]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/ata/libata-core.c
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[mirror_ubuntu-focal-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
66
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
71
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
74
75 struct workqueue_struct *ata_aux_wq;
76
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
97
98
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
113 {
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139 }
140
141 /**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
153 {
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168 }
169
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
185 0,
186 0,
187 0,
188 0,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
198 };
199
200 /**
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
203 *
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
206 *
207 * LOCKING:
208 * caller.
209 */
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
211 {
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
214 u8 cmd;
215
216 int index, fua, lba48, write;
217
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
221
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
229 } else {
230 tf->protocol = ATA_PROT_DMA;
231 index = 16;
232 }
233
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
238 }
239 return -1;
240 }
241
242 /**
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
247 *
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
250 *
251 * LOCKING:
252 * None.
253 *
254 * RETURNS:
255 * Packed xfer_mask.
256 */
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
260 {
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
264 }
265
266 /**
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
272 *
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
275 */
276 static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
280 {
281 if (pio_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
283 if (mwdma_mask)
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
285 if (udma_mask)
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287 }
288
289 static const struct ata_xfer_ent {
290 int shift, bits;
291 u8 base;
292 } ata_xfer_tbl[] = {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
296 { -1, },
297 };
298
299 /**
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
302 *
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
305 *
306 * LOCKING:
307 * None.
308 *
309 * RETURNS:
310 * Matching XFER_* value, 0 if no match found.
311 */
312 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
313 {
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
316
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
320 return 0;
321 }
322
323 /**
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
326 *
327 * Return matching xfer_mask for @xfer_mode.
328 *
329 * LOCKING:
330 * None.
331 *
332 * RETURNS:
333 * Matching xfer_mask, 0 if no match found.
334 */
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
336 {
337 const struct ata_xfer_ent *ent;
338
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
342 return 0;
343 }
344
345 /**
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
348 *
349 * Return matching xfer_shift for @xfer_mode.
350 *
351 * LOCKING:
352 * None.
353 *
354 * RETURNS:
355 * Matching xfer_shift, -1 if no match found.
356 */
357 static int ata_xfer_mode2shift(unsigned int xfer_mode)
358 {
359 const struct ata_xfer_ent *ent;
360
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
363 return ent->shift;
364 return -1;
365 }
366
367 /**
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
370 *
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
373 *
374 * LOCKING:
375 * None.
376 *
377 * RETURNS:
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
380 */
381 static const char *ata_mode_string(unsigned int xfer_mask)
382 {
383 static const char * const xfer_mode_str[] = {
384 "PIO0",
385 "PIO1",
386 "PIO2",
387 "PIO3",
388 "PIO4",
389 "PIO5",
390 "PIO6",
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
394 "MWDMA3",
395 "MWDMA4",
396 "UDMA/16",
397 "UDMA/25",
398 "UDMA/33",
399 "UDMA/44",
400 "UDMA/66",
401 "UDMA/100",
402 "UDMA/133",
403 "UDMA7",
404 };
405 int highbit;
406
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
410 return "<n/a>";
411 }
412
413 static const char *sata_spd_string(unsigned int spd)
414 {
415 static const char * const spd_str[] = {
416 "1.5 Gbps",
417 "3.0 Gbps",
418 };
419
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
421 return "<unknown>";
422 return spd_str[spd - 1];
423 }
424
425 void ata_dev_disable(struct ata_device *dev)
426 {
427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
429 dev->class++;
430 }
431 }
432
433 /**
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
437 *
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
441 *
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
446 *
447 * LOCKING:
448 * caller.
449 */
450
451 static unsigned int ata_pio_devchk(struct ata_port *ap,
452 unsigned int device)
453 {
454 struct ata_ioports *ioaddr = &ap->ioaddr;
455 u8 nsect, lbal;
456
457 ap->ops->dev_select(ap, device);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
464
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
467
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
470
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
473
474 return 0; /* nothing found */
475 }
476
477 /**
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
481 *
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
485 *
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
490 *
491 * LOCKING:
492 * caller.
493 */
494
495 static unsigned int ata_mmio_devchk(struct ata_port *ap,
496 unsigned int device)
497 {
498 struct ata_ioports *ioaddr = &ap->ioaddr;
499 u8 nsect, lbal;
500
501 ap->ops->dev_select(ap, device);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
508
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
511
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
514
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
517
518 return 0; /* nothing found */
519 }
520
521 /**
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
525 *
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
529 *
530 * LOCKING:
531 * caller.
532 */
533
534 static unsigned int ata_devchk(struct ata_port *ap,
535 unsigned int device)
536 {
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
540 }
541
542 /**
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
545 *
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
556 */
557
558 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
559 {
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
563 */
564
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
568 return ATA_DEV_ATA;
569 }
570
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
575 }
576
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
579 }
580
581 /**
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
586 *
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
590 * and diagnostics.
591 *
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
595 *
596 * LOCKING:
597 * caller.
598 *
599 * RETURNS:
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
601 */
602
603 static unsigned int
604 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
605 {
606 struct ata_taskfile tf;
607 unsigned int class;
608 u8 err;
609
610 ap->ops->dev_select(ap, device);
611
612 memset(&tf, 0, sizeof(tf));
613
614 ap->ops->tf_read(ap, &tf);
615 err = tf.feature;
616 if (r_err)
617 *r_err = err;
618
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
623 else if (err == 1)
624 /* do nothing */ ;
625 else if ((device == 0) && (err == 0x81))
626 /* do nothing */ ;
627 else
628 return ATA_DEV_NONE;
629
630 /* determine if device is ATA or ATAPI */
631 class = ata_dev_classify(&tf);
632
633 if (class == ATA_DEV_UNKNOWN)
634 return ATA_DEV_NONE;
635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
636 return ATA_DEV_NONE;
637 return class;
638 }
639
640 /**
641 * ata_id_string - Convert IDENTIFY DEVICE page into string
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
646 *
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
650 *
651 * LOCKING:
652 * caller.
653 */
654
655 void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
657 {
658 unsigned int c;
659
660 while (len > 0) {
661 c = id[ofs] >> 8;
662 *s = c;
663 s++;
664
665 c = id[ofs] & 0xff;
666 *s = c;
667 s++;
668
669 ofs++;
670 len -= 2;
671 }
672 }
673
674 /**
675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
680 *
681 * This function is identical to ata_id_string except that it
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
684 *
685 * LOCKING:
686 * caller.
687 */
688 void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
690 {
691 unsigned char *p;
692
693 WARN_ON(!(len & 1));
694
695 ata_id_string(id, s, ofs, len - 1);
696
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
699 p--;
700 *p = '\0';
701 }
702
703 static u64 ata_id_n_sectors(const u16 *id)
704 {
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
708 else
709 return ata_id_u32(id, 60);
710 } else {
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
713 else
714 return id[1] * id[3] * id[6];
715 }
716 }
717
718 /**
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
722 *
723 * This function performs no actual function.
724 *
725 * May be used as the dev_select() entry in ata_port_operations.
726 *
727 * LOCKING:
728 * caller.
729 */
730 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
731 {
732 }
733
734
735 /**
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
739 *
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
742 * ATA channel. Works with both PIO and MMIO.
743 *
744 * May be used as the dev_select() entry in ata_port_operations.
745 *
746 * LOCKING:
747 * caller.
748 */
749
750 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
751 {
752 u8 tmp;
753
754 if (device == 0)
755 tmp = ATA_DEVICE_OBS;
756 else
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
758
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
761 } else {
762 outb(tmp, ap->ioaddr.device_addr);
763 }
764 ata_pause(ap); /* needed; also flushes, for mmio */
765 }
766
767 /**
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
773 *
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
776 * ATA channel.
777 *
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
781 *
782 * LOCKING:
783 * caller.
784 */
785
786 void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
788 {
789 if (ata_msg_probe(ap))
790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
791 "device %u, wait %u\n", ap->id, device, wait);
792
793 if (wait)
794 ata_wait_idle(ap);
795
796 ap->ops->dev_select(ap, device);
797
798 if (wait) {
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
800 msleep(150);
801 ata_wait_idle(ap);
802 }
803 }
804
805 /**
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
807 * @id: IDENTIFY DEVICE page to dump
808 *
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
810 * page.
811 *
812 * LOCKING:
813 * caller.
814 */
815
816 static inline void ata_dump_id(const u16 *id)
817 {
818 DPRINTK("49==0x%04x "
819 "53==0x%04x "
820 "63==0x%04x "
821 "64==0x%04x "
822 "75==0x%04x \n",
823 id[49],
824 id[53],
825 id[63],
826 id[64],
827 id[75]);
828 DPRINTK("80==0x%04x "
829 "81==0x%04x "
830 "82==0x%04x "
831 "83==0x%04x "
832 "84==0x%04x \n",
833 id[80],
834 id[81],
835 id[82],
836 id[83],
837 id[84]);
838 DPRINTK("88==0x%04x "
839 "93==0x%04x\n",
840 id[88],
841 id[93]);
842 }
843
844 /**
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
847 *
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
850 *
851 * FIXME: pre IDE drive timing (do we care ?).
852 *
853 * LOCKING:
854 * None.
855 *
856 * RETURNS:
857 * Computed xfermask
858 */
859 static unsigned int ata_id_xfermask(const u16 *id)
860 {
861 unsigned int pio_mask, mwdma_mask, udma_mask;
862
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
866 pio_mask <<= 3;
867 pio_mask |= 0x7;
868 } else {
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
871 * a mask.
872 */
873 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
874
875 /* But wait.. there's more. Design your standards by
876 * committee and you too can get a free iordy field to
877 * process. However its the speeds not the modes that
878 * are supported... Note drivers using the timing API
879 * will get this right anyway
880 */
881 }
882
883 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
884
885 if (ata_id_is_cfa(id)) {
886 /*
887 * Process compact flash extended modes
888 */
889 int pio = id[163] & 0x7;
890 int dma = (id[163] >> 3) & 7;
891
892 if (pio)
893 pio_mask |= (1 << 5);
894 if (pio > 1)
895 pio_mask |= (1 << 6);
896 if (dma)
897 mwdma_mask |= (1 << 3);
898 if (dma > 1)
899 mwdma_mask |= (1 << 4);
900 }
901
902 udma_mask = 0;
903 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
904 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
905
906 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
907 }
908
909 /**
910 * ata_port_queue_task - Queue port_task
911 * @ap: The ata_port to queue port_task for
912 * @fn: workqueue function to be scheduled
913 * @data: data value to pass to workqueue function
914 * @delay: delay time for workqueue function
915 *
916 * Schedule @fn(@data) for execution after @delay jiffies using
917 * port_task. There is one port_task per port and it's the
918 * user(low level driver)'s responsibility to make sure that only
919 * one task is active at any given time.
920 *
921 * libata core layer takes care of synchronization between
922 * port_task and EH. ata_port_queue_task() may be ignored for EH
923 * synchronization.
924 *
925 * LOCKING:
926 * Inherited from caller.
927 */
928 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
929 unsigned long delay)
930 {
931 int rc;
932
933 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
934 return;
935
936 PREPARE_WORK(&ap->port_task, fn, data);
937
938 if (!delay)
939 rc = queue_work(ata_wq, &ap->port_task);
940 else
941 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
942
943 /* rc == 0 means that another user is using port task */
944 WARN_ON(rc == 0);
945 }
946
947 /**
948 * ata_port_flush_task - Flush port_task
949 * @ap: The ata_port to flush port_task for
950 *
951 * After this function completes, port_task is guranteed not to
952 * be running or scheduled.
953 *
954 * LOCKING:
955 * Kernel thread context (may sleep)
956 */
957 void ata_port_flush_task(struct ata_port *ap)
958 {
959 unsigned long flags;
960
961 DPRINTK("ENTER\n");
962
963 spin_lock_irqsave(ap->lock, flags);
964 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
965 spin_unlock_irqrestore(ap->lock, flags);
966
967 DPRINTK("flush #1\n");
968 flush_workqueue(ata_wq);
969
970 /*
971 * At this point, if a task is running, it's guaranteed to see
972 * the FLUSH flag; thus, it will never queue pio tasks again.
973 * Cancel and flush.
974 */
975 if (!cancel_delayed_work(&ap->port_task)) {
976 if (ata_msg_ctl(ap))
977 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
978 __FUNCTION__);
979 flush_workqueue(ata_wq);
980 }
981
982 spin_lock_irqsave(ap->lock, flags);
983 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
984 spin_unlock_irqrestore(ap->lock, flags);
985
986 if (ata_msg_ctl(ap))
987 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
988 }
989
990 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
991 {
992 struct completion *waiting = qc->private_data;
993
994 complete(waiting);
995 }
996
997 /**
998 * ata_exec_internal - execute libata internal command
999 * @dev: Device to which the command is sent
1000 * @tf: Taskfile registers for the command and the result
1001 * @cdb: CDB for packet command
1002 * @dma_dir: Data tranfer direction of the command
1003 * @buf: Data buffer of the command
1004 * @buflen: Length of data buffer
1005 *
1006 * Executes libata internal command with timeout. @tf contains
1007 * command on entry and result on return. Timeout and error
1008 * conditions are reported via return value. No recovery action
1009 * is taken after a command times out. It's caller's duty to
1010 * clean up after timeout.
1011 *
1012 * LOCKING:
1013 * None. Should be called with kernel context, might sleep.
1014 *
1015 * RETURNS:
1016 * Zero on success, AC_ERR_* mask on failure
1017 */
1018 unsigned ata_exec_internal(struct ata_device *dev,
1019 struct ata_taskfile *tf, const u8 *cdb,
1020 int dma_dir, void *buf, unsigned int buflen)
1021 {
1022 struct ata_port *ap = dev->ap;
1023 u8 command = tf->command;
1024 struct ata_queued_cmd *qc;
1025 unsigned int tag, preempted_tag;
1026 u32 preempted_sactive, preempted_qc_active;
1027 DECLARE_COMPLETION_ONSTACK(wait);
1028 unsigned long flags;
1029 unsigned int err_mask;
1030 int rc;
1031
1032 spin_lock_irqsave(ap->lock, flags);
1033
1034 /* no internal command while frozen */
1035 if (ap->pflags & ATA_PFLAG_FROZEN) {
1036 spin_unlock_irqrestore(ap->lock, flags);
1037 return AC_ERR_SYSTEM;
1038 }
1039
1040 /* initialize internal qc */
1041
1042 /* XXX: Tag 0 is used for drivers with legacy EH as some
1043 * drivers choke if any other tag is given. This breaks
1044 * ata_tag_internal() test for those drivers. Don't use new
1045 * EH stuff without converting to it.
1046 */
1047 if (ap->ops->error_handler)
1048 tag = ATA_TAG_INTERNAL;
1049 else
1050 tag = 0;
1051
1052 if (test_and_set_bit(tag, &ap->qc_allocated))
1053 BUG();
1054 qc = __ata_qc_from_tag(ap, tag);
1055
1056 qc->tag = tag;
1057 qc->scsicmd = NULL;
1058 qc->ap = ap;
1059 qc->dev = dev;
1060 ata_qc_reinit(qc);
1061
1062 preempted_tag = ap->active_tag;
1063 preempted_sactive = ap->sactive;
1064 preempted_qc_active = ap->qc_active;
1065 ap->active_tag = ATA_TAG_POISON;
1066 ap->sactive = 0;
1067 ap->qc_active = 0;
1068
1069 /* prepare & issue qc */
1070 qc->tf = *tf;
1071 if (cdb)
1072 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1073 qc->flags |= ATA_QCFLAG_RESULT_TF;
1074 qc->dma_dir = dma_dir;
1075 if (dma_dir != DMA_NONE) {
1076 ata_sg_init_one(qc, buf, buflen);
1077 qc->nsect = buflen / ATA_SECT_SIZE;
1078 }
1079
1080 qc->private_data = &wait;
1081 qc->complete_fn = ata_qc_complete_internal;
1082
1083 ata_qc_issue(qc);
1084
1085 spin_unlock_irqrestore(ap->lock, flags);
1086
1087 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1088
1089 ata_port_flush_task(ap);
1090
1091 if (!rc) {
1092 spin_lock_irqsave(ap->lock, flags);
1093
1094 /* We're racing with irq here. If we lose, the
1095 * following test prevents us from completing the qc
1096 * twice. If we win, the port is frozen and will be
1097 * cleaned up by ->post_internal_cmd().
1098 */
1099 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1100 qc->err_mask |= AC_ERR_TIMEOUT;
1101
1102 if (ap->ops->error_handler)
1103 ata_port_freeze(ap);
1104 else
1105 ata_qc_complete(qc);
1106
1107 if (ata_msg_warn(ap))
1108 ata_dev_printk(dev, KERN_WARNING,
1109 "qc timeout (cmd 0x%x)\n", command);
1110 }
1111
1112 spin_unlock_irqrestore(ap->lock, flags);
1113 }
1114
1115 /* do post_internal_cmd */
1116 if (ap->ops->post_internal_cmd)
1117 ap->ops->post_internal_cmd(qc);
1118
1119 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1120 if (ata_msg_warn(ap))
1121 ata_dev_printk(dev, KERN_WARNING,
1122 "zero err_mask for failed "
1123 "internal command, assuming AC_ERR_OTHER\n");
1124 qc->err_mask |= AC_ERR_OTHER;
1125 }
1126
1127 /* finish up */
1128 spin_lock_irqsave(ap->lock, flags);
1129
1130 *tf = qc->result_tf;
1131 err_mask = qc->err_mask;
1132
1133 ata_qc_free(qc);
1134 ap->active_tag = preempted_tag;
1135 ap->sactive = preempted_sactive;
1136 ap->qc_active = preempted_qc_active;
1137
1138 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1139 * Until those drivers are fixed, we detect the condition
1140 * here, fail the command with AC_ERR_SYSTEM and reenable the
1141 * port.
1142 *
1143 * Note that this doesn't change any behavior as internal
1144 * command failure results in disabling the device in the
1145 * higher layer for LLDDs without new reset/EH callbacks.
1146 *
1147 * Kill the following code as soon as those drivers are fixed.
1148 */
1149 if (ap->flags & ATA_FLAG_DISABLED) {
1150 err_mask |= AC_ERR_SYSTEM;
1151 ata_port_probe(ap);
1152 }
1153
1154 spin_unlock_irqrestore(ap->lock, flags);
1155
1156 return err_mask;
1157 }
1158
1159 /**
1160 * ata_do_simple_cmd - execute simple internal command
1161 * @dev: Device to which the command is sent
1162 * @cmd: Opcode to execute
1163 *
1164 * Execute a 'simple' command, that only consists of the opcode
1165 * 'cmd' itself, without filling any other registers
1166 *
1167 * LOCKING:
1168 * Kernel thread context (may sleep).
1169 *
1170 * RETURNS:
1171 * Zero on success, AC_ERR_* mask on failure
1172 */
1173 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1174 {
1175 struct ata_taskfile tf;
1176
1177 ata_tf_init(dev, &tf);
1178
1179 tf.command = cmd;
1180 tf.flags |= ATA_TFLAG_DEVICE;
1181 tf.protocol = ATA_PROT_NODATA;
1182
1183 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1184 }
1185
1186 /**
1187 * ata_pio_need_iordy - check if iordy needed
1188 * @adev: ATA device
1189 *
1190 * Check if the current speed of the device requires IORDY. Used
1191 * by various controllers for chip configuration.
1192 */
1193
1194 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1195 {
1196 int pio;
1197 int speed = adev->pio_mode - XFER_PIO_0;
1198
1199 if (speed < 2)
1200 return 0;
1201 if (speed > 2)
1202 return 1;
1203
1204 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1205
1206 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1207 pio = adev->id[ATA_ID_EIDE_PIO];
1208 /* Is the speed faster than the drive allows non IORDY ? */
1209 if (pio) {
1210 /* This is cycle times not frequency - watch the logic! */
1211 if (pio > 240) /* PIO2 is 240nS per cycle */
1212 return 1;
1213 return 0;
1214 }
1215 }
1216 return 0;
1217 }
1218
1219 /**
1220 * ata_dev_read_id - Read ID data from the specified device
1221 * @dev: target device
1222 * @p_class: pointer to class of the target device (may be changed)
1223 * @post_reset: is this read ID post-reset?
1224 * @id: buffer to read IDENTIFY data into
1225 *
1226 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1227 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1228 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1229 * for pre-ATA4 drives.
1230 *
1231 * LOCKING:
1232 * Kernel thread context (may sleep)
1233 *
1234 * RETURNS:
1235 * 0 on success, -errno otherwise.
