]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/ata/libata-core.c
misc: rtsx: make various functions static
[mirror_ubuntu-bionic-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78
79 #include "libata.h"
80 #include "libata-transport.h"
81
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
86
87 const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
93 };
94
95 const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
100 };
101
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109
110 struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
117 unsigned int lflags;
118 };
119
120 struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124 };
125
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 return (sstatus & 0xf) == 0x3;
183 }
184
185 /**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
193 *
194 * RETURNS:
195 * Pointer to the next link.
196 */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
199 {
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
203 /* NULL link indicates start of iteration */
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
214
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
225 /* fall through */
226 case ATA_LITER_EDGE:
227 return NULL;
228 }
229
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
241 return NULL;
242 }
243
244 /**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258 {
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295 }
296
297 /**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320 }
321
322 /**
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 return;
351 }
352 }
353
354 /**
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
357 *
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
366 *
367 * LOCKING:
368 * EH context.
369 */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 bool did_spd = false;
373 int linkno = link->pmp;
374 int i;
375
376 if (ata_is_host_link(link))
377 linkno += 15;
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 fe->param.name);
393 did_spd = true;
394 }
395
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
403 }
404 }
405
406 /**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
456 return;
457 }
458 }
459
460 /**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
500 }
501 }
502
503 /**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515 int atapi_cmd_type(u8 opcode)
516 {
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
536 default:
537 return ATAPI_MISC;
538 }
539 }
540
541 /**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584
585 /**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612 }
613
614 static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
629 0,
630 0,
631 0,
632 0,
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
642 };
643
644 /**
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
648 *
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
651 *
652 * LOCKING:
653 * caller.
654 */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 u8 cmd;
658
659 int index, fua, lba48, write;
660
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
672 } else {
673 tf->protocol = ATA_PROT_DMA;
674 index = 16;
675 }
676
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
683 }
684
685 /**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 u64 block = 0;
703
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
722 if (!sect) {
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
725 return U64_MAX;
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 }
730
731 return block;
732 }
733
734 /**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 * @class: IO priority class
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
757 unsigned int tag, int class)
758 {
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
786 tf->device = ATA_LBA;
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
789
790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862 }
863
864 /**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
882 {
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887
888 /**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
897 */
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908
909 static const struct ata_xfer_ent {
910 int shift, bits;
911 u8 base;
912 } ata_xfer_tbl[] = {
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 { -1, },
917 };
918
919 /**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching XFER_* value, 0xff if no match found.
931 */
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
940 return 0xff;
941 }
942
943 /**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
963 return 0;
964 }
965
966 /**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986 }
987
988 /**
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
991 *
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1001 */
1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
1010 "PIO5",
1011 "PIO6",
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
1015 "MWDMA3",
1016 "MWDMA4",
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1026 int highbit;
1027
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1031 return "<n/a>";
1032 }
1033
1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
1039 "6.0 Gbps",
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045 }
1046
1047 /**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1084 */
1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
1103 }
1104
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112 }
1113
1114 /**
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1131 {
1132 unsigned int c;
1133
1134 BUG_ON(len & 1);
1135
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148 }
1149
1150 /**
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1166 {
1167 unsigned char *p;
1168
1169 ata_id_string(id, s, ofs, len - 1);
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175 }
1176
1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 else
1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 } else {
1185 if (ata_id_current_chs_valid(id))
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
1188 else
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
1191 }
1192 }
1193
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
1205 return sectors;
1206 }
1207
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
1217 return sectors;
1218 }
1219
1220 /**
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1224 *
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1227 *
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1231 */
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1237
1238 ata_tf_init(dev, &tf);
1239
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249 tf.protocol = ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1251
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1261
1262 if (lba48)
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 else
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 (*max_sectors)--;
1268 return 0;
1269 }
1270
1271 /**
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1275 *
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1282 */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 } else {
1303 tf.command = ATA_CMD_SET_MAX;
1304
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
1308 tf.protocol = ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
1347 int rc;
1348
1349 /* do we need to do it? */
1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 return 0;
1354
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1360 */
1361 if (rc == -EACCES || !unlock_hpa) {
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1369 }
1370
1371 return rc;
1372 }
1373 dev->n_native_sectors = native_sectors;
1374
1375 /* nothing to do? */
1376 if (native_sectors <= sectors || !unlock_hpa) {
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
1381 ata_dev_info(dev,
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
1416 ata_dev_info(dev,
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1429 *
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
1461 id[88],
1462 id[93]);
1463 }
1464
1465 /**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 if (mode < 5) /* Valid PIO range */
1496 pio_mask = (2 << mode) - 1;
1497 else
1498 pio_mask = 1;
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 struct completion *waiting = qc->private_data;
1537
1538 complete(waiting);
1539 }
1540
1541 /**
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
1562 */
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
1565 int dma_dir, struct scatterlist *sgl,
1566 unsigned int n_elem, unsigned long timeout)
1567 {
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
1570 u8 command = tf->command;
1571 int auto_timeout = 0;
1572 struct ata_queued_cmd *qc;
1573 unsigned int tag, preempted_tag;
1574 u32 preempted_sactive, preempted_qc_active;
1575 int preempted_nr_active_links;
1576 DECLARE_COMPLETION_ONSTACK(wait);
1577 unsigned long flags;
1578 unsigned int err_mask;
1579 int rc;
1580
1581 spin_lock_irqsave(ap->lock, flags);
1582
1583 /* no internal command while frozen */
1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 return AC_ERR_SYSTEM;
1587 }
1588
1589 /* initialize internal qc */
1590
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
1601 qc = __ata_qc_from_tag(ap, tag);
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
1611 preempted_qc_active = ap->qc_active;
1612 preempted_nr_active_links = ap->nr_active_links;
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
1615 ap->qc_active = 0;
1616 ap->nr_active_links = 0;
1617
1618 /* prepare & issue qc */
1619 qc->tf = *tf;
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
1631 unsigned int i, buflen = 0;
1632 struct scatterlist *sg;
1633
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
1636
1637 ata_sg_init(qc, sgl, n_elem);
1638 qc->nbytes = buflen;
1639 }
1640
1641 qc->private_data = &wait;
1642 qc->complete_fn = ata_qc_complete_internal;
1643
1644 ata_qc_issue(qc);
1645
1646 spin_unlock_irqrestore(ap->lock, flags);
1647
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
1656
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
1665 ata_sff_flush_pio_task(ap);
1666
1667 if (!rc) {
1668 spin_lock_irqsave(ap->lock, flags);
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
1674 */
1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
1682
1683 if (ata_msg_warn(ap))
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
1686 }
1687
1688 spin_unlock_irqrestore(ap->lock, flags);
1689 }
1690
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
1707 }
1708
1709 /* finish up */
1710 spin_lock_irqsave(ap->lock, flags);
1711
1712 *tf = qc->result_tf;
1713 err_mask = qc->err_mask;
1714
1715 ata_qc_free(qc);
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
1718 ap->qc_active = preempted_qc_active;
1719 ap->nr_active_links = preempted_nr_active_links;
1720
1721 spin_unlock_irqrestore(ap->lock, flags);
1722
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1725
1726 return err_mask;
1727 }
1728
1729 /**
1730 * ata_exec_internal - execute libata internal command
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
1734 * @dma_dir: Data transfer direction of the command
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
1737 * @timeout: Timeout in msecs (0 for default)
1738 *
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1747 */
1748 unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
1752 {
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
1755
1756 if (dma_dir != DMA_NONE) {
1757 WARN_ON(!buf);
1758 sg_init_one(&sg, buf, buflen);
1759 psg = &sg;
1760 n_elem++;
1761 }
1762
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 timeout);
1765 }
1766
1767 /**
1768 * ata_pio_need_iordy - check if iordy needed
1769 * @adev: ATA device
1770 *
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1773 */
1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775 {
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1779 */
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 return 0;
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1784 */
1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 return 0;
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 return 0;
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1793 return 1;
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1796 return 1;
1797 return 0;
1798 }
1799
1800 /**
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1802 * @adev: ATA device
1803 *
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1806 */
1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808 {
1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 /* Is the speed faster than the drive allows non IORDY ? */
1813 if (pio) {
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1818 }
1819 }
1820 return 3 << ATA_SHIFT_PIO;
1821 }
1822
1823 /**
1824 * ata_do_dev_read_id - default ID read method
1825 * @dev: device
1826 * @tf: proposed taskfile
1827 * @id: data buffer
1828 *
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1832 */
1833 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1835 {
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838 }
1839
1840 /**
1841 * ata_dev_read_id - Read ID data from the specified device
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
1844 * @flags: ATA_READID_* flags
1845 * @id: buffer to read IDENTIFY data into
1846 *
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1851 *
1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853 * now we abort if we hit that case.
1854 *
1855 * LOCKING:
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
1860 */
1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 unsigned int flags, u16 *id)
1863 {
1864 struct ata_port *ap = dev->link->ap;
1865 unsigned int class = *p_class;
1866 struct ata_taskfile tf;
1867 unsigned int err_mask = 0;
1868 const char *reason;
1869 bool is_semb = class == ATA_DEV_SEMB;
1870 int may_fallback = 1, tried_spinup = 0;
1871 int rc;
1872
1873 if (ata_msg_ctl(ap))
1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875
1876 retry:
1877 ata_tf_init(dev, &tf);
1878
1879 switch (class) {
1880 case ATA_DEV_SEMB:
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1882 /* fall through */
1883 case ATA_DEV_ATA:
1884 case ATA_DEV_ZAC:
1885 tf.command = ATA_CMD_ID_ATA;
1886 break;
1887 case ATA_DEV_ATAPI:
1888 tf.command = ATA_CMD_ID_ATAPI;
1889 break;
1890 default:
1891 rc = -ENODEV;
1892 reason = "unsupported class";
1893 goto err_out;
1894 }
1895
1896 tf.protocol = ATA_PROT_PIO;
1897
1898 /* Some devices choke if TF registers contain garbage. Make
1899 * sure those are properly initialized.
1900 */
1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902
1903 /* Device presence detection is unreliable on some
1904 * controllers. Always poll IDENTIFY if available.
1905 */
1906 tf.flags |= ATA_TFLAG_POLLING;
1907
1908 if (ap->ops->read_id)
1909 err_mask = ap->ops->read_id(dev, &tf, id);
1910 else
1911 err_mask = ata_do_dev_read_id(dev, &tf, id);
1912
1913 if (err_mask) {
1914 if (err_mask & AC_ERR_NODEV_HINT) {
1915 ata_dev_dbg(dev, "NODEV after polling detection\n");
1916 return -ENOENT;
1917 }
1918
1919 if (is_semb) {
1920 ata_dev_info(dev,
1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922 /* SEMB is not supported yet */
1923 *p_class = ATA_DEV_SEMB_UNSUP;
1924 return 0;
1925 }
1926
1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 /* Device or controller might have reported
1929 * the wrong device class. Give a shot at the
1930 * other IDENTIFY if the current one is
1931 * aborted by the device.
1932 */
1933 if (may_fallback) {
1934 may_fallback = 0;
1935
1936 if (class == ATA_DEV_ATA)
1937 class = ATA_DEV_ATAPI;
1938 else
1939 class = ATA_DEV_ATA;
1940 goto retry;
1941 }
1942
1943 /* Control reaches here iff the device aborted
1944 * both flavors of IDENTIFYs which happens
1945 * sometimes with phantom devices.
1946 */
1947 ata_dev_dbg(dev,
1948 "both IDENTIFYs aborted, assuming NODEV\n");
1949 return -ENOENT;
1950 }
1951
1952 rc = -EIO;
1953 reason = "I/O error";
1954 goto err_out;
1955 }
1956
1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 "class=%d may_fallback=%d tried_spinup=%d\n",
1960 class, may_fallback, tried_spinup);
1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 }
1964
1965 /* Falling back doesn't make sense if ID data was read
1966 * successfully at least once.
1967 */
1968 may_fallback = 0;
1969
1970 swap_buf_le16(id, ATA_ID_WORDS);
1971
1972 /* sanity check */
1973 rc = -EINVAL;
1974 reason = "device reports invalid type";
1975
1976 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 goto err_out;
1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 ata_id_is_ata(id)) {
1981 ata_dev_dbg(dev,
1982 "host indicates ignore ATA devices, ignored\n");
1983 return -ENOENT;
1984 }
1985 } else {
1986 if (ata_id_is_ata(id))
1987 goto err_out;
1988 }
1989
1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 tried_spinup = 1;
1992 /*
1993 * Drive powered-up in standby mode, and requires a specific
1994 * SET_FEATURES spin-up subcommand before it will accept
1995 * anything other than the original IDENTIFY command.
1996 */
1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998 if (err_mask && id[2] != 0x738c) {
1999 rc = -EIO;
2000 reason = "SPINUP failed";
2001 goto err_out;
2002 }
2003 /*
2004 * If the drive initially returned incomplete IDENTIFY info,
2005 * we now must reissue the IDENTIFY command.
2006 */
2007 if (id[2] == 0x37c8)
2008 goto retry;
2009 }
2010
2011 if ((flags & ATA_READID_POSTRESET) &&
2012 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2013 /*
2014 * The exact sequence expected by certain pre-ATA4 drives is:
2015 * SRST RESET
2016 * IDENTIFY (optional in early ATA)
2017 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2018 * anything else..
2019 * Some drives were very specific about that exact sequence.
2020 *
2021 * Note that ATA4 says lba is mandatory so the second check
2022 * should never trigger.
2023 */
2024 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2025 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2026 if (err_mask) {
2027 rc = -EIO;
2028 reason = "INIT_DEV_PARAMS failed";
2029 goto err_out;
2030 }
2031
2032 /* current CHS translation info (id[53-58]) might be
2033 * changed. reread the identify device info.
2034 */
2035 flags &= ~ATA_READID_POSTRESET;
2036 goto retry;
2037 }
2038 }
2039
2040 *p_class = class;
2041
2042 return 0;
2043
2044 err_out:
2045 if (ata_msg_warn(ap))
2046 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2047 reason, err_mask);
2048 return rc;
2049 }
2050
2051 /**
2052 * ata_read_log_page - read a specific log page
2053 * @dev: target device
2054 * @log: log to read
2055 * @page: page to read
2056 * @buf: buffer to store read page
2057 * @sectors: number of sectors to read
2058 *
2059 * Read log page using READ_LOG_EXT command.
2060 *
2061 * LOCKING:
2062 * Kernel thread context (may sleep).
2063 *
2064 * RETURNS:
2065 * 0 on success, AC_ERR_* mask otherwise.
2066 */
2067 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2068 u8 page, void *buf, unsigned int sectors)
2069 {
2070 unsigned long ap_flags = dev->link->ap->flags;
2071 struct ata_taskfile tf;
2072 unsigned int err_mask;
2073 bool dma = false;
2074
2075 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2076
2077 /*
2078 * Return error without actually issuing the command on controllers
2079 * which e.g. lockup on a read log page.
2080 */
2081 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2082 return AC_ERR_DEV;
2083
2084 retry:
2085 ata_tf_init(dev, &tf);
2086 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2087 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2088 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2089 tf.protocol = ATA_PROT_DMA;
2090 dma = true;
2091 } else {
2092 tf.command = ATA_CMD_READ_LOG_EXT;
2093 tf.protocol = ATA_PROT_PIO;
2094 dma = false;
2095 }
2096 tf.lbal = log;
2097 tf.lbam = page;
2098 tf.nsect = sectors;
2099 tf.hob_nsect = sectors >> 8;
2100 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2101
2102 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2103 buf, sectors * ATA_SECT_SIZE, 0);
2104
2105 if (err_mask && dma) {
2106 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2107 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2108 goto retry;
2109 }
2110
2111 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2112 return err_mask;
2113 }
2114
2115 static bool ata_log_supported(struct ata_device *dev, u8 log)
2116 {
2117 struct ata_port *ap = dev->link->ap;
2118
2119 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2120 return false;
2121 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2122 }
2123
2124 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2125 {
2126 struct ata_port *ap = dev->link->ap;
2127 unsigned int err, i;
2128
2129 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2130 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2131 return false;
2132 }
2133
2134 /*
2135 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2136 * supported.
2137 */
2138 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2139 1);
2140 if (err) {
2141 ata_dev_info(dev,
2142 "failed to get Device Identify Log Emask 0x%x\n",
2143 err);
2144 return false;
2145 }
2146
2147 for (i = 0; i < ap->sector_buf[8]; i++) {
2148 if (ap->sector_buf[9 + i] == page)
2149 return true;
2150 }
2151
2152 return false;
2153 }
2154
2155 static int ata_do_link_spd_horkage(struct ata_device *dev)
2156 {
2157 struct ata_link *plink = ata_dev_phys_link(dev);
2158 u32 target, target_limit;
2159
2160 if (!sata_scr_valid(plink))
2161 return 0;
2162
2163 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2164 target = 1;
2165 else
2166 return 0;
2167
2168 target_limit = (1 << target) - 1;
2169
2170 /* if already on stricter limit, no need to push further */
2171 if (plink->sata_spd_limit <= target_limit)
2172 return 0;
2173
2174 plink->sata_spd_limit = target_limit;
2175
2176 /* Request another EH round by returning -EAGAIN if link is
2177 * going faster than the target speed. Forward progress is
2178 * guaranteed by setting sata_spd_limit to target_limit above.
2179 */
2180 if (plink->sata_spd > target) {
2181 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2182 sata_spd_string(target));
2183 return -EAGAIN;
2184 }
2185 return 0;
2186 }
2187
2188 static inline u8 ata_dev_knobble(struct ata_device *dev)
2189 {
2190 struct ata_port *ap = dev->link->ap;
2191
2192 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2193 return 0;
2194
2195 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2196 }
2197
2198 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2199 {
2200 struct ata_port *ap = dev->link->ap;
2201 unsigned int err_mask;
2202
2203 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2204 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2205 return;
2206 }
2207 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2208 0, ap->sector_buf, 1);
2209 if (err_mask) {
2210 ata_dev_dbg(dev,
2211 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2212 err_mask);
2213 } else {
2214 u8 *cmds = dev->ncq_send_recv_cmds;
2215
2216 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2217 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2218
2219 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2220 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2221 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2222 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2223 }
2224 }
2225 }
2226
2227 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2228 {
2229 struct ata_port *ap = dev->link->ap;
2230 unsigned int err_mask;
2231
2232 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2233 ata_dev_warn(dev,
2234 "NCQ Send/Recv Log not supported\n");
2235 return;
2236 }
2237 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2238 0, ap->sector_buf, 1);
2239 if (err_mask) {
2240 ata_dev_dbg(dev,
2241 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2242 err_mask);
2243 } else {
2244 u8 *cmds = dev->ncq_non_data_cmds;
2245
2246 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2247 }
2248 }
2249
2250 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2251 {
2252 struct ata_port *ap = dev->link->ap;
2253 unsigned int err_mask;
2254
2255 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2256 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2257 return;
2258 }
2259
2260 err_mask = ata_read_log_page(dev,
2261 ATA_LOG_IDENTIFY_DEVICE,
2262 ATA_LOG_SATA_SETTINGS,
2263 ap->sector_buf,
2264 1);
2265 if (err_mask) {
2266 ata_dev_dbg(dev,
2267 "failed to get Identify Device data, Emask 0x%x\n",
2268 err_mask);
2269 return;
2270 }
2271
2272 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2273 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274 } else {
2275 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2276 ata_dev_dbg(dev, "SATA page does not support priority\n");
2277 }
2278
2279 }
2280
2281 static int ata_dev_config_ncq(struct ata_device *dev,
2282 char *desc, size_t desc_sz)
2283 {
2284 struct ata_port *ap = dev->link->ap;
2285 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2286 unsigned int err_mask;
2287 char *aa_desc = "";
2288
2289 if (!ata_id_has_ncq(dev->id)) {
2290 desc[0] = '\0';
2291 return 0;
2292 }
2293 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2294 snprintf(desc, desc_sz, "NCQ (not used)");
2295 return 0;
2296 }
2297 if (ap->flags & ATA_FLAG_NCQ) {
2298 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2299 dev->flags |= ATA_DFLAG_NCQ;
2300 }
2301
2302 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2303 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2304 ata_id_has_fpdma_aa(dev->id)) {
2305 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2306 SATA_FPDMA_AA);
2307 if (err_mask) {
2308 ata_dev_err(dev,
2309 "failed to enable AA (error_mask=0x%x)\n",
2310 err_mask);
2311 if (err_mask != AC_ERR_DEV) {
2312 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2313 return -EIO;
2314 }
2315 } else
2316 aa_desc = ", AA";
2317 }
2318
2319 if (hdepth >= ddepth)
2320 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2321 else
2322 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2323 ddepth, aa_desc);
2324
2325 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2326 if (ata_id_has_ncq_send_and_recv(dev->id))
2327 ata_dev_config_ncq_send_recv(dev);
2328 if (ata_id_has_ncq_non_data(dev->id))
2329 ata_dev_config_ncq_non_data(dev);
2330 if (ata_id_has_ncq_prio(dev->id))
2331 ata_dev_config_ncq_prio(dev);
2332 }
2333
2334 return 0;
2335 }
2336
2337 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2338 {
2339 unsigned int err_mask;
2340
2341 if (!ata_id_has_sense_reporting(dev->id))
2342 return;
2343
2344 if (ata_id_sense_reporting_enabled(dev->id))
2345 return;
2346
2347 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2348 if (err_mask) {
2349 ata_dev_dbg(dev,
2350 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2351 err_mask);
2352 }
2353 }
2354
2355 static void ata_dev_config_zac(struct ata_device *dev)
2356 {
2357 struct ata_port *ap = dev->link->ap;
2358 unsigned int err_mask;
2359 u8 *identify_buf = ap->sector_buf;
2360
2361 dev->zac_zones_optimal_open = U32_MAX;
2362 dev->zac_zones_optimal_nonseq = U32_MAX;
2363 dev->zac_zones_max_open = U32_MAX;
2364
2365 /*
2366 * Always set the 'ZAC' flag for Host-managed devices.
