]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78
79 #include "libata.h"
80 #include "libata-transport.h"
81
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
86
87 const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
93 };
94
95 const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
100 };
101
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109
110 struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
117 unsigned int lflags;
118 };
119
120 struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124 };
125
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 return (sstatus & 0xf) == 0x3;
183 }
184
185 /**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
193 *
194 * RETURNS:
195 * Pointer to the next link.
196 */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
199 {
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
203 /* NULL link indicates start of iteration */
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
214
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
225 /* fall through */
226 case ATA_LITER_EDGE:
227 return NULL;
228 }
229
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
241 return NULL;
242 }
243
244 /**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258 {
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295 }
296
297 /**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320 }
321
322 /**
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 return;
351 }
352 }
353
354 /**
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
357 *
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
366 *
367 * LOCKING:
368 * EH context.
369 */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 bool did_spd = false;
373 int linkno = link->pmp;
374 int i;
375
376 if (ata_is_host_link(link))
377 linkno += 15;
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 fe->param.name);
393 did_spd = true;
394 }
395
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
403 }
404 }
405
406 /**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
456 return;
457 }
458 }
459
460 /**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
500 }
501 }
502
503 /**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515 int atapi_cmd_type(u8 opcode)
516 {
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
536 default:
537 return ATAPI_MISC;
538 }
539 }
540
541 /**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584
585 /**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612 }
613
614 static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
629 0,
630 0,
631 0,
632 0,
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
642 };
643
644 /**
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
648 *
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
651 *
652 * LOCKING:
653 * caller.
654 */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 u8 cmd;
658
659 int index, fua, lba48, write;
660
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
672 } else {
673 tf->protocol = ATA_PROT_DMA;
674 index = 16;
675 }
676
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
683 }
684
685 /**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 u64 block = 0;
703
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
722 if (!sect) {
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
725 return U64_MAX;
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 }
730
731 return block;
732 }
733
734 /**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 * @class: IO priority class
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
757 unsigned int tag, int class)
758 {
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
786 tf->device = ATA_LBA;
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
789
790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862 }
863
864 /**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
882 {
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887
888 /**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
897 */
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908
909 static const struct ata_xfer_ent {
910 int shift, bits;
911 u8 base;
912 } ata_xfer_tbl[] = {
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 { -1, },
917 };
918
919 /**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching XFER_* value, 0xff if no match found.
931 */
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
940 return 0xff;
941 }
942
943 /**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
963 return 0;
964 }
965
966 /**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986 }
987
988 /**
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
991 *
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1001 */
1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
1010 "PIO5",
1011 "PIO6",
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
1015 "MWDMA3",
1016 "MWDMA4",
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1026 int highbit;
1027
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1031 return "<n/a>";
1032 }
1033
1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
1039 "6.0 Gbps",
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045 }
1046
1047 /**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1084 */
1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
1103 }
1104
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112 }
1113
1114 /**
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1131 {
1132 unsigned int c;
1133
1134 BUG_ON(len & 1);
1135
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148 }
1149
1150 /**
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1166 {
1167 unsigned char *p;
1168
1169 ata_id_string(id, s, ofs, len - 1);
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175 }
1176
1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 else
1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 } else {
1185 if (ata_id_current_chs_valid(id))
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
1188 else
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
1191 }
1192 }
1193
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
1205 return sectors;
1206 }
1207
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
1217 return sectors;
1218 }
1219
1220 /**
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1224 *
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1227 *
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1231 */
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1237
1238 ata_tf_init(dev, &tf);
1239
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249 tf.protocol = ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1251
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1261
1262 if (lba48)
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 else
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 (*max_sectors)--;
1268 return 0;
1269 }
1270
1271 /**
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1275 *
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1282 */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 } else {
1303 tf.command = ATA_CMD_SET_MAX;
1304
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
1308 tf.protocol = ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
1347 int rc;
1348
1349 /* do we need to do it? */
1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 return 0;
1354
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1360 */
1361 if (rc == -EACCES || !unlock_hpa) {
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1369 }
1370
1371 return rc;
1372 }
1373 dev->n_native_sectors = native_sectors;
1374
1375 /* nothing to do? */
1376 if (native_sectors <= sectors || !unlock_hpa) {
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
1381 ata_dev_info(dev,
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
1416 ata_dev_info(dev,
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1429 *
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
1461 id[88],
1462 id[93]);
1463 }
1464
1465 /**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 if (mode < 5) /* Valid PIO range */
1496 pio_mask = (2 << mode) - 1;
1497 else
1498 pio_mask = 1;
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 struct completion *waiting = qc->private_data;
1537
1538 complete(waiting);
1539 }
1540
1541 /**
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
1562 */
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
1565 int dma_dir, struct scatterlist *sgl,
1566 unsigned int n_elem, unsigned long timeout)
1567 {
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
1570 u8 command = tf->command;
1571 int auto_timeout = 0;
1572 struct ata_queued_cmd *qc;
1573 unsigned int tag, preempted_tag;
1574 u32 preempted_sactive, preempted_qc_active;
1575 int preempted_nr_active_links;
1576 DECLARE_COMPLETION_ONSTACK(wait);
1577 unsigned long flags;
1578 unsigned int err_mask;
1579 int rc;
1580
1581 spin_lock_irqsave(ap->lock, flags);
1582
1583 /* no internal command while frozen */
1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 return AC_ERR_SYSTEM;
1587 }
1588
1589 /* initialize internal qc */
1590
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
1601 qc = __ata_qc_from_tag(ap, tag);
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
1611 preempted_qc_active = ap->qc_active;
1612 preempted_nr_active_links = ap->nr_active_links;
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
1615 ap->qc_active = 0;
1616 ap->nr_active_links = 0;
1617
1618 /* prepare & issue qc */
1619 qc->tf = *tf;
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
1631 unsigned int i, buflen = 0;
1632 struct scatterlist *sg;
1633
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
1636
1637 ata_sg_init(qc, sgl, n_elem);
1638 qc->nbytes = buflen;
1639 }
1640
1641 qc->private_data = &wait;
1642 qc->complete_fn = ata_qc_complete_internal;
1643
1644 ata_qc_issue(qc);
1645
1646 spin_unlock_irqrestore(ap->lock, flags);
1647
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
1656
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
1665 ata_sff_flush_pio_task(ap);
1666
1667 if (!rc) {
1668 spin_lock_irqsave(ap->lock, flags);
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
1674 */
1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
1682
1683 if (ata_msg_warn(ap))
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
1686 }
1687
1688 spin_unlock_irqrestore(ap->lock, flags);
1689 }
1690
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
1707 }
1708
1709 /* finish up */
1710 spin_lock_irqsave(ap->lock, flags);
1711
1712 *tf = qc->result_tf;
1713 err_mask = qc->err_mask;
1714
1715 ata_qc_free(qc);
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
1718 ap->qc_active = preempted_qc_active;
1719 ap->nr_active_links = preempted_nr_active_links;
1720
1721 spin_unlock_irqrestore(ap->lock, flags);
1722
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1725
1726 return err_mask;
1727 }
1728
1729 /**
1730 * ata_exec_internal - execute libata internal command
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
1734 * @dma_dir: Data transfer direction of the command
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
1737 * @timeout: Timeout in msecs (0 for default)
1738 *
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1747 */
1748 unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
1752 {
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
1755
1756 if (dma_dir != DMA_NONE) {
1757 WARN_ON(!buf);
1758 sg_init_one(&sg, buf, buflen);
1759 psg = &sg;
1760 n_elem++;
1761 }
1762
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 timeout);
1765 }
1766
1767 /**
1768 * ata_pio_need_iordy - check if iordy needed
1769 * @adev: ATA device
1770 *
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1773 */
1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775 {
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1779 */
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 return 0;
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1784 */
1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 return 0;
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 return 0;
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1793 return 1;
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1796 return 1;
1797 return 0;
1798 }
1799
1800 /**
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1802 * @adev: ATA device
1803 *
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1806 */
1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808 {
1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 /* Is the speed faster than the drive allows non IORDY ? */
1813 if (pio) {
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1818 }
1819 }
1820 return 3 << ATA_SHIFT_PIO;
1821 }
1822
1823 /**
1824 * ata_do_dev_read_id - default ID read method
1825 * @dev: device
1826 * @tf: proposed taskfile
1827 * @id: data buffer
1828 *
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1832 */
1833 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1835 {
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838 }
1839
1840 /**
1841 * ata_dev_read_id - Read ID data from the specified device
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
1844 * @flags: ATA_READID_* flags
1845 * @id: buffer to read IDENTIFY data into
1846 *
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1851 *
1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853 * now we abort if we hit that case.
1854 *
1855 * LOCKING:
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
1860 */
1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 unsigned int flags, u16 *id)
1863 {
1864 struct ata_port *ap = dev->link->ap;
1865 unsigned int class = *p_class;
1866 struct ata_taskfile tf;
1867 unsigned int err_mask = 0;
1868 const char *reason;
1869 bool is_semb = class == ATA_DEV_SEMB;
1870 int may_fallback = 1, tried_spinup = 0;
1871 int rc;
1872
1873 if (ata_msg_ctl(ap))
1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875
1876 retry:
1877 ata_tf_init(dev, &tf);
1878
1879 switch (class) {
1880 case ATA_DEV_SEMB:
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1882 case ATA_DEV_ATA:
1883 case ATA_DEV_ZAC:
1884 tf.command = ATA_CMD_ID_ATA;
1885 break;
1886 case ATA_DEV_ATAPI:
1887 tf.command = ATA_CMD_ID_ATAPI;
1888 break;
1889 default:
1890 rc = -ENODEV;
1891 reason = "unsupported class";
1892 goto err_out;
1893 }
1894
1895 tf.protocol = ATA_PROT_PIO;
1896
1897 /* Some devices choke if TF registers contain garbage. Make
1898 * sure those are properly initialized.
1899 */
1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902 /* Device presence detection is unreliable on some
1903 * controllers. Always poll IDENTIFY if available.
1904 */
1905 tf.flags |= ATA_TFLAG_POLLING;
1906
1907 if (ap->ops->read_id)
1908 err_mask = ap->ops->read_id(dev, &tf, id);
1909 else
1910 err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
1912 if (err_mask) {
1913 if (err_mask & AC_ERR_NODEV_HINT) {
1914 ata_dev_dbg(dev, "NODEV after polling detection\n");
1915 return -ENOENT;
1916 }
1917
1918 if (is_semb) {
1919 ata_dev_info(dev,
1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921 /* SEMB is not supported yet */
1922 *p_class = ATA_DEV_SEMB_UNSUP;
1923 return 0;
1924 }
1925
1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 /* Device or controller might have reported
1928 * the wrong device class. Give a shot at the
1929 * other IDENTIFY if the current one is
1930 * aborted by the device.
1931 */
1932 if (may_fallback) {
1933 may_fallback = 0;
1934
1935 if (class == ATA_DEV_ATA)
1936 class = ATA_DEV_ATAPI;
1937 else
1938 class = ATA_DEV_ATA;
1939 goto retry;
1940 }
1941
1942 /* Control reaches here iff the device aborted
1943 * both flavors of IDENTIFYs which happens
1944 * sometimes with phantom devices.
1945 */
1946 ata_dev_dbg(dev,
1947 "both IDENTIFYs aborted, assuming NODEV\n");
1948 return -ENOENT;
1949 }
1950
1951 rc = -EIO;
1952 reason = "I/O error";
1953 goto err_out;
1954 }
1955
1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 "class=%d may_fallback=%d tried_spinup=%d\n",
1959 class, may_fallback, tried_spinup);
1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 }
1963
1964 /* Falling back doesn't make sense if ID data was read
1965 * successfully at least once.
1966 */
1967 may_fallback = 0;
1968
1969 swap_buf_le16(id, ATA_ID_WORDS);
1970
1971 /* sanity check */
1972 rc = -EINVAL;
1973 reason = "device reports invalid type";
1974
1975 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 goto err_out;
1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 ata_id_is_ata(id)) {
1980 ata_dev_dbg(dev,
1981 "host indicates ignore ATA devices, ignored\n");
1982 return -ENOENT;
1983 }
1984 } else {
1985 if (ata_id_is_ata(id))
1986 goto err_out;
1987 }
1988
1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 tried_spinup = 1;
1991 /*
1992 * Drive powered-up in standby mode, and requires a specific
1993 * SET_FEATURES spin-up subcommand before it will accept
1994 * anything other than the original IDENTIFY command.
1995 */
1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997 if (err_mask && id[2] != 0x738c) {
1998 rc = -EIO;
1999 reason = "SPINUP failed";
2000 goto err_out;
2001 }
2002 /*
2003 * If the drive initially returned incomplete IDENTIFY info,
2004 * we now must reissue the IDENTIFY command.
2005 */
2006 if (id[2] == 0x37c8)
2007 goto retry;
2008 }
2009
2010 if ((flags & ATA_READID_POSTRESET) &&
2011 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2012 /*
2013 * The exact sequence expected by certain pre-ATA4 drives is:
2014 * SRST RESET
2015 * IDENTIFY (optional in early ATA)
2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017 * anything else..
2018 * Some drives were very specific about that exact sequence.
2019 *
2020 * Note that ATA4 says lba is mandatory so the second check
2021 * should never trigger.
2022 */
2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025 if (err_mask) {
2026 rc = -EIO;
2027 reason = "INIT_DEV_PARAMS failed";
2028 goto err_out;
2029 }
2030
2031 /* current CHS translation info (id[53-58]) might be
2032 * changed. reread the identify device info.
2033 */
2034 flags &= ~ATA_READID_POSTRESET;
2035 goto retry;
2036 }
2037 }
2038
2039 *p_class = class;
2040
2041 return 0;
2042
2043 err_out:
2044 if (ata_msg_warn(ap))
2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 reason, err_mask);
2047 return rc;
2048 }
2049
2050 /**
2051 * ata_read_log_page - read a specific log page
2052 * @dev: target device
2053 * @log: log to read
2054 * @page: page to read
2055 * @buf: buffer to store read page
2056 * @sectors: number of sectors to read
2057 *
2058 * Read log page using READ_LOG_EXT command.
2059 *
2060 * LOCKING:
2061 * Kernel thread context (may sleep).
2062 *
2063 * RETURNS:
2064 * 0 on success, AC_ERR_* mask otherwise.
2065 */
2066 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2067 u8 page, void *buf, unsigned int sectors)
2068 {
2069 unsigned long ap_flags = dev->link->ap->flags;
2070 struct ata_taskfile tf;
2071 unsigned int err_mask;
2072 bool dma = false;
2073
2074 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2075
2076 /*
2077 * Return error without actually issuing the command on controllers
2078 * which e.g. lockup on a read log page.
2079 */
2080 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2081 return AC_ERR_DEV;
2082
2083 retry:
2084 ata_tf_init(dev, &tf);
2085 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2086 !(dev->horkage & ATA_HORKAGE_NO_NCQ_LOG)) {
2087 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2088 tf.protocol = ATA_PROT_DMA;
2089 dma = true;
2090 } else {
2091 tf.command = ATA_CMD_READ_LOG_EXT;
2092 tf.protocol = ATA_PROT_PIO;
2093 dma = false;
2094 }
2095 tf.lbal = log;
2096 tf.lbam = page;
2097 tf.nsect = sectors;
2098 tf.hob_nsect = sectors >> 8;
2099 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2100
2101 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2102 buf, sectors * ATA_SECT_SIZE, 0);
2103
2104 if (err_mask && dma) {
2105 dev->horkage |= ATA_HORKAGE_NO_NCQ_LOG;
2106 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying unqueued\n");
2107 goto retry;
2108 }
2109
2110 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2111 return err_mask;
2112 }
2113
2114 static bool ata_log_supported(struct ata_device *dev, u8 log)
2115 {
2116 struct ata_port *ap = dev->link->ap;
2117
2118 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2119 return false;
2120 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2121 }
2122
2123 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2124 {
2125 struct ata_port *ap = dev->link->ap;
2126 unsigned int err, i;
2127
2128 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2129 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2130 return false;
2131 }
2132
2133 /*
2134 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2135 * supported.
2136 */
2137 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2138 1);
2139 if (err) {
2140 ata_dev_info(dev,
2141 "failed to get Device Identify Log Emask 0x%x\n",
2142 err);
2143 return false;
2144 }
2145
2146 for (i = 0; i < ap->sector_buf[8]; i++) {
2147 if (ap->sector_buf[9 + i] == page)
2148 return true;
2149 }
2150
2151 return false;
2152 }
2153
2154 static int ata_do_link_spd_horkage(struct ata_device *dev)
2155 {
2156 struct ata_link *plink = ata_dev_phys_link(dev);
2157 u32 target, target_limit;
2158
2159 if (!sata_scr_valid(plink))
2160 return 0;
2161
2162 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2163 target = 1;
2164 else
2165 return 0;
2166
2167 target_limit = (1 << target) - 1;
2168
2169 /* if already on stricter limit, no need to push further */
2170 if (plink->sata_spd_limit <= target_limit)
2171 return 0;
2172
2173 plink->sata_spd_limit = target_limit;
2174
2175 /* Request another EH round by returning -EAGAIN if link is
2176 * going faster than the target speed. Forward progress is
2177 * guaranteed by setting sata_spd_limit to target_limit above.
2178 */
2179 if (plink->sata_spd > target) {
2180 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2181 sata_spd_string(target));
2182 return -EAGAIN;
2183 }
2184 return 0;
2185 }
2186
2187 static inline u8 ata_dev_knobble(struct ata_device *dev)
2188 {
2189 struct ata_port *ap = dev->link->ap;
2190
2191 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2192 return 0;
2193
2194 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2195 }
2196
2197 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2198 {
2199 struct ata_port *ap = dev->link->ap;
2200 unsigned int err_mask;
2201
2202 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2203 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2204 return;
2205 }
2206 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2207 0, ap->sector_buf, 1);
2208 if (err_mask) {
2209 ata_dev_dbg(dev,
2210 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2211 err_mask);
2212 } else {
2213 u8 *cmds = dev->ncq_send_recv_cmds;
2214
2215 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2216 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2217
2218 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2219 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2220 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2221 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2222 }
2223 }
2224 }
2225
2226 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2227 {
2228 struct ata_port *ap = dev->link->ap;
2229 unsigned int err_mask;
2230
2231 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2232 ata_dev_warn(dev,
2233 "NCQ Send/Recv Log not supported\n");
2234 return;
2235 }
2236 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2237 0, ap->sector_buf, 1);
2238 if (err_mask) {
2239 ata_dev_dbg(dev,
2240 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2241 err_mask);
2242 } else {
2243 u8 *cmds = dev->ncq_non_data_cmds;
2244
2245 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2246 }
2247 }
2248
2249 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2250 {
2251 struct ata_port *ap = dev->link->ap;
2252 unsigned int err_mask;
2253
2254 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2255 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2256 return;
2257 }
2258
2259 err_mask = ata_read_log_page(dev,
2260 ATA_LOG_IDENTIFY_DEVICE,
2261 ATA_LOG_SATA_SETTINGS,
2262 ap->sector_buf,
2263 1);
2264 if (err_mask) {
2265 ata_dev_dbg(dev,
2266 "failed to get Identify Device data, Emask 0x%x\n",
2267 err_mask);
2268 return;
2269 }
2270
2271 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2272 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2273 } else {
2274 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2275 ata_dev_dbg(dev, "SATA page does not support priority\n");
2276 }
2277
2278 }
2279
2280 static int ata_dev_config_ncq(struct ata_device *dev,
2281 char *desc, size_t desc_sz)
2282 {
2283 struct ata_port *ap = dev->link->ap;
2284 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2285 unsigned int err_mask;
2286 char *aa_desc = "";
2287
2288 if (!ata_id_has_ncq(dev->id)) {
2289 desc[0] = '\0';
2290 return 0;
2291 }
2292 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2293 snprintf(desc, desc_sz, "NCQ (not used)");
2294 return 0;
2295 }
2296 if (ap->flags & ATA_FLAG_NCQ) {
2297 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2298 dev->flags |= ATA_DFLAG_NCQ;
2299 }
2300
2301 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2302 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2303 ata_id_has_fpdma_aa(dev->id)) {
2304 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2305 SATA_FPDMA_AA);
2306 if (err_mask) {
2307 ata_dev_err(dev,
2308 "failed to enable AA (error_mask=0x%x)\n",
2309 err_mask);
2310 if (err_mask != AC_ERR_DEV) {
2311 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2312 return -EIO;
2313 }
2314 } else
2315 aa_desc = ", AA";
2316 }
2317
2318 if (hdepth >= ddepth)
2319 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2320 else
2321 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2322 ddepth, aa_desc);
2323
2324 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2325 if (ata_id_has_ncq_send_and_recv(dev->id))
2326 ata_dev_config_ncq_send_recv(dev);
2327 if (ata_id_has_ncq_non_data(dev->id))
2328 ata_dev_config_ncq_non_data(dev);
2329 if (ata_id_has_ncq_prio(dev->id))
2330 ata_dev_config_ncq_prio(dev);
2331 }
2332
2333 return 0;
2334 }
2335
2336 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2337 {
2338 unsigned int err_mask;
2339
2340 if (!ata_id_has_sense_reporting(dev->id))
2341 return;
2342
2343 if (ata_id_sense_reporting_enabled(dev->id))
2344 return;
2345
2346 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2347 if (err_mask) {
2348 ata_dev_dbg(dev,
2349 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2350 err_mask);
2351 }
2352 }
2353
2354 static void ata_dev_config_zac(struct ata_device *dev)
2355 {
2356 struct ata_port *ap = dev->link->ap;
2357 unsigned int err_mask;
2358 u8 *identify_buf = ap->sector_buf;
2359
2360 dev->zac_zones_optimal_open = U32_MAX;
2361 dev->zac_zones_optimal_nonseq = U32_MAX;
2362 dev->zac_zones_max_open = U32_MAX;
2363
2364 /*
2365 * Always set the 'ZAC' flag for Host-managed devices.
