]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78
79 #include "libata.h"
80 #include "libata-transport.h"
81
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
86
87 const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
93 };
94
95 const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
100 };
101
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109
110 struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
117 unsigned int lflags;
118 };
119
120 struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124 };
125
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 return (sstatus & 0xf) == 0x3;
183 }
184
185 /**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
193 *
194 * RETURNS:
195 * Pointer to the next link.
196 */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
199 {
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
203 /* NULL link indicates start of iteration */
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
214
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
225 /* fall through */
226 case ATA_LITER_EDGE:
227 return NULL;
228 }
229
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
241 return NULL;
242 }
243
244 /**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258 {
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295 }
296
297 /**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320 }
321
322 /**
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 return;
351 }
352 }
353
354 /**
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
357 *
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
366 *
367 * LOCKING:
368 * EH context.
369 */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 bool did_spd = false;
373 int linkno = link->pmp;
374 int i;
375
376 if (ata_is_host_link(link))
377 linkno += 15;
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 fe->param.name);
393 did_spd = true;
394 }
395
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
403 }
404 }
405
406 /**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
456 return;
457 }
458 }
459
460 /**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
500 }
501 }
502
503 /**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515 int atapi_cmd_type(u8 opcode)
516 {
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
536 default:
537 return ATAPI_MISC;
538 }
539 }
540
541 /**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584
585 /**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612 }
613
614 static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
629 0,
630 0,
631 0,
632 0,
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
642 };
643
644 /**
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
648 *
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
651 *
652 * LOCKING:
653 * caller.
654 */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 u8 cmd;
658
659 int index, fua, lba48, write;
660
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
672 } else {
673 tf->protocol = ATA_PROT_DMA;
674 index = 16;
675 }
676
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
683 }
684
685 /**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 u64 block = 0;
703
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
722 if (!sect) {
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
725 return U64_MAX;
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 }
730
731 return block;
732 }
733
734 /**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 * @class: IO priority class
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
757 unsigned int tag, int class)
758 {
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
786 tf->device = ATA_LBA;
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
789
790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862 }
863
864 /**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
882 {
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887
888 /**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
897 */
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908
909 static const struct ata_xfer_ent {
910 int shift, bits;
911 u8 base;
912 } ata_xfer_tbl[] = {
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 { -1, },
917 };
918
919 /**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching XFER_* value, 0xff if no match found.
931 */
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
940 return 0xff;
941 }
942
943 /**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
963 return 0;
964 }
965
966 /**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986 }
987
988 /**
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
991 *
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1001 */
1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
1010 "PIO5",
1011 "PIO6",
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
1015 "MWDMA3",
1016 "MWDMA4",
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1026 int highbit;
1027
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1031 return "<n/a>";
1032 }
1033
1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
1039 "6.0 Gbps",
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045 }
1046
1047 /**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1084 */
1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
1103 }
1104
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112 }
1113
1114 /**
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1131 {
1132 unsigned int c;
1133
1134 BUG_ON(len & 1);
1135
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148 }
1149
1150 /**
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1166 {
1167 unsigned char *p;
1168
1169 ata_id_string(id, s, ofs, len - 1);
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175 }
1176
1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 else
1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 } else {
1185 if (ata_id_current_chs_valid(id))
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
1188 else
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
1191 }
1192 }
1193
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
1205 return sectors;
1206 }
1207
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
1217 return sectors;
1218 }
1219
1220 /**
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1224 *
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1227 *
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1231 */
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1237
1238 ata_tf_init(dev, &tf);
1239
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249 tf.protocol = ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1251
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1261
1262 if (lba48)
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 else
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 (*max_sectors)--;
1268 return 0;
1269 }
1270
1271 /**
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1275 *
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1282 */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 } else {
1303 tf.command = ATA_CMD_SET_MAX;
1304
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
1308 tf.protocol = ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
1347 int rc;
1348
1349 /* do we need to do it? */
1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 return 0;
1354
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1360 */
1361 if (rc == -EACCES || !unlock_hpa) {
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1369 }
1370
1371 return rc;
1372 }
1373 dev->n_native_sectors = native_sectors;
1374
1375 /* nothing to do? */
1376 if (native_sectors <= sectors || !unlock_hpa) {
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
1381 ata_dev_info(dev,
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
1416 ata_dev_info(dev,
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1429 *
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
1461 id[88],
1462 id[93]);
1463 }
1464
1465 /**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 if (mode < 5) /* Valid PIO range */
1496 pio_mask = (2 << mode) - 1;
1497 else
1498 pio_mask = 1;
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 struct completion *waiting = qc->private_data;
1537
1538 complete(waiting);
1539 }
1540
1541 /**
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
1562 */
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
1565 int dma_dir, struct scatterlist *sgl,
1566 unsigned int n_elem, unsigned long timeout)
1567 {
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
1570 u8 command = tf->command;
1571 int auto_timeout = 0;
1572 struct ata_queued_cmd *qc;
1573 unsigned int tag, preempted_tag;
1574 u32 preempted_sactive, preempted_qc_active;
1575 int preempted_nr_active_links;
1576 DECLARE_COMPLETION_ONSTACK(wait);
1577 unsigned long flags;
1578 unsigned int err_mask;
1579 int rc;
1580
1581 spin_lock_irqsave(ap->lock, flags);
1582
1583 /* no internal command while frozen */
1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 return AC_ERR_SYSTEM;
1587 }
1588
1589 /* initialize internal qc */
1590
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
1601 qc = __ata_qc_from_tag(ap, tag);
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
1611 preempted_qc_active = ap->qc_active;
1612 preempted_nr_active_links = ap->nr_active_links;
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
1615 ap->qc_active = 0;
1616 ap->nr_active_links = 0;
1617
1618 /* prepare & issue qc */
1619 qc->tf = *tf;
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
1631 unsigned int i, buflen = 0;
1632 struct scatterlist *sg;
1633
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
1636
1637 ata_sg_init(qc, sgl, n_elem);
1638 qc->nbytes = buflen;
1639 }
1640
1641 qc->private_data = &wait;
1642 qc->complete_fn = ata_qc_complete_internal;
1643
1644 ata_qc_issue(qc);
1645
1646 spin_unlock_irqrestore(ap->lock, flags);
1647
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
1656
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
1665 ata_sff_flush_pio_task(ap);
1666
1667 if (!rc) {
1668 spin_lock_irqsave(ap->lock, flags);
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
1674 */
1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
1682
1683 if (ata_msg_warn(ap))
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
1686 }
1687
1688 spin_unlock_irqrestore(ap->lock, flags);
1689 }
1690
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
1707 }
1708
1709 /* finish up */
1710 spin_lock_irqsave(ap->lock, flags);
1711
1712 *tf = qc->result_tf;
1713 err_mask = qc->err_mask;
1714
1715 ata_qc_free(qc);
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
1718 ap->qc_active = preempted_qc_active;
1719 ap->nr_active_links = preempted_nr_active_links;
1720
1721 spin_unlock_irqrestore(ap->lock, flags);
1722
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1725
1726 return err_mask;
1727 }
1728
1729 /**
1730 * ata_exec_internal - execute libata internal command
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
1734 * @dma_dir: Data transfer direction of the command
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
1737 * @timeout: Timeout in msecs (0 for default)
1738 *
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1747 */
1748 unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
1752 {
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
1755
1756 if (dma_dir != DMA_NONE) {
1757 WARN_ON(!buf);
1758 sg_init_one(&sg, buf, buflen);
1759 psg = &sg;
1760 n_elem++;
1761 }
1762
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 timeout);
1765 }
1766
1767 /**
1768 * ata_pio_need_iordy - check if iordy needed
1769 * @adev: ATA device
1770 *
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1773 */
1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775 {
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1779 */
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 return 0;
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1784 */
1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 return 0;
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 return 0;
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1793 return 1;
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1796 return 1;
1797 return 0;
1798 }
1799
1800 /**
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1802 * @adev: ATA device
1803 *
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1806 */
1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808 {
1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 /* Is the speed faster than the drive allows non IORDY ? */
1813 if (pio) {
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1818 }
1819 }
1820 return 3 << ATA_SHIFT_PIO;
1821 }
1822
1823 /**
1824 * ata_do_dev_read_id - default ID read method
1825 * @dev: device
1826 * @tf: proposed taskfile
1827 * @id: data buffer
1828 *
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1832 */
1833 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1835 {
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838 }
1839
1840 /**
1841 * ata_dev_read_id - Read ID data from the specified device
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
1844 * @flags: ATA_READID_* flags
1845 * @id: buffer to read IDENTIFY data into
1846 *
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1851 *
1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853 * now we abort if we hit that case.
1854 *
1855 * LOCKING:
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
1860 */
1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 unsigned int flags, u16 *id)
1863 {
1864 struct ata_port *ap = dev->link->ap;
1865 unsigned int class = *p_class;
1866 struct ata_taskfile tf;
1867 unsigned int err_mask = 0;
1868 const char *reason;
1869 bool is_semb = class == ATA_DEV_SEMB;
1870 int may_fallback = 1, tried_spinup = 0;
1871 int rc;
1872
1873 if (ata_msg_ctl(ap))
1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875
1876 retry:
1877 ata_tf_init(dev, &tf);
1878
1879 switch (class) {
1880 case ATA_DEV_SEMB:
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1882 case ATA_DEV_ATA:
1883 case ATA_DEV_ZAC:
1884 tf.command = ATA_CMD_ID_ATA;
1885 break;
1886 case ATA_DEV_ATAPI:
1887 tf.command = ATA_CMD_ID_ATAPI;
1888 break;
1889 default:
1890 rc = -ENODEV;
1891 reason = "unsupported class";
1892 goto err_out;
1893 }
1894
1895 tf.protocol = ATA_PROT_PIO;
1896
1897 /* Some devices choke if TF registers contain garbage. Make
1898 * sure those are properly initialized.
1899 */
1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902 /* Device presence detection is unreliable on some
1903 * controllers. Always poll IDENTIFY if available.
1904 */
1905 tf.flags |= ATA_TFLAG_POLLING;
1906
1907 if (ap->ops->read_id)
1908 err_mask = ap->ops->read_id(dev, &tf, id);
1909 else
1910 err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
1912 if (err_mask) {
1913 if (err_mask & AC_ERR_NODEV_HINT) {
1914 ata_dev_dbg(dev, "NODEV after polling detection\n");
1915 return -ENOENT;
1916 }
1917
1918 if (is_semb) {
1919 ata_dev_info(dev,
1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921 /* SEMB is not supported yet */
1922 *p_class = ATA_DEV_SEMB_UNSUP;
1923 return 0;
1924 }
1925
1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 /* Device or controller might have reported
1928 * the wrong device class. Give a shot at the
1929 * other IDENTIFY if the current one is
1930 * aborted by the device.
1931 */
1932 if (may_fallback) {
1933 may_fallback = 0;
1934
1935 if (class == ATA_DEV_ATA)
1936 class = ATA_DEV_ATAPI;
1937 else
1938 class = ATA_DEV_ATA;
1939 goto retry;
1940 }
1941
1942 /* Control reaches here iff the device aborted
1943 * both flavors of IDENTIFYs which happens
1944 * sometimes with phantom devices.
1945 */
1946 ata_dev_dbg(dev,
1947 "both IDENTIFYs aborted, assuming NODEV\n");
1948 return -ENOENT;
1949 }
1950
1951 rc = -EIO;
1952 reason = "I/O error";
1953 goto err_out;
1954 }
1955
1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 "class=%d may_fallback=%d tried_spinup=%d\n",
1959 class, may_fallback, tried_spinup);
1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 }
1963
1964 /* Falling back doesn't make sense if ID data was read
1965 * successfully at least once.