2367 */
2368 if (dev->class == ATA_DEV_ZAC)
2369 dev->flags |= ATA_DFLAG_ZAC;
2370 else if (ata_id_zoned_cap(dev->id) == 0x01)
2371 /*
2372 * Check for host-aware devices.
2373 */
2374 dev->flags |= ATA_DFLAG_ZAC;
2375
2376 if (!(dev->flags & ATA_DFLAG_ZAC))
2377 return;
2378
2379 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2380 ata_dev_warn(dev,
2381 "ATA Zoned Information Log not supported\n");
2382 return;
2383 }
2384
2385 /*
2386 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2387 */
2388 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2389 ATA_LOG_ZONED_INFORMATION,
2390 identify_buf, 1);
2391 if (!err_mask) {
2392 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2393
2394 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2395 if ((zoned_cap >> 63))
2396 dev->zac_zoned_cap = (zoned_cap & 1);
2397 opt_open = get_unaligned_le64(&identify_buf[24]);
2398 if ((opt_open >> 63))
2399 dev->zac_zones_optimal_open = (u32)opt_open;
2400 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2401 if ((opt_nonseq >> 63))
2402 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2403 max_open = get_unaligned_le64(&identify_buf[40]);
2404 if ((max_open >> 63))
2405 dev->zac_zones_max_open = (u32)max_open;
2406 }
2407 }
2408
2409 static void ata_dev_config_trusted(struct ata_device *dev)
2410 {
2411 struct ata_port *ap = dev->link->ap;
2412 u64 trusted_cap;
2413 unsigned int err;
2414
2415 if (!ata_id_has_trusted(dev->id))
2416 return;
2417
2418 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2419 ata_dev_warn(dev,
2420 "Security Log not supported\n");
2421 return;
2422 }
2423
2424 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2425 ap->sector_buf, 1);
2426 if (err) {
2427 ata_dev_dbg(dev,
2428 "failed to read Security Log, Emask 0x%x\n", err);
2429 return;
2430 }
2431
2432 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2433 if (!(trusted_cap & (1ULL << 63))) {
2434 ata_dev_dbg(dev,
2435 "Trusted Computing capability qword not valid!\n");
2436 return;
2437 }
2438
2439 if (trusted_cap & (1 << 0))
2440 dev->flags |= ATA_DFLAG_TRUSTED;
2441 }
2442
2443 /**
2444 * ata_dev_configure - Configure the specified ATA/ATAPI device
2445 * @dev: Target device to configure
2446 *
2447 * Configure @dev according to @dev->id. Generic and low-level
2448 * driver specific fixups are also applied.
2449 *
2450 * LOCKING:
2451 * Kernel thread context (may sleep)
2452 *
2453 * RETURNS:
2454 * 0 on success, -errno otherwise
2455 */
2456 int ata_dev_configure(struct ata_device *dev)
2457 {
2458 struct ata_port *ap = dev->link->ap;
2459 struct ata_eh_context *ehc = &dev->link->eh_context;
2460 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2461 const u16 *id = dev->id;
2462 unsigned long xfer_mask;
2463 unsigned int err_mask;
2464 char revbuf[7]; /* XYZ-99\0 */
2465 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2466 char modelbuf[ATA_ID_PROD_LEN+1];
2467 int rc;
2468
2469 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2470 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2471 return 0;
2472 }
2473
2474 if (ata_msg_probe(ap))
2475 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2476
2477 /* set horkage */
2478 dev->horkage |= ata_dev_blacklisted(dev);
2479 ata_force_horkage(dev);
2480
2481 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2482 ata_dev_info(dev, "unsupported device, disabling\n");
2483 ata_dev_disable(dev);
2484 return 0;
2485 }
2486
2487 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2488 dev->class == ATA_DEV_ATAPI) {
2489 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2490 atapi_enabled ? "not supported with this driver"
2491 : "disabled");
2492 ata_dev_disable(dev);
2493 return 0;
2494 }
2495
2496 rc = ata_do_link_spd_horkage(dev);
2497 if (rc)
2498 return rc;
2499
2500 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2501 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2502 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2503 dev->horkage |= ATA_HORKAGE_NOLPM;
2504
2505 if (ap->flags & ATA_FLAG_NO_LPM)
2506 dev->horkage |= ATA_HORKAGE_NOLPM;
2507
2508 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2509 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2510 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2511 }
2512
2513 /* let ACPI work its magic */
2514 rc = ata_acpi_on_devcfg(dev);
2515 if (rc)
2516 return rc;
2517
2518 /* massage HPA, do it early as it might change IDENTIFY data */
2519 rc = ata_hpa_resize(dev);
2520 if (rc)
2521 return rc;
2522
2523 /* print device capabilities */
2524 if (ata_msg_probe(ap))
2525 ata_dev_dbg(dev,
2526 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2527 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2528 __func__,
2529 id[49], id[82], id[83], id[84],
2530 id[85], id[86], id[87], id[88]);
2531
2532 /* initialize to-be-configured parameters */
2533 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2534 dev->max_sectors = 0;
2535 dev->cdb_len = 0;
2536 dev->n_sectors = 0;
2537 dev->cylinders = 0;
2538 dev->heads = 0;
2539 dev->sectors = 0;
2540 dev->multi_count = 0;
2541
2542 /*
2543 * common ATA, ATAPI feature tests
2544 */
2545
2546 /* find max transfer mode; for printk only */
2547 xfer_mask = ata_id_xfermask(id);
2548
2549 if (ata_msg_probe(ap))
2550 ata_dump_id(id);
2551
2552 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2553 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2554 sizeof(fwrevbuf));
2555
2556 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2557 sizeof(modelbuf));
2558
2559 /* ATA-specific feature tests */
2560 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2561 if (ata_id_is_cfa(id)) {
2562 /* CPRM may make this media unusable */
2563 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2564 ata_dev_warn(dev,
2565 "supports DRM functions and may not be fully accessible\n");
2566 snprintf(revbuf, 7, "CFA");
2567 } else {
2568 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2569 /* Warn the user if the device has TPM extensions */
2570 if (ata_id_has_tpm(id))
2571 ata_dev_warn(dev,
2572 "supports DRM functions and may not be fully accessible\n");
2573 }
2574
2575 dev->n_sectors = ata_id_n_sectors(id);
2576
2577 /* get current R/W Multiple count setting */
2578 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2579 unsigned int max = dev->id[47] & 0xff;
2580 unsigned int cnt = dev->id[59] & 0xff;
2581 /* only recognize/allow powers of two here */
2582 if (is_power_of_2(max) && is_power_of_2(cnt))
2583 if (cnt <= max)
2584 dev->multi_count = cnt;
2585 }
2586
2587 if (ata_id_has_lba(id)) {
2588 const char *lba_desc;
2589 char ncq_desc[24];
2590
2591 lba_desc = "LBA";
2592 dev->flags |= ATA_DFLAG_LBA;
2593 if (ata_id_has_lba48(id)) {
2594 dev->flags |= ATA_DFLAG_LBA48;
2595 lba_desc = "LBA48";
2596
2597 if (dev->n_sectors >= (1UL << 28) &&
2598 ata_id_has_flush_ext(id))
2599 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2600 }
2601
2602 /* config NCQ */
2603 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2604 if (rc)
2605 return rc;
2606
2607 /* print device info to dmesg */
2608 if (ata_msg_drv(ap) && print_info) {
2609 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2610 revbuf, modelbuf, fwrevbuf,
2611 ata_mode_string(xfer_mask));
2612 ata_dev_info(dev,
2613 "%llu sectors, multi %u: %s %s\n",
2614 (unsigned long long)dev->n_sectors,
2615 dev->multi_count, lba_desc, ncq_desc);
2616 }
2617 } else {
2618 /* CHS */
2619
2620 /* Default translation */
2621 dev->cylinders = id[1];
2622 dev->heads = id[3];
2623 dev->sectors = id[6];
2624
2625 if (ata_id_current_chs_valid(id)) {
2626 /* Current CHS translation is valid. */
2627 dev->cylinders = id[54];
2628 dev->heads = id[55];
2629 dev->sectors = id[56];
2630 }
2631
2632 /* print device info to dmesg */
2633 if (ata_msg_drv(ap) && print_info) {
2634 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2635 revbuf, modelbuf, fwrevbuf,
2636 ata_mode_string(xfer_mask));
2637 ata_dev_info(dev,
2638 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2639 (unsigned long long)dev->n_sectors,
2640 dev->multi_count, dev->cylinders,
2641 dev->heads, dev->sectors);
2642 }
2643 }
2644
2645 /* Check and mark DevSlp capability. Get DevSlp timing variables
2646 * from SATA Settings page of Identify Device Data Log.
2647 */
2648 if (ata_id_has_devslp(dev->id)) {
2649 u8 *sata_setting = ap->sector_buf;
2650 int i, j;
2651
2652 dev->flags |= ATA_DFLAG_DEVSLP;
2653 err_mask = ata_read_log_page(dev,
2654 ATA_LOG_IDENTIFY_DEVICE,
2655 ATA_LOG_SATA_SETTINGS,
2656 sata_setting,
2657 1);
2658 if (err_mask)
2659 ata_dev_dbg(dev,
2660 "failed to get Identify Device Data, Emask 0x%x\n",
2661 err_mask);
2662 else
2663 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2664 j = ATA_LOG_DEVSLP_OFFSET + i;
2665 dev->devslp_timing[i] = sata_setting[j];
2666 }
2667 }
2668 ata_dev_config_sense_reporting(dev);
2669 ata_dev_config_zac(dev);
2670 ata_dev_config_trusted(dev);
2671 dev->cdb_len = 32;
2672 }
2673
2674 /* ATAPI-specific feature tests */
2675 else if (dev->class == ATA_DEV_ATAPI) {
2676 const char *cdb_intr_string = "";
2677 const char *atapi_an_string = "";
2678 const char *dma_dir_string = "";
2679 u32 sntf;
2680
2681 rc = atapi_cdb_len(id);
2682 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2683 if (ata_msg_warn(ap))
2684 ata_dev_warn(dev, "unsupported CDB len\n");
2685 rc = -EINVAL;
2686 goto err_out_nosup;
2687 }
2688 dev->cdb_len = (unsigned int) rc;
2689
2690 /* Enable ATAPI AN if both the host and device have
2691 * the support. If PMP is attached, SNTF is required
2692 * to enable ATAPI AN to discern between PHY status
2693 * changed notifications and ATAPI ANs.
2694 */
2695 if (atapi_an &&
2696 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2697 (!sata_pmp_attached(ap) ||
2698 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2699 /* issue SET feature command to turn this on */
2700 err_mask = ata_dev_set_feature(dev,
2701 SETFEATURES_SATA_ENABLE, SATA_AN);
2702 if (err_mask)
2703 ata_dev_err(dev,
2704 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2705 err_mask);
2706 else {
2707 dev->flags |= ATA_DFLAG_AN;
2708 atapi_an_string = ", ATAPI AN";
2709 }
2710 }
2711
2712 if (ata_id_cdb_intr(dev->id)) {
2713 dev->flags |= ATA_DFLAG_CDB_INTR;
2714 cdb_intr_string = ", CDB intr";
2715 }
2716
2717 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2718 dev->flags |= ATA_DFLAG_DMADIR;
2719 dma_dir_string = ", DMADIR";
2720 }
2721
2722 if (ata_id_has_da(dev->id)) {
2723 dev->flags |= ATA_DFLAG_DA;
2724 zpodd_init(dev);
2725 }
2726
2727 /* print device info to dmesg */
2728 if (ata_msg_drv(ap) && print_info)
2729 ata_dev_info(dev,
2730 "ATAPI: %s, %s, max %s%s%s%s\n",
2731 modelbuf, fwrevbuf,
2732 ata_mode_string(xfer_mask),
2733 cdb_intr_string, atapi_an_string,
2734 dma_dir_string);
2735 }
2736
2737 /* determine max_sectors */
2738 dev->max_sectors = ATA_MAX_SECTORS;
2739 if (dev->flags & ATA_DFLAG_LBA48)
2740 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2741
2742 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2743 200 sectors */
2744 if (ata_dev_knobble(dev)) {
2745 if (ata_msg_drv(ap) && print_info)
2746 ata_dev_info(dev, "applying bridge limits\n");
2747 dev->udma_mask &= ATA_UDMA5;
2748 dev->max_sectors = ATA_MAX_SECTORS;
2749 }
2750
2751 if ((dev->class == ATA_DEV_ATAPI) &&
2752 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2753 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2754 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2755 }
2756
2757 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2758 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2759 dev->max_sectors);
2760
2761 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2762 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2763 dev->max_sectors);
2764
2765 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2766 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2767
2768 if (ap->ops->dev_config)
2769 ap->ops->dev_config(dev);
2770
2771 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2772 /* Let the user know. We don't want to disallow opens for
2773 rescue purposes, or in case the vendor is just a blithering
2774 idiot. Do this after the dev_config call as some controllers
2775 with buggy firmware may want to avoid reporting false device
2776 bugs */
2777
2778 if (print_info) {
2779 ata_dev_warn(dev,
2780 "Drive reports diagnostics failure. This may indicate a drive\n");
2781 ata_dev_warn(dev,
2782 "fault or invalid emulation. Contact drive vendor for information.\n");
2783 }
2784 }
2785
2786 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2787 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2788 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2789 }
2790
2791 return 0;
2792
2793 err_out_nosup:
2794 if (ata_msg_probe(ap))
2795 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2796 return rc;
2797 }
2798
2799 /**
2800 * ata_cable_40wire - return 40 wire cable type
2801 * @ap: port
2802 *
2803 * Helper method for drivers which want to hardwire 40 wire cable
2804 * detection.
2805 */
2806
2807 int ata_cable_40wire(struct ata_port *ap)
2808 {
2809 return ATA_CBL_PATA40;
2810 }
2811
2812 /**
2813 * ata_cable_80wire - return 80 wire cable type
2814 * @ap: port
2815 *
2816 * Helper method for drivers which want to hardwire 80 wire cable
2817 * detection.
2818 */
2819
2820 int ata_cable_80wire(struct ata_port *ap)
2821 {
2822 return ATA_CBL_PATA80;
2823 }
2824
2825 /**
2826 * ata_cable_unknown - return unknown PATA cable.
2827 * @ap: port
2828 *
2829 * Helper method for drivers which have no PATA cable detection.
2830 */
2831
2832 int ata_cable_unknown(struct ata_port *ap)
2833 {
2834 return ATA_CBL_PATA_UNK;
2835 }
2836
2837 /**
2838 * ata_cable_ignore - return ignored PATA cable.
2839 * @ap: port
2840 *
2841 * Helper method for drivers which don't use cable type to limit
2842 * transfer mode.
2843 */
2844 int ata_cable_ignore(struct ata_port *ap)
2845 {
2846 return ATA_CBL_PATA_IGN;
2847 }
2848
2849 /**
2850 * ata_cable_sata - return SATA cable type
2851 * @ap: port
2852 *
2853 * Helper method for drivers which have SATA cables
2854 */
2855
2856 int ata_cable_sata(struct ata_port *ap)
2857 {
2858 return ATA_CBL_SATA;
2859 }
2860
2861 /**
2862 * ata_bus_probe - Reset and probe ATA bus
2863 * @ap: Bus to probe
2864 *
2865 * Master ATA bus probing function. Initiates a hardware-dependent
2866 * bus reset, then attempts to identify any devices found on
2867 * the bus.
2868 *
2869 * LOCKING:
2870 * PCI/etc. bus probe sem.
2871 *
2872 * RETURNS:
2873 * Zero on success, negative errno otherwise.
2874 */
2875
2876 int ata_bus_probe(struct ata_port *ap)
2877 {
2878 unsigned int classes[ATA_MAX_DEVICES];
2879 int tries[ATA_MAX_DEVICES];
2880 int rc;
2881 struct ata_device *dev;
2882
2883 ata_for_each_dev(dev, &ap->link, ALL)
2884 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2885
2886 retry:
2887 ata_for_each_dev(dev, &ap->link, ALL) {
2888 /* If we issue an SRST then an ATA drive (not ATAPI)
2889 * may change configuration and be in PIO0 timing. If
2890 * we do a hard reset (or are coming from power on)
2891 * this is true for ATA or ATAPI. Until we've set a
2892 * suitable controller mode we should not touch the
2893 * bus as we may be talking too fast.
2894 */
2895 dev->pio_mode = XFER_PIO_0;
2896 dev->dma_mode = 0xff;
2897
2898 /* If the controller has a pio mode setup function
2899 * then use it to set the chipset to rights. Don't
2900 * touch the DMA setup as that will be dealt with when
2901 * configuring devices.
2902 */
2903 if (ap->ops->set_piomode)
2904 ap->ops->set_piomode(ap, dev);
2905 }
2906
2907 /* reset and determine device classes */
2908 ap->ops->phy_reset(ap);
2909
2910 ata_for_each_dev(dev, &ap->link, ALL) {
2911 if (dev->class != ATA_DEV_UNKNOWN)
2912 classes[dev->devno] = dev->class;
2913 else
2914 classes[dev->devno] = ATA_DEV_NONE;
2915
2916 dev->class = ATA_DEV_UNKNOWN;
2917 }
2918
2919 /* read IDENTIFY page and configure devices. We have to do the identify
2920 specific sequence bass-ackwards so that PDIAG- is released by
2921 the slave device */
2922
2923 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2924 if (tries[dev->devno])
2925 dev->class = classes[dev->devno];
2926
2927 if (!ata_dev_enabled(dev))
2928 continue;
2929
2930 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2931 dev->id);
2932 if (rc)
2933 goto fail;
2934 }
2935
2936 /* Now ask for the cable type as PDIAG- should have been released */
2937 if (ap->ops->cable_detect)
2938 ap->cbl = ap->ops->cable_detect(ap);
2939
2940 /* We may have SATA bridge glue hiding here irrespective of
2941 * the reported cable types and sensed types. When SATA
2942 * drives indicate we have a bridge, we don't know which end
2943 * of the link the bridge is which is a problem.
2944 */
2945 ata_for_each_dev(dev, &ap->link, ENABLED)
2946 if (ata_id_is_sata(dev->id))
2947 ap->cbl = ATA_CBL_SATA;
2948
2949 /* After the identify sequence we can now set up the devices. We do
2950 this in the normal order so that the user doesn't get confused */
2951
2952 ata_for_each_dev(dev, &ap->link, ENABLED) {
2953 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2954 rc = ata_dev_configure(dev);
2955 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2956 if (rc)
2957 goto fail;
2958 }
2959
2960 /* configure transfer mode */
2961 rc = ata_set_mode(&ap->link, &dev);
2962 if (rc)
2963 goto fail;
2964
2965 ata_for_each_dev(dev, &ap->link, ENABLED)
2966 return 0;
2967
2968 return -ENODEV;
2969
2970 fail:
2971 tries[dev->devno]--;
2972
2973 switch (rc) {
2974 case -EINVAL:
2975 /* eeek, something went very wrong, give up */
2976 tries[dev->devno] = 0;
2977 break;
2978
2979 case -ENODEV:
2980 /* give it just one more chance */
2981 tries[dev->devno] = min(tries[dev->devno], 1);
2982 /* fall through */
2983 case -EIO:
2984 if (tries[dev->devno] == 1) {
2985 /* This is the last chance, better to slow
2986 * down than lose it.
2987 */
2988 sata_down_spd_limit(&ap->link, 0);
2989 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2990 }
2991 }
2992
2993 if (!tries[dev->devno])
2994 ata_dev_disable(dev);
2995
2996 goto retry;
2997 }
2998
2999 /**
3000 * sata_print_link_status - Print SATA link status
3001 * @link: SATA link to printk link status about
3002 *
3003 * This function prints link speed and status of a SATA link.
3004 *
3005 * LOCKING:
3006 * None.
