]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
pinctrl: exynos5440: Use off-stack memory for pinctrl_gpio_range
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <linux/cdrom.h>
70 #include <linux/ratelimit.h>
71 #include <linux/pm_runtime.h>
72 #include <linux/platform_device.h>
73
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/libata.h>
76
77 #include "libata.h"
78 #include "libata-transport.h"
79
80 /* debounce timing parameters in msecs { interval, duration, timeout } */
81 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
82 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
83 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
84
85 const struct ata_port_operations ata_base_port_ops = {
86 .prereset = ata_std_prereset,
87 .postreset = ata_std_postreset,
88 .error_handler = ata_std_error_handler,
89 .sched_eh = ata_std_sched_eh,
90 .end_eh = ata_std_end_eh,
91 };
92
93 const struct ata_port_operations sata_port_ops = {
94 .inherits = &ata_base_port_ops,
95
96 .qc_defer = ata_std_qc_defer,
97 .hardreset = sata_std_hardreset,
98 };
99
100 static unsigned int ata_dev_init_params(struct ata_device *dev,
101 u16 heads, u16 sectors);
102 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
103 static void ata_dev_xfermask(struct ata_device *dev);
104 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
105
106 atomic_t ata_print_id = ATOMIC_INIT(0);
107
108 struct ata_force_param {
109 const char *name;
110 unsigned int cbl;
111 int spd_limit;
112 unsigned long xfer_mask;
113 unsigned int horkage_on;
114 unsigned int horkage_off;
115 unsigned int lflags;
116 };
117
118 struct ata_force_ent {
119 int port;
120 int device;
121 struct ata_force_param param;
122 };
123
124 static struct ata_force_ent *ata_force_tbl;
125 static int ata_force_tbl_size;
126
127 static char ata_force_param_buf[PAGE_SIZE] __initdata;
128 /* param_buf is thrown away after initialization, disallow read */
129 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
130 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
131
132 static int atapi_enabled = 1;
133 module_param(atapi_enabled, int, 0444);
134 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
135
136 static int atapi_dmadir = 0;
137 module_param(atapi_dmadir, int, 0444);
138 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
139
140 int atapi_passthru16 = 1;
141 module_param(atapi_passthru16, int, 0444);
142 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
143
144 int libata_fua = 0;
145 module_param_named(fua, libata_fua, int, 0444);
146 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
147
148 static int ata_ignore_hpa;
149 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
150 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
151
152 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
153 module_param_named(dma, libata_dma_mask, int, 0444);
154 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
155
156 static int ata_probe_timeout;
157 module_param(ata_probe_timeout, int, 0444);
158 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
159
160 int libata_noacpi = 0;
161 module_param_named(noacpi, libata_noacpi, int, 0444);
162 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
163
164 int libata_allow_tpm = 0;
165 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
166 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
167
168 static int atapi_an;
169 module_param(atapi_an, int, 0444);
170 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
171
172 MODULE_AUTHOR("Jeff Garzik");
173 MODULE_DESCRIPTION("Library module for ATA devices");
174 MODULE_LICENSE("GPL");
175 MODULE_VERSION(DRV_VERSION);
176
177
178 static bool ata_sstatus_online(u32 sstatus)
179 {
180 return (sstatus & 0xf) == 0x3;
181 }
182
183 /**
184 * ata_link_next - link iteration helper
185 * @link: the previous link, NULL to start
186 * @ap: ATA port containing links to iterate
187 * @mode: iteration mode, one of ATA_LITER_*
188 *
189 * LOCKING:
190 * Host lock or EH context.
191 *
192 * RETURNS:
193 * Pointer to the next link.
194 */
195 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
196 enum ata_link_iter_mode mode)
197 {
198 BUG_ON(mode != ATA_LITER_EDGE &&
199 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
200
201 /* NULL link indicates start of iteration */
202 if (!link)
203 switch (mode) {
204 case ATA_LITER_EDGE:
205 case ATA_LITER_PMP_FIRST:
206 if (sata_pmp_attached(ap))
207 return ap->pmp_link;
208 /* fall through */
209 case ATA_LITER_HOST_FIRST:
210 return &ap->link;
211 }
212
213 /* we just iterated over the host link, what's next? */
214 if (link == &ap->link)
215 switch (mode) {
216 case ATA_LITER_HOST_FIRST:
217 if (sata_pmp_attached(ap))
218 return ap->pmp_link;
219 /* fall through */
220 case ATA_LITER_PMP_FIRST:
221 if (unlikely(ap->slave_link))
222 return ap->slave_link;
223 /* fall through */
224 case ATA_LITER_EDGE:
225 return NULL;
226 }
227
228 /* slave_link excludes PMP */
229 if (unlikely(link == ap->slave_link))
230 return NULL;
231
232 /* we were over a PMP link */
233 if (++link < ap->pmp_link + ap->nr_pmp_links)
234 return link;
235
236 if (mode == ATA_LITER_PMP_FIRST)
237 return &ap->link;
238
239 return NULL;
240 }
241
242 /**
243 * ata_dev_next - device iteration helper
244 * @dev: the previous device, NULL to start
245 * @link: ATA link containing devices to iterate
246 * @mode: iteration mode, one of ATA_DITER_*
247 *
248 * LOCKING:
249 * Host lock or EH context.
250 *
251 * RETURNS:
252 * Pointer to the next device.
253 */
254 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
255 enum ata_dev_iter_mode mode)
256 {
257 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
258 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
259
260 /* NULL dev indicates start of iteration */
261 if (!dev)
262 switch (mode) {
263 case ATA_DITER_ENABLED:
264 case ATA_DITER_ALL:
265 dev = link->device;
266 goto check;
267 case ATA_DITER_ENABLED_REVERSE:
268 case ATA_DITER_ALL_REVERSE:
269 dev = link->device + ata_link_max_devices(link) - 1;
270 goto check;
271 }
272
273 next:
274 /* move to the next one */
275 switch (mode) {
276 case ATA_DITER_ENABLED:
277 case ATA_DITER_ALL:
278 if (++dev < link->device + ata_link_max_devices(link))
279 goto check;
280 return NULL;
281 case ATA_DITER_ENABLED_REVERSE:
282 case ATA_DITER_ALL_REVERSE:
283 if (--dev >= link->device)
284 goto check;
285 return NULL;
286 }
287
288 check:
289 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
290 !ata_dev_enabled(dev))
291 goto next;
292 return dev;
293 }
294
295 /**
296 * ata_dev_phys_link - find physical link for a device
297 * @dev: ATA device to look up physical link for
298 *
299 * Look up physical link which @dev is attached to. Note that
300 * this is different from @dev->link only when @dev is on slave
301 * link. For all other cases, it's the same as @dev->link.
302 *
303 * LOCKING:
304 * Don't care.
305 *
306 * RETURNS:
307 * Pointer to the found physical link.
308 */
309 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
310 {
311 struct ata_port *ap = dev->link->ap;
312
313 if (!ap->slave_link)
314 return dev->link;
315 if (!dev->devno)
316 return &ap->link;
317 return ap->slave_link;
318 }
319
320 /**
321 * ata_force_cbl - force cable type according to libata.force
322 * @ap: ATA port of interest
323 *
324 * Force cable type according to libata.force and whine about it.
325 * The last entry which has matching port number is used, so it
326 * can be specified as part of device force parameters. For
327 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
328 * same effect.
329 *
330 * LOCKING:
331 * EH context.
332 */
333 void ata_force_cbl(struct ata_port *ap)
334 {
335 int i;
336
337 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
338 const struct ata_force_ent *fe = &ata_force_tbl[i];
339
340 if (fe->port != -1 && fe->port != ap->print_id)
341 continue;
342
343 if (fe->param.cbl == ATA_CBL_NONE)
344 continue;
345
346 ap->cbl = fe->param.cbl;
347 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
348 return;
349 }
350 }
351
352 /**
353 * ata_force_link_limits - force link limits according to libata.force
354 * @link: ATA link of interest
355 *
356 * Force link flags and SATA spd limit according to libata.force
357 * and whine about it. When only the port part is specified
358 * (e.g. 1:), the limit applies to all links connected to both
359 * the host link and all fan-out ports connected via PMP. If the
360 * device part is specified as 0 (e.g. 1.00:), it specifies the
361 * first fan-out link not the host link. Device number 15 always
362 * points to the host link whether PMP is attached or not. If the
363 * controller has slave link, device number 16 points to it.
364 *
365 * LOCKING:
366 * EH context.
367 */
368 static void ata_force_link_limits(struct ata_link *link)
369 {
370 bool did_spd = false;
371 int linkno = link->pmp;
372 int i;
373
374 if (ata_is_host_link(link))
375 linkno += 15;
376
377 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
378 const struct ata_force_ent *fe = &ata_force_tbl[i];
379
380 if (fe->port != -1 && fe->port != link->ap->print_id)
381 continue;
382
383 if (fe->device != -1 && fe->device != linkno)
384 continue;
385
386 /* only honor the first spd limit */
387 if (!did_spd && fe->param.spd_limit) {
388 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
389 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
390 fe->param.name);
391 did_spd = true;
392 }
393
394 /* let lflags stack */
395 if (fe->param.lflags) {
396 link->flags |= fe->param.lflags;
397 ata_link_notice(link,
398 "FORCE: link flag 0x%x forced -> 0x%x\n",
399 fe->param.lflags, link->flags);
400 }
401 }
402 }
403
404 /**
405 * ata_force_xfermask - force xfermask according to libata.force
406 * @dev: ATA device of interest
407 *
408 * Force xfer_mask according to libata.force and whine about it.
409 * For consistency with link selection, device number 15 selects
410 * the first device connected to the host link.
411 *
412 * LOCKING:
413 * EH context.
414 */
415 static void ata_force_xfermask(struct ata_device *dev)
416 {
417 int devno = dev->link->pmp + dev->devno;
418 int alt_devno = devno;
419 int i;
420
421 /* allow n.15/16 for devices attached to host port */
422 if (ata_is_host_link(dev->link))
423 alt_devno += 15;
424
425 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
426 const struct ata_force_ent *fe = &ata_force_tbl[i];
427 unsigned long pio_mask, mwdma_mask, udma_mask;
428
429 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
430 continue;
431
432 if (fe->device != -1 && fe->device != devno &&
433 fe->device != alt_devno)
434 continue;
435
436 if (!fe->param.xfer_mask)
437 continue;
438
439 ata_unpack_xfermask(fe->param.xfer_mask,
440 &pio_mask, &mwdma_mask, &udma_mask);
441 if (udma_mask)
442 dev->udma_mask = udma_mask;
443 else if (mwdma_mask) {
444 dev->udma_mask = 0;
445 dev->mwdma_mask = mwdma_mask;
446 } else {
447 dev->udma_mask = 0;
448 dev->mwdma_mask = 0;
449 dev->pio_mask = pio_mask;
450 }
451
452 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
453 fe->param.name);
454 return;
455 }
456 }
457
458 /**
459 * ata_force_horkage - force horkage according to libata.force
460 * @dev: ATA device of interest
461 *
462 * Force horkage according to libata.force and whine about it.
463 * For consistency with link selection, device number 15 selects
464 * the first device connected to the host link.
465 *
466 * LOCKING:
467 * EH context.
468 */
469 static void ata_force_horkage(struct ata_device *dev)
470 {
471 int devno = dev->link->pmp + dev->devno;
472 int alt_devno = devno;
473 int i;
474
475 /* allow n.15/16 for devices attached to host port */
476 if (ata_is_host_link(dev->link))
477 alt_devno += 15;
478
479 for (i = 0; i < ata_force_tbl_size; i++) {
480 const struct ata_force_ent *fe = &ata_force_tbl[i];
481
482 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
483 continue;
484
485 if (fe->device != -1 && fe->device != devno &&
486 fe->device != alt_devno)
487 continue;
488
489 if (!(~dev->horkage & fe->param.horkage_on) &&
490 !(dev->horkage & fe->param.horkage_off))
491 continue;
492
493 dev->horkage |= fe->param.horkage_on;
494 dev->horkage &= ~fe->param.horkage_off;
495
496 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
497 fe->param.name);
498 }
499 }
500
501 /**
502 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
503 * @opcode: SCSI opcode
504 *
505 * Determine ATAPI command type from @opcode.
506 *
507 * LOCKING:
508 * None.
509 *
510 * RETURNS:
511 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
512 */
513 int atapi_cmd_type(u8 opcode)
514 {
515 switch (opcode) {
516 case GPCMD_READ_10:
517 case GPCMD_READ_12:
518 return ATAPI_READ;
519
520 case GPCMD_WRITE_10:
521 case GPCMD_WRITE_12:
522 case GPCMD_WRITE_AND_VERIFY_10:
523 return ATAPI_WRITE;
524
525 case GPCMD_READ_CD:
526 case GPCMD_READ_CD_MSF:
527 return ATAPI_READ_CD;
528
529 case ATA_16:
530 case ATA_12:
531 if (atapi_passthru16)
532 return ATAPI_PASS_THRU;
533 /* fall thru */
534 default:
535 return ATAPI_MISC;
536 }
537 }
538
539 /**
540 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
541 * @tf: Taskfile to convert
542 * @pmp: Port multiplier port
543 * @is_cmd: This FIS is for command
544 * @fis: Buffer into which data will output
545 *
546 * Converts a standard ATA taskfile to a Serial ATA
547 * FIS structure (Register - Host to Device).
548 *
549 * LOCKING:
550 * Inherited from caller.
551 */
552 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
553 {
554 fis[0] = 0x27; /* Register - Host to Device FIS */
555 fis[1] = pmp & 0xf; /* Port multiplier number*/
556 if (is_cmd)
557 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
558
559 fis[2] = tf->command;
560 fis[3] = tf->feature;
561
562 fis[4] = tf->lbal;
563 fis[5] = tf->lbam;
564 fis[6] = tf->lbah;
565 fis[7] = tf->device;
566
567 fis[8] = tf->hob_lbal;
568 fis[9] = tf->hob_lbam;
569 fis[10] = tf->hob_lbah;
570 fis[11] = tf->hob_feature;
571
572 fis[12] = tf->nsect;
573 fis[13] = tf->hob_nsect;
574 fis[14] = 0;
575 fis[15] = tf->ctl;
576
577 fis[16] = tf->auxiliary & 0xff;
578 fis[17] = (tf->auxiliary >> 8) & 0xff;
579 fis[18] = (tf->auxiliary >> 16) & 0xff;
580 fis[19] = (tf->auxiliary >> 24) & 0xff;
581 }
582
583 /**
584 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
585 * @fis: Buffer from which data will be input
586 * @tf: Taskfile to output
587 *
588 * Converts a serial ATA FIS structure to a standard ATA taskfile.
589 *
590 * LOCKING:
591 * Inherited from caller.
592 */
593
594 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
595 {
596 tf->command = fis[2]; /* status */
597 tf->feature = fis[3]; /* error */
598
599 tf->lbal = fis[4];
600 tf->lbam = fis[5];
601 tf->lbah = fis[6];
602 tf->device = fis[7];
603
604 tf->hob_lbal = fis[8];
605 tf->hob_lbam = fis[9];
606 tf->hob_lbah = fis[10];
607
608 tf->nsect = fis[12];
609 tf->hob_nsect = fis[13];
610 }
611
612 static const u8 ata_rw_cmds[] = {
613 /* pio multi */
614 ATA_CMD_READ_MULTI,
615 ATA_CMD_WRITE_MULTI,
616 ATA_CMD_READ_MULTI_EXT,
617 ATA_CMD_WRITE_MULTI_EXT,
618 0,
619 0,
620 0,
621 ATA_CMD_WRITE_MULTI_FUA_EXT,
622 /* pio */
623 ATA_CMD_PIO_READ,
624 ATA_CMD_PIO_WRITE,
625 ATA_CMD_PIO_READ_EXT,
626 ATA_CMD_PIO_WRITE_EXT,
627 0,
628 0,
629 0,
630 0,
631 /* dma */
632 ATA_CMD_READ,
633 ATA_CMD_WRITE,
634 ATA_CMD_READ_EXT,
635 ATA_CMD_WRITE_EXT,
636 0,
637 0,
638 0,
639 ATA_CMD_WRITE_FUA_EXT
640 };
641
642 /**
643 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
644 * @tf: command to examine and configure
645 * @dev: device tf belongs to
646 *
647 * Examine the device configuration and tf->flags to calculate
648 * the proper read/write commands and protocol to use.
649 *
650 * LOCKING:
651 * caller.
652 */
653 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
654 {
655 u8 cmd;
656
657 int index, fua, lba48, write;
658
659 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
660 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
661 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
662
663 if (dev->flags & ATA_DFLAG_PIO) {
664 tf->protocol = ATA_PROT_PIO;
665 index = dev->multi_count ? 0 : 8;
666 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
667 /* Unable to use DMA due to host limitation */
668 tf->protocol = ATA_PROT_PIO;
669 index = dev->multi_count ? 0 : 8;
670 } else {
671 tf->protocol = ATA_PROT_DMA;
672 index = 16;
673 }
674
675 cmd = ata_rw_cmds[index + fua + lba48 + write];
676 if (cmd) {
677 tf->command = cmd;
678 return 0;
679 }
680 return -1;
681 }
682
683 /**
684 * ata_tf_read_block - Read block address from ATA taskfile
685 * @tf: ATA taskfile of interest
686 * @dev: ATA device @tf belongs to
687 *
688 * LOCKING:
689 * None.
690 *
691 * Read block address from @tf. This function can handle all
692 * three address formats - LBA, LBA48 and CHS. tf->protocol and
693 * flags select the address format to use.
694 *
695 * RETURNS:
696 * Block address read from @tf.
697 */
698 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
699 {
700 u64 block = 0;
701
702 if (tf->flags & ATA_TFLAG_LBA) {
703 if (tf->flags & ATA_TFLAG_LBA48) {
704 block |= (u64)tf->hob_lbah << 40;
705 block |= (u64)tf->hob_lbam << 32;
706 block |= (u64)tf->hob_lbal << 24;
707 } else
708 block |= (tf->device & 0xf) << 24;
709
710 block |= tf->lbah << 16;
711 block |= tf->lbam << 8;
712 block |= tf->lbal;
713 } else {
714 u32 cyl, head, sect;
715
716 cyl = tf->lbam | (tf->lbah << 8);
717 head = tf->device & 0xf;
718 sect = tf->lbal;
719
720 if (!sect) {
721 ata_dev_warn(dev,
722 "device reported invalid CHS sector 0\n");
723 sect = 1; /* oh well */
724 }
725
726 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
727 }
728
729 return block;
730 }
731
732 /**
733 * ata_build_rw_tf - Build ATA taskfile for given read/write request
734 * @tf: Target ATA taskfile
735 * @dev: ATA device @tf belongs to
736 * @block: Block address
737 * @n_block: Number of blocks
738 * @tf_flags: RW/FUA etc...
739 * @tag: tag
740 *
741 * LOCKING:
742 * None.
743 *
744 * Build ATA taskfile @tf for read/write request described by
745 * @block, @n_block, @tf_flags and @tag on @dev.
746 *
747 * RETURNS:
748 *
749 * 0 on success, -ERANGE if the request is too large for @dev,
750 * -EINVAL if the request is invalid.
751 */
752 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
753 u64 block, u32 n_block, unsigned int tf_flags,
754 unsigned int tag)
755 {
756 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
757 tf->flags |= tf_flags;
758
759 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
760 /* yay, NCQ */
761 if (!lba_48_ok(block, n_block))
762 return -ERANGE;
763
764 tf->protocol = ATA_PROT_NCQ;
765 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
766
767 if (tf->flags & ATA_TFLAG_WRITE)
768 tf->command = ATA_CMD_FPDMA_WRITE;
769 else
770 tf->command = ATA_CMD_FPDMA_READ;
771
772 tf->nsect = tag << 3;
773 tf->hob_feature = (n_block >> 8) & 0xff;
774 tf->feature = n_block & 0xff;
775
776 tf->hob_lbah = (block >> 40) & 0xff;
777 tf->hob_lbam = (block >> 32) & 0xff;
778 tf->hob_lbal = (block >> 24) & 0xff;
779 tf->lbah = (block >> 16) & 0xff;
780 tf->lbam = (block >> 8) & 0xff;
781 tf->lbal = block & 0xff;
782
783 tf->device = ATA_LBA;
784 if (tf->flags & ATA_TFLAG_FUA)
785 tf->device |= 1 << 7;
786 } else if (dev->flags & ATA_DFLAG_LBA) {
787 tf->flags |= ATA_TFLAG_LBA;
788
789 if (lba_28_ok(block, n_block)) {
790 /* use LBA28 */
791 tf->device |= (block >> 24) & 0xf;
792 } else if (lba_48_ok(block, n_block)) {
793 if (!(dev->flags & ATA_DFLAG_LBA48))
794 return -ERANGE;
795
796 /* use LBA48 */
797 tf->flags |= ATA_TFLAG_LBA48;
798
799 tf->hob_nsect = (n_block >> 8) & 0xff;
800
801 tf->hob_lbah = (block >> 40) & 0xff;
802 tf->hob_lbam = (block >> 32) & 0xff;
803 tf->hob_lbal = (block >> 24) & 0xff;
804 } else
805 /* request too large even for LBA48 */
806 return -ERANGE;
807
808 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
809 return -EINVAL;
810
811 tf->nsect = n_block & 0xff;
812
813 tf->lbah = (block >> 16) & 0xff;
814 tf->lbam = (block >> 8) & 0xff;
815 tf->lbal = block & 0xff;
816
817 tf->device |= ATA_LBA;
818 } else {
819 /* CHS */
820 u32 sect, head, cyl, track;
821
822 /* The request -may- be too large for CHS addressing. */
823 if (!lba_28_ok(block, n_block))
824 return -ERANGE;
825
826 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
827 return -EINVAL;
828
829 /* Convert LBA to CHS */
830 track = (u32)block / dev->sectors;
831 cyl = track / dev->heads;
832 head = track % dev->heads;
833 sect = (u32)block % dev->sectors + 1;
834
835 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
836 (u32)block, track, cyl, head, sect);
837
838 /* Check whether the converted CHS can fit.
839 Cylinder: 0-65535
840 Head: 0-15
841 Sector: 1-255*/
842 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
843 return -ERANGE;
844
845 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
846 tf->lbal = sect;
847 tf->lbam = cyl;
848 tf->lbah = cyl >> 8;
849 tf->device |= head;
850 }
851
852 return 0;
853 }
854
855 /**
856 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
857 * @pio_mask: pio_mask
858 * @mwdma_mask: mwdma_mask
859 * @udma_mask: udma_mask
860 *
861 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
862 * unsigned int xfer_mask.
863 *
864 * LOCKING:
865 * None.
866 *
867 * RETURNS:
868 * Packed xfer_mask.
869 */
870 unsigned long ata_pack_xfermask(unsigned long pio_mask,
871 unsigned long mwdma_mask,
872 unsigned long udma_mask)
873 {
874 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
875 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
876 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
877 }
878
879 /**
880 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
881 * @xfer_mask: xfer_mask to unpack
882 * @pio_mask: resulting pio_mask
883 * @mwdma_mask: resulting mwdma_mask
884 * @udma_mask: resulting udma_mask
885 *
886 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
887 * Any NULL distination masks will be ignored.
888 */
889 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
890 unsigned long *mwdma_mask, unsigned long *udma_mask)
891 {
892 if (pio_mask)
893 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
894 if (mwdma_mask)
895 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
896 if (udma_mask)
897 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
898 }
899
900 static const struct ata_xfer_ent {
901 int shift, bits;
902 u8 base;
903 } ata_xfer_tbl[] = {
904 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
905 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
906 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
907 { -1, },
908 };
909
910 /**
911 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
912 * @xfer_mask: xfer_mask of interest
913 *
914 * Return matching XFER_* value for @xfer_mask. Only the highest
915 * bit of @xfer_mask is considered.
916 *
917 * LOCKING:
918 * None.
919 *
920 * RETURNS:
921 * Matching XFER_* value, 0xff if no match found.
922 */
923 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
924 {
925 int highbit = fls(xfer_mask) - 1;
926 const struct ata_xfer_ent *ent;
927
928 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
929 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
930 return ent->base + highbit - ent->shift;
931 return 0xff;
932 }
933
934 /**
935 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
936 * @xfer_mode: XFER_* of interest
937 *
938 * Return matching xfer_mask for @xfer_mode.
939 *
940 * LOCKING:
941 * None.
942 *
943 * RETURNS:
944 * Matching xfer_mask, 0 if no match found.
945 */
946 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
947 {
948 const struct ata_xfer_ent *ent;
949
950 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
951 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
952 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
953 & ~((1 << ent->shift) - 1);
954 return 0;
955 }
956
957 /**
958 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
959 * @xfer_mode: XFER_* of interest
960 *
961 * Return matching xfer_shift for @xfer_mode.
962 *
963 * LOCKING:
964 * None.
965 *
966 * RETURNS:
967 * Matching xfer_shift, -1 if no match found.
968 */
969 int ata_xfer_mode2shift(unsigned long xfer_mode)
970 {
971 const struct ata_xfer_ent *ent;
972
973 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
974 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
975 return ent->shift;
976 return -1;
977 }
978
979 /**
980 * ata_mode_string - convert xfer_mask to string
981 * @xfer_mask: mask of bits supported; only highest bit counts.