1236 */
1237 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1238 int post_reset, u16 *id)
1239 {
1240 struct ata_port *ap = dev->ap;
1241 unsigned int class = *p_class;
1242 struct ata_taskfile tf;
1243 unsigned int err_mask = 0;
1244 const char *reason;
1245 int rc;
1246
1247 if (ata_msg_ctl(ap))
1248 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1249 __FUNCTION__, ap->id, dev->devno);
1250
1251 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1252
1253 retry:
1254 ata_tf_init(dev, &tf);
1255
1256 switch (class) {
1257 case ATA_DEV_ATA:
1258 tf.command = ATA_CMD_ID_ATA;
1259 break;
1260 case ATA_DEV_ATAPI:
1261 tf.command = ATA_CMD_ID_ATAPI;
1262 break;
1263 default:
1264 rc = -ENODEV;
1265 reason = "unsupported class";
1266 goto err_out;
1267 }
1268
1269 tf.protocol = ATA_PROT_PIO;
1270
1271 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1272 id, sizeof(id[0]) * ATA_ID_WORDS);
1273 if (err_mask) {
1274 rc = -EIO;
1275 reason = "I/O error";
1276 goto err_out;
1277 }
1278
1279 swap_buf_le16(id, ATA_ID_WORDS);
1280
1281 /* sanity check */
1282 rc = -EINVAL;
1283 reason = "device reports illegal type";
1284
1285 if (class == ATA_DEV_ATA) {
1286 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1287 goto err_out;
1288 } else {
1289 if (ata_id_is_ata(id))
1290 goto err_out;
1291 }
1292
1293 if (post_reset && class == ATA_DEV_ATA) {
1294 /*
1295 * The exact sequence expected by certain pre-ATA4 drives is:
1296 * SRST RESET
1297 * IDENTIFY
1298 * INITIALIZE DEVICE PARAMETERS
1299 * anything else..
1300 * Some drives were very specific about that exact sequence.
1301 */
1302 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1303 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1304 if (err_mask) {
1305 rc = -EIO;
1306 reason = "INIT_DEV_PARAMS failed";
1307 goto err_out;
1308 }
1309
1310 /* current CHS translation info (id[53-58]) might be
1311 * changed. reread the identify device info.
1312 */
1313 post_reset = 0;
1314 goto retry;
1315 }
1316 }
1317
1318 *p_class = class;
1319
1320 return 0;
1321
1322 err_out:
1323 if (ata_msg_warn(ap))
1324 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1325 "(%s, err_mask=0x%x)\n", reason, err_mask);
1326 return rc;
1327 }
1328
1329 static inline u8 ata_dev_knobble(struct ata_device *dev)
1330 {
1331 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1332 }
1333
1334 static void ata_dev_config_ncq(struct ata_device *dev,
1335 char *desc, size_t desc_sz)
1336 {
1337 struct ata_port *ap = dev->ap;
1338 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1339
1340 if (!ata_id_has_ncq(dev->id)) {
1341 desc[0] = '\0';
1342 return;
1343 }
1344
1345 if (ap->flags & ATA_FLAG_NCQ) {
1346 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1347 dev->flags |= ATA_DFLAG_NCQ;
1348 }
1349
1350 if (hdepth >= ddepth)
1351 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1352 else
1353 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1354 }
1355
1356 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1357 {
1358 int i;
1359
1360 if (ap->scsi_host) {
1361 unsigned int len = 0;
1362
1363 for (i = 0; i < ATA_MAX_DEVICES; i++)
1364 len = max(len, ap->device[i].cdb_len);
1365
1366 ap->scsi_host->max_cmd_len = len;
1367 }
1368 }
1369
1370 /**
1371 * ata_dev_configure - Configure the specified ATA/ATAPI device
1372 * @dev: Target device to configure
1373 * @print_info: Enable device info printout
1374 *
1375 * Configure @dev according to @dev->id. Generic and low-level
1376 * driver specific fixups are also applied.
1377 *
1378 * LOCKING:
1379 * Kernel thread context (may sleep)
1380 *
1381 * RETURNS:
1382 * 0 on success, -errno otherwise
1383 */
1384 int ata_dev_configure(struct ata_device *dev, int print_info)
1385 {
1386 struct ata_port *ap = dev->ap;
1387 const u16 *id = dev->id;
1388 unsigned int xfer_mask;
1389 char revbuf[7]; /* XYZ-99\0 */
1390 int rc;
1391
1392 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1393 ata_dev_printk(dev, KERN_INFO,
1394 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1395 __FUNCTION__, ap->id, dev->devno);
1396 return 0;
1397 }
1398
1399 if (ata_msg_probe(ap))
1400 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1401 __FUNCTION__, ap->id, dev->devno);
1402
1403 /* print device capabilities */
1404 if (ata_msg_probe(ap))
1405 ata_dev_printk(dev, KERN_DEBUG,
1406 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1407 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1408 __FUNCTION__,
1409 id[49], id[82], id[83], id[84],
1410 id[85], id[86], id[87], id[88]);
1411
1412 /* initialize to-be-configured parameters */
1413 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1414 dev->max_sectors = 0;
1415 dev->cdb_len = 0;
1416 dev->n_sectors = 0;
1417 dev->cylinders = 0;
1418 dev->heads = 0;
1419 dev->sectors = 0;
1420
1421 /*
1422 * common ATA, ATAPI feature tests
1423 */
1424
1425 /* find max transfer mode; for printk only */
1426 xfer_mask = ata_id_xfermask(id);
1427
1428 if (ata_msg_probe(ap))
1429 ata_dump_id(id);
1430
1431 /* ATA-specific feature tests */
1432 if (dev->class == ATA_DEV_ATA) {
1433 if (ata_id_is_cfa(id)) {
1434 if (id[162] & 1) /* CPRM may make this media unusable */
1435 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1436 ap->id, dev->devno);
1437 snprintf(revbuf, 7, "CFA");
1438 }
1439 else
1440 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1441
1442 dev->n_sectors = ata_id_n_sectors(id);
1443
1444 if (ata_id_has_lba(id)) {
1445 const char *lba_desc;
1446 char ncq_desc[20];
1447
1448 lba_desc = "LBA";
1449 dev->flags |= ATA_DFLAG_LBA;
1450 if (ata_id_has_lba48(id)) {
1451 dev->flags |= ATA_DFLAG_LBA48;
1452 lba_desc = "LBA48";
1453 }
1454
1455 /* config NCQ */
1456 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1457
1458 /* print device info to dmesg */
1459 if (ata_msg_drv(ap) && print_info)
1460 ata_dev_printk(dev, KERN_INFO, "%s, "
1461 "max %s, %Lu sectors: %s %s\n",
1462 revbuf,
1463 ata_mode_string(xfer_mask),
1464 (unsigned long long)dev->n_sectors,
1465 lba_desc, ncq_desc);
1466 } else {
1467 /* CHS */
1468
1469 /* Default translation */
1470 dev->cylinders = id[1];
1471 dev->heads = id[3];
1472 dev->sectors = id[6];
1473
1474 if (ata_id_current_chs_valid(id)) {
1475 /* Current CHS translation is valid. */
1476 dev->cylinders = id[54];
1477 dev->heads = id[55];
1478 dev->sectors = id[56];
1479 }
1480
1481 /* print device info to dmesg */
1482 if (ata_msg_drv(ap) && print_info)
1483 ata_dev_printk(dev, KERN_INFO, "%s, "
1484 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1485 revbuf,
1486 ata_mode_string(xfer_mask),
1487 (unsigned long long)dev->n_sectors,
1488 dev->cylinders, dev->heads,
1489 dev->sectors);
1490 }
1491
1492 if (dev->id[59] & 0x100) {
1493 dev->multi_count = dev->id[59] & 0xff;
1494 if (ata_msg_drv(ap) && print_info)
1495 ata_dev_printk(dev, KERN_INFO,
1496 "ata%u: dev %u multi count %u\n",
1497 ap->id, dev->devno, dev->multi_count);
1498 }
1499
1500 dev->cdb_len = 16;
1501 }
1502
1503 /* ATAPI-specific feature tests */
1504 else if (dev->class == ATA_DEV_ATAPI) {
1505 char *cdb_intr_string = "";
1506
1507 rc = atapi_cdb_len(id);
1508 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1509 if (ata_msg_warn(ap))
1510 ata_dev_printk(dev, KERN_WARNING,
1511 "unsupported CDB len\n");
1512 rc = -EINVAL;
1513 goto err_out_nosup;
1514 }
1515 dev->cdb_len = (unsigned int) rc;
1516
1517 if (ata_id_cdb_intr(dev->id)) {
1518 dev->flags |= ATA_DFLAG_CDB_INTR;
1519 cdb_intr_string = ", CDB intr";
1520 }
1521
1522 /* print device info to dmesg */
1523 if (ata_msg_drv(ap) && print_info)
1524 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1525 ata_mode_string(xfer_mask),
1526 cdb_intr_string);
1527 }
1528
1529 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1530 /* Let the user know. We don't want to disallow opens for
1531 rescue purposes, or in case the vendor is just a blithering
1532 idiot */
1533 if (print_info) {
1534 ata_dev_printk(dev, KERN_WARNING,
1535 "Drive reports diagnostics failure. This may indicate a drive\n");
1536 ata_dev_printk(dev, KERN_WARNING,
1537 "fault or invalid emulation. Contact drive vendor for information.\n");
1538 }
1539 }
1540
1541 ata_set_port_max_cmd_len(ap);
1542
1543 /* limit bridge transfers to udma5, 200 sectors */
1544 if (ata_dev_knobble(dev)) {
1545 if (ata_msg_drv(ap) && print_info)
1546 ata_dev_printk(dev, KERN_INFO,
1547 "applying bridge limits\n");
1548 dev->udma_mask &= ATA_UDMA5;
1549 dev->max_sectors = ATA_MAX_SECTORS;
1550 }
1551
1552 if (ap->ops->dev_config)
1553 ap->ops->dev_config(ap, dev);
1554
1555 if (ata_msg_probe(ap))
1556 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1557 __FUNCTION__, ata_chk_status(ap));
1558 return 0;
1559
1560 err_out_nosup:
1561 if (ata_msg_probe(ap))
1562 ata_dev_printk(dev, KERN_DEBUG,
1563 "%s: EXIT, err\n", __FUNCTION__);
1564 return rc;
1565 }
1566
1567 /**
1568 * ata_bus_probe - Reset and probe ATA bus
1569 * @ap: Bus to probe
1570 *
1571 * Master ATA bus probing function. Initiates a hardware-dependent
1572 * bus reset, then attempts to identify any devices found on
1573 * the bus.
1574 *
1575 * LOCKING:
1576 * PCI/etc. bus probe sem.
1577 *
1578 * RETURNS:
1579 * Zero on success, negative errno otherwise.
1580 */
1581
1582 int ata_bus_probe(struct ata_port *ap)
1583 {
1584 unsigned int classes[ATA_MAX_DEVICES];
1585 int tries[ATA_MAX_DEVICES];
1586 int i, rc, down_xfermask;
1587 struct ata_device *dev;
1588
1589 ata_port_probe(ap);
1590
1591 for (i = 0; i < ATA_MAX_DEVICES; i++)
1592 tries[i] = ATA_PROBE_MAX_TRIES;
1593
1594 retry:
1595 down_xfermask = 0;
1596
1597 /* reset and determine device classes */
1598 ap->ops->phy_reset(ap);
1599
1600 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1601 dev = &ap->device[i];
1602
1603 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1604 dev->class != ATA_DEV_UNKNOWN)
1605 classes[dev->devno] = dev->class;
1606 else
1607 classes[dev->devno] = ATA_DEV_NONE;
1608
1609 dev->class = ATA_DEV_UNKNOWN;
1610 }
1611
1612 ata_port_probe(ap);
1613
1614 /* after the reset the device state is PIO 0 and the controller
1615 state is undefined. Record the mode */
1616
1617 for (i = 0; i < ATA_MAX_DEVICES; i++)
1618 ap->device[i].pio_mode = XFER_PIO_0;
1619
1620 /* read IDENTIFY page and configure devices */
1621 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1622 dev = &ap->device[i];
1623
1624 if (tries[i])
1625 dev->class = classes[i];
1626
1627 if (!ata_dev_enabled(dev))
1628 continue;
1629
1630 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1631 if (rc)
1632 goto fail;
1633
1634 rc = ata_dev_configure(dev, 1);
1635 if (rc)
1636 goto fail;
1637 }
1638
1639 /* configure transfer mode */
1640 rc = ata_set_mode(ap, &dev);
1641 if (rc) {
1642 down_xfermask = 1;
1643 goto fail;
1644 }
1645
1646 for (i = 0; i < ATA_MAX_DEVICES; i++)
1647 if (ata_dev_enabled(&ap->device[i]))
1648 return 0;
1649
1650 /* no device present, disable port */
1651 ata_port_disable(ap);
1652 ap->ops->port_disable(ap);
1653 return -ENODEV;
1654
1655 fail:
1656 switch (rc) {
1657 case -EINVAL:
1658 case -ENODEV:
1659 tries[dev->devno] = 0;
1660 break;
1661 case -EIO:
1662 sata_down_spd_limit(ap);
1663 /* fall through */
1664 default:
1665 tries[dev->devno]--;
1666 if (down_xfermask &&
1667 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1668 tries[dev->devno] = 0;
1669 }
1670
1671 if (!tries[dev->devno]) {
1672 ata_down_xfermask_limit(dev, 1);
1673 ata_dev_disable(dev);
1674 }
1675
1676 goto retry;
1677 }
1678
1679 /**
1680 * ata_port_probe - Mark port as enabled
1681 * @ap: Port for which we indicate enablement
1682 *
1683 * Modify @ap data structure such that the system
1684 * thinks that the entire port is enabled.
1685 *
1686 * LOCKING: host lock, or some other form of
1687 * serialization.
1688 */
1689
1690 void ata_port_probe(struct ata_port *ap)
1691 {
1692 ap->flags &= ~ATA_FLAG_DISABLED;
1693 }
1694
1695 /**
1696 * sata_print_link_status - Print SATA link status
1697 * @ap: SATA port to printk link status about
1698 *
1699 * This function prints link speed and status of a SATA link.
1700 *
1701 * LOCKING:
1702 * None.
1703 */
1704 static void sata_print_link_status(struct ata_port *ap)
1705 {
1706 u32 sstatus, scontrol, tmp;
1707
1708 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1709 return;
1710 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1711
1712 if (ata_port_online(ap)) {
1713 tmp = (sstatus >> 4) & 0xf;
1714 ata_port_printk(ap, KERN_INFO,
1715 "SATA link up %s (SStatus %X SControl %X)\n",
1716 sata_spd_string(tmp), sstatus, scontrol);
1717 } else {
1718 ata_port_printk(ap, KERN_INFO,
1719 "SATA link down (SStatus %X SControl %X)\n",
1720 sstatus, scontrol);
1721 }
1722 }
1723
1724 /**
1725 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1726 * @ap: SATA port associated with target SATA PHY.
1727 *
1728 * This function issues commands to standard SATA Sxxx
1729 * PHY registers, to wake up the phy (and device), and
1730 * clear any reset condition.
1731 *
1732 * LOCKING:
1733 * PCI/etc. bus probe sem.
1734 *
1735 */
1736 void __sata_phy_reset(struct ata_port *ap)
1737 {
1738 u32 sstatus;
1739 unsigned long timeout = jiffies + (HZ * 5);
1740
1741 if (ap->flags & ATA_FLAG_SATA_RESET) {
1742 /* issue phy wake/reset */
1743 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1744 /* Couldn't find anything in SATA I/II specs, but
1745 * AHCI-1.1 10.4.2 says at least 1 ms. */
1746 mdelay(1);
1747 }
1748 /* phy wake/clear reset */
1749 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1750
1751 /* wait for phy to become ready, if necessary */
1752 do {
1753 msleep(200);
1754 sata_scr_read(ap, SCR_STATUS, &sstatus);
1755 if ((sstatus & 0xf) != 1)
1756 break;
1757 } while (time_before(jiffies, timeout));
1758
1759 /* print link status */
1760 sata_print_link_status(ap);
1761
1762 /* TODO: phy layer with polling, timeouts, etc. */
1763 if (!ata_port_offline(ap))
1764 ata_port_probe(ap);
1765 else
1766 ata_port_disable(ap);
1767
1768 if (ap->flags & ATA_FLAG_DISABLED)
1769 return;
1770
1771 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1772 ata_port_disable(ap);
1773 return;
1774 }
1775
1776 ap->cbl = ATA_CBL_SATA;
1777 }
1778
1779 /**
1780 * sata_phy_reset - Reset SATA bus.
1781 * @ap: SATA port associated with target SATA PHY.
1782 *
1783 * This function resets the SATA bus, and then probes
1784 * the bus for devices.
1785 *
1786 * LOCKING:
1787 * PCI/etc. bus probe sem.
1788 *
1789 */
1790 void sata_phy_reset(struct ata_port *ap)
1791 {
1792 __sata_phy_reset(ap);
1793 if (ap->flags & ATA_FLAG_DISABLED)
1794 return;
1795 ata_bus_reset(ap);
1796 }
1797
1798 /**
1799 * ata_dev_pair - return other device on cable
1800 * @adev: device
1801 *
1802 * Obtain the other device on the same cable, or if none is
1803 * present NULL is returned
1804 */
1805
1806 struct ata_device *ata_dev_pair(struct ata_device *adev)
1807 {
1808 struct ata_port *ap = adev->ap;
1809 struct ata_device *pair = &ap->device[1 - adev->devno];
1810 if (!ata_dev_enabled(pair))
1811 return NULL;
1812 return pair;
1813 }
1814
1815 /**
1816 * ata_port_disable - Disable port.
1817 * @ap: Port to be disabled.
1818 *
1819 * Modify @ap data structure such that the system
1820 * thinks that the entire port is disabled, and should
1821 * never attempt to probe or communicate with devices
1822 * on this port.
1823 *
1824 * LOCKING: host lock, or some other form of
1825 * serialization.
1826 */
1827
1828 void ata_port_disable(struct ata_port *ap)
1829 {
1830 ap->device[0].class = ATA_DEV_NONE;
1831 ap->device[1].class = ATA_DEV_NONE;
1832 ap->flags |= ATA_FLAG_DISABLED;
1833 }
1834
1835 /**
1836 * sata_down_spd_limit - adjust SATA spd limit downward
1837 * @ap: Port to adjust SATA spd limit for
1838 *
1839 * Adjust SATA spd limit of @ap downward. Note that this
1840 * function only adjusts the limit. The change must be applied
1841 * using sata_set_spd().
1842 *
1843 * LOCKING:
1844 * Inherited from caller.
1845 *
1846 * RETURNS:
1847 * 0 on success, negative errno on failure
1848 */
1849 int sata_down_spd_limit(struct ata_port *ap)
1850 {
1851 u32 sstatus, spd, mask;
1852 int rc, highbit;
1853
1854 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1855 if (rc)
1856 return rc;
1857
1858 mask = ap->sata_spd_limit;
1859 if (mask <= 1)
1860 return -EINVAL;
1861 highbit = fls(mask) - 1;
1862 mask &= ~(1 << highbit);
1863
1864 spd = (sstatus >> 4) & 0xf;
1865 if (spd <= 1)
1866 return -EINVAL;
1867 spd--;
1868 mask &= (1 << spd) - 1;
1869 if (!mask)
1870 return -EINVAL;
1871
1872 ap->sata_spd_limit = mask;
1873
1874 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1875 sata_spd_string(fls(mask)));
1876
1877 return 0;
1878 }
1879
1880 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1881 {
1882 u32 spd, limit;
1883
1884 if (ap->sata_spd_limit == UINT_MAX)
1885 limit = 0;
1886 else
1887 limit = fls(ap->sata_spd_limit);
1888
1889 spd = (*scontrol >> 4) & 0xf;
1890 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1891
1892 return spd != limit;
1893 }
1894
1895 /**
1896 * sata_set_spd_needed - is SATA spd configuration needed
1897 * @ap: Port in question
1898 *
1899 * Test whether the spd limit in SControl matches
1900 * @ap->sata_spd_limit. This function is used to determine
1901 * whether hardreset is necessary to apply SATA spd
1902 * configuration.
1903 *
1904 * LOCKING:
1905 * Inherited from caller.
1906 *
1907 * RETURNS:
1908 * 1 if SATA spd configuration is needed, 0 otherwise.
1909 */
1910 int sata_set_spd_needed(struct ata_port *ap)
1911 {
1912 u32 scontrol;
1913
1914 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1915 return 0;
1916
1917 return __sata_set_spd_needed(ap, &scontrol);
1918 }
1919
1920 /**
1921 * sata_set_spd - set SATA spd according to spd limit
1922 * @ap: Port to set SATA spd for
1923 *
1924 * Set SATA spd of @ap according to sata_spd_limit.
1925 *
1926 * LOCKING:
1927 * Inherited from caller.
1928 *
1929 * RETURNS:
1930 * 0 if spd doesn't need to be changed, 1 if spd has been
1931 * changed. Negative errno if SCR registers are inaccessible.