1966 */
1967 may_fallback = 0;
1968
1969 swap_buf_le16(id, ATA_ID_WORDS);
1970
1971 /* sanity check */
1972 rc = -EINVAL;
1973 reason = "device reports invalid type";
1974
1975 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 goto err_out;
1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 ata_id_is_ata(id)) {
1980 ata_dev_dbg(dev,
1981 "host indicates ignore ATA devices, ignored\n");
1982 return -ENOENT;
1983 }
1984 } else {
1985 if (ata_id_is_ata(id))
1986 goto err_out;
1987 }
1988
1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 tried_spinup = 1;
1991 /*
1992 * Drive powered-up in standby mode, and requires a specific
1993 * SET_FEATURES spin-up subcommand before it will accept
1994 * anything other than the original IDENTIFY command.
1995 */
1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997 if (err_mask && id[2] != 0x738c) {
1998 rc = -EIO;
1999 reason = "SPINUP failed";
2000 goto err_out;
2001 }
2002 /*
2003 * If the drive initially returned incomplete IDENTIFY info,
2004 * we now must reissue the IDENTIFY command.
2005 */
2006 if (id[2] == 0x37c8)
2007 goto retry;
2008 }
2009
2010 if ((flags & ATA_READID_POSTRESET) &&
2011 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2012 /*
2013 * The exact sequence expected by certain pre-ATA4 drives is:
2014 * SRST RESET
2015 * IDENTIFY (optional in early ATA)
2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017 * anything else..
2018 * Some drives were very specific about that exact sequence.
2019 *
2020 * Note that ATA4 says lba is mandatory so the second check
2021 * should never trigger.
2022 */
2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025 if (err_mask) {
2026 rc = -EIO;
2027 reason = "INIT_DEV_PARAMS failed";
2028 goto err_out;
2029 }
2030
2031 /* current CHS translation info (id[53-58]) might be
2032 * changed. reread the identify device info.
2033 */
2034 flags &= ~ATA_READID_POSTRESET;
2035 goto retry;
2036 }
2037 }
2038
2039 *p_class = class;
2040
2041 return 0;
2042
2043 err_out:
2044 if (ata_msg_warn(ap))
2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 reason, err_mask);
2047 return rc;
2048 }
2049
2050 /**
2051 * ata_read_log_page - read a specific log page
2052 * @dev: target device
2053 * @log: log to read
2054 * @page: page to read
2055 * @buf: buffer to store read page
2056 * @sectors: number of sectors to read
2057 *
2058 * Read log page using READ_LOG_EXT command.
2059 *
2060 * LOCKING:
2061 * Kernel thread context (may sleep).
2062 *
2063 * RETURNS:
2064 * 0 on success, AC_ERR_* mask otherwise.
2065 */
2066 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2067 u8 page, void *buf, unsigned int sectors)
2068 {
2069 unsigned long ap_flags = dev->link->ap->flags;
2070 struct ata_taskfile tf;
2071 unsigned int err_mask;
2072 bool dma = false;
2073
2074 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2075
2076 /*
2077 * Return error without actually issuing the command on controllers
2078 * which e.g. lockup on a read log page.
2079 */
2080 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2081 return AC_ERR_DEV;
2082
2083 retry:
2084 ata_tf_init(dev, &tf);
2085 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2086 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2087 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2088 tf.protocol = ATA_PROT_DMA;
2089 dma = true;
2090 } else {
2091 tf.command = ATA_CMD_READ_LOG_EXT;
2092 tf.protocol = ATA_PROT_PIO;
2093 dma = false;
2094 }
2095 tf.lbal = log;
2096 tf.lbam = page;
2097 tf.nsect = sectors;
2098 tf.hob_nsect = sectors >> 8;
2099 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2100
2101 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2102 buf, sectors * ATA_SECT_SIZE, 0);
2103
2104 if (err_mask && dma) {
2105 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2106 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2107 goto retry;
2108 }
2109
2110 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2111 return err_mask;
2112 }
2113
2114 static bool ata_log_supported(struct ata_device *dev, u8 log)
2115 {
2116 struct ata_port *ap = dev->link->ap;
2117
2118 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2119 return false;
2120 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2121 }
2122
2123 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2124 {
2125 struct ata_port *ap = dev->link->ap;
2126 unsigned int err, i;
2127
2128 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2129 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2130 return false;
2131 }
2132
2133 /*
2134 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2135 * supported.
2136 */
2137 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2138 1);
2139 if (err) {
2140 ata_dev_info(dev,
2141 "failed to get Device Identify Log Emask 0x%x\n",
2142 err);
2143 return false;
2144 }
2145
2146 for (i = 0; i < ap->sector_buf[8]; i++) {
2147 if (ap->sector_buf[9 + i] == page)
2148 return true;
2149 }
2150
2151 return false;
2152 }
2153
2154 static int ata_do_link_spd_horkage(struct ata_device *dev)
2155 {
2156 struct ata_link *plink = ata_dev_phys_link(dev);
2157 u32 target, target_limit;
2158
2159 if (!sata_scr_valid(plink))
2160 return 0;
2161
2162 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2163 target = 1;
2164 else
2165 return 0;
2166
2167 target_limit = (1 << target) - 1;
2168
2169 /* if already on stricter limit, no need to push further */
2170 if (plink->sata_spd_limit <= target_limit)
2171 return 0;
2172
2173 plink->sata_spd_limit = target_limit;
2174
2175 /* Request another EH round by returning -EAGAIN if link is
2176 * going faster than the target speed. Forward progress is
2177 * guaranteed by setting sata_spd_limit to target_limit above.
2178 */
2179 if (plink->sata_spd > target) {
2180 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2181 sata_spd_string(target));
2182 return -EAGAIN;
2183 }
2184 return 0;
2185 }
2186
2187 static inline u8 ata_dev_knobble(struct ata_device *dev)
2188 {
2189 struct ata_port *ap = dev->link->ap;
2190
2191 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2192 return 0;
2193
2194 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2195 }
2196
2197 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2198 {
2199 struct ata_port *ap = dev->link->ap;
2200 unsigned int err_mask;
2201
2202 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2203 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2204 return;
2205 }
2206 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2207 0, ap->sector_buf, 1);
2208 if (err_mask) {
2209 ata_dev_dbg(dev,
2210 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2211 err_mask);
2212 } else {
2213 u8 *cmds = dev->ncq_send_recv_cmds;
2214
2215 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2216 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2217
2218 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2219 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2220 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2221 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2222 }
2223 }
2224 }
2225
2226 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2227 {
2228 struct ata_port *ap = dev->link->ap;
2229 unsigned int err_mask;
2230
2231 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2232 ata_dev_warn(dev,
2233 "NCQ Send/Recv Log not supported\n");
2234 return;
2235 }
2236 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2237 0, ap->sector_buf, 1);
2238 if (err_mask) {
2239 ata_dev_dbg(dev,
2240 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2241 err_mask);
2242 } else {
2243 u8 *cmds = dev->ncq_non_data_cmds;
2244
2245 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2246 }
2247 }
2248
2249 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2250 {
2251 struct ata_port *ap = dev->link->ap;
2252 unsigned int err_mask;
2253
2254 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2255 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2256 return;
2257 }
2258
2259 err_mask = ata_read_log_page(dev,
2260 ATA_LOG_IDENTIFY_DEVICE,
2261 ATA_LOG_SATA_SETTINGS,
2262 ap->sector_buf,
2263 1);
2264 if (err_mask) {
2265 ata_dev_dbg(dev,
2266 "failed to get Identify Device data, Emask 0x%x\n",
2267 err_mask);
2268 return;
2269 }
2270
2271 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2272 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2273 } else {
2274 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2275 ata_dev_dbg(dev, "SATA page does not support priority\n");
2276 }
2277
2278 }
2279
2280 static int ata_dev_config_ncq(struct ata_device *dev,
2281 char *desc, size_t desc_sz)
2282 {
2283 struct ata_port *ap = dev->link->ap;
2284 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2285 unsigned int err_mask;
2286 char *aa_desc = "";
2287
2288 if (!ata_id_has_ncq(dev->id)) {
2289 desc[0] = '\0';
2290 return 0;
2291 }
2292 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2293 snprintf(desc, desc_sz, "NCQ (not used)");
2294 return 0;
2295 }
2296 if (ap->flags & ATA_FLAG_NCQ) {
2297 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2298 dev->flags |= ATA_DFLAG_NCQ;
2299 }
2300
2301 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2302 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2303 ata_id_has_fpdma_aa(dev->id)) {
2304 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2305 SATA_FPDMA_AA);
2306 if (err_mask) {
2307 ata_dev_err(dev,
2308 "failed to enable AA (error_mask=0x%x)\n",
2309 err_mask);
2310 if (err_mask != AC_ERR_DEV) {
2311 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2312 return -EIO;
2313 }
2314 } else
2315 aa_desc = ", AA";
2316 }
2317
2318 if (hdepth >= ddepth)
2319 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2320 else
2321 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2322 ddepth, aa_desc);
2323
2324 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2325 if (ata_id_has_ncq_send_and_recv(dev->id))
2326 ata_dev_config_ncq_send_recv(dev);
2327 if (ata_id_has_ncq_non_data(dev->id))
2328 ata_dev_config_ncq_non_data(dev);
2329 if (ata_id_has_ncq_prio(dev->id))
2330 ata_dev_config_ncq_prio(dev);
2331 }
2332
2333 return 0;
2334 }
2335
2336 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2337 {
2338 unsigned int err_mask;
2339
2340 if (!ata_id_has_sense_reporting(dev->id))
2341 return;
2342
2343 if (ata_id_sense_reporting_enabled(dev->id))
2344 return;
2345
2346 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2347 if (err_mask) {
2348 ata_dev_dbg(dev,
2349 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2350 err_mask);
2351 }
2352 }
2353
2354 static void ata_dev_config_zac(struct ata_device *dev)
2355 {
2356 struct ata_port *ap = dev->link->ap;
2357 unsigned int err_mask;
2358 u8 *identify_buf = ap->sector_buf;
2359
2360 dev->zac_zones_optimal_open = U32_MAX;
2361 dev->zac_zones_optimal_nonseq = U32_MAX;
2362 dev->zac_zones_max_open = U32_MAX;
2363
2364 /*
2365 * Always set the 'ZAC' flag for Host-managed devices.
2366 */
2367 if (dev->class == ATA_DEV_ZAC)
2368 dev->flags |= ATA_DFLAG_ZAC;
2369 else if (ata_id_zoned_cap(dev->id) == 0x01)
2370 /*
2371 * Check for host-aware devices.
2372 */
2373 dev->flags |= ATA_DFLAG_ZAC;
2374
2375 if (!(dev->flags & ATA_DFLAG_ZAC))
2376 return;
2377
2378 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2379 ata_dev_warn(dev,
2380 "ATA Zoned Information Log not supported\n");
2381 return;
2382 }
2383
2384 /*
2385 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2386 */
2387 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2388 ATA_LOG_ZONED_INFORMATION,
2389 identify_buf, 1);
2390 if (!err_mask) {
2391 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2392
2393 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2394 if ((zoned_cap >> 63))
2395 dev->zac_zoned_cap = (zoned_cap & 1);
2396 opt_open = get_unaligned_le64(&identify_buf[24]);
2397 if ((opt_open >> 63))
2398 dev->zac_zones_optimal_open = (u32)opt_open;
2399 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2400 if ((opt_nonseq >> 63))
2401 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2402 max_open = get_unaligned_le64(&identify_buf[40]);
2403 if ((max_open >> 63))
2404 dev->zac_zones_max_open = (u32)max_open;
2405 }
2406 }
2407
2408 static void ata_dev_config_trusted(struct ata_device *dev)
2409 {
2410 struct ata_port *ap = dev->link->ap;
2411 u64 trusted_cap;
2412 unsigned int err;
2413
2414 if (!ata_id_has_trusted(dev->id))
2415 return;
2416
2417 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2418 ata_dev_warn(dev,
2419 "Security Log not supported\n");
2420 return;
2421 }
2422
2423 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2424 ap->sector_buf, 1);
2425 if (err) {
2426 ata_dev_dbg(dev,
2427 "failed to read Security Log, Emask 0x%x\n", err);
2428 return;
2429 }
2430
2431 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2432 if (!(trusted_cap & (1ULL << 63))) {
2433 ata_dev_dbg(dev,
2434 "Trusted Computing capability qword not valid!\n");
2435 return;
2436 }
2437
2438 if (trusted_cap & (1 << 0))
2439 dev->flags |= ATA_DFLAG_TRUSTED;
2440 }
2441
2442 /**
2443 * ata_dev_configure - Configure the specified ATA/ATAPI device
2444 * @dev: Target device to configure
2445 *
2446 * Configure @dev according to @dev->id. Generic and low-level
2447 * driver specific fixups are also applied.