3007 */
3008 static void sata_print_link_status(struct ata_link *link)
3009 {
3010 u32 sstatus, scontrol, tmp;
3011
3012 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3013 return;
3014 sata_scr_read(link, SCR_CONTROL, &scontrol);
3015
3016 if (ata_phys_link_online(link)) {
3017 tmp = (sstatus >> 4) & 0xf;
3018 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3019 sata_spd_string(tmp), sstatus, scontrol);
3020 } else {
3021 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3022 sstatus, scontrol);
3023 }
3024 }
3025
3026 /**
3027 * ata_dev_pair - return other device on cable
3028 * @adev: device
3029 *
3030 * Obtain the other device on the same cable, or if none is
3031 * present NULL is returned
3032 */
3033
3034 struct ata_device *ata_dev_pair(struct ata_device *adev)
3035 {
3036 struct ata_link *link = adev->link;
3037 struct ata_device *pair = &link->device[1 - adev->devno];
3038 if (!ata_dev_enabled(pair))
3039 return NULL;
3040 return pair;
3041 }
3042
3043 /**
3044 * sata_down_spd_limit - adjust SATA spd limit downward
3045 * @link: Link to adjust SATA spd limit for
3046 * @spd_limit: Additional limit
3047 *
3048 * Adjust SATA spd limit of @link downward. Note that this
3049 * function only adjusts the limit. The change must be applied
3050 * using sata_set_spd().
3051 *
3052 * If @spd_limit is non-zero, the speed is limited to equal to or
3053 * lower than @spd_limit if such speed is supported. If
3054 * @spd_limit is slower than any supported speed, only the lowest
3055 * supported speed is allowed.
3056 *
3057 * LOCKING:
3058 * Inherited from caller.
3059 *
3060 * RETURNS:
3061 * 0 on success, negative errno on failure
3062 */
3063 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3064 {
3065 u32 sstatus, spd, mask;
3066 int rc, bit;
3067
3068 if (!sata_scr_valid(link))
3069 return -EOPNOTSUPP;
3070
3071 /* If SCR can be read, use it to determine the current SPD.
3072 * If not, use cached value in link->sata_spd.
3073 */
3074 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3075 if (rc == 0 && ata_sstatus_online(sstatus))
3076 spd = (sstatus >> 4) & 0xf;
3077 else
3078 spd = link->sata_spd;
3079
3080 mask = link->sata_spd_limit;
3081 if (mask <= 1)
3082 return -EINVAL;
3083
3084 /* unconditionally mask off the highest bit */
3085 bit = fls(mask) - 1;
3086 mask &= ~(1 << bit);
3087
3088 /*
3089 * Mask off all speeds higher than or equal to the current one. At
3090 * this point, if current SPD is not available and we previously
3091 * recorded the link speed from SStatus, the driver has already
3092 * masked off the highest bit so mask should already be 1 or 0.
3093 * Otherwise, we should not force 1.5Gbps on a link where we have
3094 * not previously recorded speed from SStatus. Just return in this
3095 * case.
3096 */
3097 if (spd > 1)
3098 mask &= (1 << (spd - 1)) - 1;
3099 else
3100 return -EINVAL;
3101
3102 /* were we already at the bottom? */
3103 if (!mask)
3104 return -EINVAL;
3105
3106 if (spd_limit) {
3107 if (mask & ((1 << spd_limit) - 1))
3108 mask &= (1 << spd_limit) - 1;
3109 else {
3110 bit = ffs(mask) - 1;
3111 mask = 1 << bit;
3112 }
3113 }
3114
3115 link->sata_spd_limit = mask;
3116
3117 ata_link_warn(link, "limiting SATA link speed to %s\n",
3118 sata_spd_string(fls(mask)));
3119
3120 return 0;
3121 }
3122
3123 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3124 {
3125 struct ata_link *host_link = &link->ap->link;
3126 u32 limit, target, spd;
3127
3128 limit = link->sata_spd_limit;
3129
3130 /* Don't configure downstream link faster than upstream link.
3131 * It doesn't speed up anything and some PMPs choke on such
3132 * configuration.
3133 */
3134 if (!ata_is_host_link(link) && host_link->sata_spd)
3135 limit &= (1 << host_link->sata_spd) - 1;
3136
3137 if (limit == UINT_MAX)
3138 target = 0;
3139 else
3140 target = fls(limit);
3141
3142 spd = (*scontrol >> 4) & 0xf;
3143 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3144
3145 return spd != target;
3146 }
3147
3148 /**
3149 * sata_set_spd_needed - is SATA spd configuration needed
3150 * @link: Link in question
3151 *
3152 * Test whether the spd limit in SControl matches
3153 * @link->sata_spd_limit. This function is used to determine
3154 * whether hardreset is necessary to apply SATA spd
3155 * configuration.
3156 *
3157 * LOCKING:
3158 * Inherited from caller.
3159 *
3160 * RETURNS:
3161 * 1 if SATA spd configuration is needed, 0 otherwise.
3162 */
3163 static int sata_set_spd_needed(struct ata_link *link)
3164 {
3165 u32 scontrol;
3166
3167 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3168 return 1;
3169
3170 return __sata_set_spd_needed(link, &scontrol);
3171 }
3172
3173 /**
3174 * sata_set_spd - set SATA spd according to spd limit
3175 * @link: Link to set SATA spd for
3176 *
3177 * Set SATA spd of @link according to sata_spd_limit.
3178 *
3179 * LOCKING:
3180 * Inherited from caller.
3181 *
3182 * RETURNS:
3183 * 0 if spd doesn't need to be changed, 1 if spd has been
3184 * changed. Negative errno if SCR registers are inaccessible.
3185 */
3186 int sata_set_spd(struct ata_link *link)
3187 {
3188 u32 scontrol;
3189 int rc;
3190
3191 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3192 return rc;
3193
3194 if (!__sata_set_spd_needed(link, &scontrol))
3195 return 0;
3196
3197 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3198 return rc;
3199
3200 return 1;
3201 }
3202
3203 /*
3204 * This mode timing computation functionality is ported over from
3205 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3206 */
3207 /*
3208 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3209 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3210 * for UDMA6, which is currently supported only by Maxtor drives.
3211 *
3212 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3213 */
3214
3215 static const struct ata_timing ata_timing[] = {
3216 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3217 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3218 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3219 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3220 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3221 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3222 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3223 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3224
3225 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3226 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3227 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3228
3229 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3230 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3231 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3232 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3233 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3234
3235 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3236 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3237 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3238 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3239 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3240 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3241 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3242 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3243
3244 { 0xFF }
3245 };
3246
3247 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3248 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3249
3250 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3251 {
3252 q->setup = EZ(t->setup, T);
3253 q->act8b = EZ(t->act8b, T);
3254 q->rec8b = EZ(t->rec8b, T);
3255 q->cyc8b = EZ(t->cyc8b, T);
3256 q->active = EZ(t->active, T);
3257 q->recover = EZ(t->recover, T);
3258 q->dmack_hold = EZ(t->dmack_hold, T);
3259 q->cycle = EZ(t->cycle, T);
3260 q->udma = EZ(t->udma, UT);
3261 }
3262
3263 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3264 struct ata_timing *m, unsigned int what)
3265 {
3266 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3267 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3268 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3269 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3270 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3271 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3272 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3273 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3274 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3275 }
3276
3277 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3278 {
3279 const struct ata_timing *t = ata_timing;
3280
3281 while (xfer_mode > t->mode)
3282 t++;
3283
3284 if (xfer_mode == t->mode)
3285 return t;
3286
3287 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3288 __func__, xfer_mode);
3289
3290 return NULL;
3291 }
3292
3293 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3294 struct ata_timing *t, int T, int UT)
3295 {
3296 const u16 *id = adev->id;
3297 const struct ata_timing *s;
3298 struct ata_timing p;
3299
3300 /*
3301 * Find the mode.
3302 */
3303
3304 if (!(s = ata_timing_find_mode(speed)))
3305 return -EINVAL;
3306
3307 memcpy(t, s, sizeof(*s));
3308
3309 /*
3310 * If the drive is an EIDE drive, it can tell us it needs extended
3311 * PIO/MW_DMA cycle timing.
3312 */
3313
3314 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3315 memset(&p, 0, sizeof(p));
3316
3317 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3318 if (speed <= XFER_PIO_2)
3319 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3320 else if ((speed <= XFER_PIO_4) ||
3321 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3322 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3323 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3324 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3325
3326 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3327 }
3328
3329 /*
3330 * Convert the timing to bus clock counts.
3331 */
3332
3333 ata_timing_quantize(t, t, T, UT);
3334
3335 /*
3336 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3337 * S.M.A.R.T * and some other commands. We have to ensure that the
3338 * DMA cycle timing is slower/equal than the fastest PIO timing.
3339 */
3340
3341 if (speed > XFER_PIO_6) {
3342 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3343 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3344 }
3345
3346 /*
3347 * Lengthen active & recovery time so that cycle time is correct.
3348 */
3349
3350 if (t->act8b + t->rec8b < t->cyc8b) {
3351 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3352 t->rec8b = t->cyc8b - t->act8b;
3353 }
3354
3355 if (t->active + t->recover < t->cycle) {
3356 t->active += (t->cycle - (t->active + t->recover)) / 2;
3357 t->recover = t->cycle - t->active;
3358 }
3359
3360 /* In a few cases quantisation may produce enough errors to
3361 leave t->cycle too low for the sum of active and recovery
3362 if so we must correct this */
3363 if (t->active + t->recover > t->cycle)
3364 t->cycle = t->active + t->recover;
3365
3366 return 0;
3367 }
3368
3369 /**
3370 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3371 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3372 * @cycle: cycle duration in ns
3373 *
3374 * Return matching xfer mode for @cycle. The returned mode is of
3375 * the transfer type specified by @xfer_shift. If @cycle is too
3376 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3377 * than the fastest known mode, the fasted mode is returned.
3378 *
3379 * LOCKING:
3380 * None.
3381 *
3382 * RETURNS:
3383 * Matching xfer_mode, 0xff if no match found.
3384 */
3385 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3386 {
3387 u8 base_mode = 0xff, last_mode = 0xff;
3388 const struct ata_xfer_ent *ent;
3389 const struct ata_timing *t;
3390
3391 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3392 if (ent->shift == xfer_shift)
3393 base_mode = ent->base;
3394
3395 for (t = ata_timing_find_mode(base_mode);
3396 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3397 unsigned short this_cycle;
3398
3399 switch (xfer_shift) {
3400 case ATA_SHIFT_PIO:
3401 case ATA_SHIFT_MWDMA:
3402 this_cycle = t->cycle;
3403 break;
3404 case ATA_SHIFT_UDMA:
3405 this_cycle = t->udma;
3406 break;
3407 default:
3408 return 0xff;
3409 }
3410
3411 if (cycle > this_cycle)
3412 break;
3413
3414 last_mode = t->mode;
3415 }
3416
3417 return last_mode;
3418 }
3419
3420 /**
3421 * ata_down_xfermask_limit - adjust dev xfer masks downward
3422 * @dev: Device to adjust xfer masks
3423 * @sel: ATA_DNXFER_* selector
3424 *
3425 * Adjust xfer masks of @dev downward. Note that this function
3426 * does not apply the change. Invoking ata_set_mode() afterwards
3427 * will apply the limit.
3428 *
3429 * LOCKING:
3430 * Inherited from caller.
3431 *
3432 * RETURNS:
3433 * 0 on success, negative errno on failure
3434 */
3435 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3436 {
3437 char buf[32];
3438 unsigned long orig_mask, xfer_mask;
3439 unsigned long pio_mask, mwdma_mask, udma_mask;
3440 int quiet, highbit;
3441
3442 quiet = !!(sel & ATA_DNXFER_QUIET);
3443 sel &= ~ATA_DNXFER_QUIET;
3444
3445 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3446 dev->mwdma_mask,
3447 dev->udma_mask);
3448 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3449
3450 switch (sel) {
3451 case ATA_DNXFER_PIO:
3452 highbit = fls(pio_mask) - 1;
3453 pio_mask &= ~(1 << highbit);
3454 break;
3455
3456 case ATA_DNXFER_DMA:
3457 if (udma_mask) {
3458 highbit = fls(udma_mask) - 1;
3459 udma_mask &= ~(1 << highbit);
3460 if (!udma_mask)
3461 return -ENOENT;
3462 } else if (mwdma_mask) {
3463 highbit = fls(mwdma_mask) - 1;
3464 mwdma_mask &= ~(1 << highbit);
3465 if (!mwdma_mask)
3466 return -ENOENT;
3467 }
3468 break;
3469
3470 case ATA_DNXFER_40C:
3471 udma_mask &= ATA_UDMA_MASK_40C;
3472 break;
3473
3474 case ATA_DNXFER_FORCE_PIO0:
3475 pio_mask &= 1;
3476 /* fall through */
3477 case ATA_DNXFER_FORCE_PIO:
3478 mwdma_mask = 0;
3479 udma_mask = 0;
3480 break;
3481
3482 default:
3483 BUG();
3484 }
3485
3486 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3487
3488 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3489 return -ENOENT;
3490
3491 if (!quiet) {
3492 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3493 snprintf(buf, sizeof(buf), "%s:%s",
3494 ata_mode_string(xfer_mask),
3495 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3496 else
3497 snprintf(buf, sizeof(buf), "%s",
3498 ata_mode_string(xfer_mask));
3499
3500 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3501 }
3502
3503 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3504 &dev->udma_mask);
3505
3506 return 0;
3507 }
3508
3509 static int ata_dev_set_mode(struct ata_device *dev)
3510 {
3511 struct ata_port *ap = dev->link->ap;
3512 struct ata_eh_context *ehc = &dev->link->eh_context;
3513 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3514 const char *dev_err_whine = "";
3515 int ign_dev_err = 0;
3516 unsigned int err_mask = 0;
3517 int rc;
3518
3519 dev->flags &= ~ATA_DFLAG_PIO;
3520 if (dev->xfer_shift == ATA_SHIFT_PIO)
3521 dev->flags |= ATA_DFLAG_PIO;
3522
3523 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3524 dev_err_whine = " (SET_XFERMODE skipped)";
3525 else {
3526 if (nosetxfer)
3527 ata_dev_warn(dev,
3528 "NOSETXFER but PATA detected - can't "
3529 "skip SETXFER, might malfunction\n");
3530 err_mask = ata_dev_set_xfermode(dev);
3531 }
3532
3533 if (err_mask & ~AC_ERR_DEV)
3534 goto fail;
3535
3536 /* revalidate */
3537 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3538 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3539 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3540 if (rc)
3541 return rc;
3542
3543 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3544 /* Old CFA may refuse this command, which is just fine */
3545 if (ata_id_is_cfa(dev->id))
3546 ign_dev_err = 1;
3547 /* Catch several broken garbage emulations plus some pre
3548 ATA devices */
3549 if (ata_id_major_version(dev->id) == 0 &&
3550 dev->pio_mode <= XFER_PIO_2)
3551 ign_dev_err = 1;
3552 /* Some very old devices and some bad newer ones fail
3553 any kind of SET_XFERMODE request but support PIO0-2
3554 timings and no IORDY */
3555 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3556 ign_dev_err = 1;
3557 }
3558 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3559 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3560 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3561 dev->dma_mode == XFER_MW_DMA_0 &&
3562 (dev->id[63] >> 8) & 1)
3563 ign_dev_err = 1;
3564
3565 /* if the device is actually configured correctly, ignore dev err */
3566 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3567 ign_dev_err = 1;
3568
3569 if (err_mask & AC_ERR_DEV) {
3570 if (!ign_dev_err)
3571 goto fail;
3572 else
3573 dev_err_whine = " (device error ignored)";
3574 }
3575
3576 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3577 dev->xfer_shift, (int)dev->xfer_mode);
3578
3579 ata_dev_info(dev, "configured for %s%s\n",
3580 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3581 dev_err_whine);
3582
3583 return 0;
3584
3585 fail:
3586 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3587 return -EIO;
3588 }
3589
3590 /**
3591 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3592 * @link: link on which timings will be programmed
3593 * @r_failed_dev: out parameter for failed device
3594 *
3595 * Standard implementation of the function used to tune and set
3596 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3597 * ata_dev_set_mode() fails, pointer to the failing device is
3598 * returned in @r_failed_dev.
3599 *
3600 * LOCKING:
3601 * PCI/etc. bus probe sem.
3602 *
3603 * RETURNS:
3604 * 0 on success, negative errno otherwise
3605 */
3606
3607 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3608 {
3609 struct ata_port *ap = link->ap;
3610 struct ata_device *dev;
3611 int rc = 0, used_dma = 0, found = 0;
3612
3613 /* step 1: calculate xfer_mask */
3614 ata_for_each_dev(dev, link, ENABLED) {
3615 unsigned long pio_mask, dma_mask;
3616 unsigned int mode_mask;
3617
3618 mode_mask = ATA_DMA_MASK_ATA;
3619 if (dev->class == ATA_DEV_ATAPI)
3620 mode_mask = ATA_DMA_MASK_ATAPI;
3621 else if (ata_id_is_cfa(dev->id))
3622 mode_mask = ATA_DMA_MASK_CFA;
3623
3624 ata_dev_xfermask(dev);
3625 ata_force_xfermask(dev);
3626
3627 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3628
3629 if (libata_dma_mask & mode_mask)
3630 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3631 dev->udma_mask);
3632 else
3633 dma_mask = 0;
3634
3635 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3636 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3637
3638 found = 1;
3639 if (ata_dma_enabled(dev))
3640 used_dma = 1;
3641 }
3642 if (!found)
3643 goto out;
3644
3645 /* step 2: always set host PIO timings */
3646 ata_for_each_dev(dev, link, ENABLED) {
3647 if (dev->pio_mode == 0xff) {
3648 ata_dev_warn(dev, "no PIO support\n");
3649 rc = -EINVAL;
3650 goto out;
3651 }
3652
3653 dev->xfer_mode = dev->pio_mode;
3654 dev->xfer_shift = ATA_SHIFT_PIO;
3655 if (ap->ops->set_piomode)
3656 ap->ops->set_piomode(ap, dev);
3657 }
3658
3659 /* step 3: set host DMA timings */
3660 ata_for_each_dev(dev, link, ENABLED) {
3661 if (!ata_dma_enabled(dev))
3662 continue;
3663
3664 dev->xfer_mode = dev->dma_mode;
3665 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3666 if (ap->ops->set_dmamode)
3667 ap->ops->set_dmamode(ap, dev);
3668 }
3669
3670 /* step 4: update devices' xfer mode */
3671 ata_for_each_dev(dev, link, ENABLED) {
3672 rc = ata_dev_set_mode(dev);
3673 if (rc)
3674 goto out;
3675 }
3676
3677 /* Record simplex status. If we selected DMA then the other
3678 * host channels are not permitted to do so.
3679 */
3680 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3681 ap->host->simplex_claimed = ap;
3682
3683 out:
3684 if (rc)
3685 *r_failed_dev = dev;
3686 return rc;
3687 }
3688
3689 /**
3690 * ata_wait_ready - wait for link to become ready
3691 * @link: link to be waited on
3692 * @deadline: deadline jiffies for the operation
3693 * @check_ready: callback to check link readiness
3694 *
3695 * Wait for @link to become ready. @check_ready should return
3696 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3697 * link doesn't seem to be occupied, other errno for other error
3698 * conditions.
3699 *
3700 * Transient -ENODEV conditions are allowed for
3701 * ATA_TMOUT_FF_WAIT.
3702 *
3703 * LOCKING:
3704 * EH context.
3705 *
3706 * RETURNS:
3707 * 0 if @link is ready before @deadline; otherwise, -errno.
3708 */
3709 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3710 int (*check_ready)(struct ata_link *link))
3711 {
3712 unsigned long start = jiffies;
3713 unsigned long nodev_deadline;
3714 int warned = 0;
3715
3716 /* choose which 0xff timeout to use, read comment in libata.h */
3717 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3718 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3719 else
3720 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3721
3722 /* Slave readiness can't be tested separately from master. On
3723 * M/S emulation configuration, this function should be called
3724 * only on the master and it will handle both master and slave.
3725 */
3726 WARN_ON(link == link->ap->slave_link);
3727
3728 if (time_after(nodev_deadline, deadline))
3729 nodev_deadline = deadline;
3730
3731 while (1) {
3732 unsigned long now = jiffies;
3733 int ready, tmp;
3734
3735 ready = tmp = check_ready(link);
3736 if (ready > 0)
3737 return 0;
3738
3739 /*
3740 * -ENODEV could be transient. Ignore -ENODEV if link
3741 * is online. Also, some SATA devices take a long
3742 * time to clear 0xff after reset. Wait for
3743 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3744 * offline.
3745 *
3746 * Note that some PATA controllers (pata_ali) explode
3747 * if status register is read more than once when
3748 * there's no device attached.