982 *
983 * Determine string which represents the highest speed
984 * (highest bit in @modemask).
985 *
986 * LOCKING:
987 * None.
988 *
989 * RETURNS:
990 * Constant C string representing highest speed listed in
991 * @mode_mask, or the constant C string "<n/a>".
992 */
993 const char *ata_mode_string(unsigned long xfer_mask)
994 {
995 static const char * const xfer_mode_str[] = {
996 "PIO0",
997 "PIO1",
998 "PIO2",
999 "PIO3",
1000 "PIO4",
1001 "PIO5",
1002 "PIO6",
1003 "MWDMA0",
1004 "MWDMA1",
1005 "MWDMA2",
1006 "MWDMA3",
1007 "MWDMA4",
1008 "UDMA/16",
1009 "UDMA/25",
1010 "UDMA/33",
1011 "UDMA/44",
1012 "UDMA/66",
1013 "UDMA/100",
1014 "UDMA/133",
1015 "UDMA7",
1016 };
1017 int highbit;
1018
1019 highbit = fls(xfer_mask) - 1;
1020 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1021 return xfer_mode_str[highbit];
1022 return "<n/a>";
1023 }
1024
1025 const char *sata_spd_string(unsigned int spd)
1026 {
1027 static const char * const spd_str[] = {
1028 "1.5 Gbps",
1029 "3.0 Gbps",
1030 "6.0 Gbps",
1031 };
1032
1033 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1034 return "<unknown>";
1035 return spd_str[spd - 1];
1036 }
1037
1038 /**
1039 * ata_dev_classify - determine device type based on ATA-spec signature
1040 * @tf: ATA taskfile register set for device to be identified
1041 *
1042 * Determine from taskfile register contents whether a device is
1043 * ATA or ATAPI, as per "Signature and persistence" section
1044 * of ATA/PI spec (volume 1, sect 5.14).
1045 *
1046 * LOCKING:
1047 * None.
1048 *
1049 * RETURNS:
1050 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1051 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1052 */
1053 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1054 {
1055 /* Apple's open source Darwin code hints that some devices only
1056 * put a proper signature into the LBA mid/high registers,
1057 * So, we only check those. It's sufficient for uniqueness.
1058 *
1059 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1060 * signatures for ATA and ATAPI devices attached on SerialATA,
1061 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1062 * spec has never mentioned about using different signatures
1063 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1064 * Multiplier specification began to use 0x69/0x96 to identify
1065 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1066 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1067 * 0x69/0x96 shortly and described them as reserved for
1068 * SerialATA.
1069 *
1070 * We follow the current spec and consider that 0x69/0x96
1071 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1072 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1073 * SEMB signature. This is worked around in
1074 * ata_dev_read_id().
1075 */
1076 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1077 DPRINTK("found ATA device by sig\n");
1078 return ATA_DEV_ATA;
1079 }
1080
1081 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1082 DPRINTK("found ATAPI device by sig\n");
1083 return ATA_DEV_ATAPI;
1084 }
1085
1086 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1087 DPRINTK("found PMP device by sig\n");
1088 return ATA_DEV_PMP;
1089 }
1090
1091 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1092 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1093 return ATA_DEV_SEMB;
1094 }
1095
1096 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1097 DPRINTK("found ZAC device by sig\n");
1098 return ATA_DEV_ZAC;
1099 }
1100
1101 DPRINTK("unknown device\n");
1102 return ATA_DEV_UNKNOWN;
1103 }
1104
1105 /**
1106 * ata_id_string - Convert IDENTIFY DEVICE page into string
1107 * @id: IDENTIFY DEVICE results we will examine
1108 * @s: string into which data is output
1109 * @ofs: offset into identify device page
1110 * @len: length of string to return. must be an even number.
1111 *
1112 * The strings in the IDENTIFY DEVICE page are broken up into
1113 * 16-bit chunks. Run through the string, and output each
1114 * 8-bit chunk linearly, regardless of platform.
1115 *
1116 * LOCKING:
1117 * caller.
1118 */
1119
1120 void ata_id_string(const u16 *id, unsigned char *s,
1121 unsigned int ofs, unsigned int len)
1122 {
1123 unsigned int c;
1124
1125 BUG_ON(len & 1);
1126
1127 while (len > 0) {
1128 c = id[ofs] >> 8;
1129 *s = c;
1130 s++;
1131
1132 c = id[ofs] & 0xff;
1133 *s = c;
1134 s++;
1135
1136 ofs++;
1137 len -= 2;
1138 }
1139 }
1140
1141 /**
1142 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1143 * @id: IDENTIFY DEVICE results we will examine
1144 * @s: string into which data is output
1145 * @ofs: offset into identify device page
1146 * @len: length of string to return. must be an odd number.
1147 *
1148 * This function is identical to ata_id_string except that it
1149 * trims trailing spaces and terminates the resulting string with
1150 * null. @len must be actual maximum length (even number) + 1.
1151 *
1152 * LOCKING:
1153 * caller.
1154 */
1155 void ata_id_c_string(const u16 *id, unsigned char *s,
1156 unsigned int ofs, unsigned int len)
1157 {
1158 unsigned char *p;
1159
1160 ata_id_string(id, s, ofs, len - 1);
1161
1162 p = s + strnlen(s, len - 1);
1163 while (p > s && p[-1] == ' ')
1164 p--;
1165 *p = '\0';
1166 }
1167
1168 static u64 ata_id_n_sectors(const u16 *id)
1169 {
1170 if (ata_id_has_lba(id)) {
1171 if (ata_id_has_lba48(id))
1172 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1173 else
1174 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1175 } else {
1176 if (ata_id_current_chs_valid(id))
1177 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1178 id[ATA_ID_CUR_SECTORS];
1179 else
1180 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1181 id[ATA_ID_SECTORS];
1182 }
1183 }
1184
1185 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1186 {
1187 u64 sectors = 0;
1188
1189 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1190 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1191 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1192 sectors |= (tf->lbah & 0xff) << 16;
1193 sectors |= (tf->lbam & 0xff) << 8;
1194 sectors |= (tf->lbal & 0xff);
1195
1196 return sectors;
1197 }
1198
1199 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1200 {
1201 u64 sectors = 0;
1202
1203 sectors |= (tf->device & 0x0f) << 24;
1204 sectors |= (tf->lbah & 0xff) << 16;
1205 sectors |= (tf->lbam & 0xff) << 8;
1206 sectors |= (tf->lbal & 0xff);
1207
1208 return sectors;
1209 }
1210
1211 /**
1212 * ata_read_native_max_address - Read native max address
1213 * @dev: target device
1214 * @max_sectors: out parameter for the result native max address
1215 *
1216 * Perform an LBA48 or LBA28 native size query upon the device in
1217 * question.
1218 *
1219 * RETURNS:
1220 * 0 on success, -EACCES if command is aborted by the drive.
1221 * -EIO on other errors.
1222 */
1223 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1224 {
1225 unsigned int err_mask;
1226 struct ata_taskfile tf;
1227 int lba48 = ata_id_has_lba48(dev->id);
1228
1229 ata_tf_init(dev, &tf);
1230
1231 /* always clear all address registers */
1232 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1233
1234 if (lba48) {
1235 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1236 tf.flags |= ATA_TFLAG_LBA48;
1237 } else
1238 tf.command = ATA_CMD_READ_NATIVE_MAX;
1239
1240 tf.protocol |= ATA_PROT_NODATA;
1241 tf.device |= ATA_LBA;
1242
1243 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1244 if (err_mask) {
1245 ata_dev_warn(dev,
1246 "failed to read native max address (err_mask=0x%x)\n",
1247 err_mask);
1248 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1249 return -EACCES;
1250 return -EIO;
1251 }
1252
1253 if (lba48)
1254 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1255 else
1256 *max_sectors = ata_tf_to_lba(&tf) + 1;
1257 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1258 (*max_sectors)--;
1259 return 0;
1260 }
1261
1262 /**
1263 * ata_set_max_sectors - Set max sectors
1264 * @dev: target device
1265 * @new_sectors: new max sectors value to set for the device
1266 *
1267 * Set max sectors of @dev to @new_sectors.
1268 *
1269 * RETURNS:
1270 * 0 on success, -EACCES if command is aborted or denied (due to
1271 * previous non-volatile SET_MAX) by the drive. -EIO on other
1272 * errors.
1273 */
1274 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1275 {
1276 unsigned int err_mask;
1277 struct ata_taskfile tf;
1278 int lba48 = ata_id_has_lba48(dev->id);
1279
1280 new_sectors--;
1281
1282 ata_tf_init(dev, &tf);
1283
1284 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1285
1286 if (lba48) {
1287 tf.command = ATA_CMD_SET_MAX_EXT;
1288 tf.flags |= ATA_TFLAG_LBA48;
1289
1290 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1291 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1292 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1293 } else {
1294 tf.command = ATA_CMD_SET_MAX;
1295
1296 tf.device |= (new_sectors >> 24) & 0xf;
1297 }
1298
1299 tf.protocol |= ATA_PROT_NODATA;
1300 tf.device |= ATA_LBA;
1301
1302 tf.lbal = (new_sectors >> 0) & 0xff;
1303 tf.lbam = (new_sectors >> 8) & 0xff;
1304 tf.lbah = (new_sectors >> 16) & 0xff;
1305
1306 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1307 if (err_mask) {
1308 ata_dev_warn(dev,
1309 "failed to set max address (err_mask=0x%x)\n",
1310 err_mask);
1311 if (err_mask == AC_ERR_DEV &&
1312 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1313 return -EACCES;
1314 return -EIO;
1315 }
1316
1317 return 0;
1318 }
1319
1320 /**
1321 * ata_hpa_resize - Resize a device with an HPA set
1322 * @dev: Device to resize
1323 *
1324 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1325 * it if required to the full size of the media. The caller must check
1326 * the drive has the HPA feature set enabled.
1327 *
1328 * RETURNS:
1329 * 0 on success, -errno on failure.
1330 */
1331 static int ata_hpa_resize(struct ata_device *dev)
1332 {
1333 struct ata_eh_context *ehc = &dev->link->eh_context;
1334 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1335 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1336 u64 sectors = ata_id_n_sectors(dev->id);
1337 u64 native_sectors;
1338 int rc;
1339
1340 /* do we need to do it? */
1341 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1342 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1343 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1344 return 0;
1345
1346 /* read native max address */
1347 rc = ata_read_native_max_address(dev, &native_sectors);
1348 if (rc) {
1349 /* If device aborted the command or HPA isn't going to
1350 * be unlocked, skip HPA resizing.
1351 */
1352 if (rc == -EACCES || !unlock_hpa) {
1353 ata_dev_warn(dev,
1354 "HPA support seems broken, skipping HPA handling\n");
1355 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1356
1357 /* we can continue if device aborted the command */
1358 if (rc == -EACCES)
1359 rc = 0;
1360 }
1361
1362 return rc;
1363 }
1364 dev->n_native_sectors = native_sectors;
1365
1366 /* nothing to do? */
1367 if (native_sectors <= sectors || !unlock_hpa) {
1368 if (!print_info || native_sectors == sectors)
1369 return 0;
1370
1371 if (native_sectors > sectors)
1372 ata_dev_info(dev,
1373 "HPA detected: current %llu, native %llu\n",
1374 (unsigned long long)sectors,
1375 (unsigned long long)native_sectors);
1376 else if (native_sectors < sectors)
1377 ata_dev_warn(dev,
1378 "native sectors (%llu) is smaller than sectors (%llu)\n",
1379 (unsigned long long)native_sectors,
1380 (unsigned long long)sectors);
1381 return 0;
1382 }
1383
1384 /* let's unlock HPA */
1385 rc = ata_set_max_sectors(dev, native_sectors);
1386 if (rc == -EACCES) {
1387 /* if device aborted the command, skip HPA resizing */
1388 ata_dev_warn(dev,
1389 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1390 (unsigned long long)sectors,
1391 (unsigned long long)native_sectors);
1392 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1393 return 0;
1394 } else if (rc)
1395 return rc;
1396
1397 /* re-read IDENTIFY data */
1398 rc = ata_dev_reread_id(dev, 0);
1399 if (rc) {
1400 ata_dev_err(dev,
1401 "failed to re-read IDENTIFY data after HPA resizing\n");
1402 return rc;
1403 }
1404
1405 if (print_info) {
1406 u64 new_sectors = ata_id_n_sectors(dev->id);
1407 ata_dev_info(dev,
1408 "HPA unlocked: %llu -> %llu, native %llu\n",
1409 (unsigned long long)sectors,
1410 (unsigned long long)new_sectors,
1411 (unsigned long long)native_sectors);
1412 }
1413
1414 return 0;
1415 }
1416
1417 /**
1418 * ata_dump_id - IDENTIFY DEVICE info debugging output
1419 * @id: IDENTIFY DEVICE page to dump
1420 *
1421 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1422 * page.
1423 *
1424 * LOCKING:
1425 * caller.
1426 */
1427
1428 static inline void ata_dump_id(const u16 *id)
1429 {
1430 DPRINTK("49==0x%04x "
1431 "53==0x%04x "
1432 "63==0x%04x "
1433 "64==0x%04x "
1434 "75==0x%04x \n",
1435 id[49],
1436 id[53],
1437 id[63],
1438 id[64],
1439 id[75]);
1440 DPRINTK("80==0x%04x "
1441 "81==0x%04x "
1442 "82==0x%04x "
1443 "83==0x%04x "
1444 "84==0x%04x \n",
1445 id[80],
1446 id[81],
1447 id[82],
1448 id[83],
1449 id[84]);
1450 DPRINTK("88==0x%04x "
1451 "93==0x%04x\n",
1452 id[88],
1453 id[93]);
1454 }
1455
1456 /**
1457 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1458 * @id: IDENTIFY data to compute xfer mask from
1459 *
1460 * Compute the xfermask for this device. This is not as trivial
1461 * as it seems if we must consider early devices correctly.
1462 *
1463 * FIXME: pre IDE drive timing (do we care ?).
1464 *
1465 * LOCKING:
1466 * None.
1467 *
1468 * RETURNS:
1469 * Computed xfermask
1470 */
1471 unsigned long ata_id_xfermask(const u16 *id)
1472 {
1473 unsigned long pio_mask, mwdma_mask, udma_mask;
1474
1475 /* Usual case. Word 53 indicates word 64 is valid */
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1477 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1478 pio_mask <<= 3;
1479 pio_mask |= 0x7;
1480 } else {
1481 /* If word 64 isn't valid then Word 51 high byte holds
1482 * the PIO timing number for the maximum. Turn it into
1483 * a mask.
1484 */
1485 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1486 if (mode < 5) /* Valid PIO range */
1487 pio_mask = (2 << mode) - 1;
1488 else
1489 pio_mask = 1;
1490
1491 /* But wait.. there's more. Design your standards by
1492 * committee and you too can get a free iordy field to
1493 * process. However its the speeds not the modes that
1494 * are supported... Note drivers using the timing API
1495 * will get this right anyway
1496 */
1497 }
1498
1499 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1500
1501 if (ata_id_is_cfa(id)) {
1502 /*
1503 * Process compact flash extended modes
1504 */
1505 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1506 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1507
1508 if (pio)
1509 pio_mask |= (1 << 5);
1510 if (pio > 1)
1511 pio_mask |= (1 << 6);
1512 if (dma)
1513 mwdma_mask |= (1 << 3);
1514 if (dma > 1)
1515 mwdma_mask |= (1 << 4);
1516 }
1517
1518 udma_mask = 0;
1519 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1520 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1521
1522 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1523 }
1524
1525 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1526 {
1527 struct completion *waiting = qc->private_data;
1528
1529 complete(waiting);
1530 }
1531
1532 /**
1533 * ata_exec_internal_sg - execute libata internal command
1534 * @dev: Device to which the command is sent
1535 * @tf: Taskfile registers for the command and the result
1536 * @cdb: CDB for packet command
1537 * @dma_dir: Data transfer direction of the command
1538 * @sgl: sg list for the data buffer of the command
1539 * @n_elem: Number of sg entries
1540 * @timeout: Timeout in msecs (0 for default)
1541 *
1542 * Executes libata internal command with timeout. @tf contains
1543 * command on entry and result on return. Timeout and error
1544 * conditions are reported via return value. No recovery action
1545 * is taken after a command times out. It's caller's duty to
1546 * clean up after timeout.
1547 *
1548 * LOCKING:
1549 * None. Should be called with kernel context, might sleep.
1550 *
1551 * RETURNS:
1552 * Zero on success, AC_ERR_* mask on failure
1553 */
1554 unsigned ata_exec_internal_sg(struct ata_device *dev,
1555 struct ata_taskfile *tf, const u8 *cdb,
1556 int dma_dir, struct scatterlist *sgl,
1557 unsigned int n_elem, unsigned long timeout)
1558 {
1559 struct ata_link *link = dev->link;
1560 struct ata_port *ap = link->ap;
1561 u8 command = tf->command;
1562 int auto_timeout = 0;
1563 struct ata_queued_cmd *qc;
1564 unsigned int tag, preempted_tag;
1565 u32 preempted_sactive, preempted_qc_active;
1566 int preempted_nr_active_links;
1567 DECLARE_COMPLETION_ONSTACK(wait);
1568 unsigned long flags;
1569 unsigned int err_mask;
1570 int rc;
1571
1572 spin_lock_irqsave(ap->lock, flags);
1573
1574 /* no internal command while frozen */
1575 if (ap->pflags & ATA_PFLAG_FROZEN) {
1576 spin_unlock_irqrestore(ap->lock, flags);
1577 return AC_ERR_SYSTEM;
1578 }
1579
1580 /* initialize internal qc */
1581
1582 /* XXX: Tag 0 is used for drivers with legacy EH as some
1583 * drivers choke if any other tag is given. This breaks
1584 * ata_tag_internal() test for those drivers. Don't use new
1585 * EH stuff without converting to it.
1586 */
1587 if (ap->ops->error_handler)
1588 tag = ATA_TAG_INTERNAL;
1589 else
1590 tag = 0;
1591
1592 qc = __ata_qc_from_tag(ap, tag);
1593
1594 qc->tag = tag;
1595 qc->scsicmd = NULL;
1596 qc->ap = ap;
1597 qc->dev = dev;
1598 ata_qc_reinit(qc);
1599
1600 preempted_tag = link->active_tag;
1601 preempted_sactive = link->sactive;
1602 preempted_qc_active = ap->qc_active;
1603 preempted_nr_active_links = ap->nr_active_links;
1604 link->active_tag = ATA_TAG_POISON;
1605 link->sactive = 0;
1606 ap->qc_active = 0;
1607 ap->nr_active_links = 0;
1608
1609 /* prepare & issue qc */
1610 qc->tf = *tf;
1611 if (cdb)
1612 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1613
1614 /* some SATA bridges need us to indicate data xfer direction */
1615 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1616 dma_dir == DMA_FROM_DEVICE)
1617 qc->tf.feature |= ATAPI_DMADIR;
1618
1619 qc->flags |= ATA_QCFLAG_RESULT_TF;
1620 qc->dma_dir = dma_dir;
1621 if (dma_dir != DMA_NONE) {
1622 unsigned int i, buflen = 0;
1623 struct scatterlist *sg;
1624
1625 for_each_sg(sgl, sg, n_elem, i)
1626 buflen += sg->length;
1627
1628 ata_sg_init(qc, sgl, n_elem);
1629 qc->nbytes = buflen;
1630 }
1631
1632 qc->private_data = &wait;
1633 qc->complete_fn = ata_qc_complete_internal;
1634
1635 ata_qc_issue(qc);
1636
1637 spin_unlock_irqrestore(ap->lock, flags);
1638
1639 if (!timeout) {
1640 if (ata_probe_timeout)
1641 timeout = ata_probe_timeout * 1000;
1642 else {
1643 timeout = ata_internal_cmd_timeout(dev, command);
1644 auto_timeout = 1;
1645 }
1646 }
1647
1648 if (ap->ops->error_handler)
1649 ata_eh_release(ap);
1650
1651 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1652
1653 if (ap->ops->error_handler)
1654 ata_eh_acquire(ap);
1655
1656 ata_sff_flush_pio_task(ap);
1657
1658 if (!rc) {
1659 spin_lock_irqsave(ap->lock, flags);
1660
1661 /* We're racing with irq here. If we lose, the
1662 * following test prevents us from completing the qc
1663 * twice. If we win, the port is frozen and will be
1664 * cleaned up by ->post_internal_cmd().
1665 */
1666 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1667 qc->err_mask |= AC_ERR_TIMEOUT;
1668
1669 if (ap->ops->error_handler)
1670 ata_port_freeze(ap);
1671 else
1672 ata_qc_complete(qc);
1673
1674 if (ata_msg_warn(ap))
1675 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1676 command);
1677 }
1678
1679 spin_unlock_irqrestore(ap->lock, flags);
1680 }
1681
1682 /* do post_internal_cmd */
1683 if (ap->ops->post_internal_cmd)
1684 ap->ops->post_internal_cmd(qc);
1685
1686 /* perform minimal error analysis */
1687 if (qc->flags & ATA_QCFLAG_FAILED) {
1688 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1689 qc->err_mask |= AC_ERR_DEV;
1690
1691 if (!qc->err_mask)
1692 qc->err_mask |= AC_ERR_OTHER;
1693
1694 if (qc->err_mask & ~AC_ERR_OTHER)
1695 qc->err_mask &= ~AC_ERR_OTHER;
1696 }
1697
1698 /* finish up */
1699 spin_lock_irqsave(ap->lock, flags);
1700
1701 *tf = qc->result_tf;
1702 err_mask = qc->err_mask;
1703
1704 ata_qc_free(qc);
1705 link->active_tag = preempted_tag;
1706 link->sactive = preempted_sactive;
1707 ap->qc_active = preempted_qc_active;
1708 ap->nr_active_links = preempted_nr_active_links;
1709
1710 spin_unlock_irqrestore(ap->lock, flags);
1711
1712 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1713 ata_internal_cmd_timed_out(dev, command);
1714
1715 return err_mask;
1716 }
1717
1718 /**
1719 * ata_exec_internal - execute libata internal command
1720 * @dev: Device to which the command is sent
1721 * @tf: Taskfile registers for the command and the result
1722 * @cdb: CDB for packet command
1723 * @dma_dir: Data transfer direction of the command
1724 * @buf: Data buffer of the command
1725 * @buflen: Length of data buffer
1726 * @timeout: Timeout in msecs (0 for default)
1727 *
1728 * Wrapper around ata_exec_internal_sg() which takes simple
1729 * buffer instead of sg list.
1730 *
1731 * LOCKING:
1732 * None. Should be called with kernel context, might sleep.
1733 *
1734 * RETURNS:
1735 * Zero on success, AC_ERR_* mask on failure
1736 */
1737 unsigned ata_exec_internal(struct ata_device *dev,
1738 struct ata_taskfile *tf, const u8 *cdb,
1739 int dma_dir, void *buf, unsigned int buflen,
1740 unsigned long timeout)
1741 {
1742 struct scatterlist *psg = NULL, sg;
1743 unsigned int n_elem = 0;
1744
1745 if (dma_dir != DMA_NONE) {
1746 WARN_ON(!buf);
1747 sg_init_one(&sg, buf, buflen);
1748 psg = &sg;
1749 n_elem++;
1750 }
1751
1752 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1753 timeout);
1754 }
1755
1756 /**
1757 * ata_pio_need_iordy - check if iordy needed
1758 * @adev: ATA device
1759 *
1760 * Check if the current speed of the device requires IORDY. Used
1761 * by various controllers for chip configuration.
1762 */
1763 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1764 {
1765 /* Don't set IORDY if we're preparing for reset. IORDY may
1766 * lead to controller lock up on certain controllers if the
1767 * port is not occupied. See bko#11703 for details.
1768 */
1769 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1770 return 0;
1771 /* Controller doesn't support IORDY. Probably a pointless
1772 * check as the caller should know this.
1773 */
1774 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1775 return 0;
1776 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1777 if (ata_id_is_cfa(adev->id)
1778 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1779 return 0;
1780 /* PIO3 and higher it is mandatory */
1781 if (adev->pio_mode > XFER_PIO_2)
1782 return 1;
1783 /* We turn it on when possible */
1784 if (ata_id_has_iordy(adev->id))
1785 return 1;
1786 return 0;
1787 }
1788
1789 /**
1790 * ata_pio_mask_no_iordy - Return the non IORDY mask
1791 * @adev: ATA device
1792 *
1793 * Compute the highest mode possible if we are not using iordy. Return
1794 * -1 if no iordy mode is available.