2448 *
2449 * LOCKING:
2450 * Kernel thread context (may sleep)
2451 *
2452 * RETURNS:
2453 * 0 on success, -errno otherwise
2454 */
2455 int ata_dev_configure(struct ata_device *dev)
2456 {
2457 struct ata_port *ap = dev->link->ap;
2458 struct ata_eh_context *ehc = &dev->link->eh_context;
2459 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2460 const u16 *id = dev->id;
2461 unsigned long xfer_mask;
2462 unsigned int err_mask;
2463 char revbuf[7]; /* XYZ-99\0 */
2464 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2465 char modelbuf[ATA_ID_PROD_LEN+1];
2466 int rc;
2467
2468 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2469 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2470 return 0;
2471 }
2472
2473 if (ata_msg_probe(ap))
2474 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2475
2476 /* set horkage */
2477 dev->horkage |= ata_dev_blacklisted(dev);
2478 ata_force_horkage(dev);
2479
2480 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2481 ata_dev_info(dev, "unsupported device, disabling\n");
2482 ata_dev_disable(dev);
2483 return 0;
2484 }
2485
2486 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2487 dev->class == ATA_DEV_ATAPI) {
2488 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2489 atapi_enabled ? "not supported with this driver"
2490 : "disabled");
2491 ata_dev_disable(dev);
2492 return 0;
2493 }
2494
2495 rc = ata_do_link_spd_horkage(dev);
2496 if (rc)
2497 return rc;
2498
2499 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2500 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2501 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2502 dev->horkage |= ATA_HORKAGE_NOLPM;
2503
2504 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2505 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2506 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2507 }
2508
2509 /* let ACPI work its magic */
2510 rc = ata_acpi_on_devcfg(dev);
2511 if (rc)
2512 return rc;
2513
2514 /* massage HPA, do it early as it might change IDENTIFY data */
2515 rc = ata_hpa_resize(dev);
2516 if (rc)
2517 return rc;
2518
2519 /* print device capabilities */
2520 if (ata_msg_probe(ap))
2521 ata_dev_dbg(dev,
2522 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2523 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2524 __func__,
2525 id[49], id[82], id[83], id[84],
2526 id[85], id[86], id[87], id[88]);
2527
2528 /* initialize to-be-configured parameters */
2529 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2530 dev->max_sectors = 0;
2531 dev->cdb_len = 0;
2532 dev->n_sectors = 0;
2533 dev->cylinders = 0;
2534 dev->heads = 0;
2535 dev->sectors = 0;
2536 dev->multi_count = 0;
2537
2538 /*
2539 * common ATA, ATAPI feature tests
2540 */
2541
2542 /* find max transfer mode; for printk only */
2543 xfer_mask = ata_id_xfermask(id);
2544
2545 if (ata_msg_probe(ap))
2546 ata_dump_id(id);
2547
2548 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2549 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2550 sizeof(fwrevbuf));
2551
2552 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2553 sizeof(modelbuf));
2554
2555 /* ATA-specific feature tests */
2556 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2557 if (ata_id_is_cfa(id)) {
2558 /* CPRM may make this media unusable */
2559 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2560 ata_dev_warn(dev,
2561 "supports DRM functions and may not be fully accessible\n");
2562 snprintf(revbuf, 7, "CFA");
2563 } else {
2564 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2565 /* Warn the user if the device has TPM extensions */
2566 if (ata_id_has_tpm(id))
2567 ata_dev_warn(dev,
2568 "supports DRM functions and may not be fully accessible\n");
2569 }
2570
2571 dev->n_sectors = ata_id_n_sectors(id);
2572
2573 /* get current R/W Multiple count setting */
2574 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2575 unsigned int max = dev->id[47] & 0xff;
2576 unsigned int cnt = dev->id[59] & 0xff;
2577 /* only recognize/allow powers of two here */
2578 if (is_power_of_2(max) && is_power_of_2(cnt))
2579 if (cnt <= max)
2580 dev->multi_count = cnt;
2581 }
2582
2583 if (ata_id_has_lba(id)) {
2584 const char *lba_desc;
2585 char ncq_desc[24];
2586
2587 lba_desc = "LBA";
2588 dev->flags |= ATA_DFLAG_LBA;
2589 if (ata_id_has_lba48(id)) {
2590 dev->flags |= ATA_DFLAG_LBA48;
2591 lba_desc = "LBA48";
2592
2593 if (dev->n_sectors >= (1UL << 28) &&
2594 ata_id_has_flush_ext(id))
2595 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2596 }
2597
2598 /* config NCQ */
2599 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2600 if (rc)
2601 return rc;
2602
2603 /* print device info to dmesg */
2604 if (ata_msg_drv(ap) && print_info) {
2605 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2606 revbuf, modelbuf, fwrevbuf,
2607 ata_mode_string(xfer_mask));
2608 ata_dev_info(dev,
2609 "%llu sectors, multi %u: %s %s\n",
2610 (unsigned long long)dev->n_sectors,
2611 dev->multi_count, lba_desc, ncq_desc);
2612 }
2613 } else {
2614 /* CHS */
2615
2616 /* Default translation */
2617 dev->cylinders = id[1];
2618 dev->heads = id[3];
2619 dev->sectors = id[6];
2620
2621 if (ata_id_current_chs_valid(id)) {
2622 /* Current CHS translation is valid. */
2623 dev->cylinders = id[54];
2624 dev->heads = id[55];
2625 dev->sectors = id[56];
2626 }
2627
2628 /* print device info to dmesg */
2629 if (ata_msg_drv(ap) && print_info) {
2630 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2631 revbuf, modelbuf, fwrevbuf,
2632 ata_mode_string(xfer_mask));
2633 ata_dev_info(dev,
2634 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2635 (unsigned long long)dev->n_sectors,
2636 dev->multi_count, dev->cylinders,
2637 dev->heads, dev->sectors);
2638 }
2639 }
2640
2641 /* Check and mark DevSlp capability. Get DevSlp timing variables
2642 * from SATA Settings page of Identify Device Data Log.
2643 */
2644 if (ata_id_has_devslp(dev->id)) {
2645 u8 *sata_setting = ap->sector_buf;
2646 int i, j;
2647
2648 dev->flags |= ATA_DFLAG_DEVSLP;
2649 err_mask = ata_read_log_page(dev,
2650 ATA_LOG_IDENTIFY_DEVICE,
2651 ATA_LOG_SATA_SETTINGS,
2652 sata_setting,
2653 1);
2654 if (err_mask)
2655 ata_dev_dbg(dev,
2656 "failed to get Identify Device Data, Emask 0x%x\n",
2657 err_mask);
2658 else
2659 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2660 j = ATA_LOG_DEVSLP_OFFSET + i;
2661 dev->devslp_timing[i] = sata_setting[j];
2662 }
2663 }
2664 ata_dev_config_sense_reporting(dev);
2665 ata_dev_config_zac(dev);
2666 ata_dev_config_trusted(dev);
2667 dev->cdb_len = 32;
2668 }
2669
2670 /* ATAPI-specific feature tests */
2671 else if (dev->class == ATA_DEV_ATAPI) {
2672 const char *cdb_intr_string = "";
2673 const char *atapi_an_string = "";
2674 const char *dma_dir_string = "";
2675 u32 sntf;
2676
2677 rc = atapi_cdb_len(id);
2678 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2679 if (ata_msg_warn(ap))
2680 ata_dev_warn(dev, "unsupported CDB len\n");
2681 rc = -EINVAL;
2682 goto err_out_nosup;
2683 }
2684 dev->cdb_len = (unsigned int) rc;
2685
2686 /* Enable ATAPI AN if both the host and device have
2687 * the support. If PMP is attached, SNTF is required
2688 * to enable ATAPI AN to discern between PHY status
2689 * changed notifications and ATAPI ANs.
2690 */
2691 if (atapi_an &&
2692 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2693 (!sata_pmp_attached(ap) ||
2694 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2695 /* issue SET feature command to turn this on */
2696 err_mask = ata_dev_set_feature(dev,
2697 SETFEATURES_SATA_ENABLE, SATA_AN);
2698 if (err_mask)
2699 ata_dev_err(dev,
2700 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2701 err_mask);
2702 else {
2703 dev->flags |= ATA_DFLAG_AN;
2704 atapi_an_string = ", ATAPI AN";
2705 }
2706 }
2707
2708 if (ata_id_cdb_intr(dev->id)) {
2709 dev->flags |= ATA_DFLAG_CDB_INTR;
2710 cdb_intr_string = ", CDB intr";
2711 }
2712
2713 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2714 dev->flags |= ATA_DFLAG_DMADIR;
2715 dma_dir_string = ", DMADIR";
2716 }
2717
2718 if (ata_id_has_da(dev->id)) {
2719 dev->flags |= ATA_DFLAG_DA;
2720 zpodd_init(dev);
2721 }
2722
2723 /* print device info to dmesg */
2724 if (ata_msg_drv(ap) && print_info)
2725 ata_dev_info(dev,
2726 "ATAPI: %s, %s, max %s%s%s%s\n",
2727 modelbuf, fwrevbuf,
2728 ata_mode_string(xfer_mask),
2729 cdb_intr_string, atapi_an_string,
2730 dma_dir_string);
2731 }
2732
2733 /* determine max_sectors */
2734 dev->max_sectors = ATA_MAX_SECTORS;
2735 if (dev->flags & ATA_DFLAG_LBA48)
2736 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2737
2738 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2739 200 sectors */
2740 if (ata_dev_knobble(dev)) {
2741 if (ata_msg_drv(ap) && print_info)
2742 ata_dev_info(dev, "applying bridge limits\n");
2743 dev->udma_mask &= ATA_UDMA5;
2744 dev->max_sectors = ATA_MAX_SECTORS;
2745 }
2746
2747 if ((dev->class == ATA_DEV_ATAPI) &&
2748 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2749 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2750 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2751 }
2752
2753 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2754 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2755 dev->max_sectors);
2756
2757 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2758 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2759 dev->max_sectors);
2760
2761 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2762 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2763
2764 if (ap->ops->dev_config)
2765 ap->ops->dev_config(dev);
2766
2767 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2768 /* Let the user know. We don't want to disallow opens for
2769 rescue purposes, or in case the vendor is just a blithering
2770 idiot. Do this after the dev_config call as some controllers
2771 with buggy firmware may want to avoid reporting false device
2772 bugs */
2773
2774 if (print_info) {
2775 ata_dev_warn(dev,
2776 "Drive reports diagnostics failure. This may indicate a drive\n");
2777 ata_dev_warn(dev,
2778 "fault or invalid emulation. Contact drive vendor for information.\n");
2779 }
2780 }
2781
2782 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2783 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2784 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2785 }
2786
2787 return 0;
2788
2789 err_out_nosup:
2790 if (ata_msg_probe(ap))
2791 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2792 return rc;
2793 }
2794
2795 /**
2796 * ata_cable_40wire - return 40 wire cable type
2797 * @ap: port
2798 *
2799 * Helper method for drivers which want to hardwire 40 wire cable
2800 * detection.
2801 */
2802
2803 int ata_cable_40wire(struct ata_port *ap)
2804 {
2805 return ATA_CBL_PATA40;
2806 }
2807
2808 /**
2809 * ata_cable_80wire - return 80 wire cable type
2810 * @ap: port
2811 *
2812 * Helper method for drivers which want to hardwire 80 wire cable
2813 * detection.