1932 */
1933 int sata_set_spd(struct ata_port *ap)
1934 {
1935 u32 scontrol;
1936 int rc;
1937
1938 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1939 return rc;
1940
1941 if (!__sata_set_spd_needed(ap, &scontrol))
1942 return 0;
1943
1944 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1945 return rc;
1946
1947 return 1;
1948 }
1949
1950 /*
1951 * This mode timing computation functionality is ported over from
1952 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1953 */
1954 /*
1955 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1956 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1957 * for UDMA6, which is currently supported only by Maxtor drives.
1958 *
1959 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1960 */
1961
1962 static const struct ata_timing ata_timing[] = {
1963
1964 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1965 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1966 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1967 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1968
1969 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1970 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
1971 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1972 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1973 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1974
1975 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1976
1977 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1978 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1979 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1980
1981 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1982 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1983 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1984
1985 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1986 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
1987 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1988 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1989
1990 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1991 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1992 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1993
1994 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1995
1996 { 0xFF }
1997 };
1998
1999 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2000 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2001
2002 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2003 {
2004 q->setup = EZ(t->setup * 1000, T);
2005 q->act8b = EZ(t->act8b * 1000, T);
2006 q->rec8b = EZ(t->rec8b * 1000, T);
2007 q->cyc8b = EZ(t->cyc8b * 1000, T);
2008 q->active = EZ(t->active * 1000, T);
2009 q->recover = EZ(t->recover * 1000, T);
2010 q->cycle = EZ(t->cycle * 1000, T);
2011 q->udma = EZ(t->udma * 1000, UT);
2012 }
2013
2014 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2015 struct ata_timing *m, unsigned int what)
2016 {
2017 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2018 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2019 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2020 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2021 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2022 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2023 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2024 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2025 }
2026
2027 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2028 {
2029 const struct ata_timing *t;
2030
2031 for (t = ata_timing; t->mode != speed; t++)
2032 if (t->mode == 0xFF)
2033 return NULL;
2034 return t;
2035 }
2036
2037 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2038 struct ata_timing *t, int T, int UT)
2039 {
2040 const struct ata_timing *s;
2041 struct ata_timing p;
2042
2043 /*
2044 * Find the mode.
2045 */
2046
2047 if (!(s = ata_timing_find_mode(speed)))
2048 return -EINVAL;
2049
2050 memcpy(t, s, sizeof(*s));
2051
2052 /*
2053 * If the drive is an EIDE drive, it can tell us it needs extended
2054 * PIO/MW_DMA cycle timing.
2055 */
2056
2057 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2058 memset(&p, 0, sizeof(p));
2059 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2060 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2061 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2062 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2063 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2064 }
2065 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2066 }
2067
2068 /*
2069 * Convert the timing to bus clock counts.
2070 */
2071
2072 ata_timing_quantize(t, t, T, UT);
2073
2074 /*
2075 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2076 * S.M.A.R.T * and some other commands. We have to ensure that the
2077 * DMA cycle timing is slower/equal than the fastest PIO timing.
2078 */
2079
2080 if (speed > XFER_PIO_4) {
2081 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2082 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2083 }
2084
2085 /*
2086 * Lengthen active & recovery time so that cycle time is correct.
2087 */
2088
2089 if (t->act8b + t->rec8b < t->cyc8b) {
2090 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2091 t->rec8b = t->cyc8b - t->act8b;
2092 }
2093
2094 if (t->active + t->recover < t->cycle) {
2095 t->active += (t->cycle - (t->active + t->recover)) / 2;
2096 t->recover = t->cycle - t->active;
2097 }
2098
2099 return 0;
2100 }
2101
2102 /**
2103 * ata_down_xfermask_limit - adjust dev xfer masks downward
2104 * @dev: Device to adjust xfer masks
2105 * @force_pio0: Force PIO0
2106 *
2107 * Adjust xfer masks of @dev downward. Note that this function
2108 * does not apply the change. Invoking ata_set_mode() afterwards
2109 * will apply the limit.
2110 *
2111 * LOCKING:
2112 * Inherited from caller.
2113 *
2114 * RETURNS:
2115 * 0 on success, negative errno on failure
2116 */
2117 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2118 {
2119 unsigned long xfer_mask;
2120 int highbit;
2121
2122 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2123 dev->udma_mask);
2124
2125 if (!xfer_mask)
2126 goto fail;
2127 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2128 if (xfer_mask & ATA_MASK_UDMA)
2129 xfer_mask &= ~ATA_MASK_MWDMA;
2130
2131 highbit = fls(xfer_mask) - 1;
2132 xfer_mask &= ~(1 << highbit);
2133 if (force_pio0)
2134 xfer_mask &= 1 << ATA_SHIFT_PIO;
2135 if (!xfer_mask)
2136 goto fail;
2137
2138 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2139 &dev->udma_mask);
2140
2141 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2142 ata_mode_string(xfer_mask));
2143
2144 return 0;
2145
2146 fail:
2147 return -EINVAL;
2148 }
2149
2150 static int ata_dev_set_mode(struct ata_device *dev)
2151 {
2152 unsigned int err_mask;
2153 int rc;
2154
2155 dev->flags &= ~ATA_DFLAG_PIO;
2156 if (dev->xfer_shift == ATA_SHIFT_PIO)
2157 dev->flags |= ATA_DFLAG_PIO;
2158
2159 err_mask = ata_dev_set_xfermode(dev);
2160 if (err_mask) {
2161 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2162 "(err_mask=0x%x)\n", err_mask);
2163 return -EIO;
2164 }
2165
2166 rc = ata_dev_revalidate(dev, 0);
2167 if (rc)
2168 return rc;
2169
2170 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2171 dev->xfer_shift, (int)dev->xfer_mode);
2172
2173 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2174 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2175 return 0;
2176 }
2177
2178 /**
2179 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2180 * @ap: port on which timings will be programmed
2181 * @r_failed_dev: out paramter for failed device
2182 *
2183 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2184 * ata_set_mode() fails, pointer to the failing device is
2185 * returned in @r_failed_dev.
2186 *
2187 * LOCKING:
2188 * PCI/etc. bus probe sem.
2189 *
2190 * RETURNS:
2191 * 0 on success, negative errno otherwise
2192 */
2193 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2194 {
2195 struct ata_device *dev;
2196 int i, rc = 0, used_dma = 0, found = 0;
2197
2198 /* has private set_mode? */
2199 if (ap->ops->set_mode) {
2200 /* FIXME: make ->set_mode handle no device case and
2201 * return error code and failing device on failure.
2202 */
2203 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2204 if (ata_dev_ready(&ap->device[i])) {
2205 ap->ops->set_mode(ap);
2206 break;
2207 }
2208 }
2209 return 0;
2210 }
2211
2212 /* step 1: calculate xfer_mask */
2213 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2214 unsigned int pio_mask, dma_mask;
2215
2216 dev = &ap->device[i];
2217
2218 if (!ata_dev_enabled(dev))
2219 continue;
2220
2221 ata_dev_xfermask(dev);
2222
2223 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2224 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2225 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2226 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2227
2228 found = 1;
2229 if (dev->dma_mode)
2230 used_dma = 1;
2231 }
2232 if (!found)
2233 goto out;
2234
2235 /* step 2: always set host PIO timings */
2236 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2237 dev = &ap->device[i];
2238 if (!ata_dev_enabled(dev))
2239 continue;
2240
2241 if (!dev->pio_mode) {
2242 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2243 rc = -EINVAL;
2244 goto out;
2245 }
2246
2247 dev->xfer_mode = dev->pio_mode;
2248 dev->xfer_shift = ATA_SHIFT_PIO;
2249 if (ap->ops->set_piomode)
2250 ap->ops->set_piomode(ap, dev);
2251 }
2252
2253 /* step 3: set host DMA timings */
2254 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2255 dev = &ap->device[i];
2256
2257 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2258 continue;
2259
2260 dev->xfer_mode = dev->dma_mode;
2261 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2262 if (ap->ops->set_dmamode)
2263 ap->ops->set_dmamode(ap, dev);
2264 }
2265
2266 /* step 4: update devices' xfer mode */
2267 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2268 dev = &ap->device[i];
2269
2270 /* don't udpate suspended devices' xfer mode */
2271 if (!ata_dev_ready(dev))
2272 continue;
2273
2274 rc = ata_dev_set_mode(dev);
2275 if (rc)
2276 goto out;
2277 }
2278
2279 /* Record simplex status. If we selected DMA then the other
2280 * host channels are not permitted to do so.
2281 */
2282 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2283 ap->host->simplex_claimed = 1;
2284
2285 /* step5: chip specific finalisation */
2286 if (ap->ops->post_set_mode)
2287 ap->ops->post_set_mode(ap);
2288
2289 out:
2290 if (rc)
2291 *r_failed_dev = dev;
2292 return rc;
2293 }
2294
2295 /**
2296 * ata_tf_to_host - issue ATA taskfile to host controller
2297 * @ap: port to which command is being issued
2298 * @tf: ATA taskfile register set
2299 *
2300 * Issues ATA taskfile register set to ATA host controller,
2301 * with proper synchronization with interrupt handler and
2302 * other threads.
2303 *
2304 * LOCKING:
2305 * spin_lock_irqsave(host lock)
2306 */
2307
2308 static inline void ata_tf_to_host(struct ata_port *ap,
2309 const struct ata_taskfile *tf)
2310 {
2311 ap->ops->tf_load(ap, tf);
2312 ap->ops->exec_command(ap, tf);
2313 }
2314
2315 /**
2316 * ata_busy_sleep - sleep until BSY clears, or timeout
2317 * @ap: port containing status register to be polled
2318 * @tmout_pat: impatience timeout
2319 * @tmout: overall timeout
2320 *
2321 * Sleep until ATA Status register bit BSY clears,
2322 * or a timeout occurs.
2323 *
2324 * LOCKING: None.
2325 */
2326
2327 unsigned int ata_busy_sleep (struct ata_port *ap,
2328 unsigned long tmout_pat, unsigned long tmout)
2329 {
2330 unsigned long timer_start, timeout;
2331 u8 status;
2332
2333 status = ata_busy_wait(ap, ATA_BUSY, 300);
2334 timer_start = jiffies;
2335 timeout = timer_start + tmout_pat;
2336 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2337 msleep(50);
2338 status = ata_busy_wait(ap, ATA_BUSY, 3);
2339 }
2340
2341 if (status & ATA_BUSY)
2342 ata_port_printk(ap, KERN_WARNING,
2343 "port is slow to respond, please be patient "
2344 "(Status 0x%x)\n", status);
2345
2346 timeout = timer_start + tmout;
2347 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2348 msleep(50);
2349 status = ata_chk_status(ap);
2350 }
2351
2352 if (status & ATA_BUSY) {
2353 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2354 "(%lu secs, Status 0x%x)\n",
2355 tmout / HZ, status);
2356 return 1;
2357 }
2358
2359 return 0;
2360 }
2361
2362 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2363 {
2364 struct ata_ioports *ioaddr = &ap->ioaddr;
2365 unsigned int dev0 = devmask & (1 << 0);
2366 unsigned int dev1 = devmask & (1 << 1);
2367 unsigned long timeout;
2368
2369 /* if device 0 was found in ata_devchk, wait for its
2370 * BSY bit to clear
2371 */
2372 if (dev0)
2373 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2374
2375 /* if device 1 was found in ata_devchk, wait for
2376 * register access, then wait for BSY to clear
2377 */
2378 timeout = jiffies + ATA_TMOUT_BOOT;
2379 while (dev1) {
2380 u8 nsect, lbal;
2381
2382 ap->ops->dev_select(ap, 1);
2383 if (ap->flags & ATA_FLAG_MMIO) {
2384 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2385 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2386 } else {
2387 nsect = inb(ioaddr->nsect_addr);
2388 lbal = inb(ioaddr->lbal_addr);
2389 }
2390 if ((nsect == 1) && (lbal == 1))
2391 break;
2392 if (time_after(jiffies, timeout)) {
2393 dev1 = 0;
2394 break;
2395 }
2396 msleep(50); /* give drive a breather */
2397 }
2398 if (dev1)
2399 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2400
2401 /* is all this really necessary? */
2402 ap->ops->dev_select(ap, 0);
2403 if (dev1)
2404 ap->ops->dev_select(ap, 1);
2405 if (dev0)
2406 ap->ops->dev_select(ap, 0);
2407 }
2408
2409 static unsigned int ata_bus_softreset(struct ata_port *ap,
2410 unsigned int devmask)
2411 {
2412 struct ata_ioports *ioaddr = &ap->ioaddr;
2413
2414 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2415
2416 /* software reset. causes dev0 to be selected */
2417 if (ap->flags & ATA_FLAG_MMIO) {
2418 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2419 udelay(20); /* FIXME: flush */
2420 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2421 udelay(20); /* FIXME: flush */
2422 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2423 } else {
2424 outb(ap->ctl, ioaddr->ctl_addr);
2425 udelay(10);
2426 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2427 udelay(10);
2428 outb(ap->ctl, ioaddr->ctl_addr);
2429 }
2430
2431 /* spec mandates ">= 2ms" before checking status.
2432 * We wait 150ms, because that was the magic delay used for
2433 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2434 * between when the ATA command register is written, and then
2435 * status is checked. Because waiting for "a while" before
2436 * checking status is fine, post SRST, we perform this magic
2437 * delay here as well.
2438 *
2439 * Old drivers/ide uses the 2mS rule and then waits for ready
2440 */
2441 msleep(150);
2442
2443 /* Before we perform post reset processing we want to see if
2444 * the bus shows 0xFF because the odd clown forgets the D7
2445 * pulldown resistor.
2446 */
2447 if (ata_check_status(ap) == 0xFF) {
2448 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2449 return AC_ERR_OTHER;
2450 }
2451
2452 ata_bus_post_reset(ap, devmask);
2453
2454 return 0;
2455 }
2456
2457 /**
2458 * ata_bus_reset - reset host port and associated ATA channel
2459 * @ap: port to reset
2460 *
2461 * This is typically the first time we actually start issuing
2462 * commands to the ATA channel. We wait for BSY to clear, then
2463 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2464 * result. Determine what devices, if any, are on the channel
2465 * by looking at the device 0/1 error register. Look at the signature
2466 * stored in each device's taskfile registers, to determine if
2467 * the device is ATA or ATAPI.
2468 *
2469 * LOCKING:
2470 * PCI/etc. bus probe sem.
2471 * Obtains host lock.
2472 *
2473 * SIDE EFFECTS:
2474 * Sets ATA_FLAG_DISABLED if bus reset fails.
2475 */
2476
2477 void ata_bus_reset(struct ata_port *ap)
2478 {
2479 struct ata_ioports *ioaddr = &ap->ioaddr;
2480 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2481 u8 err;
2482 unsigned int dev0, dev1 = 0, devmask = 0;
2483
2484 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2485
2486 /* determine if device 0/1 are present */
2487 if (ap->flags & ATA_FLAG_SATA_RESET)
2488 dev0 = 1;
2489 else {
2490 dev0 = ata_devchk(ap, 0);
2491 if (slave_possible)
2492 dev1 = ata_devchk(ap, 1);
2493 }
2494
2495 if (dev0)
2496 devmask |= (1 << 0);
2497 if (dev1)
2498 devmask |= (1 << 1);
2499
2500 /* select device 0 again */
2501 ap->ops->dev_select(ap, 0);
2502
2503 /* issue bus reset */
2504 if (ap->flags & ATA_FLAG_SRST)
2505 if (ata_bus_softreset(ap, devmask))
2506 goto err_out;
2507
2508 /*
2509 * determine by signature whether we have ATA or ATAPI devices
2510 */
2511 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2512 if ((slave_possible) && (err != 0x81))
2513 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2514
2515 /* re-enable interrupts */
2516 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2517 ata_irq_on(ap);
2518
2519 /* is double-select really necessary? */
2520 if (ap->device[1].class != ATA_DEV_NONE)
2521 ap->ops->dev_select(ap, 1);
2522 if (ap->device[0].class != ATA_DEV_NONE)
2523 ap->ops->dev_select(ap, 0);
2524
2525 /* if no devices were detected, disable this port */
2526 if ((ap->device[0].class == ATA_DEV_NONE) &&
2527 (ap->device[1].class == ATA_DEV_NONE))
2528 goto err_out;
2529
2530 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2531 /* set up device control for ATA_FLAG_SATA_RESET */
2532 if (ap->flags & ATA_FLAG_MMIO)
2533 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2534 else
2535 outb(ap->ctl, ioaddr->ctl_addr);
2536 }
2537
2538 DPRINTK("EXIT\n");
2539 return;
2540
2541 err_out:
2542 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2543 ap->ops->port_disable(ap);
2544
2545 DPRINTK("EXIT\n");
2546 }
2547
2548 /**
2549 * sata_phy_debounce - debounce SATA phy status
2550 * @ap: ATA port to debounce SATA phy status for
2551 * @params: timing parameters { interval, duratinon, timeout } in msec
2552 *
2553 * Make sure SStatus of @ap reaches stable state, determined by
2554 * holding the same value where DET is not 1 for @duration polled
2555 * every @interval, before @timeout. Timeout constraints the
2556 * beginning of the stable state. Because, after hot unplugging,
2557 * DET gets stuck at 1 on some controllers, this functions waits
2558 * until timeout then returns 0 if DET is stable at 1.
2559 *
2560 * LOCKING:
2561 * Kernel thread context (may sleep)
2562 *
2563 * RETURNS:
2564 * 0 on success, -errno on failure.
2565 */
2566 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2567 {
2568 unsigned long interval_msec = params[0];
2569 unsigned long duration = params[1] * HZ / 1000;
2570 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2571 unsigned long last_jiffies;
2572 u32 last, cur;
2573 int rc;
2574
2575 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2576 return rc;
2577 cur &= 0xf;
2578
2579 last = cur;
2580 last_jiffies = jiffies;
2581
2582 while (1) {
2583 msleep(interval_msec);
2584 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2585 return rc;
2586 cur &= 0xf;
2587
2588 /* DET stable? */
2589 if (cur == last) {
2590 if (cur == 1 && time_before(jiffies, timeout))
2591 continue;
2592 if (time_after(jiffies, last_jiffies + duration))
2593 return 0;
2594 continue;
2595 }
2596
2597 /* unstable, start over */
2598 last = cur;
2599 last_jiffies = jiffies;
2600
2601 /* check timeout */
2602 if (time_after(jiffies, timeout))
2603 return -EBUSY;
2604 }
2605 }
2606
2607 /**
2608 * sata_phy_resume - resume SATA phy
2609 * @ap: ATA port to resume SATA phy for
2610 * @params: timing parameters { interval, duratinon, timeout } in msec
2611 *
2612 * Resume SATA phy of @ap and debounce it.
2613 *
2614 * LOCKING:
2615 * Kernel thread context (may sleep)
2616 *
2617 * RETURNS:
2618 * 0 on success, -errno on failure.
2619 */
2620 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2621 {
2622 u32 scontrol;
2623 int rc;
2624
2625 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2626 return rc;
2627
2628 scontrol = (scontrol & 0x0f0) | 0x300;
2629
2630 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2631 return rc;
2632
2633 /* Some PHYs react badly if SStatus is pounded immediately
2634 * after resuming. Delay 200ms before debouncing.
2635 */
2636 msleep(200);
2637
2638 return sata_phy_debounce(ap, params);
2639 }
2640
2641 static void ata_wait_spinup(struct ata_port *ap)
2642 {
2643 struct ata_eh_context *ehc = &ap->eh_context;
2644 unsigned long end, secs;
2645 int rc;
2646
2647 /* first, debounce phy if SATA */
2648 if (ap->cbl == ATA_CBL_SATA) {
2649 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2650
2651 /* if debounced successfully and offline, no need to wait */
2652 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2653 return;
2654 }
2655
2656 /* okay, let's give the drive time to spin up */
2657 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2658 secs = ((end - jiffies) + HZ - 1) / HZ;
2659
2660 if (time_after(jiffies, end))
2661 return;
2662
2663 if (secs > 5)
2664 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2665 "(%lu secs)\n", secs);
2666
2667 schedule_timeout_uninterruptible(end - jiffies);
2668 }
2669
2670 /**
2671 * ata_std_prereset - prepare for reset
2672 * @ap: ATA port to be reset
2673 *
2674 * @ap is about to be reset. Initialize it.
2675 *
2676 * LOCKING:
2677 * Kernel thread context (may sleep)
2678 *
2679 * RETURNS:
2680 * 0 on success, -errno otherwise.