3749 */
3750 if (ready == -ENODEV) {
3751 if (ata_link_online(link))
3752 ready = 0;
3753 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3754 !ata_link_offline(link) &&
3755 time_before(now, nodev_deadline))
3756 ready = 0;
3757 }
3758
3759 if (ready)
3760 return ready;
3761 if (time_after(now, deadline))
3762 return -EBUSY;
3763
3764 if (!warned && time_after(now, start + 5 * HZ) &&
3765 (deadline - now > 3 * HZ)) {
3766 ata_link_warn(link,
3767 "link is slow to respond, please be patient "
3768 "(ready=%d)\n", tmp);
3769 warned = 1;
3770 }
3771
3772 ata_msleep(link->ap, 50);
3773 }
3774 }
3775
3776 /**
3777 * ata_wait_after_reset - wait for link to become ready after reset
3778 * @link: link to be waited on
3779 * @deadline: deadline jiffies for the operation
3780 * @check_ready: callback to check link readiness
3781 *
3782 * Wait for @link to become ready after reset.
3783 *
3784 * LOCKING:
3785 * EH context.
3786 *
3787 * RETURNS:
3788 * 0 if @link is ready before @deadline; otherwise, -errno.
3789 */
3790 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3791 int (*check_ready)(struct ata_link *link))
3792 {
3793 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3794
3795 return ata_wait_ready(link, deadline, check_ready);
3796 }
3797
3798 /**
3799 * sata_link_debounce - debounce SATA phy status
3800 * @link: ATA link to debounce SATA phy status for
3801 * @params: timing parameters { interval, duration, timeout } in msec
3802 * @deadline: deadline jiffies for the operation
3803 *
3804 * Make sure SStatus of @link reaches stable state, determined by
3805 * holding the same value where DET is not 1 for @duration polled
3806 * every @interval, before @timeout. Timeout constraints the
3807 * beginning of the stable state. Because DET gets stuck at 1 on
3808 * some controllers after hot unplugging, this functions waits
3809 * until timeout then returns 0 if DET is stable at 1.
3810 *
3811 * @timeout is further limited by @deadline. The sooner of the
3812 * two is used.
3813 *
3814 * LOCKING:
3815 * Kernel thread context (may sleep)
3816 *
3817 * RETURNS:
3818 * 0 on success, -errno on failure.
3819 */
3820 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3821 unsigned long deadline)
3822 {
3823 unsigned long interval = params[0];
3824 unsigned long duration = params[1];
3825 unsigned long last_jiffies, t;
3826 u32 last, cur;
3827 int rc;
3828
3829 t = ata_deadline(jiffies, params[2]);
3830 if (time_before(t, deadline))
3831 deadline = t;
3832
3833 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3834 return rc;
3835 cur &= 0xf;
3836
3837 last = cur;
3838 last_jiffies = jiffies;
3839
3840 while (1) {
3841 ata_msleep(link->ap, interval);
3842 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3843 return rc;
3844 cur &= 0xf;
3845
3846 /* DET stable? */
3847 if (cur == last) {
3848 if (cur == 1 && time_before(jiffies, deadline))
3849 continue;
3850 if (time_after(jiffies,
3851 ata_deadline(last_jiffies, duration)))
3852 return 0;
3853 continue;
3854 }
3855
3856 /* unstable, start over */
3857 last = cur;
3858 last_jiffies = jiffies;
3859
3860 /* Check deadline. If debouncing failed, return
3861 * -EPIPE to tell upper layer to lower link speed.
3862 */
3863 if (time_after(jiffies, deadline))
3864 return -EPIPE;
3865 }
3866 }
3867
3868 /**
3869 * sata_link_resume - resume SATA link
3870 * @link: ATA link to resume SATA
3871 * @params: timing parameters { interval, duration, timeout } in msec
3872 * @deadline: deadline jiffies for the operation
3873 *
3874 * Resume SATA phy @link and debounce it.
3875 *
3876 * LOCKING:
3877 * Kernel thread context (may sleep)
3878 *
3879 * RETURNS:
3880 * 0 on success, -errno on failure.
3881 */
3882 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3883 unsigned long deadline)
3884 {
3885 int tries = ATA_LINK_RESUME_TRIES;
3886 u32 scontrol, serror;
3887 int rc;
3888
3889 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3890 return rc;
3891
3892 /*
3893 * Writes to SControl sometimes get ignored under certain
3894 * controllers (ata_piix SIDPR). Make sure DET actually is
3895 * cleared.
3896 */
3897 do {
3898 scontrol = (scontrol & 0x0f0) | 0x300;
3899 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3900 return rc;
3901 /*
3902 * Some PHYs react badly if SStatus is pounded
3903 * immediately after resuming. Delay 200ms before
3904 * debouncing.
3905 */
3906 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3907 ata_msleep(link->ap, 200);
3908
3909 /* is SControl restored correctly? */
3910 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3911 return rc;
3912 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3913
3914 if ((scontrol & 0xf0f) != 0x300) {
3915 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3916 scontrol);
3917 return 0;
3918 }
3919
3920 if (tries < ATA_LINK_RESUME_TRIES)
3921 ata_link_warn(link, "link resume succeeded after %d retries\n",
3922 ATA_LINK_RESUME_TRIES - tries);
3923
3924 if ((rc = sata_link_debounce(link, params, deadline)))
3925 return rc;
3926
3927 /* clear SError, some PHYs require this even for SRST to work */
3928 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3929 rc = sata_scr_write(link, SCR_ERROR, serror);
3930
3931 return rc != -EINVAL ? rc : 0;
3932 }
3933
3934 /**
3935 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3936 * @link: ATA link to manipulate SControl for
3937 * @policy: LPM policy to configure
3938 * @spm_wakeup: initiate LPM transition to active state
3939 *
3940 * Manipulate the IPM field of the SControl register of @link
3941 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3942 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3943 * the link. This function also clears PHYRDY_CHG before
3944 * returning.
3945 *
3946 * LOCKING:
3947 * EH context.
3948 *
3949 * RETURNS:
3950 * 0 on success, -errno otherwise.
3951 */
3952 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3953 bool spm_wakeup)
3954 {
3955 struct ata_eh_context *ehc = &link->eh_context;
3956 bool woken_up = false;
3957 u32 scontrol;
3958 int rc;
3959
3960 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3961 if (rc)
3962 return rc;
3963
3964 switch (policy) {
3965 case ATA_LPM_MAX_POWER:
3966 /* disable all LPM transitions */
3967 scontrol |= (0x7 << 8);
3968 /* initiate transition to active state */
3969 if (spm_wakeup) {
3970 scontrol |= (0x4 << 12);
3971 woken_up = true;
3972 }
3973 break;
3974 case ATA_LPM_MED_POWER:
3975 /* allow LPM to PARTIAL */
3976 scontrol &= ~(0x1 << 8);
3977 scontrol |= (0x6 << 8);
3978 break;
3979 case ATA_LPM_MED_POWER_WITH_DIPM:
3980 case ATA_LPM_MIN_POWER_WITH_PARTIAL:
3981 case ATA_LPM_MIN_POWER:
3982 if (ata_link_nr_enabled(link) > 0)
3983 /* no restrictions on LPM transitions */
3984 scontrol &= ~(0x7 << 8);
3985 else {
3986 /* empty port, power off */
3987 scontrol &= ~0xf;
3988 scontrol |= (0x1 << 2);
3989 }
3990 break;
3991 default:
3992 WARN_ON(1);
3993 }
3994
3995 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3996 if (rc)
3997 return rc;
3998
3999 /* give the link time to transit out of LPM state */
4000 if (woken_up)
4001 msleep(10);
4002
4003 /* clear PHYRDY_CHG from SError */
4004 ehc->i.serror &= ~SERR_PHYRDY_CHG;
4005 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
4006 }
4007
4008 /**
4009 * ata_std_prereset - prepare for reset
4010 * @link: ATA link to be reset
4011 * @deadline: deadline jiffies for the operation
4012 *
4013 * @link is about to be reset. Initialize it. Failure from
4014 * prereset makes libata abort whole reset sequence and give up
4015 * that port, so prereset should be best-effort. It does its
4016 * best to prepare for reset sequence but if things go wrong, it
4017 * should just whine, not fail.
4018 *
4019 * LOCKING:
4020 * Kernel thread context (may sleep)
4021 *
4022 * RETURNS:
4023 * 0 on success, -errno otherwise.
4024 */
4025 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4026 {
4027 struct ata_port *ap = link->ap;
4028 struct ata_eh_context *ehc = &link->eh_context;
4029 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4030 int rc;
4031
4032 /* if we're about to do hardreset, nothing more to do */
4033 if (ehc->i.action & ATA_EH_HARDRESET)
4034 return 0;
4035
4036 /* if SATA, resume link */
4037 if (ap->flags & ATA_FLAG_SATA) {
4038 rc = sata_link_resume(link, timing, deadline);
4039 /* whine about phy resume failure but proceed */
4040 if (rc && rc != -EOPNOTSUPP)
4041 ata_link_warn(link,
4042 "failed to resume link for reset (errno=%d)\n",
4043 rc);
4044 }
4045
4046 /* no point in trying softreset on offline link */
4047 if (ata_phys_link_offline(link))
4048 ehc->i.action &= ~ATA_EH_SOFTRESET;
4049
4050 return 0;
4051 }
4052
4053 /**
4054 * sata_link_hardreset - reset link via SATA phy reset
4055 * @link: link to reset
4056 * @timing: timing parameters { interval, duration, timeout } in msec
4057 * @deadline: deadline jiffies for the operation
4058 * @online: optional out parameter indicating link onlineness
4059 * @check_ready: optional callback to check link readiness
4060 *
4061 * SATA phy-reset @link using DET bits of SControl register.
4062 * After hardreset, link readiness is waited upon using
4063 * ata_wait_ready() if @check_ready is specified. LLDs are
4064 * allowed to not specify @check_ready and wait itself after this
4065 * function returns. Device classification is LLD's
4066 * responsibility.
4067 *
4068 * *@online is set to one iff reset succeeded and @link is online
4069 * after reset.
4070 *
4071 * LOCKING:
4072 * Kernel thread context (may sleep)
4073 *
4074 * RETURNS:
4075 * 0 on success, -errno otherwise.
4076 */
4077 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4078 unsigned long deadline,
4079 bool *online, int (*check_ready)(struct ata_link *))
4080 {
4081 u32 scontrol;
4082 int rc;
4083
4084 DPRINTK("ENTER\n");
4085
4086 if (online)
4087 *online = false;
4088
4089 if (sata_set_spd_needed(link)) {
4090 /* SATA spec says nothing about how to reconfigure
4091 * spd. To be on the safe side, turn off phy during
4092 * reconfiguration. This works for at least ICH7 AHCI
4093 * and Sil3124.
4094 */
4095 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4096 goto out;
4097
4098 scontrol = (scontrol & 0x0f0) | 0x304;
4099
4100 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4101 goto out;
4102
4103 sata_set_spd(link);
4104 }
4105
4106 /* issue phy wake/reset */
4107 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4108 goto out;
4109
4110 scontrol = (scontrol & 0x0f0) | 0x301;
4111
4112 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4113 goto out;
4114
4115 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4116 * 10.4.2 says at least 1 ms.
4117 */
4118 ata_msleep(link->ap, 1);
4119
4120 /* bring link back */
4121 rc = sata_link_resume(link, timing, deadline);
4122 if (rc)
4123 goto out;
4124 /* if link is offline nothing more to do */
4125 if (ata_phys_link_offline(link))
4126 goto out;
4127
4128 /* Link is online. From this point, -ENODEV too is an error. */
4129 if (online)
4130 *online = true;
4131
4132 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4133 /* If PMP is supported, we have to do follow-up SRST.
4134 * Some PMPs don't send D2H Reg FIS after hardreset if
4135 * the first port is empty. Wait only for
4136 * ATA_TMOUT_PMP_SRST_WAIT.
4137 */
4138 if (check_ready) {
4139 unsigned long pmp_deadline;
4140
4141 pmp_deadline = ata_deadline(jiffies,
4142 ATA_TMOUT_PMP_SRST_WAIT);
4143 if (time_after(pmp_deadline, deadline))
4144 pmp_deadline = deadline;
4145 ata_wait_ready(link, pmp_deadline, check_ready);
4146 }
4147 rc = -EAGAIN;
4148 goto out;
4149 }
4150
4151 rc = 0;
4152 if (check_ready)
4153 rc = ata_wait_ready(link, deadline, check_ready);
4154 out:
4155 if (rc && rc != -EAGAIN) {
4156 /* online is set iff link is online && reset succeeded */
4157 if (online)
4158 *online = false;
4159 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4160 }
4161 DPRINTK("EXIT, rc=%d\n", rc);
4162 return rc;
4163 }
4164
4165 /**
4166 * sata_std_hardreset - COMRESET w/o waiting or classification
4167 * @link: link to reset
4168 * @class: resulting class of attached device
4169 * @deadline: deadline jiffies for the operation
4170 *
4171 * Standard SATA COMRESET w/o waiting or classification.
4172 *
4173 * LOCKING:
4174 * Kernel thread context (may sleep)
4175 *
4176 * RETURNS:
4177 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4178 */
4179 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4180 unsigned long deadline)
4181 {
4182 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4183 bool online;
4184 int rc;
4185
4186 /* do hardreset */
4187 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4188 return online ? -EAGAIN : rc;
4189 }
4190
4191 /**
4192 * ata_std_postreset - standard postreset callback
4193 * @link: the target ata_link
4194 * @classes: classes of attached devices
4195 *
4196 * This function is invoked after a successful reset. Note that
4197 * the device might have been reset more than once using
4198 * different reset methods before postreset is invoked.
4199 *
4200 * LOCKING:
4201 * Kernel thread context (may sleep)
4202 */
4203 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4204 {
4205 u32 serror;
4206
4207 DPRINTK("ENTER\n");
4208
4209 /* reset complete, clear SError */
4210 if (!sata_scr_read(link, SCR_ERROR, &serror))
4211 sata_scr_write(link, SCR_ERROR, serror);
4212
4213 /* print link status */
4214 sata_print_link_status(link);
4215
4216 DPRINTK("EXIT\n");
4217 }
4218
4219 /**
4220 * ata_dev_same_device - Determine whether new ID matches configured device
4221 * @dev: device to compare against
4222 * @new_class: class of the new device
4223 * @new_id: IDENTIFY page of the new device
4224 *
4225 * Compare @new_class and @new_id against @dev and determine
4226 * whether @dev is the device indicated by @new_class and
4227 * @new_id.
4228 *
4229 * LOCKING:
4230 * None.
4231 *
4232 * RETURNS:
4233 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4234 */
4235 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4236 const u16 *new_id)
4237 {
4238 const u16 *old_id = dev->id;
4239 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4240 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4241
4242 if (dev->class != new_class) {
4243 ata_dev_info(dev, "class mismatch %d != %d\n",
4244 dev->class, new_class);
4245 return 0;
4246 }
4247
4248 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4249 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4250 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4251 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4252
4253 if (strcmp(model[0], model[1])) {
4254 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4255 model[0], model[1]);
4256 return 0;
4257 }
4258
4259 if (strcmp(serial[0], serial[1])) {
4260 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4261 serial[0], serial[1]);
4262 return 0;
4263 }
4264
4265 return 1;
4266 }
4267
4268 /**
4269 * ata_dev_reread_id - Re-read IDENTIFY data
4270 * @dev: target ATA device
4271 * @readid_flags: read ID flags
4272 *
4273 * Re-read IDENTIFY page and make sure @dev is still attached to
4274 * the port.
4275 *
4276 * LOCKING:
4277 * Kernel thread context (may sleep)
4278 *
4279 * RETURNS:
4280 * 0 on success, negative errno otherwise
4281 */
4282 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4283 {
4284 unsigned int class = dev->class;
4285 u16 *id = (void *)dev->link->ap->sector_buf;
4286 int rc;
4287
4288 /* read ID data */
4289 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4290 if (rc)
4291 return rc;
4292
4293 /* is the device still there? */
4294 if (!ata_dev_same_device(dev, class, id))
4295 return -ENODEV;
4296
4297 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4298 return 0;
4299 }
4300
4301 /**
4302 * ata_dev_revalidate - Revalidate ATA device
4303 * @dev: device to revalidate
4304 * @new_class: new class code
4305 * @readid_flags: read ID flags
4306 *
4307 * Re-read IDENTIFY page, make sure @dev is still attached to the
4308 * port and reconfigure it according to the new IDENTIFY page.
4309 *
4310 * LOCKING:
4311 * Kernel thread context (may sleep)
4312 *
4313 * RETURNS:
4314 * 0 on success, negative errno otherwise
4315 */
4316 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4317 unsigned int readid_flags)
4318 {
4319 u64 n_sectors = dev->n_sectors;
4320 u64 n_native_sectors = dev->n_native_sectors;
4321 int rc;
4322
4323 if (!ata_dev_enabled(dev))
4324 return -ENODEV;
4325
4326 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4327 if (ata_class_enabled(new_class) &&
4328 new_class != ATA_DEV_ATA &&
4329 new_class != ATA_DEV_ATAPI &&
4330 new_class != ATA_DEV_ZAC &&
4331 new_class != ATA_DEV_SEMB) {
4332 ata_dev_info(dev, "class mismatch %u != %u\n",
4333 dev->class, new_class);
4334 rc = -ENODEV;
4335 goto fail;
4336 }
4337
4338 /* re-read ID */
4339 rc = ata_dev_reread_id(dev, readid_flags);
4340 if (rc)
4341 goto fail;
4342
4343 /* configure device according to the new ID */
4344 rc = ata_dev_configure(dev);
4345 if (rc)
4346 goto fail;
4347
4348 /* verify n_sectors hasn't changed */
4349 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4350 dev->n_sectors == n_sectors)
4351 return 0;
4352
4353 /* n_sectors has changed */
4354 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4355 (unsigned long long)n_sectors,
4356 (unsigned long long)dev->n_sectors);
4357
4358 /*
4359 * Something could have caused HPA to be unlocked
4360 * involuntarily. If n_native_sectors hasn't changed and the
4361 * new size matches it, keep the device.
4362 */
4363 if (dev->n_native_sectors == n_native_sectors &&
4364 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4365 ata_dev_warn(dev,
4366 "new n_sectors matches native, probably "
4367 "late HPA unlock, n_sectors updated\n");
4368 /* use the larger n_sectors */
4369 return 0;
4370 }
4371
4372 /*
4373 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4374 * unlocking HPA in those cases.
4375 *
4376 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4377 */
4378 if (dev->n_native_sectors == n_native_sectors &&
4379 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4380 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4381 ata_dev_warn(dev,
4382 "old n_sectors matches native, probably "
4383 "late HPA lock, will try to unlock HPA\n");
4384 /* try unlocking HPA */
4385 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4386 rc = -EIO;
4387 } else
4388 rc = -ENODEV;
4389
4390 /* restore original n_[native_]sectors and fail */
4391 dev->n_native_sectors = n_native_sectors;
4392 dev->n_sectors = n_sectors;
4393 fail:
4394 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4395 return rc;
4396 }
4397
4398 struct ata_blacklist_entry {
4399 const char *model_num;
4400 const char *model_rev;
4401 unsigned long horkage;
4402 };
4403
4404 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4405 /* Devices with DMA related problems under Linux */
4406 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4407 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4408 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4409 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4410 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4411 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4412 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4413 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4414 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4415 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4416 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4417 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4418 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4419 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4420 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4421 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4422 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4423 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4424 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4425 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4426 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4427 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4428 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4429 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4430 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4431 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4432 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4433 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4434 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4435 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4436 /* Odd clown on sil3726/4726 PMPs */
4437 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4438
4439 /* Weird ATAPI devices */
4440 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4441 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4442 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4443 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4444
4445 /*
4446 * Causes silent data corruption with higher max sects.
4447 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4448 */
4449 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4450
4451 /*
4452 * These devices time out with higher max sects.
4453 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4454 */
4455 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4456 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4457
4458 /* Devices we expect to fail diagnostics */
4459
4460 /* Devices where NCQ should be avoided */
4461 /* NCQ is slow */
4462 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4463 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4464 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4465 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4466 /* NCQ is broken */
4467 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4468 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4469 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4470 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4471 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4472
4473 /* Seagate NCQ + FLUSH CACHE firmware bug */
4474 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4475 ATA_HORKAGE_FIRMWARE_WARN },
4476
4477 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4478 ATA_HORKAGE_FIRMWARE_WARN },
4479
4480 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4481 ATA_HORKAGE_FIRMWARE_WARN },
4482
4483 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4484 ATA_HORKAGE_FIRMWARE_WARN },
4485
4486 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4487 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4488 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4489 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4490
4491 /* Blacklist entries taken from Silicon Image 3124/3132
4492 Windows driver .inf file - also several Linux problem reports */
4493 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4494 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4495 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4496
4497 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4498 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4499
4500 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4501 SD7SN6S256G and SD8SN8U256G */
4502 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4503
4504 /* devices which puke on READ_NATIVE_MAX */
4505 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4506 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4507 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4508 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4509
4510 /* this one allows HPA unlocking but fails IOs on the area */
4511 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4512
4513 /* Devices which report 1 sector over size HPA */
4514 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4515 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4516 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4517
4518 /* Devices which get the IVB wrong */
4519 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4520 /* Maybe we should just blacklist TSSTcorp... */
4521 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4522
4523 /* Devices that do not need bridging limits applied */
4524 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4525 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4526
4527 /* Devices which aren't very happy with higher link speeds */
4528 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4529 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4530
4531 /*
4532 * Devices which choke on SETXFER. Applies only if both the
4533 * device and controller are SATA.