2814 */
2815
2816 int ata_cable_80wire(struct ata_port *ap)
2817 {
2818 return ATA_CBL_PATA80;
2819 }
2820
2821 /**
2822 * ata_cable_unknown - return unknown PATA cable.
2823 * @ap: port
2824 *
2825 * Helper method for drivers which have no PATA cable detection.
2826 */
2827
2828 int ata_cable_unknown(struct ata_port *ap)
2829 {
2830 return ATA_CBL_PATA_UNK;
2831 }
2832
2833 /**
2834 * ata_cable_ignore - return ignored PATA cable.
2835 * @ap: port
2836 *
2837 * Helper method for drivers which don't use cable type to limit
2838 * transfer mode.
2839 */
2840 int ata_cable_ignore(struct ata_port *ap)
2841 {
2842 return ATA_CBL_PATA_IGN;
2843 }
2844
2845 /**
2846 * ata_cable_sata - return SATA cable type
2847 * @ap: port
2848 *
2849 * Helper method for drivers which have SATA cables
2850 */
2851
2852 int ata_cable_sata(struct ata_port *ap)
2853 {
2854 return ATA_CBL_SATA;
2855 }
2856
2857 /**
2858 * ata_bus_probe - Reset and probe ATA bus
2859 * @ap: Bus to probe
2860 *
2861 * Master ATA bus probing function. Initiates a hardware-dependent
2862 * bus reset, then attempts to identify any devices found on
2863 * the bus.
2864 *
2865 * LOCKING:
2866 * PCI/etc. bus probe sem.
2867 *
2868 * RETURNS:
2869 * Zero on success, negative errno otherwise.
2870 */
2871
2872 int ata_bus_probe(struct ata_port *ap)
2873 {
2874 unsigned int classes[ATA_MAX_DEVICES];
2875 int tries[ATA_MAX_DEVICES];
2876 int rc;
2877 struct ata_device *dev;
2878
2879 ata_for_each_dev(dev, &ap->link, ALL)
2880 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2881
2882 retry:
2883 ata_for_each_dev(dev, &ap->link, ALL) {
2884 /* If we issue an SRST then an ATA drive (not ATAPI)
2885 * may change configuration and be in PIO0 timing. If
2886 * we do a hard reset (or are coming from power on)
2887 * this is true for ATA or ATAPI. Until we've set a
2888 * suitable controller mode we should not touch the
2889 * bus as we may be talking too fast.
2890 */
2891 dev->pio_mode = XFER_PIO_0;
2892 dev->dma_mode = 0xff;
2893
2894 /* If the controller has a pio mode setup function
2895 * then use it to set the chipset to rights. Don't
2896 * touch the DMA setup as that will be dealt with when
2897 * configuring devices.
2898 */
2899 if (ap->ops->set_piomode)
2900 ap->ops->set_piomode(ap, dev);
2901 }
2902
2903 /* reset and determine device classes */
2904 ap->ops->phy_reset(ap);
2905
2906 ata_for_each_dev(dev, &ap->link, ALL) {
2907 if (dev->class != ATA_DEV_UNKNOWN)
2908 classes[dev->devno] = dev->class;
2909 else
2910 classes[dev->devno] = ATA_DEV_NONE;
2911
2912 dev->class = ATA_DEV_UNKNOWN;
2913 }
2914
2915 /* read IDENTIFY page and configure devices. We have to do the identify
2916 specific sequence bass-ackwards so that PDIAG- is released by
2917 the slave device */
2918
2919 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2920 if (tries[dev->devno])
2921 dev->class = classes[dev->devno];
2922
2923 if (!ata_dev_enabled(dev))
2924 continue;
2925
2926 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2927 dev->id);
2928 if (rc)
2929 goto fail;
2930 }
2931
2932 /* Now ask for the cable type as PDIAG- should have been released */
2933 if (ap->ops->cable_detect)
2934 ap->cbl = ap->ops->cable_detect(ap);
2935
2936 /* We may have SATA bridge glue hiding here irrespective of
2937 * the reported cable types and sensed types. When SATA
2938 * drives indicate we have a bridge, we don't know which end
2939 * of the link the bridge is which is a problem.
2940 */
2941 ata_for_each_dev(dev, &ap->link, ENABLED)
2942 if (ata_id_is_sata(dev->id))
2943 ap->cbl = ATA_CBL_SATA;
2944
2945 /* After the identify sequence we can now set up the devices. We do
2946 this in the normal order so that the user doesn't get confused */
2947
2948 ata_for_each_dev(dev, &ap->link, ENABLED) {
2949 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2950 rc = ata_dev_configure(dev);
2951 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2952 if (rc)
2953 goto fail;
2954 }
2955
2956 /* configure transfer mode */
2957 rc = ata_set_mode(&ap->link, &dev);
2958 if (rc)
2959 goto fail;
2960
2961 ata_for_each_dev(dev, &ap->link, ENABLED)
2962 return 0;
2963
2964 return -ENODEV;
2965
2966 fail:
2967 tries[dev->devno]--;
2968
2969 switch (rc) {
2970 case -EINVAL:
2971 /* eeek, something went very wrong, give up */
2972 tries[dev->devno] = 0;
2973 break;
2974
2975 case -ENODEV:
2976 /* give it just one more chance */
2977 tries[dev->devno] = min(tries[dev->devno], 1);
2978 case -EIO:
2979 if (tries[dev->devno] == 1) {
2980 /* This is the last chance, better to slow
2981 * down than lose it.
2982 */
2983 sata_down_spd_limit(&ap->link, 0);
2984 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2985 }
2986 }
2987
2988 if (!tries[dev->devno])
2989 ata_dev_disable(dev);
2990
2991 goto retry;
2992 }
2993
2994 /**
2995 * sata_print_link_status - Print SATA link status
2996 * @link: SATA link to printk link status about
2997 *
2998 * This function prints link speed and status of a SATA link.
2999 *
3000 * LOCKING:
3001 * None.
3002 */
3003 static void sata_print_link_status(struct ata_link *link)
3004 {
3005 u32 sstatus, scontrol, tmp;
3006
3007 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3008 return;
3009 sata_scr_read(link, SCR_CONTROL, &scontrol);
3010
3011 if (ata_phys_link_online(link)) {
3012 tmp = (sstatus >> 4) & 0xf;
3013 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3014 sata_spd_string(tmp), sstatus, scontrol);
3015 } else {
3016 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3017 sstatus, scontrol);
3018 }
3019 }
3020
3021 /**
3022 * ata_dev_pair - return other device on cable
3023 * @adev: device
3024 *
3025 * Obtain the other device on the same cable, or if none is
3026 * present NULL is returned
3027 */
3028
3029 struct ata_device *ata_dev_pair(struct ata_device *adev)
3030 {
3031 struct ata_link *link = adev->link;
3032 struct ata_device *pair = &link->device[1 - adev->devno];
3033 if (!ata_dev_enabled(pair))
3034 return NULL;
3035 return pair;
3036 }
3037
3038 /**
3039 * sata_down_spd_limit - adjust SATA spd limit downward
3040 * @link: Link to adjust SATA spd limit for
3041 * @spd_limit: Additional limit
3042 *
3043 * Adjust SATA spd limit of @link downward. Note that this
3044 * function only adjusts the limit. The change must be applied
3045 * using sata_set_spd().
3046 *
3047 * If @spd_limit is non-zero, the speed is limited to equal to or
3048 * lower than @spd_limit if such speed is supported. If
3049 * @spd_limit is slower than any supported speed, only the lowest
3050 * supported speed is allowed.
3051 *
3052 * LOCKING:
3053 * Inherited from caller.
3054 *
3055 * RETURNS:
3056 * 0 on success, negative errno on failure
3057 */
3058 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3059 {
3060 u32 sstatus, spd, mask;
3061 int rc, bit;
3062
3063 if (!sata_scr_valid(link))
3064 return -EOPNOTSUPP;
3065
3066 /* If SCR can be read, use it to determine the current SPD.
3067 * If not, use cached value in link->sata_spd.
3068 */
3069 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3070 if (rc == 0 && ata_sstatus_online(sstatus))
3071 spd = (sstatus >> 4) & 0xf;
3072 else
3073 spd = link->sata_spd;
3074
3075 mask = link->sata_spd_limit;
3076 if (mask <= 1)
3077 return -EINVAL;
3078
3079 /* unconditionally mask off the highest bit */
3080 bit = fls(mask) - 1;
3081 mask &= ~(1 << bit);
3082
3083 /* Mask off all speeds higher than or equal to the current
3084 * one. Force 1.5Gbps if current SPD is not available.
3085 */
3086 if (spd > 1)
3087 mask &= (1 << (spd - 1)) - 1;
3088 else
3089 mask &= 1;
3090
3091 /* were we already at the bottom? */
3092 if (!mask)
3093 return -EINVAL;
3094
3095 if (spd_limit) {
3096 if (mask & ((1 << spd_limit) - 1))
3097 mask &= (1 << spd_limit) - 1;
3098 else {
3099 bit = ffs(mask) - 1;
3100 mask = 1 << bit;
3101 }
3102 }
3103
3104 link->sata_spd_limit = mask;
3105
3106 ata_link_warn(link, "limiting SATA link speed to %s\n",
3107 sata_spd_string(fls(mask)));
3108
3109 return 0;
3110 }
3111
3112 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3113 {
3114 struct ata_link *host_link = &link->ap->link;
3115 u32 limit, target, spd;
3116
3117 limit = link->sata_spd_limit;
3118
3119 /* Don't configure downstream link faster than upstream link.
3120 * It doesn't speed up anything and some PMPs choke on such
3121 * configuration.
3122 */
3123 if (!ata_is_host_link(link) && host_link->sata_spd)
3124 limit &= (1 << host_link->sata_spd) - 1;
3125
3126 if (limit == UINT_MAX)
3127 target = 0;
3128 else
3129 target = fls(limit);
3130
3131 spd = (*scontrol >> 4) & 0xf;
3132 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3133
3134 return spd != target;
3135 }
3136
3137 /**
3138 * sata_set_spd_needed - is SATA spd configuration needed
3139 * @link: Link in question
3140 *
3141 * Test whether the spd limit in SControl matches
3142 * @link->sata_spd_limit. This function is used to determine
3143 * whether hardreset is necessary to apply SATA spd
3144 * configuration.
3145 *
3146 * LOCKING:
3147 * Inherited from caller.
3148 *
3149 * RETURNS:
3150 * 1 if SATA spd configuration is needed, 0 otherwise.
3151 */
3152 static int sata_set_spd_needed(struct ata_link *link)
3153 {
3154 u32 scontrol;
3155
3156 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3157 return 1;
3158
3159 return __sata_set_spd_needed(link, &scontrol);
3160 }
3161
3162 /**
3163 * sata_set_spd - set SATA spd according to spd limit
3164 * @link: Link to set SATA spd for
3165 *
3166 * Set SATA spd of @link according to sata_spd_limit.
3167 *
3168 * LOCKING:
3169 * Inherited from caller.
3170 *
3171 * RETURNS:
3172 * 0 if spd doesn't need to be changed, 1 if spd has been
3173 * changed. Negative errno if SCR registers are inaccessible.
3174 */
3175 int sata_set_spd(struct ata_link *link)
3176 {
3177 u32 scontrol;
3178 int rc;
3179
3180 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3181 return rc;
3182
3183 if (!__sata_set_spd_needed(link, &scontrol))
3184 return 0;
3185
3186 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3187 return rc;
3188
3189 return 1;
3190 }
3191
3192 /*
3193 * This mode timing computation functionality is ported over from
3194 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3195 */
3196 /*
3197 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3198 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3199 * for UDMA6, which is currently supported only by Maxtor drives.
