id, &vaf);
7296
7297 va_end(args);
7298 }
7299 EXPORT_SYMBOL(ata_link_printk);
7300
7301 void ata_dev_printk(const struct ata_device *dev, const char *level,
7302 const char *fmt, ...)
7303 {
7304 struct va_format vaf;
7305 va_list args;
7306
7307 va_start(args, fmt);
7308
7309 vaf.fmt = fmt;
7310 vaf.va = &args;
7311
7312 printk("%sata%u.%02u: %pV",
7313 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7314 &vaf);
7315
7316 va_end(args);
7317 }
7318 EXPORT_SYMBOL(ata_dev_printk);
7319
7320 void ata_print_version(const struct device *dev, const char *version)
7321 {
7322 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7323 }
7324 EXPORT_SYMBOL(ata_print_version);
7325
7326 /*
7327 * libata is essentially a library of internal helper functions for
7328 * low-level ATA host controller drivers. As such, the API/ABI is
7329 * likely to change as new drivers are added and updated.
7330 * Do not depend on ABI/API stability.
7331 */
7332 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7333 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7334 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7335 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7336 EXPORT_SYMBOL_GPL(sata_port_ops);
7337 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7338 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7339 EXPORT_SYMBOL_GPL(ata_link_next);
7340 EXPORT_SYMBOL_GPL(ata_dev_next);
7341 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7342 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7343 EXPORT_SYMBOL_GPL(ata_host_init);
7344 EXPORT_SYMBOL_GPL(ata_host_alloc);
7345 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7346 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7347 EXPORT_SYMBOL_GPL(ata_host_start);
7348 EXPORT_SYMBOL_GPL(ata_host_register);
7349 EXPORT_SYMBOL_GPL(ata_host_activate);
7350 EXPORT_SYMBOL_GPL(ata_host_detach);
7351 EXPORT_SYMBOL_GPL(ata_sg_init);
7352 EXPORT_SYMBOL_GPL(ata_qc_complete);
7353 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7354 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7355 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7356 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7357 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7358 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7359 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7360 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7361 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7362 EXPORT_SYMBOL_GPL(ata_mode_string);
7363 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7364 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7365 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7366 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7367 EXPORT_SYMBOL_GPL(ata_dev_disable);
7368 EXPORT_SYMBOL_GPL(sata_set_spd);
7369 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7370 EXPORT_SYMBOL_GPL(sata_link_debounce);
7371 EXPORT_SYMBOL_GPL(sata_link_resume);
7372 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7373 EXPORT_SYMBOL_GPL(ata_std_prereset);
7374 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7375 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7376 EXPORT_SYMBOL_GPL(ata_std_postreset);
7377 EXPORT_SYMBOL_GPL(ata_dev_classify);
7378 EXPORT_SYMBOL_GPL(ata_dev_pair);
7379 EXPORT_SYMBOL_GPL(ata_ratelimit);
7380 EXPORT_SYMBOL_GPL(ata_msleep);
7381 EXPORT_SYMBOL_GPL(ata_wait_register);
7382 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7383 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7384 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7385 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7386 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7387 EXPORT_SYMBOL_GPL(sata_scr_valid);
7388 EXPORT_SYMBOL_GPL(sata_scr_read);
7389 EXPORT_SYMBOL_GPL(sata_scr_write);
7390 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7391 EXPORT_SYMBOL_GPL(ata_link_online);
7392 EXPORT_SYMBOL_GPL(ata_link_offline);
7393 #ifdef CONFIG_PM
7394 EXPORT_SYMBOL_GPL(ata_host_suspend);
7395 EXPORT_SYMBOL_GPL(ata_host_resume);
7396 #endif /* CONFIG_PM */
7397 EXPORT_SYMBOL_GPL(ata_id_string);
7398 EXPORT_SYMBOL_GPL(ata_id_c_string);
7399 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7400 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7401
7402 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7403 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7404 EXPORT_SYMBOL_GPL(ata_timing_compute);
7405 EXPORT_SYMBOL_GPL(ata_timing_merge);
7406 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7407
7408 #ifdef CONFIG_PCI
7409 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7410 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
7411 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7412 #ifdef CONFIG_PM
7413 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7414 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7415 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7416 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7417 #endif /* CONFIG_PM */
7418 #endif /* CONFIG_PCI */
7419
7420 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7421
7422 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7423 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7424 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7425 EXPORT_SYMBOL_GPL(ata_port_desc);
7426 #ifdef CONFIG_PCI
7427 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7428 #endif /* CONFIG_PCI */
7429 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7430 EXPORT_SYMBOL_GPL(ata_link_abort);
7431 EXPORT_SYMBOL_GPL(ata_port_abort);
7432 EXPORT_SYMBOL_GPL(ata_port_freeze);
7433 EXPORT_SYMBOL_GPL(sata_async_notification);
7434 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7435 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7436 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7437 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7438 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7439 EXPORT_SYMBOL_GPL(ata_do_eh);
7440 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7441
7442 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7443 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7444 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7445 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7446 EXPORT_SYMBOL_GPL(ata_cable_sata);
7447 EXPORT_SYMBOL_GPL(ata_host_get);
7448 EXPORT_SYMBOL_GPL(ata_host_put);