4534 */
4535 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4536 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4537 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4538 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4539 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4540
4541 /* Crucial BX100 SSD 500GB has broken LPM support */
4542 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4543
4544 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4545 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4546 ATA_HORKAGE_ZERO_AFTER_TRIM |
4547 ATA_HORKAGE_NOLPM, },
4548 /* 512GB MX100 with newer firmware has only LPM issues */
4549 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4550 ATA_HORKAGE_NOLPM, },
4551
4552 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4553 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4554 ATA_HORKAGE_ZERO_AFTER_TRIM |
4555 ATA_HORKAGE_NOLPM, },
4556 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4557 ATA_HORKAGE_ZERO_AFTER_TRIM |
4558 ATA_HORKAGE_NOLPM, },
4559
4560 /* devices that don't properly handle queued TRIM commands */
4561 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4562 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4564 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4565 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4566 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4567 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4568 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4569 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4570 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4571 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4572 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4573 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4574 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4575 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4576 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4577 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4578 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4579
4580 /* devices that don't properly handle TRIM commands */
4581 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4582
4583 /*
4584 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4585 * (Return Zero After Trim) flags in the ATA Command Set are
4586 * unreliable in the sense that they only define what happens if
4587 * the device successfully executed the DSM TRIM command. TRIM
4588 * is only advisory, however, and the device is free to silently
4589 * ignore all or parts of the request.
4590 *
4591 * Whitelist drives that are known to reliably return zeroes
4592 * after TRIM.
4593 */
4594
4595 /*
4596 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4597 * that model before whitelisting all other intel SSDs.
4598 */
4599 { "INTEL*SSDSC2MH*", NULL, 0, },
4600
4601 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4602 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4603 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4604 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4605 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4606 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4607 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4608
4609 /*
4610 * Some WD SATA-I drives spin up and down erratically when the link
4611 * is put into the slumber mode. We don't have full list of the
4612 * affected devices. Disable LPM if the device matches one of the
4613 * known prefixes and is SATA-1. As a side effect LPM partial is
4614 * lost too.
4615 *
4616 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4617 */
4618 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4619 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4620 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4621 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4622 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4623 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4624 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4625
4626 /* End Marker */
4627 { }
4628 };
4629
4630 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4631 {
4632 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4633 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4634 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4635
4636 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4637 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4638
4639 while (ad->model_num) {
4640 if (glob_match(ad->model_num, model_num)) {
4641 if (ad->model_rev == NULL)
4642 return ad->horkage;
4643 if (glob_match(ad->model_rev, model_rev))
4644 return ad->horkage;
4645 }
4646 ad++;
4647 }
4648 return 0;
4649 }
4650
4651 static int ata_dma_blacklisted(const struct ata_device *dev)
4652 {
4653 /* We don't support polling DMA.
4654 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4655 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4656 */
4657 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4658 (dev->flags & ATA_DFLAG_CDB_INTR))
4659 return 1;
4660 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4661 }
4662
4663 /**
4664 * ata_is_40wire - check drive side detection
4665 * @dev: device
4666 *
4667 * Perform drive side detection decoding, allowing for device vendors
4668 * who can't follow the documentation.
4669 */
4670
4671 static int ata_is_40wire(struct ata_device *dev)
4672 {
4673 if (dev->horkage & ATA_HORKAGE_IVB)
4674 return ata_drive_40wire_relaxed(dev->id);
4675 return ata_drive_40wire(dev->id);
4676 }
4677
4678 /**
4679 * cable_is_40wire - 40/80/SATA decider
4680 * @ap: port to consider
4681 *
4682 * This function encapsulates the policy for speed management
4683 * in one place. At the moment we don't cache the result but
4684 * there is a good case for setting ap->cbl to the result when
4685 * we are called with unknown cables (and figuring out if it
4686 * impacts hotplug at all).
4687 *
4688 * Return 1 if the cable appears to be 40 wire.
4689 */
4690
4691 static int cable_is_40wire(struct ata_port *ap)
4692 {
4693 struct ata_link *link;
4694 struct ata_device *dev;
4695
4696 /* If the controller thinks we are 40 wire, we are. */
4697 if (ap->cbl == ATA_CBL_PATA40)
4698 return 1;
4699
4700 /* If the controller thinks we are 80 wire, we are. */
4701 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4702 return 0;
4703
4704 /* If the system is known to be 40 wire short cable (eg
4705 * laptop), then we allow 80 wire modes even if the drive
4706 * isn't sure.
4707 */
4708 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4709 return 0;
4710
4711 /* If the controller doesn't know, we scan.
4712 *
4713 * Note: We look for all 40 wire detects at this point. Any
4714 * 80 wire detect is taken to be 80 wire cable because
4715 * - in many setups only the one drive (slave if present) will
4716 * give a valid detect
4717 * - if you have a non detect capable drive you don't want it
4718 * to colour the choice
4719 */
4720 ata_for_each_link(link, ap, EDGE) {
4721 ata_for_each_dev(dev, link, ENABLED) {
4722 if (!ata_is_40wire(dev))
4723 return 0;
4724 }
4725 }
4726 return 1;
4727 }
4728
4729 /**
4730 * ata_dev_xfermask - Compute supported xfermask of the given device
4731 * @dev: Device to compute xfermask for
4732 *
4733 * Compute supported xfermask of @dev and store it in
4734 * dev->*_mask. This function is responsible for applying all
4735 * known limits including host controller limits, device
4736 * blacklist, etc...
4737 *
4738 * LOCKING:
4739 * None.
4740 */
4741 static void ata_dev_xfermask(struct ata_device *dev)
4742 {
4743 struct ata_link *link = dev->link;
4744 struct ata_port *ap = link->ap;
4745 struct ata_host *host = ap->host;
4746 unsigned long xfer_mask;
4747
4748 /* controller modes available */
4749 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4750 ap->mwdma_mask, ap->udma_mask);
4751
4752 /* drive modes available */
4753 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4754 dev->mwdma_mask, dev->udma_mask);
4755 xfer_mask &= ata_id_xfermask(dev->id);
4756
4757 /*
4758 * CFA Advanced TrueIDE timings are not allowed on a shared
4759 * cable
4760 */
4761 if (ata_dev_pair(dev)) {
4762 /* No PIO5 or PIO6 */
4763 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4764 /* No MWDMA3 or MWDMA 4 */
4765 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4766 }
4767
4768 if (ata_dma_blacklisted(dev)) {
4769 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4770 ata_dev_warn(dev,
4771 "device is on DMA blacklist, disabling DMA\n");
4772 }
4773
4774 if ((host->flags & ATA_HOST_SIMPLEX) &&
4775 host->simplex_claimed && host->simplex_claimed != ap) {
4776 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4777 ata_dev_warn(dev,
4778 "simplex DMA is claimed by other device, disabling DMA\n");
4779 }
4780
4781 if (ap->flags & ATA_FLAG_NO_IORDY)
4782 xfer_mask &= ata_pio_mask_no_iordy(dev);
4783
4784 if (ap->ops->mode_filter)
4785 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4786
4787 /* Apply cable rule here. Don't apply it early because when
4788 * we handle hot plug the cable type can itself change.
4789 * Check this last so that we know if the transfer rate was
4790 * solely limited by the cable.
4791 * Unknown or 80 wire cables reported host side are checked
4792 * drive side as well. Cases where we know a 40wire cable
4793 * is used safely for 80 are not checked here.
4794 */
4795 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4796 /* UDMA/44 or higher would be available */
4797 if (cable_is_40wire(ap)) {
4798 ata_dev_warn(dev,
4799 "limited to UDMA/33 due to 40-wire cable\n");
4800 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4801 }
4802
4803 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4804 &dev->mwdma_mask, &dev->udma_mask);
4805 }
4806
4807 /**
4808 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4809 * @dev: Device to which command will be sent
4810 *
4811 * Issue SET FEATURES - XFER MODE command to device @dev
4812 * on port @ap.
4813 *
4814 * LOCKING:
4815 * PCI/etc. bus probe sem.
4816 *
4817 * RETURNS:
4818 * 0 on success, AC_ERR_* mask otherwise.
4819 */
4820
4821 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4822 {
4823 struct ata_taskfile tf;
4824 unsigned int err_mask;
4825
4826 /* set up set-features taskfile */
4827 DPRINTK("set features - xfer mode\n");
4828
4829 /* Some controllers and ATAPI devices show flaky interrupt
4830 * behavior after setting xfer mode. Use polling instead.
4831 */
4832 ata_tf_init(dev, &tf);
4833 tf.command = ATA_CMD_SET_FEATURES;
4834 tf.feature = SETFEATURES_XFER;
4835 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4836 tf.protocol = ATA_PROT_NODATA;
4837 /* If we are using IORDY we must send the mode setting command */
4838 if (ata_pio_need_iordy(dev))
4839 tf.nsect = dev->xfer_mode;
4840 /* If the device has IORDY and the controller does not - turn it off */
4841 else if (ata_id_has_iordy(dev->id))
4842 tf.nsect = 0x01;
4843 else /* In the ancient relic department - skip all of this */
4844 return 0;
4845
4846 /* On some disks, this command causes spin-up, so we need longer timeout */
4847 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4848
4849 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4850 return err_mask;
4851 }
4852
4853 /**
4854 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4855 * @dev: Device to which command will be sent
4856 * @enable: Whether to enable or disable the feature
4857 * @feature: The sector count represents the feature to set
4858 *
4859 * Issue SET FEATURES - SATA FEATURES command to device @dev
4860 * on port @ap with sector count
4861 *
4862 * LOCKING:
4863 * PCI/etc. bus probe sem.
4864 *
4865 * RETURNS:
4866 * 0 on success, AC_ERR_* mask otherwise.
4867 */
4868 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4869 {
4870 struct ata_taskfile tf;
4871 unsigned int err_mask;
4872 unsigned long timeout = 0;
4873
4874 /* set up set-features taskfile */
4875 DPRINTK("set features - SATA features\n");
4876
4877 ata_tf_init(dev, &tf);
4878 tf.command = ATA_CMD_SET_FEATURES;
4879 tf.feature = enable;
4880 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4881 tf.protocol = ATA_PROT_NODATA;
4882 tf.nsect = feature;
4883
4884 if (enable == SETFEATURES_SPINUP)
4885 timeout = ata_probe_timeout ?
4886 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4887 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4888
4889 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4890 return err_mask;
4891 }
4892 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4893
4894 /**
4895 * ata_dev_init_params - Issue INIT DEV PARAMS command
4896 * @dev: Device to which command will be sent
4897 * @heads: Number of heads (taskfile parameter)
4898 * @sectors: Number of sectors (taskfile parameter)
4899 *
4900 * LOCKING:
4901 * Kernel thread context (may sleep)
4902 *
4903 * RETURNS:
4904 * 0 on success, AC_ERR_* mask otherwise.
4905 */
4906 static unsigned int ata_dev_init_params(struct ata_device *dev,
4907 u16 heads, u16 sectors)
4908 {
4909 struct ata_taskfile tf;
4910 unsigned int err_mask;
4911
4912 /* Number of sectors per track 1-255. Number of heads 1-16 */
4913 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4914 return AC_ERR_INVALID;
4915
4916 /* set up init dev params taskfile */
4917 DPRINTK("init dev params \n");
4918
4919 ata_tf_init(dev, &tf);
4920 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4921 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4922 tf.protocol = ATA_PROT_NODATA;
4923 tf.nsect = sectors;
4924 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4925
4926 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4927 /* A clean abort indicates an original or just out of spec drive
4928 and we should continue as we issue the setup based on the
4929 drive reported working geometry */
4930 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4931 err_mask = 0;
4932
4933 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4934 return err_mask;
4935 }
4936
4937 /**
4938 * atapi_check_dma - Check whether ATAPI DMA can be supported
4939 * @qc: Metadata associated with taskfile to check
4940 *
4941 * Allow low-level driver to filter ATA PACKET commands, returning
4942 * a status indicating whether or not it is OK to use DMA for the
4943 * supplied PACKET command.
4944 *
4945 * LOCKING:
4946 * spin_lock_irqsave(host lock)
4947 *
4948 * RETURNS: 0 when ATAPI DMA can be used
4949 * nonzero otherwise
4950 */
4951 int atapi_check_dma(struct ata_queued_cmd *qc)
4952 {
4953 struct ata_port *ap = qc->ap;
4954
4955 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4956 * few ATAPI devices choke on such DMA requests.
4957 */
4958 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4959 unlikely(qc->nbytes & 15))
4960 return 1;
4961
4962 if (ap->ops->check_atapi_dma)
4963 return ap->ops->check_atapi_dma(qc);
4964
4965 return 0;
4966 }
4967
4968 /**
4969 * ata_std_qc_defer - Check whether a qc needs to be deferred
4970 * @qc: ATA command in question
4971 *
4972 * Non-NCQ commands cannot run with any other command, NCQ or
4973 * not. As upper layer only knows the queue depth, we are
4974 * responsible for maintaining exclusion. This function checks
4975 * whether a new command @qc can be issued.
4976 *
4977 * LOCKING:
4978 * spin_lock_irqsave(host lock)
4979 *
4980 * RETURNS:
4981 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4982 */
4983 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4984 {
4985 struct ata_link *link = qc->dev->link;
4986
4987 if (ata_is_ncq(qc->tf.protocol)) {
4988 if (!ata_tag_valid(link->active_tag))
4989 return 0;
4990 } else {
4991 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4992 return 0;
4993 }
4994
4995 return ATA_DEFER_LINK;
4996 }
4997
4998 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4999
5000 /**
5001 * ata_sg_init - Associate command with scatter-gather table.
5002 * @qc: Command to be associated
5003 * @sg: Scatter-gather table.
5004 * @n_elem: Number of elements in s/g table.
5005 *
5006 * Initialize the data-related elements of queued_cmd @qc
5007 * to point to a scatter-gather table @sg, containing @n_elem
5008 * elements.
5009 *
5010 * LOCKING:
5011 * spin_lock_irqsave(host lock)
5012 */
5013 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5014 unsigned int n_elem)
5015 {
5016 qc->sg = sg;
5017 qc->n_elem = n_elem;
5018 qc->cursg = qc->sg;
5019 }
5020
5021 #ifdef CONFIG_HAS_DMA
5022
5023 /**
5024 * ata_sg_clean - Unmap DMA memory associated with command
5025 * @qc: Command containing DMA memory to be released
5026 *
5027 * Unmap all mapped DMA memory associated with this command.
5028 *
5029 * LOCKING:
5030 * spin_lock_irqsave(host lock)
5031 */
5032 static void ata_sg_clean(struct ata_queued_cmd *qc)
5033 {
5034 struct ata_port *ap = qc->ap;
5035 struct scatterlist *sg = qc->sg;
5036 int dir = qc->dma_dir;
5037
5038 WARN_ON_ONCE(sg == NULL);
5039
5040 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5041
5042 if (qc->n_elem)
5043 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5044
5045 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5046 qc->sg = NULL;
5047 }
5048
5049 /**
5050 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5051 * @qc: Command with scatter-gather table to be mapped.
5052 *
5053 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5054 *
5055 * LOCKING:
5056 * spin_lock_irqsave(host lock)
5057 *
5058 * RETURNS:
5059 * Zero on success, negative on error.
5060 *
5061 */
5062 static int ata_sg_setup(struct ata_queued_cmd *qc)
5063 {
5064 struct ata_port *ap = qc->ap;
5065 unsigned int n_elem;
5066
5067 VPRINTK("ENTER, ata%u\n", ap->print_id);
5068
5069 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5070 if (n_elem < 1)
5071 return -1;
5072
5073 DPRINTK("%d sg elements mapped\n", n_elem);
5074 qc->orig_n_elem = qc->n_elem;
5075 qc->n_elem = n_elem;
5076 qc->flags |= ATA_QCFLAG_DMAMAP;
5077
5078 return 0;
5079 }
5080
5081 #else /* !CONFIG_HAS_DMA */
5082
5083 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5084 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5085
5086 #endif /* !CONFIG_HAS_DMA */
5087
5088 /**
5089 * swap_buf_le16 - swap halves of 16-bit words in place
5090 * @buf: Buffer to swap
5091 * @buf_words: Number of 16-bit words in buffer.
5092 *
5093 * Swap halves of 16-bit words if needed to convert from
5094 * little-endian byte order to native cpu byte order, or
5095 * vice-versa.
5096 *
5097 * LOCKING:
5098 * Inherited from caller.
5099 */
5100 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5101 {
5102 #ifdef __BIG_ENDIAN
5103 unsigned int i;
5104
5105 for (i = 0; i < buf_words; i++)
5106 buf[i] = le16_to_cpu(buf[i]);
5107 #endif /* __BIG_ENDIAN */
5108 }
5109
5110 /**
5111 * ata_qc_new_init - Request an available ATA command, and initialize it
5112 * @dev: Device from whom we request an available command structure
5113 * @tag: tag
5114 *
5115 * LOCKING:
5116 * None.
5117 */
5118
5119 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5120 {
5121 struct ata_port *ap = dev->link->ap;
5122 struct ata_queued_cmd *qc;
5123
5124 /* no command while frozen */
5125 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5126 return NULL;
5127
5128 /* libsas case */
5129 if (ap->flags & ATA_FLAG_SAS_HOST) {
5130 tag = ata_sas_allocate_tag(ap);
5131 if (tag < 0)
5132 return NULL;
5133 }
5134
5135 qc = __ata_qc_from_tag(ap, tag);
5136 qc->tag = tag;
5137 qc->scsicmd = NULL;
5138 qc->ap = ap;
5139 qc->dev = dev;
5140
5141 ata_qc_reinit(qc);
5142
5143 return qc;
5144 }
5145
5146 /**
5147 * ata_qc_free - free unused ata_queued_cmd
5148 * @qc: Command to complete
5149 *
5150 * Designed to free unused ata_queued_cmd object
5151 * in case something prevents using it.
5152 *
5153 * LOCKING:
5154 * spin_lock_irqsave(host lock)
5155 */
5156 void ata_qc_free(struct ata_queued_cmd *qc)
5157 {
5158 struct ata_port *ap;
5159 unsigned int tag;
5160
5161 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5162 ap = qc->ap;
5163
5164 qc->flags = 0;
5165 tag = qc->tag;
5166 if (likely(ata_tag_valid(tag))) {
5167 qc->tag = ATA_TAG_POISON;
5168 if (ap->flags & ATA_FLAG_SAS_HOST)
5169 ata_sas_free_tag(tag, ap);
5170 }
5171 }
5172
5173 void __ata_qc_complete(struct ata_queued_cmd *qc)
5174 {
5175 struct ata_port *ap;
5176 struct ata_link *link;
5177
5178 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5179 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5180 ap = qc->ap;
5181 link = qc->dev->link;
5182
5183 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5184 ata_sg_clean(qc);
5185
5186 /* command should be marked inactive atomically with qc completion */
5187 if (ata_is_ncq(qc->tf.protocol)) {
5188 link->sactive &= ~(1 << qc->tag);
5189 if (!link->sactive)
5190 ap->nr_active_links--;
5191 } else {
5192 link->active_tag = ATA_TAG_POISON;
5193 ap->nr_active_links--;
5194 }
5195
5196 /* clear exclusive status */
5197 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5198 ap->excl_link == link))
5199 ap->excl_link = NULL;
5200
5201 /* atapi: mark qc as inactive to prevent the interrupt handler
5202 * from completing the command twice later, before the error handler
5203 * is called. (when rc != 0 and atapi request sense is needed)
5204 */
5205 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5206 ap->qc_active &= ~(1 << qc->tag);
5207
5208 /* call completion callback */
5209 qc->complete_fn(qc);
5210 }
5211
5212 static void fill_result_tf(struct ata_queued_cmd *qc)
5213 {
5214 struct ata_port *ap = qc->ap;
5215
5216 qc->result_tf.flags = qc->tf.flags;
5217 ap->ops->qc_fill_rtf(qc);
5218 }
5219
5220 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5221 {
5222 struct ata_device *dev = qc->dev;
5223
5224 if (!ata_is_data(qc->tf.protocol))
5225 return;
5226
5227 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5228 return;
5229
5230 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5231 }
5232
5233 /**
5234 * ata_qc_complete - Complete an active ATA command
5235 * @qc: Command to complete
5236 *
5237 * Indicate to the mid and upper layers that an ATA command has
5238 * completed, with either an ok or not-ok status.
5239 *
5240 * Refrain from calling this function multiple times when
5241 * successfully completing multiple NCQ commands.
5242 * ata_qc_complete_multiple() should be used instead, which will
5243 * properly update IRQ expect state.