3200 *
3201 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3202 */
3203
3204 static const struct ata_timing ata_timing[] = {
3205 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3206 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3207 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3208 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3209 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3210 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3211 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3212 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3213
3214 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3215 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3216 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3217
3218 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3219 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3220 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3221 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3222 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3223
3224 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3225 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3226 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3227 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3228 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3229 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3230 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3231 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3232
3233 { 0xFF }
3234 };
3235
3236 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3237 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3238
3239 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3240 {
3241 q->setup = EZ(t->setup * 1000, T);
3242 q->act8b = EZ(t->act8b * 1000, T);
3243 q->rec8b = EZ(t->rec8b * 1000, T);
3244 q->cyc8b = EZ(t->cyc8b * 1000, T);
3245 q->active = EZ(t->active * 1000, T);
3246 q->recover = EZ(t->recover * 1000, T);
3247 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3248 q->cycle = EZ(t->cycle * 1000, T);
3249 q->udma = EZ(t->udma * 1000, UT);
3250 }
3251
3252 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3253 struct ata_timing *m, unsigned int what)
3254 {
3255 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3256 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3257 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3258 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3259 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3260 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3261 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3262 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3263 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3264 }
3265
3266 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3267 {
3268 const struct ata_timing *t = ata_timing;
3269
3270 while (xfer_mode > t->mode)
3271 t++;
3272
3273 if (xfer_mode == t->mode)
3274 return t;
3275
3276 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3277 __func__, xfer_mode);
3278
3279 return NULL;
3280 }
3281
3282 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3283 struct ata_timing *t, int T, int UT)
3284 {
3285 const u16 *id = adev->id;
3286 const struct ata_timing *s;
3287 struct ata_timing p;
3288
3289 /*
3290 * Find the mode.
3291 */
3292
3293 if (!(s = ata_timing_find_mode(speed)))
3294 return -EINVAL;
3295
3296 memcpy(t, s, sizeof(*s));
3297
3298 /*
3299 * If the drive is an EIDE drive, it can tell us it needs extended
3300 * PIO/MW_DMA cycle timing.
3301 */
3302
3303 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3304 memset(&p, 0, sizeof(p));
3305
3306 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3307 if (speed <= XFER_PIO_2)
3308 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3309 else if ((speed <= XFER_PIO_4) ||
3310 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3311 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3312 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3313 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3314
3315 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3316 }
3317
3318 /*
3319 * Convert the timing to bus clock counts.
3320 */
3321
3322 ata_timing_quantize(t, t, T, UT);
3323
3324 /*
3325 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3326 * S.M.A.R.T * and some other commands. We have to ensure that the
3327 * DMA cycle timing is slower/equal than the fastest PIO timing.
3328 */
3329
3330 if (speed > XFER_PIO_6) {
3331 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3332 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3333 }
3334
3335 /*
3336 * Lengthen active & recovery time so that cycle time is correct.
3337 */
3338
3339 if (t->act8b + t->rec8b < t->cyc8b) {
3340 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3341 t->rec8b = t->cyc8b - t->act8b;
3342 }
3343
3344 if (t->active + t->recover < t->cycle) {
3345 t->active += (t->cycle - (t->active + t->recover)) / 2;
3346 t->recover = t->cycle - t->active;
3347 }
3348
3349 /* In a few cases quantisation may produce enough errors to
3350 leave t->cycle too low for the sum of active and recovery
3351 if so we must correct this */
3352 if (t->active + t->recover > t->cycle)
3353 t->cycle = t->active + t->recover;
3354
3355 return 0;
3356 }
3357
3358 /**
3359 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3360 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3361 * @cycle: cycle duration in ns
3362 *
3363 * Return matching xfer mode for @cycle. The returned mode is of
3364 * the transfer type specified by @xfer_shift. If @cycle is too
3365 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3366 * than the fastest known mode, the fasted mode is returned.
3367 *
3368 * LOCKING:
3369 * None.
3370 *
3371 * RETURNS:
3372 * Matching xfer_mode, 0xff if no match found.
3373 */
3374 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3375 {
3376 u8 base_mode = 0xff, last_mode = 0xff;
3377 const struct ata_xfer_ent *ent;
3378 const struct ata_timing *t;
3379
3380 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3381 if (ent->shift == xfer_shift)
3382 base_mode = ent->base;
3383
3384 for (t = ata_timing_find_mode(base_mode);
3385 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3386 unsigned short this_cycle;
3387
3388 switch (xfer_shift) {
3389 case ATA_SHIFT_PIO:
3390 case ATA_SHIFT_MWDMA:
3391 this_cycle = t->cycle;
3392 break;
3393 case ATA_SHIFT_UDMA:
3394 this_cycle = t->udma;
3395 break;
3396 default:
3397 return 0xff;
3398 }
3399
3400 if (cycle > this_cycle)
3401 break;
3402
3403 last_mode = t->mode;
3404 }
3405
3406 return last_mode;
3407 }
3408
3409 /**
3410 * ata_down_xfermask_limit - adjust dev xfer masks downward
3411 * @dev: Device to adjust xfer masks
3412 * @sel: ATA_DNXFER_* selector
3413 *
3414 * Adjust xfer masks of @dev downward. Note that this function
3415 * does not apply the change. Invoking ata_set_mode() afterwards
3416 * will apply the limit.
3417 *
3418 * LOCKING:
3419 * Inherited from caller.
3420 *
3421 * RETURNS:
3422 * 0 on success, negative errno on failure
3423 */
3424 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3425 {
3426 char buf[32];
3427 unsigned long orig_mask, xfer_mask;
3428 unsigned long pio_mask, mwdma_mask, udma_mask;
3429 int quiet, highbit;
3430
3431 quiet = !!(sel & ATA_DNXFER_QUIET);
3432 sel &= ~ATA_DNXFER_QUIET;
3433
3434 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3435 dev->mwdma_mask,
3436 dev->udma_mask);
3437 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3438
3439 switch (sel) {
3440 case ATA_DNXFER_PIO:
3441 highbit = fls(pio_mask) - 1;
3442 pio_mask &= ~(1 << highbit);
3443 break;
3444
3445 case ATA_DNXFER_DMA:
3446 if (udma_mask) {
3447 highbit = fls(udma_mask) - 1;
3448 udma_mask &= ~(1 << highbit);
3449 if (!udma_mask)
3450 return -ENOENT;
3451 } else if (mwdma_mask) {
3452 highbit = fls(mwdma_mask) - 1;
3453 mwdma_mask &= ~(1 << highbit);
3454 if (!mwdma_mask)
3455 return -ENOENT;
3456 }
3457 break;
3458
3459 case ATA_DNXFER_40C:
3460 udma_mask &= ATA_UDMA_MASK_40C;
3461 break;
3462
3463 case ATA_DNXFER_FORCE_PIO0:
3464 pio_mask &= 1;
3465 case ATA_DNXFER_FORCE_PIO:
3466 mwdma_mask = 0;
3467 udma_mask = 0;
3468 break;
3469
3470 default:
3471 BUG();
3472 }
3473
3474 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3475
3476 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3477 return -ENOENT;
3478
3479 if (!quiet) {
3480 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3481 snprintf(buf, sizeof(buf), "%s:%s",
3482 ata_mode_string(xfer_mask),
3483 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3484 else
3485 snprintf(buf, sizeof(buf), "%s",
3486 ata_mode_string(xfer_mask));
3487
3488 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3489 }
3490
3491 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3492 &dev->udma_mask);
3493
3494 return 0;
3495 }
3496
3497 static int ata_dev_set_mode(struct ata_device *dev)
3498 {
3499 struct ata_port *ap = dev->link->ap;
3500 struct ata_eh_context *ehc = &dev->link->eh_context;
3501 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3502 const char *dev_err_whine = "";
3503 int ign_dev_err = 0;
3504 unsigned int err_mask = 0;
3505 int rc;
3506
3507 dev->flags &= ~ATA_DFLAG_PIO;
3508 if (dev->xfer_shift == ATA_SHIFT_PIO)
3509 dev->flags |= ATA_DFLAG_PIO;
3510
3511 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3512 dev_err_whine = " (SET_XFERMODE skipped)";
3513 else {
3514 if (nosetxfer)
3515 ata_dev_warn(dev,
3516 "NOSETXFER but PATA detected - can't "
3517 "skip SETXFER, might malfunction\n");
3518 err_mask = ata_dev_set_xfermode(dev);
3519 }
3520
3521 if (err_mask & ~AC_ERR_DEV)
3522 goto fail;
3523
3524 /* revalidate */
3525 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3526 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3527 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3528 if (rc)
3529 return rc;
3530
3531 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3532 /* Old CFA may refuse this command, which is just fine */
3533 if (ata_id_is_cfa(dev->id))
3534 ign_dev_err = 1;
3535 /* Catch several broken garbage emulations plus some pre
3536 ATA devices */
3537 if (ata_id_major_version(dev->id) == 0 &&
3538 dev->pio_mode <= XFER_PIO_2)
3539 ign_dev_err = 1;
3540 /* Some very old devices and some bad newer ones fail
3541 any kind of SET_XFERMODE request but support PIO0-2
3542 timings and no IORDY */
3543 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3544 ign_dev_err = 1;
3545 }
3546 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3547 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3548 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3549 dev->dma_mode == XFER_MW_DMA_0 &&
3550 (dev->id[63] >> 8) & 1)
3551 ign_dev_err = 1;
3552
3553 /* if the device is actually configured correctly, ignore dev err */
3554 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3555 ign_dev_err = 1;
3556
3557 if (err_mask & AC_ERR_DEV) {
3558 if (!ign_dev_err)
3559 goto fail;
3560 else
3561 dev_err_whine = " (device error ignored)";
3562 }
3563
3564 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3565 dev->xfer_shift, (int)dev->xfer_mode);
3566
3567 ata_dev_info(dev, "configured for %s%s\n",
3568 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3569 dev_err_whine);
3570
3571 return 0;
3572
3573 fail:
3574 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3575 return -EIO;
3576 }
3577
3578 /**
3579 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3580 * @link: link on which timings will be programmed
3581 * @r_failed_dev: out parameter for failed device
3582 *
3583 * Standard implementation of the function used to tune and set
3584 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3585 * ata_dev_set_mode() fails, pointer to the failing device is
3586 * returned in @r_failed_dev.
3587 *
3588 * LOCKING:
3589 * PCI/etc. bus probe sem.
3590 *
3591 * RETURNS:
3592 * 0 on success, negative errno otherwise
3593 */
3594
3595 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3596 {
3597 struct ata_port *ap = link->ap;
3598 struct ata_device *dev;
3599 int rc = 0, used_dma = 0, found = 0;
3600
3601 /* step 1: calculate xfer_mask */
3602 ata_for_each_dev(dev, link, ENABLED) {
3603 unsigned long pio_mask, dma_mask;
3604 unsigned int mode_mask;
3605
3606 mode_mask = ATA_DMA_MASK_ATA;
3607 if (dev->class == ATA_DEV_ATAPI)
3608 mode_mask = ATA_DMA_MASK_ATAPI;
3609 else if (ata_id_is_cfa(dev->id))
3610 mode_mask = ATA_DMA_MASK_CFA;
3611
3612 ata_dev_xfermask(dev);
3613 ata_force_xfermask(dev);
3614
3615 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3616
3617 if (libata_dma_mask & mode_mask)
3618 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3619 dev->udma_mask);
3620 else
3621 dma_mask = 0;
3622
3623 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3624 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3625
3626 found = 1;
3627 if (ata_dma_enabled(dev))
3628 used_dma = 1;
3629 }
3630 if (!found)
3631 goto out;
3632
3633 /* step 2: always set host PIO timings */
3634 ata_for_each_dev(dev, link, ENABLED) {
3635 if (dev->pio_mode == 0xff) {
3636 ata_dev_warn(dev, "no PIO support\n");
3637 rc = -EINVAL;
3638 goto out;
3639 }
3640
3641 dev->xfer_mode = dev->pio_mode;
3642 dev->xfer_shift = ATA_SHIFT_PIO;
3643 if (ap->ops->set_piomode)
3644 ap->ops->set_piomode(ap, dev);
3645 }
3646
3647 /* step 3: set host DMA timings */
3648 ata_for_each_dev(dev, link, ENABLED) {
3649 if (!ata_dma_enabled(dev))
3650 continue;
3651
3652 dev->xfer_mode = dev->dma_mode;
3653 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3654 if (ap->ops->set_dmamode)
3655 ap->ops->set_dmamode(ap, dev);
3656 }
3657
3658 /* step 4: update devices' xfer mode */
3659 ata_for_each_dev(dev, link, ENABLED) {
3660 rc = ata_dev_set_mode(dev);
3661 if (rc)
3662 goto out;
3663 }
3664
3665 /* Record simplex status. If we selected DMA then the other
3666 * host channels are not permitted to do so.