2681 */
2682 int ata_std_prereset(struct ata_port *ap)
2683 {
2684 struct ata_eh_context *ehc = &ap->eh_context;
2685 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2686 int rc;
2687
2688 /* handle link resume & hotplug spinup */
2689 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2690 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2691 ehc->i.action |= ATA_EH_HARDRESET;
2692
2693 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2694 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2695 ata_wait_spinup(ap);
2696
2697 /* if we're about to do hardreset, nothing more to do */
2698 if (ehc->i.action & ATA_EH_HARDRESET)
2699 return 0;
2700
2701 /* if SATA, resume phy */
2702 if (ap->cbl == ATA_CBL_SATA) {
2703 rc = sata_phy_resume(ap, timing);
2704 if (rc && rc != -EOPNOTSUPP) {
2705 /* phy resume failed */
2706 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2707 "link for reset (errno=%d)\n", rc);
2708 return rc;
2709 }
2710 }
2711
2712 /* Wait for !BSY if the controller can wait for the first D2H
2713 * Reg FIS and we don't know that no device is attached.
2714 */
2715 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2716 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2717
2718 return 0;
2719 }
2720
2721 /**
2722 * ata_std_softreset - reset host port via ATA SRST
2723 * @ap: port to reset
2724 * @classes: resulting classes of attached devices
2725 *
2726 * Reset host port using ATA SRST.
2727 *
2728 * LOCKING:
2729 * Kernel thread context (may sleep)
2730 *
2731 * RETURNS:
2732 * 0 on success, -errno otherwise.
2733 */
2734 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2735 {
2736 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2737 unsigned int devmask = 0, err_mask;
2738 u8 err;
2739
2740 DPRINTK("ENTER\n");
2741
2742 if (ata_port_offline(ap)) {
2743 classes[0] = ATA_DEV_NONE;
2744 goto out;
2745 }
2746
2747 /* determine if device 0/1 are present */
2748 if (ata_devchk(ap, 0))
2749 devmask |= (1 << 0);
2750 if (slave_possible && ata_devchk(ap, 1))
2751 devmask |= (1 << 1);
2752
2753 /* select device 0 again */
2754 ap->ops->dev_select(ap, 0);
2755
2756 /* issue bus reset */
2757 DPRINTK("about to softreset, devmask=%x\n", devmask);
2758 err_mask = ata_bus_softreset(ap, devmask);
2759 if (err_mask) {
2760 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2761 err_mask);
2762 return -EIO;
2763 }
2764
2765 /* determine by signature whether we have ATA or ATAPI devices */
2766 classes[0] = ata_dev_try_classify(ap, 0, &err);
2767 if (slave_possible && err != 0x81)
2768 classes[1] = ata_dev_try_classify(ap, 1, &err);
2769
2770 out:
2771 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2772 return 0;
2773 }
2774
2775 /**
2776 * sata_std_hardreset - reset host port via SATA phy reset
2777 * @ap: port to reset
2778 * @class: resulting class of attached device
2779 *
2780 * SATA phy-reset host port using DET bits of SControl register.
2781 *
2782 * LOCKING:
2783 * Kernel thread context (may sleep)
2784 *
2785 * RETURNS:
2786 * 0 on success, -errno otherwise.
2787 */
2788 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2789 {
2790 struct ata_eh_context *ehc = &ap->eh_context;
2791 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2792 u32 scontrol;
2793 int rc;
2794
2795 DPRINTK("ENTER\n");
2796
2797 if (sata_set_spd_needed(ap)) {
2798 /* SATA spec says nothing about how to reconfigure
2799 * spd. To be on the safe side, turn off phy during
2800 * reconfiguration. This works for at least ICH7 AHCI
2801 * and Sil3124.
2802 */
2803 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2804 return rc;
2805
2806 scontrol = (scontrol & 0x0f0) | 0x304;
2807
2808 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2809 return rc;
2810
2811 sata_set_spd(ap);
2812 }
2813
2814 /* issue phy wake/reset */
2815 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2816 return rc;
2817
2818 scontrol = (scontrol & 0x0f0) | 0x301;
2819
2820 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2821 return rc;
2822
2823 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2824 * 10.4.2 says at least 1 ms.
2825 */
2826 msleep(1);
2827
2828 /* bring phy back */
2829 sata_phy_resume(ap, timing);
2830
2831 /* TODO: phy layer with polling, timeouts, etc. */
2832 if (ata_port_offline(ap)) {
2833 *class = ATA_DEV_NONE;
2834 DPRINTK("EXIT, link offline\n");
2835 return 0;
2836 }
2837
2838 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2839 ata_port_printk(ap, KERN_ERR,
2840 "COMRESET failed (device not ready)\n");
2841 return -EIO;
2842 }
2843
2844 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2845
2846 *class = ata_dev_try_classify(ap, 0, NULL);
2847
2848 DPRINTK("EXIT, class=%u\n", *class);
2849 return 0;
2850 }
2851
2852 /**
2853 * ata_std_postreset - standard postreset callback
2854 * @ap: the target ata_port
2855 * @classes: classes of attached devices
2856 *
2857 * This function is invoked after a successful reset. Note that
2858 * the device might have been reset more than once using
2859 * different reset methods before postreset is invoked.
2860 *
2861 * LOCKING:
2862 * Kernel thread context (may sleep)
2863 */
2864 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2865 {
2866 u32 serror;
2867
2868 DPRINTK("ENTER\n");
2869
2870 /* print link status */
2871 sata_print_link_status(ap);
2872
2873 /* clear SError */
2874 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2875 sata_scr_write(ap, SCR_ERROR, serror);
2876
2877 /* re-enable interrupts */
2878 if (!ap->ops->error_handler) {
2879 /* FIXME: hack. create a hook instead */
2880 if (ap->ioaddr.ctl_addr)
2881 ata_irq_on(ap);
2882 }
2883
2884 /* is double-select really necessary? */
2885 if (classes[0] != ATA_DEV_NONE)
2886 ap->ops->dev_select(ap, 1);
2887 if (classes[1] != ATA_DEV_NONE)
2888 ap->ops->dev_select(ap, 0);
2889
2890 /* bail out if no device is present */
2891 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2892 DPRINTK("EXIT, no device\n");
2893 return;
2894 }
2895
2896 /* set up device control */
2897 if (ap->ioaddr.ctl_addr) {
2898 if (ap->flags & ATA_FLAG_MMIO)
2899 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2900 else
2901 outb(ap->ctl, ap->ioaddr.ctl_addr);
2902 }
2903
2904 DPRINTK("EXIT\n");
2905 }
2906
2907 /**
2908 * ata_dev_same_device - Determine whether new ID matches configured device
2909 * @dev: device to compare against
2910 * @new_class: class of the new device
2911 * @new_id: IDENTIFY page of the new device
2912 *
2913 * Compare @new_class and @new_id against @dev and determine
2914 * whether @dev is the device indicated by @new_class and
2915 * @new_id.
2916 *
2917 * LOCKING:
2918 * None.
2919 *
2920 * RETURNS:
2921 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2922 */
2923 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2924 const u16 *new_id)
2925 {
2926 const u16 *old_id = dev->id;
2927 unsigned char model[2][41], serial[2][21];
2928 u64 new_n_sectors;
2929
2930 if (dev->class != new_class) {
2931 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2932 dev->class, new_class);
2933 return 0;
2934 }
2935
2936 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2937 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2938 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2939 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2940 new_n_sectors = ata_id_n_sectors(new_id);
2941
2942 if (strcmp(model[0], model[1])) {
2943 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2944 "'%s' != '%s'\n", model[0], model[1]);
2945 return 0;
2946 }
2947
2948 if (strcmp(serial[0], serial[1])) {
2949 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2950 "'%s' != '%s'\n", serial[0], serial[1]);
2951 return 0;
2952 }
2953
2954 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2955 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2956 "%llu != %llu\n",
2957 (unsigned long long)dev->n_sectors,
2958 (unsigned long long)new_n_sectors);
2959 return 0;
2960 }
2961
2962 return 1;
2963 }
2964
2965 /**
2966 * ata_dev_revalidate - Revalidate ATA device
2967 * @dev: device to revalidate
2968 * @post_reset: is this revalidation after reset?
2969 *
2970 * Re-read IDENTIFY page and make sure @dev is still attached to
2971 * the port.
2972 *
2973 * LOCKING:
2974 * Kernel thread context (may sleep)
2975 *
2976 * RETURNS:
2977 * 0 on success, negative errno otherwise
2978 */
2979 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2980 {
2981 unsigned int class = dev->class;
2982 u16 *id = (void *)dev->ap->sector_buf;
2983 int rc;
2984
2985 if (!ata_dev_enabled(dev)) {
2986 rc = -ENODEV;
2987 goto fail;
2988 }
2989
2990 /* read ID data */
2991 rc = ata_dev_read_id(dev, &class, post_reset, id);
2992 if (rc)
2993 goto fail;
2994
2995 /* is the device still there? */
2996 if (!ata_dev_same_device(dev, class, id)) {
2997 rc = -ENODEV;
2998 goto fail;
2999 }
3000
3001 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3002
3003 /* configure device according to the new ID */
3004 rc = ata_dev_configure(dev, 0);
3005 if (rc == 0)
3006 return 0;
3007
3008 fail:
3009 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3010 return rc;
3011 }
3012
3013 static const char * const ata_dma_blacklist [] = {
3014 "WDC AC11000H", NULL,
3015 "WDC AC22100H", NULL,
3016 "WDC AC32500H", NULL,
3017 "WDC AC33100H", NULL,
3018 "WDC AC31600H", NULL,
3019 "WDC AC32100H", "24.09P07",
3020 "WDC AC23200L", "21.10N21",
3021 "Compaq CRD-8241B", NULL,
3022 "CRD-8400B", NULL,
3023 "CRD-8480B", NULL,
3024 "CRD-8482B", NULL,
3025 "CRD-84", NULL,
3026 "SanDisk SDP3B", NULL,
3027 "SanDisk SDP3B-64", NULL,
3028 "SANYO CD-ROM CRD", NULL,
3029 "HITACHI CDR-8", NULL,
3030 "HITACHI CDR-8335", NULL,
3031 "HITACHI CDR-8435", NULL,
3032 "Toshiba CD-ROM XM-6202B", NULL,
3033 "TOSHIBA CD-ROM XM-1702BC", NULL,
3034 "CD-532E-A", NULL,
3035 "E-IDE CD-ROM CR-840", NULL,
3036 "CD-ROM Drive/F5A", NULL,
3037 "WPI CDD-820", NULL,
3038 "SAMSUNG CD-ROM SC-148C", NULL,
3039 "SAMSUNG CD-ROM SC", NULL,
3040 "SanDisk SDP3B-64", NULL,
3041 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3042 "_NEC DV5800A", NULL,
3043 "SAMSUNG CD-ROM SN-124", "N001"
3044 };
3045
3046 static int ata_strim(char *s, size_t len)
3047 {
3048 len = strnlen(s, len);
3049
3050 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3051 while ((len > 0) && (s[len - 1] == ' ')) {
3052 len--;
3053 s[len] = 0;
3054 }
3055 return len;
3056 }
3057
3058 static int ata_dma_blacklisted(const struct ata_device *dev)
3059 {
3060 unsigned char model_num[40];
3061 unsigned char model_rev[16];
3062 unsigned int nlen, rlen;
3063 int i;
3064
3065 /* We don't support polling DMA.
3066 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3067 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3068 */
3069 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3070 (dev->flags & ATA_DFLAG_CDB_INTR))
3071 return 1;
3072
3073 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3074 sizeof(model_num));
3075 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3076 sizeof(model_rev));
3077 nlen = ata_strim(model_num, sizeof(model_num));
3078 rlen = ata_strim(model_rev, sizeof(model_rev));
3079
3080 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3081 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3082 if (ata_dma_blacklist[i+1] == NULL)
3083 return 1;
3084 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3085 return 1;
3086 }
3087 }
3088 return 0;
3089 }
3090
3091 /**
3092 * ata_dev_xfermask - Compute supported xfermask of the given device
3093 * @dev: Device to compute xfermask for
3094 *
3095 * Compute supported xfermask of @dev and store it in
3096 * dev->*_mask. This function is responsible for applying all
3097 * known limits including host controller limits, device
3098 * blacklist, etc...
3099 *
3100 * LOCKING:
3101 * None.
3102 */
3103 static void ata_dev_xfermask(struct ata_device *dev)
3104 {
3105 struct ata_port *ap = dev->ap;
3106 struct ata_host *host = ap->host;
3107 unsigned long xfer_mask;
3108
3109 /* controller modes available */
3110 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3111 ap->mwdma_mask, ap->udma_mask);
3112
3113 /* Apply cable rule here. Don't apply it early because when
3114 * we handle hot plug the cable type can itself change.
3115 */
3116 if (ap->cbl == ATA_CBL_PATA40)
3117 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3118
3119 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3120 dev->mwdma_mask, dev->udma_mask);
3121 xfer_mask &= ata_id_xfermask(dev->id);
3122
3123 /*
3124 * CFA Advanced TrueIDE timings are not allowed on a shared
3125 * cable
3126 */
3127 if (ata_dev_pair(dev)) {
3128 /* No PIO5 or PIO6 */
3129 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3130 /* No MWDMA3 or MWDMA 4 */
3131 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3132 }
3133
3134 if (ata_dma_blacklisted(dev)) {
3135 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3136 ata_dev_printk(dev, KERN_WARNING,
3137 "device is on DMA blacklist, disabling DMA\n");
3138 }
3139
3140 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3141 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3142 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3143 "other device, disabling DMA\n");
3144 }
3145
3146 if (ap->ops->mode_filter)
3147 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3148
3149 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3150 &dev->mwdma_mask, &dev->udma_mask);
3151 }
3152
3153 /**
3154 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3155 * @dev: Device to which command will be sent
3156 *
3157 * Issue SET FEATURES - XFER MODE command to device @dev
3158 * on port @ap.
3159 *
3160 * LOCKING:
3161 * PCI/etc. bus probe sem.
3162 *
3163 * RETURNS:
3164 * 0 on success, AC_ERR_* mask otherwise.
3165 */
3166
3167 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3168 {
3169 struct ata_taskfile tf;
3170 unsigned int err_mask;
3171
3172 /* set up set-features taskfile */
3173 DPRINTK("set features - xfer mode\n");
3174
3175 ata_tf_init(dev, &tf);
3176 tf.command = ATA_CMD_SET_FEATURES;
3177 tf.feature = SETFEATURES_XFER;
3178 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3179 tf.protocol = ATA_PROT_NODATA;
3180 tf.nsect = dev->xfer_mode;
3181
3182 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3183
3184 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3185 return err_mask;
3186 }
3187
3188 /**
3189 * ata_dev_init_params - Issue INIT DEV PARAMS command
3190 * @dev: Device to which command will be sent
3191 * @heads: Number of heads (taskfile parameter)
3192 * @sectors: Number of sectors (taskfile parameter)
3193 *
3194 * LOCKING:
3195 * Kernel thread context (may sleep)
3196 *
3197 * RETURNS:
3198 * 0 on success, AC_ERR_* mask otherwise.
3199 */
3200 static unsigned int ata_dev_init_params(struct ata_device *dev,
3201 u16 heads, u16 sectors)
3202 {
3203 struct ata_taskfile tf;
3204 unsigned int err_mask;
3205
3206 /* Number of sectors per track 1-255. Number of heads 1-16 */
3207 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3208 return AC_ERR_INVALID;
3209
3210 /* set up init dev params taskfile */
3211 DPRINTK("init dev params \n");
3212
3213 ata_tf_init(dev, &tf);
3214 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3215 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3216 tf.protocol = ATA_PROT_NODATA;
3217 tf.nsect = sectors;
3218 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3219
3220 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3221
3222 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3223 return err_mask;
3224 }
3225
3226 /**
3227 * ata_sg_clean - Unmap DMA memory associated with command
3228 * @qc: Command containing DMA memory to be released
3229 *
3230 * Unmap all mapped DMA memory associated with this command.
3231 *
3232 * LOCKING:
3233 * spin_lock_irqsave(host lock)
3234 */
3235
3236 static void ata_sg_clean(struct ata_queued_cmd *qc)
3237 {
3238 struct ata_port *ap = qc->ap;
3239 struct scatterlist *sg = qc->__sg;
3240 int dir = qc->dma_dir;
3241 void *pad_buf = NULL;
3242
3243 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3244 WARN_ON(sg == NULL);
3245
3246 if (qc->flags & ATA_QCFLAG_SINGLE)
3247 WARN_ON(qc->n_elem > 1);
3248
3249 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3250
3251 /* if we padded the buffer out to 32-bit bound, and data
3252 * xfer direction is from-device, we must copy from the
3253 * pad buffer back into the supplied buffer
3254 */
3255 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3256 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3257
3258 if (qc->flags & ATA_QCFLAG_SG) {
3259 if (qc->n_elem)
3260 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3261 /* restore last sg */
3262 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3263 if (pad_buf) {
3264 struct scatterlist *psg = &qc->pad_sgent;
3265 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3266 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3267 kunmap_atomic(addr, KM_IRQ0);
3268 }
3269 } else {
3270 if (qc->n_elem)
3271 dma_unmap_single(ap->dev,
3272 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3273 dir);
3274 /* restore sg */
3275 sg->length += qc->pad_len;
3276 if (pad_buf)
3277 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3278 pad_buf, qc->pad_len);
3279 }
3280
3281 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3282 qc->__sg = NULL;
3283 }
3284
3285 /**
3286 * ata_fill_sg - Fill PCI IDE PRD table
3287 * @qc: Metadata associated with taskfile to be transferred
3288 *
3289 * Fill PCI IDE PRD (scatter-gather) table with segments
3290 * associated with the current disk command.
3291 *
3292 * LOCKING:
3293 * spin_lock_irqsave(host lock)
3294 *
3295 */
3296 static void ata_fill_sg(struct ata_queued_cmd *qc)
3297 {
3298 struct ata_port *ap = qc->ap;
3299 struct scatterlist *sg;
3300 unsigned int idx;
3301
3302 WARN_ON(qc->__sg == NULL);
3303 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3304
3305 idx = 0;
3306 ata_for_each_sg(sg, qc) {
3307 u32 addr, offset;
3308 u32 sg_len, len;
3309
3310 /* determine if physical DMA addr spans 64K boundary.
3311 * Note h/w doesn't support 64-bit, so we unconditionally
3312 * truncate dma_addr_t to u32.
3313 */
3314 addr = (u32) sg_dma_address(sg);
3315 sg_len = sg_dma_len(sg);
3316
3317 while (sg_len) {
3318 offset = addr & 0xffff;
3319 len = sg_len;
3320 if ((offset + sg_len) > 0x10000)
3321 len = 0x10000 - offset;
3322
3323 ap->prd[idx].addr = cpu_to_le32(addr);
3324 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3325 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3326
3327 idx++;
3328 sg_len -= len;
3329 addr += len;
3330 }
3331 }
3332
3333 if (idx)
3334 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3335 }
3336 /**
3337 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3338 * @qc: Metadata associated with taskfile to check
3339 *
3340 * Allow low-level driver to filter ATA PACKET commands, returning
3341 * a status indicating whether or not it is OK to use DMA for the
3342 * supplied PACKET command.
3343 *
3344 * LOCKING:
3345 * spin_lock_irqsave(host lock)
3346 *
3347 * RETURNS: 0 when ATAPI DMA can be used
3348 * nonzero otherwise
3349 */
3350 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3351 {
3352 struct ata_port *ap = qc->ap;
3353 int rc = 0; /* Assume ATAPI DMA is OK by default */
3354
3355 if (ap->ops->check_atapi_dma)
3356 rc = ap->ops->check_atapi_dma(qc);
3357
3358 return rc;
3359 }
3360 /**
3361 * ata_qc_prep - Prepare taskfile for submission
3362 * @qc: Metadata associated with taskfile to be prepared
3363 *
3364 * Prepare ATA taskfile for submission.
3365 *
3366 * LOCKING:
3367 * spin_lock_irqsave(host lock)
3368 */
3369 void ata_qc_prep(struct ata_queued_cmd *qc)
3370 {
3371 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3372 return;
3373
3374 ata_fill_sg(qc);
3375 }
3376
3377 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3378
3379 /**
3380 * ata_sg_init_one - Associate command with memory buffer
3381 * @qc: Command to be associated
3382 * @buf: Memory buffer
3383 * @buflen: Length of memory buffer, in bytes.
3384 *
3385 * Initialize the data-related elements of queued_cmd @qc
3386 * to point to a single memory buffer, @buf of byte length @buflen.