5244 *
5245 * LOCKING:
5246 * spin_lock_irqsave(host lock)
5247 */
5248 void ata_qc_complete(struct ata_queued_cmd *qc)
5249 {
5250 struct ata_port *ap = qc->ap;
5251
5252 /* Trigger the LED (if available) */
5253 ledtrig_disk_activity();
5254
5255 /* XXX: New EH and old EH use different mechanisms to
5256 * synchronize EH with regular execution path.
5257 *
5258 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5259 * Normal execution path is responsible for not accessing a
5260 * failed qc. libata core enforces the rule by returning NULL
5261 * from ata_qc_from_tag() for failed qcs.
5262 *
5263 * Old EH depends on ata_qc_complete() nullifying completion
5264 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5265 * not synchronize with interrupt handler. Only PIO task is
5266 * taken care of.
5267 */
5268 if (ap->ops->error_handler) {
5269 struct ata_device *dev = qc->dev;
5270 struct ata_eh_info *ehi = &dev->link->eh_info;
5271
5272 if (unlikely(qc->err_mask))
5273 qc->flags |= ATA_QCFLAG_FAILED;
5274
5275 /*
5276 * Finish internal commands without any further processing
5277 * and always with the result TF filled.
5278 */
5279 if (unlikely(ata_tag_internal(qc->tag))) {
5280 fill_result_tf(qc);
5281 trace_ata_qc_complete_internal(qc);
5282 __ata_qc_complete(qc);
5283 return;
5284 }
5285
5286 /*
5287 * Non-internal qc has failed. Fill the result TF and
5288 * summon EH.
5289 */
5290 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5291 fill_result_tf(qc);
5292 trace_ata_qc_complete_failed(qc);
5293 ata_qc_schedule_eh(qc);
5294 return;
5295 }
5296
5297 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5298
5299 /* read result TF if requested */
5300 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5301 fill_result_tf(qc);
5302
5303 trace_ata_qc_complete_done(qc);
5304 /* Some commands need post-processing after successful
5305 * completion.
5306 */
5307 switch (qc->tf.command) {
5308 case ATA_CMD_SET_FEATURES:
5309 if (qc->tf.feature != SETFEATURES_WC_ON &&
5310 qc->tf.feature != SETFEATURES_WC_OFF &&
5311 qc->tf.feature != SETFEATURES_RA_ON &&
5312 qc->tf.feature != SETFEATURES_RA_OFF)
5313 break;
5314 /* fall through */
5315 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5316 case ATA_CMD_SET_MULTI: /* multi_count changed */
5317 /* revalidate device */
5318 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5319 ata_port_schedule_eh(ap);
5320 break;
5321
5322 case ATA_CMD_SLEEP:
5323 dev->flags |= ATA_DFLAG_SLEEPING;
5324 break;
5325 }
5326
5327 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5328 ata_verify_xfer(qc);
5329
5330 __ata_qc_complete(qc);
5331 } else {
5332 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5333 return;
5334
5335 /* read result TF if failed or requested */
5336 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5337 fill_result_tf(qc);
5338
5339 __ata_qc_complete(qc);
5340 }
5341 }
5342
5343 /**
5344 * ata_qc_complete_multiple - Complete multiple qcs successfully
5345 * @ap: port in question
5346 * @qc_active: new qc_active mask
5347 *
5348 * Complete in-flight commands. This functions is meant to be
5349 * called from low-level driver's interrupt routine to complete
5350 * requests normally. ap->qc_active and @qc_active is compared
5351 * and commands are completed accordingly.
5352 *
5353 * Always use this function when completing multiple NCQ commands
5354 * from IRQ handlers instead of calling ata_qc_complete()
5355 * multiple times to keep IRQ expect status properly in sync.
5356 *
5357 * LOCKING:
5358 * spin_lock_irqsave(host lock)
5359 *
5360 * RETURNS:
5361 * Number of completed commands on success, -errno otherwise.
5362 */
5363 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5364 {
5365 int nr_done = 0;
5366 u32 done_mask;
5367
5368 done_mask = ap->qc_active ^ qc_active;
5369
5370 if (unlikely(done_mask & qc_active)) {
5371 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5372 ap->qc_active, qc_active);
5373 return -EINVAL;
5374 }
5375
5376 while (done_mask) {
5377 struct ata_queued_cmd *qc;
5378 unsigned int tag = __ffs(done_mask);
5379
5380 qc = ata_qc_from_tag(ap, tag);
5381 if (qc) {
5382 ata_qc_complete(qc);
5383 nr_done++;
5384 }
5385 done_mask &= ~(1 << tag);
5386 }
5387
5388 return nr_done;
5389 }
5390
5391 /**
5392 * ata_qc_issue - issue taskfile to device
5393 * @qc: command to issue to device
5394 *
5395 * Prepare an ATA command to submission to device.
5396 * This includes mapping the data into a DMA-able
5397 * area, filling in the S/G table, and finally
5398 * writing the taskfile to hardware, starting the command.
5399 *
5400 * LOCKING:
5401 * spin_lock_irqsave(host lock)
5402 */
5403 void ata_qc_issue(struct ata_queued_cmd *qc)
5404 {
5405 struct ata_port *ap = qc->ap;
5406 struct ata_link *link = qc->dev->link;
5407 u8 prot = qc->tf.protocol;
5408
5409 /* Make sure only one non-NCQ command is outstanding. The
5410 * check is skipped for old EH because it reuses active qc to
5411 * request ATAPI sense.
5412 */
5413 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5414
5415 if (ata_is_ncq(prot)) {
5416 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5417
5418 if (!link->sactive)
5419 ap->nr_active_links++;
5420 link->sactive |= 1 << qc->tag;
5421 } else {
5422 WARN_ON_ONCE(link->sactive);
5423
5424 ap->nr_active_links++;
5425 link->active_tag = qc->tag;
5426 }
5427
5428 qc->flags |= ATA_QCFLAG_ACTIVE;
5429 ap->qc_active |= 1 << qc->tag;
5430
5431 /*
5432 * We guarantee to LLDs that they will have at least one
5433 * non-zero sg if the command is a data command.
5434 */
5435 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5436 goto sys_err;
5437
5438 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5439 (ap->flags & ATA_FLAG_PIO_DMA)))
5440 if (ata_sg_setup(qc))
5441 goto sys_err;
5442
5443 /* if device is sleeping, schedule reset and abort the link */
5444 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5445 link->eh_info.action |= ATA_EH_RESET;
5446 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5447 ata_link_abort(link);
5448 return;
5449 }
5450
5451 ap->ops->qc_prep(qc);
5452 trace_ata_qc_issue(qc);
5453 qc->err_mask |= ap->ops->qc_issue(qc);
5454 if (unlikely(qc->err_mask))
5455 goto err;
5456 return;
5457
5458 sys_err:
5459 qc->err_mask |= AC_ERR_SYSTEM;
5460 err:
5461 ata_qc_complete(qc);
5462 }
5463
5464 /**
5465 * sata_scr_valid - test whether SCRs are accessible
5466 * @link: ATA link to test SCR accessibility for
5467 *
5468 * Test whether SCRs are accessible for @link.
5469 *
5470 * LOCKING:
5471 * None.
5472 *
5473 * RETURNS:
5474 * 1 if SCRs are accessible, 0 otherwise.
5475 */
5476 int sata_scr_valid(struct ata_link *link)
5477 {
5478 struct ata_port *ap = link->ap;
5479
5480 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5481 }
5482
5483 /**
5484 * sata_scr_read - read SCR register of the specified port
5485 * @link: ATA link to read SCR for
5486 * @reg: SCR to read
5487 * @val: Place to store read value
5488 *
5489 * Read SCR register @reg of @link into *@val. This function is
5490 * guaranteed to succeed if @link is ap->link, the cable type of
5491 * the port is SATA and the port implements ->scr_read.
5492 *
5493 * LOCKING:
5494 * None if @link is ap->link. Kernel thread context otherwise.
5495 *
5496 * RETURNS:
5497 * 0 on success, negative errno on failure.
5498 */
5499 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5500 {
5501 if (ata_is_host_link(link)) {
5502 if (sata_scr_valid(link))
5503 return link->ap->ops->scr_read(link, reg, val);
5504 return -EOPNOTSUPP;
5505 }
5506
5507 return sata_pmp_scr_read(link, reg, val);
5508 }
5509
5510 /**
5511 * sata_scr_write - write SCR register of the specified port
5512 * @link: ATA link to write SCR for
5513 * @reg: SCR to write
5514 * @val: value to write
5515 *
5516 * Write @val to SCR register @reg of @link. This function is
5517 * guaranteed to succeed if @link is ap->link, the cable type of
5518 * the port is SATA and the port implements ->scr_read.
5519 *
5520 * LOCKING:
5521 * None if @link is ap->link. Kernel thread context otherwise.
5522 *
5523 * RETURNS:
5524 * 0 on success, negative errno on failure.
5525 */
5526 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5527 {
5528 if (ata_is_host_link(link)) {
5529 if (sata_scr_valid(link))
5530 return link->ap->ops->scr_write(link, reg, val);
5531 return -EOPNOTSUPP;
5532 }
5533
5534 return sata_pmp_scr_write(link, reg, val);
5535 }
5536
5537 /**
5538 * sata_scr_write_flush - write SCR register of the specified port and flush
5539 * @link: ATA link to write SCR for
5540 * @reg: SCR to write
5541 * @val: value to write
5542 *
5543 * This function is identical to sata_scr_write() except that this
5544 * function performs flush after writing to the register.
5545 *
5546 * LOCKING:
5547 * None if @link is ap->link. Kernel thread context otherwise.
5548 *
5549 * RETURNS:
5550 * 0 on success, negative errno on failure.
5551 */
5552 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5553 {
5554 if (ata_is_host_link(link)) {
5555 int rc;
5556
5557 if (sata_scr_valid(link)) {
5558 rc = link->ap->ops->scr_write(link, reg, val);
5559 if (rc == 0)
5560 rc = link->ap->ops->scr_read(link, reg, &val);
5561 return rc;
5562 }
5563 return -EOPNOTSUPP;
5564 }
5565
5566 return sata_pmp_scr_write(link, reg, val);
5567 }
5568
5569 /**
5570 * ata_phys_link_online - test whether the given link is online
5571 * @link: ATA link to test
5572 *
5573 * Test whether @link is online. Note that this function returns
5574 * 0 if online status of @link cannot be obtained, so
5575 * ata_link_online(link) != !ata_link_offline(link).
5576 *
5577 * LOCKING:
5578 * None.
5579 *
5580 * RETURNS:
5581 * True if the port online status is available and online.
5582 */
5583 bool ata_phys_link_online(struct ata_link *link)
5584 {
5585 u32 sstatus;
5586
5587 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5588 ata_sstatus_online(sstatus))
5589 return true;
5590 return false;
5591 }
5592
5593 /**
5594 * ata_phys_link_offline - test whether the given link is offline
5595 * @link: ATA link to test
5596 *
5597 * Test whether @link is offline. Note that this function
5598 * returns 0 if offline status of @link cannot be obtained, so
5599 * ata_link_online(link) != !ata_link_offline(link).
5600 *
5601 * LOCKING:
5602 * None.
5603 *
5604 * RETURNS:
5605 * True if the port offline status is available and offline.
5606 */
5607 bool ata_phys_link_offline(struct ata_link *link)
5608 {
5609 u32 sstatus;
5610
5611 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5612 !ata_sstatus_online(sstatus))
5613 return true;
5614 return false;
5615 }
5616
5617 /**
5618 * ata_link_online - test whether the given link is online
5619 * @link: ATA link to test
5620 *
5621 * Test whether @link is online. This is identical to
5622 * ata_phys_link_online() when there's no slave link. When
5623 * there's a slave link, this function should only be called on
5624 * the master link and will return true if any of M/S links is
5625 * online.
5626 *
5627 * LOCKING:
5628 * None.
5629 *
5630 * RETURNS:
5631 * True if the port online status is available and online.
5632 */
5633 bool ata_link_online(struct ata_link *link)
5634 {
5635 struct ata_link *slave = link->ap->slave_link;
5636
5637 WARN_ON(link == slave); /* shouldn't be called on slave link */
5638
5639 return ata_phys_link_online(link) ||
5640 (slave && ata_phys_link_online(slave));
5641 }
5642
5643 /**
5644 * ata_link_offline - test whether the given link is offline
5645 * @link: ATA link to test
5646 *
5647 * Test whether @link is offline. This is identical to
5648 * ata_phys_link_offline() when there's no slave link. When
5649 * there's a slave link, this function should only be called on
5650 * the master link and will return true if both M/S links are
5651 * offline.
5652 *
5653 * LOCKING:
5654 * None.
5655 *
5656 * RETURNS:
5657 * True if the port offline status is available and offline.
5658 */
5659 bool ata_link_offline(struct ata_link *link)
5660 {
5661 struct ata_link *slave = link->ap->slave_link;
5662
5663 WARN_ON(link == slave); /* shouldn't be called on slave link */
5664
5665 return ata_phys_link_offline(link) &&
5666 (!slave || ata_phys_link_offline(slave));
5667 }
5668
5669 #ifdef CONFIG_PM
5670 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5671 unsigned int action, unsigned int ehi_flags,
5672 bool async)
5673 {
5674 struct ata_link *link;
5675 unsigned long flags;
5676
5677 /* Previous resume operation might still be in
5678 * progress. Wait for PM_PENDING to clear.
5679 */
5680 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5681 ata_port_wait_eh(ap);
5682 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5683 }
5684
5685 /* request PM ops to EH */
5686 spin_lock_irqsave(ap->lock, flags);
5687
5688 ap->pm_mesg = mesg;
5689 ap->pflags |= ATA_PFLAG_PM_PENDING;
5690 ata_for_each_link(link, ap, HOST_FIRST) {
5691 link->eh_info.action |= action;
5692 link->eh_info.flags |= ehi_flags;
5693 }
5694
5695 ata_port_schedule_eh(ap);
5696
5697 spin_unlock_irqrestore(ap->lock, flags);
5698
5699 if (!async) {
5700 ata_port_wait_eh(ap);
5701 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5702 }
5703 }
5704
5705 /*
5706 * On some hardware, device fails to respond after spun down for suspend. As
5707 * the device won't be used before being resumed, we don't need to touch the
5708 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5709 *
5710 * http://thread.gmane.org/gmane.linux.ide/46764
5711 */
5712 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5713 | ATA_EHI_NO_AUTOPSY
5714 | ATA_EHI_NO_RECOVERY;
5715
5716 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5717 {
5718 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5719 }
5720
5721 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5722 {
5723 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5724 }
5725
5726 static int ata_port_pm_suspend(struct device *dev)
5727 {
5728 struct ata_port *ap = to_ata_port(dev);
5729
5730 if (pm_runtime_suspended(dev))
5731 return 0;
5732
5733 ata_port_suspend(ap, PMSG_SUSPEND);
5734 return 0;
5735 }
5736
5737 static int ata_port_pm_freeze(struct device *dev)
5738 {
5739 struct ata_port *ap = to_ata_port(dev);
5740
5741 if (pm_runtime_suspended(dev))
5742 return 0;
5743
5744 ata_port_suspend(ap, PMSG_FREEZE);
5745 return 0;
5746 }
5747
5748 static int ata_port_pm_poweroff(struct device *dev)
5749 {
5750 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5751 return 0;
5752 }
5753
5754 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5755 | ATA_EHI_QUIET;
5756
5757 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5758 {
5759 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5760 }
5761
5762 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5763 {
5764 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5765 }
5766
5767 static int ata_port_pm_resume(struct device *dev)
5768 {
5769 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5770 pm_runtime_disable(dev);
5771 pm_runtime_set_active(dev);
5772 pm_runtime_enable(dev);
5773 return 0;
5774 }
5775
5776 /*
5777 * For ODDs, the upper layer will poll for media change every few seconds,
5778 * which will make it enter and leave suspend state every few seconds. And
5779 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5780 * is very little and the ODD may malfunction after constantly being reset.
5781 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5782 * ODD is attached to the port.
5783 */
5784 static int ata_port_runtime_idle(struct device *dev)
5785 {
5786 struct ata_port *ap = to_ata_port(dev);
5787 struct ata_link *link;
5788 struct ata_device *adev;
5789
5790 ata_for_each_link(link, ap, HOST_FIRST) {
5791 ata_for_each_dev(adev, link, ENABLED)
5792 if (adev->class == ATA_DEV_ATAPI &&
5793 !zpodd_dev_enabled(adev))
5794 return -EBUSY;
5795 }
5796
5797 return 0;
5798 }
5799
5800 static int ata_port_runtime_suspend(struct device *dev)
5801 {
5802 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5803 return 0;
5804 }
5805
5806 static int ata_port_runtime_resume(struct device *dev)
5807 {
5808 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5809 return 0;
5810 }
5811
5812 static const struct dev_pm_ops ata_port_pm_ops = {
5813 .suspend = ata_port_pm_suspend,
5814 .resume = ata_port_pm_resume,
5815 .freeze = ata_port_pm_freeze,
5816 .thaw = ata_port_pm_resume,
5817 .poweroff = ata_port_pm_poweroff,
5818 .restore = ata_port_pm_resume,
5819
5820 .runtime_suspend = ata_port_runtime_suspend,
5821 .runtime_resume = ata_port_runtime_resume,
5822 .runtime_idle = ata_port_runtime_idle,
5823 };
5824
5825 /* sas ports don't participate in pm runtime management of ata_ports,
5826 * and need to resume ata devices at the domain level, not the per-port
5827 * level. sas suspend/resume is async to allow parallel port recovery
5828 * since sas has multiple ata_port instances per Scsi_Host.
5829 */
5830 void ata_sas_port_suspend(struct ata_port *ap)
5831 {
5832 ata_port_suspend_async(ap, PMSG_SUSPEND);
5833 }
5834 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5835
5836 void ata_sas_port_resume(struct ata_port *ap)
5837 {
5838 ata_port_resume_async(ap, PMSG_RESUME);
5839 }
5840 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5841
5842 /**
5843 * ata_host_suspend - suspend host
5844 * @host: host to suspend
5845 * @mesg: PM message
5846 *
5847 * Suspend @host. Actual operation is performed by port suspend.
5848 */
5849 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5850 {
5851 host->dev->power.power_state = mesg;
5852 return 0;
5853 }
5854
5855 /**
5856 * ata_host_resume - resume host
5857 * @host: host to resume
5858 *
5859 * Resume @host. Actual operation is performed by port resume.
5860 */
5861 void ata_host_resume(struct ata_host *host)
5862 {
5863 host->dev->power.power_state = PMSG_ON;
5864 }
5865 #endif
5866
5867 const struct device_type ata_port_type = {
5868 .name = "ata_port",
5869 #ifdef CONFIG_PM
5870 .pm = &ata_port_pm_ops,
5871 #endif
5872 };
5873
5874 /**
5875 * ata_dev_init - Initialize an ata_device structure
5876 * @dev: Device structure to initialize
5877 *
5878 * Initialize @dev in preparation for probing.
5879 *
5880 * LOCKING:
5881 * Inherited from caller.
5882 */
5883 void ata_dev_init(struct ata_device *dev)
5884 {
5885 struct ata_link *link = ata_dev_phys_link(dev);
5886 struct ata_port *ap = link->ap;
5887 unsigned long flags;
5888
5889 /* SATA spd limit is bound to the attached device, reset together */
5890 link->sata_spd_limit = link->hw_sata_spd_limit;
5891 link->sata_spd = 0;
5892
5893 /* High bits of dev->flags are used to record warm plug
5894 * requests which occur asynchronously. Synchronize using
5895 * host lock.
5896 */
5897 spin_lock_irqsave(ap->lock, flags);
5898 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5899 dev->horkage = 0;
5900 spin_unlock_irqrestore(ap->lock, flags);
5901
5902 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5903 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5904 dev->pio_mask = UINT_MAX;
5905 dev->mwdma_mask = UINT_MAX;
5906 dev->udma_mask = UINT_MAX;
5907 }
5908
5909 /**
5910 * ata_link_init - Initialize an ata_link structure
5911 * @ap: ATA port link is attached to
5912 * @link: Link structure to initialize
5913 * @pmp: Port multiplier port number
5914 *
5915 * Initialize @link.
5916 *
5917 * LOCKING:
5918 * Kernel thread context (may sleep)
5919 */
5920 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5921 {
5922 int i;
5923
5924 /* clear everything except for devices */
5925 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5926 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5927
5928 link->ap = ap;
5929 link->pmp = pmp;
5930 link->active_tag = ATA_TAG_POISON;
5931 link->hw_sata_spd_limit = UINT_MAX;
5932
5933 /* can't use iterator, ap isn't initialized yet */
5934 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5935 struct ata_device *dev = &link->device[i];
5936
5937 dev->link = link;
5938 dev->devno = dev - link->device;
5939 #ifdef CONFIG_ATA_ACPI
5940 dev->gtf_filter = ata_acpi_gtf_filter;
5941 #endif
5942 ata_dev_init(dev);
5943 }
5944 }
5945
5946 /**
5947 * sata_link_init_spd - Initialize link->sata_spd_limit
5948 * @link: Link to configure sata_spd_limit for
5949 *
5950 * Initialize @link->[hw_]sata_spd_limit to the currently
5951 * configured value.