1795 */
1796 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1797 {
1798 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1799 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1800 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1801 /* Is the speed faster than the drive allows non IORDY ? */
1802 if (pio) {
1803 /* This is cycle times not frequency - watch the logic! */
1804 if (pio > 240) /* PIO2 is 240nS per cycle */
1805 return 3 << ATA_SHIFT_PIO;
1806 return 7 << ATA_SHIFT_PIO;
1807 }
1808 }
1809 return 3 << ATA_SHIFT_PIO;
1810 }
1811
1812 /**
1813 * ata_do_dev_read_id - default ID read method
1814 * @dev: device
1815 * @tf: proposed taskfile
1816 * @id: data buffer
1817 *
1818 * Issue the identify taskfile and hand back the buffer containing
1819 * identify data. For some RAID controllers and for pre ATA devices
1820 * this function is wrapped or replaced by the driver
1821 */
1822 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1823 struct ata_taskfile *tf, u16 *id)
1824 {
1825 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1826 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1827 }
1828
1829 /**
1830 * ata_dev_read_id - Read ID data from the specified device
1831 * @dev: target device
1832 * @p_class: pointer to class of the target device (may be changed)
1833 * @flags: ATA_READID_* flags
1834 * @id: buffer to read IDENTIFY data into
1835 *
1836 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1837 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1838 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1839 * for pre-ATA4 drives.
1840 *
1841 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1842 * now we abort if we hit that case.
1843 *
1844 * LOCKING:
1845 * Kernel thread context (may sleep)
1846 *
1847 * RETURNS:
1848 * 0 on success, -errno otherwise.
1849 */
1850 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1851 unsigned int flags, u16 *id)
1852 {
1853 struct ata_port *ap = dev->link->ap;
1854 unsigned int class = *p_class;
1855 struct ata_taskfile tf;
1856 unsigned int err_mask = 0;
1857 const char *reason;
1858 bool is_semb = class == ATA_DEV_SEMB;
1859 int may_fallback = 1, tried_spinup = 0;
1860 int rc;
1861
1862 if (ata_msg_ctl(ap))
1863 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1864
1865 retry:
1866 ata_tf_init(dev, &tf);
1867
1868 switch (class) {
1869 case ATA_DEV_SEMB:
1870 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1871 case ATA_DEV_ATA:
1872 case ATA_DEV_ZAC:
1873 tf.command = ATA_CMD_ID_ATA;
1874 break;
1875 case ATA_DEV_ATAPI:
1876 tf.command = ATA_CMD_ID_ATAPI;
1877 break;
1878 default:
1879 rc = -ENODEV;
1880 reason = "unsupported class";
1881 goto err_out;
1882 }
1883
1884 tf.protocol = ATA_PROT_PIO;
1885
1886 /* Some devices choke if TF registers contain garbage. Make
1887 * sure those are properly initialized.
1888 */
1889 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1890
1891 /* Device presence detection is unreliable on some
1892 * controllers. Always poll IDENTIFY if available.
1893 */
1894 tf.flags |= ATA_TFLAG_POLLING;
1895
1896 if (ap->ops->read_id)
1897 err_mask = ap->ops->read_id(dev, &tf, id);
1898 else
1899 err_mask = ata_do_dev_read_id(dev, &tf, id);
1900
1901 if (err_mask) {
1902 if (err_mask & AC_ERR_NODEV_HINT) {
1903 ata_dev_dbg(dev, "NODEV after polling detection\n");
1904 return -ENOENT;
1905 }
1906
1907 if (is_semb) {
1908 ata_dev_info(dev,
1909 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1910 /* SEMB is not supported yet */
1911 *p_class = ATA_DEV_SEMB_UNSUP;
1912 return 0;
1913 }
1914
1915 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1916 /* Device or controller might have reported
1917 * the wrong device class. Give a shot at the
1918 * other IDENTIFY if the current one is
1919 * aborted by the device.
1920 */
1921 if (may_fallback) {
1922 may_fallback = 0;
1923
1924 if (class == ATA_DEV_ATA)
1925 class = ATA_DEV_ATAPI;
1926 else
1927 class = ATA_DEV_ATA;
1928 goto retry;
1929 }
1930
1931 /* Control reaches here iff the device aborted
1932 * both flavors of IDENTIFYs which happens
1933 * sometimes with phantom devices.
1934 */
1935 ata_dev_dbg(dev,
1936 "both IDENTIFYs aborted, assuming NODEV\n");
1937 return -ENOENT;
1938 }
1939
1940 rc = -EIO;
1941 reason = "I/O error";
1942 goto err_out;
1943 }
1944
1945 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1946 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1947 "class=%d may_fallback=%d tried_spinup=%d\n",
1948 class, may_fallback, tried_spinup);
1949 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1950 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1951 }
1952
1953 /* Falling back doesn't make sense if ID data was read
1954 * successfully at least once.
1955 */
1956 may_fallback = 0;
1957
1958 swap_buf_le16(id, ATA_ID_WORDS);
1959
1960 /* sanity check */
1961 rc = -EINVAL;
1962 reason = "device reports invalid type";
1963
1964 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1965 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1966 goto err_out;
1967 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1968 ata_id_is_ata(id)) {
1969 ata_dev_dbg(dev,
1970 "host indicates ignore ATA devices, ignored\n");
1971 return -ENOENT;
1972 }
1973 } else {
1974 if (ata_id_is_ata(id))
1975 goto err_out;
1976 }
1977
1978 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1979 tried_spinup = 1;
1980 /*
1981 * Drive powered-up in standby mode, and requires a specific
1982 * SET_FEATURES spin-up subcommand before it will accept
1983 * anything other than the original IDENTIFY command.
1984 */
1985 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1986 if (err_mask && id[2] != 0x738c) {
1987 rc = -EIO;
1988 reason = "SPINUP failed";
1989 goto err_out;
1990 }
1991 /*
1992 * If the drive initially returned incomplete IDENTIFY info,
1993 * we now must reissue the IDENTIFY command.
1994 */
1995 if (id[2] == 0x37c8)
1996 goto retry;
1997 }
1998
1999 if ((flags & ATA_READID_POSTRESET) &&
2000 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2001 /*
2002 * The exact sequence expected by certain pre-ATA4 drives is:
2003 * SRST RESET
2004 * IDENTIFY (optional in early ATA)
2005 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2006 * anything else..
2007 * Some drives were very specific about that exact sequence.
2008 *
2009 * Note that ATA4 says lba is mandatory so the second check
2010 * should never trigger.
2011 */
2012 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2013 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2014 if (err_mask) {
2015 rc = -EIO;
2016 reason = "INIT_DEV_PARAMS failed";
2017 goto err_out;
2018 }
2019
2020 /* current CHS translation info (id[53-58]) might be
2021 * changed. reread the identify device info.
2022 */
2023 flags &= ~ATA_READID_POSTRESET;
2024 goto retry;
2025 }
2026 }
2027
2028 *p_class = class;
2029
2030 return 0;
2031
2032 err_out:
2033 if (ata_msg_warn(ap))
2034 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2035 reason, err_mask);
2036 return rc;
2037 }
2038
2039 static int ata_do_link_spd_horkage(struct ata_device *dev)
2040 {
2041 struct ata_link *plink = ata_dev_phys_link(dev);
2042 u32 target, target_limit;
2043
2044 if (!sata_scr_valid(plink))
2045 return 0;
2046
2047 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2048 target = 1;
2049 else
2050 return 0;
2051
2052 target_limit = (1 << target) - 1;
2053
2054 /* if already on stricter limit, no need to push further */
2055 if (plink->sata_spd_limit <= target_limit)
2056 return 0;
2057
2058 plink->sata_spd_limit = target_limit;
2059
2060 /* Request another EH round by returning -EAGAIN if link is
2061 * going faster than the target speed. Forward progress is
2062 * guaranteed by setting sata_spd_limit to target_limit above.
2063 */
2064 if (plink->sata_spd > target) {
2065 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2066 sata_spd_string(target));
2067 return -EAGAIN;
2068 }
2069 return 0;
2070 }
2071
2072 static inline u8 ata_dev_knobble(struct ata_device *dev)
2073 {
2074 struct ata_port *ap = dev->link->ap;
2075
2076 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2077 return 0;
2078
2079 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2080 }
2081
2082 static int ata_dev_config_ncq(struct ata_device *dev,
2083 char *desc, size_t desc_sz)
2084 {
2085 struct ata_port *ap = dev->link->ap;
2086 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2087 unsigned int err_mask;
2088 char *aa_desc = "";
2089
2090 if (!ata_id_has_ncq(dev->id)) {
2091 desc[0] = '\0';
2092 return 0;
2093 }
2094 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2095 snprintf(desc, desc_sz, "NCQ (not used)");
2096 return 0;
2097 }
2098 if (ap->flags & ATA_FLAG_NCQ) {
2099 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2100 dev->flags |= ATA_DFLAG_NCQ;
2101 }
2102
2103 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2104 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2105 ata_id_has_fpdma_aa(dev->id)) {
2106 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2107 SATA_FPDMA_AA);
2108 if (err_mask) {
2109 ata_dev_err(dev,
2110 "failed to enable AA (error_mask=0x%x)\n",
2111 err_mask);
2112 if (err_mask != AC_ERR_DEV) {
2113 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2114 return -EIO;
2115 }
2116 } else
2117 aa_desc = ", AA";
2118 }
2119
2120 if (hdepth >= ddepth)
2121 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2122 else
2123 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2124 ddepth, aa_desc);
2125
2126 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2127 ata_id_has_ncq_send_and_recv(dev->id)) {
2128 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2129 0, ap->sector_buf, 1);
2130 if (err_mask) {
2131 ata_dev_dbg(dev,
2132 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2133 err_mask);
2134 } else {
2135 u8 *cmds = dev->ncq_send_recv_cmds;
2136
2137 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2138 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2139
2140 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2141 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2142 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2143 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2144 }
2145 }
2146 }
2147
2148 return 0;
2149 }
2150
2151 /**
2152 * ata_dev_configure - Configure the specified ATA/ATAPI device
2153 * @dev: Target device to configure
2154 *
2155 * Configure @dev according to @dev->id. Generic and low-level
2156 * driver specific fixups are also applied.
2157 *
2158 * LOCKING:
2159 * Kernel thread context (may sleep)
2160 *
2161 * RETURNS:
2162 * 0 on success, -errno otherwise
2163 */
2164 int ata_dev_configure(struct ata_device *dev)
2165 {
2166 struct ata_port *ap = dev->link->ap;
2167 struct ata_eh_context *ehc = &dev->link->eh_context;
2168 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2169 const u16 *id = dev->id;
2170 unsigned long xfer_mask;
2171 unsigned int err_mask;
2172 char revbuf[7]; /* XYZ-99\0 */
2173 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2174 char modelbuf[ATA_ID_PROD_LEN+1];
2175 int rc;
2176
2177 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2178 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2179 return 0;
2180 }
2181
2182 if (ata_msg_probe(ap))
2183 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2184
2185 /* set horkage */
2186 dev->horkage |= ata_dev_blacklisted(dev);
2187 ata_force_horkage(dev);
2188
2189 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2190 ata_dev_info(dev, "unsupported device, disabling\n");
2191 ata_dev_disable(dev);
2192 return 0;
2193 }
2194
2195 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2196 dev->class == ATA_DEV_ATAPI) {
2197 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2198 atapi_enabled ? "not supported with this driver"
2199 : "disabled");
2200 ata_dev_disable(dev);
2201 return 0;
2202 }
2203
2204 rc = ata_do_link_spd_horkage(dev);
2205 if (rc)
2206 return rc;
2207
2208 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2209 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2210 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2211 dev->horkage |= ATA_HORKAGE_NOLPM;
2212
2213 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2214 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2215 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2216 }
2217
2218 /* let ACPI work its magic */
2219 rc = ata_acpi_on_devcfg(dev);
2220 if (rc)
2221 return rc;
2222
2223 /* massage HPA, do it early as it might change IDENTIFY data */
2224 rc = ata_hpa_resize(dev);
2225 if (rc)
2226 return rc;
2227
2228 /* print device capabilities */
2229 if (ata_msg_probe(ap))
2230 ata_dev_dbg(dev,
2231 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2232 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2233 __func__,
2234 id[49], id[82], id[83], id[84],
2235 id[85], id[86], id[87], id[88]);
2236
2237 /* initialize to-be-configured parameters */
2238 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2239 dev->max_sectors = 0;
2240 dev->cdb_len = 0;
2241 dev->n_sectors = 0;
2242 dev->cylinders = 0;
2243 dev->heads = 0;
2244 dev->sectors = 0;
2245 dev->multi_count = 0;
2246
2247 /*
2248 * common ATA, ATAPI feature tests
2249 */
2250
2251 /* find max transfer mode; for printk only */
2252 xfer_mask = ata_id_xfermask(id);
2253
2254 if (ata_msg_probe(ap))
2255 ata_dump_id(id);
2256
2257 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2258 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2259 sizeof(fwrevbuf));
2260
2261 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2262 sizeof(modelbuf));
2263
2264 /* ATA-specific feature tests */
2265 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2266 if (ata_id_is_cfa(id)) {
2267 /* CPRM may make this media unusable */
2268 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2269 ata_dev_warn(dev,
2270 "supports DRM functions and may not be fully accessible\n");
2271 snprintf(revbuf, 7, "CFA");
2272 } else {
2273 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2274 /* Warn the user if the device has TPM extensions */
2275 if (ata_id_has_tpm(id))
2276 ata_dev_warn(dev,
2277 "supports DRM functions and may not be fully accessible\n");
2278 }
2279
2280 dev->n_sectors = ata_id_n_sectors(id);
2281
2282 /* get current R/W Multiple count setting */
2283 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2284 unsigned int max = dev->id[47] & 0xff;
2285 unsigned int cnt = dev->id[59] & 0xff;
2286 /* only recognize/allow powers of two here */
2287 if (is_power_of_2(max) && is_power_of_2(cnt))
2288 if (cnt <= max)
2289 dev->multi_count = cnt;
2290 }
2291
2292 if (ata_id_has_lba(id)) {
2293 const char *lba_desc;
2294 char ncq_desc[24];
2295
2296 lba_desc = "LBA";
2297 dev->flags |= ATA_DFLAG_LBA;
2298 if (ata_id_has_lba48(id)) {
2299 dev->flags |= ATA_DFLAG_LBA48;
2300 lba_desc = "LBA48";
2301
2302 if (dev->n_sectors >= (1UL << 28) &&
2303 ata_id_has_flush_ext(id))
2304 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2305 }
2306
2307 /* config NCQ */
2308 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2309 if (rc)
2310 return rc;
2311
2312 /* print device info to dmesg */
2313 if (ata_msg_drv(ap) && print_info) {
2314 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2315 revbuf, modelbuf, fwrevbuf,
2316 ata_mode_string(xfer_mask));
2317 ata_dev_info(dev,
2318 "%llu sectors, multi %u: %s %s\n",
2319 (unsigned long long)dev->n_sectors,
2320 dev->multi_count, lba_desc, ncq_desc);
2321 }
2322 } else {
2323 /* CHS */
2324
2325 /* Default translation */
2326 dev->cylinders = id[1];
2327 dev->heads = id[3];
2328 dev->sectors = id[6];
2329
2330 if (ata_id_current_chs_valid(id)) {
2331 /* Current CHS translation is valid. */
2332 dev->cylinders = id[54];
2333 dev->heads = id[55];
2334 dev->sectors = id[56];
2335 }
2336
2337 /* print device info to dmesg */
2338 if (ata_msg_drv(ap) && print_info) {
2339 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2340 revbuf, modelbuf, fwrevbuf,
2341 ata_mode_string(xfer_mask));
2342 ata_dev_info(dev,
2343 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2344 (unsigned long long)dev->n_sectors,
2345 dev->multi_count, dev->cylinders,
2346 dev->heads, dev->sectors);
2347 }
2348 }
2349
2350 /* Check and mark DevSlp capability. Get DevSlp timing variables
2351 * from SATA Settings page of Identify Device Data Log.
2352 */
2353 if (ata_id_has_devslp(dev->id)) {
2354 u8 *sata_setting = ap->sector_buf;
2355 int i, j;
2356
2357 dev->flags |= ATA_DFLAG_DEVSLP;
2358 err_mask = ata_read_log_page(dev,
2359 ATA_LOG_SATA_ID_DEV_DATA,
2360 ATA_LOG_SATA_SETTINGS,
2361 sata_setting,
2362 1);
2363 if (err_mask)
2364 ata_dev_dbg(dev,
2365 "failed to get Identify Device Data, Emask 0x%x\n",
2366 err_mask);
2367 else
2368 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2369 j = ATA_LOG_DEVSLP_OFFSET + i;
2370 dev->devslp_timing[i] = sata_setting[j];
2371 }
2372 }
2373
2374 dev->cdb_len = 16;
2375 }
2376
2377 /* ATAPI-specific feature tests */
2378 else if (dev->class == ATA_DEV_ATAPI) {
2379 const char *cdb_intr_string = "";
2380 const char *atapi_an_string = "";
2381 const char *dma_dir_string = "";
2382 u32 sntf;
2383
2384 rc = atapi_cdb_len(id);
2385 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2386 if (ata_msg_warn(ap))
2387 ata_dev_warn(dev, "unsupported CDB len\n");
2388 rc = -EINVAL;
2389 goto err_out_nosup;
2390 }
2391 dev->cdb_len = (unsigned int) rc;
2392
2393 /* Enable ATAPI AN if both the host and device have
2394 * the support. If PMP is attached, SNTF is required
2395 * to enable ATAPI AN to discern between PHY status
2396 * changed notifications and ATAPI ANs.
2397 */
2398 if (atapi_an &&
2399 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2400 (!sata_pmp_attached(ap) ||
2401 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2402 /* issue SET feature command to turn this on */
2403 err_mask = ata_dev_set_feature(dev,
2404 SETFEATURES_SATA_ENABLE, SATA_AN);
2405 if (err_mask)
2406 ata_dev_err(dev,
2407 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2408 err_mask);
2409 else {
2410 dev->flags |= ATA_DFLAG_AN;
2411 atapi_an_string = ", ATAPI AN";
2412 }
2413 }
2414
2415 if (ata_id_cdb_intr(dev->id)) {
2416 dev->flags |= ATA_DFLAG_CDB_INTR;
2417 cdb_intr_string = ", CDB intr";
2418 }
2419
2420 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2421 dev->flags |= ATA_DFLAG_DMADIR;
2422 dma_dir_string = ", DMADIR";
2423 }
2424
2425 if (ata_id_has_da(dev->id)) {
2426 dev->flags |= ATA_DFLAG_DA;
2427 zpodd_init(dev);
2428 }
2429
2430 /* print device info to dmesg */
2431 if (ata_msg_drv(ap) && print_info)
2432 ata_dev_info(dev,
2433 "ATAPI: %s, %s, max %s%s%s%s\n",
2434 modelbuf, fwrevbuf,
2435 ata_mode_string(xfer_mask),
2436 cdb_intr_string, atapi_an_string,
2437 dma_dir_string);
2438 }
2439
2440 /* determine max_sectors */
2441 dev->max_sectors = ATA_MAX_SECTORS;
2442 if (dev->flags & ATA_DFLAG_LBA48)
2443 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2444
2445 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2446 200 sectors */
2447 if (ata_dev_knobble(dev)) {
2448 if (ata_msg_drv(ap) && print_info)
2449 ata_dev_info(dev, "applying bridge limits\n");
2450 dev->udma_mask &= ATA_UDMA5;
2451 dev->max_sectors = ATA_MAX_SECTORS;
2452 }
2453
2454 if ((dev->class == ATA_DEV_ATAPI) &&
2455 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2456 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2457 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2458 }
2459
2460 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2461 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2462 dev->max_sectors);
2463
2464 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2465 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2466 dev->max_sectors);
2467
2468 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2469 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2470
2471 if (ap->ops->dev_config)
2472 ap->ops->dev_config(dev);
2473
2474 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2475 /* Let the user know. We don't want to disallow opens for
2476 rescue purposes, or in case the vendor is just a blithering
2477 idiot. Do this after the dev_config call as some controllers
2478 with buggy firmware may want to avoid reporting false device
2479 bugs */
2480
2481 if (print_info) {
2482 ata_dev_warn(dev,
2483 "Drive reports diagnostics failure. This may indicate a drive\n");
2484 ata_dev_warn(dev,
2485 "fault or invalid emulation. Contact drive vendor for information.\n");
2486 }
2487 }
2488
2489 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2490 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2491 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2492 }
2493
2494 return 0;
2495
2496 err_out_nosup:
2497 if (ata_msg_probe(ap))
2498 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2499 return rc;
2500 }
2501
2502 /**
2503 * ata_cable_40wire - return 40 wire cable type
2504 * @ap: port
2505 *
2506 * Helper method for drivers which want to hardwire 40 wire cable
2507 * detection.
2508 */
2509
2510 int ata_cable_40wire(struct ata_port *ap)
2511 {
2512 return ATA_CBL_PATA40;
2513 }
2514
2515 /**
2516 * ata_cable_80wire - return 80 wire cable type
2517 * @ap: port
2518 *
2519 * Helper method for drivers which want to hardwire 80 wire cable
2520 * detection.
2521 */
2522
2523 int ata_cable_80wire(struct ata_port *ap)
2524 {
2525 return ATA_CBL_PATA80;
2526 }
2527
2528 /**
2529 * ata_cable_unknown - return unknown PATA cable.
2530 * @ap: port
2531 *
2532 * Helper method for drivers which have no PATA cable detection.
2533 */
2534
2535 int ata_cable_unknown(struct ata_port *ap)
2536 {
2537 return ATA_CBL_PATA_UNK;
2538 }
2539
2540 /**
2541 * ata_cable_ignore - return ignored PATA cable.
2542 * @ap: port
2543 *
2544 * Helper method for drivers which don't use cable type to limit
2545 * transfer mode.
2546 */
2547 int ata_cable_ignore(struct ata_port *ap)
2548 {
2549 return ATA_CBL_PATA_IGN;
2550 }
2551
2552 /**
2553 * ata_cable_sata - return SATA cable type
2554 * @ap: port
2555 *
2556 * Helper method for drivers which have SATA cables
2557 */
2558
2559 int ata_cable_sata(struct ata_port *ap)
2560 {
2561 return ATA_CBL_SATA;
2562 }
2563
2564 /**
2565 * ata_bus_probe - Reset and probe ATA bus
2566 * @ap: Bus to probe
2567 *
2568 * Master ATA bus probing function. Initiates a hardware-dependent
2569 * bus reset, then attempts to identify any devices found on
2570 * the bus.
2571 *
2572 * LOCKING:
2573 * PCI/etc. bus probe sem.
2574 *
2575 * RETURNS:
2576 * Zero on success, negative errno otherwise.
2577 */
2578
2579 int ata_bus_probe(struct ata_port *ap)
2580 {
2581 unsigned int classes[ATA_MAX_DEVICES];
2582 int tries[ATA_MAX_DEVICES];
2583 int rc;
2584 struct ata_device *dev;
2585
2586 ata_for_each_dev(dev, &ap->link, ALL)
2587 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2588
2589 retry:
2590 ata_for_each_dev(dev, &ap->link, ALL) {
2591 /* If we issue an SRST then an ATA drive (not ATAPI)
2592 * may change configuration and be in PIO0 timing. If
2593 * we do a hard reset (or are coming from power on)
2594 * this is true for ATA or ATAPI. Until we've set a
2595 * suitable controller mode we should not touch the
2596 * bus as we may be talking too fast.
2597 */
2598 dev->pio_mode = XFER_PIO_0;
2599 dev->dma_mode = 0xff;
2600
2601 /* If the controller has a pio mode setup function
2602 * then use it to set the chipset to rights. Don't
2603 * touch the DMA setup as that will be dealt with when
2604 * configuring devices.
2605 */
2606 if (ap->ops->set_piomode)
2607 ap->ops->set_piomode(ap, dev);
2608 }
2609
2610 /* reset and determine device classes */
2611 ap->ops->phy_reset(ap);
2612
2613 ata_for_each_dev(dev, &ap->link, ALL) {
2614 if (dev->class != ATA_DEV_UNKNOWN)
2615 classes[dev->devno] = dev->class;
2616 else
2617 classes[dev->devno] = ATA_DEV_NONE;
2618
2619 dev->class = ATA_DEV_UNKNOWN;
2620 }
2621
2622 /* read IDENTIFY page and configure devices. We have to do the identify
2623 specific sequence bass-ackwards so that PDIAG- is released by
2624 the slave device */
2625
2626 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2627 if (tries[dev->devno])
2628 dev->class = classes[dev->devno];
2629
2630 if (!ata_dev_enabled(dev))
2631 continue;
2632
2633 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2634 dev->id);
2635 if (rc)
2636 goto fail;
2637 }
2638
2639 /* Now ask for the cable type as PDIAG- should have been released */
2640 if (ap->ops->cable_detect)
2641 ap->cbl = ap->ops->cable_detect(ap);
2642
2643 /* We may have SATA bridge glue hiding here irrespective of
2644 * the reported cable types and sensed types. When SATA
2645 * drives indicate we have a bridge, we don't know which end
2646 * of the link the bridge is which is a problem.