3667 */
3668 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3669 ap->host->simplex_claimed = ap;
3670
3671 out:
3672 if (rc)
3673 *r_failed_dev = dev;
3674 return rc;
3675 }
3676
3677 /**
3678 * ata_wait_ready - wait for link to become ready
3679 * @link: link to be waited on
3680 * @deadline: deadline jiffies for the operation
3681 * @check_ready: callback to check link readiness
3682 *
3683 * Wait for @link to become ready. @check_ready should return
3684 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3685 * link doesn't seem to be occupied, other errno for other error
3686 * conditions.
3687 *
3688 * Transient -ENODEV conditions are allowed for
3689 * ATA_TMOUT_FF_WAIT.
3690 *
3691 * LOCKING:
3692 * EH context.
3693 *
3694 * RETURNS:
3695 * 0 if @link is ready before @deadline; otherwise, -errno.
3696 */
3697 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3698 int (*check_ready)(struct ata_link *link))
3699 {
3700 unsigned long start = jiffies;
3701 unsigned long nodev_deadline;
3702 int warned = 0;
3703
3704 /* choose which 0xff timeout to use, read comment in libata.h */
3705 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3706 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3707 else
3708 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3709
3710 /* Slave readiness can't be tested separately from master. On
3711 * M/S emulation configuration, this function should be called
3712 * only on the master and it will handle both master and slave.
3713 */
3714 WARN_ON(link == link->ap->slave_link);
3715
3716 if (time_after(nodev_deadline, deadline))
3717 nodev_deadline = deadline;
3718
3719 while (1) {
3720 unsigned long now = jiffies;
3721 int ready, tmp;
3722
3723 ready = tmp = check_ready(link);
3724 if (ready > 0)
3725 return 0;
3726
3727 /*
3728 * -ENODEV could be transient. Ignore -ENODEV if link
3729 * is online. Also, some SATA devices take a long
3730 * time to clear 0xff after reset. Wait for
3731 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3732 * offline.
3733 *
3734 * Note that some PATA controllers (pata_ali) explode
3735 * if status register is read more than once when
3736 * there's no device attached.
3737 */
3738 if (ready == -ENODEV) {
3739 if (ata_link_online(link))
3740 ready = 0;
3741 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3742 !ata_link_offline(link) &&
3743 time_before(now, nodev_deadline))
3744 ready = 0;
3745 }
3746
3747 if (ready)
3748 return ready;
3749 if (time_after(now, deadline))
3750 return -EBUSY;
3751
3752 if (!warned && time_after(now, start + 5 * HZ) &&
3753 (deadline - now > 3 * HZ)) {
3754 ata_link_warn(link,
3755 "link is slow to respond, please be patient "
3756 "(ready=%d)\n", tmp);
3757 warned = 1;
3758 }
3759
3760 ata_msleep(link->ap, 50);
3761 }
3762 }
3763
3764 /**
3765 * ata_wait_after_reset - wait for link to become ready after reset
3766 * @link: link to be waited on
3767 * @deadline: deadline jiffies for the operation
3768 * @check_ready: callback to check link readiness
3769 *
3770 * Wait for @link to become ready after reset.
3771 *
3772 * LOCKING:
3773 * EH context.
3774 *
3775 * RETURNS:
3776 * 0 if @link is ready before @deadline; otherwise, -errno.
3777 */
3778 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3779 int (*check_ready)(struct ata_link *link))
3780 {
3781 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3782
3783 return ata_wait_ready(link, deadline, check_ready);
3784 }
3785
3786 /**
3787 * sata_link_debounce - debounce SATA phy status
3788 * @link: ATA link to debounce SATA phy status for
3789 * @params: timing parameters { interval, duration, timeout } in msec
3790 * @deadline: deadline jiffies for the operation
3791 *
3792 * Make sure SStatus of @link reaches stable state, determined by
3793 * holding the same value where DET is not 1 for @duration polled
3794 * every @interval, before @timeout. Timeout constraints the
3795 * beginning of the stable state. Because DET gets stuck at 1 on
3796 * some controllers after hot unplugging, this functions waits
3797 * until timeout then returns 0 if DET is stable at 1.
3798 *
3799 * @timeout is further limited by @deadline. The sooner of the
3800 * two is used.
3801 *
3802 * LOCKING:
3803 * Kernel thread context (may sleep)
3804 *
3805 * RETURNS:
3806 * 0 on success, -errno on failure.
3807 */
3808 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3809 unsigned long deadline)
3810 {
3811 unsigned long interval = params[0];
3812 unsigned long duration = params[1];
3813 unsigned long last_jiffies, t;
3814 u32 last, cur;
3815 int rc;
3816
3817 t = ata_deadline(jiffies, params[2]);
3818 if (time_before(t, deadline))
3819 deadline = t;
3820
3821 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3822 return rc;
3823 cur &= 0xf;
3824
3825 last = cur;
3826 last_jiffies = jiffies;
3827
3828 while (1) {
3829 ata_msleep(link->ap, interval);
3830 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3831 return rc;
3832 cur &= 0xf;
3833
3834 /* DET stable? */
3835 if (cur == last) {
3836 if (cur == 1 && time_before(jiffies, deadline))
3837 continue;
3838 if (time_after(jiffies,
3839 ata_deadline(last_jiffies, duration)))
3840 return 0;
3841 continue;
3842 }
3843
3844 /* unstable, start over */
3845 last = cur;
3846 last_jiffies = jiffies;
3847
3848 /* Check deadline. If debouncing failed, return
3849 * -EPIPE to tell upper layer to lower link speed.
3850 */
3851 if (time_after(jiffies, deadline))
3852 return -EPIPE;
3853 }
3854 }
3855
3856 /**
3857 * sata_link_resume - resume SATA link
3858 * @link: ATA link to resume SATA
3859 * @params: timing parameters { interval, duration, timeout } in msec
3860 * @deadline: deadline jiffies for the operation
3861 *
3862 * Resume SATA phy @link and debounce it.
3863 *
3864 * LOCKING:
3865 * Kernel thread context (may sleep)
3866 *
3867 * RETURNS:
3868 * 0 on success, -errno on failure.
3869 */
3870 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3871 unsigned long deadline)
3872 {
3873 int tries = ATA_LINK_RESUME_TRIES;
3874 u32 scontrol, serror;
3875 int rc;
3876
3877 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3878 return rc;
3879
3880 /*
3881 * Writes to SControl sometimes get ignored under certain
3882 * controllers (ata_piix SIDPR). Make sure DET actually is
3883 * cleared.
3884 */
3885 do {
3886 scontrol = (scontrol & 0x0f0) | 0x300;
3887 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3888 return rc;
3889 /*
3890 * Some PHYs react badly if SStatus is pounded
3891 * immediately after resuming. Delay 200ms before
3892 * debouncing.
3893 */
3894 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3895 ata_msleep(link->ap, 200);
3896
3897 /* is SControl restored correctly? */
3898 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3899 return rc;
3900 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3901
3902 if ((scontrol & 0xf0f) != 0x300) {
3903 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3904 scontrol);
3905 return 0;
3906 }
3907
3908 if (tries < ATA_LINK_RESUME_TRIES)
3909 ata_link_warn(link, "link resume succeeded after %d retries\n",
3910 ATA_LINK_RESUME_TRIES - tries);
3911
3912 if ((rc = sata_link_debounce(link, params, deadline)))
3913 return rc;
3914
3915 /* clear SError, some PHYs require this even for SRST to work */
3916 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3917 rc = sata_scr_write(link, SCR_ERROR, serror);
3918
3919 return rc != -EINVAL ? rc : 0;
3920 }
3921
3922 /**
3923 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3924 * @link: ATA link to manipulate SControl for
3925 * @policy: LPM policy to configure
3926 * @spm_wakeup: initiate LPM transition to active state
3927 *
3928 * Manipulate the IPM field of the SControl register of @link
3929 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3930 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3931 * the link. This function also clears PHYRDY_CHG before
3932 * returning.
3933 *
3934 * LOCKING:
3935 * EH context.
3936 *
3937 * RETURNS:
3938 * 0 on success, -errno otherwise.
3939 */
3940 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3941 bool spm_wakeup)
3942 {
3943 struct ata_eh_context *ehc = &link->eh_context;
3944 bool woken_up = false;
3945 u32 scontrol;
3946 int rc;
3947
3948 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3949 if (rc)
3950 return rc;
3951
3952 switch (policy) {
3953 case ATA_LPM_MAX_POWER:
3954 /* disable all LPM transitions */
3955 scontrol |= (0x7 << 8);
3956 /* initiate transition to active state */
3957 if (spm_wakeup) {
3958 scontrol |= (0x4 << 12);
3959 woken_up = true;
3960 }
3961 break;
3962 case ATA_LPM_MED_POWER:
3963 /* allow LPM to PARTIAL */
3964 scontrol &= ~(0x1 << 8);
3965 scontrol |= (0x6 << 8);
3966 break;
3967 case ATA_LPM_MIN_POWER:
3968 if (ata_link_nr_enabled(link) > 0)
3969 /* no restrictions on LPM transitions */
3970 scontrol &= ~(0x7 << 8);
3971 else {
3972 /* empty port, power off */
3973 scontrol &= ~0xf;
3974 scontrol |= (0x1 << 2);
3975 }
3976 break;
3977 default:
3978 WARN_ON(1);
3979 }
3980
3981 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3982 if (rc)
3983 return rc;
3984
3985 /* give the link time to transit out of LPM state */
3986 if (woken_up)
3987 msleep(10);
3988
3989 /* clear PHYRDY_CHG from SError */
3990 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3991 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3992 }
3993
3994 /**
3995 * ata_std_prereset - prepare for reset
3996 * @link: ATA link to be reset
3997 * @deadline: deadline jiffies for the operation
3998 *
3999 * @link is about to be reset. Initialize it. Failure from
4000 * prereset makes libata abort whole reset sequence and give up
4001 * that port, so prereset should be best-effort. It does its
4002 * best to prepare for reset sequence but if things go wrong, it
4003 * should just whine, not fail.
4004 *
4005 * LOCKING:
4006 * Kernel thread context (may sleep)
4007 *
4008 * RETURNS:
4009 * 0 on success, -errno otherwise.
4010 */
4011 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4012 {
4013 struct ata_port *ap = link->ap;
4014 struct ata_eh_context *ehc = &link->eh_context;
4015 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4016 int rc;
4017
4018 /* if we're about to do hardreset, nothing more to do */
4019 if (ehc->i.action & ATA_EH_HARDRESET)
4020 return 0;
4021
4022 /* if SATA, resume link */
4023 if (ap->flags & ATA_FLAG_SATA) {
4024 rc = sata_link_resume(link, timing, deadline);
4025 /* whine about phy resume failure but proceed */
4026 if (rc && rc != -EOPNOTSUPP)
4027 ata_link_warn(link,
4028 "failed to resume link for reset (errno=%d)\n",
4029 rc);
4030 }
4031
4032 /* no point in trying softreset on offline link */
4033 if (ata_phys_link_offline(link))
4034 ehc->i.action &= ~ATA_EH_SOFTRESET;
4035
4036 return 0;
4037 }
4038
4039 /**
4040 * sata_link_hardreset - reset link via SATA phy reset
4041 * @link: link to reset
4042 * @timing: timing parameters { interval, duration, timeout } in msec
4043 * @deadline: deadline jiffies for the operation
4044 * @online: optional out parameter indicating link onlineness
4045 * @check_ready: optional callback to check link readiness
4046 *
4047 * SATA phy-reset @link using DET bits of SControl register.