3387 *
3388 * LOCKING:
3389 * spin_lock_irqsave(host lock)
3390 */
3391
3392 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3393 {
3394 struct scatterlist *sg;
3395
3396 qc->flags |= ATA_QCFLAG_SINGLE;
3397
3398 memset(&qc->sgent, 0, sizeof(qc->sgent));
3399 qc->__sg = &qc->sgent;
3400 qc->n_elem = 1;
3401 qc->orig_n_elem = 1;
3402 qc->buf_virt = buf;
3403 qc->nbytes = buflen;
3404
3405 sg = qc->__sg;
3406 sg_init_one(sg, buf, buflen);
3407 }
3408
3409 /**
3410 * ata_sg_init - Associate command with scatter-gather table.
3411 * @qc: Command to be associated
3412 * @sg: Scatter-gather table.
3413 * @n_elem: Number of elements in s/g table.
3414 *
3415 * Initialize the data-related elements of queued_cmd @qc
3416 * to point to a scatter-gather table @sg, containing @n_elem
3417 * elements.
3418 *
3419 * LOCKING:
3420 * spin_lock_irqsave(host lock)
3421 */
3422
3423 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3424 unsigned int n_elem)
3425 {
3426 qc->flags |= ATA_QCFLAG_SG;
3427 qc->__sg = sg;
3428 qc->n_elem = n_elem;
3429 qc->orig_n_elem = n_elem;
3430 }
3431
3432 /**
3433 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3434 * @qc: Command with memory buffer to be mapped.
3435 *
3436 * DMA-map the memory buffer associated with queued_cmd @qc.
3437 *
3438 * LOCKING:
3439 * spin_lock_irqsave(host lock)
3440 *
3441 * RETURNS:
3442 * Zero on success, negative on error.
3443 */
3444
3445 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3446 {
3447 struct ata_port *ap = qc->ap;
3448 int dir = qc->dma_dir;
3449 struct scatterlist *sg = qc->__sg;
3450 dma_addr_t dma_address;
3451 int trim_sg = 0;
3452
3453 /* we must lengthen transfers to end on a 32-bit boundary */
3454 qc->pad_len = sg->length & 3;
3455 if (qc->pad_len) {
3456 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3457 struct scatterlist *psg = &qc->pad_sgent;
3458
3459 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3460
3461 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3462
3463 if (qc->tf.flags & ATA_TFLAG_WRITE)
3464 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3465 qc->pad_len);
3466
3467 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3468 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3469 /* trim sg */
3470 sg->length -= qc->pad_len;
3471 if (sg->length == 0)
3472 trim_sg = 1;
3473
3474 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3475 sg->length, qc->pad_len);
3476 }
3477
3478 if (trim_sg) {
3479 qc->n_elem--;
3480 goto skip_map;
3481 }
3482
3483 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3484 sg->length, dir);
3485 if (dma_mapping_error(dma_address)) {
3486 /* restore sg */
3487 sg->length += qc->pad_len;
3488 return -1;
3489 }
3490
3491 sg_dma_address(sg) = dma_address;
3492 sg_dma_len(sg) = sg->length;
3493
3494 skip_map:
3495 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3496 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3497
3498 return 0;
3499 }
3500
3501 /**
3502 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3503 * @qc: Command with scatter-gather table to be mapped.
3504 *
3505 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3506 *
3507 * LOCKING:
3508 * spin_lock_irqsave(host lock)
3509 *
3510 * RETURNS:
3511 * Zero on success, negative on error.
3512 *
3513 */
3514
3515 static int ata_sg_setup(struct ata_queued_cmd *qc)
3516 {
3517 struct ata_port *ap = qc->ap;
3518 struct scatterlist *sg = qc->__sg;
3519 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3520 int n_elem, pre_n_elem, dir, trim_sg = 0;
3521
3522 VPRINTK("ENTER, ata%u\n", ap->id);
3523 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3524
3525 /* we must lengthen transfers to end on a 32-bit boundary */
3526 qc->pad_len = lsg->length & 3;
3527 if (qc->pad_len) {
3528 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3529 struct scatterlist *psg = &qc->pad_sgent;
3530 unsigned int offset;
3531
3532 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3533
3534 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3535
3536 /*
3537 * psg->page/offset are used to copy to-be-written
3538 * data in this function or read data in ata_sg_clean.
3539 */
3540 offset = lsg->offset + lsg->length - qc->pad_len;
3541 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3542 psg->offset = offset_in_page(offset);
3543
3544 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3545 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3546 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3547 kunmap_atomic(addr, KM_IRQ0);
3548 }
3549
3550 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3551 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3552 /* trim last sg */
3553 lsg->length -= qc->pad_len;
3554 if (lsg->length == 0)
3555 trim_sg = 1;
3556
3557 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3558 qc->n_elem - 1, lsg->length, qc->pad_len);
3559 }
3560
3561 pre_n_elem = qc->n_elem;
3562 if (trim_sg && pre_n_elem)
3563 pre_n_elem--;
3564
3565 if (!pre_n_elem) {
3566 n_elem = 0;
3567 goto skip_map;
3568 }
3569
3570 dir = qc->dma_dir;
3571 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3572 if (n_elem < 1) {
3573 /* restore last sg */
3574 lsg->length += qc->pad_len;
3575 return -1;
3576 }
3577
3578 DPRINTK("%d sg elements mapped\n", n_elem);
3579
3580 skip_map:
3581 qc->n_elem = n_elem;
3582
3583 return 0;
3584 }
3585
3586 /**
3587 * swap_buf_le16 - swap halves of 16-bit words in place
3588 * @buf: Buffer to swap
3589 * @buf_words: Number of 16-bit words in buffer.
3590 *
3591 * Swap halves of 16-bit words if needed to convert from
3592 * little-endian byte order to native cpu byte order, or
3593 * vice-versa.
3594 *
3595 * LOCKING:
3596 * Inherited from caller.
3597 */
3598 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3599 {
3600 #ifdef __BIG_ENDIAN
3601 unsigned int i;
3602
3603 for (i = 0; i < buf_words; i++)
3604 buf[i] = le16_to_cpu(buf[i]);
3605 #endif /* __BIG_ENDIAN */
3606 }
3607
3608 /**
3609 * ata_mmio_data_xfer - Transfer data by MMIO
3610 * @adev: device for this I/O
3611 * @buf: data buffer
3612 * @buflen: buffer length
3613 * @write_data: read/write
3614 *
3615 * Transfer data from/to the device data register by MMIO.
3616 *
3617 * LOCKING:
3618 * Inherited from caller.
3619 */
3620
3621 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3622 unsigned int buflen, int write_data)
3623 {
3624 struct ata_port *ap = adev->ap;
3625 unsigned int i;
3626 unsigned int words = buflen >> 1;
3627 u16 *buf16 = (u16 *) buf;
3628 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3629
3630 /* Transfer multiple of 2 bytes */
3631 if (write_data) {
3632 for (i = 0; i < words; i++)
3633 writew(le16_to_cpu(buf16[i]), mmio);
3634 } else {
3635 for (i = 0; i < words; i++)
3636 buf16[i] = cpu_to_le16(readw(mmio));
3637 }
3638
3639 /* Transfer trailing 1 byte, if any. */
3640 if (unlikely(buflen & 0x01)) {
3641 u16 align_buf[1] = { 0 };
3642 unsigned char *trailing_buf = buf + buflen - 1;
3643
3644 if (write_data) {
3645 memcpy(align_buf, trailing_buf, 1);
3646 writew(le16_to_cpu(align_buf[0]), mmio);
3647 } else {
3648 align_buf[0] = cpu_to_le16(readw(mmio));
3649 memcpy(trailing_buf, align_buf, 1);
3650 }
3651 }
3652 }
3653
3654 /**
3655 * ata_pio_data_xfer - Transfer data by PIO
3656 * @adev: device to target
3657 * @buf: data buffer
3658 * @buflen: buffer length
3659 * @write_data: read/write
3660 *
3661 * Transfer data from/to the device data register by PIO.
3662 *
3663 * LOCKING:
3664 * Inherited from caller.
3665 */
3666
3667 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3668 unsigned int buflen, int write_data)
3669 {
3670 struct ata_port *ap = adev->ap;
3671 unsigned int words = buflen >> 1;
3672
3673 /* Transfer multiple of 2 bytes */
3674 if (write_data)
3675 outsw(ap->ioaddr.data_addr, buf, words);
3676 else
3677 insw(ap->ioaddr.data_addr, buf, words);
3678
3679 /* Transfer trailing 1 byte, if any. */
3680 if (unlikely(buflen & 0x01)) {
3681 u16 align_buf[1] = { 0 };
3682 unsigned char *trailing_buf = buf + buflen - 1;
3683
3684 if (write_data) {
3685 memcpy(align_buf, trailing_buf, 1);
3686 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3687 } else {
3688 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3689 memcpy(trailing_buf, align_buf, 1);
3690 }
3691 }
3692 }
3693
3694 /**
3695 * ata_pio_data_xfer_noirq - Transfer data by PIO
3696 * @adev: device to target
3697 * @buf: data buffer
3698 * @buflen: buffer length
3699 * @write_data: read/write
3700 *
3701 * Transfer data from/to the device data register by PIO. Do the
3702 * transfer with interrupts disabled.
3703 *
3704 * LOCKING:
3705 * Inherited from caller.
3706 */
3707
3708 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3709 unsigned int buflen, int write_data)
3710 {
3711 unsigned long flags;
3712 local_irq_save(flags);
3713 ata_pio_data_xfer(adev, buf, buflen, write_data);
3714 local_irq_restore(flags);
3715 }
3716
3717
3718 /**
3719 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3720 * @qc: Command on going
3721 *
3722 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3723 *
3724 * LOCKING:
3725 * Inherited from caller.
3726 */
3727
3728 static void ata_pio_sector(struct ata_queued_cmd *qc)
3729 {
3730 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3731 struct scatterlist *sg = qc->__sg;
3732 struct ata_port *ap = qc->ap;
3733 struct page *page;
3734 unsigned int offset;
3735 unsigned char *buf;
3736
3737 if (qc->cursect == (qc->nsect - 1))
3738 ap->hsm_task_state = HSM_ST_LAST;
3739
3740 page = sg[qc->cursg].page;
3741 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3742
3743 /* get the current page and offset */
3744 page = nth_page(page, (offset >> PAGE_SHIFT));
3745 offset %= PAGE_SIZE;
3746
3747 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3748
3749 if (PageHighMem(page)) {
3750 unsigned long flags;
3751
3752 /* FIXME: use a bounce buffer */
3753 local_irq_save(flags);
3754 buf = kmap_atomic(page, KM_IRQ0);
3755
3756 /* do the actual data transfer */
3757 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3758
3759 kunmap_atomic(buf, KM_IRQ0);
3760 local_irq_restore(flags);
3761 } else {
3762 buf = page_address(page);
3763 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3764 }
3765
3766 qc->cursect++;
3767 qc->cursg_ofs++;
3768
3769 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3770 qc->cursg++;
3771 qc->cursg_ofs = 0;
3772 }
3773 }
3774
3775 /**
3776 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3777 * @qc: Command on going
3778 *
3779 * Transfer one or many ATA_SECT_SIZE of data from/to the
3780 * ATA device for the DRQ request.
3781 *
3782 * LOCKING:
3783 * Inherited from caller.
3784 */
3785
3786 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3787 {
3788 if (is_multi_taskfile(&qc->tf)) {
3789 /* READ/WRITE MULTIPLE */
3790 unsigned int nsect;
3791
3792 WARN_ON(qc->dev->multi_count == 0);
3793
3794 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3795 while (nsect--)
3796 ata_pio_sector(qc);
3797 } else
3798 ata_pio_sector(qc);
3799 }
3800
3801 /**
3802 * atapi_send_cdb - Write CDB bytes to hardware
3803 * @ap: Port to which ATAPI device is attached.
3804 * @qc: Taskfile currently active
3805 *
3806 * When device has indicated its readiness to accept
3807 * a CDB, this function is called. Send the CDB.
3808 *
3809 * LOCKING:
3810 * caller.
3811 */
3812
3813 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3814 {
3815 /* send SCSI cdb */
3816 DPRINTK("send cdb\n");
3817 WARN_ON(qc->dev->cdb_len < 12);
3818
3819 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3820 ata_altstatus(ap); /* flush */
3821
3822 switch (qc->tf.protocol) {
3823 case ATA_PROT_ATAPI:
3824 ap->hsm_task_state = HSM_ST;
3825 break;
3826 case ATA_PROT_ATAPI_NODATA:
3827 ap->hsm_task_state = HSM_ST_LAST;
3828 break;
3829 case ATA_PROT_ATAPI_DMA:
3830 ap->hsm_task_state = HSM_ST_LAST;
3831 /* initiate bmdma */
3832 ap->ops->bmdma_start(qc);
3833 break;
3834 }
3835 }
3836
3837 /**
3838 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3839 * @qc: Command on going
3840 * @bytes: number of bytes
3841 *
3842 * Transfer Transfer data from/to the ATAPI device.
3843 *
3844 * LOCKING:
3845 * Inherited from caller.
3846 *
3847 */
3848
3849 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3850 {
3851 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3852 struct scatterlist *sg = qc->__sg;
3853 struct ata_port *ap = qc->ap;
3854 struct page *page;
3855 unsigned char *buf;
3856 unsigned int offset, count;
3857
3858 if (qc->curbytes + bytes >= qc->nbytes)
3859 ap->hsm_task_state = HSM_ST_LAST;
3860
3861 next_sg:
3862 if (unlikely(qc->cursg >= qc->n_elem)) {
3863 /*
3864 * The end of qc->sg is reached and the device expects
3865 * more data to transfer. In order not to overrun qc->sg
3866 * and fulfill length specified in the byte count register,
3867 * - for read case, discard trailing data from the device
3868 * - for write case, padding zero data to the device
3869 */
3870 u16 pad_buf[1] = { 0 };
3871 unsigned int words = bytes >> 1;
3872 unsigned int i;
3873
3874 if (words) /* warning if bytes > 1 */
3875 ata_dev_printk(qc->dev, KERN_WARNING,
3876 "%u bytes trailing data\n", bytes);
3877
3878 for (i = 0; i < words; i++)
3879 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3880
3881 ap->hsm_task_state = HSM_ST_LAST;
3882 return;
3883 }
3884
3885 sg = &qc->__sg[qc->cursg];
3886
3887 page = sg->page;
3888 offset = sg->offset + qc->cursg_ofs;
3889
3890 /* get the current page and offset */
3891 page = nth_page(page, (offset >> PAGE_SHIFT));
3892 offset %= PAGE_SIZE;
3893
3894 /* don't overrun current sg */
3895 count = min(sg->length - qc->cursg_ofs, bytes);
3896
3897 /* don't cross page boundaries */
3898 count = min(count, (unsigned int)PAGE_SIZE - offset);
3899
3900 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3901
3902 if (PageHighMem(page)) {
3903 unsigned long flags;
3904
3905 /* FIXME: use bounce buffer */
3906 local_irq_save(flags);
3907 buf = kmap_atomic(page, KM_IRQ0);
3908
3909 /* do the actual data transfer */
3910 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3911
3912 kunmap_atomic(buf, KM_IRQ0);
3913 local_irq_restore(flags);
3914 } else {
3915 buf = page_address(page);
3916 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3917 }
3918
3919 bytes -= count;
3920 qc->curbytes += count;
3921 qc->cursg_ofs += count;
3922
3923 if (qc->cursg_ofs == sg->length) {
3924 qc->cursg++;
3925 qc->cursg_ofs = 0;
3926 }
3927
3928 if (bytes)
3929 goto next_sg;
3930 }
3931
3932 /**
3933 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3934 * @qc: Command on going
3935 *
3936 * Transfer Transfer data from/to the ATAPI device.
3937 *
3938 * LOCKING:
3939 * Inherited from caller.
3940 */
3941
3942 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3943 {
3944 struct ata_port *ap = qc->ap;
3945 struct ata_device *dev = qc->dev;
3946 unsigned int ireason, bc_lo, bc_hi, bytes;
3947 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3948
3949 /* Abuse qc->result_tf for temp storage of intermediate TF
3950 * here to save some kernel stack usage.
3951 * For normal completion, qc->result_tf is not relevant. For
3952 * error, qc->result_tf is later overwritten by ata_qc_complete().
3953 * So, the correctness of qc->result_tf is not affected.
3954 */
3955 ap->ops->tf_read(ap, &qc->result_tf);
3956 ireason = qc->result_tf.nsect;
3957 bc_lo = qc->result_tf.lbam;
3958 bc_hi = qc->result_tf.lbah;
3959 bytes = (bc_hi << 8) | bc_lo;
3960
3961 /* shall be cleared to zero, indicating xfer of data */
3962 if (ireason & (1 << 0))
3963 goto err_out;
3964
3965 /* make sure transfer direction matches expected */
3966 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3967 if (do_write != i_write)
3968 goto err_out;
3969
3970 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3971
3972 __atapi_pio_bytes(qc, bytes);
3973
3974 return;
3975
3976 err_out:
3977 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3978 qc->err_mask |= AC_ERR_HSM;
3979 ap->hsm_task_state = HSM_ST_ERR;
3980 }
3981
3982 /**
3983 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3984 * @ap: the target ata_port
3985 * @qc: qc on going
3986 *
3987 * RETURNS:
3988 * 1 if ok in workqueue, 0 otherwise.
3989 */
3990
3991 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3992 {
3993 if (qc->tf.flags & ATA_TFLAG_POLLING)
3994 return 1;
3995
3996 if (ap->hsm_task_state == HSM_ST_FIRST) {
3997 if (qc->tf.protocol == ATA_PROT_PIO &&
3998 (qc->tf.flags & ATA_TFLAG_WRITE))
3999 return 1;
4000
4001 if (is_atapi_taskfile(&qc->tf) &&
4002 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4003 return 1;
4004 }
4005
4006 return 0;
4007 }
4008
4009 /**
4010 * ata_hsm_qc_complete - finish a qc running on standard HSM
4011 * @qc: Command to complete
4012 * @in_wq: 1 if called from workqueue, 0 otherwise
4013 *
4014 * Finish @qc which is running on standard HSM.
4015 *
4016 * LOCKING:
4017 * If @in_wq is zero, spin_lock_irqsave(host lock).
4018 * Otherwise, none on entry and grabs host lock.
4019 */
4020 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4021 {
4022 struct ata_port *ap = qc->ap;
4023 unsigned long flags;
4024
4025 if (ap->ops->error_handler) {
4026 if (in_wq) {
4027 spin_lock_irqsave(ap->lock, flags);
4028
4029 /* EH might have kicked in while host lock is
4030 * released.
4031 */
4032 qc = ata_qc_from_tag(ap, qc->tag);
4033 if (qc) {
4034 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4035 ata_irq_on(ap);
4036 ata_qc_complete(qc);
4037 } else
4038 ata_port_freeze(ap);
4039 }
4040
4041 spin_unlock_irqrestore(ap->lock, flags);
4042 } else {
4043 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4044 ata_qc_complete(qc);
4045 else
4046 ata_port_freeze(ap);
4047 }
4048 } else {
4049 if (in_wq) {
4050 spin_lock_irqsave(ap->lock, flags);
4051 ata_irq_on(ap);
4052 ata_qc_complete(qc);
4053 spin_unlock_irqrestore(ap->lock, flags);
4054 } else
4055 ata_qc_complete(qc);
4056 }
4057
4058 ata_altstatus(ap); /* flush */
4059 }
4060
4061 /**
4062 * ata_hsm_move - move the HSM to the next state.
4063 * @ap: the target ata_port
4064 * @qc: qc on going
4065 * @status: current device status
4066 * @in_wq: 1 if called from workqueue, 0 otherwise
4067 *
4068 * RETURNS:
4069 * 1 when poll next status needed, 0 otherwise.
4070 */
4071 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4072 u8 status, int in_wq)
4073 {
4074 unsigned long flags = 0;
4075 int poll_next;
4076
4077 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4078
4079 /* Make sure ata_qc_issue_prot() does not throw things
4080 * like DMA polling into the workqueue. Notice that
4081 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4082 */
4083 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4084
4085 fsm_start:
4086 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4087 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4088
4089 switch (ap->hsm_task_state) {
4090 case HSM_ST_FIRST:
4091 /* Send first data block or PACKET CDB */
4092
4093 /* If polling, we will stay in the work queue after
4094 * sending the data. Otherwise, interrupt handler
4095 * takes over after sending the data.
4096 */
4097 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4098
4099 /* check device status */
4100 if (unlikely((status & ATA_DRQ) == 0)) {
4101 /* handle BSY=0, DRQ=0 as error */
4102 if (likely(status & (ATA_ERR | ATA_DF)))
4103 /* device stops HSM for abort/error */
4104 qc->err_mask |= AC_ERR_DEV;
4105 else
4106 /* HSM violation. Let EH handle this */
4107 qc->err_mask |= AC_ERR_HSM;
4108
4109 ap->hsm_task_state = HSM_ST_ERR;
4110 goto fsm_start;
4111 }
4112
4113 /* Device should not ask for data transfer (DRQ=1)
4114 * when it finds something wrong.