2647 */
2648 ata_for_each_dev(dev, &ap->link, ENABLED)
2649 if (ata_id_is_sata(dev->id))
2650 ap->cbl = ATA_CBL_SATA;
2651
2652 /* After the identify sequence we can now set up the devices. We do
2653 this in the normal order so that the user doesn't get confused */
2654
2655 ata_for_each_dev(dev, &ap->link, ENABLED) {
2656 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2657 rc = ata_dev_configure(dev);
2658 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2659 if (rc)
2660 goto fail;
2661 }
2662
2663 /* configure transfer mode */
2664 rc = ata_set_mode(&ap->link, &dev);
2665 if (rc)
2666 goto fail;
2667
2668 ata_for_each_dev(dev, &ap->link, ENABLED)
2669 return 0;
2670
2671 return -ENODEV;
2672
2673 fail:
2674 tries[dev->devno]--;
2675
2676 switch (rc) {
2677 case -EINVAL:
2678 /* eeek, something went very wrong, give up */
2679 tries[dev->devno] = 0;
2680 break;
2681
2682 case -ENODEV:
2683 /* give it just one more chance */
2684 tries[dev->devno] = min(tries[dev->devno], 1);
2685 case -EIO:
2686 if (tries[dev->devno] == 1) {
2687 /* This is the last chance, better to slow
2688 * down than lose it.
2689 */
2690 sata_down_spd_limit(&ap->link, 0);
2691 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2692 }
2693 }
2694
2695 if (!tries[dev->devno])
2696 ata_dev_disable(dev);
2697
2698 goto retry;
2699 }
2700
2701 /**
2702 * sata_print_link_status - Print SATA link status
2703 * @link: SATA link to printk link status about
2704 *
2705 * This function prints link speed and status of a SATA link.
2706 *
2707 * LOCKING:
2708 * None.
2709 */
2710 static void sata_print_link_status(struct ata_link *link)
2711 {
2712 u32 sstatus, scontrol, tmp;
2713
2714 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2715 return;
2716 sata_scr_read(link, SCR_CONTROL, &scontrol);
2717
2718 if (ata_phys_link_online(link)) {
2719 tmp = (sstatus >> 4) & 0xf;
2720 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2721 sata_spd_string(tmp), sstatus, scontrol);
2722 } else {
2723 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2724 sstatus, scontrol);
2725 }
2726 }
2727
2728 /**
2729 * ata_dev_pair - return other device on cable
2730 * @adev: device
2731 *
2732 * Obtain the other device on the same cable, or if none is
2733 * present NULL is returned
2734 */
2735
2736 struct ata_device *ata_dev_pair(struct ata_device *adev)
2737 {
2738 struct ata_link *link = adev->link;
2739 struct ata_device *pair = &link->device[1 - adev->devno];
2740 if (!ata_dev_enabled(pair))
2741 return NULL;
2742 return pair;
2743 }
2744
2745 /**
2746 * sata_down_spd_limit - adjust SATA spd limit downward
2747 * @link: Link to adjust SATA spd limit for
2748 * @spd_limit: Additional limit
2749 *
2750 * Adjust SATA spd limit of @link downward. Note that this
2751 * function only adjusts the limit. The change must be applied
2752 * using sata_set_spd().
2753 *
2754 * If @spd_limit is non-zero, the speed is limited to equal to or
2755 * lower than @spd_limit if such speed is supported. If
2756 * @spd_limit is slower than any supported speed, only the lowest
2757 * supported speed is allowed.
2758 *
2759 * LOCKING:
2760 * Inherited from caller.
2761 *
2762 * RETURNS:
2763 * 0 on success, negative errno on failure
2764 */
2765 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2766 {
2767 u32 sstatus, spd, mask;
2768 int rc, bit;
2769
2770 if (!sata_scr_valid(link))
2771 return -EOPNOTSUPP;
2772
2773 /* If SCR can be read, use it to determine the current SPD.
2774 * If not, use cached value in link->sata_spd.
2775 */
2776 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2777 if (rc == 0 && ata_sstatus_online(sstatus))
2778 spd = (sstatus >> 4) & 0xf;
2779 else
2780 spd = link->sata_spd;
2781
2782 mask = link->sata_spd_limit;
2783 if (mask <= 1)
2784 return -EINVAL;
2785
2786 /* unconditionally mask off the highest bit */
2787 bit = fls(mask) - 1;
2788 mask &= ~(1 << bit);
2789
2790 /* Mask off all speeds higher than or equal to the current
2791 * one. Force 1.5Gbps if current SPD is not available.
2792 */
2793 if (spd > 1)
2794 mask &= (1 << (spd - 1)) - 1;
2795 else
2796 mask &= 1;
2797
2798 /* were we already at the bottom? */
2799 if (!mask)
2800 return -EINVAL;
2801
2802 if (spd_limit) {
2803 if (mask & ((1 << spd_limit) - 1))
2804 mask &= (1 << spd_limit) - 1;
2805 else {
2806 bit = ffs(mask) - 1;
2807 mask = 1 << bit;
2808 }
2809 }
2810
2811 link->sata_spd_limit = mask;
2812
2813 ata_link_warn(link, "limiting SATA link speed to %s\n",
2814 sata_spd_string(fls(mask)));
2815
2816 return 0;
2817 }
2818
2819 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2820 {
2821 struct ata_link *host_link = &link->ap->link;
2822 u32 limit, target, spd;
2823
2824 limit = link->sata_spd_limit;
2825
2826 /* Don't configure downstream link faster than upstream link.
2827 * It doesn't speed up anything and some PMPs choke on such
2828 * configuration.
2829 */
2830 if (!ata_is_host_link(link) && host_link->sata_spd)
2831 limit &= (1 << host_link->sata_spd) - 1;
2832
2833 if (limit == UINT_MAX)
2834 target = 0;
2835 else
2836 target = fls(limit);
2837
2838 spd = (*scontrol >> 4) & 0xf;
2839 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2840
2841 return spd != target;
2842 }
2843
2844 /**
2845 * sata_set_spd_needed - is SATA spd configuration needed
2846 * @link: Link in question
2847 *
2848 * Test whether the spd limit in SControl matches
2849 * @link->sata_spd_limit. This function is used to determine
2850 * whether hardreset is necessary to apply SATA spd
2851 * configuration.
2852 *
2853 * LOCKING:
2854 * Inherited from caller.
2855 *
2856 * RETURNS:
2857 * 1 if SATA spd configuration is needed, 0 otherwise.
2858 */
2859 static int sata_set_spd_needed(struct ata_link *link)
2860 {
2861 u32 scontrol;
2862
2863 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2864 return 1;
2865
2866 return __sata_set_spd_needed(link, &scontrol);
2867 }
2868
2869 /**
2870 * sata_set_spd - set SATA spd according to spd limit
2871 * @link: Link to set SATA spd for
2872 *
2873 * Set SATA spd of @link according to sata_spd_limit.
2874 *
2875 * LOCKING:
2876 * Inherited from caller.
2877 *
2878 * RETURNS:
2879 * 0 if spd doesn't need to be changed, 1 if spd has been
2880 * changed. Negative errno if SCR registers are inaccessible.
2881 */
2882 int sata_set_spd(struct ata_link *link)
2883 {
2884 u32 scontrol;
2885 int rc;
2886
2887 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2888 return rc;
2889
2890 if (!__sata_set_spd_needed(link, &scontrol))
2891 return 0;
2892
2893 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2894 return rc;
2895
2896 return 1;
2897 }
2898
2899 /*
2900 * This mode timing computation functionality is ported over from
2901 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2902 */
2903 /*
2904 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2905 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2906 * for UDMA6, which is currently supported only by Maxtor drives.
2907 *
2908 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2909 */
2910
2911 static const struct ata_timing ata_timing[] = {
2912 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2913 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2914 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2915 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2916 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2917 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2918 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2919 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2920
2921 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2922 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2923 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2924
2925 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2926 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2927 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2928 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2929 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2930
2931 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2932 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2933 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2934 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2935 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2936 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2937 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2938 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2939
2940 { 0xFF }
2941 };
2942
2943 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2944 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2945
2946 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2947 {
2948 q->setup = EZ(t->setup * 1000, T);
2949 q->act8b = EZ(t->act8b * 1000, T);
2950 q->rec8b = EZ(t->rec8b * 1000, T);
2951 q->cyc8b = EZ(t->cyc8b * 1000, T);
2952 q->active = EZ(t->active * 1000, T);
2953 q->recover = EZ(t->recover * 1000, T);
2954 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2955 q->cycle = EZ(t->cycle * 1000, T);
2956 q->udma = EZ(t->udma * 1000, UT);
2957 }
2958
2959 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2960 struct ata_timing *m, unsigned int what)
2961 {
2962 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2963 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2964 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2965 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2966 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2967 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2968 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2969 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2970 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2971 }
2972
2973 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2974 {
2975 const struct ata_timing *t = ata_timing;
2976
2977 while (xfer_mode > t->mode)
2978 t++;
2979
2980 if (xfer_mode == t->mode)
2981 return t;
2982
2983 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2984 __func__, xfer_mode);
2985
2986 return NULL;
2987 }
2988
2989 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2990 struct ata_timing *t, int T, int UT)
2991 {
2992 const u16 *id = adev->id;
2993 const struct ata_timing *s;
2994 struct ata_timing p;
2995
2996 /*
2997 * Find the mode.
2998 */
2999
3000 if (!(s = ata_timing_find_mode(speed)))
3001 return -EINVAL;
3002
3003 memcpy(t, s, sizeof(*s));
3004
3005 /*
3006 * If the drive is an EIDE drive, it can tell us it needs extended
3007 * PIO/MW_DMA cycle timing.
3008 */
3009
3010 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3011 memset(&p, 0, sizeof(p));
3012
3013 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3014 if (speed <= XFER_PIO_2)
3015 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3016 else if ((speed <= XFER_PIO_4) ||
3017 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3018 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3019 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3020 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3021
3022 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3023 }
3024
3025 /*
3026 * Convert the timing to bus clock counts.
3027 */
3028
3029 ata_timing_quantize(t, t, T, UT);
3030
3031 /*
3032 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3033 * S.M.A.R.T * and some other commands. We have to ensure that the
3034 * DMA cycle timing is slower/equal than the fastest PIO timing.
3035 */
3036
3037 if (speed > XFER_PIO_6) {
3038 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3039 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3040 }
3041
3042 /*
3043 * Lengthen active & recovery time so that cycle time is correct.
3044 */
3045
3046 if (t->act8b + t->rec8b < t->cyc8b) {
3047 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3048 t->rec8b = t->cyc8b - t->act8b;
3049 }
3050
3051 if (t->active + t->recover < t->cycle) {
3052 t->active += (t->cycle - (t->active + t->recover)) / 2;
3053 t->recover = t->cycle - t->active;
3054 }
3055
3056 /* In a few cases quantisation may produce enough errors to
3057 leave t->cycle too low for the sum of active and recovery
3058 if so we must correct this */
3059 if (t->active + t->recover > t->cycle)
3060 t->cycle = t->active + t->recover;
3061
3062 return 0;
3063 }
3064
3065 /**
3066 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3067 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3068 * @cycle: cycle duration in ns
3069 *
3070 * Return matching xfer mode for @cycle. The returned mode is of
3071 * the transfer type specified by @xfer_shift. If @cycle is too
3072 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3073 * than the fastest known mode, the fasted mode is returned.
3074 *
3075 * LOCKING:
3076 * None.
3077 *
3078 * RETURNS:
3079 * Matching xfer_mode, 0xff if no match found.
3080 */
3081 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3082 {
3083 u8 base_mode = 0xff, last_mode = 0xff;
3084 const struct ata_xfer_ent *ent;
3085 const struct ata_timing *t;
3086
3087 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3088 if (ent->shift == xfer_shift)
3089 base_mode = ent->base;
3090
3091 for (t = ata_timing_find_mode(base_mode);
3092 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3093 unsigned short this_cycle;
3094
3095 switch (xfer_shift) {
3096 case ATA_SHIFT_PIO:
3097 case ATA_SHIFT_MWDMA:
3098 this_cycle = t->cycle;
3099 break;
3100 case ATA_SHIFT_UDMA:
3101 this_cycle = t->udma;
3102 break;
3103 default:
3104 return 0xff;
3105 }
3106
3107 if (cycle > this_cycle)
3108 break;
3109
3110 last_mode = t->mode;
3111 }
3112
3113 return last_mode;
3114 }
3115
3116 /**
3117 * ata_down_xfermask_limit - adjust dev xfer masks downward
3118 * @dev: Device to adjust xfer masks
3119 * @sel: ATA_DNXFER_* selector
3120 *
3121 * Adjust xfer masks of @dev downward. Note that this function
3122 * does not apply the change. Invoking ata_set_mode() afterwards
3123 * will apply the limit.
3124 *
3125 * LOCKING:
3126 * Inherited from caller.
3127 *
3128 * RETURNS:
3129 * 0 on success, negative errno on failure
3130 */
3131 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3132 {
3133 char buf[32];
3134 unsigned long orig_mask, xfer_mask;
3135 unsigned long pio_mask, mwdma_mask, udma_mask;
3136 int quiet, highbit;
3137
3138 quiet = !!(sel & ATA_DNXFER_QUIET);
3139 sel &= ~ATA_DNXFER_QUIET;
3140
3141 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3142 dev->mwdma_mask,
3143 dev->udma_mask);
3144 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3145
3146 switch (sel) {
3147 case ATA_DNXFER_PIO:
3148 highbit = fls(pio_mask) - 1;
3149 pio_mask &= ~(1 << highbit);
3150 break;
3151
3152 case ATA_DNXFER_DMA:
3153 if (udma_mask) {
3154 highbit = fls(udma_mask) - 1;
3155 udma_mask &= ~(1 << highbit);
3156 if (!udma_mask)
3157 return -ENOENT;
3158 } else if (mwdma_mask) {
3159 highbit = fls(mwdma_mask) - 1;
3160 mwdma_mask &= ~(1 << highbit);
3161 if (!mwdma_mask)
3162 return -ENOENT;
3163 }
3164 break;
3165
3166 case ATA_DNXFER_40C:
3167 udma_mask &= ATA_UDMA_MASK_40C;
3168 break;
3169
3170 case ATA_DNXFER_FORCE_PIO0:
3171 pio_mask &= 1;
3172 case ATA_DNXFER_FORCE_PIO:
3173 mwdma_mask = 0;
3174 udma_mask = 0;
3175 break;
3176
3177 default:
3178 BUG();
3179 }
3180
3181 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3182
3183 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3184 return -ENOENT;
3185
3186 if (!quiet) {
3187 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3188 snprintf(buf, sizeof(buf), "%s:%s",
3189 ata_mode_string(xfer_mask),
3190 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3191 else
3192 snprintf(buf, sizeof(buf), "%s",
3193 ata_mode_string(xfer_mask));
3194
3195 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3196 }
3197
3198 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3199 &dev->udma_mask);
3200
3201 return 0;
3202 }
3203
3204 static int ata_dev_set_mode(struct ata_device *dev)
3205 {
3206 struct ata_port *ap = dev->link->ap;
3207 struct ata_eh_context *ehc = &dev->link->eh_context;
3208 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3209 const char *dev_err_whine = "";
3210 int ign_dev_err = 0;
3211 unsigned int err_mask = 0;
3212 int rc;
3213
3214 dev->flags &= ~ATA_DFLAG_PIO;
3215 if (dev->xfer_shift == ATA_SHIFT_PIO)
3216 dev->flags |= ATA_DFLAG_PIO;
3217
3218 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3219 dev_err_whine = " (SET_XFERMODE skipped)";
3220 else {
3221 if (nosetxfer)
3222 ata_dev_warn(dev,
3223 "NOSETXFER but PATA detected - can't "
3224 "skip SETXFER, might malfunction\n");
3225 err_mask = ata_dev_set_xfermode(dev);
3226 }
3227
3228 if (err_mask & ~AC_ERR_DEV)
3229 goto fail;
3230
3231 /* revalidate */
3232 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3233 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3234 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3235 if (rc)
3236 return rc;
3237
3238 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3239 /* Old CFA may refuse this command, which is just fine */
3240 if (ata_id_is_cfa(dev->id))
3241 ign_dev_err = 1;
3242 /* Catch several broken garbage emulations plus some pre
3243 ATA devices */
3244 if (ata_id_major_version(dev->id) == 0 &&
3245 dev->pio_mode <= XFER_PIO_2)
3246 ign_dev_err = 1;
3247 /* Some very old devices and some bad newer ones fail
3248 any kind of SET_XFERMODE request but support PIO0-2
3249 timings and no IORDY */
3250 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3251 ign_dev_err = 1;
3252 }
3253 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3254 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3255 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3256 dev->dma_mode == XFER_MW_DMA_0 &&
3257 (dev->id[63] >> 8) & 1)
3258 ign_dev_err = 1;
3259
3260 /* if the device is actually configured correctly, ignore dev err */
3261 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3262 ign_dev_err = 1;
3263
3264 if (err_mask & AC_ERR_DEV) {
3265 if (!ign_dev_err)
3266 goto fail;
3267 else
3268 dev_err_whine = " (device error ignored)";
3269 }
3270
3271 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3272 dev->xfer_shift, (int)dev->xfer_mode);
3273
3274 ata_dev_info(dev, "configured for %s%s\n",
3275 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3276 dev_err_whine);
3277
3278 return 0;
3279
3280 fail:
3281 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3282 return -EIO;
3283 }
3284
3285 /**
3286 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3287 * @link: link on which timings will be programmed
3288 * @r_failed_dev: out parameter for failed device
3289 *
3290 * Standard implementation of the function used to tune and set
3291 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3292 * ata_dev_set_mode() fails, pointer to the failing device is
3293 * returned in @r_failed_dev.
3294 *
3295 * LOCKING:
3296 * PCI/etc. bus probe sem.
3297 *
3298 * RETURNS:
3299 * 0 on success, negative errno otherwise
3300 */
3301
3302 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3303 {
3304 struct ata_port *ap = link->ap;
3305 struct ata_device *dev;
3306 int rc = 0, used_dma = 0, found = 0;
3307
3308 /* step 1: calculate xfer_mask */
3309 ata_for_each_dev(dev, link, ENABLED) {
3310 unsigned long pio_mask, dma_mask;
3311 unsigned int mode_mask;
3312
3313 mode_mask = ATA_DMA_MASK_ATA;
3314 if (dev->class == ATA_DEV_ATAPI)
3315 mode_mask = ATA_DMA_MASK_ATAPI;
3316 else if (ata_id_is_cfa(dev->id))
3317 mode_mask = ATA_DMA_MASK_CFA;
3318
3319 ata_dev_xfermask(dev);
3320 ata_force_xfermask(dev);
3321
3322 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3323
3324 if (libata_dma_mask & mode_mask)
3325 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3326 dev->udma_mask);
3327 else
3328 dma_mask = 0;
3329
3330 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3331 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3332
3333 found = 1;
3334 if (ata_dma_enabled(dev))
3335 used_dma = 1;
3336 }
3337 if (!found)
3338 goto out;
3339
3340 /* step 2: always set host PIO timings */
3341 ata_for_each_dev(dev, link, ENABLED) {
3342 if (dev->pio_mode == 0xff) {
3343 ata_dev_warn(dev, "no PIO support\n");
3344 rc = -EINVAL;
3345 goto out;
3346 }
3347
3348 dev->xfer_mode = dev->pio_mode;
3349 dev->xfer_shift = ATA_SHIFT_PIO;
3350 if (ap->ops->set_piomode)
3351 ap->ops->set_piomode(ap, dev);
3352 }
3353
3354 /* step 3: set host DMA timings */
3355 ata_for_each_dev(dev, link, ENABLED) {
3356 if (!ata_dma_enabled(dev))
3357 continue;
3358
3359 dev->xfer_mode = dev->dma_mode;
3360 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3361 if (ap->ops->set_dmamode)
3362 ap->ops->set_dmamode(ap, dev);
3363 }
3364
3365 /* step 4: update devices' xfer mode */
3366 ata_for_each_dev(dev, link, ENABLED) {
3367 rc = ata_dev_set_mode(dev);
3368 if (rc)
3369 goto out;
3370 }
3371
3372 /* Record simplex status. If we selected DMA then the other
3373 * host channels are not permitted to do so.
3374 */
3375 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3376 ap->host->simplex_claimed = ap;
3377
3378 out:
3379 if (rc)
3380 *r_failed_dev = dev;
3381 return rc;
3382 }
3383
3384 /**
3385 * ata_wait_ready - wait for link to become ready
3386 * @link: link to be waited on
3387 * @deadline: deadline jiffies for the operation
3388 * @check_ready: callback to check link readiness
3389 *
3390 * Wait for @link to become ready. @check_ready should return
3391 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3392 * link doesn't seem to be occupied, other errno for other error
3393 * conditions.
3394 *
3395 * Transient -ENODEV conditions are allowed for
3396 * ATA_TMOUT_FF_WAIT.
3397 *
3398 * LOCKING:
3399 * EH context.
3400 *
3401 * RETURNS:
3402 * 0 if @linke is ready before @deadline; otherwise, -errno.
3403 */
3404 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3405 int (*check_ready)(struct ata_link *link))
3406 {
3407 unsigned long start = jiffies;
3408 unsigned long nodev_deadline;
3409 int warned = 0;
3410
3411 /* choose which 0xff timeout to use, read comment in libata.h */
3412 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3413 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3414 else
3415 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3416
3417 /* Slave readiness can't be tested separately from master. On
3418 * M/S emulation configuration, this function should be called
3419 * only on the master and it will handle both master and slave.
3420 */
3421 WARN_ON(link == link->ap->slave_link);
3422
3423 if (time_after(nodev_deadline, deadline))
3424 nodev_deadline = deadline;
3425
3426 while (1) {
3427 unsigned long now = jiffies;
3428 int ready, tmp;
3429
3430 ready = tmp = check_ready(link);
3431 if (ready > 0)
3432 return 0;
3433
3434 /*
3435 * -ENODEV could be transient. Ignore -ENODEV if link
3436 * is online. Also, some SATA devices take a long
3437 * time to clear 0xff after reset. Wait for
3438 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3439 * offline.
3440 *
3441 * Note that some PATA controllers (pata_ali) explode
3442 * if status register is read more than once when
3443 * there's no device attached.
3444 */
3445 if (ready == -ENODEV) {
3446 if (ata_link_online(link))
3447 ready = 0;
3448 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3449 !ata_link_offline(link) &&
3450 time_before(now, nodev_deadline))
3451 ready = 0;
3452 }
3453
3454 if (ready)
3455 return ready;
3456 if (time_after(now, deadline))
3457 return -EBUSY;
3458
3459 if (!warned && time_after(now, start + 5 * HZ) &&
3460 (deadline - now > 3 * HZ)) {
3461 ata_link_warn(link,
3462 "link is slow to respond, please be patient "
3463 "(ready=%d)\n", tmp);
3464 warned = 1;
3465 }
3466
3467 ata_msleep(link->ap, 50);
3468 }
3469 }
3470
3471 /**
3472 * ata_wait_after_reset - wait for link to become ready after reset
3473 * @link: link to be waited on
3474 * @deadline: deadline jiffies for the operation
3475 * @check_ready: callback to check link readiness
3476 *
3477 * Wait for @link to become ready after reset.
3478 *
3479 * LOCKING:
3480 * EH context.
3481 *
3482 * RETURNS:
3483 * 0 if @linke is ready before @deadline; otherwise, -errno.
3484 */
3485 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3486 int (*check_ready)(struct ata_link *link))
3487 {
3488 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3489
3490 return ata_wait_ready(link, deadline, check_ready);
3491 }
3492
3493 /**
3494 * sata_link_debounce - debounce SATA phy status
3495 * @link: ATA link to debounce SATA phy status for
3496 * @params: timing parameters { interval, duratinon, timeout } in msec
3497 * @deadline: deadline jiffies for the operation
3498 *
3499 * Make sure SStatus of @link reaches stable state, determined by
3500 * holding the same value where DET is not 1 for @duration polled
3501 * every @interval, before @timeout. Timeout constraints the
3502 * beginning of the stable state. Because DET gets stuck at 1 on
3503 * some controllers after hot unplugging, this functions waits
3504 * until timeout then returns 0 if DET is stable at 1.
3505 *
3506 * @timeout is further limited by @deadline. The sooner of the
3507 * two is used.
3508 *
3509 * LOCKING:
3510 * Kernel thread context (may sleep)
3511 *
3512 * RETURNS:
3513 * 0 on success, -errno on failure.
3514 */
3515 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3516 unsigned long deadline)
3517 {
3518 unsigned long interval = params[0];
3519 unsigned long duration = params[1];
3520 unsigned long last_jiffies, t;
3521 u32 last, cur;
3522 int rc;
3523
3524 t = ata_deadline(jiffies, params[2]);
3525 if (time_before(t, deadline))
3526 deadline = t;
3527
3528 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3529 return rc;
3530 cur &= 0xf;
3531
3532 last = cur;
3533 last_jiffies = jiffies;
3534
3535 while (1) {
3536 ata_msleep(link->ap, interval);
3537 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3538 return rc;
3539 cur &= 0xf;
3540
3541 /* DET stable? */
3542 if (cur == last) {
3543 if (cur == 1 && time_before(jiffies, deadline))
3544 continue;
3545 if (time_after(jiffies,
3546 ata_deadline(last_jiffies, duration)))
3547 return 0;
3548 continue;
3549 }
3550
3551 /* unstable, start over */
3552 last = cur;
3553 last_jiffies = jiffies;
3554
3555 /* Check deadline. If debouncing failed, return
3556 * -EPIPE to tell upper layer to lower link speed.