2366 */
2367 if (dev->class == ATA_DEV_ZAC)
2368 dev->flags |= ATA_DFLAG_ZAC;
2369 else if (ata_id_zoned_cap(dev->id) == 0x01)
2370 /*
2371 * Check for host-aware devices.
2372 */
2373 dev->flags |= ATA_DFLAG_ZAC;
2374
2375 if (!(dev->flags & ATA_DFLAG_ZAC))
2376 return;
2377
2378 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2379 ata_dev_warn(dev,
2380 "ATA Zoned Information Log not supported\n");
2381 return;
2382 }
2383
2384 /*
2385 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2386 */
2387 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2388 ATA_LOG_ZONED_INFORMATION,
2389 identify_buf, 1);
2390 if (!err_mask) {
2391 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2392
2393 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2394 if ((zoned_cap >> 63))
2395 dev->zac_zoned_cap = (zoned_cap & 1);
2396 opt_open = get_unaligned_le64(&identify_buf[24]);
2397 if ((opt_open >> 63))
2398 dev->zac_zones_optimal_open = (u32)opt_open;
2399 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2400 if ((opt_nonseq >> 63))
2401 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2402 max_open = get_unaligned_le64(&identify_buf[40]);
2403 if ((max_open >> 63))
2404 dev->zac_zones_max_open = (u32)max_open;
2405 }
2406 }
2407
2408 static void ata_dev_config_trusted(struct ata_device *dev)
2409 {
2410 struct ata_port *ap = dev->link->ap;
2411 u64 trusted_cap;
2412 unsigned int err;
2413
2414 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2415 ata_dev_warn(dev,
2416 "Security Log not supported\n");
2417 return;
2418 }
2419
2420 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2421 ap->sector_buf, 1);
2422 if (err) {
2423 ata_dev_dbg(dev,
2424 "failed to read Security Log, Emask 0x%x\n", err);
2425 return;
2426 }
2427
2428 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2429 if (!(trusted_cap & (1ULL << 63))) {
2430 ata_dev_dbg(dev,
2431 "Trusted Computing capability qword not valid!\n");
2432 return;
2433 }
2434
2435 if (trusted_cap & (1 << 0))
2436 dev->flags |= ATA_DFLAG_TRUSTED;
2437 }
2438
2439 /**
2440 * ata_dev_configure - Configure the specified ATA/ATAPI device
2441 * @dev: Target device to configure
2442 *
2443 * Configure @dev according to @dev->id. Generic and low-level
2444 * driver specific fixups are also applied.
2445 *
2446 * LOCKING:
2447 * Kernel thread context (may sleep)
2448 *
2449 * RETURNS:
2450 * 0 on success, -errno otherwise
2451 */
2452 int ata_dev_configure(struct ata_device *dev)
2453 {
2454 struct ata_port *ap = dev->link->ap;
2455 struct ata_eh_context *ehc = &dev->link->eh_context;
2456 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2457 const u16 *id = dev->id;
2458 unsigned long xfer_mask;
2459 unsigned int err_mask;
2460 char revbuf[7]; /* XYZ-99\0 */
2461 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2462 char modelbuf[ATA_ID_PROD_LEN+1];
2463 int rc;
2464
2465 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2466 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2467 return 0;
2468 }
2469
2470 if (ata_msg_probe(ap))
2471 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2472
2473 /* set horkage */
2474 dev->horkage |= ata_dev_blacklisted(dev);
2475 ata_force_horkage(dev);
2476
2477 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2478 ata_dev_info(dev, "unsupported device, disabling\n");
2479 ata_dev_disable(dev);
2480 return 0;
2481 }
2482
2483 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2484 dev->class == ATA_DEV_ATAPI) {
2485 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2486 atapi_enabled ? "not supported with this driver"
2487 : "disabled");
2488 ata_dev_disable(dev);
2489 return 0;
2490 }
2491
2492 rc = ata_do_link_spd_horkage(dev);
2493 if (rc)
2494 return rc;
2495
2496 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2497 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2498 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2499 dev->horkage |= ATA_HORKAGE_NOLPM;
2500
2501 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2502 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2503 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2504 }
2505
2506 /* let ACPI work its magic */
2507 rc = ata_acpi_on_devcfg(dev);
2508 if (rc)
2509 return rc;
2510
2511 /* massage HPA, do it early as it might change IDENTIFY data */
2512 rc = ata_hpa_resize(dev);
2513 if (rc)
2514 return rc;
2515
2516 /* print device capabilities */
2517 if (ata_msg_probe(ap))
2518 ata_dev_dbg(dev,
2519 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2520 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2521 __func__,
2522 id[49], id[82], id[83], id[84],
2523 id[85], id[86], id[87], id[88]);
2524
2525 /* initialize to-be-configured parameters */
2526 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2527 dev->max_sectors = 0;
2528 dev->cdb_len = 0;
2529 dev->n_sectors = 0;
2530 dev->cylinders = 0;
2531 dev->heads = 0;
2532 dev->sectors = 0;
2533 dev->multi_count = 0;
2534
2535 /*
2536 * common ATA, ATAPI feature tests
2537 */
2538
2539 /* find max transfer mode; for printk only */
2540 xfer_mask = ata_id_xfermask(id);
2541
2542 if (ata_msg_probe(ap))
2543 ata_dump_id(id);
2544
2545 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2546 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2547 sizeof(fwrevbuf));
2548
2549 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2550 sizeof(modelbuf));
2551
2552 /* ATA-specific feature tests */
2553 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2554 if (ata_id_is_cfa(id)) {
2555 /* CPRM may make this media unusable */
2556 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2557 ata_dev_warn(dev,
2558 "supports DRM functions and may not be fully accessible\n");
2559 snprintf(revbuf, 7, "CFA");
2560 } else {
2561 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2562 /* Warn the user if the device has TPM extensions */
2563 if (ata_id_has_tpm(id))
2564 ata_dev_warn(dev,
2565 "supports DRM functions and may not be fully accessible\n");
2566 }
2567
2568 dev->n_sectors = ata_id_n_sectors(id);
2569
2570 /* get current R/W Multiple count setting */
2571 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2572 unsigned int max = dev->id[47] & 0xff;
2573 unsigned int cnt = dev->id[59] & 0xff;
2574 /* only recognize/allow powers of two here */
2575 if (is_power_of_2(max) && is_power_of_2(cnt))
2576 if (cnt <= max)
2577 dev->multi_count = cnt;
2578 }
2579
2580 if (ata_id_has_lba(id)) {
2581 const char *lba_desc;
2582 char ncq_desc[24];
2583
2584 lba_desc = "LBA";
2585 dev->flags |= ATA_DFLAG_LBA;
2586 if (ata_id_has_lba48(id)) {
2587 dev->flags |= ATA_DFLAG_LBA48;
2588 lba_desc = "LBA48";
2589
2590 if (dev->n_sectors >= (1UL << 28) &&
2591 ata_id_has_flush_ext(id))
2592 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2593 }
2594
2595 /* config NCQ */
2596 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2597 if (rc)
2598 return rc;
2599
2600 /* print device info to dmesg */
2601 if (ata_msg_drv(ap) && print_info) {
2602 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2603 revbuf, modelbuf, fwrevbuf,
2604 ata_mode_string(xfer_mask));
2605 ata_dev_info(dev,
2606 "%llu sectors, multi %u: %s %s\n",
2607 (unsigned long long)dev->n_sectors,
2608 dev->multi_count, lba_desc, ncq_desc);
2609 }
2610 } else {
2611 /* CHS */
2612
2613 /* Default translation */
2614 dev->cylinders = id[1];
2615 dev->heads = id[3];
2616 dev->sectors = id[6];
2617
2618 if (ata_id_current_chs_valid(id)) {
2619 /* Current CHS translation is valid. */
2620 dev->cylinders = id[54];
2621 dev->heads = id[55];
2622 dev->sectors = id[56];
2623 }
2624
2625 /* print device info to dmesg */
2626 if (ata_msg_drv(ap) && print_info) {
2627 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2628 revbuf, modelbuf, fwrevbuf,
2629 ata_mode_string(xfer_mask));
2630 ata_dev_info(dev,
2631 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2632 (unsigned long long)dev->n_sectors,
2633 dev->multi_count, dev->cylinders,
2634 dev->heads, dev->sectors);
2635 }
2636 }
2637
2638 /* Check and mark DevSlp capability. Get DevSlp timing variables
2639 * from SATA Settings page of Identify Device Data Log.
2640 */
2641 if (ata_id_has_devslp(dev->id)) {
2642 u8 *sata_setting = ap->sector_buf;
2643 int i, j;
2644
2645 dev->flags |= ATA_DFLAG_DEVSLP;
2646 err_mask = ata_read_log_page(dev,
2647 ATA_LOG_IDENTIFY_DEVICE,
2648 ATA_LOG_SATA_SETTINGS,
2649 sata_setting,
2650 1);
2651 if (err_mask)
2652 ata_dev_dbg(dev,
2653 "failed to get Identify Device Data, Emask 0x%x\n",
2654 err_mask);
2655 else
2656 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2657 j = ATA_LOG_DEVSLP_OFFSET + i;
2658 dev->devslp_timing[i] = sata_setting[j];
2659 }
2660 }
2661 ata_dev_config_sense_reporting(dev);
2662 ata_dev_config_zac(dev);
2663 ata_dev_config_trusted(dev);
2664 dev->cdb_len = 32;
2665 }
2666
2667 /* ATAPI-specific feature tests */
2668 else if (dev->class == ATA_DEV_ATAPI) {
2669 const char *cdb_intr_string = "";
2670 const char *atapi_an_string = "";
2671 const char *dma_dir_string = "";
2672 u32 sntf;
2673
2674 rc = atapi_cdb_len(id);
2675 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2676 if (ata_msg_warn(ap))
2677 ata_dev_warn(dev, "unsupported CDB len\n");
2678 rc = -EINVAL;
2679 goto err_out_nosup;
2680 }
2681 dev->cdb_len = (unsigned int) rc;
2682
2683 /* Enable ATAPI AN if both the host and device have
2684 * the support. If PMP is attached, SNTF is required
2685 * to enable ATAPI AN to discern between PHY status
2686 * changed notifications and ATAPI ANs.
2687 */
2688 if (atapi_an &&
2689 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2690 (!sata_pmp_attached(ap) ||
2691 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2692 /* issue SET feature command to turn this on */
2693 err_mask = ata_dev_set_feature(dev,
2694 SETFEATURES_SATA_ENABLE, SATA_AN);
2695 if (err_mask)
2696 ata_dev_err(dev,
2697 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2698 err_mask);
2699 else {
2700 dev->flags |= ATA_DFLAG_AN;
2701 atapi_an_string = ", ATAPI AN";
2702 }
2703 }
2704
2705 if (ata_id_cdb_intr(dev->id)) {
2706 dev->flags |= ATA_DFLAG_CDB_INTR;
2707 cdb_intr_string = ", CDB intr";
2708 }
2709
2710 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2711 dev->flags |= ATA_DFLAG_DMADIR;
2712 dma_dir_string = ", DMADIR";
2713 }
2714
2715 if (ata_id_has_da(dev->id)) {
2716 dev->flags |= ATA_DFLAG_DA;
2717 zpodd_init(dev);
2718 }
2719
2720 /* print device info to dmesg */
2721 if (ata_msg_drv(ap) && print_info)
2722 ata_dev_info(dev,
2723 "ATAPI: %s, %s, max %s%s%s%s\n",
2724 modelbuf, fwrevbuf,
2725 ata_mode_string(xfer_mask),
2726 cdb_intr_string, atapi_an_string,
2727 dma_dir_string);
2728 }
2729
2730 /* determine max_sectors */
2731 dev->max_sectors = ATA_MAX_SECTORS;
2732 if (dev->flags & ATA_DFLAG_LBA48)
2733 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2734
2735 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2736 200 sectors */
2737 if (ata_dev_knobble(dev)) {
2738 if (ata_msg_drv(ap) && print_info)
2739 ata_dev_info(dev, "applying bridge limits\n");
2740 dev->udma_mask &= ATA_UDMA5;
2741 dev->max_sectors = ATA_MAX_SECTORS;
2742 }
2743
2744 if ((dev->class == ATA_DEV_ATAPI) &&
2745 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2746 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2747 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2748 }
2749
2750 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2751 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2752 dev->max_sectors);
2753
2754 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2755 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2756 dev->max_sectors);
2757
2758 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2759 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2760
2761 if (ap->ops->dev_config)
2762 ap->ops->dev_config(dev);
2763
2764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2765 /* Let the user know. We don't want to disallow opens for
2766 rescue purposes, or in case the vendor is just a blithering
2767 idiot. Do this after the dev_config call as some controllers
2768 with buggy firmware may want to avoid reporting false device
2769 bugs */
2770
2771 if (print_info) {
2772 ata_dev_warn(dev,
2773 "Drive reports diagnostics failure. This may indicate a drive\n");
2774 ata_dev_warn(dev,
2775 "fault or invalid emulation. Contact drive vendor for information.\n");
2776 }
2777 }
2778
2779 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2780 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2781 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2782 }
2783
2784 return 0;
2785
2786 err_out_nosup:
2787 if (ata_msg_probe(ap))
2788 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2789 return rc;
2790 }
2791
2792 /**
2793 * ata_cable_40wire - return 40 wire cable type
2794 * @ap: port
2795 *
2796 * Helper method for drivers which want to hardwire 40 wire cable
2797 * detection.
2798 */
2799
2800 int ata_cable_40wire(struct ata_port *ap)
2801 {
2802 return ATA_CBL_PATA40;
2803 }
2804
2805 /**
2806 * ata_cable_80wire - return 80 wire cable type
2807 * @ap: port
2808 *
2809 * Helper method for drivers which want to hardwire 80 wire cable
2810 * detection.
2811 */
2812
2813 int ata_cable_80wire(struct ata_port *ap)
2814 {
2815 return ATA_CBL_PATA80;
2816 }
2817
2818 /**
2819 * ata_cable_unknown - return unknown PATA cable.
2820 * @ap: port
2821 *
2822 * Helper method for drivers which have no PATA cable detection.
2823 */
2824
2825 int ata_cable_unknown(struct ata_port *ap)
2826 {
2827 return ATA_CBL_PATA_UNK;
2828 }
2829
2830 /**
2831 * ata_cable_ignore - return ignored PATA cable.
2832 * @ap: port
2833 *
2834 * Helper method for drivers which don't use cable type to limit
2835 * transfer mode.
2836 */
2837 int ata_cable_ignore(struct ata_port *ap)
2838 {
2839 return ATA_CBL_PATA_IGN;
2840 }
2841
2842 /**
2843 * ata_cable_sata - return SATA cable type
2844 * @ap: port
2845 *
2846 * Helper method for drivers which have SATA cables
2847 */
2848
2849 int ata_cable_sata(struct ata_port *ap)
2850 {
2851 return ATA_CBL_SATA;
2852 }
2853
2854 /**
2855 * ata_bus_probe - Reset and probe ATA bus
2856 * @ap: Bus to probe
2857 *
2858 * Master ATA bus probing function. Initiates a hardware-dependent
2859 * bus reset, then attempts to identify any devices found on
2860 * the bus.
2861 *
2862 * LOCKING:
2863 * PCI/etc. bus probe sem.
2864 *
2865 * RETURNS:
2866 * Zero on success, negative errno otherwise.
2867 */
2868
2869 int ata_bus_probe(struct ata_port *ap)
2870 {
2871 unsigned int classes[ATA_MAX_DEVICES];
2872 int tries[ATA_MAX_DEVICES];
2873 int rc;
2874 struct ata_device *dev;
2875
2876 ata_for_each_dev(dev, &ap->link, ALL)
2877 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2878
2879 retry:
2880 ata_for_each_dev(dev, &ap->link, ALL) {
2881 /* If we issue an SRST then an ATA drive (not ATAPI)
2882 * may change configuration and be in PIO0 timing. If
2883 * we do a hard reset (or are coming from power on)
2884 * this is true for ATA or ATAPI. Until we've set a
2885 * suitable controller mode we should not touch the
2886 * bus as we may be talking too fast.
2887 */
2888 dev->pio_mode = XFER_PIO_0;
2889 dev->dma_mode = 0xff;
2890
2891 /* If the controller has a pio mode setup function
2892 * then use it to set the chipset to rights. Don't
2893 * touch the DMA setup as that will be dealt with when
2894 * configuring devices.
2895 */
2896 if (ap->ops->set_piomode)
2897 ap->ops->set_piomode(ap, dev);
2898 }
2899
2900 /* reset and determine device classes */
2901 ap->ops->phy_reset(ap);
2902
2903 ata_for_each_dev(dev, &ap->link, ALL) {
2904 if (dev->class != ATA_DEV_UNKNOWN)
2905 classes[dev->devno] = dev->class;
2906 else
2907 classes[dev->devno] = ATA_DEV_NONE;
2908
2909 dev->class = ATA_DEV_UNKNOWN;
2910 }
2911
2912 /* read IDENTIFY page and configure devices. We have to do the identify
2913 specific sequence bass-ackwards so that PDIAG- is released by
2914 the slave device */
2915
2916 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2917 if (tries[dev->devno])
2918 dev->class = classes[dev->devno];
2919
2920 if (!ata_dev_enabled(dev))
2921 continue;
2922
2923 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2924 dev->id);
2925 if (rc)
2926 goto fail;
2927 }
2928
2929 /* Now ask for the cable type as PDIAG- should have been released */
2930 if (ap->ops->cable_detect)
2931 ap->cbl = ap->ops->cable_detect(ap);
2932
2933 /* We may have SATA bridge glue hiding here irrespective of
2934 * the reported cable types and sensed types. When SATA
2935 * drives indicate we have a bridge, we don't know which end
2936 * of the link the bridge is which is a problem.
2937 */
2938 ata_for_each_dev(dev, &ap->link, ENABLED)
2939 if (ata_id_is_sata(dev->id))
2940 ap->cbl = ATA_CBL_SATA;
2941
2942 /* After the identify sequence we can now set up the devices. We do
2943 this in the normal order so that the user doesn't get confused */
2944
2945 ata_for_each_dev(dev, &ap->link, ENABLED) {
2946 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2947 rc = ata_dev_configure(dev);
2948 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2949 if (rc)
2950 goto fail;
2951 }
2952
2953 /* configure transfer mode */
2954 rc = ata_set_mode(&ap->link, &dev);
2955 if (rc)
2956 goto fail;
2957
2958 ata_for_each_dev(dev, &ap->link, ENABLED)
2959 return 0;
2960
2961 return -ENODEV;
2962
2963 fail:
2964 tries[dev->devno]--;
2965
2966 switch (rc) {
2967 case -EINVAL:
2968 /* eeek, something went very wrong, give up */
2969 tries[dev->devno] = 0;
2970 break;
2971
2972 case -ENODEV:
2973 /* give it just one more chance */
2974 tries[dev->devno] = min(tries[dev->devno], 1);
2975 case -EIO:
2976 if (tries[dev->devno] == 1) {
2977 /* This is the last chance, better to slow
2978 * down than lose it.
2979 */
2980 sata_down_spd_limit(&ap->link, 0);
2981 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2982 }
2983 }
2984
2985 if (!tries[dev->devno])
2986 ata_dev_disable(dev);
2987
2988 goto retry;
2989 }
2990
2991 /**
2992 * sata_print_link_status - Print SATA link status
2993 * @link: SATA link to printk link status about
2994 *
2995 * This function prints link speed and status of a SATA link.
2996 *
2997 * LOCKING:
2998 * None.