4115 * We ignore DRQ here and stop the HSM by
4116 * changing hsm_task_state to HSM_ST_ERR and
4117 * let the EH abort the command or reset the device.
4118 */
4119 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4120 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4121 ap->id, status);
4122 qc->err_mask |= AC_ERR_HSM;
4123 ap->hsm_task_state = HSM_ST_ERR;
4124 goto fsm_start;
4125 }
4126
4127 /* Send the CDB (atapi) or the first data block (ata pio out).
4128 * During the state transition, interrupt handler shouldn't
4129 * be invoked before the data transfer is complete and
4130 * hsm_task_state is changed. Hence, the following locking.
4131 */
4132 if (in_wq)
4133 spin_lock_irqsave(ap->lock, flags);
4134
4135 if (qc->tf.protocol == ATA_PROT_PIO) {
4136 /* PIO data out protocol.
4137 * send first data block.
4138 */
4139
4140 /* ata_pio_sectors() might change the state
4141 * to HSM_ST_LAST. so, the state is changed here
4142 * before ata_pio_sectors().
4143 */
4144 ap->hsm_task_state = HSM_ST;
4145 ata_pio_sectors(qc);
4146 ata_altstatus(ap); /* flush */
4147 } else
4148 /* send CDB */
4149 atapi_send_cdb(ap, qc);
4150
4151 if (in_wq)
4152 spin_unlock_irqrestore(ap->lock, flags);
4153
4154 /* if polling, ata_pio_task() handles the rest.
4155 * otherwise, interrupt handler takes over from here.
4156 */
4157 break;
4158
4159 case HSM_ST:
4160 /* complete command or read/write the data register */
4161 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4162 /* ATAPI PIO protocol */
4163 if ((status & ATA_DRQ) == 0) {
4164 /* No more data to transfer or device error.
4165 * Device error will be tagged in HSM_ST_LAST.
4166 */
4167 ap->hsm_task_state = HSM_ST_LAST;
4168 goto fsm_start;
4169 }
4170
4171 /* Device should not ask for data transfer (DRQ=1)
4172 * when it finds something wrong.
4173 * We ignore DRQ here and stop the HSM by
4174 * changing hsm_task_state to HSM_ST_ERR and
4175 * let the EH abort the command or reset the device.
4176 */
4177 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4178 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4179 ap->id, status);
4180 qc->err_mask |= AC_ERR_HSM;
4181 ap->hsm_task_state = HSM_ST_ERR;
4182 goto fsm_start;
4183 }
4184
4185 atapi_pio_bytes(qc);
4186
4187 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4188 /* bad ireason reported by device */
4189 goto fsm_start;
4190
4191 } else {
4192 /* ATA PIO protocol */
4193 if (unlikely((status & ATA_DRQ) == 0)) {
4194 /* handle BSY=0, DRQ=0 as error */
4195 if (likely(status & (ATA_ERR | ATA_DF)))
4196 /* device stops HSM for abort/error */
4197 qc->err_mask |= AC_ERR_DEV;
4198 else
4199 /* HSM violation. Let EH handle this */
4200 qc->err_mask |= AC_ERR_HSM;
4201
4202 ap->hsm_task_state = HSM_ST_ERR;
4203 goto fsm_start;
4204 }
4205
4206 /* For PIO reads, some devices may ask for
4207 * data transfer (DRQ=1) alone with ERR=1.
4208 * We respect DRQ here and transfer one
4209 * block of junk data before changing the
4210 * hsm_task_state to HSM_ST_ERR.
4211 *
4212 * For PIO writes, ERR=1 DRQ=1 doesn't make
4213 * sense since the data block has been
4214 * transferred to the device.
4215 */
4216 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4217 /* data might be corrputed */
4218 qc->err_mask |= AC_ERR_DEV;
4219
4220 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4221 ata_pio_sectors(qc);
4222 ata_altstatus(ap);
4223 status = ata_wait_idle(ap);
4224 }
4225
4226 if (status & (ATA_BUSY | ATA_DRQ))
4227 qc->err_mask |= AC_ERR_HSM;
4228
4229 /* ata_pio_sectors() might change the
4230 * state to HSM_ST_LAST. so, the state
4231 * is changed after ata_pio_sectors().
4232 */
4233 ap->hsm_task_state = HSM_ST_ERR;
4234 goto fsm_start;
4235 }
4236
4237 ata_pio_sectors(qc);
4238
4239 if (ap->hsm_task_state == HSM_ST_LAST &&
4240 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4241 /* all data read */
4242 ata_altstatus(ap);
4243 status = ata_wait_idle(ap);
4244 goto fsm_start;
4245 }
4246 }
4247
4248 ata_altstatus(ap); /* flush */
4249 poll_next = 1;
4250 break;
4251
4252 case HSM_ST_LAST:
4253 if (unlikely(!ata_ok(status))) {
4254 qc->err_mask |= __ac_err_mask(status);
4255 ap->hsm_task_state = HSM_ST_ERR;
4256 goto fsm_start;
4257 }
4258
4259 /* no more data to transfer */
4260 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4261 ap->id, qc->dev->devno, status);
4262
4263 WARN_ON(qc->err_mask);
4264
4265 ap->hsm_task_state = HSM_ST_IDLE;
4266
4267 /* complete taskfile transaction */
4268 ata_hsm_qc_complete(qc, in_wq);
4269
4270 poll_next = 0;
4271 break;
4272
4273 case HSM_ST_ERR:
4274 /* make sure qc->err_mask is available to
4275 * know what's wrong and recover
4276 */
4277 WARN_ON(qc->err_mask == 0);
4278
4279 ap->hsm_task_state = HSM_ST_IDLE;
4280
4281 /* complete taskfile transaction */
4282 ata_hsm_qc_complete(qc, in_wq);
4283
4284 poll_next = 0;
4285 break;
4286 default:
4287 poll_next = 0;
4288 BUG();
4289 }
4290
4291 return poll_next;
4292 }
4293
4294 static void ata_pio_task(void *_data)
4295 {
4296 struct ata_queued_cmd *qc = _data;
4297 struct ata_port *ap = qc->ap;
4298 u8 status;
4299 int poll_next;
4300
4301 fsm_start:
4302 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4303
4304 /*
4305 * This is purely heuristic. This is a fast path.
4306 * Sometimes when we enter, BSY will be cleared in
4307 * a chk-status or two. If not, the drive is probably seeking
4308 * or something. Snooze for a couple msecs, then
4309 * chk-status again. If still busy, queue delayed work.
4310 */
4311 status = ata_busy_wait(ap, ATA_BUSY, 5);
4312 if (status & ATA_BUSY) {
4313 msleep(2);
4314 status = ata_busy_wait(ap, ATA_BUSY, 10);
4315 if (status & ATA_BUSY) {
4316 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4317 return;
4318 }
4319 }
4320
4321 /* move the HSM */
4322 poll_next = ata_hsm_move(ap, qc, status, 1);
4323
4324 /* another command or interrupt handler
4325 * may be running at this point.
4326 */
4327 if (poll_next)
4328 goto fsm_start;
4329 }
4330
4331 /**
4332 * ata_qc_new - Request an available ATA command, for queueing
4333 * @ap: Port associated with device @dev
4334 * @dev: Device from whom we request an available command structure
4335 *
4336 * LOCKING:
4337 * None.
4338 */
4339
4340 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4341 {
4342 struct ata_queued_cmd *qc = NULL;
4343 unsigned int i;
4344
4345 /* no command while frozen */
4346 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4347 return NULL;
4348
4349 /* the last tag is reserved for internal command. */
4350 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4351 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4352 qc = __ata_qc_from_tag(ap, i);
4353 break;
4354 }
4355
4356 if (qc)
4357 qc->tag = i;
4358
4359 return qc;
4360 }
4361
4362 /**
4363 * ata_qc_new_init - Request an available ATA command, and initialize it
4364 * @dev: Device from whom we request an available command structure
4365 *
4366 * LOCKING:
4367 * None.
4368 */
4369
4370 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4371 {
4372 struct ata_port *ap = dev->ap;
4373 struct ata_queued_cmd *qc;
4374
4375 qc = ata_qc_new(ap);
4376 if (qc) {
4377 qc->scsicmd = NULL;
4378 qc->ap = ap;
4379 qc->dev = dev;
4380
4381 ata_qc_reinit(qc);
4382 }
4383
4384 return qc;
4385 }
4386
4387 /**
4388 * ata_qc_free - free unused ata_queued_cmd
4389 * @qc: Command to complete
4390 *
4391 * Designed to free unused ata_queued_cmd object
4392 * in case something prevents using it.
4393 *
4394 * LOCKING:
4395 * spin_lock_irqsave(host lock)
4396 */
4397 void ata_qc_free(struct ata_queued_cmd *qc)
4398 {
4399 struct ata_port *ap = qc->ap;
4400 unsigned int tag;
4401
4402 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4403
4404 qc->flags = 0;
4405 tag = qc->tag;
4406 if (likely(ata_tag_valid(tag))) {
4407 qc->tag = ATA_TAG_POISON;
4408 clear_bit(tag, &ap->qc_allocated);
4409 }
4410 }
4411
4412 void __ata_qc_complete(struct ata_queued_cmd *qc)
4413 {
4414 struct ata_port *ap = qc->ap;
4415
4416 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4417 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4418
4419 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4420 ata_sg_clean(qc);
4421
4422 /* command should be marked inactive atomically with qc completion */
4423 if (qc->tf.protocol == ATA_PROT_NCQ)
4424 ap->sactive &= ~(1 << qc->tag);
4425 else
4426 ap->active_tag = ATA_TAG_POISON;
4427
4428 /* atapi: mark qc as inactive to prevent the interrupt handler
4429 * from completing the command twice later, before the error handler
4430 * is called. (when rc != 0 and atapi request sense is needed)
4431 */
4432 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4433 ap->qc_active &= ~(1 << qc->tag);
4434
4435 /* call completion callback */
4436 qc->complete_fn(qc);
4437 }
4438
4439 /**
4440 * ata_qc_complete - Complete an active ATA command
4441 * @qc: Command to complete
4442 * @err_mask: ATA Status register contents
4443 *
4444 * Indicate to the mid and upper layers that an ATA
4445 * command has completed, with either an ok or not-ok status.
4446 *
4447 * LOCKING:
4448 * spin_lock_irqsave(host lock)
4449 */
4450 void ata_qc_complete(struct ata_queued_cmd *qc)
4451 {
4452 struct ata_port *ap = qc->ap;
4453
4454 /* XXX: New EH and old EH use different mechanisms to
4455 * synchronize EH with regular execution path.
4456 *
4457 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4458 * Normal execution path is responsible for not accessing a
4459 * failed qc. libata core enforces the rule by returning NULL
4460 * from ata_qc_from_tag() for failed qcs.
4461 *
4462 * Old EH depends on ata_qc_complete() nullifying completion
4463 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4464 * not synchronize with interrupt handler. Only PIO task is
4465 * taken care of.
4466 */
4467 if (ap->ops->error_handler) {
4468 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4469
4470 if (unlikely(qc->err_mask))
4471 qc->flags |= ATA_QCFLAG_FAILED;
4472
4473 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4474 if (!ata_tag_internal(qc->tag)) {
4475 /* always fill result TF for failed qc */
4476 ap->ops->tf_read(ap, &qc->result_tf);
4477 ata_qc_schedule_eh(qc);
4478 return;
4479 }
4480 }
4481
4482 /* read result TF if requested */
4483 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4484 ap->ops->tf_read(ap, &qc->result_tf);
4485
4486 __ata_qc_complete(qc);
4487 } else {
4488 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4489 return;
4490
4491 /* read result TF if failed or requested */
4492 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4493 ap->ops->tf_read(ap, &qc->result_tf);
4494
4495 __ata_qc_complete(qc);
4496 }
4497 }
4498
4499 /**
4500 * ata_qc_complete_multiple - Complete multiple qcs successfully
4501 * @ap: port in question
4502 * @qc_active: new qc_active mask
4503 * @finish_qc: LLDD callback invoked before completing a qc
4504 *
4505 * Complete in-flight commands. This functions is meant to be
4506 * called from low-level driver's interrupt routine to complete
4507 * requests normally. ap->qc_active and @qc_active is compared
4508 * and commands are completed accordingly.
4509 *
4510 * LOCKING:
4511 * spin_lock_irqsave(host lock)
4512 *
4513 * RETURNS:
4514 * Number of completed commands on success, -errno otherwise.
4515 */
4516 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4517 void (*finish_qc)(struct ata_queued_cmd *))
4518 {
4519 int nr_done = 0;
4520 u32 done_mask;
4521 int i;
4522
4523 done_mask = ap->qc_active ^ qc_active;
4524
4525 if (unlikely(done_mask & qc_active)) {
4526 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4527 "(%08x->%08x)\n", ap->qc_active, qc_active);
4528 return -EINVAL;
4529 }
4530
4531 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4532 struct ata_queued_cmd *qc;
4533
4534 if (!(done_mask & (1 << i)))
4535 continue;
4536
4537 if ((qc = ata_qc_from_tag(ap, i))) {
4538 if (finish_qc)
4539 finish_qc(qc);
4540 ata_qc_complete(qc);
4541 nr_done++;
4542 }
4543 }
4544
4545 return nr_done;
4546 }
4547
4548 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4549 {
4550 struct ata_port *ap = qc->ap;
4551
4552 switch (qc->tf.protocol) {
4553 case ATA_PROT_NCQ:
4554 case ATA_PROT_DMA:
4555 case ATA_PROT_ATAPI_DMA:
4556 return 1;
4557
4558 case ATA_PROT_ATAPI:
4559 case ATA_PROT_PIO:
4560 if (ap->flags & ATA_FLAG_PIO_DMA)
4561 return 1;
4562
4563 /* fall through */
4564
4565 default:
4566 return 0;
4567 }
4568
4569 /* never reached */
4570 }
4571
4572 /**
4573 * ata_qc_issue - issue taskfile to device
4574 * @qc: command to issue to device
4575 *
4576 * Prepare an ATA command to submission to device.
4577 * This includes mapping the data into a DMA-able
4578 * area, filling in the S/G table, and finally
4579 * writing the taskfile to hardware, starting the command.
4580 *
4581 * LOCKING:
4582 * spin_lock_irqsave(host lock)
4583 */
4584 void ata_qc_issue(struct ata_queued_cmd *qc)
4585 {
4586 struct ata_port *ap = qc->ap;
4587
4588 /* Make sure only one non-NCQ command is outstanding. The
4589 * check is skipped for old EH because it reuses active qc to
4590 * request ATAPI sense.
4591 */
4592 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4593
4594 if (qc->tf.protocol == ATA_PROT_NCQ) {
4595 WARN_ON(ap->sactive & (1 << qc->tag));
4596 ap->sactive |= 1 << qc->tag;
4597 } else {
4598 WARN_ON(ap->sactive);
4599 ap->active_tag = qc->tag;
4600 }
4601
4602 qc->flags |= ATA_QCFLAG_ACTIVE;
4603 ap->qc_active |= 1 << qc->tag;
4604
4605 if (ata_should_dma_map(qc)) {
4606 if (qc->flags & ATA_QCFLAG_SG) {
4607 if (ata_sg_setup(qc))
4608 goto sg_err;
4609 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4610 if (ata_sg_setup_one(qc))
4611 goto sg_err;
4612 }
4613 } else {
4614 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4615 }
4616
4617 ap->ops->qc_prep(qc);
4618
4619 qc->err_mask |= ap->ops->qc_issue(qc);
4620 if (unlikely(qc->err_mask))
4621 goto err;
4622 return;
4623
4624 sg_err:
4625 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4626 qc->err_mask |= AC_ERR_SYSTEM;
4627 err:
4628 ata_qc_complete(qc);
4629 }
4630
4631 /**
4632 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4633 * @qc: command to issue to device
4634 *
4635 * Using various libata functions and hooks, this function
4636 * starts an ATA command. ATA commands are grouped into
4637 * classes called "protocols", and issuing each type of protocol
4638 * is slightly different.
4639 *
4640 * May be used as the qc_issue() entry in ata_port_operations.
4641 *
4642 * LOCKING:
4643 * spin_lock_irqsave(host lock)
4644 *
4645 * RETURNS:
4646 * Zero on success, AC_ERR_* mask on failure
4647 */
4648
4649 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4650 {
4651 struct ata_port *ap = qc->ap;
4652
4653 /* Use polling pio if the LLD doesn't handle
4654 * interrupt driven pio and atapi CDB interrupt.
4655 */
4656 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4657 switch (qc->tf.protocol) {
4658 case ATA_PROT_PIO:
4659 case ATA_PROT_ATAPI:
4660 case ATA_PROT_ATAPI_NODATA:
4661 qc->tf.flags |= ATA_TFLAG_POLLING;
4662 break;
4663 case ATA_PROT_ATAPI_DMA:
4664 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4665 /* see ata_dma_blacklisted() */
4666 BUG();
4667 break;
4668 default:
4669 break;
4670 }
4671 }
4672
4673 /* select the device */
4674 ata_dev_select(ap, qc->dev->devno, 1, 0);
4675
4676 /* start the command */
4677 switch (qc->tf.protocol) {
4678 case ATA_PROT_NODATA:
4679 if (qc->tf.flags & ATA_TFLAG_POLLING)
4680 ata_qc_set_polling(qc);
4681
4682 ata_tf_to_host(ap, &qc->tf);
4683 ap->hsm_task_state = HSM_ST_LAST;
4684
4685 if (qc->tf.flags & ATA_TFLAG_POLLING)
4686 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4687
4688 break;
4689
4690 case ATA_PROT_DMA:
4691 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4692
4693 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4694 ap->ops->bmdma_setup(qc); /* set up bmdma */
4695 ap->ops->bmdma_start(qc); /* initiate bmdma */
4696 ap->hsm_task_state = HSM_ST_LAST;
4697 break;
4698
4699 case ATA_PROT_PIO:
4700 if (qc->tf.flags & ATA_TFLAG_POLLING)
4701 ata_qc_set_polling(qc);
4702
4703 ata_tf_to_host(ap, &qc->tf);
4704
4705 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4706 /* PIO data out protocol */
4707 ap->hsm_task_state = HSM_ST_FIRST;
4708 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4709
4710 /* always send first data block using
4711 * the ata_pio_task() codepath.
4712 */
4713 } else {
4714 /* PIO data in protocol */
4715 ap->hsm_task_state = HSM_ST;
4716
4717 if (qc->tf.flags & ATA_TFLAG_POLLING)
4718 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4719
4720 /* if polling, ata_pio_task() handles the rest.
4721 * otherwise, interrupt handler takes over from here.
4722 */
4723 }
4724
4725 break;
4726
4727 case ATA_PROT_ATAPI:
4728 case ATA_PROT_ATAPI_NODATA:
4729 if (qc->tf.flags & ATA_TFLAG_POLLING)
4730 ata_qc_set_polling(qc);
4731
4732 ata_tf_to_host(ap, &qc->tf);
4733
4734 ap->hsm_task_state = HSM_ST_FIRST;
4735
4736 /* send cdb by polling if no cdb interrupt */
4737 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4738 (qc->tf.flags & ATA_TFLAG_POLLING))
4739 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4740 break;
4741
4742 case ATA_PROT_ATAPI_DMA:
4743 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4744
4745 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4746 ap->ops->bmdma_setup(qc); /* set up bmdma */
4747 ap->hsm_task_state = HSM_ST_FIRST;
4748
4749 /* send cdb by polling if no cdb interrupt */
4750 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4751 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4752 break;
4753
4754 default:
4755 WARN_ON(1);
4756 return AC_ERR_SYSTEM;
4757 }
4758
4759 return 0;
4760 }
4761
4762 /**
4763 * ata_host_intr - Handle host interrupt for given (port, task)
4764 * @ap: Port on which interrupt arrived (possibly...)
4765 * @qc: Taskfile currently active in engine
4766 *
4767 * Handle host interrupt for given queued command. Currently,
4768 * only DMA interrupts are handled. All other commands are
4769 * handled via polling with interrupts disabled (nIEN bit).
4770 *
4771 * LOCKING:
4772 * spin_lock_irqsave(host lock)
4773 *
4774 * RETURNS:
4775 * One if interrupt was handled, zero if not (shared irq).
4776 */
4777
4778 inline unsigned int ata_host_intr (struct ata_port *ap,
4779 struct ata_queued_cmd *qc)
4780 {
4781 u8 status, host_stat = 0;
4782
4783 VPRINTK("ata%u: protocol %d task_state %d\n",
4784 ap->id, qc->tf.protocol, ap->hsm_task_state);
4785
4786 /* Check whether we are expecting interrupt in this state */
4787 switch (ap->hsm_task_state) {
4788 case HSM_ST_FIRST:
4789 /* Some pre-ATAPI-4 devices assert INTRQ
4790 * at this state when ready to receive CDB.