5952 *
5953 * LOCKING:
5954 * Kernel thread context (may sleep).
5955 *
5956 * RETURNS:
5957 * 0 on success, -errno on failure.
5958 */
5959 int sata_link_init_spd(struct ata_link *link)
5960 {
5961 u8 spd;
5962 int rc;
5963
5964 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5965 if (rc)
5966 return rc;
5967
5968 spd = (link->saved_scontrol >> 4) & 0xf;
5969 if (spd)
5970 link->hw_sata_spd_limit &= (1 << spd) - 1;
5971
5972 ata_force_link_limits(link);
5973
5974 link->sata_spd_limit = link->hw_sata_spd_limit;
5975
5976 return 0;
5977 }
5978
5979 /**
5980 * ata_port_alloc - allocate and initialize basic ATA port resources
5981 * @host: ATA host this allocated port belongs to
5982 *
5983 * Allocate and initialize basic ATA port resources.
5984 *
5985 * RETURNS:
5986 * Allocate ATA port on success, NULL on failure.
5987 *
5988 * LOCKING:
5989 * Inherited from calling layer (may sleep).
5990 */
5991 struct ata_port *ata_port_alloc(struct ata_host *host)
5992 {
5993 struct ata_port *ap;
5994
5995 DPRINTK("ENTER\n");
5996
5997 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5998 if (!ap)
5999 return NULL;
6000
6001 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
6002 ap->lock = &host->lock;
6003 ap->print_id = -1;
6004 ap->local_port_no = -1;
6005 ap->host = host;
6006 ap->dev = host->dev;
6007
6008 #if defined(ATA_VERBOSE_DEBUG)
6009 /* turn on all debugging levels */
6010 ap->msg_enable = 0x00FF;
6011 #elif defined(ATA_DEBUG)
6012 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6013 #else
6014 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6015 #endif
6016
6017 mutex_init(&ap->scsi_scan_mutex);
6018 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6019 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6020 INIT_LIST_HEAD(&ap->eh_done_q);
6021 init_waitqueue_head(&ap->eh_wait_q);
6022 init_completion(&ap->park_req_pending);
6023 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6024 TIMER_DEFERRABLE);
6025
6026 ap->cbl = ATA_CBL_NONE;
6027
6028 ata_link_init(ap, &ap->link, 0);
6029
6030 #ifdef ATA_IRQ_TRAP
6031 ap->stats.unhandled_irq = 1;
6032 ap->stats.idle_irq = 1;
6033 #endif
6034 ata_sff_port_init(ap);
6035
6036 return ap;
6037 }
6038
6039 static void ata_host_release(struct device *gendev, void *res)
6040 {
6041 struct ata_host *host = dev_get_drvdata(gendev);
6042 int i;
6043
6044 for (i = 0; i < host->n_ports; i++) {
6045 struct ata_port *ap = host->ports[i];
6046
6047 if (!ap)
6048 continue;
6049
6050 if (ap->scsi_host)
6051 scsi_host_put(ap->scsi_host);
6052
6053 kfree(ap->pmp_link);
6054 kfree(ap->slave_link);
6055 kfree(ap);
6056 host->ports[i] = NULL;
6057 }
6058
6059 dev_set_drvdata(gendev, NULL);
6060 }
6061
6062 /**
6063 * ata_host_alloc - allocate and init basic ATA host resources
6064 * @dev: generic device this host is associated with
6065 * @max_ports: maximum number of ATA ports associated with this host
6066 *
6067 * Allocate and initialize basic ATA host resources. LLD calls
6068 * this function to allocate a host, initializes it fully and
6069 * attaches it using ata_host_register().
6070 *
6071 * @max_ports ports are allocated and host->n_ports is
6072 * initialized to @max_ports. The caller is allowed to decrease
6073 * host->n_ports before calling ata_host_register(). The unused
6074 * ports will be automatically freed on registration.
6075 *
6076 * RETURNS:
6077 * Allocate ATA host on success, NULL on failure.
6078 *
6079 * LOCKING:
6080 * Inherited from calling layer (may sleep).
6081 */
6082 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6083 {
6084 struct ata_host *host;
6085 size_t sz;
6086 int i;
6087
6088 DPRINTK("ENTER\n");
6089
6090 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6091 return NULL;
6092
6093 /* alloc a container for our list of ATA ports (buses) */
6094 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6095 /* alloc a container for our list of ATA ports (buses) */
6096 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6097 if (!host)
6098 goto err_out;
6099
6100 devres_add(dev, host);
6101 dev_set_drvdata(dev, host);
6102
6103 spin_lock_init(&host->lock);
6104 mutex_init(&host->eh_mutex);
6105 host->dev = dev;
6106 host->n_ports = max_ports;
6107
6108 /* allocate ports bound to this host */
6109 for (i = 0; i < max_ports; i++) {
6110 struct ata_port *ap;
6111
6112 ap = ata_port_alloc(host);
6113 if (!ap)
6114 goto err_out;
6115
6116 ap->port_no = i;
6117 host->ports[i] = ap;
6118 }
6119
6120 devres_remove_group(dev, NULL);
6121 return host;
6122
6123 err_out:
6124 devres_release_group(dev, NULL);
6125 return NULL;
6126 }
6127
6128 /**
6129 * ata_host_alloc_pinfo - alloc host and init with port_info array
6130 * @dev: generic device this host is associated with
6131 * @ppi: array of ATA port_info to initialize host with
6132 * @n_ports: number of ATA ports attached to this host
6133 *
6134 * Allocate ATA host and initialize with info from @ppi. If NULL
6135 * terminated, @ppi may contain fewer entries than @n_ports. The
6136 * last entry will be used for the remaining ports.
6137 *
6138 * RETURNS:
6139 * Allocate ATA host on success, NULL on failure.
6140 *
6141 * LOCKING:
6142 * Inherited from calling layer (may sleep).
6143 */
6144 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6145 const struct ata_port_info * const * ppi,
6146 int n_ports)
6147 {
6148 const struct ata_port_info *pi;
6149 struct ata_host *host;
6150 int i, j;
6151
6152 host = ata_host_alloc(dev, n_ports);
6153 if (!host)
6154 return NULL;
6155
6156 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6157 struct ata_port *ap = host->ports[i];
6158
6159 if (ppi[j])
6160 pi = ppi[j++];
6161
6162 ap->pio_mask = pi->pio_mask;
6163 ap->mwdma_mask = pi->mwdma_mask;
6164 ap->udma_mask = pi->udma_mask;
6165 ap->flags |= pi->flags;
6166 ap->link.flags |= pi->link_flags;
6167 ap->ops = pi->port_ops;
6168
6169 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6170 host->ops = pi->port_ops;
6171 }
6172
6173 return host;
6174 }
6175
6176 /**
6177 * ata_slave_link_init - initialize slave link
6178 * @ap: port to initialize slave link for
6179 *
6180 * Create and initialize slave link for @ap. This enables slave
6181 * link handling on the port.
6182 *
6183 * In libata, a port contains links and a link contains devices.
6184 * There is single host link but if a PMP is attached to it,
6185 * there can be multiple fan-out links. On SATA, there's usually
6186 * a single device connected to a link but PATA and SATA
6187 * controllers emulating TF based interface can have two - master
6188 * and slave.
6189 *
6190 * However, there are a few controllers which don't fit into this
6191 * abstraction too well - SATA controllers which emulate TF
6192 * interface with both master and slave devices but also have
6193 * separate SCR register sets for each device. These controllers
6194 * need separate links for physical link handling
6195 * (e.g. onlineness, link speed) but should be treated like a
6196 * traditional M/S controller for everything else (e.g. command
6197 * issue, softreset).
6198 *
6199 * slave_link is libata's way of handling this class of
6200 * controllers without impacting core layer too much. For
6201 * anything other than physical link handling, the default host
6202 * link is used for both master and slave. For physical link
6203 * handling, separate @ap->slave_link is used. All dirty details
6204 * are implemented inside libata core layer. From LLD's POV, the
6205 * only difference is that prereset, hardreset and postreset are
6206 * called once more for the slave link, so the reset sequence
6207 * looks like the following.
6208 *
6209 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6210 * softreset(M) -> postreset(M) -> postreset(S)
6211 *
6212 * Note that softreset is called only for the master. Softreset
6213 * resets both M/S by definition, so SRST on master should handle
6214 * both (the standard method will work just fine).
6215 *
6216 * LOCKING:
6217 * Should be called before host is registered.
6218 *
6219 * RETURNS:
6220 * 0 on success, -errno on failure.
6221 */
6222 int ata_slave_link_init(struct ata_port *ap)
6223 {
6224 struct ata_link *link;
6225
6226 WARN_ON(ap->slave_link);
6227 WARN_ON(ap->flags & ATA_FLAG_PMP);
6228
6229 link = kzalloc(sizeof(*link), GFP_KERNEL);
6230 if (!link)
6231 return -ENOMEM;
6232
6233 ata_link_init(ap, link, 1);
6234 ap->slave_link = link;
6235 return 0;
6236 }
6237
6238 static void ata_host_stop(struct device *gendev, void *res)
6239 {
6240 struct ata_host *host = dev_get_drvdata(gendev);
6241 int i;
6242
6243 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6244
6245 for (i = 0; i < host->n_ports; i++) {
6246 struct ata_port *ap = host->ports[i];
6247
6248 if (ap->ops->port_stop)
6249 ap->ops->port_stop(ap);
6250 }
6251
6252 if (host->ops->host_stop)
6253 host->ops->host_stop(host);
6254 }
6255
6256 /**
6257 * ata_finalize_port_ops - finalize ata_port_operations
6258 * @ops: ata_port_operations to finalize
6259 *
6260 * An ata_port_operations can inherit from another ops and that
6261 * ops can again inherit from another. This can go on as many
6262 * times as necessary as long as there is no loop in the
6263 * inheritance chain.
6264 *
6265 * Ops tables are finalized when the host is started. NULL or
6266 * unspecified entries are inherited from the closet ancestor
6267 * which has the method and the entry is populated with it.
6268 * After finalization, the ops table directly points to all the
6269 * methods and ->inherits is no longer necessary and cleared.
6270 *
6271 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6272 *
6273 * LOCKING:
6274 * None.
6275 */
6276 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6277 {
6278 static DEFINE_SPINLOCK(lock);
6279 const struct ata_port_operations *cur;
6280 void **begin = (void **)ops;
6281 void **end = (void **)&ops->inherits;
6282 void **pp;
6283
6284 if (!ops || !ops->inherits)
6285 return;
6286
6287 spin_lock(&lock);
6288
6289 for (cur = ops->inherits; cur; cur = cur->inherits) {
6290 void **inherit = (void **)cur;
6291
6292 for (pp = begin; pp < end; pp++, inherit++)
6293 if (!*pp)
6294 *pp = *inherit;
6295 }
6296
6297 for (pp = begin; pp < end; pp++)
6298 if (IS_ERR(*pp))
6299 *pp = NULL;
6300
6301 ops->inherits = NULL;
6302
6303 spin_unlock(&lock);
6304 }
6305
6306 /**
6307 * ata_host_start - start and freeze ports of an ATA host
6308 * @host: ATA host to start ports for
6309 *
6310 * Start and then freeze ports of @host. Started status is
6311 * recorded in host->flags, so this function can be called
6312 * multiple times. Ports are guaranteed to get started only
6313 * once. If host->ops isn't initialized yet, its set to the
6314 * first non-dummy port ops.
6315 *
6316 * LOCKING:
6317 * Inherited from calling layer (may sleep).
6318 *
6319 * RETURNS:
6320 * 0 if all ports are started successfully, -errno otherwise.
6321 */
6322 int ata_host_start(struct ata_host *host)
6323 {
6324 int have_stop = 0;
6325 void *start_dr = NULL;
6326 int i, rc;
6327
6328 if (host->flags & ATA_HOST_STARTED)
6329 return 0;
6330
6331 ata_finalize_port_ops(host->ops);
6332
6333 for (i = 0; i < host->n_ports; i++) {
6334 struct ata_port *ap = host->ports[i];
6335
6336 ata_finalize_port_ops(ap->ops);
6337
6338 if (!host->ops && !ata_port_is_dummy(ap))
6339 host->ops = ap->ops;
6340
6341 if (ap->ops->port_stop)
6342 have_stop = 1;
6343 }
6344
6345 if (host->ops->host_stop)
6346 have_stop = 1;
6347
6348 if (have_stop) {
6349 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6350 if (!start_dr)
6351 return -ENOMEM;
6352 }
6353
6354 for (i = 0; i < host->n_ports; i++) {
6355 struct ata_port *ap = host->ports[i];
6356
6357 if (ap->ops->port_start) {
6358 rc = ap->ops->port_start(ap);
6359 if (rc) {
6360 if (rc != -ENODEV)
6361 dev_err(host->dev,
6362 "failed to start port %d (errno=%d)\n",
6363 i, rc);
6364 goto err_out;
6365 }
6366 }
6367 ata_eh_freeze_port(ap);
6368 }
6369
6370 if (start_dr)
6371 devres_add(host->dev, start_dr);
6372 host->flags |= ATA_HOST_STARTED;
6373 return 0;
6374
6375 err_out:
6376 while (--i >= 0) {
6377 struct ata_port *ap = host->ports[i];
6378
6379 if (ap->ops->port_stop)
6380 ap->ops->port_stop(ap);
6381 }
6382 devres_free(start_dr);
6383 return rc;
6384 }
6385
6386 /**
6387 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6388 * @host: host to initialize
6389 * @dev: device host is attached to
6390 * @ops: port_ops
6391 *
6392 */
6393 void ata_host_init(struct ata_host *host, struct device *dev,
6394 struct ata_port_operations *ops)
6395 {
6396 spin_lock_init(&host->lock);
6397 mutex_init(&host->eh_mutex);
6398 host->n_tags = ATA_MAX_QUEUE - 1;
6399 host->dev = dev;
6400 host->ops = ops;
6401 }
6402
6403 void __ata_port_probe(struct ata_port *ap)
6404 {
6405 struct ata_eh_info *ehi = &ap->link.eh_info;
6406 unsigned long flags;
6407
6408 /* kick EH for boot probing */
6409 spin_lock_irqsave(ap->lock, flags);
6410
6411 ehi->probe_mask |= ATA_ALL_DEVICES;
6412 ehi->action |= ATA_EH_RESET;
6413 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6414
6415 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6416 ap->pflags |= ATA_PFLAG_LOADING;
6417 ata_port_schedule_eh(ap);
6418
6419 spin_unlock_irqrestore(ap->lock, flags);
6420 }
6421
6422 int ata_port_probe(struct ata_port *ap)
6423 {
6424 int rc = 0;
6425
6426 if (ap->ops->error_handler) {
6427 __ata_port_probe(ap);
6428 ata_port_wait_eh(ap);
6429 } else {
6430 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6431 rc = ata_bus_probe(ap);
6432 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6433 }
6434 return rc;
6435 }
6436
6437
6438 static void async_port_probe(void *data, async_cookie_t cookie)
6439 {
6440 struct ata_port *ap = data;
6441
6442 /*
6443 * If we're not allowed to scan this host in parallel,
6444 * we need to wait until all previous scans have completed
6445 * before going further.
6446 * Jeff Garzik says this is only within a controller, so we
6447 * don't need to wait for port 0, only for later ports.
6448 */
6449 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6450 async_synchronize_cookie(cookie);
6451
6452 (void)ata_port_probe(ap);
6453
6454 /* in order to keep device order, we need to synchronize at this point */
6455 async_synchronize_cookie(cookie);
6456
6457 ata_scsi_scan_host(ap, 1);
6458 }
6459
6460 /**
6461 * ata_host_register - register initialized ATA host
6462 * @host: ATA host to register
6463 * @sht: template for SCSI host
6464 *
6465 * Register initialized ATA host. @host is allocated using
6466 * ata_host_alloc() and fully initialized by LLD. This function
6467 * starts ports, registers @host with ATA and SCSI layers and
6468 * probe registered devices.
6469 *
6470 * LOCKING:
6471 * Inherited from calling layer (may sleep).
6472 *
6473 * RETURNS:
6474 * 0 on success, -errno otherwise.
6475 */
6476 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6477 {
6478 int i, rc;
6479
6480 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6481
6482 /* host must have been started */
6483 if (!(host->flags & ATA_HOST_STARTED)) {
6484 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6485 WARN_ON(1);
6486 return -EINVAL;
6487 }
6488
6489 /* Blow away unused ports. This happens when LLD can't
6490 * determine the exact number of ports to allocate at
6491 * allocation time.
6492 */
6493 for (i = host->n_ports; host->ports[i]; i++)
6494 kfree(host->ports[i]);
6495
6496 /* give ports names and add SCSI hosts */
6497 for (i = 0; i < host->n_ports; i++) {
6498 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6499 host->ports[i]->local_port_no = i + 1;
6500 }
6501
6502 /* Create associated sysfs transport objects */
6503 for (i = 0; i < host->n_ports; i++) {
6504 rc = ata_tport_add(host->dev,host->ports[i]);
6505 if (rc) {
6506 goto err_tadd;
6507 }
6508 }
6509
6510 rc = ata_scsi_add_hosts(host, sht);
6511 if (rc)
6512 goto err_tadd;
6513
6514 /* set cable, sata_spd_limit and report */
6515 for (i = 0; i < host->n_ports; i++) {
6516 struct ata_port *ap = host->ports[i];
6517 unsigned long xfer_mask;
6518
6519 /* set SATA cable type if still unset */
6520 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6521 ap->cbl = ATA_CBL_SATA;
6522
6523 /* init sata_spd_limit to the current value */
6524 sata_link_init_spd(&ap->link);
6525 if (ap->slave_link)
6526 sata_link_init_spd(ap->slave_link);
6527
6528 /* print per-port info to dmesg */
6529 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6530 ap->udma_mask);
6531
6532 if (!ata_port_is_dummy(ap)) {
6533 ata_port_info(ap, "%cATA max %s %s\n",
6534 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6535 ata_mode_string(xfer_mask),
6536 ap->link.eh_info.desc);
6537 ata_ehi_clear_desc(&ap->link.eh_info);
6538 } else
6539 ata_port_info(ap, "DUMMY\n");
6540 }
6541
6542 /* perform each probe asynchronously */
6543 for (i = 0; i < host->n_ports; i++) {
6544 struct ata_port *ap = host->ports[i];
6545 async_schedule(async_port_probe, ap);
6546 }
6547
6548 return 0;
6549
6550 err_tadd:
6551 while (--i >= 0) {
6552 ata_tport_delete(host->ports[i]);
6553 }
6554 return rc;
6555
6556 }
6557
6558 /**
6559 * ata_host_activate - start host, request IRQ and register it
6560 * @host: target ATA host
6561 * @irq: IRQ to request
6562 * @irq_handler: irq_handler used when requesting IRQ
6563 * @irq_flags: irq_flags used when requesting IRQ
6564 * @sht: scsi_host_template to use when registering the host
6565 *
6566 * After allocating an ATA host and initializing it, most libata
6567 * LLDs perform three steps to activate the host - start host,
6568 * request IRQ and register it. This helper takes necessary
6569 * arguments and performs the three steps in one go.
6570 *
6571 * An invalid IRQ skips the IRQ registration and expects the host to
6572 * have set polling mode on the port. In this case, @irq_handler
6573 * should be NULL.
6574 *
6575 * LOCKING:
6576 * Inherited from calling layer (may sleep).
6577 *
6578 * RETURNS:
6579 * 0 on success, -errno otherwise.
6580 */
6581 int ata_host_activate(struct ata_host *host, int irq,
6582 irq_handler_t irq_handler, unsigned long irq_flags,
6583 struct scsi_host_template *sht)
6584 {
6585 int i, rc;
6586 char *irq_desc;
6587
6588 rc = ata_host_start(host);
6589 if (rc)
6590 return rc;
6591
6592 /* Special case for polling mode */
6593 if (!irq) {
6594 WARN_ON(irq_handler);
6595 return ata_host_register(host, sht);
6596 }
6597
6598 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6599 dev_driver_string(host->dev),
6600 dev_name(host->dev));
6601 if (!irq_desc)
6602 return -ENOMEM;
6603
6604 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6605 irq_desc, host);
6606 if (rc)
6607 return rc;
6608
6609 for (i = 0; i < host->n_ports; i++)
6610 ata_port_desc(host->ports[i], "irq %d", irq);
6611
6612 rc = ata_host_register(host, sht);
6613 /* if failed, just free the IRQ and leave ports alone */
6614 if (rc)
6615 devm_free_irq(host->dev, irq, host);
6616
6617 return rc;
6618 }
6619
6620 /**
6621 * ata_port_detach - Detach ATA port in preparation of device removal
6622 * @ap: ATA port to be detached
6623 *
6624 * Detach all ATA devices and the associated SCSI devices of @ap;
6625 * then, remove the associated SCSI host. @ap is guaranteed to
6626 * be quiescent on return from this function.
6627 *
6628 * LOCKING:
6629 * Kernel thread context (may sleep).