3557 */
3558 if (time_after(jiffies, deadline))
3559 return -EPIPE;
3560 }
3561 }
3562
3563 /**
3564 * sata_link_resume - resume SATA link
3565 * @link: ATA link to resume SATA
3566 * @params: timing parameters { interval, duratinon, timeout } in msec
3567 * @deadline: deadline jiffies for the operation
3568 *
3569 * Resume SATA phy @link and debounce it.
3570 *
3571 * LOCKING:
3572 * Kernel thread context (may sleep)
3573 *
3574 * RETURNS:
3575 * 0 on success, -errno on failure.
3576 */
3577 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3578 unsigned long deadline)
3579 {
3580 int tries = ATA_LINK_RESUME_TRIES;
3581 u32 scontrol, serror;
3582 int rc;
3583
3584 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3585 return rc;
3586
3587 /*
3588 * Writes to SControl sometimes get ignored under certain
3589 * controllers (ata_piix SIDPR). Make sure DET actually is
3590 * cleared.
3591 */
3592 do {
3593 scontrol = (scontrol & 0x0f0) | 0x300;
3594 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3595 return rc;
3596 /*
3597 * Some PHYs react badly if SStatus is pounded
3598 * immediately after resuming. Delay 200ms before
3599 * debouncing.
3600 */
3601 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3602 ata_msleep(link->ap, 200);
3603
3604 /* is SControl restored correctly? */
3605 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3606 return rc;
3607 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3608
3609 if ((scontrol & 0xf0f) != 0x300) {
3610 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3611 scontrol);
3612 return 0;
3613 }
3614
3615 if (tries < ATA_LINK_RESUME_TRIES)
3616 ata_link_warn(link, "link resume succeeded after %d retries\n",
3617 ATA_LINK_RESUME_TRIES - tries);
3618
3619 if ((rc = sata_link_debounce(link, params, deadline)))
3620 return rc;
3621
3622 /* clear SError, some PHYs require this even for SRST to work */
3623 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3624 rc = sata_scr_write(link, SCR_ERROR, serror);
3625
3626 return rc != -EINVAL ? rc : 0;
3627 }
3628
3629 /**
3630 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3631 * @link: ATA link to manipulate SControl for
3632 * @policy: LPM policy to configure
3633 * @spm_wakeup: initiate LPM transition to active state
3634 *
3635 * Manipulate the IPM field of the SControl register of @link
3636 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3637 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3638 * the link. This function also clears PHYRDY_CHG before
3639 * returning.
3640 *
3641 * LOCKING:
3642 * EH context.
3643 *
3644 * RETURNS:
3645 * 0 on success, -errno otherwise.
3646 */
3647 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3648 bool spm_wakeup)
3649 {
3650 struct ata_eh_context *ehc = &link->eh_context;
3651 bool woken_up = false;
3652 u32 scontrol;
3653 int rc;
3654
3655 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3656 if (rc)
3657 return rc;
3658
3659 switch (policy) {
3660 case ATA_LPM_MAX_POWER:
3661 /* disable all LPM transitions */
3662 scontrol |= (0x7 << 8);
3663 /* initiate transition to active state */
3664 if (spm_wakeup) {
3665 scontrol |= (0x4 << 12);
3666 woken_up = true;
3667 }
3668 break;
3669 case ATA_LPM_MED_POWER:
3670 /* allow LPM to PARTIAL */
3671 scontrol &= ~(0x1 << 8);
3672 scontrol |= (0x6 << 8);
3673 break;
3674 case ATA_LPM_MIN_POWER:
3675 if (ata_link_nr_enabled(link) > 0)
3676 /* no restrictions on LPM transitions */
3677 scontrol &= ~(0x7 << 8);
3678 else {
3679 /* empty port, power off */
3680 scontrol &= ~0xf;
3681 scontrol |= (0x1 << 2);
3682 }
3683 break;
3684 default:
3685 WARN_ON(1);
3686 }
3687
3688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3689 if (rc)
3690 return rc;
3691
3692 /* give the link time to transit out of LPM state */
3693 if (woken_up)
3694 msleep(10);
3695
3696 /* clear PHYRDY_CHG from SError */
3697 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3698 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3699 }
3700
3701 /**
3702 * ata_std_prereset - prepare for reset
3703 * @link: ATA link to be reset
3704 * @deadline: deadline jiffies for the operation
3705 *
3706 * @link is about to be reset. Initialize it. Failure from
3707 * prereset makes libata abort whole reset sequence and give up
3708 * that port, so prereset should be best-effort. It does its
3709 * best to prepare for reset sequence but if things go wrong, it
3710 * should just whine, not fail.
3711 *
3712 * LOCKING:
3713 * Kernel thread context (may sleep)
3714 *
3715 * RETURNS:
3716 * 0 on success, -errno otherwise.
3717 */
3718 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3719 {
3720 struct ata_port *ap = link->ap;
3721 struct ata_eh_context *ehc = &link->eh_context;
3722 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3723 int rc;
3724
3725 /* if we're about to do hardreset, nothing more to do */
3726 if (ehc->i.action & ATA_EH_HARDRESET)
3727 return 0;
3728
3729 /* if SATA, resume link */
3730 if (ap->flags & ATA_FLAG_SATA) {
3731 rc = sata_link_resume(link, timing, deadline);
3732 /* whine about phy resume failure but proceed */
3733 if (rc && rc != -EOPNOTSUPP)
3734 ata_link_warn(link,
3735 "failed to resume link for reset (errno=%d)\n",
3736 rc);
3737 }
3738
3739 /* no point in trying softreset on offline link */
3740 if (ata_phys_link_offline(link))
3741 ehc->i.action &= ~ATA_EH_SOFTRESET;
3742
3743 return 0;
3744 }
3745
3746 /**
3747 * sata_link_hardreset - reset link via SATA phy reset
3748 * @link: link to reset
3749 * @timing: timing parameters { interval, duratinon, timeout } in msec
3750 * @deadline: deadline jiffies for the operation
3751 * @online: optional out parameter indicating link onlineness
3752 * @check_ready: optional callback to check link readiness
3753 *
3754 * SATA phy-reset @link using DET bits of SControl register.
3755 * After hardreset, link readiness is waited upon using
3756 * ata_wait_ready() if @check_ready is specified. LLDs are
3757 * allowed to not specify @check_ready and wait itself after this
3758 * function returns. Device classification is LLD's
3759 * responsibility.
3760 *
3761 * *@online is set to one iff reset succeeded and @link is online
3762 * after reset.
3763 *
3764 * LOCKING:
3765 * Kernel thread context (may sleep)
3766 *
3767 * RETURNS:
3768 * 0 on success, -errno otherwise.
3769 */
3770 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3771 unsigned long deadline,
3772 bool *online, int (*check_ready)(struct ata_link *))
3773 {
3774 u32 scontrol;
3775 int rc;
3776
3777 DPRINTK("ENTER\n");
3778
3779 if (online)
3780 *online = false;
3781
3782 if (sata_set_spd_needed(link)) {
3783 /* SATA spec says nothing about how to reconfigure
3784 * spd. To be on the safe side, turn off phy during
3785 * reconfiguration. This works for at least ICH7 AHCI
3786 * and Sil3124.
3787 */
3788 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3789 goto out;
3790
3791 scontrol = (scontrol & 0x0f0) | 0x304;
3792
3793 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3794 goto out;
3795
3796 sata_set_spd(link);
3797 }
3798
3799 /* issue phy wake/reset */
3800 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801 goto out;
3802
3803 scontrol = (scontrol & 0x0f0) | 0x301;
3804
3805 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3806 goto out;
3807
3808 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3809 * 10.4.2 says at least 1 ms.
3810 */
3811 ata_msleep(link->ap, 1);
3812
3813 /* bring link back */
3814 rc = sata_link_resume(link, timing, deadline);
3815 if (rc)
3816 goto out;
3817 /* if link is offline nothing more to do */
3818 if (ata_phys_link_offline(link))
3819 goto out;
3820
3821 /* Link is online. From this point, -ENODEV too is an error. */
3822 if (online)
3823 *online = true;
3824
3825 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3826 /* If PMP is supported, we have to do follow-up SRST.
3827 * Some PMPs don't send D2H Reg FIS after hardreset if
3828 * the first port is empty. Wait only for
3829 * ATA_TMOUT_PMP_SRST_WAIT.
3830 */
3831 if (check_ready) {
3832 unsigned long pmp_deadline;
3833
3834 pmp_deadline = ata_deadline(jiffies,
3835 ATA_TMOUT_PMP_SRST_WAIT);
3836 if (time_after(pmp_deadline, deadline))
3837 pmp_deadline = deadline;
3838 ata_wait_ready(link, pmp_deadline, check_ready);
3839 }
3840 rc = -EAGAIN;
3841 goto out;
3842 }
3843
3844 rc = 0;
3845 if (check_ready)
3846 rc = ata_wait_ready(link, deadline, check_ready);
3847 out:
3848 if (rc && rc != -EAGAIN) {
3849 /* online is set iff link is online && reset succeeded */
3850 if (online)
3851 *online = false;
3852 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3853 }
3854 DPRINTK("EXIT, rc=%d\n", rc);
3855 return rc;
3856 }
3857
3858 /**
3859 * sata_std_hardreset - COMRESET w/o waiting or classification
3860 * @link: link to reset
3861 * @class: resulting class of attached device
3862 * @deadline: deadline jiffies for the operation
3863 *
3864 * Standard SATA COMRESET w/o waiting or classification.
3865 *
3866 * LOCKING:
3867 * Kernel thread context (may sleep)
3868 *
3869 * RETURNS:
3870 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3871 */
3872 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3873 unsigned long deadline)
3874 {
3875 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3876 bool online;
3877 int rc;
3878
3879 /* do hardreset */
3880 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3881 return online ? -EAGAIN : rc;
3882 }
3883
3884 /**
3885 * ata_std_postreset - standard postreset callback
3886 * @link: the target ata_link
3887 * @classes: classes of attached devices
3888 *
3889 * This function is invoked after a successful reset. Note that
3890 * the device might have been reset more than once using
3891 * different reset methods before postreset is invoked.
3892 *
3893 * LOCKING:
3894 * Kernel thread context (may sleep)
3895 */
3896 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3897 {
3898 u32 serror;
3899
3900 DPRINTK("ENTER\n");
3901
3902 /* reset complete, clear SError */
3903 if (!sata_scr_read(link, SCR_ERROR, &serror))
3904 sata_scr_write(link, SCR_ERROR, serror);
3905
3906 /* print link status */
3907 sata_print_link_status(link);
3908
3909 DPRINTK("EXIT\n");
3910 }
3911
3912 /**
3913 * ata_dev_same_device - Determine whether new ID matches configured device
3914 * @dev: device to compare against
3915 * @new_class: class of the new device
3916 * @new_id: IDENTIFY page of the new device
3917 *
3918 * Compare @new_class and @new_id against @dev and determine
3919 * whether @dev is the device indicated by @new_class and
3920 * @new_id.
3921 *
3922 * LOCKING:
3923 * None.
3924 *
3925 * RETURNS:
3926 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3927 */
3928 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3929 const u16 *new_id)
3930 {
3931 const u16 *old_id = dev->id;
3932 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3933 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3934
3935 if (dev->class != new_class) {
3936 ata_dev_info(dev, "class mismatch %d != %d\n",
3937 dev->class, new_class);
3938 return 0;
3939 }
3940
3941 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3942 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3943 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3944 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3945
3946 if (strcmp(model[0], model[1])) {
3947 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3948 model[0], model[1]);
3949 return 0;
3950 }
3951
3952 if (strcmp(serial[0], serial[1])) {
3953 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3954 serial[0], serial[1]);
3955 return 0;
3956 }
3957
3958 return 1;
3959 }
3960
3961 /**
3962 * ata_dev_reread_id - Re-read IDENTIFY data
3963 * @dev: target ATA device
3964 * @readid_flags: read ID flags
3965 *
3966 * Re-read IDENTIFY page and make sure @dev is still attached to
3967 * the port.
3968 *
3969 * LOCKING:
3970 * Kernel thread context (may sleep)
3971 *
3972 * RETURNS:
3973 * 0 on success, negative errno otherwise
3974 */
3975 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3976 {
3977 unsigned int class = dev->class;
3978 u16 *id = (void *)dev->link->ap->sector_buf;
3979 int rc;
3980
3981 /* read ID data */
3982 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3983 if (rc)
3984 return rc;
3985
3986 /* is the device still there? */
3987 if (!ata_dev_same_device(dev, class, id))
3988 return -ENODEV;
3989
3990 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3991 return 0;
3992 }
3993
3994 /**
3995 * ata_dev_revalidate - Revalidate ATA device
3996 * @dev: device to revalidate
3997 * @new_class: new class code
3998 * @readid_flags: read ID flags
3999 *
4000 * Re-read IDENTIFY page, make sure @dev is still attached to the
4001 * port and reconfigure it according to the new IDENTIFY page.
4002 *
4003 * LOCKING:
4004 * Kernel thread context (may sleep)
4005 *
4006 * RETURNS:
4007 * 0 on success, negative errno otherwise
4008 */
4009 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4010 unsigned int readid_flags)
4011 {
4012 u64 n_sectors = dev->n_sectors;
4013 u64 n_native_sectors = dev->n_native_sectors;
4014 int rc;
4015
4016 if (!ata_dev_enabled(dev))
4017 return -ENODEV;
4018
4019 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4020 if (ata_class_enabled(new_class) &&
4021 new_class != ATA_DEV_ATA &&
4022 new_class != ATA_DEV_ATAPI &&
4023 new_class != ATA_DEV_ZAC &&
4024 new_class != ATA_DEV_SEMB) {
4025 ata_dev_info(dev, "class mismatch %u != %u\n",
4026 dev->class, new_class);
4027 rc = -ENODEV;
4028 goto fail;
4029 }
4030
4031 /* re-read ID */
4032 rc = ata_dev_reread_id(dev, readid_flags);
4033 if (rc)
4034 goto fail;
4035
4036 /* configure device according to the new ID */
4037 rc = ata_dev_configure(dev);
4038 if (rc)
4039 goto fail;
4040
4041 /* verify n_sectors hasn't changed */
4042 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4043 dev->n_sectors == n_sectors)
4044 return 0;
4045
4046 /* n_sectors has changed */
4047 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4048 (unsigned long long)n_sectors,
4049 (unsigned long long)dev->n_sectors);
4050
4051 /*
4052 * Something could have caused HPA to be unlocked
4053 * involuntarily. If n_native_sectors hasn't changed and the
4054 * new size matches it, keep the device.
4055 */
4056 if (dev->n_native_sectors == n_native_sectors &&
4057 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4058 ata_dev_warn(dev,
4059 "new n_sectors matches native, probably "
4060 "late HPA unlock, n_sectors updated\n");
4061 /* use the larger n_sectors */
4062 return 0;
4063 }
4064
4065 /*
4066 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4067 * unlocking HPA in those cases.
4068 *
4069 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4070 */
4071 if (dev->n_native_sectors == n_native_sectors &&
4072 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4073 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4074 ata_dev_warn(dev,
4075 "old n_sectors matches native, probably "
4076 "late HPA lock, will try to unlock HPA\n");
4077 /* try unlocking HPA */
4078 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4079 rc = -EIO;
4080 } else
4081 rc = -ENODEV;
4082
4083 /* restore original n_[native_]sectors and fail */
4084 dev->n_native_sectors = n_native_sectors;
4085 dev->n_sectors = n_sectors;
4086 fail:
4087 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4088 return rc;
4089 }
4090
4091 struct ata_blacklist_entry {
4092 const char *model_num;
4093 const char *model_rev;
4094 unsigned long horkage;
4095 };
4096
4097 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4098 /* Devices with DMA related problems under Linux */
4099 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4100 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4101 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4102 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4103 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4104 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4105 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4106 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4107 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4108 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4109 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4110 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4111 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4112 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4113 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4114 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4115 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4116 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4117 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4118 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4119 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4120 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4121 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4122 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4123 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4124 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4125 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4126 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4127 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4128 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4129 /* Odd clown on sil3726/4726 PMPs */
4130 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4131
4132 /* Weird ATAPI devices */
4133 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4134 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4135 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4136 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4137
4138 /*
4139 * Causes silent data corruption with higher max sects.
4140 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4141 */
4142 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4143
4144 /* Devices we expect to fail diagnostics */
4145
4146 /* Devices where NCQ should be avoided */
4147 /* NCQ is slow */
4148 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4149 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4150 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4151 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4152 /* NCQ is broken */
4153 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4154 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4155 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4156 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4157 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4158
4159 /* Seagate NCQ + FLUSH CACHE firmware bug */
4160 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4161 ATA_HORKAGE_FIRMWARE_WARN },
4162
4163 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4164 ATA_HORKAGE_FIRMWARE_WARN },
4165
4166 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4167 ATA_HORKAGE_FIRMWARE_WARN },
4168
4169 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4170 ATA_HORKAGE_FIRMWARE_WARN },
4171
4172 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4173 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4174 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4175 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4176
4177 /* Blacklist entries taken from Silicon Image 3124/3132
4178 Windows driver .inf file - also several Linux problem reports */
4179 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4180 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4181 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4182
4183 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4184 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4185
4186 /* devices which puke on READ_NATIVE_MAX */
4187 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4188 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4189 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4190 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4191
4192 /* this one allows HPA unlocking but fails IOs on the area */
4193 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4194
4195 /* Devices which report 1 sector over size HPA */
4196 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4197 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4198 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4199
4200 /* Devices which get the IVB wrong */
4201 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4202 /* Maybe we should just blacklist TSSTcorp... */
4203 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4204
4205 /* Devices that do not need bridging limits applied */
4206 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4207 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4208
4209 /* Devices which aren't very happy with higher link speeds */
4210 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4211 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4212
4213 /*
4214 * Devices which choke on SETXFER. Applies only if both the
4215 * device and controller are SATA.
4216 */
4217 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4218 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4219 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4220 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4221 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4222
4223 /* devices that don't properly handle queued TRIM commands */
4224 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4225 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4226 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4227 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4228 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4229 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4230 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4231 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4232 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4233 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4234 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4235 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4236 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4237 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4238
4239 /* devices that don't properly handle TRIM commands */
4240 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4241
4242 /*
4243 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4244 * (Return Zero After Trim) flags in the ATA Command Set are
4245 * unreliable in the sense that they only define what happens if
4246 * the device successfully executed the DSM TRIM command. TRIM
4247 * is only advisory, however, and the device is free to silently
4248 * ignore all or parts of the request.
4249 *
4250 * Whitelist drives that are known to reliably return zeroes
4251 * after TRIM.
4252 */
4253
4254 /*
4255 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4256 * that model before whitelisting all other intel SSDs.
4257 */
4258 { "INTEL*SSDSC2MH*", NULL, 0, },
4259
4260 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4261 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4262 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4263 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4264 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4265 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4266 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4267
4268 /*
4269 * Some WD SATA-I drives spin up and down erratically when the link
4270 * is put into the slumber mode. We don't have full list of the
4271 * affected devices. Disable LPM if the device matches one of the
4272 * known prefixes and is SATA-1. As a side effect LPM partial is
4273 * lost too.
4274 *
4275 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4276 */
4277 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4278 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4279 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4280 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4281 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4282 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4283 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4284
4285 /* End Marker */
4286 { }
4287 };
4288
4289 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4290 {
4291 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4292 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4293 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4294
4295 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4296 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4297
4298 while (ad->model_num) {
4299 if (glob_match(ad->model_num, model_num)) {
4300 if (ad->model_rev == NULL)
4301 return ad->horkage;
4302 if (glob_match(ad->model_rev, model_rev))
4303 return ad->horkage;
4304 }
4305 ad++;
4306 }
4307 return 0;
4308 }
4309
4310 static int ata_dma_blacklisted(const struct ata_device *dev)
4311 {
4312 /* We don't support polling DMA.
4313 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4314 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4315 */
4316 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4317 (dev->flags & ATA_DFLAG_CDB_INTR))
4318 return 1;
4319 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4320 }
4321
4322 /**
4323 * ata_is_40wire - check drive side detection
4324 * @dev: device
4325 *
4326 * Perform drive side detection decoding, allowing for device vendors
4327 * who can't follow the documentation.
4328 */
4329
4330 static int ata_is_40wire(struct ata_device *dev)
4331 {
4332 if (dev->horkage & ATA_HORKAGE_IVB)
4333 return ata_drive_40wire_relaxed(dev->id);
4334 return ata_drive_40wire(dev->id);
4335 }
4336
4337 /**
4338 * cable_is_40wire - 40/80/SATA decider
4339 * @ap: port to consider
4340 *
4341 * This function encapsulates the policy for speed management
4342 * in one place. At the moment we don't cache the result but
4343 * there is a good case for setting ap->cbl to the result when
4344 * we are called with unknown cables (and figuring out if it
4345 * impacts hotplug at all).
4346 *
4347 * Return 1 if the cable appears to be 40 wire.
4348 */
4349
4350 static int cable_is_40wire(struct ata_port *ap)
4351 {
4352 struct ata_link *link;
4353 struct ata_device *dev;
4354
4355 /* If the controller thinks we are 40 wire, we are. */
4356 if (ap->cbl == ATA_CBL_PATA40)
4357 return 1;
4358
4359 /* If the controller thinks we are 80 wire, we are. */
4360 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4361 return 0;
4362
4363 /* If the system is known to be 40 wire short cable (eg
4364 * laptop), then we allow 80 wire modes even if the drive
4365 * isn't sure.
4366 */
4367 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4368 return 0;
4369
4370 /* If the controller doesn't know, we scan.
4371 *
4372 * Note: We look for all 40 wire detects at this point. Any
4373 * 80 wire detect is taken to be 80 wire cable because
4374 * - in many setups only the one drive (slave if present) will
4375 * give a valid detect
4376 * - if you have a non detect capable drive you don't want it
4377 * to colour the choice
4378 */
4379 ata_for_each_link(link, ap, EDGE) {
4380 ata_for_each_dev(dev, link, ENABLED) {
4381 if (!ata_is_40wire(dev))
4382 return 0;
4383 }
4384 }
4385 return 1;
4386 }
4387
4388 /**
4389 * ata_dev_xfermask - Compute supported xfermask of the given device
4390 * @dev: Device to compute xfermask for
4391 *
4392 * Compute supported xfermask of @dev and store it in
4393 * dev->*_mask. This function is responsible for applying all
4394 * known limits including host controller limits, device
4395 * blacklist, etc...
4396 *
4397 * LOCKING:
4398 * None.
4399 */
4400 static void ata_dev_xfermask(struct ata_device *dev)
4401 {
4402 struct ata_link *link = dev->link;
4403 struct ata_port *ap = link->ap;
4404 struct ata_host *host = ap->host;
4405 unsigned long xfer_mask;
4406
4407 /* controller modes available */
4408 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4409 ap->mwdma_mask, ap->udma_mask);
4410
4411 /* drive modes available */
4412 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4413 dev->mwdma_mask, dev->udma_mask);
4414 xfer_mask &= ata_id_xfermask(dev->id);
4415
4416 /*
4417 * CFA Advanced TrueIDE timings are not allowed on a shared
4418 * cable
4419 */
4420 if (ata_dev_pair(dev)) {
4421 /* No PIO5 or PIO6 */
4422 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4423 /* No MWDMA3 or MWDMA 4 */
4424 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4425 }
4426
4427 if (ata_dma_blacklisted(dev)) {
4428 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4429 ata_dev_warn(dev,
4430 "device is on DMA blacklist, disabling DMA\n");
4431 }
4432
4433 if ((host->flags & ATA_HOST_SIMPLEX) &&
4434 host->simplex_claimed && host->simplex_claimed != ap) {
4435 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4436 ata_dev_warn(dev,
4437 "simplex DMA is claimed by other device, disabling DMA\n");
4438 }
4439
4440 if (ap->flags & ATA_FLAG_NO_IORDY)
4441 xfer_mask &= ata_pio_mask_no_iordy(dev);
4442
4443 if (ap->ops->mode_filter)
4444 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4445
4446 /* Apply cable rule here. Don't apply it early because when
4447 * we handle hot plug the cable type can itself change.
4448 * Check this last so that we know if the transfer rate was
4449 * solely limited by the cable.
4450 * Unknown or 80 wire cables reported host side are checked
4451 * drive side as well. Cases where we know a 40wire cable
4452 * is used safely for 80 are not checked here.
4453 */
4454 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4455 /* UDMA/44 or higher would be available */
4456 if (cable_is_40wire(ap)) {
4457 ata_dev_warn(dev,
4458 "limited to UDMA/33 due to 40-wire cable\n");
4459 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4460 }
4461
4462 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4463 &dev->mwdma_mask, &dev->udma_mask);
4464 }
4465
4466 /**
4467 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4468 * @dev: Device to which command will be sent
4469 *
4470 * Issue SET FEATURES - XFER MODE command to device @dev
4471 * on port @ap.
4472 *
4473 * LOCKING:
4474 * PCI/etc. bus probe sem.