2999 */
3000 static void sata_print_link_status(struct ata_link *link)
3001 {
3002 u32 sstatus, scontrol, tmp;
3003
3004 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3005 return;
3006 sata_scr_read(link, SCR_CONTROL, &scontrol);
3007
3008 if (ata_phys_link_online(link)) {
3009 tmp = (sstatus >> 4) & 0xf;
3010 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3011 sata_spd_string(tmp), sstatus, scontrol);
3012 } else {
3013 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3014 sstatus, scontrol);
3015 }
3016 }
3017
3018 /**
3019 * ata_dev_pair - return other device on cable
3020 * @adev: device
3021 *
3022 * Obtain the other device on the same cable, or if none is
3023 * present NULL is returned
3024 */
3025
3026 struct ata_device *ata_dev_pair(struct ata_device *adev)
3027 {
3028 struct ata_link *link = adev->link;
3029 struct ata_device *pair = &link->device[1 - adev->devno];
3030 if (!ata_dev_enabled(pair))
3031 return NULL;
3032 return pair;
3033 }
3034
3035 /**
3036 * sata_down_spd_limit - adjust SATA spd limit downward
3037 * @link: Link to adjust SATA spd limit for
3038 * @spd_limit: Additional limit
3039 *
3040 * Adjust SATA spd limit of @link downward. Note that this
3041 * function only adjusts the limit. The change must be applied
3042 * using sata_set_spd().
3043 *
3044 * If @spd_limit is non-zero, the speed is limited to equal to or
3045 * lower than @spd_limit if such speed is supported. If
3046 * @spd_limit is slower than any supported speed, only the lowest
3047 * supported speed is allowed.
3048 *
3049 * LOCKING:
3050 * Inherited from caller.
3051 *
3052 * RETURNS:
3053 * 0 on success, negative errno on failure
3054 */
3055 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3056 {
3057 u32 sstatus, spd, mask;
3058 int rc, bit;
3059
3060 if (!sata_scr_valid(link))
3061 return -EOPNOTSUPP;
3062
3063 /* If SCR can be read, use it to determine the current SPD.
3064 * If not, use cached value in link->sata_spd.
3065 */
3066 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3067 if (rc == 0 && ata_sstatus_online(sstatus))
3068 spd = (sstatus >> 4) & 0xf;
3069 else
3070 spd = link->sata_spd;
3071
3072 mask = link->sata_spd_limit;
3073 if (mask <= 1)
3074 return -EINVAL;
3075
3076 /* unconditionally mask off the highest bit */
3077 bit = fls(mask) - 1;
3078 mask &= ~(1 << bit);
3079
3080 /* Mask off all speeds higher than or equal to the current
3081 * one. Force 1.5Gbps if current SPD is not available.
3082 */
3083 if (spd > 1)
3084 mask &= (1 << (spd - 1)) - 1;
3085 else
3086 mask &= 1;
3087
3088 /* were we already at the bottom? */
3089 if (!mask)
3090 return -EINVAL;
3091
3092 if (spd_limit) {
3093 if (mask & ((1 << spd_limit) - 1))
3094 mask &= (1 << spd_limit) - 1;
3095 else {
3096 bit = ffs(mask) - 1;
3097 mask = 1 << bit;
3098 }
3099 }
3100
3101 link->sata_spd_limit = mask;
3102
3103 ata_link_warn(link, "limiting SATA link speed to %s\n",
3104 sata_spd_string(fls(mask)));
3105
3106 return 0;
3107 }
3108
3109 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3110 {
3111 struct ata_link *host_link = &link->ap->link;
3112 u32 limit, target, spd;
3113
3114 limit = link->sata_spd_limit;
3115
3116 /* Don't configure downstream link faster than upstream link.
3117 * It doesn't speed up anything and some PMPs choke on such
3118 * configuration.
3119 */
3120 if (!ata_is_host_link(link) && host_link->sata_spd)
3121 limit &= (1 << host_link->sata_spd) - 1;
3122
3123 if (limit == UINT_MAX)
3124 target = 0;
3125 else
3126 target = fls(limit);
3127
3128 spd = (*scontrol >> 4) & 0xf;
3129 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3130
3131 return spd != target;
3132 }
3133
3134 /**
3135 * sata_set_spd_needed - is SATA spd configuration needed
3136 * @link: Link in question
3137 *
3138 * Test whether the spd limit in SControl matches
3139 * @link->sata_spd_limit. This function is used to determine
3140 * whether hardreset is necessary to apply SATA spd
3141 * configuration.
3142 *
3143 * LOCKING:
3144 * Inherited from caller.
3145 *
3146 * RETURNS:
3147 * 1 if SATA spd configuration is needed, 0 otherwise.
3148 */
3149 static int sata_set_spd_needed(struct ata_link *link)
3150 {
3151 u32 scontrol;
3152
3153 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3154 return 1;
3155
3156 return __sata_set_spd_needed(link, &scontrol);
3157 }
3158
3159 /**
3160 * sata_set_spd - set SATA spd according to spd limit
3161 * @link: Link to set SATA spd for
3162 *
3163 * Set SATA spd of @link according to sata_spd_limit.
3164 *
3165 * LOCKING:
3166 * Inherited from caller.
3167 *
3168 * RETURNS:
3169 * 0 if spd doesn't need to be changed, 1 if spd has been
3170 * changed. Negative errno if SCR registers are inaccessible.
3171 */
3172 int sata_set_spd(struct ata_link *link)
3173 {
3174 u32 scontrol;
3175 int rc;
3176
3177 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3178 return rc;
3179
3180 if (!__sata_set_spd_needed(link, &scontrol))
3181 return 0;
3182
3183 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3184 return rc;
3185
3186 return 1;
3187 }
3188
3189 /*
3190 * This mode timing computation functionality is ported over from
3191 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3192 */
3193 /*
3194 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3195 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3196 * for UDMA6, which is currently supported only by Maxtor drives.
3197 *
3198 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3199 */
3200
3201 static const struct ata_timing ata_timing[] = {
3202 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3203 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3204 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3205 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3206 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3207 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3208 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3209 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3210
3211 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3212 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3213 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3214
3215 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3216 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3217 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3218 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3219 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3220
3221 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3222 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3223 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3224 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3225 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3226 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3227 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3228 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3229
3230 { 0xFF }
3231 };
3232
3233 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3234 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3235
3236 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3237 {
3238 q->setup = EZ(t->setup * 1000, T);
3239 q->act8b = EZ(t->act8b * 1000, T);
3240 q->rec8b = EZ(t->rec8b * 1000, T);
3241 q->cyc8b = EZ(t->cyc8b * 1000, T);
3242 q->active = EZ(t->active * 1000, T);
3243 q->recover = EZ(t->recover * 1000, T);
3244 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3245 q->cycle = EZ(t->cycle * 1000, T);
3246 q->udma = EZ(t->udma * 1000, UT);
3247 }
3248
3249 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3250 struct ata_timing *m, unsigned int what)
3251 {
3252 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3253 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3254 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3255 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3256 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3257 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3258 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3259 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3260 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3261 }
3262
3263 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3264 {
3265 const struct ata_timing *t = ata_timing;
3266
3267 while (xfer_mode > t->mode)
3268 t++;
3269
3270 if (xfer_mode == t->mode)
3271 return t;
3272
3273 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3274 __func__, xfer_mode);
3275
3276 return NULL;
3277 }
3278
3279 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3280 struct ata_timing *t, int T, int UT)
3281 {
3282 const u16 *id = adev->id;
3283 const struct ata_timing *s;
3284 struct ata_timing p;
3285
3286 /*
3287 * Find the mode.
3288 */
3289
3290 if (!(s = ata_timing_find_mode(speed)))
3291 return -EINVAL;
3292
3293 memcpy(t, s, sizeof(*s));
3294
3295 /*
3296 * If the drive is an EIDE drive, it can tell us it needs extended
3297 * PIO/MW_DMA cycle timing.
3298 */
3299
3300 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3301 memset(&p, 0, sizeof(p));
3302
3303 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3304 if (speed <= XFER_PIO_2)
3305 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3306 else if ((speed <= XFER_PIO_4) ||
3307 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3308 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3309 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3310 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3311
3312 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3313 }
3314
3315 /*
3316 * Convert the timing to bus clock counts.
3317 */
3318
3319 ata_timing_quantize(t, t, T, UT);
3320
3321 /*
3322 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3323 * S.M.A.R.T * and some other commands. We have to ensure that the
3324 * DMA cycle timing is slower/equal than the fastest PIO timing.
3325 */
3326
3327 if (speed > XFER_PIO_6) {
3328 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3329 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3330 }
3331
3332 /*
3333 * Lengthen active & recovery time so that cycle time is correct.
3334 */
3335
3336 if (t->act8b + t->rec8b < t->cyc8b) {
3337 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3338 t->rec8b = t->cyc8b - t->act8b;
3339 }
3340
3341 if (t->active + t->recover < t->cycle) {
3342 t->active += (t->cycle - (t->active + t->recover)) / 2;
3343 t->recover = t->cycle - t->active;
3344 }
3345
3346 /* In a few cases quantisation may produce enough errors to
3347 leave t->cycle too low for the sum of active and recovery
3348 if so we must correct this */
3349 if (t->active + t->recover > t->cycle)
3350 t->cycle = t->active + t->recover;
3351
3352 return 0;
3353 }
3354
3355 /**
3356 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3357 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3358 * @cycle: cycle duration in ns
3359 *
3360 * Return matching xfer mode for @cycle. The returned mode is of
3361 * the transfer type specified by @xfer_shift. If @cycle is too
3362 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3363 * than the fastest known mode, the fasted mode is returned.
3364 *
3365 * LOCKING:
3366 * None.
3367 *
3368 * RETURNS:
3369 * Matching xfer_mode, 0xff if no match found.
3370 */
3371 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3372 {
3373 u8 base_mode = 0xff, last_mode = 0xff;
3374 const struct ata_xfer_ent *ent;
3375 const struct ata_timing *t;
3376
3377 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3378 if (ent->shift == xfer_shift)
3379 base_mode = ent->base;
3380
3381 for (t = ata_timing_find_mode(base_mode);
3382 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3383 unsigned short this_cycle;
3384
3385 switch (xfer_shift) {
3386 case ATA_SHIFT_PIO:
3387 case ATA_SHIFT_MWDMA:
3388 this_cycle = t->cycle;
3389 break;
3390 case ATA_SHIFT_UDMA:
3391 this_cycle = t->udma;
3392 break;
3393 default:
3394 return 0xff;
3395 }
3396
3397 if (cycle > this_cycle)
3398 break;
3399
3400 last_mode = t->mode;
3401 }
3402
3403 return last_mode;
3404 }
3405
3406 /**
3407 * ata_down_xfermask_limit - adjust dev xfer masks downward
3408 * @dev: Device to adjust xfer masks
3409 * @sel: ATA_DNXFER_* selector
3410 *
3411 * Adjust xfer masks of @dev downward. Note that this function
3412 * does not apply the change. Invoking ata_set_mode() afterwards
3413 * will apply the limit.
3414 *
3415 * LOCKING:
3416 * Inherited from caller.
3417 *
3418 * RETURNS:
3419 * 0 on success, negative errno on failure
3420 */
3421 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3422 {
3423 char buf[32];
3424 unsigned long orig_mask, xfer_mask;
3425 unsigned long pio_mask, mwdma_mask, udma_mask;
3426 int quiet, highbit;
3427
3428 quiet = !!(sel & ATA_DNXFER_QUIET);
3429 sel &= ~ATA_DNXFER_QUIET;
3430
3431 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3432 dev->mwdma_mask,
3433 dev->udma_mask);
3434 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3435
3436 switch (sel) {
3437 case ATA_DNXFER_PIO:
3438 highbit = fls(pio_mask) - 1;
3439 pio_mask &= ~(1 << highbit);
3440 break;
3441
3442 case ATA_DNXFER_DMA:
3443 if (udma_mask) {
3444 highbit = fls(udma_mask) - 1;
3445 udma_mask &= ~(1 << highbit);
3446 if (!udma_mask)
3447 return -ENOENT;
3448 } else if (mwdma_mask) {
3449 highbit = fls(mwdma_mask) - 1;
3450 mwdma_mask &= ~(1 << highbit);
3451 if (!mwdma_mask)
3452 return -ENOENT;
3453 }
3454 break;
3455
3456 case ATA_DNXFER_40C:
3457 udma_mask &= ATA_UDMA_MASK_40C;
3458 break;
3459
3460 case ATA_DNXFER_FORCE_PIO0:
3461 pio_mask &= 1;
3462 case ATA_DNXFER_FORCE_PIO:
3463 mwdma_mask = 0;
3464 udma_mask = 0;
3465 break;
3466
3467 default:
3468 BUG();
3469 }
3470
3471 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3472
3473 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3474 return -ENOENT;
3475
3476 if (!quiet) {
3477 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3478 snprintf(buf, sizeof(buf), "%s:%s",
3479 ata_mode_string(xfer_mask),
3480 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3481 else
3482 snprintf(buf, sizeof(buf), "%s",
3483 ata_mode_string(xfer_mask));
3484
3485 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3486 }
3487
3488 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3489 &dev->udma_mask);
3490
3491 return 0;
3492 }
3493
3494 static int ata_dev_set_mode(struct ata_device *dev)
3495 {
3496 struct ata_port *ap = dev->link->ap;
3497 struct ata_eh_context *ehc = &dev->link->eh_context;
3498 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3499 const char *dev_err_whine = "";
3500 int ign_dev_err = 0;
3501 unsigned int err_mask = 0;
3502 int rc;
3503
3504 dev->flags &= ~ATA_DFLAG_PIO;
3505 if (dev->xfer_shift == ATA_SHIFT_PIO)
3506 dev->flags |= ATA_DFLAG_PIO;
3507
3508 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3509 dev_err_whine = " (SET_XFERMODE skipped)";
3510 else {
3511 if (nosetxfer)
3512 ata_dev_warn(dev,
3513 "NOSETXFER but PATA detected - can't "
3514 "skip SETXFER, might malfunction\n");
3515 err_mask = ata_dev_set_xfermode(dev);
3516 }
3517
3518 if (err_mask & ~AC_ERR_DEV)
3519 goto fail;
3520
3521 /* revalidate */
3522 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3523 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3524 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3525 if (rc)
3526 return rc;
3527
3528 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3529 /* Old CFA may refuse this command, which is just fine */
3530 if (ata_id_is_cfa(dev->id))
3531 ign_dev_err = 1;
3532 /* Catch several broken garbage emulations plus some pre
3533 ATA devices */
3534 if (ata_id_major_version(dev->id) == 0 &&
3535 dev->pio_mode <= XFER_PIO_2)
3536 ign_dev_err = 1;
3537 /* Some very old devices and some bad newer ones fail
3538 any kind of SET_XFERMODE request but support PIO0-2
3539 timings and no IORDY */
3540 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3541 ign_dev_err = 1;
3542 }
3543 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3544 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3545 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3546 dev->dma_mode == XFER_MW_DMA_0 &&
3547 (dev->id[63] >> 8) & 1)
3548 ign_dev_err = 1;
3549
3550 /* if the device is actually configured correctly, ignore dev err */
3551 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3552 ign_dev_err = 1;
3553
3554 if (err_mask & AC_ERR_DEV) {
3555 if (!ign_dev_err)
3556 goto fail;
3557 else
3558 dev_err_whine = " (device error ignored)";
3559 }
3560
3561 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3562 dev->xfer_shift, (int)dev->xfer_mode);
3563
3564 ata_dev_info(dev, "configured for %s%s\n",
3565 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3566 dev_err_whine);
3567
3568 return 0;
3569
3570 fail:
3571 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3572 return -EIO;
3573 }
3574
3575 /**
3576 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3577 * @link: link on which timings will be programmed
3578 * @r_failed_dev: out parameter for failed device
3579 *
3580 * Standard implementation of the function used to tune and set
3581 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3582 * ata_dev_set_mode() fails, pointer to the failing device is
3583 * returned in @r_failed_dev.
3584 *
3585 * LOCKING:
3586 * PCI/etc. bus probe sem.
3587 *
3588 * RETURNS:
3589 * 0 on success, negative errno otherwise
3590 */
3591
3592 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3593 {
3594 struct ata_port *ap = link->ap;
3595 struct ata_device *dev;
3596 int rc = 0, used_dma = 0, found = 0;
3597
3598 /* step 1: calculate xfer_mask */
3599 ata_for_each_dev(dev, link, ENABLED) {
3600 unsigned long pio_mask, dma_mask;
3601 unsigned int mode_mask;
3602
3603 mode_mask = ATA_DMA_MASK_ATA;
3604 if (dev->class == ATA_DEV_ATAPI)
3605 mode_mask = ATA_DMA_MASK_ATAPI;
3606 else if (ata_id_is_cfa(dev->id))
3607 mode_mask = ATA_DMA_MASK_CFA;
3608
3609 ata_dev_xfermask(dev);
3610 ata_force_xfermask(dev);
3611
3612 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3613
3614 if (libata_dma_mask & mode_mask)
3615 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3616 dev->udma_mask);
3617 else
3618 dma_mask = 0;
3619
3620 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3621 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3622
3623 found = 1;
3624 if (ata_dma_enabled(dev))
3625 used_dma = 1;
3626 }
3627 if (!found)
3628 goto out;
3629
3630 /* step 2: always set host PIO timings */
3631 ata_for_each_dev(dev, link, ENABLED) {
3632 if (dev->pio_mode == 0xff) {
3633 ata_dev_warn(dev, "no PIO support\n");
3634 rc = -EINVAL;
3635 goto out;
3636 }
3637
3638 dev->xfer_mode = dev->pio_mode;
3639 dev->xfer_shift = ATA_SHIFT_PIO;
3640 if (ap->ops->set_piomode)
3641 ap->ops->set_piomode(ap, dev);
3642 }
3643
3644 /* step 3: set host DMA timings */
3645 ata_for_each_dev(dev, link, ENABLED) {
3646 if (!ata_dma_enabled(dev))
3647 continue;
3648
3649 dev->xfer_mode = dev->dma_mode;
3650 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3651 if (ap->ops->set_dmamode)
3652 ap->ops->set_dmamode(ap, dev);
3653 }
3654
3655 /* step 4: update devices' xfer mode */
3656 ata_for_each_dev(dev, link, ENABLED) {
3657 rc = ata_dev_set_mode(dev);
3658 if (rc)
3659 goto out;
3660 }
3661
3662 /* Record simplex status. If we selected DMA then the other
3663 * host channels are not permitted to do so.
3664 */
3665 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3666 ap->host->simplex_claimed = ap;
3667
3668 out:
3669 if (rc)
3670 *r_failed_dev = dev;
3671 return rc;
3672 }
3673
3674 /**
3675 * ata_wait_ready - wait for link to become ready
3676 * @link: link to be waited on
3677 * @deadline: deadline jiffies for the operation
3678 * @check_ready: callback to check link readiness
3679 *
3680 * Wait for @link to become ready. @check_ready should return
3681 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3682 * link doesn't seem to be occupied, other errno for other error
3683 * conditions.
3684 *
3685 * Transient -ENODEV conditions are allowed for
3686 * ATA_TMOUT_FF_WAIT.
3687 *
3688 * LOCKING:
3689 * EH context.
3690 *
3691 * RETURNS:
3692 * 0 if @link is ready before @deadline; otherwise, -errno.
3693 */
3694 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3695 int (*check_ready)(struct ata_link *link))
3696 {
3697 unsigned long start = jiffies;
3698 unsigned long nodev_deadline;
3699 int warned = 0;
3700
3701 /* choose which 0xff timeout to use, read comment in libata.h */
3702 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3703 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3704 else
3705 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3706
3707 /* Slave readiness can't be tested separately from master. On
3708 * M/S emulation configuration, this function should be called
3709 * only on the master and it will handle both master and slave.
3710 */
3711 WARN_ON(link == link->ap->slave_link);
3712
3713 if (time_after(nodev_deadline, deadline))
3714 nodev_deadline = deadline;
3715
3716 while (1) {
3717 unsigned long now = jiffies;
3718 int ready, tmp;
3719
3720 ready = tmp = check_ready(link);
3721 if (ready > 0)
3722 return 0;
3723
3724 /*
3725 * -ENODEV could be transient. Ignore -ENODEV if link
3726 * is online. Also, some SATA devices take a long
3727 * time to clear 0xff after reset. Wait for
3728 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3729 * offline.
3730 *
3731 * Note that some PATA controllers (pata_ali) explode
3732 * if status register is read more than once when
3733 * there's no device attached.