4791 */
4792
4793 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4794 * The flag was turned on only for atapi devices.
4795 * No need to check is_atapi_taskfile(&qc->tf) again.
4796 */
4797 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4798 goto idle_irq;
4799 break;
4800 case HSM_ST_LAST:
4801 if (qc->tf.protocol == ATA_PROT_DMA ||
4802 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4803 /* check status of DMA engine */
4804 host_stat = ap->ops->bmdma_status(ap);
4805 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4806
4807 /* if it's not our irq... */
4808 if (!(host_stat & ATA_DMA_INTR))
4809 goto idle_irq;
4810
4811 /* before we do anything else, clear DMA-Start bit */
4812 ap->ops->bmdma_stop(qc);
4813
4814 if (unlikely(host_stat & ATA_DMA_ERR)) {
4815 /* error when transfering data to/from memory */
4816 qc->err_mask |= AC_ERR_HOST_BUS;
4817 ap->hsm_task_state = HSM_ST_ERR;
4818 }
4819 }
4820 break;
4821 case HSM_ST:
4822 break;
4823 default:
4824 goto idle_irq;
4825 }
4826
4827 /* check altstatus */
4828 status = ata_altstatus(ap);
4829 if (status & ATA_BUSY)
4830 goto idle_irq;
4831
4832 /* check main status, clearing INTRQ */
4833 status = ata_chk_status(ap);
4834 if (unlikely(status & ATA_BUSY))
4835 goto idle_irq;
4836
4837 /* ack bmdma irq events */
4838 ap->ops->irq_clear(ap);
4839
4840 ata_hsm_move(ap, qc, status, 0);
4841 return 1; /* irq handled */
4842
4843 idle_irq:
4844 ap->stats.idle_irq++;
4845
4846 #ifdef ATA_IRQ_TRAP
4847 if ((ap->stats.idle_irq % 1000) == 0) {
4848 ata_irq_ack(ap, 0); /* debug trap */
4849 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4850 return 1;
4851 }
4852 #endif
4853 return 0; /* irq not handled */
4854 }
4855
4856 /**
4857 * ata_interrupt - Default ATA host interrupt handler
4858 * @irq: irq line (unused)
4859 * @dev_instance: pointer to our ata_host information structure
4860 *
4861 * Default interrupt handler for PCI IDE devices. Calls
4862 * ata_host_intr() for each port that is not disabled.
4863 *
4864 * LOCKING:
4865 * Obtains host lock during operation.
4866 *
4867 * RETURNS:
4868 * IRQ_NONE or IRQ_HANDLED.
4869 */
4870
4871 irqreturn_t ata_interrupt (int irq, void *dev_instance)
4872 {
4873 struct ata_host *host = dev_instance;
4874 unsigned int i;
4875 unsigned int handled = 0;
4876 unsigned long flags;
4877
4878 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4879 spin_lock_irqsave(&host->lock, flags);
4880
4881 for (i = 0; i < host->n_ports; i++) {
4882 struct ata_port *ap;
4883
4884 ap = host->ports[i];
4885 if (ap &&
4886 !(ap->flags & ATA_FLAG_DISABLED)) {
4887 struct ata_queued_cmd *qc;
4888
4889 qc = ata_qc_from_tag(ap, ap->active_tag);
4890 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4891 (qc->flags & ATA_QCFLAG_ACTIVE))
4892 handled |= ata_host_intr(ap, qc);
4893 }
4894 }
4895
4896 spin_unlock_irqrestore(&host->lock, flags);
4897
4898 return IRQ_RETVAL(handled);
4899 }
4900
4901 /**
4902 * sata_scr_valid - test whether SCRs are accessible
4903 * @ap: ATA port to test SCR accessibility for
4904 *
4905 * Test whether SCRs are accessible for @ap.
4906 *
4907 * LOCKING:
4908 * None.
4909 *
4910 * RETURNS:
4911 * 1 if SCRs are accessible, 0 otherwise.
4912 */
4913 int sata_scr_valid(struct ata_port *ap)
4914 {
4915 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4916 }
4917
4918 /**
4919 * sata_scr_read - read SCR register of the specified port
4920 * @ap: ATA port to read SCR for
4921 * @reg: SCR to read
4922 * @val: Place to store read value
4923 *
4924 * Read SCR register @reg of @ap into *@val. This function is
4925 * guaranteed to succeed if the cable type of the port is SATA
4926 * and the port implements ->scr_read.
4927 *
4928 * LOCKING:
4929 * None.
4930 *
4931 * RETURNS:
4932 * 0 on success, negative errno on failure.
4933 */
4934 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4935 {
4936 if (sata_scr_valid(ap)) {
4937 *val = ap->ops->scr_read(ap, reg);
4938 return 0;
4939 }
4940 return -EOPNOTSUPP;
4941 }
4942
4943 /**
4944 * sata_scr_write - write SCR register of the specified port
4945 * @ap: ATA port to write SCR for
4946 * @reg: SCR to write
4947 * @val: value to write
4948 *
4949 * Write @val to SCR register @reg of @ap. This function is
4950 * guaranteed to succeed if the cable type of the port is SATA
4951 * and the port implements ->scr_read.
4952 *
4953 * LOCKING:
4954 * None.
4955 *
4956 * RETURNS:
4957 * 0 on success, negative errno on failure.
4958 */
4959 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4960 {
4961 if (sata_scr_valid(ap)) {
4962 ap->ops->scr_write(ap, reg, val);
4963 return 0;
4964 }
4965 return -EOPNOTSUPP;
4966 }
4967
4968 /**
4969 * sata_scr_write_flush - write SCR register of the specified port and flush
4970 * @ap: ATA port to write SCR for
4971 * @reg: SCR to write
4972 * @val: value to write
4973 *
4974 * This function is identical to sata_scr_write() except that this
4975 * function performs flush after writing to the register.
4976 *
4977 * LOCKING:
4978 * None.
4979 *
4980 * RETURNS:
4981 * 0 on success, negative errno on failure.
4982 */
4983 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4984 {
4985 if (sata_scr_valid(ap)) {
4986 ap->ops->scr_write(ap, reg, val);
4987 ap->ops->scr_read(ap, reg);
4988 return 0;
4989 }
4990 return -EOPNOTSUPP;
4991 }
4992
4993 /**
4994 * ata_port_online - test whether the given port is online
4995 * @ap: ATA port to test
4996 *
4997 * Test whether @ap is online. Note that this function returns 0
4998 * if online status of @ap cannot be obtained, so
4999 * ata_port_online(ap) != !ata_port_offline(ap).
5000 *
5001 * LOCKING:
5002 * None.
5003 *
5004 * RETURNS:
5005 * 1 if the port online status is available and online.
5006 */
5007 int ata_port_online(struct ata_port *ap)
5008 {
5009 u32 sstatus;
5010
5011 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5012 return 1;
5013 return 0;
5014 }
5015
5016 /**
5017 * ata_port_offline - test whether the given port is offline
5018 * @ap: ATA port to test
5019 *
5020 * Test whether @ap is offline. Note that this function returns
5021 * 0 if offline status of @ap cannot be obtained, so
5022 * ata_port_online(ap) != !ata_port_offline(ap).
5023 *
5024 * LOCKING:
5025 * None.
5026 *
5027 * RETURNS:
5028 * 1 if the port offline status is available and offline.
5029 */
5030 int ata_port_offline(struct ata_port *ap)
5031 {
5032 u32 sstatus;
5033
5034 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5035 return 1;
5036 return 0;
5037 }
5038
5039 int ata_flush_cache(struct ata_device *dev)
5040 {
5041 unsigned int err_mask;
5042 u8 cmd;
5043
5044 if (!ata_try_flush_cache(dev))
5045 return 0;
5046
5047 if (ata_id_has_flush_ext(dev->id))
5048 cmd = ATA_CMD_FLUSH_EXT;
5049 else
5050 cmd = ATA_CMD_FLUSH;
5051
5052 err_mask = ata_do_simple_cmd(dev, cmd);
5053 if (err_mask) {
5054 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5055 return -EIO;
5056 }
5057
5058 return 0;
5059 }
5060
5061 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5062 unsigned int action, unsigned int ehi_flags,
5063 int wait)
5064 {
5065 unsigned long flags;
5066 int i, rc;
5067
5068 for (i = 0; i < host->n_ports; i++) {
5069 struct ata_port *ap = host->ports[i];
5070
5071 /* Previous resume operation might still be in
5072 * progress. Wait for PM_PENDING to clear.
5073 */
5074 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5075 ata_port_wait_eh(ap);
5076 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5077 }
5078
5079 /* request PM ops to EH */
5080 spin_lock_irqsave(ap->lock, flags);
5081
5082 ap->pm_mesg = mesg;
5083 if (wait) {
5084 rc = 0;
5085 ap->pm_result = &rc;
5086 }
5087
5088 ap->pflags |= ATA_PFLAG_PM_PENDING;
5089 ap->eh_info.action |= action;
5090 ap->eh_info.flags |= ehi_flags;
5091
5092 ata_port_schedule_eh(ap);
5093
5094 spin_unlock_irqrestore(ap->lock, flags);
5095
5096 /* wait and check result */
5097 if (wait) {
5098 ata_port_wait_eh(ap);
5099 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5100 if (rc)
5101 return rc;
5102 }
5103 }
5104
5105 return 0;
5106 }
5107
5108 /**
5109 * ata_host_suspend - suspend host
5110 * @host: host to suspend
5111 * @mesg: PM message
5112 *
5113 * Suspend @host. Actual operation is performed by EH. This
5114 * function requests EH to perform PM operations and waits for EH
5115 * to finish.
5116 *
5117 * LOCKING:
5118 * Kernel thread context (may sleep).
5119 *
5120 * RETURNS:
5121 * 0 on success, -errno on failure.
5122 */
5123 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5124 {
5125 int i, j, rc;
5126
5127 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5128 if (rc)
5129 goto fail;
5130
5131 /* EH is quiescent now. Fail if we have any ready device.
5132 * This happens if hotplug occurs between completion of device
5133 * suspension and here.
5134 */
5135 for (i = 0; i < host->n_ports; i++) {
5136 struct ata_port *ap = host->ports[i];
5137
5138 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5139 struct ata_device *dev = &ap->device[j];
5140
5141 if (ata_dev_ready(dev)) {
5142 ata_port_printk(ap, KERN_WARNING,
5143 "suspend failed, device %d "
5144 "still active\n", dev->devno);
5145 rc = -EBUSY;
5146 goto fail;
5147 }
5148 }
5149 }
5150
5151 host->dev->power.power_state = mesg;
5152 return 0;
5153
5154 fail:
5155 ata_host_resume(host);
5156 return rc;
5157 }
5158
5159 /**
5160 * ata_host_resume - resume host
5161 * @host: host to resume
5162 *
5163 * Resume @host. Actual operation is performed by EH. This
5164 * function requests EH to perform PM operations and returns.
5165 * Note that all resume operations are performed parallely.
5166 *
5167 * LOCKING:
5168 * Kernel thread context (may sleep).
5169 */
5170 void ata_host_resume(struct ata_host *host)
5171 {
5172 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5173 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5174 host->dev->power.power_state = PMSG_ON;
5175 }
5176
5177 /**
5178 * ata_port_start - Set port up for dma.
5179 * @ap: Port to initialize
5180 *
5181 * Called just after data structures for each port are
5182 * initialized. Allocates space for PRD table.
5183 *
5184 * May be used as the port_start() entry in ata_port_operations.
5185 *
5186 * LOCKING:
5187 * Inherited from caller.
5188 */
5189
5190 int ata_port_start (struct ata_port *ap)
5191 {
5192 struct device *dev = ap->dev;
5193 int rc;
5194
5195 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5196 if (!ap->prd)
5197 return -ENOMEM;
5198
5199 rc = ata_pad_alloc(ap, dev);
5200 if (rc) {
5201 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5202 return rc;
5203 }
5204
5205 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5206
5207 return 0;
5208 }
5209
5210
5211 /**
5212 * ata_port_stop - Undo ata_port_start()
5213 * @ap: Port to shut down
5214 *
5215 * Frees the PRD table.
5216 *
5217 * May be used as the port_stop() entry in ata_port_operations.
5218 *
5219 * LOCKING:
5220 * Inherited from caller.
5221 */
5222
5223 void ata_port_stop (struct ata_port *ap)
5224 {
5225 struct device *dev = ap->dev;
5226
5227 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5228 ata_pad_free(ap, dev);
5229 }
5230
5231 void ata_host_stop (struct ata_host *host)
5232 {
5233 if (host->mmio_base)
5234 iounmap(host->mmio_base);
5235 }
5236
5237 /**
5238 * ata_dev_init - Initialize an ata_device structure
5239 * @dev: Device structure to initialize
5240 *
5241 * Initialize @dev in preparation for probing.
5242 *
5243 * LOCKING:
5244 * Inherited from caller.
5245 */
5246 void ata_dev_init(struct ata_device *dev)
5247 {
5248 struct ata_port *ap = dev->ap;
5249 unsigned long flags;
5250
5251 /* SATA spd limit is bound to the first device */
5252 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5253
5254 /* High bits of dev->flags are used to record warm plug
5255 * requests which occur asynchronously. Synchronize using
5256 * host lock.
5257 */
5258 spin_lock_irqsave(ap->lock, flags);
5259 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5260 spin_unlock_irqrestore(ap->lock, flags);
5261
5262 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5263 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5264 dev->pio_mask = UINT_MAX;
5265 dev->mwdma_mask = UINT_MAX;
5266 dev->udma_mask = UINT_MAX;
5267 }
5268
5269 /**
5270 * ata_port_init - Initialize an ata_port structure
5271 * @ap: Structure to initialize
5272 * @host: Collection of hosts to which @ap belongs
5273 * @ent: Probe information provided by low-level driver
5274 * @port_no: Port number associated with this ata_port
5275 *
5276 * Initialize a new ata_port structure.
5277 *
5278 * LOCKING:
5279 * Inherited from caller.
5280 */
5281 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5282 const struct ata_probe_ent *ent, unsigned int port_no)
5283 {
5284 unsigned int i;
5285
5286 ap->lock = &host->lock;
5287 ap->flags = ATA_FLAG_DISABLED;
5288 ap->id = ata_unique_id++;
5289 ap->ctl = ATA_DEVCTL_OBS;
5290 ap->host = host;
5291 ap->dev = ent->dev;
5292 ap->port_no = port_no;
5293 if (port_no == 1 && ent->pinfo2) {
5294 ap->pio_mask = ent->pinfo2->pio_mask;
5295 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5296 ap->udma_mask = ent->pinfo2->udma_mask;
5297 ap->flags |= ent->pinfo2->flags;
5298 ap->ops = ent->pinfo2->port_ops;
5299 } else {
5300 ap->pio_mask = ent->pio_mask;
5301 ap->mwdma_mask = ent->mwdma_mask;
5302 ap->udma_mask = ent->udma_mask;
5303 ap->flags |= ent->port_flags;
5304 ap->ops = ent->port_ops;
5305 }
5306 ap->hw_sata_spd_limit = UINT_MAX;
5307 ap->active_tag = ATA_TAG_POISON;
5308 ap->last_ctl = 0xFF;
5309
5310 #if defined(ATA_VERBOSE_DEBUG)
5311 /* turn on all debugging levels */
5312 ap->msg_enable = 0x00FF;
5313 #elif defined(ATA_DEBUG)
5314 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5315 #else
5316 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5317 #endif
5318
5319 INIT_WORK(&ap->port_task, NULL, NULL);
5320 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5321 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5322 INIT_LIST_HEAD(&ap->eh_done_q);
5323 init_waitqueue_head(&ap->eh_wait_q);
5324
5325 /* set cable type */
5326 ap->cbl = ATA_CBL_NONE;
5327 if (ap->flags & ATA_FLAG_SATA)
5328 ap->cbl = ATA_CBL_SATA;
5329
5330 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5331 struct ata_device *dev = &ap->device[i];
5332 dev->ap = ap;
5333 dev->devno = i;
5334 ata_dev_init(dev);
5335 }
5336
5337 #ifdef ATA_IRQ_TRAP
5338 ap->stats.unhandled_irq = 1;
5339 ap->stats.idle_irq = 1;
5340 #endif
5341
5342 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5343 }
5344
5345 /**
5346 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5347 * @ap: ATA port to initialize SCSI host for
5348 * @shost: SCSI host associated with @ap
5349 *
5350 * Initialize SCSI host @shost associated with ATA port @ap.
5351 *
5352 * LOCKING:
5353 * Inherited from caller.
5354 */
5355 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5356 {
5357 ap->scsi_host = shost;
5358
5359 shost->unique_id = ap->id;
5360 shost->max_id = 16;
5361 shost->max_lun = 1;
5362 shost->max_channel = 1;
5363 shost->max_cmd_len = 12;
5364 }
5365
5366 /**
5367 * ata_port_add - Attach low-level ATA driver to system
5368 * @ent: Information provided by low-level driver
5369 * @host: Collections of ports to which we add
5370 * @port_no: Port number associated with this host
5371 *
5372 * Attach low-level ATA driver to system.
5373 *
5374 * LOCKING:
5375 * PCI/etc. bus probe sem.
5376 *
5377 * RETURNS:
5378 * New ata_port on success, for NULL on error.
5379 */
5380 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5381 struct ata_host *host,
5382 unsigned int port_no)
5383 {
5384 struct Scsi_Host *shost;
5385 struct ata_port *ap;
5386
5387 DPRINTK("ENTER\n");
5388
5389 if (!ent->port_ops->error_handler &&
5390 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5391 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5392 port_no);
5393 return NULL;
5394 }
5395
5396 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5397 if (!shost)
5398 return NULL;
5399
5400 shost->transportt = &ata_scsi_transport_template;
5401
5402 ap = ata_shost_to_port(shost);
5403
5404 ata_port_init(ap, host, ent, port_no);
5405 ata_port_init_shost(ap, shost);
5406
5407 return ap;
5408 }
5409
5410 /**
5411 * ata_sas_host_init - Initialize a host struct
5412 * @host: host to initialize
5413 * @dev: device host is attached to
5414 * @flags: host flags
5415 * @ops: port_ops
5416 *
5417 * LOCKING:
5418 * PCI/etc. bus probe sem.
5419 *
5420 */
5421
5422 void ata_host_init(struct ata_host *host, struct device *dev,
5423 unsigned long flags, const struct ata_port_operations *ops)
5424 {
5425 spin_lock_init(&host->lock);
5426 host->dev = dev;
5427 host->flags = flags;
5428 host->ops = ops;
5429 }
5430
5431 /**
5432 * ata_device_add - Register hardware device with ATA and SCSI layers
5433 * @ent: Probe information describing hardware device to be registered
5434 *
5435 * This function processes the information provided in the probe
5436 * information struct @ent, allocates the necessary ATA and SCSI
5437 * host information structures, initializes them, and registers
5438 * everything with requisite kernel subsystems.
5439 *
5440 * This function requests irqs, probes the ATA bus, and probes
5441 * the SCSI bus.
5442 *
5443 * LOCKING:
5444 * PCI/etc. bus probe sem.
5445 *
5446 * RETURNS:
5447 * Number of ports registered. Zero on error (no ports registered).