4475 *
4476 * RETURNS:
4477 * 0 on success, AC_ERR_* mask otherwise.
4478 */
4479
4480 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4481 {
4482 struct ata_taskfile tf;
4483 unsigned int err_mask;
4484
4485 /* set up set-features taskfile */
4486 DPRINTK("set features - xfer mode\n");
4487
4488 /* Some controllers and ATAPI devices show flaky interrupt
4489 * behavior after setting xfer mode. Use polling instead.
4490 */
4491 ata_tf_init(dev, &tf);
4492 tf.command = ATA_CMD_SET_FEATURES;
4493 tf.feature = SETFEATURES_XFER;
4494 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4495 tf.protocol = ATA_PROT_NODATA;
4496 /* If we are using IORDY we must send the mode setting command */
4497 if (ata_pio_need_iordy(dev))
4498 tf.nsect = dev->xfer_mode;
4499 /* If the device has IORDY and the controller does not - turn it off */
4500 else if (ata_id_has_iordy(dev->id))
4501 tf.nsect = 0x01;
4502 else /* In the ancient relic department - skip all of this */
4503 return 0;
4504
4505 /* On some disks, this command causes spin-up, so we need longer timeout */
4506 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4507
4508 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4509 return err_mask;
4510 }
4511
4512 /**
4513 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4514 * @dev: Device to which command will be sent
4515 * @enable: Whether to enable or disable the feature
4516 * @feature: The sector count represents the feature to set
4517 *
4518 * Issue SET FEATURES - SATA FEATURES command to device @dev
4519 * on port @ap with sector count
4520 *
4521 * LOCKING:
4522 * PCI/etc. bus probe sem.
4523 *
4524 * RETURNS:
4525 * 0 on success, AC_ERR_* mask otherwise.
4526 */
4527 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4528 {
4529 struct ata_taskfile tf;
4530 unsigned int err_mask;
4531
4532 /* set up set-features taskfile */
4533 DPRINTK("set features - SATA features\n");
4534
4535 ata_tf_init(dev, &tf);
4536 tf.command = ATA_CMD_SET_FEATURES;
4537 tf.feature = enable;
4538 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4539 tf.protocol = ATA_PROT_NODATA;
4540 tf.nsect = feature;
4541
4542 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4543
4544 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4545 return err_mask;
4546 }
4547 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4548
4549 /**
4550 * ata_dev_init_params - Issue INIT DEV PARAMS command
4551 * @dev: Device to which command will be sent
4552 * @heads: Number of heads (taskfile parameter)
4553 * @sectors: Number of sectors (taskfile parameter)
4554 *
4555 * LOCKING:
4556 * Kernel thread context (may sleep)
4557 *
4558 * RETURNS:
4559 * 0 on success, AC_ERR_* mask otherwise.
4560 */
4561 static unsigned int ata_dev_init_params(struct ata_device *dev,
4562 u16 heads, u16 sectors)
4563 {
4564 struct ata_taskfile tf;
4565 unsigned int err_mask;
4566
4567 /* Number of sectors per track 1-255. Number of heads 1-16 */
4568 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4569 return AC_ERR_INVALID;
4570
4571 /* set up init dev params taskfile */
4572 DPRINTK("init dev params \n");
4573
4574 ata_tf_init(dev, &tf);
4575 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4576 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4577 tf.protocol = ATA_PROT_NODATA;
4578 tf.nsect = sectors;
4579 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4580
4581 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4582 /* A clean abort indicates an original or just out of spec drive
4583 and we should continue as we issue the setup based on the
4584 drive reported working geometry */
4585 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4586 err_mask = 0;
4587
4588 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4589 return err_mask;
4590 }
4591
4592 /**
4593 * ata_sg_clean - Unmap DMA memory associated with command
4594 * @qc: Command containing DMA memory to be released
4595 *
4596 * Unmap all mapped DMA memory associated with this command.
4597 *
4598 * LOCKING:
4599 * spin_lock_irqsave(host lock)
4600 */
4601 void ata_sg_clean(struct ata_queued_cmd *qc)
4602 {
4603 struct ata_port *ap = qc->ap;
4604 struct scatterlist *sg = qc->sg;
4605 int dir = qc->dma_dir;
4606
4607 WARN_ON_ONCE(sg == NULL);
4608
4609 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4610
4611 if (qc->n_elem)
4612 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4613
4614 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4615 qc->sg = NULL;
4616 }
4617
4618 /**
4619 * atapi_check_dma - Check whether ATAPI DMA can be supported
4620 * @qc: Metadata associated with taskfile to check
4621 *
4622 * Allow low-level driver to filter ATA PACKET commands, returning
4623 * a status indicating whether or not it is OK to use DMA for the
4624 * supplied PACKET command.
4625 *
4626 * LOCKING:
4627 * spin_lock_irqsave(host lock)
4628 *
4629 * RETURNS: 0 when ATAPI DMA can be used
4630 * nonzero otherwise
4631 */
4632 int atapi_check_dma(struct ata_queued_cmd *qc)
4633 {
4634 struct ata_port *ap = qc->ap;
4635
4636 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4637 * few ATAPI devices choke on such DMA requests.
4638 */
4639 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4640 unlikely(qc->nbytes & 15))
4641 return 1;
4642
4643 if (ap->ops->check_atapi_dma)
4644 return ap->ops->check_atapi_dma(qc);
4645
4646 return 0;
4647 }
4648
4649 /**
4650 * ata_std_qc_defer - Check whether a qc needs to be deferred
4651 * @qc: ATA command in question
4652 *
4653 * Non-NCQ commands cannot run with any other command, NCQ or
4654 * not. As upper layer only knows the queue depth, we are
4655 * responsible for maintaining exclusion. This function checks
4656 * whether a new command @qc can be issued.
4657 *
4658 * LOCKING:
4659 * spin_lock_irqsave(host lock)
4660 *
4661 * RETURNS:
4662 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4663 */
4664 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4665 {
4666 struct ata_link *link = qc->dev->link;
4667
4668 if (qc->tf.protocol == ATA_PROT_NCQ) {
4669 if (!ata_tag_valid(link->active_tag))
4670 return 0;
4671 } else {
4672 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4673 return 0;
4674 }
4675
4676 return ATA_DEFER_LINK;
4677 }
4678
4679 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4680
4681 /**
4682 * ata_sg_init - Associate command with scatter-gather table.
4683 * @qc: Command to be associated
4684 * @sg: Scatter-gather table.
4685 * @n_elem: Number of elements in s/g table.
4686 *
4687 * Initialize the data-related elements of queued_cmd @qc
4688 * to point to a scatter-gather table @sg, containing @n_elem
4689 * elements.
4690 *
4691 * LOCKING:
4692 * spin_lock_irqsave(host lock)
4693 */
4694 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4695 unsigned int n_elem)
4696 {
4697 qc->sg = sg;
4698 qc->n_elem = n_elem;
4699 qc->cursg = qc->sg;
4700 }
4701
4702 /**
4703 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4704 * @qc: Command with scatter-gather table to be mapped.
4705 *
4706 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4707 *
4708 * LOCKING:
4709 * spin_lock_irqsave(host lock)
4710 *
4711 * RETURNS:
4712 * Zero on success, negative on error.
4713 *
4714 */
4715 static int ata_sg_setup(struct ata_queued_cmd *qc)
4716 {
4717 struct ata_port *ap = qc->ap;
4718 unsigned int n_elem;
4719
4720 VPRINTK("ENTER, ata%u\n", ap->print_id);
4721
4722 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4723 if (n_elem < 1)
4724 return -1;
4725
4726 DPRINTK("%d sg elements mapped\n", n_elem);
4727 qc->orig_n_elem = qc->n_elem;
4728 qc->n_elem = n_elem;
4729 qc->flags |= ATA_QCFLAG_DMAMAP;
4730
4731 return 0;
4732 }
4733
4734 /**
4735 * swap_buf_le16 - swap halves of 16-bit words in place
4736 * @buf: Buffer to swap
4737 * @buf_words: Number of 16-bit words in buffer.
4738 *
4739 * Swap halves of 16-bit words if needed to convert from
4740 * little-endian byte order to native cpu byte order, or
4741 * vice-versa.
4742 *
4743 * LOCKING:
4744 * Inherited from caller.
4745 */
4746 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4747 {
4748 #ifdef __BIG_ENDIAN
4749 unsigned int i;
4750
4751 for (i = 0; i < buf_words; i++)
4752 buf[i] = le16_to_cpu(buf[i]);
4753 #endif /* __BIG_ENDIAN */
4754 }
4755
4756 /**
4757 * ata_qc_new_init - Request an available ATA command, and initialize it
4758 * @dev: Device from whom we request an available command structure
4759 * @tag: tag
4760 *
4761 * LOCKING:
4762 * None.
4763 */
4764
4765 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4766 {
4767 struct ata_port *ap = dev->link->ap;
4768 struct ata_queued_cmd *qc;
4769
4770 /* no command while frozen */
4771 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4772 return NULL;
4773
4774 /* libsas case */
4775 if (ap->flags & ATA_FLAG_SAS_HOST) {
4776 tag = ata_sas_allocate_tag(ap);
4777 if (tag < 0)
4778 return NULL;
4779 }
4780
4781 qc = __ata_qc_from_tag(ap, tag);
4782 qc->tag = tag;
4783 qc->scsicmd = NULL;
4784 qc->ap = ap;
4785 qc->dev = dev;
4786
4787 ata_qc_reinit(qc);
4788
4789 return qc;
4790 }
4791
4792 /**
4793 * ata_qc_free - free unused ata_queued_cmd
4794 * @qc: Command to complete
4795 *
4796 * Designed to free unused ata_queued_cmd object
4797 * in case something prevents using it.
4798 *
4799 * LOCKING:
4800 * spin_lock_irqsave(host lock)
4801 */
4802 void ata_qc_free(struct ata_queued_cmd *qc)
4803 {
4804 struct ata_port *ap;
4805 unsigned int tag;
4806
4807 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4808 ap = qc->ap;
4809
4810 qc->flags = 0;
4811 tag = qc->tag;
4812 if (likely(ata_tag_valid(tag))) {
4813 qc->tag = ATA_TAG_POISON;
4814 if (ap->flags & ATA_FLAG_SAS_HOST)
4815 ata_sas_free_tag(tag, ap);
4816 }
4817 }
4818
4819 void __ata_qc_complete(struct ata_queued_cmd *qc)
4820 {
4821 struct ata_port *ap;
4822 struct ata_link *link;
4823
4824 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4825 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4826 ap = qc->ap;
4827 link = qc->dev->link;
4828
4829 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4830 ata_sg_clean(qc);
4831
4832 /* command should be marked inactive atomically with qc completion */
4833 if (qc->tf.protocol == ATA_PROT_NCQ) {
4834 link->sactive &= ~(1 << qc->tag);
4835 if (!link->sactive)
4836 ap->nr_active_links--;
4837 } else {
4838 link->active_tag = ATA_TAG_POISON;
4839 ap->nr_active_links--;
4840 }
4841
4842 /* clear exclusive status */
4843 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4844 ap->excl_link == link))
4845 ap->excl_link = NULL;
4846
4847 /* atapi: mark qc as inactive to prevent the interrupt handler
4848 * from completing the command twice later, before the error handler
4849 * is called. (when rc != 0 and atapi request sense is needed)
4850 */
4851 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4852 ap->qc_active &= ~(1 << qc->tag);
4853
4854 /* call completion callback */
4855 qc->complete_fn(qc);
4856 }
4857
4858 static void fill_result_tf(struct ata_queued_cmd *qc)
4859 {
4860 struct ata_port *ap = qc->ap;
4861
4862 qc->result_tf.flags = qc->tf.flags;
4863 ap->ops->qc_fill_rtf(qc);
4864 }
4865
4866 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4867 {
4868 struct ata_device *dev = qc->dev;
4869
4870 if (ata_is_nodata(qc->tf.protocol))
4871 return;
4872
4873 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4874 return;
4875
4876 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4877 }
4878
4879 /**
4880 * ata_qc_complete - Complete an active ATA command
4881 * @qc: Command to complete
4882 *
4883 * Indicate to the mid and upper layers that an ATA command has
4884 * completed, with either an ok or not-ok status.
4885 *
4886 * Refrain from calling this function multiple times when
4887 * successfully completing multiple NCQ commands.
4888 * ata_qc_complete_multiple() should be used instead, which will
4889 * properly update IRQ expect state.
4890 *
4891 * LOCKING:
4892 * spin_lock_irqsave(host lock)
4893 */
4894 void ata_qc_complete(struct ata_queued_cmd *qc)
4895 {
4896 struct ata_port *ap = qc->ap;
4897
4898 /* XXX: New EH and old EH use different mechanisms to
4899 * synchronize EH with regular execution path.
4900 *
4901 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4902 * Normal execution path is responsible for not accessing a
4903 * failed qc. libata core enforces the rule by returning NULL
4904 * from ata_qc_from_tag() for failed qcs.
4905 *
4906 * Old EH depends on ata_qc_complete() nullifying completion
4907 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4908 * not synchronize with interrupt handler. Only PIO task is
4909 * taken care of.
4910 */
4911 if (ap->ops->error_handler) {
4912 struct ata_device *dev = qc->dev;
4913 struct ata_eh_info *ehi = &dev->link->eh_info;
4914
4915 if (unlikely(qc->err_mask))
4916 qc->flags |= ATA_QCFLAG_FAILED;
4917
4918 /*
4919 * Finish internal commands without any further processing
4920 * and always with the result TF filled.
4921 */
4922 if (unlikely(ata_tag_internal(qc->tag))) {
4923 fill_result_tf(qc);
4924 trace_ata_qc_complete_internal(qc);
4925 __ata_qc_complete(qc);
4926 return;
4927 }
4928
4929 /*
4930 * Non-internal qc has failed. Fill the result TF and
4931 * summon EH.
4932 */
4933 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4934 fill_result_tf(qc);
4935 trace_ata_qc_complete_failed(qc);
4936 ata_qc_schedule_eh(qc);
4937 return;
4938 }
4939
4940 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4941
4942 /* read result TF if requested */
4943 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4944 fill_result_tf(qc);
4945
4946 trace_ata_qc_complete_done(qc);
4947 /* Some commands need post-processing after successful
4948 * completion.
4949 */
4950 switch (qc->tf.command) {
4951 case ATA_CMD_SET_FEATURES:
4952 if (qc->tf.feature != SETFEATURES_WC_ON &&
4953 qc->tf.feature != SETFEATURES_WC_OFF)
4954 break;
4955 /* fall through */
4956 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4957 case ATA_CMD_SET_MULTI: /* multi_count changed */
4958 /* revalidate device */
4959 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4960 ata_port_schedule_eh(ap);
4961 break;
4962
4963 case ATA_CMD_SLEEP:
4964 dev->flags |= ATA_DFLAG_SLEEPING;
4965 break;
4966 }
4967
4968 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4969 ata_verify_xfer(qc);
4970
4971 __ata_qc_complete(qc);
4972 } else {
4973 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4974 return;
4975
4976 /* read result TF if failed or requested */
4977 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4978 fill_result_tf(qc);
4979
4980 __ata_qc_complete(qc);
4981 }
4982 }
4983
4984 /**
4985 * ata_qc_complete_multiple - Complete multiple qcs successfully
4986 * @ap: port in question
4987 * @qc_active: new qc_active mask
4988 *
4989 * Complete in-flight commands. This functions is meant to be
4990 * called from low-level driver's interrupt routine to complete
4991 * requests normally. ap->qc_active and @qc_active is compared
4992 * and commands are completed accordingly.
4993 *
4994 * Always use this function when completing multiple NCQ commands
4995 * from IRQ handlers instead of calling ata_qc_complete()
4996 * multiple times to keep IRQ expect status properly in sync.
4997 *
4998 * LOCKING:
4999 * spin_lock_irqsave(host lock)
5000 *
5001 * RETURNS:
5002 * Number of completed commands on success, -errno otherwise.
5003 */
5004 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5005 {
5006 int nr_done = 0;
5007 u32 done_mask;
5008
5009 done_mask = ap->qc_active ^ qc_active;
5010
5011 if (unlikely(done_mask & qc_active)) {
5012 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5013 ap->qc_active, qc_active);
5014 return -EINVAL;
5015 }
5016
5017 while (done_mask) {
5018 struct ata_queued_cmd *qc;
5019 unsigned int tag = __ffs(done_mask);
5020
5021 qc = ata_qc_from_tag(ap, tag);
5022 if (qc) {
5023 ata_qc_complete(qc);
5024 nr_done++;
5025 }
5026 done_mask &= ~(1 << tag);
5027 }
5028
5029 return nr_done;
5030 }
5031
5032 /**
5033 * ata_qc_issue - issue taskfile to device
5034 * @qc: command to issue to device
5035 *
5036 * Prepare an ATA command to submission to device.
5037 * This includes mapping the data into a DMA-able
5038 * area, filling in the S/G table, and finally
5039 * writing the taskfile to hardware, starting the command.
5040 *
5041 * LOCKING:
5042 * spin_lock_irqsave(host lock)
5043 */
5044 void ata_qc_issue(struct ata_queued_cmd *qc)
5045 {
5046 struct ata_port *ap = qc->ap;
5047 struct ata_link *link = qc->dev->link;
5048 u8 prot = qc->tf.protocol;
5049
5050 /* Make sure only one non-NCQ command is outstanding. The
5051 * check is skipped for old EH because it reuses active qc to
5052 * request ATAPI sense.
5053 */
5054 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5055
5056 if (ata_is_ncq(prot)) {
5057 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5058
5059 if (!link->sactive)
5060 ap->nr_active_links++;
5061 link->sactive |= 1 << qc->tag;
5062 } else {
5063 WARN_ON_ONCE(link->sactive);
5064
5065 ap->nr_active_links++;
5066 link->active_tag = qc->tag;
5067 }
5068
5069 qc->flags |= ATA_QCFLAG_ACTIVE;
5070 ap->qc_active |= 1 << qc->tag;
5071
5072 /*
5073 * We guarantee to LLDs that they will have at least one
5074 * non-zero sg if the command is a data command.
5075 */
5076 if (WARN_ON_ONCE(ata_is_data(prot) &&
5077 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5078 goto sys_err;
5079
5080 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5081 (ap->flags & ATA_FLAG_PIO_DMA)))
5082 if (ata_sg_setup(qc))
5083 goto sys_err;
5084
5085 /* if device is sleeping, schedule reset and abort the link */
5086 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5087 link->eh_info.action |= ATA_EH_RESET;
5088 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5089 ata_link_abort(link);
5090 return;
5091 }
5092
5093 ap->ops->qc_prep(qc);
5094 trace_ata_qc_issue(qc);
5095 qc->err_mask |= ap->ops->qc_issue(qc);
5096 if (unlikely(qc->err_mask))
5097 goto err;
5098 return;
5099
5100 sys_err:
5101 qc->err_mask |= AC_ERR_SYSTEM;
5102 err:
5103 ata_qc_complete(qc);
5104 }
5105
5106 /**
5107 * sata_scr_valid - test whether SCRs are accessible
5108 * @link: ATA link to test SCR accessibility for
5109 *
5110 * Test whether SCRs are accessible for @link.
5111 *
5112 * LOCKING:
5113 * None.
5114 *
5115 * RETURNS:
5116 * 1 if SCRs are accessible, 0 otherwise.
5117 */
5118 int sata_scr_valid(struct ata_link *link)
5119 {
5120 struct ata_port *ap = link->ap;
5121
5122 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5123 }
5124
5125 /**
5126 * sata_scr_read - read SCR register of the specified port
5127 * @link: ATA link to read SCR for
5128 * @reg: SCR to read
5129 * @val: Place to store read value
5130 *
5131 * Read SCR register @reg of @link into *@val. This function is
5132 * guaranteed to succeed if @link is ap->link, the cable type of
5133 * the port is SATA and the port implements ->scr_read.
5134 *
5135 * LOCKING:
5136 * None if @link is ap->link. Kernel thread context otherwise.
5137 *
5138 * RETURNS:
5139 * 0 on success, negative errno on failure.
5140 */
5141 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5142 {
5143 if (ata_is_host_link(link)) {
5144 if (sata_scr_valid(link))
5145 return link->ap->ops->scr_read(link, reg, val);
5146 return -EOPNOTSUPP;
5147 }
5148
5149 return sata_pmp_scr_read(link, reg, val);
5150 }
5151
5152 /**
5153 * sata_scr_write - write SCR register of the specified port
5154 * @link: ATA link to write SCR for
5155 * @reg: SCR to write
5156 * @val: value to write
5157 *
5158 * Write @val to SCR register @reg of @link. This function is
5159 * guaranteed to succeed if @link is ap->link, the cable type of
5160 * the port is SATA and the port implements ->scr_read.
5161 *
5162 * LOCKING:
5163 * None if @link is ap->link. Kernel thread context otherwise.
5164 *
5165 * RETURNS:
5166 * 0 on success, negative errno on failure.
5167 */
5168 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5169 {
5170 if (ata_is_host_link(link)) {
5171 if (sata_scr_valid(link))
5172 return link->ap->ops->scr_write(link, reg, val);
5173 return -EOPNOTSUPP;
5174 }
5175
5176 return sata_pmp_scr_write(link, reg, val);
5177 }
5178
5179 /**
5180 * sata_scr_write_flush - write SCR register of the specified port and flush
5181 * @link: ATA link to write SCR for
5182 * @reg: SCR to write
5183 * @val: value to write
5184 *
5185 * This function is identical to sata_scr_write() except that this
5186 * function performs flush after writing to the register.
5187 *
5188 * LOCKING:
5189 * None if @link is ap->link. Kernel thread context otherwise.
5190 *
5191 * RETURNS:
5192 * 0 on success, negative errno on failure.
5193 */
5194 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5195 {
5196 if (ata_is_host_link(link)) {
5197 int rc;
5198
5199 if (sata_scr_valid(link)) {
5200 rc = link->ap->ops->scr_write(link, reg, val);
5201 if (rc == 0)
5202 rc = link->ap->ops->scr_read(link, reg, &val);
5203 return rc;
5204 }
5205 return -EOPNOTSUPP;
5206 }
5207
5208 return sata_pmp_scr_write(link, reg, val);
5209 }
5210
5211 /**
5212 * ata_phys_link_online - test whether the given link is online
5213 * @link: ATA link to test
5214 *
5215 * Test whether @link is online. Note that this function returns
5216 * 0 if online status of @link cannot be obtained, so
5217 * ata_link_online(link) != !ata_link_offline(link).
5218 *
5219 * LOCKING:
5220 * None.
5221 *
5222 * RETURNS:
5223 * True if the port online status is available and online.
5224 */
5225 bool ata_phys_link_online(struct ata_link *link)
5226 {
5227 u32 sstatus;
5228
5229 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5230 ata_sstatus_online(sstatus))
5231 return true;
5232 return false;
5233 }
5234
5235 /**
5236 * ata_phys_link_offline - test whether the given link is offline
5237 * @link: ATA link to test
5238 *
5239 * Test whether @link is offline. Note that this function
5240 * returns 0 if offline status of @link cannot be obtained, so
5241 * ata_link_online(link) != !ata_link_offline(link).
5242 *
5243 * LOCKING:
5244 * None.
5245 *
5246 * RETURNS:
5247 * True if the port offline status is available and offline.
5248 */
5249 bool ata_phys_link_offline(struct ata_link *link)
5250 {
5251 u32 sstatus;
5252
5253 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5254 !ata_sstatus_online(sstatus))
5255 return true;
5256 return false;
5257 }
5258
5259 /**
5260 * ata_link_online - test whether the given link is online
5261 * @link: ATA link to test
5262 *
5263 * Test whether @link is online. This is identical to
5264 * ata_phys_link_online() when there's no slave link. When
5265 * there's a slave link, this function should only be called on
5266 * the master link and will return true if any of M/S links is
5267 * online.
5268 *
5269 * LOCKING:
5270 * None.
5271 *
5272 * RETURNS:
5273 * True if the port online status is available and online.
5274 */
5275 bool ata_link_online(struct ata_link *link)
5276 {
5277 struct ata_link *slave = link->ap->slave_link;
5278
5279 WARN_ON(link == slave); /* shouldn't be called on slave link */
5280
5281 return ata_phys_link_online(link) ||
5282 (slave && ata_phys_link_online(slave));
5283 }
5284
5285 /**
5286 * ata_link_offline - test whether the given link is offline
5287 * @link: ATA link to test
5288 *
5289 * Test whether @link is offline. This is identical to
5290 * ata_phys_link_offline() when there's no slave link. When
5291 * there's a slave link, this function should only be called on
5292 * the master link and will return true if both M/S links are
5293 * offline.
5294 *
5295 * LOCKING:
5296 * None.
5297 *
5298 * RETURNS:
5299 * True if the port offline status is available and offline.
5300 */
5301 bool ata_link_offline(struct ata_link *link)
5302 {
5303 struct ata_link *slave = link->ap->slave_link;
5304
5305 WARN_ON(link == slave); /* shouldn't be called on slave link */
5306
5307 return ata_phys_link_offline(link) &&
5308 (!slave || ata_phys_link_offline(slave));
5309 }
5310
5311 #ifdef CONFIG_PM
5312 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5313 unsigned int action, unsigned int ehi_flags,
5314 bool async)
5315 {
5316 struct ata_link *link;
5317 unsigned long flags;
5318
5319 /* Previous resume operation might still be in
5320 * progress. Wait for PM_PENDING to clear.