3734 */
3735 if (ready == -ENODEV) {
3736 if (ata_link_online(link))
3737 ready = 0;
3738 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3739 !ata_link_offline(link) &&
3740 time_before(now, nodev_deadline))
3741 ready = 0;
3742 }
3743
3744 if (ready)
3745 return ready;
3746 if (time_after(now, deadline))
3747 return -EBUSY;
3748
3749 if (!warned && time_after(now, start + 5 * HZ) &&
3750 (deadline - now > 3 * HZ)) {
3751 ata_link_warn(link,
3752 "link is slow to respond, please be patient "
3753 "(ready=%d)\n", tmp);
3754 warned = 1;
3755 }
3756
3757 ata_msleep(link->ap, 50);
3758 }
3759 }
3760
3761 /**
3762 * ata_wait_after_reset - wait for link to become ready after reset
3763 * @link: link to be waited on
3764 * @deadline: deadline jiffies for the operation
3765 * @check_ready: callback to check link readiness
3766 *
3767 * Wait for @link to become ready after reset.
3768 *
3769 * LOCKING:
3770 * EH context.
3771 *
3772 * RETURNS:
3773 * 0 if @link is ready before @deadline; otherwise, -errno.
3774 */
3775 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3776 int (*check_ready)(struct ata_link *link))
3777 {
3778 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3779
3780 return ata_wait_ready(link, deadline, check_ready);
3781 }
3782
3783 /**
3784 * sata_link_debounce - debounce SATA phy status
3785 * @link: ATA link to debounce SATA phy status for
3786 * @params: timing parameters { interval, duration, timeout } in msec
3787 * @deadline: deadline jiffies for the operation
3788 *
3789 * Make sure SStatus of @link reaches stable state, determined by
3790 * holding the same value where DET is not 1 for @duration polled
3791 * every @interval, before @timeout. Timeout constraints the
3792 * beginning of the stable state. Because DET gets stuck at 1 on
3793 * some controllers after hot unplugging, this functions waits
3794 * until timeout then returns 0 if DET is stable at 1.
3795 *
3796 * @timeout is further limited by @deadline. The sooner of the
3797 * two is used.
3798 *
3799 * LOCKING:
3800 * Kernel thread context (may sleep)
3801 *
3802 * RETURNS:
3803 * 0 on success, -errno on failure.
3804 */
3805 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3806 unsigned long deadline)
3807 {
3808 unsigned long interval = params[0];
3809 unsigned long duration = params[1];
3810 unsigned long last_jiffies, t;
3811 u32 last, cur;
3812 int rc;
3813
3814 t = ata_deadline(jiffies, params[2]);
3815 if (time_before(t, deadline))
3816 deadline = t;
3817
3818 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3819 return rc;
3820 cur &= 0xf;
3821
3822 last = cur;
3823 last_jiffies = jiffies;
3824
3825 while (1) {
3826 ata_msleep(link->ap, interval);
3827 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3828 return rc;
3829 cur &= 0xf;
3830
3831 /* DET stable? */
3832 if (cur == last) {
3833 if (cur == 1 && time_before(jiffies, deadline))
3834 continue;
3835 if (time_after(jiffies,
3836 ata_deadline(last_jiffies, duration)))
3837 return 0;
3838 continue;
3839 }
3840
3841 /* unstable, start over */
3842 last = cur;
3843 last_jiffies = jiffies;
3844
3845 /* Check deadline. If debouncing failed, return
3846 * -EPIPE to tell upper layer to lower link speed.
3847 */
3848 if (time_after(jiffies, deadline))
3849 return -EPIPE;
3850 }
3851 }
3852
3853 /**
3854 * sata_link_resume - resume SATA link
3855 * @link: ATA link to resume SATA
3856 * @params: timing parameters { interval, duration, timeout } in msec
3857 * @deadline: deadline jiffies for the operation
3858 *
3859 * Resume SATA phy @link and debounce it.
3860 *
3861 * LOCKING:
3862 * Kernel thread context (may sleep)
3863 *
3864 * RETURNS:
3865 * 0 on success, -errno on failure.
3866 */
3867 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3868 unsigned long deadline)
3869 {
3870 int tries = ATA_LINK_RESUME_TRIES;
3871 u32 scontrol, serror;
3872 int rc;
3873
3874 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3875 return rc;
3876
3877 /*
3878 * Writes to SControl sometimes get ignored under certain
3879 * controllers (ata_piix SIDPR). Make sure DET actually is
3880 * cleared.
3881 */
3882 do {
3883 scontrol = (scontrol & 0x0f0) | 0x300;
3884 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3885 return rc;
3886 /*
3887 * Some PHYs react badly if SStatus is pounded
3888 * immediately after resuming. Delay 200ms before
3889 * debouncing.
3890 */
3891 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3892 ata_msleep(link->ap, 200);
3893
3894 /* is SControl restored correctly? */
3895 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3896 return rc;
3897 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3898
3899 if ((scontrol & 0xf0f) != 0x300) {
3900 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3901 scontrol);
3902 return 0;
3903 }
3904
3905 if (tries < ATA_LINK_RESUME_TRIES)
3906 ata_link_warn(link, "link resume succeeded after %d retries\n",
3907 ATA_LINK_RESUME_TRIES - tries);
3908
3909 if ((rc = sata_link_debounce(link, params, deadline)))
3910 return rc;
3911
3912 /* clear SError, some PHYs require this even for SRST to work */
3913 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3914 rc = sata_scr_write(link, SCR_ERROR, serror);
3915
3916 return rc != -EINVAL ? rc : 0;
3917 }
3918
3919 /**
3920 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3921 * @link: ATA link to manipulate SControl for
3922 * @policy: LPM policy to configure
3923 * @spm_wakeup: initiate LPM transition to active state
3924 *
3925 * Manipulate the IPM field of the SControl register of @link
3926 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3927 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3928 * the link. This function also clears PHYRDY_CHG before
3929 * returning.
3930 *
3931 * LOCKING:
3932 * EH context.
3933 *
3934 * RETURNS:
3935 * 0 on success, -errno otherwise.
3936 */
3937 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3938 bool spm_wakeup)
3939 {
3940 struct ata_eh_context *ehc = &link->eh_context;
3941 bool woken_up = false;
3942 u32 scontrol;
3943 int rc;
3944
3945 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3946 if (rc)
3947 return rc;
3948
3949 switch (policy) {
3950 case ATA_LPM_MAX_POWER:
3951 /* disable all LPM transitions */
3952 scontrol |= (0x7 << 8);
3953 /* initiate transition to active state */
3954 if (spm_wakeup) {
3955 scontrol |= (0x4 << 12);
3956 woken_up = true;
3957 }
3958 break;
3959 case ATA_LPM_MED_POWER:
3960 /* allow LPM to PARTIAL */
3961 scontrol &= ~(0x1 << 8);
3962 scontrol |= (0x6 << 8);
3963 break;
3964 case ATA_LPM_MIN_POWER:
3965 if (ata_link_nr_enabled(link) > 0)
3966 /* no restrictions on LPM transitions */
3967 scontrol &= ~(0x7 << 8);
3968 else {
3969 /* empty port, power off */
3970 scontrol &= ~0xf;
3971 scontrol |= (0x1 << 2);
3972 }
3973 break;
3974 default:
3975 WARN_ON(1);
3976 }
3977
3978 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3979 if (rc)
3980 return rc;
3981
3982 /* give the link time to transit out of LPM state */
3983 if (woken_up)
3984 msleep(10);
3985
3986 /* clear PHYRDY_CHG from SError */
3987 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3988 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3989 }
3990
3991 /**
3992 * ata_std_prereset - prepare for reset
3993 * @link: ATA link to be reset
3994 * @deadline: deadline jiffies for the operation
3995 *
3996 * @link is about to be reset. Initialize it. Failure from
3997 * prereset makes libata abort whole reset sequence and give up
3998 * that port, so prereset should be best-effort. It does its
3999 * best to prepare for reset sequence but if things go wrong, it
4000 * should just whine, not fail.
4001 *
4002 * LOCKING:
4003 * Kernel thread context (may sleep)
4004 *
4005 * RETURNS:
4006 * 0 on success, -errno otherwise.
4007 */
4008 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4009 {
4010 struct ata_port *ap = link->ap;
4011 struct ata_eh_context *ehc = &link->eh_context;
4012 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4013 int rc;
4014
4015 /* if we're about to do hardreset, nothing more to do */
4016 if (ehc->i.action & ATA_EH_HARDRESET)
4017 return 0;
4018
4019 /* if SATA, resume link */
4020 if (ap->flags & ATA_FLAG_SATA) {
4021 rc = sata_link_resume(link, timing, deadline);
4022 /* whine about phy resume failure but proceed */
4023 if (rc && rc != -EOPNOTSUPP)
4024 ata_link_warn(link,
4025 "failed to resume link for reset (errno=%d)\n",
4026 rc);
4027 }
4028
4029 /* no point in trying softreset on offline link */
4030 if (ata_phys_link_offline(link))
4031 ehc->i.action &= ~ATA_EH_SOFTRESET;
4032
4033 return 0;
4034 }
4035
4036 /**
4037 * sata_link_hardreset - reset link via SATA phy reset
4038 * @link: link to reset
4039 * @timing: timing parameters { interval, duration, timeout } in msec
4040 * @deadline: deadline jiffies for the operation
4041 * @online: optional out parameter indicating link onlineness
4042 * @check_ready: optional callback to check link readiness
4043 *
4044 * SATA phy-reset @link using DET bits of SControl register.
4045 * After hardreset, link readiness is waited upon using
4046 * ata_wait_ready() if @check_ready is specified. LLDs are
4047 * allowed to not specify @check_ready and wait itself after this
4048 * function returns. Device classification is LLD's
4049 * responsibility.
4050 *
4051 * *@online is set to one iff reset succeeded and @link is online
4052 * after reset.
4053 *
4054 * LOCKING:
4055 * Kernel thread context (may sleep)
4056 *
4057 * RETURNS:
4058 * 0 on success, -errno otherwise.
4059 */
4060 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4061 unsigned long deadline,
4062 bool *online, int (*check_ready)(struct ata_link *))
4063 {
4064 u32 scontrol;
4065 int rc;
4066
4067 DPRINTK("ENTER\n");
4068
4069 if (online)
4070 *online = false;
4071
4072 if (sata_set_spd_needed(link)) {
4073 /* SATA spec says nothing about how to reconfigure
4074 * spd. To be on the safe side, turn off phy during
4075 * reconfiguration. This works for at least ICH7 AHCI
4076 * and Sil3124.
4077 */
4078 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4079 goto out;
4080
4081 scontrol = (scontrol & 0x0f0) | 0x304;
4082
4083 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4084 goto out;
4085
4086 sata_set_spd(link);
4087 }
4088
4089 /* issue phy wake/reset */
4090 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4091 goto out;
4092
4093 scontrol = (scontrol & 0x0f0) | 0x301;
4094
4095 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4096 goto out;
4097
4098 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4099 * 10.4.2 says at least 1 ms.
4100 */
4101 ata_msleep(link->ap, 1);
4102
4103 /* bring link back */
4104 rc = sata_link_resume(link, timing, deadline);
4105 if (rc)
4106 goto out;
4107 /* if link is offline nothing more to do */
4108 if (ata_phys_link_offline(link))
4109 goto out;
4110
4111 /* Link is online. From this point, -ENODEV too is an error. */
4112 if (online)
4113 *online = true;
4114
4115 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4116 /* If PMP is supported, we have to do follow-up SRST.
4117 * Some PMPs don't send D2H Reg FIS after hardreset if
4118 * the first port is empty. Wait only for
4119 * ATA_TMOUT_PMP_SRST_WAIT.
4120 */
4121 if (check_ready) {
4122 unsigned long pmp_deadline;
4123
4124 pmp_deadline = ata_deadline(jiffies,
4125 ATA_TMOUT_PMP_SRST_WAIT);
4126 if (time_after(pmp_deadline, deadline))
4127 pmp_deadline = deadline;
4128 ata_wait_ready(link, pmp_deadline, check_ready);
4129 }
4130 rc = -EAGAIN;
4131 goto out;
4132 }
4133
4134 rc = 0;
4135 if (check_ready)
4136 rc = ata_wait_ready(link, deadline, check_ready);
4137 out:
4138 if (rc && rc != -EAGAIN) {
4139 /* online is set iff link is online && reset succeeded */
4140 if (online)
4141 *online = false;
4142 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4143 }
4144 DPRINTK("EXIT, rc=%d\n", rc);
4145 return rc;
4146 }
4147
4148 /**
4149 * sata_std_hardreset - COMRESET w/o waiting or classification
4150 * @link: link to reset
4151 * @class: resulting class of attached device
4152 * @deadline: deadline jiffies for the operation
4153 *
4154 * Standard SATA COMRESET w/o waiting or classification.
4155 *
4156 * LOCKING:
4157 * Kernel thread context (may sleep)
4158 *
4159 * RETURNS:
4160 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4161 */
4162 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4163 unsigned long deadline)
4164 {
4165 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4166 bool online;
4167 int rc;
4168
4169 /* do hardreset */
4170 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4171 return online ? -EAGAIN : rc;
4172 }
4173
4174 /**
4175 * ata_std_postreset - standard postreset callback
4176 * @link: the target ata_link
4177 * @classes: classes of attached devices
4178 *
4179 * This function is invoked after a successful reset. Note that
4180 * the device might have been reset more than once using
4181 * different reset methods before postreset is invoked.
4182 *
4183 * LOCKING:
4184 * Kernel thread context (may sleep)
4185 */
4186 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4187 {
4188 u32 serror;
4189
4190 DPRINTK("ENTER\n");
4191
4192 /* reset complete, clear SError */
4193 if (!sata_scr_read(link, SCR_ERROR, &serror))
4194 sata_scr_write(link, SCR_ERROR, serror);
4195
4196 /* print link status */
4197 sata_print_link_status(link);
4198
4199 DPRINTK("EXIT\n");
4200 }
4201
4202 /**
4203 * ata_dev_same_device - Determine whether new ID matches configured device
4204 * @dev: device to compare against
4205 * @new_class: class of the new device
4206 * @new_id: IDENTIFY page of the new device
4207 *
4208 * Compare @new_class and @new_id against @dev and determine
4209 * whether @dev is the device indicated by @new_class and
4210 * @new_id.
4211 *
4212 * LOCKING:
4213 * None.
4214 *
4215 * RETURNS:
4216 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4217 */
4218 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4219 const u16 *new_id)
4220 {
4221 const u16 *old_id = dev->id;
4222 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4223 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4224
4225 if (dev->class != new_class) {
4226 ata_dev_info(dev, "class mismatch %d != %d\n",
4227 dev->class, new_class);
4228 return 0;
4229 }
4230
4231 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4232 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4233 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4234 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4235
4236 if (strcmp(model[0], model[1])) {
4237 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4238 model[0], model[1]);
4239 return 0;
4240 }
4241
4242 if (strcmp(serial[0], serial[1])) {
4243 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4244 serial[0], serial[1]);
4245 return 0;
4246 }
4247
4248 return 1;
4249 }
4250
4251 /**
4252 * ata_dev_reread_id - Re-read IDENTIFY data
4253 * @dev: target ATA device
4254 * @readid_flags: read ID flags
4255 *
4256 * Re-read IDENTIFY page and make sure @dev is still attached to
4257 * the port.
4258 *
4259 * LOCKING:
4260 * Kernel thread context (may sleep)
4261 *
4262 * RETURNS:
4263 * 0 on success, negative errno otherwise
4264 */
4265 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4266 {
4267 unsigned int class = dev->class;
4268 u16 *id = (void *)dev->link->ap->sector_buf;
4269 int rc;
4270
4271 /* read ID data */
4272 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4273 if (rc)
4274 return rc;
4275
4276 /* is the device still there? */
4277 if (!ata_dev_same_device(dev, class, id))
4278 return -ENODEV;
4279
4280 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4281 return 0;
4282 }
4283
4284 /**
4285 * ata_dev_revalidate - Revalidate ATA device
4286 * @dev: device to revalidate
4287 * @new_class: new class code
4288 * @readid_flags: read ID flags
4289 *
4290 * Re-read IDENTIFY page, make sure @dev is still attached to the
4291 * port and reconfigure it according to the new IDENTIFY page.
4292 *
4293 * LOCKING:
4294 * Kernel thread context (may sleep)
4295 *
4296 * RETURNS:
4297 * 0 on success, negative errno otherwise
4298 */
4299 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4300 unsigned int readid_flags)
4301 {
4302 u64 n_sectors = dev->n_sectors;
4303 u64 n_native_sectors = dev->n_native_sectors;
4304 int rc;
4305
4306 if (!ata_dev_enabled(dev))
4307 return -ENODEV;
4308
4309 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4310 if (ata_class_enabled(new_class) &&
4311 new_class != ATA_DEV_ATA &&
4312 new_class != ATA_DEV_ATAPI &&
4313 new_class != ATA_DEV_ZAC &&
4314 new_class != ATA_DEV_SEMB) {
4315 ata_dev_info(dev, "class mismatch %u != %u\n",
4316 dev->class, new_class);
4317 rc = -ENODEV;
4318 goto fail;
4319 }
4320
4321 /* re-read ID */
4322 rc = ata_dev_reread_id(dev, readid_flags);
4323 if (rc)
4324 goto fail;
4325
4326 /* configure device according to the new ID */
4327 rc = ata_dev_configure(dev);
4328 if (rc)
4329 goto fail;
4330
4331 /* verify n_sectors hasn't changed */
4332 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4333 dev->n_sectors == n_sectors)
4334 return 0;
4335
4336 /* n_sectors has changed */
4337 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4338 (unsigned long long)n_sectors,
4339 (unsigned long long)dev->n_sectors);
4340
4341 /*
4342 * Something could have caused HPA to be unlocked
4343 * involuntarily. If n_native_sectors hasn't changed and the
4344 * new size matches it, keep the device.
4345 */
4346 if (dev->n_native_sectors == n_native_sectors &&
4347 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4348 ata_dev_warn(dev,
4349 "new n_sectors matches native, probably "
4350 "late HPA unlock, n_sectors updated\n");
4351 /* use the larger n_sectors */
4352 return 0;
4353 }
4354
4355 /*
4356 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4357 * unlocking HPA in those cases.
4358 *
4359 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4360 */
4361 if (dev->n_native_sectors == n_native_sectors &&
4362 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4363 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4364 ata_dev_warn(dev,
4365 "old n_sectors matches native, probably "
4366 "late HPA lock, will try to unlock HPA\n");
4367 /* try unlocking HPA */
4368 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4369 rc = -EIO;
4370 } else
4371 rc = -ENODEV;
4372
4373 /* restore original n_[native_]sectors and fail */
4374 dev->n_native_sectors = n_native_sectors;
4375 dev->n_sectors = n_sectors;
4376 fail:
4377 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4378 return rc;
4379 }
4380
4381 struct ata_blacklist_entry {
4382 const char *model_num;
4383 const char *model_rev;
4384 unsigned long horkage;
4385 };
4386
4387 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4388 /* Devices with DMA related problems under Linux */
4389 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4390 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4391 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4392 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4393 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4394 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4395 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4396 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4397 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4398 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4399 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4400 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4401 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4402 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4403 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4404 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4405 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4406 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4407 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4408 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4409 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4410 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4411 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4412 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4413 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4414 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4415 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4416 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4417 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4418 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4419 /* Odd clown on sil3726/4726 PMPs */
4420 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4421
4422 /* Weird ATAPI devices */
4423 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4424 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4425 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4426 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4427
4428 /*
4429 * Causes silent data corruption with higher max sects.
4430 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4431 */
4432 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4433
4434 /*
4435 * These devices time out with higher max sects.
4436 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4437 */
4438 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4439
4440 /* Devices we expect to fail diagnostics */
4441
4442 /* Devices where NCQ should be avoided */
4443 /* NCQ is slow */
4444 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4445 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4446 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4447 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4448 /* NCQ is broken */
4449 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4450 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4451 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4452 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4453 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4454
4455 /* Seagate NCQ + FLUSH CACHE firmware bug */
4456 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4457 ATA_HORKAGE_FIRMWARE_WARN },
4458
4459 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4460 ATA_HORKAGE_FIRMWARE_WARN },
4461
4462 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4463 ATA_HORKAGE_FIRMWARE_WARN },
4464
4465 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4466 ATA_HORKAGE_FIRMWARE_WARN },
4467
4468 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4469 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4470 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4471 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4472
4473 /* Blacklist entries taken from Silicon Image 3124/3132
4474 Windows driver .inf file - also several Linux problem reports */
4475 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4476 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4477 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4478
4479 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4480 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4481
4482 /* devices which puke on READ_NATIVE_MAX */
4483 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4484 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4485 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4486 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4487
4488 /* this one allows HPA unlocking but fails IOs on the area */
4489 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4490
4491 /* Devices which report 1 sector over size HPA */
4492 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4493 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4494 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4495
4496 /* Devices which get the IVB wrong */
4497 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4498 /* Maybe we should just blacklist TSSTcorp... */
4499 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4500
4501 /* Devices that do not need bridging limits applied */
4502 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4503 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4504
4505 /* Devices which aren't very happy with higher link speeds */
4506 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4507 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4508
4509 /*
4510 * Devices which choke on SETXFER. Applies only if both the
4511 * device and controller are SATA.