5448 */
5449 int ata_device_add(const struct ata_probe_ent *ent)
5450 {
5451 unsigned int i;
5452 struct device *dev = ent->dev;
5453 struct ata_host *host;
5454 int rc;
5455
5456 DPRINTK("ENTER\n");
5457
5458 if (ent->irq == 0) {
5459 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5460 return 0;
5461 }
5462 /* alloc a container for our list of ATA ports (buses) */
5463 host = kzalloc(sizeof(struct ata_host) +
5464 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5465 if (!host)
5466 return 0;
5467
5468 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5469 host->n_ports = ent->n_ports;
5470 host->irq = ent->irq;
5471 host->irq2 = ent->irq2;
5472 host->mmio_base = ent->mmio_base;
5473 host->private_data = ent->private_data;
5474
5475 /* register each port bound to this device */
5476 for (i = 0; i < host->n_ports; i++) {
5477 struct ata_port *ap;
5478 unsigned long xfer_mode_mask;
5479 int irq_line = ent->irq;
5480
5481 ap = ata_port_add(ent, host, i);
5482 host->ports[i] = ap;
5483 if (!ap)
5484 goto err_out;
5485
5486 /* dummy? */
5487 if (ent->dummy_port_mask & (1 << i)) {
5488 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5489 ap->ops = &ata_dummy_port_ops;
5490 continue;
5491 }
5492
5493 /* start port */
5494 rc = ap->ops->port_start(ap);
5495 if (rc) {
5496 host->ports[i] = NULL;
5497 scsi_host_put(ap->scsi_host);
5498 goto err_out;
5499 }
5500
5501 /* Report the secondary IRQ for second channel legacy */
5502 if (i == 1 && ent->irq2)
5503 irq_line = ent->irq2;
5504
5505 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5506 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5507 (ap->pio_mask << ATA_SHIFT_PIO);
5508
5509 /* print per-port info to dmesg */
5510 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5511 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5512 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5513 ata_mode_string(xfer_mode_mask),
5514 ap->ioaddr.cmd_addr,
5515 ap->ioaddr.ctl_addr,
5516 ap->ioaddr.bmdma_addr,
5517 irq_line);
5518
5519 ata_chk_status(ap);
5520 host->ops->irq_clear(ap);
5521 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5522 }
5523
5524 /* obtain irq, that may be shared between channels */
5525 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5526 DRV_NAME, host);
5527 if (rc) {
5528 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5529 ent->irq, rc);
5530 goto err_out;
5531 }
5532
5533 /* do we have a second IRQ for the other channel, eg legacy mode */
5534 if (ent->irq2) {
5535 /* We will get weird core code crashes later if this is true
5536 so trap it now */
5537 BUG_ON(ent->irq == ent->irq2);
5538
5539 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5540 DRV_NAME, host);
5541 if (rc) {
5542 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5543 ent->irq2, rc);
5544 goto err_out_free_irq;
5545 }
5546 }
5547
5548 /* perform each probe synchronously */
5549 DPRINTK("probe begin\n");
5550 for (i = 0; i < host->n_ports; i++) {
5551 struct ata_port *ap = host->ports[i];
5552 u32 scontrol;
5553 int rc;
5554
5555 /* init sata_spd_limit to the current value */
5556 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5557 int spd = (scontrol >> 4) & 0xf;
5558 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5559 }
5560 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5561
5562 rc = scsi_add_host(ap->scsi_host, dev);
5563 if (rc) {
5564 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5565 /* FIXME: do something useful here */
5566 /* FIXME: handle unconditional calls to
5567 * scsi_scan_host and ata_host_remove, below,
5568 * at the very least
5569 */
5570 }
5571
5572 if (ap->ops->error_handler) {
5573 struct ata_eh_info *ehi = &ap->eh_info;
5574 unsigned long flags;
5575
5576 ata_port_probe(ap);
5577
5578 /* kick EH for boot probing */
5579 spin_lock_irqsave(ap->lock, flags);
5580
5581 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5582 ehi->action |= ATA_EH_SOFTRESET;
5583 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5584
5585 ap->pflags |= ATA_PFLAG_LOADING;
5586 ata_port_schedule_eh(ap);
5587
5588 spin_unlock_irqrestore(ap->lock, flags);
5589
5590 /* wait for EH to finish */
5591 ata_port_wait_eh(ap);
5592 } else {
5593 DPRINTK("ata%u: bus probe begin\n", ap->id);
5594 rc = ata_bus_probe(ap);
5595 DPRINTK("ata%u: bus probe end\n", ap->id);
5596
5597 if (rc) {
5598 /* FIXME: do something useful here?
5599 * Current libata behavior will
5600 * tear down everything when
5601 * the module is removed
5602 * or the h/w is unplugged.
5603 */
5604 }
5605 }
5606 }
5607
5608 /* probes are done, now scan each port's disk(s) */
5609 DPRINTK("host probe begin\n");
5610 for (i = 0; i < host->n_ports; i++) {
5611 struct ata_port *ap = host->ports[i];
5612
5613 ata_scsi_scan_host(ap);
5614 }
5615
5616 dev_set_drvdata(dev, host);
5617
5618 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5619 return ent->n_ports; /* success */
5620
5621 err_out_free_irq:
5622 free_irq(ent->irq, host);
5623 err_out:
5624 for (i = 0; i < host->n_ports; i++) {
5625 struct ata_port *ap = host->ports[i];
5626 if (ap) {
5627 ap->ops->port_stop(ap);
5628 scsi_host_put(ap->scsi_host);
5629 }
5630 }
5631
5632 kfree(host);
5633 VPRINTK("EXIT, returning 0\n");
5634 return 0;
5635 }
5636
5637 /**
5638 * ata_port_detach - Detach ATA port in prepration of device removal
5639 * @ap: ATA port to be detached
5640 *
5641 * Detach all ATA devices and the associated SCSI devices of @ap;
5642 * then, remove the associated SCSI host. @ap is guaranteed to
5643 * be quiescent on return from this function.
5644 *
5645 * LOCKING:
5646 * Kernel thread context (may sleep).
5647 */
5648 void ata_port_detach(struct ata_port *ap)
5649 {
5650 unsigned long flags;
5651 int i;
5652
5653 if (!ap->ops->error_handler)
5654 goto skip_eh;
5655
5656 /* tell EH we're leaving & flush EH */
5657 spin_lock_irqsave(ap->lock, flags);
5658 ap->pflags |= ATA_PFLAG_UNLOADING;
5659 spin_unlock_irqrestore(ap->lock, flags);
5660
5661 ata_port_wait_eh(ap);
5662
5663 /* EH is now guaranteed to see UNLOADING, so no new device
5664 * will be attached. Disable all existing devices.
5665 */
5666 spin_lock_irqsave(ap->lock, flags);
5667
5668 for (i = 0; i < ATA_MAX_DEVICES; i++)
5669 ata_dev_disable(&ap->device[i]);
5670
5671 spin_unlock_irqrestore(ap->lock, flags);
5672
5673 /* Final freeze & EH. All in-flight commands are aborted. EH
5674 * will be skipped and retrials will be terminated with bad
5675 * target.
5676 */
5677 spin_lock_irqsave(ap->lock, flags);
5678 ata_port_freeze(ap); /* won't be thawed */
5679 spin_unlock_irqrestore(ap->lock, flags);
5680
5681 ata_port_wait_eh(ap);
5682
5683 /* Flush hotplug task. The sequence is similar to
5684 * ata_port_flush_task().
5685 */
5686 flush_workqueue(ata_aux_wq);
5687 cancel_delayed_work(&ap->hotplug_task);
5688 flush_workqueue(ata_aux_wq);
5689
5690 skip_eh:
5691 /* remove the associated SCSI host */
5692 scsi_remove_host(ap->scsi_host);
5693 }
5694
5695 /**
5696 * ata_host_remove - PCI layer callback for device removal
5697 * @host: ATA host set that was removed
5698 *
5699 * Unregister all objects associated with this host set. Free those
5700 * objects.
5701 *
5702 * LOCKING:
5703 * Inherited from calling layer (may sleep).
5704 */
5705
5706 void ata_host_remove(struct ata_host *host)
5707 {
5708 unsigned int i;
5709
5710 for (i = 0; i < host->n_ports; i++)
5711 ata_port_detach(host->ports[i]);
5712
5713 free_irq(host->irq, host);
5714 if (host->irq2)
5715 free_irq(host->irq2, host);
5716
5717 for (i = 0; i < host->n_ports; i++) {
5718 struct ata_port *ap = host->ports[i];
5719
5720 ata_scsi_release(ap->scsi_host);
5721
5722 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5723 struct ata_ioports *ioaddr = &ap->ioaddr;
5724
5725 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5726 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5727 release_region(ATA_PRIMARY_CMD, 8);
5728 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5729 release_region(ATA_SECONDARY_CMD, 8);
5730 }
5731
5732 scsi_host_put(ap->scsi_host);
5733 }
5734
5735 if (host->ops->host_stop)
5736 host->ops->host_stop(host);
5737
5738 kfree(host);
5739 }
5740
5741 /**
5742 * ata_scsi_release - SCSI layer callback hook for host unload
5743 * @shost: libata host to be unloaded
5744 *
5745 * Performs all duties necessary to shut down a libata port...
5746 * Kill port kthread, disable port, and release resources.
5747 *
5748 * LOCKING:
5749 * Inherited from SCSI layer.
5750 *
5751 * RETURNS:
5752 * One.
5753 */
5754
5755 int ata_scsi_release(struct Scsi_Host *shost)
5756 {
5757 struct ata_port *ap = ata_shost_to_port(shost);
5758
5759 DPRINTK("ENTER\n");
5760
5761 ap->ops->port_disable(ap);
5762 ap->ops->port_stop(ap);
5763
5764 DPRINTK("EXIT\n");
5765 return 1;
5766 }
5767
5768 struct ata_probe_ent *
5769 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5770 {
5771 struct ata_probe_ent *probe_ent;
5772
5773 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5774 if (!probe_ent) {
5775 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5776 kobject_name(&(dev->kobj)));
5777 return NULL;
5778 }
5779
5780 INIT_LIST_HEAD(&probe_ent->node);
5781 probe_ent->dev = dev;
5782
5783 probe_ent->sht = port->sht;
5784 probe_ent->port_flags = port->flags;
5785 probe_ent->pio_mask = port->pio_mask;
5786 probe_ent->mwdma_mask = port->mwdma_mask;
5787 probe_ent->udma_mask = port->udma_mask;
5788 probe_ent->port_ops = port->port_ops;
5789 probe_ent->private_data = port->private_data;
5790
5791 return probe_ent;
5792 }
5793
5794 /**
5795 * ata_std_ports - initialize ioaddr with standard port offsets.
5796 * @ioaddr: IO address structure to be initialized
5797 *
5798 * Utility function which initializes data_addr, error_addr,
5799 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5800 * device_addr, status_addr, and command_addr to standard offsets
5801 * relative to cmd_addr.
5802 *
5803 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5804 */
5805
5806 void ata_std_ports(struct ata_ioports *ioaddr)
5807 {
5808 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5809 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5810 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5811 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5812 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5813 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5814 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5815 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5816 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5817 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5818 }
5819
5820
5821 #ifdef CONFIG_PCI
5822
5823 void ata_pci_host_stop (struct ata_host *host)
5824 {
5825 struct pci_dev *pdev = to_pci_dev(host->dev);
5826
5827 pci_iounmap(pdev, host->mmio_base);
5828 }
5829
5830 /**
5831 * ata_pci_remove_one - PCI layer callback for device removal
5832 * @pdev: PCI device that was removed
5833 *
5834 * PCI layer indicates to libata via this hook that
5835 * hot-unplug or module unload event has occurred.
5836 * Handle this by unregistering all objects associated
5837 * with this PCI device. Free those objects. Then finally
5838 * release PCI resources and disable device.
5839 *
5840 * LOCKING:
5841 * Inherited from PCI layer (may sleep).
5842 */
5843
5844 void ata_pci_remove_one (struct pci_dev *pdev)
5845 {
5846 struct device *dev = pci_dev_to_dev(pdev);
5847 struct ata_host *host = dev_get_drvdata(dev);
5848
5849 ata_host_remove(host);
5850
5851 pci_release_regions(pdev);
5852 pci_disable_device(pdev);
5853 dev_set_drvdata(dev, NULL);
5854 }
5855
5856 /* move to PCI subsystem */
5857 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5858 {
5859 unsigned long tmp = 0;
5860
5861 switch (bits->width) {
5862 case 1: {
5863 u8 tmp8 = 0;
5864 pci_read_config_byte(pdev, bits->reg, &tmp8);
5865 tmp = tmp8;
5866 break;
5867 }
5868 case 2: {
5869 u16 tmp16 = 0;
5870 pci_read_config_word(pdev, bits->reg, &tmp16);
5871 tmp = tmp16;
5872 break;
5873 }
5874 case 4: {
5875 u32 tmp32 = 0;
5876 pci_read_config_dword(pdev, bits->reg, &tmp32);
5877 tmp = tmp32;
5878 break;
5879 }
5880
5881 default:
5882 return -EINVAL;
5883 }
5884
5885 tmp &= bits->mask;
5886
5887 return (tmp == bits->val) ? 1 : 0;
5888 }
5889
5890 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5891 {
5892 pci_save_state(pdev);
5893
5894 if (mesg.event == PM_EVENT_SUSPEND) {
5895 pci_disable_device(pdev);
5896 pci_set_power_state(pdev, PCI_D3hot);
5897 }
5898 }
5899
5900 void ata_pci_device_do_resume(struct pci_dev *pdev)
5901 {
5902 pci_set_power_state(pdev, PCI_D0);
5903 pci_restore_state(pdev);
5904 pci_enable_device(pdev);
5905 pci_set_master(pdev);
5906 }
5907
5908 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5909 {
5910 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5911 int rc = 0;
5912
5913 rc = ata_host_suspend(host, mesg);
5914 if (rc)
5915 return rc;
5916
5917 ata_pci_device_do_suspend(pdev, mesg);
5918
5919 return 0;
5920 }
5921
5922 int ata_pci_device_resume(struct pci_dev *pdev)
5923 {
5924 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5925
5926 ata_pci_device_do_resume(pdev);
5927 ata_host_resume(host);
5928 return 0;
5929 }
5930 #endif /* CONFIG_PCI */
5931
5932
5933 static int __init ata_init(void)
5934 {
5935 ata_probe_timeout *= HZ;
5936 ata_wq = create_workqueue("ata");
5937 if (!ata_wq)
5938 return -ENOMEM;
5939
5940 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5941 if (!ata_aux_wq) {
5942 destroy_workqueue(ata_wq);
5943 return -ENOMEM;
5944 }
5945
5946 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5947 return 0;
5948 }
5949
5950 static void __exit ata_exit(void)
5951 {
5952 destroy_workqueue(ata_wq);
5953 destroy_workqueue(ata_aux_wq);
5954 }
5955
5956 module_init(ata_init);
5957 module_exit(ata_exit);
5958
5959 static unsigned long ratelimit_time;
5960 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5961
5962 int ata_ratelimit(void)
5963 {
5964 int rc;
5965 unsigned long flags;
5966
5967 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5968
5969 if (time_after(jiffies, ratelimit_time)) {
5970 rc = 1;
5971 ratelimit_time = jiffies + (HZ/5);
5972 } else
5973 rc = 0;
5974
5975 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5976
5977 return rc;
5978 }
5979
5980 /**
5981 * ata_wait_register - wait until register value changes
5982 * @reg: IO-mapped register
5983 * @mask: Mask to apply to read register value
5984 * @val: Wait condition
5985 * @interval_msec: polling interval in milliseconds
5986 * @timeout_msec: timeout in milliseconds
5987 *
5988 * Waiting for some bits of register to change is a common
5989 * operation for ATA controllers. This function reads 32bit LE
5990 * IO-mapped register @reg and tests for the following condition.
5991 *
5992 * (*@reg & mask) != val
5993 *
5994 * If the condition is met, it returns; otherwise, the process is
5995 * repeated after @interval_msec until timeout.
5996 *
5997 * LOCKING:
5998 * Kernel thread context (may sleep)
5999 *
6000 * RETURNS:
6001 * The final register value.
6002 */
6003 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6004 unsigned long interval_msec,
6005 unsigned long timeout_msec)
6006 {
6007 unsigned long timeout;
6008 u32 tmp;
6009
6010 tmp = ioread32(reg);
6011
6012 /* Calculate timeout _after_ the first read to make sure
6013 * preceding writes reach the controller before starting to
6014 * eat away the timeout.
6015 */
6016 timeout = jiffies + (timeout_msec * HZ) / 1000;
6017
6018 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6019 msleep(interval_msec);
6020 tmp = ioread32(reg);
6021 }
6022
6023 return tmp;
6024 }
6025
6026 /*
6027 * Dummy port_ops
6028 */
6029 static void ata_dummy_noret(struct ata_port *ap) { }
6030 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6031 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6032
6033 static u8 ata_dummy_check_status(struct ata_port *ap)
6034 {
6035 return ATA_DRDY;
6036 }
6037
6038 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6039 {
6040 return AC_ERR_SYSTEM;
6041 }
6042
6043 const struct ata_port_operations ata_dummy_port_ops = {
6044 .port_disable = ata_port_disable,
6045 .check_status = ata_dummy_check_status,
6046 .check_altstatus = ata_dummy_check_status,
6047 .dev_select = ata_noop_dev_select,
6048 .qc_prep = ata_noop_qc_prep,
6049 .qc_issue = ata_dummy_qc_issue,
6050 .freeze = ata_dummy_noret,
6051 .thaw = ata_dummy_noret,
6052 .error_handler = ata_dummy_noret,
6053 .post_internal_cmd = ata_dummy_qc_noret,
6054 .irq_clear = ata_dummy_noret,
6055 .port_start = ata_dummy_ret0,
6056 .port_stop = ata_dummy_noret,
6057 };
6058
6059 /*
6060 * libata is essentially a library of internal helper functions for
6061 * low-level ATA host controller drivers. As such, the API/ABI is
6062 * likely to change as new drivers are added and updated.
6063 * Do not depend on ABI/API stability.
6064 */
6065
6066 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6067 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6068 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6069 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6070 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6071 EXPORT_SYMBOL_GPL(ata_std_ports);
6072 EXPORT_SYMBOL_GPL(ata_host_init);
6073 EXPORT_SYMBOL_GPL(ata_device_add);
6074 EXPORT_SYMBOL_GPL(ata_port_detach);
6075 EXPORT_SYMBOL_GPL(ata_host_remove);
6076 EXPORT_SYMBOL_GPL(ata_sg_init);
6077 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6078 EXPORT_SYMBOL_GPL(ata_hsm_move);
6079 EXPORT_SYMBOL_GPL(ata_qc_complete);
6080 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6081 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6082 EXPORT_SYMBOL_GPL(ata_tf_load);
6083 EXPORT_SYMBOL_GPL(ata_tf_read);
6084 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6085 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6086 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6087 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6088 EXPORT_SYMBOL_GPL(ata_check_status);
6089 EXPORT_SYMBOL_GPL(ata_altstatus);
6090 EXPORT_SYMBOL_GPL(ata_exec_command);
6091 EXPORT_SYMBOL_GPL(ata_port_start);
6092 EXPORT_SYMBOL_GPL(ata_port_stop);
6093 EXPORT_SYMBOL_GPL(ata_host_stop);
6094 EXPORT_SYMBOL_GPL(ata_interrupt);
6095 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6096 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6097 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6098 EXPORT_SYMBOL_GPL(ata_qc_prep);
6099 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6100 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6101 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6102 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6103 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6104 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6105 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6106 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6107 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6108 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6109 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6110 EXPORT_SYMBOL_GPL(ata_port_probe);
6111 EXPORT_SYMBOL_GPL(sata_set_spd);
6112 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6113 EXPORT_SYMBOL_GPL(sata_phy_resume);
6114 EXPORT_SYMBOL_GPL(sata_phy_reset);
6115 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6116 EXPORT_SYMBOL_GPL(ata_bus_reset);
6117 EXPORT_SYMBOL_GPL(ata_std_prereset);
6118 EXPORT_SYMBOL_GPL(ata_std_softreset);
6119 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6120 EXPORT_SYMBOL_GPL(ata_std_postreset);
6121 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
6122 EXPORT_SYMBOL_GPL(ata_dev_classify);
6123 EXPORT_SYMBOL_GPL(ata_dev_pair);
6124 EXPORT_SYMBOL_GPL(ata_port_disable);
6125 EXPORT_SYMBOL_GPL(ata_ratelimit);
6126 EXPORT_SYMBOL_GPL(ata_wait_register);
6127 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6128 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6129 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6130 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6131 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6132 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6133 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6134 EXPORT_SYMBOL_GPL(ata_scsi_release);
6135 EXPORT_SYMBOL_GPL(ata_host_intr);
6136 EXPORT_SYMBOL_GPL(sata_scr_valid);
6137 EXPORT_SYMBOL_GPL(sata_scr_read);
6138 EXPORT_SYMBOL_GPL(sata_scr_write);
6139 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6140 EXPORT_SYMBOL_GPL(ata_port_online);
6141 EXPORT_SYMBOL_GPL(ata_port_offline);
6142 EXPORT_SYMBOL_GPL(ata_host_suspend);
6143 EXPORT_SYMBOL_GPL(ata_host_resume);
6144 EXPORT_SYMBOL_GPL(ata_id_string);
6145 EXPORT_SYMBOL_GPL(ata_id_c_string);
6146 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6147
6148 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6149 EXPORT_SYMBOL_GPL(ata_timing_compute);
6150 EXPORT_SYMBOL_GPL(ata_timing_merge);
6151
6152 #ifdef CONFIG_PCI
6153 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6154 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6155 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6156 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6157 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6158 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6159 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6160 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6161 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6162 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6163 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6164 #endif /* CONFIG_PCI */
6165
6166 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6167 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6168
6169 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6170 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6171 EXPORT_SYMBOL_GPL(ata_port_abort);
6172 EXPORT_SYMBOL_GPL(ata_port_freeze);
6173 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6174 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6175 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6176 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6177 EXPORT_SYMBOL_GPL(ata_do_eh);