5321 */
5322 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5323 ata_port_wait_eh(ap);
5324 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5325 }
5326
5327 /* request PM ops to EH */
5328 spin_lock_irqsave(ap->lock, flags);
5329
5330 ap->pm_mesg = mesg;
5331 ap->pflags |= ATA_PFLAG_PM_PENDING;
5332 ata_for_each_link(link, ap, HOST_FIRST) {
5333 link->eh_info.action |= action;
5334 link->eh_info.flags |= ehi_flags;
5335 }
5336
5337 ata_port_schedule_eh(ap);
5338
5339 spin_unlock_irqrestore(ap->lock, flags);
5340
5341 if (!async) {
5342 ata_port_wait_eh(ap);
5343 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5344 }
5345 }
5346
5347 /*
5348 * On some hardware, device fails to respond after spun down for suspend. As
5349 * the device won't be used before being resumed, we don't need to touch the
5350 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5351 *
5352 * http://thread.gmane.org/gmane.linux.ide/46764
5353 */
5354 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5355 | ATA_EHI_NO_AUTOPSY
5356 | ATA_EHI_NO_RECOVERY;
5357
5358 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5359 {
5360 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5361 }
5362
5363 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5364 {
5365 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5366 }
5367
5368 static int ata_port_pm_suspend(struct device *dev)
5369 {
5370 struct ata_port *ap = to_ata_port(dev);
5371
5372 if (pm_runtime_suspended(dev))
5373 return 0;
5374
5375 ata_port_suspend(ap, PMSG_SUSPEND);
5376 return 0;
5377 }
5378
5379 static int ata_port_pm_freeze(struct device *dev)
5380 {
5381 struct ata_port *ap = to_ata_port(dev);
5382
5383 if (pm_runtime_suspended(dev))
5384 return 0;
5385
5386 ata_port_suspend(ap, PMSG_FREEZE);
5387 return 0;
5388 }
5389
5390 static int ata_port_pm_poweroff(struct device *dev)
5391 {
5392 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5393 return 0;
5394 }
5395
5396 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5397 | ATA_EHI_QUIET;
5398
5399 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5400 {
5401 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5402 }
5403
5404 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5405 {
5406 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5407 }
5408
5409 static int ata_port_pm_resume(struct device *dev)
5410 {
5411 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5412 pm_runtime_disable(dev);
5413 pm_runtime_set_active(dev);
5414 pm_runtime_enable(dev);
5415 return 0;
5416 }
5417
5418 /*
5419 * For ODDs, the upper layer will poll for media change every few seconds,
5420 * which will make it enter and leave suspend state every few seconds. And
5421 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5422 * is very little and the ODD may malfunction after constantly being reset.
5423 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5424 * ODD is attached to the port.
5425 */
5426 static int ata_port_runtime_idle(struct device *dev)
5427 {
5428 struct ata_port *ap = to_ata_port(dev);
5429 struct ata_link *link;
5430 struct ata_device *adev;
5431
5432 ata_for_each_link(link, ap, HOST_FIRST) {
5433 ata_for_each_dev(adev, link, ENABLED)
5434 if (adev->class == ATA_DEV_ATAPI &&
5435 !zpodd_dev_enabled(adev))
5436 return -EBUSY;
5437 }
5438
5439 return 0;
5440 }
5441
5442 static int ata_port_runtime_suspend(struct device *dev)
5443 {
5444 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5445 return 0;
5446 }
5447
5448 static int ata_port_runtime_resume(struct device *dev)
5449 {
5450 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5451 return 0;
5452 }
5453
5454 static const struct dev_pm_ops ata_port_pm_ops = {
5455 .suspend = ata_port_pm_suspend,
5456 .resume = ata_port_pm_resume,
5457 .freeze = ata_port_pm_freeze,
5458 .thaw = ata_port_pm_resume,
5459 .poweroff = ata_port_pm_poweroff,
5460 .restore = ata_port_pm_resume,
5461
5462 .runtime_suspend = ata_port_runtime_suspend,
5463 .runtime_resume = ata_port_runtime_resume,
5464 .runtime_idle = ata_port_runtime_idle,
5465 };
5466
5467 /* sas ports don't participate in pm runtime management of ata_ports,
5468 * and need to resume ata devices at the domain level, not the per-port
5469 * level. sas suspend/resume is async to allow parallel port recovery
5470 * since sas has multiple ata_port instances per Scsi_Host.
5471 */
5472 void ata_sas_port_suspend(struct ata_port *ap)
5473 {
5474 ata_port_suspend_async(ap, PMSG_SUSPEND);
5475 }
5476 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5477
5478 void ata_sas_port_resume(struct ata_port *ap)
5479 {
5480 ata_port_resume_async(ap, PMSG_RESUME);
5481 }
5482 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5483
5484 /**
5485 * ata_host_suspend - suspend host
5486 * @host: host to suspend
5487 * @mesg: PM message
5488 *
5489 * Suspend @host. Actual operation is performed by port suspend.
5490 */
5491 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5492 {
5493 host->dev->power.power_state = mesg;
5494 return 0;
5495 }
5496
5497 /**
5498 * ata_host_resume - resume host
5499 * @host: host to resume
5500 *
5501 * Resume @host. Actual operation is performed by port resume.
5502 */
5503 void ata_host_resume(struct ata_host *host)
5504 {
5505 host->dev->power.power_state = PMSG_ON;
5506 }
5507 #endif
5508
5509 struct device_type ata_port_type = {
5510 .name = "ata_port",
5511 #ifdef CONFIG_PM
5512 .pm = &ata_port_pm_ops,
5513 #endif
5514 };
5515
5516 /**
5517 * ata_dev_init - Initialize an ata_device structure
5518 * @dev: Device structure to initialize
5519 *
5520 * Initialize @dev in preparation for probing.
5521 *
5522 * LOCKING:
5523 * Inherited from caller.
5524 */
5525 void ata_dev_init(struct ata_device *dev)
5526 {
5527 struct ata_link *link = ata_dev_phys_link(dev);
5528 struct ata_port *ap = link->ap;
5529 unsigned long flags;
5530
5531 /* SATA spd limit is bound to the attached device, reset together */
5532 link->sata_spd_limit = link->hw_sata_spd_limit;
5533 link->sata_spd = 0;
5534
5535 /* High bits of dev->flags are used to record warm plug
5536 * requests which occur asynchronously. Synchronize using
5537 * host lock.
5538 */
5539 spin_lock_irqsave(ap->lock, flags);
5540 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5541 dev->horkage = 0;
5542 spin_unlock_irqrestore(ap->lock, flags);
5543
5544 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5545 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5546 dev->pio_mask = UINT_MAX;
5547 dev->mwdma_mask = UINT_MAX;
5548 dev->udma_mask = UINT_MAX;
5549 }
5550
5551 /**
5552 * ata_link_init - Initialize an ata_link structure
5553 * @ap: ATA port link is attached to
5554 * @link: Link structure to initialize
5555 * @pmp: Port multiplier port number
5556 *
5557 * Initialize @link.
5558 *
5559 * LOCKING:
5560 * Kernel thread context (may sleep)
5561 */
5562 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5563 {
5564 int i;
5565
5566 /* clear everything except for devices */
5567 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5568 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5569
5570 link->ap = ap;
5571 link->pmp = pmp;
5572 link->active_tag = ATA_TAG_POISON;
5573 link->hw_sata_spd_limit = UINT_MAX;
5574
5575 /* can't use iterator, ap isn't initialized yet */
5576 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5577 struct ata_device *dev = &link->device[i];
5578
5579 dev->link = link;
5580 dev->devno = dev - link->device;
5581 #ifdef CONFIG_ATA_ACPI
5582 dev->gtf_filter = ata_acpi_gtf_filter;
5583 #endif
5584 ata_dev_init(dev);
5585 }
5586 }
5587
5588 /**
5589 * sata_link_init_spd - Initialize link->sata_spd_limit
5590 * @link: Link to configure sata_spd_limit for
5591 *
5592 * Initialize @link->[hw_]sata_spd_limit to the currently
5593 * configured value.
5594 *
5595 * LOCKING:
5596 * Kernel thread context (may sleep).
5597 *
5598 * RETURNS:
5599 * 0 on success, -errno on failure.
5600 */
5601 int sata_link_init_spd(struct ata_link *link)
5602 {
5603 u8 spd;
5604 int rc;
5605
5606 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5607 if (rc)
5608 return rc;
5609
5610 spd = (link->saved_scontrol >> 4) & 0xf;
5611 if (spd)
5612 link->hw_sata_spd_limit &= (1 << spd) - 1;
5613
5614 ata_force_link_limits(link);
5615
5616 link->sata_spd_limit = link->hw_sata_spd_limit;
5617
5618 return 0;
5619 }
5620
5621 /**
5622 * ata_port_alloc - allocate and initialize basic ATA port resources
5623 * @host: ATA host this allocated port belongs to
5624 *
5625 * Allocate and initialize basic ATA port resources.
5626 *
5627 * RETURNS:
5628 * Allocate ATA port on success, NULL on failure.
5629 *
5630 * LOCKING:
5631 * Inherited from calling layer (may sleep).
5632 */
5633 struct ata_port *ata_port_alloc(struct ata_host *host)
5634 {
5635 struct ata_port *ap;
5636
5637 DPRINTK("ENTER\n");
5638
5639 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5640 if (!ap)
5641 return NULL;
5642
5643 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5644 ap->lock = &host->lock;
5645 ap->print_id = -1;
5646 ap->local_port_no = -1;
5647 ap->host = host;
5648 ap->dev = host->dev;
5649
5650 #if defined(ATA_VERBOSE_DEBUG)
5651 /* turn on all debugging levels */
5652 ap->msg_enable = 0x00FF;
5653 #elif defined(ATA_DEBUG)
5654 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5655 #else
5656 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5657 #endif
5658
5659 mutex_init(&ap->scsi_scan_mutex);
5660 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5661 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5662 INIT_LIST_HEAD(&ap->eh_done_q);
5663 init_waitqueue_head(&ap->eh_wait_q);
5664 init_completion(&ap->park_req_pending);
5665 init_timer_deferrable(&ap->fastdrain_timer);
5666 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5667 ap->fastdrain_timer.data = (unsigned long)ap;
5668
5669 ap->cbl = ATA_CBL_NONE;
5670
5671 ata_link_init(ap, &ap->link, 0);
5672
5673 #ifdef ATA_IRQ_TRAP
5674 ap->stats.unhandled_irq = 1;
5675 ap->stats.idle_irq = 1;
5676 #endif
5677 ata_sff_port_init(ap);
5678
5679 return ap;
5680 }
5681
5682 static void ata_host_release(struct device *gendev, void *res)
5683 {
5684 struct ata_host *host = dev_get_drvdata(gendev);
5685 int i;
5686
5687 for (i = 0; i < host->n_ports; i++) {
5688 struct ata_port *ap = host->ports[i];
5689
5690 if (!ap)
5691 continue;
5692
5693 if (ap->scsi_host)
5694 scsi_host_put(ap->scsi_host);
5695
5696 kfree(ap->pmp_link);
5697 kfree(ap->slave_link);
5698 kfree(ap);
5699 host->ports[i] = NULL;
5700 }
5701
5702 dev_set_drvdata(gendev, NULL);
5703 }
5704
5705 /**
5706 * ata_host_alloc - allocate and init basic ATA host resources
5707 * @dev: generic device this host is associated with
5708 * @max_ports: maximum number of ATA ports associated with this host
5709 *
5710 * Allocate and initialize basic ATA host resources. LLD calls
5711 * this function to allocate a host, initializes it fully and
5712 * attaches it using ata_host_register().
5713 *
5714 * @max_ports ports are allocated and host->n_ports is
5715 * initialized to @max_ports. The caller is allowed to decrease
5716 * host->n_ports before calling ata_host_register(). The unused
5717 * ports will be automatically freed on registration.
5718 *
5719 * RETURNS:
5720 * Allocate ATA host on success, NULL on failure.
5721 *
5722 * LOCKING:
5723 * Inherited from calling layer (may sleep).
5724 */
5725 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5726 {
5727 struct ata_host *host;
5728 size_t sz;
5729 int i;
5730
5731 DPRINTK("ENTER\n");
5732
5733 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5734 return NULL;
5735
5736 /* alloc a container for our list of ATA ports (buses) */
5737 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5738 /* alloc a container for our list of ATA ports (buses) */
5739 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5740 if (!host)
5741 goto err_out;
5742
5743 devres_add(dev, host);
5744 dev_set_drvdata(dev, host);
5745
5746 spin_lock_init(&host->lock);
5747 mutex_init(&host->eh_mutex);
5748 host->dev = dev;
5749 host->n_ports = max_ports;
5750
5751 /* allocate ports bound to this host */
5752 for (i = 0; i < max_ports; i++) {
5753 struct ata_port *ap;
5754
5755 ap = ata_port_alloc(host);
5756 if (!ap)
5757 goto err_out;
5758
5759 ap->port_no = i;
5760 host->ports[i] = ap;
5761 }
5762
5763 devres_remove_group(dev, NULL);
5764 return host;
5765
5766 err_out:
5767 devres_release_group(dev, NULL);
5768 return NULL;
5769 }
5770
5771 /**
5772 * ata_host_alloc_pinfo - alloc host and init with port_info array
5773 * @dev: generic device this host is associated with
5774 * @ppi: array of ATA port_info to initialize host with
5775 * @n_ports: number of ATA ports attached to this host
5776 *
5777 * Allocate ATA host and initialize with info from @ppi. If NULL
5778 * terminated, @ppi may contain fewer entries than @n_ports. The
5779 * last entry will be used for the remaining ports.
5780 *
5781 * RETURNS:
5782 * Allocate ATA host on success, NULL on failure.
5783 *
5784 * LOCKING:
5785 * Inherited from calling layer (may sleep).
5786 */
5787 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5788 const struct ata_port_info * const * ppi,
5789 int n_ports)
5790 {
5791 const struct ata_port_info *pi;
5792 struct ata_host *host;
5793 int i, j;
5794
5795 host = ata_host_alloc(dev, n_ports);
5796 if (!host)
5797 return NULL;
5798
5799 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5800 struct ata_port *ap = host->ports[i];
5801
5802 if (ppi[j])
5803 pi = ppi[j++];
5804
5805 ap->pio_mask = pi->pio_mask;
5806 ap->mwdma_mask = pi->mwdma_mask;
5807 ap->udma_mask = pi->udma_mask;
5808 ap->flags |= pi->flags;
5809 ap->link.flags |= pi->link_flags;
5810 ap->ops = pi->port_ops;
5811
5812 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5813 host->ops = pi->port_ops;
5814 }
5815
5816 return host;
5817 }
5818
5819 /**
5820 * ata_slave_link_init - initialize slave link
5821 * @ap: port to initialize slave link for
5822 *
5823 * Create and initialize slave link for @ap. This enables slave
5824 * link handling on the port.
5825 *
5826 * In libata, a port contains links and a link contains devices.
5827 * There is single host link but if a PMP is attached to it,
5828 * there can be multiple fan-out links. On SATA, there's usually
5829 * a single device connected to a link but PATA and SATA
5830 * controllers emulating TF based interface can have two - master
5831 * and slave.
5832 *
5833 * However, there are a few controllers which don't fit into this
5834 * abstraction too well - SATA controllers which emulate TF
5835 * interface with both master and slave devices but also have
5836 * separate SCR register sets for each device. These controllers
5837 * need separate links for physical link handling
5838 * (e.g. onlineness, link speed) but should be treated like a
5839 * traditional M/S controller for everything else (e.g. command
5840 * issue, softreset).
5841 *
5842 * slave_link is libata's way of handling this class of
5843 * controllers without impacting core layer too much. For
5844 * anything other than physical link handling, the default host
5845 * link is used for both master and slave. For physical link
5846 * handling, separate @ap->slave_link is used. All dirty details
5847 * are implemented inside libata core layer. From LLD's POV, the
5848 * only difference is that prereset, hardreset and postreset are
5849 * called once more for the slave link, so the reset sequence
5850 * looks like the following.
5851 *
5852 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5853 * softreset(M) -> postreset(M) -> postreset(S)
5854 *
5855 * Note that softreset is called only for the master. Softreset
5856 * resets both M/S by definition, so SRST on master should handle
5857 * both (the standard method will work just fine).
5858 *
5859 * LOCKING:
5860 * Should be called before host is registered.
5861 *
5862 * RETURNS:
5863 * 0 on success, -errno on failure.
5864 */
5865 int ata_slave_link_init(struct ata_port *ap)
5866 {
5867 struct ata_link *link;
5868
5869 WARN_ON(ap->slave_link);
5870 WARN_ON(ap->flags & ATA_FLAG_PMP);
5871
5872 link = kzalloc(sizeof(*link), GFP_KERNEL);
5873 if (!link)
5874 return -ENOMEM;
5875
5876 ata_link_init(ap, link, 1);
5877 ap->slave_link = link;
5878 return 0;
5879 }
5880
5881 static void ata_host_stop(struct device *gendev, void *res)
5882 {
5883 struct ata_host *host = dev_get_drvdata(gendev);
5884 int i;
5885
5886 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5887
5888 for (i = 0; i < host->n_ports; i++) {
5889 struct ata_port *ap = host->ports[i];
5890
5891 if (ap->ops->port_stop)
5892 ap->ops->port_stop(ap);
5893 }
5894
5895 if (host->ops->host_stop)
5896 host->ops->host_stop(host);
5897 }
5898
5899 /**
5900 * ata_finalize_port_ops - finalize ata_port_operations
5901 * @ops: ata_port_operations to finalize
5902 *
5903 * An ata_port_operations can inherit from another ops and that
5904 * ops can again inherit from another. This can go on as many
5905 * times as necessary as long as there is no loop in the
5906 * inheritance chain.
5907 *
5908 * Ops tables are finalized when the host is started. NULL or
5909 * unspecified entries are inherited from the closet ancestor
5910 * which has the method and the entry is populated with it.
5911 * After finalization, the ops table directly points to all the
5912 * methods and ->inherits is no longer necessary and cleared.
5913 *
5914 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5915 *
5916 * LOCKING:
5917 * None.
5918 */
5919 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5920 {
5921 static DEFINE_SPINLOCK(lock);
5922 const struct ata_port_operations *cur;
5923 void **begin = (void **)ops;
5924 void **end = (void **)&ops->inherits;
5925 void **pp;
5926
5927 if (!ops || !ops->inherits)
5928 return;
5929
5930 spin_lock(&lock);
5931
5932 for (cur = ops->inherits; cur; cur = cur->inherits) {
5933 void **inherit = (void **)cur;
5934
5935 for (pp = begin; pp < end; pp++, inherit++)
5936 if (!*pp)
5937 *pp = *inherit;
5938 }
5939
5940 for (pp = begin; pp < end; pp++)
5941 if (IS_ERR(*pp))
5942 *pp = NULL;
5943
5944 ops->inherits = NULL;
5945
5946 spin_unlock(&lock);
5947 }
5948
5949 /**
5950 * ata_host_start - start and freeze ports of an ATA host
5951 * @host: ATA host to start ports for
5952 *
5953 * Start and then freeze ports of @host. Started status is
5954 * recorded in host->flags, so this function can be called
5955 * multiple times. Ports are guaranteed to get started only
5956 * once. If host->ops isn't initialized yet, its set to the
5957 * first non-dummy port ops.
5958 *
5959 * LOCKING:
5960 * Inherited from calling layer (may sleep).
5961 *
5962 * RETURNS:
5963 * 0 if all ports are started successfully, -errno otherwise.
5964 */
5965 int ata_host_start(struct ata_host *host)
5966 {
5967 int have_stop = 0;
5968 void *start_dr = NULL;
5969 int i, rc;
5970
5971 if (host->flags & ATA_HOST_STARTED)
5972 return 0;
5973
5974 ata_finalize_port_ops(host->ops);
5975
5976 for (i = 0; i < host->n_ports; i++) {
5977 struct ata_port *ap = host->ports[i];
5978
5979 ata_finalize_port_ops(ap->ops);
5980
5981 if (!host->ops && !ata_port_is_dummy(ap))
5982 host->ops = ap->ops;
5983
5984 if (ap->ops->port_stop)
5985 have_stop = 1;
5986 }
5987
5988 if (host->ops->host_stop)
5989 have_stop = 1;
5990
5991 if (have_stop) {
5992 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5993 if (!start_dr)
5994 return -ENOMEM;
5995 }
5996
5997 for (i = 0; i < host->n_ports; i++) {
5998 struct ata_port *ap = host->ports[i];
5999
6000 if (ap->ops->port_start) {
6001 rc = ap->ops->port_start(ap);
6002 if (rc) {
6003 if (rc != -ENODEV)
6004 dev_err(host->dev,
6005 "failed to start port %d (errno=%d)\n",
6006 i, rc);
6007 goto err_out;
6008 }
6009 }
6010 ata_eh_freeze_port(ap);
6011 }
6012
6013 if (start_dr)
6014 devres_add(host->dev, start_dr);
6015 host->flags |= ATA_HOST_STARTED;
6016 return 0;
6017
6018 err_out:
6019 while (--i >= 0) {
6020 struct ata_port *ap = host->ports[i];
6021
6022 if (ap->ops->port_stop)
6023 ap->ops->port_stop(ap);
6024 }
6025 devres_free(start_dr);
6026 return rc;
6027 }
6028
6029 /**
6030 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6031 * @host: host to initialize
6032 * @dev: device host is attached to
6033 * @ops: port_ops
6034 *
6035 */
6036 void ata_host_init(struct ata_host *host, struct device *dev,
6037 struct ata_port_operations *ops)
6038 {
6039 spin_lock_init(&host->lock);
6040 mutex_init(&host->eh_mutex);
6041 host->n_tags = ATA_MAX_QUEUE - 1;
6042 host->dev = dev;
6043 host->ops = ops;
6044 }
6045
6046 void __ata_port_probe(struct ata_port *ap)
6047 {
6048 struct ata_eh_info *ehi = &ap->link.eh_info;
6049 unsigned long flags;
6050
6051 /* kick EH for boot probing */
6052 spin_lock_irqsave(ap->lock, flags);
6053
6054 ehi->probe_mask |= ATA_ALL_DEVICES;
6055 ehi->action |= ATA_EH_RESET;
6056 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6057
6058 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6059 ap->pflags |= ATA_PFLAG_LOADING;
6060 ata_port_schedule_eh(ap);
6061
6062 spin_unlock_irqrestore(ap->lock, flags);
6063 }
6064
6065 int ata_port_probe(struct ata_port *ap)
6066 {
6067 int rc = 0;
6068
6069 if (ap->ops->error_handler) {
6070 __ata_port_probe(ap);
6071 ata_port_wait_eh(ap);
6072 } else {
6073 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6074 rc = ata_bus_probe(ap);
6075 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6076 }
6077 return rc;
6078 }
6079
6080
6081 static void async_port_probe(void *data, async_cookie_t cookie)
6082 {
6083 struct ata_port *ap = data;
6084
6085 /*
6086 * If we're not allowed to scan this host in parallel,
6087 * we need to wait until all previous scans have completed
6088 * before going further.
6089 * Jeff Garzik says this is only within a controller, so we
6090 * don't need to wait for port 0, only for later ports.
6091 */
6092 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6093 async_synchronize_cookie(cookie);
6094
6095 (void)ata_port_probe(ap);
6096
6097 /* in order to keep device order, we need to synchronize at this point */
6098 async_synchronize_cookie(cookie);
6099
6100 ata_scsi_scan_host(ap, 1);
6101 }
6102
6103 /**
6104 * ata_host_register - register initialized ATA host
6105 * @host: ATA host to register
6106 * @sht: template for SCSI host
6107 *
6108 * Register initialized ATA host. @host is allocated using
6109 * ata_host_alloc() and fully initialized by LLD. This function
6110 * starts ports, registers @host with ATA and SCSI layers and
6111 * probe registered devices.
6112 *
6113 * LOCKING:
6114 * Inherited from calling layer (may sleep).
6115 *
6116 * RETURNS:
6117 * 0 on success, -errno otherwise.
6118 */
6119 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6120 {
6121 int i, rc;
6122
6123 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6124
6125 /* host must have been started */
6126 if (!(host->flags & ATA_HOST_STARTED)) {
6127 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6128 WARN_ON(1);
6129 return -EINVAL;
6130 }
6131
6132 /* Blow away unused ports. This happens when LLD can't
6133 * determine the exact number of ports to allocate at
6134 * allocation time.