4048 * After hardreset, link readiness is waited upon using
4049 * ata_wait_ready() if @check_ready is specified. LLDs are
4050 * allowed to not specify @check_ready and wait itself after this
4051 * function returns. Device classification is LLD's
4052 * responsibility.
4053 *
4054 * *@online is set to one iff reset succeeded and @link is online
4055 * after reset.
4056 *
4057 * LOCKING:
4058 * Kernel thread context (may sleep)
4059 *
4060 * RETURNS:
4061 * 0 on success, -errno otherwise.
4062 */
4063 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4064 unsigned long deadline,
4065 bool *online, int (*check_ready)(struct ata_link *))
4066 {
4067 u32 scontrol;
4068 int rc;
4069
4070 DPRINTK("ENTER\n");
4071
4072 if (online)
4073 *online = false;
4074
4075 if (sata_set_spd_needed(link)) {
4076 /* SATA spec says nothing about how to reconfigure
4077 * spd. To be on the safe side, turn off phy during
4078 * reconfiguration. This works for at least ICH7 AHCI
4079 * and Sil3124.
4080 */
4081 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4082 goto out;
4083
4084 scontrol = (scontrol & 0x0f0) | 0x304;
4085
4086 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4087 goto out;
4088
4089 sata_set_spd(link);
4090 }
4091
4092 /* issue phy wake/reset */
4093 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4094 goto out;
4095
4096 scontrol = (scontrol & 0x0f0) | 0x301;
4097
4098 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4099 goto out;
4100
4101 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4102 * 10.4.2 says at least 1 ms.
4103 */
4104 ata_msleep(link->ap, 1);
4105
4106 /* bring link back */
4107 rc = sata_link_resume(link, timing, deadline);
4108 if (rc)
4109 goto out;
4110 /* if link is offline nothing more to do */
4111 if (ata_phys_link_offline(link))
4112 goto out;
4113
4114 /* Link is online. From this point, -ENODEV too is an error. */
4115 if (online)
4116 *online = true;
4117
4118 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4119 /* If PMP is supported, we have to do follow-up SRST.
4120 * Some PMPs don't send D2H Reg FIS after hardreset if
4121 * the first port is empty. Wait only for
4122 * ATA_TMOUT_PMP_SRST_WAIT.
4123 */
4124 if (check_ready) {
4125 unsigned long pmp_deadline;
4126
4127 pmp_deadline = ata_deadline(jiffies,
4128 ATA_TMOUT_PMP_SRST_WAIT);
4129 if (time_after(pmp_deadline, deadline))
4130 pmp_deadline = deadline;
4131 ata_wait_ready(link, pmp_deadline, check_ready);
4132 }
4133 rc = -EAGAIN;
4134 goto out;
4135 }
4136
4137 rc = 0;
4138 if (check_ready)
4139 rc = ata_wait_ready(link, deadline, check_ready);
4140 out:
4141 if (rc && rc != -EAGAIN) {
4142 /* online is set iff link is online && reset succeeded */
4143 if (online)
4144 *online = false;
4145 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4146 }
4147 DPRINTK("EXIT, rc=%d\n", rc);
4148 return rc;
4149 }
4150
4151 /**
4152 * sata_std_hardreset - COMRESET w/o waiting or classification
4153 * @link: link to reset
4154 * @class: resulting class of attached device
4155 * @deadline: deadline jiffies for the operation
4156 *
4157 * Standard SATA COMRESET w/o waiting or classification.
4158 *
4159 * LOCKING:
4160 * Kernel thread context (may sleep)
4161 *
4162 * RETURNS:
4163 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4164 */
4165 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4166 unsigned long deadline)
4167 {
4168 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4169 bool online;
4170 int rc;
4171
4172 /* do hardreset */
4173 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4174 return online ? -EAGAIN : rc;
4175 }
4176
4177 /**
4178 * ata_std_postreset - standard postreset callback
4179 * @link: the target ata_link
4180 * @classes: classes of attached devices
4181 *
4182 * This function is invoked after a successful reset. Note that
4183 * the device might have been reset more than once using
4184 * different reset methods before postreset is invoked.
4185 *
4186 * LOCKING:
4187 * Kernel thread context (may sleep)
4188 */
4189 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4190 {
4191 u32 serror;
4192
4193 DPRINTK("ENTER\n");
4194
4195 /* reset complete, clear SError */
4196 if (!sata_scr_read(link, SCR_ERROR, &serror))
4197 sata_scr_write(link, SCR_ERROR, serror);
4198
4199 /* print link status */
4200 sata_print_link_status(link);
4201
4202 DPRINTK("EXIT\n");
4203 }
4204
4205 /**
4206 * ata_dev_same_device - Determine whether new ID matches configured device
4207 * @dev: device to compare against
4208 * @new_class: class of the new device
4209 * @new_id: IDENTIFY page of the new device
4210 *
4211 * Compare @new_class and @new_id against @dev and determine
4212 * whether @dev is the device indicated by @new_class and
4213 * @new_id.
4214 *
4215 * LOCKING:
4216 * None.
4217 *
4218 * RETURNS:
4219 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4220 */
4221 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4222 const u16 *new_id)
4223 {
4224 const u16 *old_id = dev->id;
4225 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4226 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4227
4228 if (dev->class != new_class) {
4229 ata_dev_info(dev, "class mismatch %d != %d\n",
4230 dev->class, new_class);
4231 return 0;
4232 }
4233
4234 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4235 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4236 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4237 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4238
4239 if (strcmp(model[0], model[1])) {
4240 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4241 model[0], model[1]);
4242 return 0;
4243 }
4244
4245 if (strcmp(serial[0], serial[1])) {
4246 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4247 serial[0], serial[1]);
4248 return 0;
4249 }
4250
4251 return 1;
4252 }
4253
4254 /**
4255 * ata_dev_reread_id - Re-read IDENTIFY data
4256 * @dev: target ATA device
4257 * @readid_flags: read ID flags
4258 *
4259 * Re-read IDENTIFY page and make sure @dev is still attached to
4260 * the port.
4261 *
4262 * LOCKING:
4263 * Kernel thread context (may sleep)
4264 *
4265 * RETURNS:
4266 * 0 on success, negative errno otherwise
4267 */
4268 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4269 {
4270 unsigned int class = dev->class;
4271 u16 *id = (void *)dev->link->ap->sector_buf;
4272 int rc;
4273
4274 /* read ID data */
4275 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4276 if (rc)
4277 return rc;
4278
4279 /* is the device still there? */
4280 if (!ata_dev_same_device(dev, class, id))
4281 return -ENODEV;
4282
4283 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4284 return 0;
4285 }
4286
4287 /**
4288 * ata_dev_revalidate - Revalidate ATA device
4289 * @dev: device to revalidate
4290 * @new_class: new class code
4291 * @readid_flags: read ID flags
4292 *
4293 * Re-read IDENTIFY page, make sure @dev is still attached to the
4294 * port and reconfigure it according to the new IDENTIFY page.
4295 *
4296 * LOCKING:
4297 * Kernel thread context (may sleep)
4298 *
4299 * RETURNS:
4300 * 0 on success, negative errno otherwise
4301 */
4302 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4303 unsigned int readid_flags)
4304 {
4305 u64 n_sectors = dev->n_sectors;
4306 u64 n_native_sectors = dev->n_native_sectors;
4307 int rc;
4308
4309 if (!ata_dev_enabled(dev))
4310 return -ENODEV;
4311
4312 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4313 if (ata_class_enabled(new_class) &&
4314 new_class != ATA_DEV_ATA &&
4315 new_class != ATA_DEV_ATAPI &&
4316 new_class != ATA_DEV_ZAC &&
4317 new_class != ATA_DEV_SEMB) {
4318 ata_dev_info(dev, "class mismatch %u != %u\n",
4319 dev->class, new_class);
4320 rc = -ENODEV;
4321 goto fail;
4322 }
4323
4324 /* re-read ID */
4325 rc = ata_dev_reread_id(dev, readid_flags);
4326 if (rc)
4327 goto fail;
4328
4329 /* configure device according to the new ID */
4330 rc = ata_dev_configure(dev);
4331 if (rc)
4332 goto fail;
4333
4334 /* verify n_sectors hasn't changed */
4335 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4336 dev->n_sectors == n_sectors)
4337 return 0;
4338
4339 /* n_sectors has changed */
4340 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4341 (unsigned long long)n_sectors,
4342 (unsigned long long)dev->n_sectors);
4343
4344 /*
4345 * Something could have caused HPA to be unlocked
4346 * involuntarily. If n_native_sectors hasn't changed and the
4347 * new size matches it, keep the device.
4348 */
4349 if (dev->n_native_sectors == n_native_sectors &&
4350 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4351 ata_dev_warn(dev,
4352 "new n_sectors matches native, probably "
4353 "late HPA unlock, n_sectors updated\n");
4354 /* use the larger n_sectors */
4355 return 0;
4356 }
4357
4358 /*
4359 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4360 * unlocking HPA in those cases.
4361 *
4362 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4363 */
4364 if (dev->n_native_sectors == n_native_sectors &&
4365 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4366 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4367 ata_dev_warn(dev,
4368 "old n_sectors matches native, probably "
4369 "late HPA lock, will try to unlock HPA\n");
4370 /* try unlocking HPA */
4371 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4372 rc = -EIO;
4373 } else
4374 rc = -ENODEV;
4375
4376 /* restore original n_[native_]sectors and fail */
4377 dev->n_native_sectors = n_native_sectors;
4378 dev->n_sectors = n_sectors;
4379 fail:
4380 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4381 return rc;
4382 }
4383
4384 struct ata_blacklist_entry {
4385 const char *model_num;
4386 const char *model_rev;
4387 unsigned long horkage;
4388 };
4389
4390 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4391 /* Devices with DMA related problems under Linux */
4392 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4393 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4394 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4395 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4396 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4397 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4398 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4399 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4400 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4401 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4402 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4403 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4404 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4405 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4406 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4407 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4408 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4409 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4410 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4411 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4412 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4413 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4414 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4415 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4416 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4417 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4418 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4419 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4420 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4421 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4422 /* Odd clown on sil3726/4726 PMPs */
4423 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4424
4425 /* Weird ATAPI devices */
4426 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4427 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4428 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4429 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4430
4431 /*
4432 * Causes silent data corruption with higher max sects.
4433 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4434 */
4435 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4436
4437 /*
4438 * These devices time out with higher max sects.
4439 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4440 */
4441 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4442 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4443
4444 /* Devices we expect to fail diagnostics */
4445
4446 /* Devices where NCQ should be avoided */
4447 /* NCQ is slow */
4448 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4449 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4450 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4451 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4452 /* NCQ is broken */
4453 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4454 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4455 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4456 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4457 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4458
4459 /* Seagate NCQ + FLUSH CACHE firmware bug */
4460 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4461 ATA_HORKAGE_FIRMWARE_WARN },
4462
4463 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4464 ATA_HORKAGE_FIRMWARE_WARN },
4465
4466 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4467 ATA_HORKAGE_FIRMWARE_WARN },
4468
4469 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4470 ATA_HORKAGE_FIRMWARE_WARN },
4471
4472 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4473 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4474 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4475 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4476
4477 /* Blacklist entries taken from Silicon Image 3124/3132
4478 Windows driver .inf file - also several Linux problem reports */
4479 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4480 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4481 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4482
4483 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4484 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4485
4486 /* devices which puke on READ_NATIVE_MAX */
4487 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4488 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4489 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4490 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4491
4492 /* this one allows HPA unlocking but fails IOs on the area */
4493 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4494
4495 /* Devices which report 1 sector over size HPA */
4496 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4497 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4498 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4499
4500 /* Devices which get the IVB wrong */
4501 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4502 /* Maybe we should just blacklist TSSTcorp... */
4503 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4504
4505 /* Devices that do not need bridging limits applied */
4506 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4507 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4508
4509 /* Devices which aren't very happy with higher link speeds */
4510 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4511 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4512
4513 /*
4514 * Devices which choke on SETXFER. Applies only if both the
4515 * device and controller are SATA.