6630 */
6631 static void ata_port_detach(struct ata_port *ap)
6632 {
6633 unsigned long flags;
6634 struct ata_link *link;
6635 struct ata_device *dev;
6636
6637 if (!ap->ops->error_handler)
6638 goto skip_eh;
6639
6640 /* tell EH we're leaving & flush EH */
6641 spin_lock_irqsave(ap->lock, flags);
6642 ap->pflags |= ATA_PFLAG_UNLOADING;
6643 ata_port_schedule_eh(ap);
6644 spin_unlock_irqrestore(ap->lock, flags);
6645
6646 /* wait till EH commits suicide */
6647 ata_port_wait_eh(ap);
6648
6649 /* it better be dead now */
6650 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6651
6652 cancel_delayed_work_sync(&ap->hotplug_task);
6653
6654 skip_eh:
6655 /* clean up zpodd on port removal */
6656 ata_for_each_link(link, ap, HOST_FIRST) {
6657 ata_for_each_dev(dev, link, ALL) {
6658 if (zpodd_dev_enabled(dev))
6659 zpodd_exit(dev);
6660 }
6661 }
6662 if (ap->pmp_link) {
6663 int i;
6664 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6665 ata_tlink_delete(&ap->pmp_link[i]);
6666 }
6667 /* remove the associated SCSI host */
6668 scsi_remove_host(ap->scsi_host);
6669 ata_tport_delete(ap);
6670 }
6671
6672 /**
6673 * ata_host_detach - Detach all ports of an ATA host
6674 * @host: Host to detach
6675 *
6676 * Detach all ports of @host.
6677 *
6678 * LOCKING:
6679 * Kernel thread context (may sleep).
6680 */
6681 void ata_host_detach(struct ata_host *host)
6682 {
6683 int i;
6684
6685 for (i = 0; i < host->n_ports; i++)
6686 ata_port_detach(host->ports[i]);
6687
6688 /* the host is dead now, dissociate ACPI */
6689 ata_acpi_dissociate(host);
6690 }
6691
6692 #ifdef CONFIG_PCI
6693
6694 /**
6695 * ata_pci_remove_one - PCI layer callback for device removal
6696 * @pdev: PCI device that was removed
6697 *
6698 * PCI layer indicates to libata via this hook that hot-unplug or
6699 * module unload event has occurred. Detach all ports. Resource
6700 * release is handled via devres.
6701 *
6702 * LOCKING:
6703 * Inherited from PCI layer (may sleep).
6704 */
6705 void ata_pci_remove_one(struct pci_dev *pdev)
6706 {
6707 struct ata_host *host = pci_get_drvdata(pdev);
6708
6709 ata_host_detach(host);
6710 }
6711
6712 /* move to PCI subsystem */
6713 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6714 {
6715 unsigned long tmp = 0;
6716
6717 switch (bits->width) {
6718 case 1: {
6719 u8 tmp8 = 0;
6720 pci_read_config_byte(pdev, bits->reg, &tmp8);
6721 tmp = tmp8;
6722 break;
6723 }
6724 case 2: {
6725 u16 tmp16 = 0;
6726 pci_read_config_word(pdev, bits->reg, &tmp16);
6727 tmp = tmp16;
6728 break;
6729 }
6730 case 4: {
6731 u32 tmp32 = 0;
6732 pci_read_config_dword(pdev, bits->reg, &tmp32);
6733 tmp = tmp32;
6734 break;
6735 }
6736
6737 default:
6738 return -EINVAL;
6739 }
6740
6741 tmp &= bits->mask;
6742
6743 return (tmp == bits->val) ? 1 : 0;
6744 }
6745
6746 #ifdef CONFIG_PM
6747 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6748 {
6749 pci_save_state(pdev);
6750 pci_disable_device(pdev);
6751
6752 if (mesg.event & PM_EVENT_SLEEP)
6753 pci_set_power_state(pdev, PCI_D3hot);
6754 }
6755
6756 int ata_pci_device_do_resume(struct pci_dev *pdev)
6757 {
6758 int rc;
6759
6760 pci_set_power_state(pdev, PCI_D0);
6761 pci_restore_state(pdev);
6762
6763 rc = pcim_enable_device(pdev);
6764 if (rc) {
6765 dev_err(&pdev->dev,
6766 "failed to enable device after resume (%d)\n", rc);
6767 return rc;
6768 }
6769
6770 pci_set_master(pdev);
6771 return 0;
6772 }
6773
6774 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6775 {
6776 struct ata_host *host = pci_get_drvdata(pdev);
6777 int rc = 0;
6778
6779 rc = ata_host_suspend(host, mesg);
6780 if (rc)
6781 return rc;
6782
6783 ata_pci_device_do_suspend(pdev, mesg);
6784
6785 return 0;
6786 }
6787
6788 int ata_pci_device_resume(struct pci_dev *pdev)
6789 {
6790 struct ata_host *host = pci_get_drvdata(pdev);
6791 int rc;
6792
6793 rc = ata_pci_device_do_resume(pdev);
6794 if (rc == 0)
6795 ata_host_resume(host);
6796 return rc;
6797 }
6798 #endif /* CONFIG_PM */
6799
6800 #endif /* CONFIG_PCI */
6801
6802 /**
6803 * ata_platform_remove_one - Platform layer callback for device removal
6804 * @pdev: Platform device that was removed
6805 *
6806 * Platform layer indicates to libata via this hook that hot-unplug or
6807 * module unload event has occurred. Detach all ports. Resource
6808 * release is handled via devres.
6809 *
6810 * LOCKING:
6811 * Inherited from platform layer (may sleep).
6812 */
6813 int ata_platform_remove_one(struct platform_device *pdev)
6814 {
6815 struct ata_host *host = platform_get_drvdata(pdev);
6816
6817 ata_host_detach(host);
6818
6819 return 0;
6820 }
6821
6822 static int __init ata_parse_force_one(char **cur,
6823 struct ata_force_ent *force_ent,
6824 const char **reason)
6825 {
6826 static const struct ata_force_param force_tbl[] __initconst = {
6827 { "40c", .cbl = ATA_CBL_PATA40 },
6828 { "80c", .cbl = ATA_CBL_PATA80 },
6829 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6830 { "unk", .cbl = ATA_CBL_PATA_UNK },
6831 { "ign", .cbl = ATA_CBL_PATA_IGN },
6832 { "sata", .cbl = ATA_CBL_SATA },
6833 { "1.5Gbps", .spd_limit = 1 },
6834 { "3.0Gbps", .spd_limit = 2 },
6835 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6836 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6837 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6838 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6839 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6840 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6841 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6842 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6843 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6844 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6845 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6846 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6847 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6848 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6849 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6850 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6851 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6852 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6853 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6854 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6855 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6856 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6857 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6858 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6859 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6860 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6861 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6862 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6863 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6864 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6865 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6866 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6867 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6868 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6869 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6870 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6871 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6872 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6873 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6874 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6875 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6876 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6877 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6878 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6879 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6880 };
6881 char *start = *cur, *p = *cur;
6882 char *id, *val, *endp;
6883 const struct ata_force_param *match_fp = NULL;
6884 int nr_matches = 0, i;
6885
6886 /* find where this param ends and update *cur */
6887 while (*p != '\0' && *p != ',')
6888 p++;
6889
6890 if (*p == '\0')
6891 *cur = p;
6892 else
6893 *cur = p + 1;
6894
6895 *p = '\0';
6896
6897 /* parse */
6898 p = strchr(start, ':');
6899 if (!p) {
6900 val = strstrip(start);
6901 goto parse_val;
6902 }
6903 *p = '\0';
6904
6905 id = strstrip(start);
6906 val = strstrip(p + 1);
6907
6908 /* parse id */
6909 p = strchr(id, '.');
6910 if (p) {
6911 *p++ = '\0';
6912 force_ent->device = simple_strtoul(p, &endp, 10);
6913 if (p == endp || *endp != '\0') {
6914 *reason = "invalid device";
6915 return -EINVAL;
6916 }
6917 }
6918
6919 force_ent->port = simple_strtoul(id, &endp, 10);
6920 if (id == endp || *endp != '\0') {
6921 *reason = "invalid port/link";
6922 return -EINVAL;
6923 }
6924
6925 parse_val:
6926 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6927 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6928 const struct ata_force_param *fp = &force_tbl[i];
6929
6930 if (strncasecmp(val, fp->name, strlen(val)))
6931 continue;
6932
6933 nr_matches++;
6934 match_fp = fp;
6935
6936 if (strcasecmp(val, fp->name) == 0) {
6937 nr_matches = 1;
6938 break;
6939 }
6940 }
6941
6942 if (!nr_matches) {
6943 *reason = "unknown value";
6944 return -EINVAL;
6945 }
6946 if (nr_matches > 1) {
6947 *reason = "ambiguous value";
6948 return -EINVAL;
6949 }
6950
6951 force_ent->param = *match_fp;
6952
6953 return 0;
6954 }
6955
6956 static void __init ata_parse_force_param(void)
6957 {
6958 int idx = 0, size = 1;
6959 int last_port = -1, last_device = -1;
6960 char *p, *cur, *next;
6961
6962 /* calculate maximum number of params and allocate force_tbl */
6963 for (p = ata_force_param_buf; *p; p++)
6964 if (*p == ',')
6965 size++;
6966
6967 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6968 if (!ata_force_tbl) {
6969 printk(KERN_WARNING "ata: failed to extend force table, "
6970 "libata.force ignored\n");
6971 return;
6972 }
6973
6974 /* parse and populate the table */
6975 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6976 const char *reason = "";
6977 struct ata_force_ent te = { .port = -1, .device = -1 };
6978
6979 next = cur;
6980 if (ata_parse_force_one(&next, &te, &reason)) {
6981 printk(KERN_WARNING "ata: failed to parse force "
6982 "parameter \"%s\" (%s)\n",
6983 cur, reason);
6984 continue;
6985 }
6986
6987 if (te.port == -1) {
6988 te.port = last_port;
6989 te.device = last_device;
6990 }
6991
6992 ata_force_tbl[idx++] = te;
6993
6994 last_port = te.port;
6995 last_device = te.device;
6996 }
6997
6998 ata_force_tbl_size = idx;
6999 }
7000
7001 static int __init ata_init(void)
7002 {
7003 int rc;
7004
7005 ata_parse_force_param();
7006
7007 rc = ata_sff_init();
7008 if (rc) {
7009 kfree(ata_force_tbl);
7010 return rc;
7011 }
7012
7013 libata_transport_init();
7014 ata_scsi_transport_template = ata_attach_transport();
7015 if (!ata_scsi_transport_template) {
7016 ata_sff_exit();
7017 rc = -ENOMEM;
7018 goto err_out;
7019 }
7020
7021 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7022 return 0;
7023
7024 err_out:
7025 return rc;
7026 }
7027
7028 static void __exit ata_exit(void)
7029 {
7030 ata_release_transport(ata_scsi_transport_template);
7031 libata_transport_exit();
7032 ata_sff_exit();
7033 kfree(ata_force_tbl);
7034 }
7035
7036 subsys_initcall(ata_init);
7037 module_exit(ata_exit);
7038
7039 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7040
7041 int ata_ratelimit(void)
7042 {
7043 return __ratelimit(&ratelimit);
7044 }
7045
7046 /**
7047 * ata_msleep - ATA EH owner aware msleep
7048 * @ap: ATA port to attribute the sleep to
7049 * @msecs: duration to sleep in milliseconds
7050 *
7051 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7052 * ownership is released before going to sleep and reacquired
7053 * after the sleep is complete. IOW, other ports sharing the
7054 * @ap->host will be allowed to own the EH while this task is
7055 * sleeping.
7056 *
7057 * LOCKING:
7058 * Might sleep.
7059 */
7060 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7061 {
7062 bool owns_eh = ap && ap->host->eh_owner == current;
7063
7064 if (owns_eh)
7065 ata_eh_release(ap);
7066
7067 if (msecs < 20) {
7068 unsigned long usecs = msecs * USEC_PER_MSEC;
7069 usleep_range(usecs, usecs + 50);
7070 } else {
7071 msleep(msecs);
7072 }
7073
7074 if (owns_eh)
7075 ata_eh_acquire(ap);
7076 }
7077
7078 /**
7079 * ata_wait_register - wait until register value changes
7080 * @ap: ATA port to wait register for, can be NULL
7081 * @reg: IO-mapped register
7082 * @mask: Mask to apply to read register value
7083 * @val: Wait condition
7084 * @interval: polling interval in milliseconds
7085 * @timeout: timeout in milliseconds
7086 *
7087 * Waiting for some bits of register to change is a common
7088 * operation for ATA controllers. This function reads 32bit LE
7089 * IO-mapped register @reg and tests for the following condition.
7090 *
7091 * (*@reg & mask) != val
7092 *
7093 * If the condition is met, it returns; otherwise, the process is
7094 * repeated after @interval_msec until timeout.
7095 *
7096 * LOCKING:
7097 * Kernel thread context (may sleep)
7098 *
7099 * RETURNS:
7100 * The final register value.
7101 */
7102 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7103 unsigned long interval, unsigned long timeout)
7104 {
7105 unsigned long deadline;
7106 u32 tmp;
7107
7108 tmp = ioread32(reg);
7109
7110 /* Calculate timeout _after_ the first read to make sure
7111 * preceding writes reach the controller before starting to
7112 * eat away the timeout.
7113 */
7114 deadline = ata_deadline(jiffies, timeout);
7115
7116 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7117 ata_msleep(ap, interval);
7118 tmp = ioread32(reg);
7119 }
7120
7121 return tmp;
7122 }
7123
7124 /**
7125 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7126 * @link: Link receiving the event
7127 *
7128 * Test whether the received PHY event has to be ignored or not.
7129 *
7130 * LOCKING:
7131 * None:
7132 *
7133 * RETURNS:
7134 * True if the event has to be ignored.
7135 */
7136 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7137 {
7138 unsigned long lpm_timeout = link->last_lpm_change +
7139 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7140
7141 /* if LPM is enabled, PHYRDY doesn't mean anything */
7142 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7143 return true;
7144
7145 /* ignore the first PHY event after the LPM policy changed
7146 * as it is might be spurious
7147 */
7148 if ((link->flags & ATA_LFLAG_CHANGED) &&
7149 time_before(jiffies, lpm_timeout))
7150 return true;
7151
7152 return false;
7153 }
7154 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7155
7156 /*
7157 * Dummy port_ops
7158 */
7159 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7160 {
7161 return AC_ERR_SYSTEM;
7162 }
7163
7164 static void ata_dummy_error_handler(struct ata_port *ap)
7165 {
7166 /* truly dummy */
7167 }
7168
7169 struct ata_port_operations ata_dummy_port_ops = {
7170 .qc_prep = ata_noop_qc_prep,
7171 .qc_issue = ata_dummy_qc_issue,
7172 .error_handler = ata_dummy_error_handler,
7173 .sched_eh = ata_std_sched_eh,
7174 .end_eh = ata_std_end_eh,
7175 };
7176
7177 const struct ata_port_info ata_dummy_port_info = {
7178 .port_ops = &ata_dummy_port_ops,
7179 };
7180
7181 /*
7182 * Utility print functions
7183 */
7184 void ata_port_printk(const struct ata_port *ap, const char *level,
7185 const char *fmt, ...)
7186 {
7187 struct va_format vaf;
7188 va_list args;
7189
7190 va_start(args, fmt);
7191
7192 vaf.fmt = fmt;
7193 vaf.va = &args;
7194
7195 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7196
7197 va_end(args);
7198 }
7199 EXPORT_SYMBOL(ata_port_printk);
7200
7201 void ata_link_printk(const struct ata_link *link, const char *level,
7202 const char *fmt, ...)
7203 {
7204 struct va_format vaf;
7205 va_list args;
7206
7207 va_start(args, fmt);
7208
7209 vaf.fmt = fmt;
7210 vaf.va = &args;
7211
7212 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7213 printk("%sata%u.%02u: %pV",
7214 level, link->ap->print_id, link->pmp, &vaf);
7215 else
7216 printk("%sata%u: %pV",
7217 level, link->ap->print_id, &vaf);
7218
7219 va_end(args);
7220 }
7221 EXPORT_SYMBOL(ata_link_printk);
7222
7223 void ata_dev_printk(const struct ata_device *dev, const char *level,
7224 const char *fmt, ...)
7225 {
7226 struct va_format vaf;
7227 va_list args;
7228
7229 va_start(args, fmt);
7230
7231 vaf.fmt = fmt;
7232 vaf.va = &args;
7233
7234 printk("%sata%u.%02u: %pV",
7235 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7236 &vaf);
7237
7238 va_end(args);
7239 }
7240 EXPORT_SYMBOL(ata_dev_printk);
7241
7242 void ata_print_version(const struct device *dev, const char *version)
7243 {
7244 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7245 }
7246 EXPORT_SYMBOL(ata_print_version);
7247
7248 /*
7249 * libata is essentially a library of internal helper functions for
7250 * low-level ATA host controller drivers. As such, the API/ABI is
7251 * likely to change as new drivers are added and updated.
7252 * Do not depend on ABI/API stability.
7253 */
7254 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7255 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7256 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7257 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7258 EXPORT_SYMBOL_GPL(sata_port_ops);
7259 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7260 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7261 EXPORT_SYMBOL_GPL(ata_link_next);
7262 EXPORT_SYMBOL_GPL(ata_dev_next);
7263 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7264 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7265 EXPORT_SYMBOL_GPL(ata_host_init);
7266 EXPORT_SYMBOL_GPL(ata_host_alloc);
7267 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7268 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7269 EXPORT_SYMBOL_GPL(ata_host_start);
7270 EXPORT_SYMBOL_GPL(ata_host_register);
7271 EXPORT_SYMBOL_GPL(ata_host_activate);
7272 EXPORT_SYMBOL_GPL(ata_host_detach);
7273 EXPORT_SYMBOL_GPL(ata_sg_init);
7274 EXPORT_SYMBOL_GPL(ata_qc_complete);
7275 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7276 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7277 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7278 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7279 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7280 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7281 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7282 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7283 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7284 EXPORT_SYMBOL_GPL(ata_mode_string);
7285 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7286 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7287 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7288 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7289 EXPORT_SYMBOL_GPL(ata_dev_disable);
7290 EXPORT_SYMBOL_GPL(sata_set_spd);
7291 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7292 EXPORT_SYMBOL_GPL(sata_link_debounce);
7293 EXPORT_SYMBOL_GPL(sata_link_resume);
7294 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7295 EXPORT_SYMBOL_GPL(ata_std_prereset);
7296 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7297 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7298 EXPORT_SYMBOL_GPL(ata_std_postreset);
7299 EXPORT_SYMBOL_GPL(ata_dev_classify);
7300 EXPORT_SYMBOL_GPL(ata_dev_pair);
7301 EXPORT_SYMBOL_GPL(ata_ratelimit);
7302 EXPORT_SYMBOL_GPL(ata_msleep);
7303 EXPORT_SYMBOL_GPL(ata_wait_register);
7304 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7305 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7306 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7307 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7308 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7309 EXPORT_SYMBOL_GPL(sata_scr_valid);
7310 EXPORT_SYMBOL_GPL(sata_scr_read);
7311 EXPORT_SYMBOL_GPL(sata_scr_write);
7312 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7313 EXPORT_SYMBOL_GPL(ata_link_online);
7314 EXPORT_SYMBOL_GPL(ata_link_offline);
7315 #ifdef CONFIG_PM
7316 EXPORT_SYMBOL_GPL(ata_host_suspend);
7317 EXPORT_SYMBOL_GPL(ata_host_resume);
7318 #endif /* CONFIG_PM */
7319 EXPORT_SYMBOL_GPL(ata_id_string);
7320 EXPORT_SYMBOL_GPL(ata_id_c_string);
7321 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7322 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7323
7324 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7325 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7326 EXPORT_SYMBOL_GPL(ata_timing_compute);
7327 EXPORT_SYMBOL_GPL(ata_timing_merge);
7328 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7329
7330 #ifdef CONFIG_PCI
7331 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7332 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7333 #ifdef CONFIG_PM
7334 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7335 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7336 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7337 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7338 #endif /* CONFIG_PM */
7339 #endif /* CONFIG_PCI */
7340
7341 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7342
7343 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7344 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7345 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7346 EXPORT_SYMBOL_GPL(ata_port_desc);
7347 #ifdef CONFIG_PCI
7348 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7349 #endif /* CONFIG_PCI */
7350 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7351 EXPORT_SYMBOL_GPL(ata_link_abort);
7352 EXPORT_SYMBOL_GPL(ata_port_abort);
7353 EXPORT_SYMBOL_GPL(ata_port_freeze);
7354 EXPORT_SYMBOL_GPL(sata_async_notification);
7355 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7356 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7357 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7358 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7359 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7360 EXPORT_SYMBOL_GPL(ata_do_eh);
7361 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7362
7363 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7364 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7365 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7366 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7367 EXPORT_SYMBOL_GPL(ata_cable_sata);