4512 */
4513 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4514 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4515 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4516 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4517 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4518
4519 /* devices that don't properly handle queued TRIM commands */
4520 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4521 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4522 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4523 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4524 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4525 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4526 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4527 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4528 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4529 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4530 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4531 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4532 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4533 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4534
4535 /* devices that don't properly handle TRIM commands */
4536 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4537
4538 /*
4539 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4540 * (Return Zero After Trim) flags in the ATA Command Set are
4541 * unreliable in the sense that they only define what happens if
4542 * the device successfully executed the DSM TRIM command. TRIM
4543 * is only advisory, however, and the device is free to silently
4544 * ignore all or parts of the request.
4545 *
4546 * Whitelist drives that are known to reliably return zeroes
4547 * after TRIM.
4548 */
4549
4550 /*
4551 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4552 * that model before whitelisting all other intel SSDs.
4553 */
4554 { "INTEL*SSDSC2MH*", NULL, 0, },
4555
4556 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4557 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4558 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4559 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4560 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4562 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563
4564 /*
4565 * Some WD SATA-I drives spin up and down erratically when the link
4566 * is put into the slumber mode. We don't have full list of the
4567 * affected devices. Disable LPM if the device matches one of the
4568 * known prefixes and is SATA-1. As a side effect LPM partial is
4569 * lost too.
4570 *
4571 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4572 */
4573 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4574 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4575 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4576 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4577 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4578 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4579 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4580
4581 /* End Marker */
4582 { }
4583 };
4584
4585 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4586 {
4587 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4588 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4589 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4590
4591 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4592 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4593
4594 while (ad->model_num) {
4595 if (glob_match(ad->model_num, model_num)) {
4596 if (ad->model_rev == NULL)
4597 return ad->horkage;
4598 if (glob_match(ad->model_rev, model_rev))
4599 return ad->horkage;
4600 }
4601 ad++;
4602 }
4603 return 0;
4604 }
4605
4606 static int ata_dma_blacklisted(const struct ata_device *dev)
4607 {
4608 /* We don't support polling DMA.
4609 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4610 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4611 */
4612 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4613 (dev->flags & ATA_DFLAG_CDB_INTR))
4614 return 1;
4615 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4616 }
4617
4618 /**
4619 * ata_is_40wire - check drive side detection
4620 * @dev: device
4621 *
4622 * Perform drive side detection decoding, allowing for device vendors
4623 * who can't follow the documentation.
4624 */
4625
4626 static int ata_is_40wire(struct ata_device *dev)
4627 {
4628 if (dev->horkage & ATA_HORKAGE_IVB)
4629 return ata_drive_40wire_relaxed(dev->id);
4630 return ata_drive_40wire(dev->id);
4631 }
4632
4633 /**
4634 * cable_is_40wire - 40/80/SATA decider
4635 * @ap: port to consider
4636 *
4637 * This function encapsulates the policy for speed management
4638 * in one place. At the moment we don't cache the result but
4639 * there is a good case for setting ap->cbl to the result when
4640 * we are called with unknown cables (and figuring out if it
4641 * impacts hotplug at all).
4642 *
4643 * Return 1 if the cable appears to be 40 wire.
4644 */
4645
4646 static int cable_is_40wire(struct ata_port *ap)
4647 {
4648 struct ata_link *link;
4649 struct ata_device *dev;
4650
4651 /* If the controller thinks we are 40 wire, we are. */
4652 if (ap->cbl == ATA_CBL_PATA40)
4653 return 1;
4654
4655 /* If the controller thinks we are 80 wire, we are. */
4656 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4657 return 0;
4658
4659 /* If the system is known to be 40 wire short cable (eg
4660 * laptop), then we allow 80 wire modes even if the drive
4661 * isn't sure.
4662 */
4663 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4664 return 0;
4665
4666 /* If the controller doesn't know, we scan.
4667 *
4668 * Note: We look for all 40 wire detects at this point. Any
4669 * 80 wire detect is taken to be 80 wire cable because
4670 * - in many setups only the one drive (slave if present) will
4671 * give a valid detect
4672 * - if you have a non detect capable drive you don't want it
4673 * to colour the choice
4674 */
4675 ata_for_each_link(link, ap, EDGE) {
4676 ata_for_each_dev(dev, link, ENABLED) {
4677 if (!ata_is_40wire(dev))
4678 return 0;
4679 }
4680 }
4681 return 1;
4682 }
4683
4684 /**
4685 * ata_dev_xfermask - Compute supported xfermask of the given device
4686 * @dev: Device to compute xfermask for
4687 *
4688 * Compute supported xfermask of @dev and store it in
4689 * dev->*_mask. This function is responsible for applying all
4690 * known limits including host controller limits, device
4691 * blacklist, etc...
4692 *
4693 * LOCKING:
4694 * None.
4695 */
4696 static void ata_dev_xfermask(struct ata_device *dev)
4697 {
4698 struct ata_link *link = dev->link;
4699 struct ata_port *ap = link->ap;
4700 struct ata_host *host = ap->host;
4701 unsigned long xfer_mask;
4702
4703 /* controller modes available */
4704 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4705 ap->mwdma_mask, ap->udma_mask);
4706
4707 /* drive modes available */
4708 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4709 dev->mwdma_mask, dev->udma_mask);
4710 xfer_mask &= ata_id_xfermask(dev->id);
4711
4712 /*
4713 * CFA Advanced TrueIDE timings are not allowed on a shared
4714 * cable
4715 */
4716 if (ata_dev_pair(dev)) {
4717 /* No PIO5 or PIO6 */
4718 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4719 /* No MWDMA3 or MWDMA 4 */
4720 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4721 }
4722
4723 if (ata_dma_blacklisted(dev)) {
4724 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4725 ata_dev_warn(dev,
4726 "device is on DMA blacklist, disabling DMA\n");
4727 }
4728
4729 if ((host->flags & ATA_HOST_SIMPLEX) &&
4730 host->simplex_claimed && host->simplex_claimed != ap) {
4731 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4732 ata_dev_warn(dev,
4733 "simplex DMA is claimed by other device, disabling DMA\n");
4734 }
4735
4736 if (ap->flags & ATA_FLAG_NO_IORDY)
4737 xfer_mask &= ata_pio_mask_no_iordy(dev);
4738
4739 if (ap->ops->mode_filter)
4740 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4741
4742 /* Apply cable rule here. Don't apply it early because when
4743 * we handle hot plug the cable type can itself change.
4744 * Check this last so that we know if the transfer rate was
4745 * solely limited by the cable.
4746 * Unknown or 80 wire cables reported host side are checked
4747 * drive side as well. Cases where we know a 40wire cable
4748 * is used safely for 80 are not checked here.
4749 */
4750 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4751 /* UDMA/44 or higher would be available */
4752 if (cable_is_40wire(ap)) {
4753 ata_dev_warn(dev,
4754 "limited to UDMA/33 due to 40-wire cable\n");
4755 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4756 }
4757
4758 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4759 &dev->mwdma_mask, &dev->udma_mask);
4760 }
4761
4762 /**
4763 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4764 * @dev: Device to which command will be sent
4765 *
4766 * Issue SET FEATURES - XFER MODE command to device @dev
4767 * on port @ap.
4768 *
4769 * LOCKING:
4770 * PCI/etc. bus probe sem.
4771 *
4772 * RETURNS:
4773 * 0 on success, AC_ERR_* mask otherwise.
4774 */
4775
4776 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4777 {
4778 struct ata_taskfile tf;
4779 unsigned int err_mask;
4780
4781 /* set up set-features taskfile */
4782 DPRINTK("set features - xfer mode\n");
4783
4784 /* Some controllers and ATAPI devices show flaky interrupt
4785 * behavior after setting xfer mode. Use polling instead.
4786 */
4787 ata_tf_init(dev, &tf);
4788 tf.command = ATA_CMD_SET_FEATURES;
4789 tf.feature = SETFEATURES_XFER;
4790 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4791 tf.protocol = ATA_PROT_NODATA;
4792 /* If we are using IORDY we must send the mode setting command */
4793 if (ata_pio_need_iordy(dev))
4794 tf.nsect = dev->xfer_mode;
4795 /* If the device has IORDY and the controller does not - turn it off */
4796 else if (ata_id_has_iordy(dev->id))
4797 tf.nsect = 0x01;
4798 else /* In the ancient relic department - skip all of this */
4799 return 0;
4800
4801 /* On some disks, this command causes spin-up, so we need longer timeout */
4802 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4803
4804 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4805 return err_mask;
4806 }
4807
4808 /**
4809 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4810 * @dev: Device to which command will be sent
4811 * @enable: Whether to enable or disable the feature
4812 * @feature: The sector count represents the feature to set
4813 *
4814 * Issue SET FEATURES - SATA FEATURES command to device @dev
4815 * on port @ap with sector count
4816 *
4817 * LOCKING:
4818 * PCI/etc. bus probe sem.
4819 *
4820 * RETURNS:
4821 * 0 on success, AC_ERR_* mask otherwise.
4822 */
4823 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4824 {
4825 struct ata_taskfile tf;
4826 unsigned int err_mask;
4827 unsigned long timeout = 0;
4828
4829 /* set up set-features taskfile */
4830 DPRINTK("set features - SATA features\n");
4831
4832 ata_tf_init(dev, &tf);
4833 tf.command = ATA_CMD_SET_FEATURES;
4834 tf.feature = enable;
4835 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4836 tf.protocol = ATA_PROT_NODATA;
4837 tf.nsect = feature;
4838
4839 if (enable == SETFEATURES_SPINUP)
4840 timeout = ata_probe_timeout ?
4841 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4842 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4843
4844 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4845 return err_mask;
4846 }
4847 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4848
4849 /**
4850 * ata_dev_init_params - Issue INIT DEV PARAMS command
4851 * @dev: Device to which command will be sent
4852 * @heads: Number of heads (taskfile parameter)
4853 * @sectors: Number of sectors (taskfile parameter)
4854 *
4855 * LOCKING:
4856 * Kernel thread context (may sleep)
4857 *
4858 * RETURNS:
4859 * 0 on success, AC_ERR_* mask otherwise.
4860 */
4861 static unsigned int ata_dev_init_params(struct ata_device *dev,
4862 u16 heads, u16 sectors)
4863 {
4864 struct ata_taskfile tf;
4865 unsigned int err_mask;
4866
4867 /* Number of sectors per track 1-255. Number of heads 1-16 */
4868 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4869 return AC_ERR_INVALID;
4870
4871 /* set up init dev params taskfile */
4872 DPRINTK("init dev params \n");
4873
4874 ata_tf_init(dev, &tf);
4875 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4876 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4877 tf.protocol = ATA_PROT_NODATA;
4878 tf.nsect = sectors;
4879 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4880
4881 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4882 /* A clean abort indicates an original or just out of spec drive
4883 and we should continue as we issue the setup based on the
4884 drive reported working geometry */
4885 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4886 err_mask = 0;
4887
4888 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4889 return err_mask;
4890 }
4891
4892 /**
4893 * atapi_check_dma - Check whether ATAPI DMA can be supported
4894 * @qc: Metadata associated with taskfile to check
4895 *
4896 * Allow low-level driver to filter ATA PACKET commands, returning
4897 * a status indicating whether or not it is OK to use DMA for the
4898 * supplied PACKET command.
4899 *
4900 * LOCKING:
4901 * spin_lock_irqsave(host lock)
4902 *
4903 * RETURNS: 0 when ATAPI DMA can be used
4904 * nonzero otherwise
4905 */
4906 int atapi_check_dma(struct ata_queued_cmd *qc)
4907 {
4908 struct ata_port *ap = qc->ap;
4909
4910 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4911 * few ATAPI devices choke on such DMA requests.
4912 */
4913 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4914 unlikely(qc->nbytes & 15))
4915 return 1;
4916
4917 if (ap->ops->check_atapi_dma)
4918 return ap->ops->check_atapi_dma(qc);
4919
4920 return 0;
4921 }
4922
4923 /**
4924 * ata_std_qc_defer - Check whether a qc needs to be deferred
4925 * @qc: ATA command in question
4926 *
4927 * Non-NCQ commands cannot run with any other command, NCQ or
4928 * not. As upper layer only knows the queue depth, we are
4929 * responsible for maintaining exclusion. This function checks
4930 * whether a new command @qc can be issued.
4931 *
4932 * LOCKING:
4933 * spin_lock_irqsave(host lock)
4934 *
4935 * RETURNS:
4936 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4937 */
4938 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4939 {
4940 struct ata_link *link = qc->dev->link;
4941
4942 if (ata_is_ncq(qc->tf.protocol)) {
4943 if (!ata_tag_valid(link->active_tag))
4944 return 0;
4945 } else {
4946 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4947 return 0;
4948 }
4949
4950 return ATA_DEFER_LINK;
4951 }
4952
4953 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4954
4955 /**
4956 * ata_sg_init - Associate command with scatter-gather table.
4957 * @qc: Command to be associated
4958 * @sg: Scatter-gather table.
4959 * @n_elem: Number of elements in s/g table.
4960 *
4961 * Initialize the data-related elements of queued_cmd @qc
4962 * to point to a scatter-gather table @sg, containing @n_elem
4963 * elements.
4964 *
4965 * LOCKING:
4966 * spin_lock_irqsave(host lock)
4967 */
4968 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4969 unsigned int n_elem)
4970 {
4971 qc->sg = sg;
4972 qc->n_elem = n_elem;
4973 qc->cursg = qc->sg;
4974 }
4975
4976 #ifdef CONFIG_HAS_DMA
4977
4978 /**
4979 * ata_sg_clean - Unmap DMA memory associated with command
4980 * @qc: Command containing DMA memory to be released
4981 *
4982 * Unmap all mapped DMA memory associated with this command.
4983 *
4984 * LOCKING:
4985 * spin_lock_irqsave(host lock)
4986 */
4987 static void ata_sg_clean(struct ata_queued_cmd *qc)
4988 {
4989 struct ata_port *ap = qc->ap;
4990 struct scatterlist *sg = qc->sg;
4991 int dir = qc->dma_dir;
4992
4993 WARN_ON_ONCE(sg == NULL);
4994
4995 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4996
4997 if (qc->n_elem)
4998 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4999
5000 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5001 qc->sg = NULL;
5002 }
5003
5004 /**
5005 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5006 * @qc: Command with scatter-gather table to be mapped.
5007 *
5008 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5009 *
5010 * LOCKING:
5011 * spin_lock_irqsave(host lock)
5012 *
5013 * RETURNS:
5014 * Zero on success, negative on error.
5015 *
5016 */
5017 static int ata_sg_setup(struct ata_queued_cmd *qc)
5018 {
5019 struct ata_port *ap = qc->ap;
5020 unsigned int n_elem;
5021
5022 VPRINTK("ENTER, ata%u\n", ap->print_id);
5023
5024 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5025 if (n_elem < 1)
5026 return -1;
5027
5028 DPRINTK("%d sg elements mapped\n", n_elem);
5029 qc->orig_n_elem = qc->n_elem;
5030 qc->n_elem = n_elem;
5031 qc->flags |= ATA_QCFLAG_DMAMAP;
5032
5033 return 0;
5034 }
5035
5036 #else /* !CONFIG_HAS_DMA */
5037
5038 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5039 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5040
5041 #endif /* !CONFIG_HAS_DMA */
5042
5043 /**
5044 * swap_buf_le16 - swap halves of 16-bit words in place
5045 * @buf: Buffer to swap
5046 * @buf_words: Number of 16-bit words in buffer.
5047 *
5048 * Swap halves of 16-bit words if needed to convert from
5049 * little-endian byte order to native cpu byte order, or
5050 * vice-versa.
5051 *
5052 * LOCKING:
5053 * Inherited from caller.
5054 */
5055 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5056 {
5057 #ifdef __BIG_ENDIAN
5058 unsigned int i;
5059
5060 for (i = 0; i < buf_words; i++)
5061 buf[i] = le16_to_cpu(buf[i]);
5062 #endif /* __BIG_ENDIAN */
5063 }
5064
5065 /**
5066 * ata_qc_new_init - Request an available ATA command, and initialize it
5067 * @dev: Device from whom we request an available command structure
5068 * @tag: tag
5069 *
5070 * LOCKING:
5071 * None.
5072 */
5073
5074 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5075 {
5076 struct ata_port *ap = dev->link->ap;
5077 struct ata_queued_cmd *qc;
5078
5079 /* no command while frozen */
5080 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5081 return NULL;
5082
5083 /* libsas case */
5084 if (ap->flags & ATA_FLAG_SAS_HOST) {
5085 tag = ata_sas_allocate_tag(ap);
5086 if (tag < 0)
5087 return NULL;
5088 }
5089
5090 qc = __ata_qc_from_tag(ap, tag);
5091 qc->tag = tag;
5092 qc->scsicmd = NULL;
5093 qc->ap = ap;
5094 qc->dev = dev;
5095
5096 ata_qc_reinit(qc);
5097
5098 return qc;
5099 }
5100
5101 /**
5102 * ata_qc_free - free unused ata_queued_cmd
5103 * @qc: Command to complete
5104 *
5105 * Designed to free unused ata_queued_cmd object
5106 * in case something prevents using it.
5107 *
5108 * LOCKING:
5109 * spin_lock_irqsave(host lock)
5110 */
5111 void ata_qc_free(struct ata_queued_cmd *qc)
5112 {
5113 struct ata_port *ap;
5114 unsigned int tag;
5115
5116 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5117 ap = qc->ap;
5118
5119 qc->flags = 0;
5120 tag = qc->tag;
5121 if (likely(ata_tag_valid(tag))) {
5122 qc->tag = ATA_TAG_POISON;
5123 if (ap->flags & ATA_FLAG_SAS_HOST)
5124 ata_sas_free_tag(tag, ap);
5125 }
5126 }
5127
5128 void __ata_qc_complete(struct ata_queued_cmd *qc)
5129 {
5130 struct ata_port *ap;
5131 struct ata_link *link;
5132
5133 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5134 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5135 ap = qc->ap;
5136 link = qc->dev->link;
5137
5138 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5139 ata_sg_clean(qc);
5140
5141 /* command should be marked inactive atomically with qc completion */
5142 if (ata_is_ncq(qc->tf.protocol)) {
5143 link->sactive &= ~(1 << qc->tag);
5144 if (!link->sactive)
5145 ap->nr_active_links--;
5146 } else {
5147 link->active_tag = ATA_TAG_POISON;
5148 ap->nr_active_links--;
5149 }
5150
5151 /* clear exclusive status */
5152 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5153 ap->excl_link == link))
5154 ap->excl_link = NULL;
5155
5156 /* atapi: mark qc as inactive to prevent the interrupt handler
5157 * from completing the command twice later, before the error handler
5158 * is called. (when rc != 0 and atapi request sense is needed)
5159 */
5160 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5161 ap->qc_active &= ~(1 << qc->tag);
5162
5163 /* call completion callback */
5164 qc->complete_fn(qc);
5165 }
5166
5167 static void fill_result_tf(struct ata_queued_cmd *qc)
5168 {
5169 struct ata_port *ap = qc->ap;
5170
5171 qc->result_tf.flags = qc->tf.flags;
5172 ap->ops->qc_fill_rtf(qc);
5173 }
5174
5175 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5176 {
5177 struct ata_device *dev = qc->dev;
5178
5179 if (!ata_is_data(qc->tf.protocol))
5180 return;
5181
5182 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5183 return;
5184
5185 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5186 }
5187
5188 /**
5189 * ata_qc_complete - Complete an active ATA command
5190 * @qc: Command to complete
5191 *
5192 * Indicate to the mid and upper layers that an ATA command has
5193 * completed, with either an ok or not-ok status.
5194 *
5195 * Refrain from calling this function multiple times when
5196 * successfully completing multiple NCQ commands.
5197 * ata_qc_complete_multiple() should be used instead, which will
5198 * properly update IRQ expect state.
5199 *
5200 * LOCKING:
5201 * spin_lock_irqsave(host lock)
5202 */
5203 void ata_qc_complete(struct ata_queued_cmd *qc)
5204 {
5205 struct ata_port *ap = qc->ap;
5206
5207 /* Trigger the LED (if available) */
5208 ledtrig_disk_activity();
5209
5210 /* XXX: New EH and old EH use different mechanisms to
5211 * synchronize EH with regular execution path.
5212 *
5213 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5214 * Normal execution path is responsible for not accessing a
5215 * failed qc. libata core enforces the rule by returning NULL
5216 * from ata_qc_from_tag() for failed qcs.
5217 *
5218 * Old EH depends on ata_qc_complete() nullifying completion
5219 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5220 * not synchronize with interrupt handler. Only PIO task is
5221 * taken care of.