6135 */
6136 for (i = host->n_ports; host->ports[i]; i++)
6137 kfree(host->ports[i]);
6138
6139 /* give ports names and add SCSI hosts */
6140 for (i = 0; i < host->n_ports; i++) {
6141 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6142 host->ports[i]->local_port_no = i + 1;
6143 }
6144
6145 /* Create associated sysfs transport objects */
6146 for (i = 0; i < host->n_ports; i++) {
6147 rc = ata_tport_add(host->dev,host->ports[i]);
6148 if (rc) {
6149 goto err_tadd;
6150 }
6151 }
6152
6153 rc = ata_scsi_add_hosts(host, sht);
6154 if (rc)
6155 goto err_tadd;
6156
6157 /* set cable, sata_spd_limit and report */
6158 for (i = 0; i < host->n_ports; i++) {
6159 struct ata_port *ap = host->ports[i];
6160 unsigned long xfer_mask;
6161
6162 /* set SATA cable type if still unset */
6163 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6164 ap->cbl = ATA_CBL_SATA;
6165
6166 /* init sata_spd_limit to the current value */
6167 sata_link_init_spd(&ap->link);
6168 if (ap->slave_link)
6169 sata_link_init_spd(ap->slave_link);
6170
6171 /* print per-port info to dmesg */
6172 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6173 ap->udma_mask);
6174
6175 if (!ata_port_is_dummy(ap)) {
6176 ata_port_info(ap, "%cATA max %s %s\n",
6177 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6178 ata_mode_string(xfer_mask),
6179 ap->link.eh_info.desc);
6180 ata_ehi_clear_desc(&ap->link.eh_info);
6181 } else
6182 ata_port_info(ap, "DUMMY\n");
6183 }
6184
6185 /* perform each probe asynchronously */
6186 for (i = 0; i < host->n_ports; i++) {
6187 struct ata_port *ap = host->ports[i];
6188 async_schedule(async_port_probe, ap);
6189 }
6190
6191 return 0;
6192
6193 err_tadd:
6194 while (--i >= 0) {
6195 ata_tport_delete(host->ports[i]);
6196 }
6197 return rc;
6198
6199 }
6200
6201 /**
6202 * ata_host_activate - start host, request IRQ and register it
6203 * @host: target ATA host
6204 * @irq: IRQ to request
6205 * @irq_handler: irq_handler used when requesting IRQ
6206 * @irq_flags: irq_flags used when requesting IRQ
6207 * @sht: scsi_host_template to use when registering the host
6208 *
6209 * After allocating an ATA host and initializing it, most libata
6210 * LLDs perform three steps to activate the host - start host,
6211 * request IRQ and register it. This helper takes necessasry
6212 * arguments and performs the three steps in one go.
6213 *
6214 * An invalid IRQ skips the IRQ registration and expects the host to
6215 * have set polling mode on the port. In this case, @irq_handler
6216 * should be NULL.
6217 *
6218 * LOCKING:
6219 * Inherited from calling layer (may sleep).
6220 *
6221 * RETURNS:
6222 * 0 on success, -errno otherwise.
6223 */
6224 int ata_host_activate(struct ata_host *host, int irq,
6225 irq_handler_t irq_handler, unsigned long irq_flags,
6226 struct scsi_host_template *sht)
6227 {
6228 int i, rc;
6229 char *irq_desc;
6230
6231 rc = ata_host_start(host);
6232 if (rc)
6233 return rc;
6234
6235 /* Special case for polling mode */
6236 if (!irq) {
6237 WARN_ON(irq_handler);
6238 return ata_host_register(host, sht);
6239 }
6240
6241 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6242 dev_driver_string(host->dev),
6243 dev_name(host->dev));
6244 if (!irq_desc)
6245 return -ENOMEM;
6246
6247 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6248 irq_desc, host);
6249 if (rc)
6250 return rc;
6251
6252 for (i = 0; i < host->n_ports; i++)
6253 ata_port_desc(host->ports[i], "irq %d", irq);
6254
6255 rc = ata_host_register(host, sht);
6256 /* if failed, just free the IRQ and leave ports alone */
6257 if (rc)
6258 devm_free_irq(host->dev, irq, host);
6259
6260 return rc;
6261 }
6262
6263 /**
6264 * ata_port_detach - Detach ATA port in prepration of device removal
6265 * @ap: ATA port to be detached
6266 *
6267 * Detach all ATA devices and the associated SCSI devices of @ap;
6268 * then, remove the associated SCSI host. @ap is guaranteed to
6269 * be quiescent on return from this function.
6270 *
6271 * LOCKING:
6272 * Kernel thread context (may sleep).
6273 */
6274 static void ata_port_detach(struct ata_port *ap)
6275 {
6276 unsigned long flags;
6277 struct ata_link *link;
6278 struct ata_device *dev;
6279
6280 if (!ap->ops->error_handler)
6281 goto skip_eh;
6282
6283 /* tell EH we're leaving & flush EH */
6284 spin_lock_irqsave(ap->lock, flags);
6285 ap->pflags |= ATA_PFLAG_UNLOADING;
6286 ata_port_schedule_eh(ap);
6287 spin_unlock_irqrestore(ap->lock, flags);
6288
6289 /* wait till EH commits suicide */
6290 ata_port_wait_eh(ap);
6291
6292 /* it better be dead now */
6293 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6294
6295 cancel_delayed_work_sync(&ap->hotplug_task);
6296
6297 skip_eh:
6298 /* clean up zpodd on port removal */
6299 ata_for_each_link(link, ap, HOST_FIRST) {
6300 ata_for_each_dev(dev, link, ALL) {
6301 if (zpodd_dev_enabled(dev))
6302 zpodd_exit(dev);
6303 }
6304 }
6305 if (ap->pmp_link) {
6306 int i;
6307 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6308 ata_tlink_delete(&ap->pmp_link[i]);
6309 }
6310 /* remove the associated SCSI host */
6311 scsi_remove_host(ap->scsi_host);
6312 ata_tport_delete(ap);
6313 }
6314
6315 /**
6316 * ata_host_detach - Detach all ports of an ATA host
6317 * @host: Host to detach
6318 *
6319 * Detach all ports of @host.
6320 *
6321 * LOCKING:
6322 * Kernel thread context (may sleep).
6323 */
6324 void ata_host_detach(struct ata_host *host)
6325 {
6326 int i;
6327
6328 for (i = 0; i < host->n_ports; i++)
6329 ata_port_detach(host->ports[i]);
6330
6331 /* the host is dead now, dissociate ACPI */
6332 ata_acpi_dissociate(host);
6333 }
6334
6335 #ifdef CONFIG_PCI
6336
6337 /**
6338 * ata_pci_remove_one - PCI layer callback for device removal
6339 * @pdev: PCI device that was removed
6340 *
6341 * PCI layer indicates to libata via this hook that hot-unplug or
6342 * module unload event has occurred. Detach all ports. Resource
6343 * release is handled via devres.
6344 *
6345 * LOCKING:
6346 * Inherited from PCI layer (may sleep).
6347 */
6348 void ata_pci_remove_one(struct pci_dev *pdev)
6349 {
6350 struct ata_host *host = pci_get_drvdata(pdev);
6351
6352 ata_host_detach(host);
6353 }
6354
6355 /* move to PCI subsystem */
6356 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6357 {
6358 unsigned long tmp = 0;
6359
6360 switch (bits->width) {
6361 case 1: {
6362 u8 tmp8 = 0;
6363 pci_read_config_byte(pdev, bits->reg, &tmp8);
6364 tmp = tmp8;
6365 break;
6366 }
6367 case 2: {
6368 u16 tmp16 = 0;
6369 pci_read_config_word(pdev, bits->reg, &tmp16);
6370 tmp = tmp16;
6371 break;
6372 }
6373 case 4: {
6374 u32 tmp32 = 0;
6375 pci_read_config_dword(pdev, bits->reg, &tmp32);
6376 tmp = tmp32;
6377 break;
6378 }
6379
6380 default:
6381 return -EINVAL;
6382 }
6383
6384 tmp &= bits->mask;
6385
6386 return (tmp == bits->val) ? 1 : 0;
6387 }
6388
6389 #ifdef CONFIG_PM
6390 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6391 {
6392 pci_save_state(pdev);
6393 pci_disable_device(pdev);
6394
6395 if (mesg.event & PM_EVENT_SLEEP)
6396 pci_set_power_state(pdev, PCI_D3hot);
6397 }
6398
6399 int ata_pci_device_do_resume(struct pci_dev *pdev)
6400 {
6401 int rc;
6402
6403 pci_set_power_state(pdev, PCI_D0);
6404 pci_restore_state(pdev);
6405
6406 rc = pcim_enable_device(pdev);
6407 if (rc) {
6408 dev_err(&pdev->dev,
6409 "failed to enable device after resume (%d)\n", rc);
6410 return rc;
6411 }
6412
6413 pci_set_master(pdev);
6414 return 0;
6415 }
6416
6417 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6418 {
6419 struct ata_host *host = pci_get_drvdata(pdev);
6420 int rc = 0;
6421
6422 rc = ata_host_suspend(host, mesg);
6423 if (rc)
6424 return rc;
6425
6426 ata_pci_device_do_suspend(pdev, mesg);
6427
6428 return 0;
6429 }
6430
6431 int ata_pci_device_resume(struct pci_dev *pdev)
6432 {
6433 struct ata_host *host = pci_get_drvdata(pdev);
6434 int rc;
6435
6436 rc = ata_pci_device_do_resume(pdev);
6437 if (rc == 0)
6438 ata_host_resume(host);
6439 return rc;
6440 }
6441 #endif /* CONFIG_PM */
6442
6443 #endif /* CONFIG_PCI */
6444
6445 /**
6446 * ata_platform_remove_one - Platform layer callback for device removal
6447 * @pdev: Platform device that was removed
6448 *
6449 * Platform layer indicates to libata via this hook that hot-unplug or
6450 * module unload event has occurred. Detach all ports. Resource
6451 * release is handled via devres.
6452 *
6453 * LOCKING:
6454 * Inherited from platform layer (may sleep).
6455 */
6456 int ata_platform_remove_one(struct platform_device *pdev)
6457 {
6458 struct ata_host *host = platform_get_drvdata(pdev);
6459
6460 ata_host_detach(host);
6461
6462 return 0;
6463 }
6464
6465 static int __init ata_parse_force_one(char **cur,
6466 struct ata_force_ent *force_ent,
6467 const char **reason)
6468 {
6469 static const struct ata_force_param force_tbl[] __initconst = {
6470 { "40c", .cbl = ATA_CBL_PATA40 },
6471 { "80c", .cbl = ATA_CBL_PATA80 },
6472 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6473 { "unk", .cbl = ATA_CBL_PATA_UNK },
6474 { "ign", .cbl = ATA_CBL_PATA_IGN },
6475 { "sata", .cbl = ATA_CBL_SATA },
6476 { "1.5Gbps", .spd_limit = 1 },
6477 { "3.0Gbps", .spd_limit = 2 },
6478 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6479 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6480 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6481 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6482 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6483 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6484 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6485 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6486 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6487 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6488 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6489 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6490 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6491 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6492 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6493 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6494 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6495 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6496 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6497 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6498 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6499 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6500 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6501 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6502 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6503 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6504 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6505 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6506 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6507 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6508 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6509 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6510 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6511 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6512 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6513 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6514 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6515 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6516 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6517 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6518 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6519 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6520 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6521 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6522 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6523 };
6524 char *start = *cur, *p = *cur;
6525 char *id, *val, *endp;
6526 const struct ata_force_param *match_fp = NULL;
6527 int nr_matches = 0, i;
6528
6529 /* find where this param ends and update *cur */
6530 while (*p != '\0' && *p != ',')
6531 p++;
6532
6533 if (*p == '\0')
6534 *cur = p;
6535 else
6536 *cur = p + 1;
6537
6538 *p = '\0';
6539
6540 /* parse */
6541 p = strchr(start, ':');
6542 if (!p) {
6543 val = strstrip(start);
6544 goto parse_val;
6545 }
6546 *p = '\0';
6547
6548 id = strstrip(start);
6549 val = strstrip(p + 1);
6550
6551 /* parse id */
6552 p = strchr(id, '.');
6553 if (p) {
6554 *p++ = '\0';
6555 force_ent->device = simple_strtoul(p, &endp, 10);
6556 if (p == endp || *endp != '\0') {
6557 *reason = "invalid device";
6558 return -EINVAL;
6559 }
6560 }
6561
6562 force_ent->port = simple_strtoul(id, &endp, 10);
6563 if (p == endp || *endp != '\0') {
6564 *reason = "invalid port/link";
6565 return -EINVAL;
6566 }
6567
6568 parse_val:
6569 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6570 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6571 const struct ata_force_param *fp = &force_tbl[i];
6572
6573 if (strncasecmp(val, fp->name, strlen(val)))
6574 continue;
6575
6576 nr_matches++;
6577 match_fp = fp;
6578
6579 if (strcasecmp(val, fp->name) == 0) {
6580 nr_matches = 1;
6581 break;
6582 }
6583 }
6584
6585 if (!nr_matches) {
6586 *reason = "unknown value";
6587 return -EINVAL;
6588 }
6589 if (nr_matches > 1) {
6590 *reason = "ambigious value";
6591 return -EINVAL;
6592 }
6593
6594 force_ent->param = *match_fp;
6595
6596 return 0;
6597 }
6598
6599 static void __init ata_parse_force_param(void)
6600 {
6601 int idx = 0, size = 1;
6602 int last_port = -1, last_device = -1;
6603 char *p, *cur, *next;
6604
6605 /* calculate maximum number of params and allocate force_tbl */
6606 for (p = ata_force_param_buf; *p; p++)
6607 if (*p == ',')
6608 size++;
6609
6610 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6611 if (!ata_force_tbl) {
6612 printk(KERN_WARNING "ata: failed to extend force table, "
6613 "libata.force ignored\n");
6614 return;
6615 }
6616
6617 /* parse and populate the table */
6618 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6619 const char *reason = "";
6620 struct ata_force_ent te = { .port = -1, .device = -1 };
6621
6622 next = cur;
6623 if (ata_parse_force_one(&next, &te, &reason)) {
6624 printk(KERN_WARNING "ata: failed to parse force "
6625 "parameter \"%s\" (%s)\n",
6626 cur, reason);
6627 continue;
6628 }
6629
6630 if (te.port == -1) {
6631 te.port = last_port;
6632 te.device = last_device;
6633 }
6634
6635 ata_force_tbl[idx++] = te;
6636
6637 last_port = te.port;
6638 last_device = te.device;
6639 }
6640
6641 ata_force_tbl_size = idx;
6642 }
6643
6644 static int __init ata_init(void)
6645 {
6646 int rc;
6647
6648 ata_parse_force_param();
6649
6650 rc = ata_sff_init();
6651 if (rc) {
6652 kfree(ata_force_tbl);
6653 return rc;
6654 }
6655
6656 libata_transport_init();
6657 ata_scsi_transport_template = ata_attach_transport();
6658 if (!ata_scsi_transport_template) {
6659 ata_sff_exit();
6660 rc = -ENOMEM;
6661 goto err_out;
6662 }
6663
6664 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6665 return 0;
6666
6667 err_out:
6668 return rc;
6669 }
6670
6671 static void __exit ata_exit(void)
6672 {
6673 ata_release_transport(ata_scsi_transport_template);
6674 libata_transport_exit();
6675 ata_sff_exit();
6676 kfree(ata_force_tbl);
6677 }
6678
6679 subsys_initcall(ata_init);
6680 module_exit(ata_exit);
6681
6682 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6683
6684 int ata_ratelimit(void)
6685 {
6686 return __ratelimit(&ratelimit);
6687 }
6688
6689 /**
6690 * ata_msleep - ATA EH owner aware msleep
6691 * @ap: ATA port to attribute the sleep to
6692 * @msecs: duration to sleep in milliseconds
6693 *
6694 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6695 * ownership is released before going to sleep and reacquired
6696 * after the sleep is complete. IOW, other ports sharing the
6697 * @ap->host will be allowed to own the EH while this task is
6698 * sleeping.
6699 *
6700 * LOCKING:
6701 * Might sleep.
6702 */
6703 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6704 {
6705 bool owns_eh = ap && ap->host->eh_owner == current;
6706
6707 if (owns_eh)
6708 ata_eh_release(ap);
6709
6710 if (msecs < 20) {
6711 unsigned long usecs = msecs * USEC_PER_MSEC;
6712 usleep_range(usecs, usecs + 50);
6713 } else {
6714 msleep(msecs);
6715 }
6716
6717 if (owns_eh)
6718 ata_eh_acquire(ap);
6719 }
6720
6721 /**
6722 * ata_wait_register - wait until register value changes
6723 * @ap: ATA port to wait register for, can be NULL
6724 * @reg: IO-mapped register
6725 * @mask: Mask to apply to read register value
6726 * @val: Wait condition
6727 * @interval: polling interval in milliseconds
6728 * @timeout: timeout in milliseconds
6729 *
6730 * Waiting for some bits of register to change is a common
6731 * operation for ATA controllers. This function reads 32bit LE
6732 * IO-mapped register @reg and tests for the following condition.
6733 *
6734 * (*@reg & mask) != val
6735 *
6736 * If the condition is met, it returns; otherwise, the process is
6737 * repeated after @interval_msec until timeout.
6738 *
6739 * LOCKING:
6740 * Kernel thread context (may sleep)
6741 *
6742 * RETURNS:
6743 * The final register value.
6744 */
6745 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6746 unsigned long interval, unsigned long timeout)
6747 {
6748 unsigned long deadline;
6749 u32 tmp;
6750
6751 tmp = ioread32(reg);
6752
6753 /* Calculate timeout _after_ the first read to make sure
6754 * preceding writes reach the controller before starting to
6755 * eat away the timeout.
6756 */
6757 deadline = ata_deadline(jiffies, timeout);
6758
6759 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6760 ata_msleep(ap, interval);
6761 tmp = ioread32(reg);
6762 }
6763
6764 return tmp;
6765 }
6766
6767 /**
6768 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6769 * @link: Link receiving the event
6770 *
6771 * Test whether the received PHY event has to be ignored or not.
6772 *
6773 * LOCKING:
6774 * None:
6775 *
6776 * RETURNS:
6777 * True if the event has to be ignored.
6778 */
6779 bool sata_lpm_ignore_phy_events(struct ata_link *link)
6780 {
6781 unsigned long lpm_timeout = link->last_lpm_change +
6782 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6783
6784 /* if LPM is enabled, PHYRDY doesn't mean anything */
6785 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6786 return true;
6787
6788 /* ignore the first PHY event after the LPM policy changed
6789 * as it is might be spurious
6790 */
6791 if ((link->flags & ATA_LFLAG_CHANGED) &&
6792 time_before(jiffies, lpm_timeout))
6793 return true;
6794
6795 return false;
6796 }
6797 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6798
6799 /*
6800 * Dummy port_ops
6801 */
6802 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6803 {
6804 return AC_ERR_SYSTEM;
6805 }
6806
6807 static void ata_dummy_error_handler(struct ata_port *ap)
6808 {
6809 /* truly dummy */
6810 }
6811
6812 struct ata_port_operations ata_dummy_port_ops = {
6813 .qc_prep = ata_noop_qc_prep,
6814 .qc_issue = ata_dummy_qc_issue,
6815 .error_handler = ata_dummy_error_handler,
6816 .sched_eh = ata_std_sched_eh,
6817 .end_eh = ata_std_end_eh,
6818 };
6819
6820 const struct ata_port_info ata_dummy_port_info = {
6821 .port_ops = &ata_dummy_port_ops,
6822 };
6823
6824 /*
6825 * Utility print functions
6826 */
6827 void ata_port_printk(const struct ata_port *ap, const char *level,
6828 const char *fmt, ...)
6829 {
6830 struct va_format vaf;
6831 va_list args;
6832
6833 va_start(args, fmt);
6834
6835 vaf.fmt = fmt;
6836 vaf.va = &args;
6837
6838 printk("%sata%u: %pV", level, ap->print_id, &vaf);
6839
6840 va_end(args);
6841 }
6842 EXPORT_SYMBOL(ata_port_printk);
6843
6844 void ata_link_printk(const struct ata_link *link, const char *level,
6845 const char *fmt, ...)
6846 {
6847 struct va_format vaf;
6848 va_list args;
6849
6850 va_start(args, fmt);
6851
6852 vaf.fmt = fmt;
6853 vaf.va = &args;
6854
6855 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6856 printk("%sata%u.%02u: %pV",
6857 level, link->ap->print_id, link->pmp, &vaf);
6858 else
6859 printk("%sata%u: %pV",
6860 level, link->ap->print_id, &vaf);
6861
6862 va_end(args);
6863 }
6864 EXPORT_SYMBOL(ata_link_printk);
6865
6866 void ata_dev_printk(const struct ata_device *dev, const char *level,
6867 const char *fmt, ...)
6868 {
6869 struct va_format vaf;
6870 va_list args;
6871
6872 va_start(args, fmt);
6873
6874 vaf.fmt = fmt;
6875 vaf.va = &args;
6876
6877 printk("%sata%u.%02u: %pV",
6878 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6879 &vaf);
6880
6881 va_end(args);
6882 }
6883 EXPORT_SYMBOL(ata_dev_printk);
6884
6885 void ata_print_version(const struct device *dev, const char *version)
6886 {
6887 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6888 }
6889 EXPORT_SYMBOL(ata_print_version);
6890
6891 /*
6892 * libata is essentially a library of internal helper functions for
6893 * low-level ATA host controller drivers. As such, the API/ABI is
6894 * likely to change as new drivers are added and updated.
6895 * Do not depend on ABI/API stability.
6896 */
6897 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6898 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6899 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6900 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6901 EXPORT_SYMBOL_GPL(sata_port_ops);
6902 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6903 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6904 EXPORT_SYMBOL_GPL(ata_link_next);
6905 EXPORT_SYMBOL_GPL(ata_dev_next);
6906 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6907 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6908 EXPORT_SYMBOL_GPL(ata_host_init);
6909 EXPORT_SYMBOL_GPL(ata_host_alloc);
6910 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6911 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6912 EXPORT_SYMBOL_GPL(ata_host_start);
6913 EXPORT_SYMBOL_GPL(ata_host_register);
6914 EXPORT_SYMBOL_GPL(ata_host_activate);
6915 EXPORT_SYMBOL_GPL(ata_host_detach);
6916 EXPORT_SYMBOL_GPL(ata_sg_init);
6917 EXPORT_SYMBOL_GPL(ata_qc_complete);
6918 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6919 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6920 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6921 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6922 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6923 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6924 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6925 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6926 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6927 EXPORT_SYMBOL_GPL(ata_mode_string);
6928 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6929 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6930 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6931 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6932 EXPORT_SYMBOL_GPL(ata_dev_disable);
6933 EXPORT_SYMBOL_GPL(sata_set_spd);
6934 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6935 EXPORT_SYMBOL_GPL(sata_link_debounce);
6936 EXPORT_SYMBOL_GPL(sata_link_resume);
6937 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6938 EXPORT_SYMBOL_GPL(ata_std_prereset);
6939 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6940 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6941 EXPORT_SYMBOL_GPL(ata_std_postreset);
6942 EXPORT_SYMBOL_GPL(ata_dev_classify);
6943 EXPORT_SYMBOL_GPL(ata_dev_pair);
6944 EXPORT_SYMBOL_GPL(ata_ratelimit);
6945 EXPORT_SYMBOL_GPL(ata_msleep);
6946 EXPORT_SYMBOL_GPL(ata_wait_register);
6947 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6948 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6949 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6950 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6951 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6952 EXPORT_SYMBOL_GPL(sata_scr_valid);
6953 EXPORT_SYMBOL_GPL(sata_scr_read);
6954 EXPORT_SYMBOL_GPL(sata_scr_write);
6955 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6956 EXPORT_SYMBOL_GPL(ata_link_online);
6957 EXPORT_SYMBOL_GPL(ata_link_offline);
6958 #ifdef CONFIG_PM
6959 EXPORT_SYMBOL_GPL(ata_host_suspend);
6960 EXPORT_SYMBOL_GPL(ata_host_resume);
6961 #endif /* CONFIG_PM */
6962 EXPORT_SYMBOL_GPL(ata_id_string);
6963 EXPORT_SYMBOL_GPL(ata_id_c_string);
6964 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6965 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6966
6967 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6968 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6969 EXPORT_SYMBOL_GPL(ata_timing_compute);
6970 EXPORT_SYMBOL_GPL(ata_timing_merge);
6971 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6972
6973 #ifdef CONFIG_PCI
6974 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6975 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6976 #ifdef CONFIG_PM
6977 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6978 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6979 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6980 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6981 #endif /* CONFIG_PM */
6982 #endif /* CONFIG_PCI */
6983
6984 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6985
6986 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6987 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6988 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6989 EXPORT_SYMBOL_GPL(ata_port_desc);
6990 #ifdef CONFIG_PCI
6991 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6992 #endif /* CONFIG_PCI */
6993 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6994 EXPORT_SYMBOL_GPL(ata_link_abort);
6995 EXPORT_SYMBOL_GPL(ata_port_abort);
6996 EXPORT_SYMBOL_GPL(ata_port_freeze);
6997 EXPORT_SYMBOL_GPL(sata_async_notification);
6998 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6999 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7000 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7001 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7002 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7003 EXPORT_SYMBOL_GPL(ata_do_eh);
7004 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7005
7006 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7007 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7008 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7009 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7010 EXPORT_SYMBOL_GPL(ata_cable_sata);