5222 */
5223 if (ap->ops->error_handler) {
5224 struct ata_device *dev = qc->dev;
5225 struct ata_eh_info *ehi = &dev->link->eh_info;
5226
5227 if (unlikely(qc->err_mask))
5228 qc->flags |= ATA_QCFLAG_FAILED;
5229
5230 /*
5231 * Finish internal commands without any further processing
5232 * and always with the result TF filled.
5233 */
5234 if (unlikely(ata_tag_internal(qc->tag))) {
5235 fill_result_tf(qc);
5236 trace_ata_qc_complete_internal(qc);
5237 __ata_qc_complete(qc);
5238 return;
5239 }
5240
5241 /*
5242 * Non-internal qc has failed. Fill the result TF and
5243 * summon EH.
5244 */
5245 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5246 fill_result_tf(qc);
5247 trace_ata_qc_complete_failed(qc);
5248 ata_qc_schedule_eh(qc);
5249 return;
5250 }
5251
5252 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5253
5254 /* read result TF if requested */
5255 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5256 fill_result_tf(qc);
5257
5258 trace_ata_qc_complete_done(qc);
5259 /* Some commands need post-processing after successful
5260 * completion.
5261 */
5262 switch (qc->tf.command) {
5263 case ATA_CMD_SET_FEATURES:
5264 if (qc->tf.feature != SETFEATURES_WC_ON &&
5265 qc->tf.feature != SETFEATURES_WC_OFF &&
5266 qc->tf.feature != SETFEATURES_RA_ON &&
5267 qc->tf.feature != SETFEATURES_RA_OFF)
5268 break;
5269 /* fall through */
5270 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5271 case ATA_CMD_SET_MULTI: /* multi_count changed */
5272 /* revalidate device */
5273 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5274 ata_port_schedule_eh(ap);
5275 break;
5276
5277 case ATA_CMD_SLEEP:
5278 dev->flags |= ATA_DFLAG_SLEEPING;
5279 break;
5280 }
5281
5282 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5283 ata_verify_xfer(qc);
5284
5285 __ata_qc_complete(qc);
5286 } else {
5287 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5288 return;
5289
5290 /* read result TF if failed or requested */
5291 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5292 fill_result_tf(qc);
5293
5294 __ata_qc_complete(qc);
5295 }
5296 }
5297
5298 /**
5299 * ata_qc_complete_multiple - Complete multiple qcs successfully
5300 * @ap: port in question
5301 * @qc_active: new qc_active mask
5302 *
5303 * Complete in-flight commands. This functions is meant to be
5304 * called from low-level driver's interrupt routine to complete
5305 * requests normally. ap->qc_active and @qc_active is compared
5306 * and commands are completed accordingly.
5307 *
5308 * Always use this function when completing multiple NCQ commands
5309 * from IRQ handlers instead of calling ata_qc_complete()
5310 * multiple times to keep IRQ expect status properly in sync.
5311 *
5312 * LOCKING:
5313 * spin_lock_irqsave(host lock)
5314 *
5315 * RETURNS:
5316 * Number of completed commands on success, -errno otherwise.
5317 */
5318 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5319 {
5320 int nr_done = 0;
5321 u32 done_mask;
5322
5323 done_mask = ap->qc_active ^ qc_active;
5324
5325 if (unlikely(done_mask & qc_active)) {
5326 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5327 ap->qc_active, qc_active);
5328 return -EINVAL;
5329 }
5330
5331 while (done_mask) {
5332 struct ata_queued_cmd *qc;
5333 unsigned int tag = __ffs(done_mask);
5334
5335 qc = ata_qc_from_tag(ap, tag);
5336 if (qc) {
5337 ata_qc_complete(qc);
5338 nr_done++;
5339 }
5340 done_mask &= ~(1 << tag);
5341 }
5342
5343 return nr_done;
5344 }
5345
5346 /**
5347 * ata_qc_issue - issue taskfile to device
5348 * @qc: command to issue to device
5349 *
5350 * Prepare an ATA command to submission to device.
5351 * This includes mapping the data into a DMA-able
5352 * area, filling in the S/G table, and finally
5353 * writing the taskfile to hardware, starting the command.
5354 *
5355 * LOCKING:
5356 * spin_lock_irqsave(host lock)
5357 */
5358 void ata_qc_issue(struct ata_queued_cmd *qc)
5359 {
5360 struct ata_port *ap = qc->ap;
5361 struct ata_link *link = qc->dev->link;
5362 u8 prot = qc->tf.protocol;
5363
5364 /* Make sure only one non-NCQ command is outstanding. The
5365 * check is skipped for old EH because it reuses active qc to
5366 * request ATAPI sense.
5367 */
5368 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5369
5370 if (ata_is_ncq(prot)) {
5371 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5372
5373 if (!link->sactive)
5374 ap->nr_active_links++;
5375 link->sactive |= 1 << qc->tag;
5376 } else {
5377 WARN_ON_ONCE(link->sactive);
5378
5379 ap->nr_active_links++;
5380 link->active_tag = qc->tag;
5381 }
5382
5383 qc->flags |= ATA_QCFLAG_ACTIVE;
5384 ap->qc_active |= 1 << qc->tag;
5385
5386 /*
5387 * We guarantee to LLDs that they will have at least one
5388 * non-zero sg if the command is a data command.
5389 */
5390 if (WARN_ON_ONCE(ata_is_data(prot) &&
5391 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5392 goto sys_err;
5393
5394 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5395 (ap->flags & ATA_FLAG_PIO_DMA)))
5396 if (ata_sg_setup(qc))
5397 goto sys_err;
5398
5399 /* if device is sleeping, schedule reset and abort the link */
5400 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5401 link->eh_info.action |= ATA_EH_RESET;
5402 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5403 ata_link_abort(link);
5404 return;
5405 }
5406
5407 ap->ops->qc_prep(qc);
5408 trace_ata_qc_issue(qc);
5409 qc->err_mask |= ap->ops->qc_issue(qc);
5410 if (unlikely(qc->err_mask))
5411 goto err;
5412 return;
5413
5414 sys_err:
5415 qc->err_mask |= AC_ERR_SYSTEM;
5416 err:
5417 ata_qc_complete(qc);
5418 }
5419
5420 /**
5421 * sata_scr_valid - test whether SCRs are accessible
5422 * @link: ATA link to test SCR accessibility for
5423 *
5424 * Test whether SCRs are accessible for @link.
5425 *
5426 * LOCKING:
5427 * None.
5428 *
5429 * RETURNS:
5430 * 1 if SCRs are accessible, 0 otherwise.
5431 */
5432 int sata_scr_valid(struct ata_link *link)
5433 {
5434 struct ata_port *ap = link->ap;
5435
5436 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5437 }
5438
5439 /**
5440 * sata_scr_read - read SCR register of the specified port
5441 * @link: ATA link to read SCR for
5442 * @reg: SCR to read
5443 * @val: Place to store read value
5444 *
5445 * Read SCR register @reg of @link into *@val. This function is
5446 * guaranteed to succeed if @link is ap->link, the cable type of
5447 * the port is SATA and the port implements ->scr_read.
5448 *
5449 * LOCKING:
5450 * None if @link is ap->link. Kernel thread context otherwise.
5451 *
5452 * RETURNS:
5453 * 0 on success, negative errno on failure.
5454 */
5455 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5456 {
5457 if (ata_is_host_link(link)) {
5458 if (sata_scr_valid(link))
5459 return link->ap->ops->scr_read(link, reg, val);
5460 return -EOPNOTSUPP;
5461 }
5462
5463 return sata_pmp_scr_read(link, reg, val);
5464 }
5465
5466 /**
5467 * sata_scr_write - write SCR register of the specified port
5468 * @link: ATA link to write SCR for
5469 * @reg: SCR to write
5470 * @val: value to write
5471 *
5472 * Write @val to SCR register @reg of @link. This function is
5473 * guaranteed to succeed if @link is ap->link, the cable type of
5474 * the port is SATA and the port implements ->scr_read.
5475 *
5476 * LOCKING:
5477 * None if @link is ap->link. Kernel thread context otherwise.
5478 *
5479 * RETURNS:
5480 * 0 on success, negative errno on failure.
5481 */
5482 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5483 {
5484 if (ata_is_host_link(link)) {
5485 if (sata_scr_valid(link))
5486 return link->ap->ops->scr_write(link, reg, val);
5487 return -EOPNOTSUPP;
5488 }
5489
5490 return sata_pmp_scr_write(link, reg, val);
5491 }
5492
5493 /**
5494 * sata_scr_write_flush - write SCR register of the specified port and flush
5495 * @link: ATA link to write SCR for
5496 * @reg: SCR to write
5497 * @val: value to write
5498 *
5499 * This function is identical to sata_scr_write() except that this
5500 * function performs flush after writing to the register.
5501 *
5502 * LOCKING:
5503 * None if @link is ap->link. Kernel thread context otherwise.
5504 *
5505 * RETURNS:
5506 * 0 on success, negative errno on failure.
5507 */
5508 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5509 {
5510 if (ata_is_host_link(link)) {
5511 int rc;
5512
5513 if (sata_scr_valid(link)) {
5514 rc = link->ap->ops->scr_write(link, reg, val);
5515 if (rc == 0)
5516 rc = link->ap->ops->scr_read(link, reg, &val);
5517 return rc;
5518 }
5519 return -EOPNOTSUPP;
5520 }
5521
5522 return sata_pmp_scr_write(link, reg, val);
5523 }
5524
5525 /**
5526 * ata_phys_link_online - test whether the given link is online
5527 * @link: ATA link to test
5528 *
5529 * Test whether @link is online. Note that this function returns
5530 * 0 if online status of @link cannot be obtained, so
5531 * ata_link_online(link) != !ata_link_offline(link).
5532 *
5533 * LOCKING:
5534 * None.
5535 *
5536 * RETURNS:
5537 * True if the port online status is available and online.
5538 */
5539 bool ata_phys_link_online(struct ata_link *link)
5540 {
5541 u32 sstatus;
5542
5543 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5544 ata_sstatus_online(sstatus))
5545 return true;
5546 return false;
5547 }
5548
5549 /**
5550 * ata_phys_link_offline - test whether the given link is offline
5551 * @link: ATA link to test
5552 *
5553 * Test whether @link is offline. Note that this function
5554 * returns 0 if offline status of @link cannot be obtained, so
5555 * ata_link_online(link) != !ata_link_offline(link).
5556 *
5557 * LOCKING:
5558 * None.
5559 *
5560 * RETURNS:
5561 * True if the port offline status is available and offline.
5562 */
5563 bool ata_phys_link_offline(struct ata_link *link)
5564 {
5565 u32 sstatus;
5566
5567 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5568 !ata_sstatus_online(sstatus))
5569 return true;
5570 return false;
5571 }
5572
5573 /**
5574 * ata_link_online - test whether the given link is online
5575 * @link: ATA link to test
5576 *
5577 * Test whether @link is online. This is identical to
5578 * ata_phys_link_online() when there's no slave link. When
5579 * there's a slave link, this function should only be called on
5580 * the master link and will return true if any of M/S links is
5581 * online.
5582 *
5583 * LOCKING:
5584 * None.
5585 *
5586 * RETURNS:
5587 * True if the port online status is available and online.
5588 */
5589 bool ata_link_online(struct ata_link *link)
5590 {
5591 struct ata_link *slave = link->ap->slave_link;
5592
5593 WARN_ON(link == slave); /* shouldn't be called on slave link */
5594
5595 return ata_phys_link_online(link) ||
5596 (slave && ata_phys_link_online(slave));
5597 }
5598
5599 /**
5600 * ata_link_offline - test whether the given link is offline
5601 * @link: ATA link to test
5602 *
5603 * Test whether @link is offline. This is identical to
5604 * ata_phys_link_offline() when there's no slave link. When
5605 * there's a slave link, this function should only be called on
5606 * the master link and will return true if both M/S links are
5607 * offline.
5608 *
5609 * LOCKING:
5610 * None.
5611 *
5612 * RETURNS:
5613 * True if the port offline status is available and offline.
5614 */
5615 bool ata_link_offline(struct ata_link *link)
5616 {
5617 struct ata_link *slave = link->ap->slave_link;
5618
5619 WARN_ON(link == slave); /* shouldn't be called on slave link */
5620
5621 return ata_phys_link_offline(link) &&
5622 (!slave || ata_phys_link_offline(slave));
5623 }
5624
5625 #ifdef CONFIG_PM
5626 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5627 unsigned int action, unsigned int ehi_flags,
5628 bool async)
5629 {
5630 struct ata_link *link;
5631 unsigned long flags;
5632
5633 /* Previous resume operation might still be in
5634 * progress. Wait for PM_PENDING to clear.
5635 */
5636 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5637 ata_port_wait_eh(ap);
5638 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5639 }
5640
5641 /* request PM ops to EH */
5642 spin_lock_irqsave(ap->lock, flags);
5643
5644 ap->pm_mesg = mesg;
5645 ap->pflags |= ATA_PFLAG_PM_PENDING;
5646 ata_for_each_link(link, ap, HOST_FIRST) {
5647 link->eh_info.action |= action;
5648 link->eh_info.flags |= ehi_flags;
5649 }
5650
5651 ata_port_schedule_eh(ap);
5652
5653 spin_unlock_irqrestore(ap->lock, flags);
5654
5655 if (!async) {
5656 ata_port_wait_eh(ap);
5657 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5658 }
5659 }
5660
5661 /*
5662 * On some hardware, device fails to respond after spun down for suspend. As
5663 * the device won't be used before being resumed, we don't need to touch the
5664 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5665 *
5666 * http://thread.gmane.org/gmane.linux.ide/46764
5667 */
5668 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5669 | ATA_EHI_NO_AUTOPSY
5670 | ATA_EHI_NO_RECOVERY;
5671
5672 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5673 {
5674 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5675 }
5676
5677 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5678 {
5679 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5680 }
5681
5682 static int ata_port_pm_suspend(struct device *dev)
5683 {
5684 struct ata_port *ap = to_ata_port(dev);
5685
5686 if (pm_runtime_suspended(dev))
5687 return 0;
5688
5689 ata_port_suspend(ap, PMSG_SUSPEND);
5690 return 0;
5691 }
5692
5693 static int ata_port_pm_freeze(struct device *dev)
5694 {
5695 struct ata_port *ap = to_ata_port(dev);
5696
5697 if (pm_runtime_suspended(dev))
5698 return 0;
5699
5700 ata_port_suspend(ap, PMSG_FREEZE);
5701 return 0;
5702 }
5703
5704 static int ata_port_pm_poweroff(struct device *dev)
5705 {
5706 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5707 return 0;
5708 }
5709
5710 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5711 | ATA_EHI_QUIET;
5712
5713 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5714 {
5715 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5716 }
5717
5718 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5719 {
5720 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5721 }
5722
5723 static int ata_port_pm_resume(struct device *dev)
5724 {
5725 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5726 pm_runtime_disable(dev);
5727 pm_runtime_set_active(dev);
5728 pm_runtime_enable(dev);
5729 return 0;
5730 }
5731
5732 /*
5733 * For ODDs, the upper layer will poll for media change every few seconds,
5734 * which will make it enter and leave suspend state every few seconds. And
5735 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5736 * is very little and the ODD may malfunction after constantly being reset.
5737 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5738 * ODD is attached to the port.
5739 */
5740 static int ata_port_runtime_idle(struct device *dev)
5741 {
5742 struct ata_port *ap = to_ata_port(dev);
5743 struct ata_link *link;
5744 struct ata_device *adev;
5745
5746 ata_for_each_link(link, ap, HOST_FIRST) {
5747 ata_for_each_dev(adev, link, ENABLED)
5748 if (adev->class == ATA_DEV_ATAPI &&
5749 !zpodd_dev_enabled(adev))
5750 return -EBUSY;
5751 }
5752
5753 return 0;
5754 }
5755
5756 static int ata_port_runtime_suspend(struct device *dev)
5757 {
5758 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5759 return 0;
5760 }
5761
5762 static int ata_port_runtime_resume(struct device *dev)
5763 {
5764 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5765 return 0;
5766 }
5767
5768 static const struct dev_pm_ops ata_port_pm_ops = {
5769 .suspend = ata_port_pm_suspend,
5770 .resume = ata_port_pm_resume,
5771 .freeze = ata_port_pm_freeze,
5772 .thaw = ata_port_pm_resume,
5773 .poweroff = ata_port_pm_poweroff,
5774 .restore = ata_port_pm_resume,
5775
5776 .runtime_suspend = ata_port_runtime_suspend,
5777 .runtime_resume = ata_port_runtime_resume,
5778 .runtime_idle = ata_port_runtime_idle,
5779 };
5780
5781 /* sas ports don't participate in pm runtime management of ata_ports,
5782 * and need to resume ata devices at the domain level, not the per-port
5783 * level. sas suspend/resume is async to allow parallel port recovery
5784 * since sas has multiple ata_port instances per Scsi_Host.
5785 */
5786 void ata_sas_port_suspend(struct ata_port *ap)
5787 {
5788 ata_port_suspend_async(ap, PMSG_SUSPEND);
5789 }
5790 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5791
5792 void ata_sas_port_resume(struct ata_port *ap)
5793 {
5794 ata_port_resume_async(ap, PMSG_RESUME);
5795 }
5796 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5797
5798 /**
5799 * ata_host_suspend - suspend host
5800 * @host: host to suspend
5801 * @mesg: PM message
5802 *
5803 * Suspend @host. Actual operation is performed by port suspend.
5804 */
5805 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5806 {
5807 host->dev->power.power_state = mesg;
5808 return 0;
5809 }
5810
5811 /**
5812 * ata_host_resume - resume host
5813 * @host: host to resume
5814 *
5815 * Resume @host. Actual operation is performed by port resume.
5816 */
5817 void ata_host_resume(struct ata_host *host)
5818 {
5819 host->dev->power.power_state = PMSG_ON;
5820 }
5821 #endif
5822
5823 struct device_type ata_port_type = {
5824 .name = "ata_port",
5825 #ifdef CONFIG_PM
5826 .pm = &ata_port_pm_ops,
5827 #endif
5828 };
5829
5830 /**
5831 * ata_dev_init - Initialize an ata_device structure
5832 * @dev: Device structure to initialize
5833 *
5834 * Initialize @dev in preparation for probing.
5835 *
5836 * LOCKING:
5837 * Inherited from caller.
5838 */
5839 void ata_dev_init(struct ata_device *dev)
5840 {
5841 struct ata_link *link = ata_dev_phys_link(dev);
5842 struct ata_port *ap = link->ap;
5843 unsigned long flags;
5844
5845 /* SATA spd limit is bound to the attached device, reset together */
5846 link->sata_spd_limit = link->hw_sata_spd_limit;
5847 link->sata_spd = 0;
5848
5849 /* High bits of dev->flags are used to record warm plug
5850 * requests which occur asynchronously. Synchronize using
5851 * host lock.
5852 */
5853 spin_lock_irqsave(ap->lock, flags);
5854 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5855 dev->horkage = 0;
5856 spin_unlock_irqrestore(ap->lock, flags);
5857
5858 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5859 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5860 dev->pio_mask = UINT_MAX;
5861 dev->mwdma_mask = UINT_MAX;
5862 dev->udma_mask = UINT_MAX;
5863 }
5864
5865 /**
5866 * ata_link_init - Initialize an ata_link structure
5867 * @ap: ATA port link is attached to
5868 * @link: Link structure to initialize
5869 * @pmp: Port multiplier port number
5870 *
5871 * Initialize @link.
5872 *
5873 * LOCKING:
5874 * Kernel thread context (may sleep)
5875 */
5876 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5877 {
5878 int i;
5879
5880 /* clear everything except for devices */
5881 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5882 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5883
5884 link->ap = ap;
5885 link->pmp = pmp;
5886 link->active_tag = ATA_TAG_POISON;
5887 link->hw_sata_spd_limit = UINT_MAX;
5888
5889 /* can't use iterator, ap isn't initialized yet */
5890 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5891 struct ata_device *dev = &link->device[i];
5892
5893 dev->link = link;
5894 dev->devno = dev - link->device;
5895 #ifdef CONFIG_ATA_ACPI
5896 dev->gtf_filter = ata_acpi_gtf_filter;
5897 #endif
5898 ata_dev_init(dev);
5899 }
5900 }
5901
5902 /**
5903 * sata_link_init_spd - Initialize link->sata_spd_limit
5904 * @link: Link to configure sata_spd_limit for
5905 *
5906 * Initialize @link->[hw_]sata_spd_limit to the currently
5907 * configured value.
5908 *
5909 * LOCKING:
5910 * Kernel thread context (may sleep).
5911 *
5912 * RETURNS:
5913 * 0 on success, -errno on failure.
5914 */
5915 int sata_link_init_spd(struct ata_link *link)
5916 {
5917 u8 spd;
5918 int rc;
5919
5920 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5921 if (rc)
5922 return rc;
5923
5924 spd = (link->saved_scontrol >> 4) & 0xf;
5925 if (spd)
5926 link->hw_sata_spd_limit &= (1 << spd) - 1;
5927
5928 ata_force_link_limits(link);
5929
5930 link->sata_spd_limit = link->hw_sata_spd_limit;
5931
5932 return 0;
5933 }
5934
5935 /**
5936 * ata_port_alloc - allocate and initialize basic ATA port resources
5937 * @host: ATA host this allocated port belongs to
5938 *
5939 * Allocate and initialize basic ATA port resources.
5940 *
5941 * RETURNS:
5942 * Allocate ATA port on success, NULL on failure.
5943 *
5944 * LOCKING:
5945 * Inherited from calling layer (may sleep).
5946 */
5947 struct ata_port *ata_port_alloc(struct ata_host *host)
5948 {
5949 struct ata_port *ap;
5950
5951 DPRINTK("ENTER\n");
5952
5953 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5954 if (!ap)
5955 return NULL;
5956
5957 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5958 ap->lock = &host->lock;
5959 ap->print_id = -1;
5960 ap->local_port_no = -1;
5961 ap->host = host;
5962 ap->dev = host->dev;
5963
5964 #if defined(ATA_VERBOSE_DEBUG)
5965 /* turn on all debugging levels */
5966 ap->msg_enable = 0x00FF;
5967 #elif defined(ATA_DEBUG)
5968 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5969 #else
5970 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5971 #endif
5972
5973 mutex_init(&ap->scsi_scan_mutex);
5974 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5975 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5976 INIT_LIST_HEAD(&ap->eh_done_q);
5977 init_waitqueue_head(&ap->eh_wait_q);
5978 init_completion(&ap->park_req_pending);
5979 setup_deferrable_timer(&ap->fastdrain_timer,
5980 ata_eh_fastdrain_timerfn,
5981 (unsigned long)ap);
5982
5983 ap->cbl = ATA_CBL_NONE;
5984
5985 ata_link_init(ap, &ap->link, 0);
5986
5987 #ifdef ATA_IRQ_TRAP
5988 ap->stats.unhandled_irq = 1;
5989 ap->stats.idle_irq = 1;
5990 #endif
5991 ata_sff_port_init(ap);
5992
5993 return ap;
5994 }
5995
5996 static void ata_host_release(struct device *gendev, void *res)
5997 {
5998 struct ata_host *host = dev_get_drvdata(gendev);
5999 int i;
6000
6001 for (i = 0; i < host->n_ports; i++) {
6002 struct ata_port *ap = host->ports[i];
6003
6004 if (!ap)
6005 continue;
6006
6007 if (ap->scsi_host)
6008 scsi_host_put(ap->scsi_host);
6009
6010 kfree(ap->pmp_link);
6011 kfree(ap->slave_link);
6012 kfree(ap);
6013 host->ports[i] = NULL;
6014 }
6015
6016 dev_set_drvdata(gendev, NULL);
6017 }
6018
6019 /**
6020 * ata_host_alloc - allocate and init basic ATA host resources
6021 * @dev: generic device this host is associated with
6022 * @max_ports: maximum number of ATA ports associated with this host
6023 *
6024 * Allocate and initialize basic ATA host resources. LLD calls
6025 * this function to allocate a host, initializes it fully and
6026 * attaches it using ata_host_register().
6027 *
6028 * @max_ports ports are allocated and host->n_ports is
6029 * initialized to @max_ports. The caller is allowed to decrease
6030 * host->n_ports before calling ata_host_register(). The unused
6031 * ports will be automatically freed on registration.
6032 *
6033 * RETURNS:
6034 * Allocate ATA host on success, NULL on failure.
6035 *
6036 * LOCKING:
6037 * Inherited from calling layer (may sleep).
6038 */
6039 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6040 {
6041 struct ata_host *host;
6042 size_t sz;
6043 int i;
6044
6045 DPRINTK("ENTER\n");
6046
6047 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6048 return NULL;
6049
6050 /* alloc a container for our list of ATA ports (buses) */
6051 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6052 /* alloc a container for our list of ATA ports (buses) */
6053 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6054 if (!host)
6055 goto err_out;
6056
6057 devres_add(dev, host);
6058 dev_set_drvdata(dev, host);
6059
6060 spin_lock_init(&host->lock);
6061 mutex_init(&host->eh_mutex);
6062 host->dev = dev;
6063 host->n_ports = max_ports;
6064
6065 /* allocate ports bound to this host */
6066 for (i = 0; i < max_ports; i++) {
6067 struct ata_port *ap;
6068
6069 ap = ata_port_alloc(host);
6070 if (!ap)
6071 goto err_out;
6072
6073 ap->port_no = i;
6074 host->ports[i] = ap;
6075 }
6076
6077 devres_remove_group(dev, NULL);
6078 return host;
6079
6080 err_out:
6081 devres_release_group(dev, NULL);
6082 return NULL;
6083 }
6084
6085 /**
6086 * ata_host_alloc_pinfo - alloc host and init with port_info array
6087 * @dev: generic device this host is associated with
6088 * @ppi: array of ATA port_info to initialize host with
6089 * @n_ports: number of ATA ports attached to this host
6090 *
6091 * Allocate ATA host and initialize with info from @ppi. If NULL
6092 * terminated, @ppi may contain fewer entries than @n_ports. The
6093 * last entry will be used for the remaining ports.
6094 *
6095 * RETURNS:
6096 * Allocate ATA host on success, NULL on failure.
6097 *
6098 * LOCKING:
6099 * Inherited from calling layer (may sleep).
6100 */
6101 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6102 const struct ata_port_info * const * ppi,
6103 int n_ports)
6104 {
6105 const struct ata_port_info *pi;
6106 struct ata_host *host;
6107 int i, j;
6108
6109 host = ata_host_alloc(dev, n_ports);
6110 if (!host)
6111 return NULL;
6112
6113 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6114 struct ata_port *ap = host->ports[i];
6115
6116 if (ppi[j])
6117 pi = ppi[j++];
6118
6119 ap->pio_mask = pi->pio_mask;
6120 ap->mwdma_mask = pi->mwdma_mask;
6121 ap->udma_mask = pi->udma_mask;
6122 ap->flags |= pi->flags;
6123 ap->link.flags |= pi->link_flags;
6124 ap->ops = pi->port_ops;
6125
6126 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6127 host->ops = pi->port_ops;
6128 }
6129
6130 return host;
6131 }
6132
6133 /**
6134 * ata_slave_link_init - initialize slave link
6135 * @ap: port to initialize slave link for
6136 *
6137 * Create and initialize slave link for @ap. This enables slave
6138 * link handling on the port.
6139 *
6140 * In libata, a port contains links and a link contains devices.
6141 * There is single host link but if a PMP is attached to it,
6142 * there can be multiple fan-out links. On SATA, there's usually
6143 * a single device connected to a link but PATA and SATA
6144 * controllers emulating TF based interface can have two - master
6145 * and slave.
6146 *
6147 * However, there are a few controllers which don't fit into this
6148 * abstraction too well - SATA controllers which emulate TF
6149 * interface with both master and slave devices but also have
6150 * separate SCR register sets for each device. These controllers
6151 * need separate links for physical link handling
6152 * (e.g. onlineness, link speed) but should be treated like a
6153 * traditional M/S controller for everything else (e.g. command
6154 * issue, softreset).
6155 *
6156 * slave_link is libata's way of handling this class of
6157 * controllers without impacting core layer too much. For
6158 * anything other than physical link handling, the default host
6159 * link is used for both master and slave. For physical link
6160 * handling, separate @ap->slave_link is used. All dirty details
6161 * are implemented inside libata core layer. From LLD's POV, the
6162 * only difference is that prereset, hardreset and postreset are
6163 * called once more for the slave link, so the reset sequence
6164 * looks like the following.
6165 *
6166 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6167 * softreset(M) -> postreset(M) -> postreset(S)
6168 *
6169 * Note that softreset is called only for the master. Softreset
6170 * resets both M/S by definition, so SRST on master should handle
6171 * both (the standard method will work just fine).
6172 *
6173 * LOCKING:
6174 * Should be called before host is registered.
6175 *
6176 * RETURNS:
6177 * 0 on success, -errno on failure.
6178 */
6179 int ata_slave_link_init(struct ata_port *ap)
6180 {
6181 struct ata_link *link;
6182
6183 WARN_ON(ap->slave_link);
6184 WARN_ON(ap->flags & ATA_FLAG_PMP);
6185
6186 link = kzalloc(sizeof(*link), GFP_KERNEL);
6187 if (!link)
6188 return -ENOMEM;
6189
6190 ata_link_init(ap, link, 1);
6191 ap->slave_link = link;
6192 return 0;
6193 }
6194
6195 static void ata_host_stop(struct device *gendev, void *res)
6196 {
6197 struct ata_host *host = dev_get_drvdata(gendev);
6198 int i;
6199
6200 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6201
6202 for (i = 0; i < host->n_ports; i++) {
6203 struct ata_port *ap = host->ports[i];
6204
6205 if (ap->ops->port_stop)
6206 ap->ops->port_stop(ap);
6207 }
6208
6209 if (host->ops->host_stop)
6210 host->ops->host_stop(host);
6211 }
6212
6213 /**
6214 * ata_finalize_port_ops - finalize ata_port_operations
6215 * @ops: ata_port_operations to finalize
6216 *
6217 * An ata_port_operations can inherit from another ops and that
6218 * ops can again inherit from another. This can go on as many
6219 * times as necessary as long as there is no loop in the
6220 * inheritance chain.
6221 *
6222 * Ops tables are finalized when the host is started. NULL or
6223 * unspecified entries are inherited from the closet ancestor
6224 * which has the method and the entry is populated with it.
6225 * After finalization, the ops table directly points to all the
6226 * methods and ->inherits is no longer necessary and cleared.
6227 *
6228 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6229 *
6230 * LOCKING:
6231 * None.
6232 */
6233 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6234 {
6235 static DEFINE_SPINLOCK(lock);
6236 const struct ata_port_operations *cur;
6237 void **begin = (void **)ops;
6238 void **end = (void **)&ops->inherits;
6239 void **pp;
6240
6241 if (!ops || !ops->inherits)
6242 return;
6243
6244 spin_lock(&lock);
6245
6246 for (cur = ops->inherits; cur; cur = cur->inherits) {
6247 void **inherit = (void **)cur;
6248
6249 for (pp = begin; pp < end; pp++, inherit++)
6250 if (!*pp)
6251 *pp = *inherit;
6252 }
6253
6254 for (pp = begin; pp < end; pp++)
6255 if (IS_ERR(*pp))
6256 *pp = NULL;
6257
6258 ops->inherits = NULL;
6259
6260 spin_unlock(&lock);
6261 }
6262
6263 /**
6264 * ata_host_start - start and freeze ports of an ATA host
6265 * @host: ATA host to start ports for
6266 *
6267 * Start and then freeze ports of @host. Started status is
6268 * recorded in host->flags, so this function can be called
6269 * multiple times. Ports are guaranteed to get started only
6270 * once. If host->ops isn't initialized yet, its set to the
6271 * first non-dummy port ops.
6272 *
6273 * LOCKING:
6274 * Inherited from calling layer (may sleep).
6275 *
6276 * RETURNS:
6277 * 0 if all ports are started successfully, -errno otherwise.
6278 */
6279 int ata_host_start(struct ata_host *host)
6280 {
6281 int have_stop = 0;
6282 void *start_dr = NULL;
6283 int i, rc;
6284
6285 if (host->flags & ATA_HOST_STARTED)
6286 return 0;
6287
6288 ata_finalize_port_ops(host->ops);
6289
6290 for (i = 0; i < host->n_ports; i++) {
6291 struct ata_port *ap = host->ports[i];
6292
6293 ata_finalize_port_ops(ap->ops);
6294
6295 if (!host->ops && !ata_port_is_dummy(ap))
6296 host->ops = ap->ops;
6297
6298 if (ap->ops->port_stop)
6299 have_stop = 1;
6300 }
6301
6302 if (host->ops->host_stop)
6303 have_stop = 1;
6304
6305 if (have_stop) {
6306 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6307 if (!start_dr)
6308 return -ENOMEM;
6309 }
6310
6311 for (i = 0; i < host->n_ports; i++) {
6312 struct ata_port *ap = host->ports[i];
6313
6314 if (ap->ops->port_start) {
6315 rc = ap->ops->port_start(ap);
6316 if (rc) {
6317 if (rc != -ENODEV)
6318 dev_err(host->dev,
6319 "failed to start port %d (errno=%d)\n",
6320 i, rc);
6321 goto err_out;
6322 }
6323 }
6324 ata_eh_freeze_port(ap);
6325 }
6326
6327 if (start_dr)
6328 devres_add(host->dev, start_dr);
6329 host->flags |= ATA_HOST_STARTED;
6330 return 0;
6331
6332 err_out:
6333 while (--i >= 0) {
6334 struct ata_port *ap = host->ports[i];
6335
6336 if (ap->ops->port_stop)
6337 ap->ops->port_stop(ap);
6338 }
6339 devres_free(start_dr);
6340 return rc;
6341 }
6342
6343 /**
6344 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6345 * @host: host to initialize
6346 * @dev: device host is attached to
6347 * @ops: port_ops
6348 *
6349 */
6350 void ata_host_init(struct ata_host *host, struct device *dev,
6351 struct ata_port_operations *ops)
6352 {
6353 spin_lock_init(&host->lock);
6354 mutex_init(&host->eh_mutex);
6355 host->n_tags = ATA_MAX_QUEUE - 1;
6356 host->dev = dev;
6357 host->ops = ops;
6358 }
6359
6360 void __ata_port_probe(struct ata_port *ap)
6361 {
6362 struct ata_eh_info *ehi = &ap->link.eh_info;
6363 unsigned long flags;
6364
6365 /* kick EH for boot probing */
6366 spin_lock_irqsave(ap->lock, flags);
6367
6368 ehi->probe_mask |= ATA_ALL_DEVICES;
6369 ehi->action |= ATA_EH_RESET;
6370 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6371
6372 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6373 ap->pflags |= ATA_PFLAG_LOADING;
6374 ata_port_schedule_eh(ap);
6375
6376 spin_unlock_irqrestore(ap->lock, flags);
6377 }
6378
6379 int ata_port_probe(struct ata_port *ap)
6380 {
6381 int rc = 0;
6382
6383 if (ap->ops->error_handler) {
6384 __ata_port_probe(ap);
6385 ata_port_wait_eh(ap);
6386 } else {
6387 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6388 rc = ata_bus_probe(ap);
6389 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6390 }
6391 return rc;
6392 }
6393
6394
6395 static void async_port_probe(void *data, async_cookie_t cookie)
6396 {
6397 struct ata_port *ap = data;
6398
6399 /*
6400 * If we're not allowed to scan this host in parallel,
6401 * we need to wait until all previous scans have completed
6402 * before going further.
6403 * Jeff Garzik says this is only within a controller, so we
6404 * don't need to wait for port 0, only for later ports.
6405 */
6406 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6407 async_synchronize_cookie(cookie);
6408
6409 (void)ata_port_probe(ap);
6410
6411 /* in order to keep device order, we need to synchronize at this point */
6412 async_synchronize_cookie(cookie);
6413
6414 ata_scsi_scan_host(ap, 1);
6415 }
6416
6417 /**
6418 * ata_host_register - register initialized ATA host
6419 * @host: ATA host to register
6420 * @sht: template for SCSI host
6421 *
6422 * Register initialized ATA host. @host is allocated using
6423 * ata_host_alloc() and fully initialized by LLD. This function
6424 * starts ports, registers @host with ATA and SCSI layers and
6425 * probe registered devices.
6426 *
6427 * LOCKING:
6428 * Inherited from calling layer (may sleep).
6429 *
6430 * RETURNS:
6431 * 0 on success, -errno otherwise.
6432 */
6433 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6434 {
6435 int i, rc;
6436
6437 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6438
6439 /* host must have been started */
6440 if (!(host->flags & ATA_HOST_STARTED)) {
6441 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6442 WARN_ON(1);
6443 return -EINVAL;
6444 }
6445
6446 /* Blow away unused ports. This happens when LLD can't
6447 * determine the exact number of ports to allocate at
6448 * allocation time.
6449 */
6450 for (i = host->n_ports; host->ports[i]; i++)
6451 kfree(host->ports[i]);
6452
6453 /* give ports names and add SCSI hosts */
6454 for (i = 0; i < host->n_ports; i++) {
6455 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6456 host->ports[i]->local_port_no = i + 1;
6457 }
6458
6459 /* Create associated sysfs transport objects */
6460 for (i = 0; i < host->n_ports; i++) {
6461 rc = ata_tport_add(host->dev,host->ports[i]);
6462 if (rc) {
6463 goto err_tadd;
6464 }
6465 }
6466
6467 rc = ata_scsi_add_hosts(host, sht);
6468 if (rc)
6469 goto err_tadd;
6470
6471 /* set cable, sata_spd_limit and report */
6472 for (i = 0; i < host->n_ports; i++) {
6473 struct ata_port *ap = host->ports[i];
6474 unsigned long xfer_mask;
6475
6476 /* set SATA cable type if still unset */
6477 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6478 ap->cbl = ATA_CBL_SATA;
6479
6480 /* init sata_spd_limit to the current value */
6481 sata_link_init_spd(&ap->link);
6482 if (ap->slave_link)
6483 sata_link_init_spd(ap->slave_link);
6484
6485 /* print per-port info to dmesg */
6486 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6487 ap->udma_mask);
6488
6489 if (!ata_port_is_dummy(ap)) {
6490 ata_port_info(ap, "%cATA max %s %s\n",
6491 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6492 ata_mode_string(xfer_mask),
6493 ap->link.eh_info.desc);
6494 ata_ehi_clear_desc(&ap->link.eh_info);
6495 } else
6496 ata_port_info(ap, "DUMMY\n");
6497 }
6498
6499 /* perform each probe asynchronously */
6500 for (i = 0; i < host->n_ports; i++) {
6501 struct ata_port *ap = host->ports[i];
6502 async_schedule(async_port_probe, ap);
6503 }
6504
6505 return 0;
6506
6507 err_tadd:
6508 while (--i >= 0) {
6509 ata_tport_delete(host->ports[i]);
6510 }
6511 return rc;
6512
6513 }
6514
6515 /**
6516 * ata_host_activate - start host, request IRQ and register it
6517 * @host: target ATA host
6518 * @irq: IRQ to request
6519 * @irq_handler: irq_handler used when requesting IRQ
6520 * @irq_flags: irq_flags used when requesting IRQ
6521 * @sht: scsi_host_template to use when registering the host
6522 *
6523 * After allocating an ATA host and initializing it, most libata
6524 * LLDs perform three steps to activate the host - start host,
6525 * request IRQ and register it. This helper takes necessary
6526 * arguments and performs the three steps in one go.
6527 *
6528 * An invalid IRQ skips the IRQ registration and expects the host to
6529 * have set polling mode on the port. In this case, @irq_handler
6530 * should be NULL.
6531 *
6532 * LOCKING:
6533 * Inherited from calling layer (may sleep).
6534 *
6535 * RETURNS:
6536 * 0 on success, -errno otherwise.
6537 */
6538 int ata_host_activate(struct ata_host *host, int irq,
6539 irq_handler_t irq_handler, unsigned long irq_flags,
6540 struct scsi_host_template *sht)
6541 {
6542 int i, rc;
6543 char *irq_desc;
6544
6545 rc = ata_host_start(host);
6546 if (rc)
6547 return rc;
6548
6549 /* Special case for polling mode */
6550 if (!irq) {
6551 WARN_ON(irq_handler);
6552 return ata_host_register(host, sht);
6553 }
6554
6555 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6556 dev_driver_string(host->dev),
6557 dev_name(host->dev));
6558 if (!irq_desc)
6559 return -ENOMEM;
6560
6561 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6562 irq_desc, host);
6563 if (rc)
6564 return rc;
6565
6566 for (i = 0; i < host->n_ports; i++)
6567 ata_port_desc(host->ports[i], "irq %d", irq);
6568
6569 rc = ata_host_register(host, sht);
6570 /* if failed, just free the IRQ and leave ports alone */
6571 if (rc)
6572 devm_free_irq(host->dev, irq, host);
6573
6574 return rc;
6575 }
6576
6577 /**
6578 * ata_port_detach - Detach ATA port in preparation of device removal
6579 * @ap: ATA port to be detached
6580 *
6581 * Detach all ATA devices and the associated SCSI devices of @ap;
6582 * then, remove the associated SCSI host. @ap is guaranteed to
6583 * be quiescent on return from this function.
6584 *
6585 * LOCKING:
6586 * Kernel thread context (may sleep).
6587 */
6588 static void ata_port_detach(struct ata_port *ap)
6589 {
6590 unsigned long flags;
6591 struct ata_link *link;
6592 struct ata_device *dev;
6593
6594 if (!ap->ops->error_handler)
6595 goto skip_eh;
6596
6597 /* tell EH we're leaving & flush EH */
6598 spin_lock_irqsave(ap->lock, flags);
6599 ap->pflags |= ATA_PFLAG_UNLOADING;
6600 ata_port_schedule_eh(ap);
6601 spin_unlock_irqrestore(ap->lock, flags);
6602
6603 /* wait till EH commits suicide */
6604 ata_port_wait_eh(ap);
6605
6606 /* it better be dead now */
6607 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6608
6609 cancel_delayed_work_sync(&ap->hotplug_task);
6610
6611 skip_eh:
6612 /* clean up zpodd on port removal */
6613 ata_for_each_link(link, ap, HOST_FIRST) {
6614 ata_for_each_dev(dev, link, ALL) {
6615 if (zpodd_dev_enabled(dev))
6616 zpodd_exit(dev);
6617 }
6618 }
6619 if (ap->pmp_link) {
6620 int i;
6621 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6622 ata_tlink_delete(&ap->pmp_link[i]);
6623 }
6624 /* remove the associated SCSI host */
6625 scsi_remove_host(ap->scsi_host);
6626 ata_tport_delete(ap);
6627 }
6628
6629 /**
6630 * ata_host_detach - Detach all ports of an ATA host
6631 * @host: Host to detach
6632 *
6633 * Detach all ports of @host.
6634 *
6635 * LOCKING:
6636 * Kernel thread context (may sleep).
6637 */
6638 void ata_host_detach(struct ata_host *host)
6639 {
6640 int i;
6641
6642 for (i = 0; i < host->n_ports; i++)
6643 ata_port_detach(host->ports[i]);
6644
6645 /* the host is dead now, dissociate ACPI */
6646 ata_acpi_dissociate(host);
6647 }
6648
6649 #ifdef CONFIG_PCI
6650
6651 /**
6652 * ata_pci_remove_one - PCI layer callback for device removal
6653 * @pdev: PCI device that was removed
6654 *
6655 * PCI layer indicates to libata via this hook that hot-unplug or
6656 * module unload event has occurred. Detach all ports. Resource
6657 * release is handled via devres.
6658 *
6659 * LOCKING:
6660 * Inherited from PCI layer (may sleep).
6661 */
6662 void ata_pci_remove_one(struct pci_dev *pdev)
6663 {
6664 struct ata_host *host = pci_get_drvdata(pdev);
6665
6666 ata_host_detach(host);
6667 }
6668
6669 /* move to PCI subsystem */
6670 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6671 {
6672 unsigned long tmp = 0;
6673
6674 switch (bits->width) {
6675 case 1: {
6676 u8 tmp8 = 0;
6677 pci_read_config_byte(pdev, bits->reg, &tmp8);
6678 tmp = tmp8;
6679 break;
6680 }
6681 case 2: {
6682 u16 tmp16 = 0;
6683 pci_read_config_word(pdev, bits->reg, &tmp16);
6684 tmp = tmp16;
6685 break;
6686 }
6687 case 4: {
6688 u32 tmp32 = 0;
6689 pci_read_config_dword(pdev, bits->reg, &tmp32);
6690 tmp = tmp32;
6691 break;
6692 }
6693
6694 default:
6695 return -EINVAL;
6696 }
6697
6698 tmp &= bits->mask;
6699
6700 return (tmp == bits->val) ? 1 : 0;
6701 }
6702
6703 #ifdef CONFIG_PM
6704 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6705 {
6706 pci_save_state(pdev);
6707 pci_disable_device(pdev);
6708
6709 if (mesg.event & PM_EVENT_SLEEP)
6710 pci_set_power_state(pdev, PCI_D3hot);
6711 }
6712
6713 int ata_pci_device_do_resume(struct pci_dev *pdev)
6714 {
6715 int rc;
6716
6717 pci_set_power_state(pdev, PCI_D0);
6718 pci_restore_state(pdev);
6719
6720 rc = pcim_enable_device(pdev);
6721 if (rc) {
6722 dev_err(&pdev->dev,
6723 "failed to enable device after resume (%d)\n", rc);
6724 return rc;
6725 }
6726
6727 pci_set_master(pdev);
6728 return 0;
6729 }
6730
6731 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6732 {
6733 struct ata_host *host = pci_get_drvdata(pdev);
6734 int rc = 0;
6735
6736 rc = ata_host_suspend(host, mesg);
6737 if (rc)
6738 return rc;
6739
6740 ata_pci_device_do_suspend(pdev, mesg);
6741
6742 return 0;
6743 }
6744
6745 int ata_pci_device_resume(struct pci_dev *pdev)
6746 {
6747 struct ata_host *host = pci_get_drvdata(pdev);
6748 int rc;
6749
6750 rc = ata_pci_device_do_resume(pdev);
6751 if (rc == 0)
6752 ata_host_resume(host);
6753 return rc;
6754 }
6755 #endif /* CONFIG_PM */
6756
6757 #endif /* CONFIG_PCI */
6758
6759 /**
6760 * ata_platform_remove_one - Platform layer callback for device removal
6761 * @pdev: Platform device that was removed
6762 *
6763 * Platform layer indicates to libata via this hook that hot-unplug or
6764 * module unload event has occurred. Detach all ports. Resource
6765 * release is handled via devres.
6766 *
6767 * LOCKING:
6768 * Inherited from platform layer (may sleep).
6769 */
6770 int ata_platform_remove_one(struct platform_device *pdev)
6771 {
6772 struct ata_host *host = platform_get_drvdata(pdev);
6773
6774 ata_host_detach(host);
6775
6776 return 0;
6777 }
6778
6779 static int __init ata_parse_force_one(char **cur,
6780 struct ata_force_ent *force_ent,
6781 const char **reason)
6782 {
6783 static const struct ata_force_param force_tbl[] __initconst = {
6784 { "40c", .cbl = ATA_CBL_PATA40 },
6785 { "80c", .cbl = ATA_CBL_PATA80 },
6786 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6787 { "unk", .cbl = ATA_CBL_PATA_UNK },
6788 { "ign", .cbl = ATA_CBL_PATA_IGN },
6789 { "sata", .cbl = ATA_CBL_SATA },
6790 { "1.5Gbps", .spd_limit = 1 },
6791 { "3.0Gbps", .spd_limit = 2 },
6792 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6793 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6794 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6795 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6796 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6797 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6798 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6799 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6800 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6801 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6802 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6803 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6804 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6805 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6806 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6807 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6808 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6809 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6810 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6811 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6812 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6813 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6814 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6815 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6816 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6817 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6818 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6819 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6820 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6821 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6822 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6823 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6824 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6825 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6826 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6827 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6828 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6829 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6830 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6831 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6832 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6833 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6834 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6835 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6836 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6837 };
6838 char *start = *cur, *p = *cur;
6839 char *id, *val, *endp;
6840 const struct ata_force_param *match_fp = NULL;
6841 int nr_matches = 0, i;
6842
6843 /* find where this param ends and update *cur */
6844 while (*p != '\0' && *p != ',')
6845 p++;
6846
6847 if (*p == '\0')
6848 *cur = p;
6849 else
6850 *cur = p + 1;
6851
6852 *p = '\0';
6853
6854 /* parse */
6855 p = strchr(start, ':');
6856 if (!p) {
6857 val = strstrip(start);
6858 goto parse_val;
6859 }
6860 *p = '\0';
6861
6862 id = strstrip(start);
6863 val = strstrip(p + 1);
6864
6865 /* parse id */
6866 p = strchr(id, '.');
6867 if (p) {
6868 *p++ = '\0';
6869 force_ent->device = simple_strtoul(p, &endp, 10);
6870 if (p == endp || *endp != '\0') {
6871 *reason = "invalid device";
6872 return -EINVAL;
6873 }
6874 }
6875
6876 force_ent->port = simple_strtoul(id, &endp, 10);
6877 if (id == endp || *endp != '\0') {
6878 *reason = "invalid port/link";
6879 return -EINVAL;
6880 }
6881
6882 parse_val:
6883 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6884 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6885 const struct ata_force_param *fp = &force_tbl[i];
6886
6887 if (strncasecmp(val, fp->name, strlen(val)))
6888 continue;
6889
6890 nr_matches++;
6891 match_fp = fp;
6892
6893 if (strcasecmp(val, fp->name) == 0) {
6894 nr_matches = 1;
6895 break;
6896 }
6897 }
6898
6899 if (!nr_matches) {
6900 *reason = "unknown value";
6901 return -EINVAL;
6902 }
6903 if (nr_matches > 1) {
6904 *reason = "ambigious value";
6905 return -EINVAL;
6906 }
6907
6908 force_ent->param = *match_fp;
6909
6910 return 0;
6911 }
6912
6913 static void __init ata_parse_force_param(void)
6914 {
6915 int idx = 0, size = 1;
6916 int last_port = -1, last_device = -1;
6917 char *p, *cur, *next;
6918
6919 /* calculate maximum number of params and allocate force_tbl */
6920 for (p = ata_force_param_buf; *p; p++)
6921 if (*p == ',')
6922 size++;
6923
6924 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6925 if (!ata_force_tbl) {
6926 printk(KERN_WARNING "ata: failed to extend force table, "
6927 "libata.force ignored\n");
6928 return;
6929 }
6930
6931 /* parse and populate the table */
6932 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6933 const char *reason = "";
6934 struct ata_force_ent te = { .port = -1, .device = -1 };
6935
6936 next = cur;
6937 if (ata_parse_force_one(&next, &te, &reason)) {
6938 printk(KERN_WARNING "ata: failed to parse force "
6939 "parameter \"%s\" (%s)\n",
6940 cur, reason);
6941 continue;
6942 }
6943
6944 if (te.port == -1) {
6945 te.port = last_port;
6946 te.device = last_device;
6947 }
6948
6949 ata_force_tbl[idx++] = te;
6950
6951 last_port = te.port;
6952 last_device = te.device;
6953 }
6954
6955 ata_force_tbl_size = idx;
6956 }
6957
6958 static int __init ata_init(void)
6959 {
6960 int rc;
6961
6962 ata_parse_force_param();
6963
6964 rc = ata_sff_init();
6965 if (rc) {
6966 kfree(ata_force_tbl);
6967 return rc;
6968 }
6969
6970 libata_transport_init();
6971 ata_scsi_transport_template = ata_attach_transport();
6972 if (!ata_scsi_transport_template) {
6973 ata_sff_exit();
6974 rc = -ENOMEM;
6975 goto err_out;
6976 }
6977
6978 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6979 return 0;
6980
6981 err_out:
6982 return rc;
6983 }
6984
6985 static void __exit ata_exit(void)
6986 {
6987 ata_release_transport(ata_scsi_transport_template);
6988 libata_transport_exit();
6989 ata_sff_exit();
6990 kfree(ata_force_tbl);
6991 }
6992
6993 subsys_initcall(ata_init);
6994 module_exit(ata_exit);
6995
6996 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6997
6998 int ata_ratelimit(void)
6999 {
7000 return __ratelimit(&ratelimit);
7001 }
7002
7003 /**
7004 * ata_msleep - ATA EH owner aware msleep
7005 * @ap: ATA port to attribute the sleep to
7006 * @msecs: duration to sleep in milliseconds
7007 *
7008 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7009 * ownership is released before going to sleep and reacquired
7010 * after the sleep is complete. IOW, other ports sharing the
7011 * @ap->host will be allowed to own the EH while this task is
7012 * sleeping.
7013 *
7014 * LOCKING:
7015 * Might sleep.
7016 */
7017 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7018 {
7019 bool owns_eh = ap && ap->host->eh_owner == current;
7020
7021 if (owns_eh)
7022 ata_eh_release(ap);
7023
7024 if (msecs < 20) {
7025 unsigned long usecs = msecs * USEC_PER_MSEC;
7026 usleep_range(usecs, usecs + 50);
7027 } else {
7028 msleep(msecs);
7029 }
7030
7031 if (owns_eh)
7032 ata_eh_acquire(ap);
7033 }
7034
7035 /**
7036 * ata_wait_register - wait until register value changes
7037 * @ap: ATA port to wait register for, can be NULL
7038 * @reg: IO-mapped register
7039 * @mask: Mask to apply to read register value
7040 * @val: Wait condition
7041 * @interval: polling interval in milliseconds
7042 * @timeout: timeout in milliseconds
7043 *
7044 * Waiting for some bits of register to change is a common
7045 * operation for ATA controllers. This function reads 32bit LE
7046 * IO-mapped register @reg and tests for the following condition.
7047 *
7048 * (*@reg & mask) != val
7049 *
7050 * If the condition is met, it returns; otherwise, the process is
7051 * repeated after @interval_msec until timeout.
7052 *
7053 * LOCKING:
7054 * Kernel thread context (may sleep)
7055 *
7056 * RETURNS:
7057 * The final register value.
7058 */
7059 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7060 unsigned long interval, unsigned long timeout)
7061 {
7062 unsigned long deadline;
7063 u32 tmp;
7064
7065 tmp = ioread32(reg);
7066
7067 /* Calculate timeout _after_ the first read to make sure
7068 * preceding writes reach the controller before starting to
7069 * eat away the timeout.
7070 */
7071 deadline = ata_deadline(jiffies, timeout);
7072
7073 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7074 ata_msleep(ap, interval);
7075 tmp = ioread32(reg);
7076 }
7077
7078 return tmp;
7079 }
7080
7081 /**
7082 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7083 * @link: Link receiving the event
7084 *
7085 * Test whether the received PHY event has to be ignored or not.
7086 *
7087 * LOCKING:
7088 * None:
7089 *
7090 * RETURNS:
7091 * True if the event has to be ignored.
7092 */
7093 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7094 {
7095 unsigned long lpm_timeout = link->last_lpm_change +
7096 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7097
7098 /* if LPM is enabled, PHYRDY doesn't mean anything */
7099 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7100 return true;
7101
7102 /* ignore the first PHY event after the LPM policy changed
7103 * as it is might be spurious
7104 */
7105 if ((link->flags & ATA_LFLAG_CHANGED) &&
7106 time_before(jiffies, lpm_timeout))
7107 return true;
7108
7109 return false;
7110 }
7111 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7112
7113 /*
7114 * Dummy port_ops
7115 */
7116 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7117 {
7118 return AC_ERR_SYSTEM;
7119 }
7120
7121 static void ata_dummy_error_handler(struct ata_port *ap)
7122 {
7123 /* truly dummy */
7124 }
7125
7126 struct ata_port_operations ata_dummy_port_ops = {
7127 .qc_prep = ata_noop_qc_prep,
7128 .qc_issue = ata_dummy_qc_issue,
7129 .error_handler = ata_dummy_error_handler,
7130 .sched_eh = ata_std_sched_eh,
7131 .end_eh = ata_std_end_eh,
7132 };
7133
7134 const struct ata_port_info ata_dummy_port_info = {
7135 .port_ops = &ata_dummy_port_ops,
7136 };
7137
7138 /*
7139 * Utility print functions
7140 */
7141 void ata_port_printk(const struct ata_port *ap, const char *level,
7142 const char *fmt, ...)
7143 {
7144 struct va_format vaf;
7145 va_list args;
7146
7147 va_start(args, fmt);
7148
7149 vaf.fmt = fmt;
7150 vaf.va = &args;
7151
7152 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7153
7154 va_end(args);
7155 }
7156 EXPORT_SYMBOL(ata_port_printk);
7157
7158 void ata_link_printk(const struct ata_link *link, const char *level,
7159 const char *fmt, ...)
7160 {
7161 struct va_format vaf;
7162 va_list args;
7163
7164 va_start(args, fmt);
7165
7166 vaf.fmt = fmt;
7167 vaf.va = &args;
7168
7169 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7170 printk("%sata%u.%02u: %pV",
7171 level, link->ap->print_id, link->pmp, &vaf);
7172 else
7173 printk("%sata%u: %pV",
7174 level, link->ap->print_id, &vaf);
7175
7176 va_end(args);
7177 }
7178 EXPORT_SYMBOL(ata_link_printk);
7179
7180 void ata_dev_printk(const struct ata_device *dev, const char *level,
7181 const char *fmt, ...)
7182 {
7183 struct va_format vaf;
7184 va_list args;
7185
7186 va_start(args, fmt);
7187
7188 vaf.fmt = fmt;
7189 vaf.va = &args;
7190
7191 printk("%sata%u.%02u: %pV",
7192 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7193 &vaf);
7194
7195 va_end(args);
7196 }
7197 EXPORT_SYMBOL(ata_dev_printk);
7198
7199 void ata_print_version(const struct device *dev, const char *version)
7200 {
7201 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7202 }
7203 EXPORT_SYMBOL(ata_print_version);
7204
7205 /*
7206 * libata is essentially a library of internal helper functions for
7207 * low-level ATA host controller drivers. As such, the API/ABI is
7208 * likely to change as new drivers are added and updated.
7209 * Do not depend on ABI/API stability.
7210 */
7211 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7212 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7213 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7214 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7215 EXPORT_SYMBOL_GPL(sata_port_ops);
7216 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7217 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7218 EXPORT_SYMBOL_GPL(ata_link_next);
7219 EXPORT_SYMBOL_GPL(ata_dev_next);
7220 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7221 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7222 EXPORT_SYMBOL_GPL(ata_host_init);
7223 EXPORT_SYMBOL_GPL(ata_host_alloc);
7224 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7225 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7226 EXPORT_SYMBOL_GPL(ata_host_start);
7227 EXPORT_SYMBOL_GPL(ata_host_register);
7228 EXPORT_SYMBOL_GPL(ata_host_activate);
7229 EXPORT_SYMBOL_GPL(ata_host_detach);
7230 EXPORT_SYMBOL_GPL(ata_sg_init);
7231 EXPORT_SYMBOL_GPL(ata_qc_complete);
7232 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7233 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7234 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7235 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7236 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7237 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7238 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7239 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7240 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7241 EXPORT_SYMBOL_GPL(ata_mode_string);
7242 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7243 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7244 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7245 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7246 EXPORT_SYMBOL_GPL(ata_dev_disable);
7247 EXPORT_SYMBOL_GPL(sata_set_spd);
7248 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7249 EXPORT_SYMBOL_GPL(sata_link_debounce);
7250 EXPORT_SYMBOL_GPL(sata_link_resume);
7251 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7252 EXPORT_SYMBOL_GPL(ata_std_prereset);
7253 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7254 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7255 EXPORT_SYMBOL_GPL(ata_std_postreset);
7256 EXPORT_SYMBOL_GPL(ata_dev_classify);
7257 EXPORT_SYMBOL_GPL(ata_dev_pair);
7258 EXPORT_SYMBOL_GPL(ata_ratelimit);
7259 EXPORT_SYMBOL_GPL(ata_msleep);
7260 EXPORT_SYMBOL_GPL(ata_wait_register);
7261 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7262 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7263 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7264 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7265 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7266 EXPORT_SYMBOL_GPL(sata_scr_valid);
7267 EXPORT_SYMBOL_GPL(sata_scr_read);
7268 EXPORT_SYMBOL_GPL(sata_scr_write);
7269 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7270 EXPORT_SYMBOL_GPL(ata_link_online);
7271 EXPORT_SYMBOL_GPL(ata_link_offline);
7272 #ifdef CONFIG_PM
7273 EXPORT_SYMBOL_GPL(ata_host_suspend);
7274 EXPORT_SYMBOL_GPL(ata_host_resume);
7275 #endif /* CONFIG_PM */
7276 EXPORT_SYMBOL_GPL(ata_id_string);
7277 EXPORT_SYMBOL_GPL(ata_id_c_string);
7278 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7279 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7280
7281 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7282 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7283 EXPORT_SYMBOL_GPL(ata_timing_compute);
7284 EXPORT_SYMBOL_GPL(ata_timing_merge);
7285 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7286
7287 #ifdef CONFIG_PCI
7288 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7289 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7290 #ifdef CONFIG_PM
7291 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7292 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7293 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7294 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7295 #endif /* CONFIG_PM */
7296 #endif /* CONFIG_PCI */
7297
7298 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7299
7300 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7301 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7302 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7303 EXPORT_SYMBOL_GPL(ata_port_desc);
7304 #ifdef CONFIG_PCI
7305 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7306 #endif /* CONFIG_PCI */
7307 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7308 EXPORT_SYMBOL_GPL(ata_link_abort);
7309 EXPORT_SYMBOL_GPL(ata_port_abort);
7310 EXPORT_SYMBOL_GPL(ata_port_freeze);
7311 EXPORT_SYMBOL_GPL(sata_async_notification);
7312 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7313 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7314 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7315 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7316 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7317 EXPORT_SYMBOL_GPL(ata_do_eh);
7318 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7319
7320 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7321 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7322 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7323 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7324 EXPORT_SYMBOL_GPL(ata_cable_sata);