4516 */
4517 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4518 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4519 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4520 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4521 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4522
4523 /* devices that don't properly handle queued TRIM commands */
4524 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4525 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4526 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4527 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4528 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4529 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4530 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4531 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4532 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4533 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4534 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4535 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4536 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4537 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4538
4539 /* devices that don't properly handle TRIM commands */
4540 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4541
4542 /*
4543 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4544 * (Return Zero After Trim) flags in the ATA Command Set are
4545 * unreliable in the sense that they only define what happens if
4546 * the device successfully executed the DSM TRIM command. TRIM
4547 * is only advisory, however, and the device is free to silently
4548 * ignore all or parts of the request.
4549 *
4550 * Whitelist drives that are known to reliably return zeroes
4551 * after TRIM.
4552 */
4553
4554 /*
4555 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4556 * that model before whitelisting all other intel SSDs.
4557 */
4558 { "INTEL*SSDSC2MH*", NULL, 0, },
4559
4560 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4562 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4564 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4565 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4566 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4567
4568 /*
4569 * Some WD SATA-I drives spin up and down erratically when the link
4570 * is put into the slumber mode. We don't have full list of the
4571 * affected devices. Disable LPM if the device matches one of the
4572 * known prefixes and is SATA-1. As a side effect LPM partial is
4573 * lost too.
4574 *
4575 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4576 */
4577 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4578 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4579 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4580 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4581 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4582 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4583 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4584
4585 /* End Marker */
4586 { }
4587 };
4588
4589 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4590 {
4591 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4592 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4593 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4594
4595 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4596 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4597
4598 while (ad->model_num) {
4599 if (glob_match(ad->model_num, model_num)) {
4600 if (ad->model_rev == NULL)
4601 return ad->horkage;
4602 if (glob_match(ad->model_rev, model_rev))
4603 return ad->horkage;
4604 }
4605 ad++;
4606 }
4607 return 0;
4608 }
4609
4610 static int ata_dma_blacklisted(const struct ata_device *dev)
4611 {
4612 /* We don't support polling DMA.
4613 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4614 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4615 */
4616 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4617 (dev->flags & ATA_DFLAG_CDB_INTR))
4618 return 1;
4619 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4620 }
4621
4622 /**
4623 * ata_is_40wire - check drive side detection
4624 * @dev: device
4625 *
4626 * Perform drive side detection decoding, allowing for device vendors
4627 * who can't follow the documentation.
4628 */
4629
4630 static int ata_is_40wire(struct ata_device *dev)
4631 {
4632 if (dev->horkage & ATA_HORKAGE_IVB)
4633 return ata_drive_40wire_relaxed(dev->id);
4634 return ata_drive_40wire(dev->id);
4635 }
4636
4637 /**
4638 * cable_is_40wire - 40/80/SATA decider
4639 * @ap: port to consider
4640 *
4641 * This function encapsulates the policy for speed management
4642 * in one place. At the moment we don't cache the result but
4643 * there is a good case for setting ap->cbl to the result when
4644 * we are called with unknown cables (and figuring out if it
4645 * impacts hotplug at all).
4646 *
4647 * Return 1 if the cable appears to be 40 wire.
4648 */
4649
4650 static int cable_is_40wire(struct ata_port *ap)
4651 {
4652 struct ata_link *link;
4653 struct ata_device *dev;
4654
4655 /* If the controller thinks we are 40 wire, we are. */
4656 if (ap->cbl == ATA_CBL_PATA40)
4657 return 1;
4658
4659 /* If the controller thinks we are 80 wire, we are. */
4660 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4661 return 0;
4662
4663 /* If the system is known to be 40 wire short cable (eg
4664 * laptop), then we allow 80 wire modes even if the drive
4665 * isn't sure.
4666 */
4667 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4668 return 0;
4669
4670 /* If the controller doesn't know, we scan.
4671 *
4672 * Note: We look for all 40 wire detects at this point. Any
4673 * 80 wire detect is taken to be 80 wire cable because
4674 * - in many setups only the one drive (slave if present) will
4675 * give a valid detect
4676 * - if you have a non detect capable drive you don't want it
4677 * to colour the choice
4678 */
4679 ata_for_each_link(link, ap, EDGE) {
4680 ata_for_each_dev(dev, link, ENABLED) {
4681 if (!ata_is_40wire(dev))
4682 return 0;
4683 }
4684 }
4685 return 1;
4686 }
4687
4688 /**
4689 * ata_dev_xfermask - Compute supported xfermask of the given device
4690 * @dev: Device to compute xfermask for
4691 *
4692 * Compute supported xfermask of @dev and store it in
4693 * dev->*_mask. This function is responsible for applying all
4694 * known limits including host controller limits, device
4695 * blacklist, etc...
4696 *
4697 * LOCKING:
4698 * None.
4699 */
4700 static void ata_dev_xfermask(struct ata_device *dev)
4701 {
4702 struct ata_link *link = dev->link;
4703 struct ata_port *ap = link->ap;
4704 struct ata_host *host = ap->host;
4705 unsigned long xfer_mask;
4706
4707 /* controller modes available */
4708 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4709 ap->mwdma_mask, ap->udma_mask);
4710
4711 /* drive modes available */
4712 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4713 dev->mwdma_mask, dev->udma_mask);
4714 xfer_mask &= ata_id_xfermask(dev->id);
4715
4716 /*
4717 * CFA Advanced TrueIDE timings are not allowed on a shared
4718 * cable
4719 */
4720 if (ata_dev_pair(dev)) {
4721 /* No PIO5 or PIO6 */
4722 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4723 /* No MWDMA3 or MWDMA 4 */
4724 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4725 }
4726
4727 if (ata_dma_blacklisted(dev)) {
4728 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4729 ata_dev_warn(dev,
4730 "device is on DMA blacklist, disabling DMA\n");
4731 }
4732
4733 if ((host->flags & ATA_HOST_SIMPLEX) &&
4734 host->simplex_claimed && host->simplex_claimed != ap) {
4735 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4736 ata_dev_warn(dev,
4737 "simplex DMA is claimed by other device, disabling DMA\n");
4738 }
4739
4740 if (ap->flags & ATA_FLAG_NO_IORDY)
4741 xfer_mask &= ata_pio_mask_no_iordy(dev);
4742
4743 if (ap->ops->mode_filter)
4744 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4745
4746 /* Apply cable rule here. Don't apply it early because when
4747 * we handle hot plug the cable type can itself change.
4748 * Check this last so that we know if the transfer rate was
4749 * solely limited by the cable.
4750 * Unknown or 80 wire cables reported host side are checked
4751 * drive side as well. Cases where we know a 40wire cable
4752 * is used safely for 80 are not checked here.
4753 */
4754 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4755 /* UDMA/44 or higher would be available */
4756 if (cable_is_40wire(ap)) {
4757 ata_dev_warn(dev,
4758 "limited to UDMA/33 due to 40-wire cable\n");
4759 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4760 }
4761
4762 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4763 &dev->mwdma_mask, &dev->udma_mask);
4764 }
4765
4766 /**
4767 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4768 * @dev: Device to which command will be sent
4769 *
4770 * Issue SET FEATURES - XFER MODE command to device @dev
4771 * on port @ap.
4772 *
4773 * LOCKING:
4774 * PCI/etc. bus probe sem.
4775 *
4776 * RETURNS:
4777 * 0 on success, AC_ERR_* mask otherwise.
4778 */
4779
4780 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4781 {
4782 struct ata_taskfile tf;
4783 unsigned int err_mask;
4784
4785 /* set up set-features taskfile */
4786 DPRINTK("set features - xfer mode\n");
4787
4788 /* Some controllers and ATAPI devices show flaky interrupt
4789 * behavior after setting xfer mode. Use polling instead.
4790 */
4791 ata_tf_init(dev, &tf);
4792 tf.command = ATA_CMD_SET_FEATURES;
4793 tf.feature = SETFEATURES_XFER;
4794 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4795 tf.protocol = ATA_PROT_NODATA;
4796 /* If we are using IORDY we must send the mode setting command */
4797 if (ata_pio_need_iordy(dev))
4798 tf.nsect = dev->xfer_mode;
4799 /* If the device has IORDY and the controller does not - turn it off */
4800 else if (ata_id_has_iordy(dev->id))
4801 tf.nsect = 0x01;
4802 else /* In the ancient relic department - skip all of this */
4803 return 0;
4804
4805 /* On some disks, this command causes spin-up, so we need longer timeout */
4806 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4807
4808 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4809 return err_mask;
4810 }
4811
4812 /**
4813 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4814 * @dev: Device to which command will be sent
4815 * @enable: Whether to enable or disable the feature
4816 * @feature: The sector count represents the feature to set
4817 *
4818 * Issue SET FEATURES - SATA FEATURES command to device @dev
4819 * on port @ap with sector count
4820 *
4821 * LOCKING:
4822 * PCI/etc. bus probe sem.
4823 *
4824 * RETURNS:
4825 * 0 on success, AC_ERR_* mask otherwise.
4826 */
4827 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4828 {
4829 struct ata_taskfile tf;
4830 unsigned int err_mask;
4831 unsigned long timeout = 0;
4832
4833 /* set up set-features taskfile */
4834 DPRINTK("set features - SATA features\n");
4835
4836 ata_tf_init(dev, &tf);
4837 tf.command = ATA_CMD_SET_FEATURES;
4838 tf.feature = enable;
4839 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4840 tf.protocol = ATA_PROT_NODATA;
4841 tf.nsect = feature;
4842
4843 if (enable == SETFEATURES_SPINUP)
4844 timeout = ata_probe_timeout ?
4845 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4846 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4847
4848 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4849 return err_mask;
4850 }
4851 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4852
4853 /**
4854 * ata_dev_init_params - Issue INIT DEV PARAMS command
4855 * @dev: Device to which command will be sent
4856 * @heads: Number of heads (taskfile parameter)
4857 * @sectors: Number of sectors (taskfile parameter)
4858 *
4859 * LOCKING:
4860 * Kernel thread context (may sleep)
4861 *
4862 * RETURNS:
4863 * 0 on success, AC_ERR_* mask otherwise.
4864 */
4865 static unsigned int ata_dev_init_params(struct ata_device *dev,
4866 u16 heads, u16 sectors)
4867 {
4868 struct ata_taskfile tf;
4869 unsigned int err_mask;
4870
4871 /* Number of sectors per track 1-255. Number of heads 1-16 */
4872 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4873 return AC_ERR_INVALID;
4874
4875 /* set up init dev params taskfile */
4876 DPRINTK("init dev params \n");
4877
4878 ata_tf_init(dev, &tf);
4879 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4880 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4881 tf.protocol = ATA_PROT_NODATA;
4882 tf.nsect = sectors;
4883 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4884
4885 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4886 /* A clean abort indicates an original or just out of spec drive
4887 and we should continue as we issue the setup based on the
4888 drive reported working geometry */
4889 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4890 err_mask = 0;
4891
4892 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4893 return err_mask;
4894 }
4895
4896 /**
4897 * atapi_check_dma - Check whether ATAPI DMA can be supported
4898 * @qc: Metadata associated with taskfile to check
4899 *
4900 * Allow low-level driver to filter ATA PACKET commands, returning
4901 * a status indicating whether or not it is OK to use DMA for the
4902 * supplied PACKET command.
4903 *
4904 * LOCKING:
4905 * spin_lock_irqsave(host lock)
4906 *
4907 * RETURNS: 0 when ATAPI DMA can be used
4908 * nonzero otherwise
4909 */
4910 int atapi_check_dma(struct ata_queued_cmd *qc)
4911 {
4912 struct ata_port *ap = qc->ap;
4913
4914 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4915 * few ATAPI devices choke on such DMA requests.
4916 */
4917 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4918 unlikely(qc->nbytes & 15))
4919 return 1;
4920
4921 if (ap->ops->check_atapi_dma)
4922 return ap->ops->check_atapi_dma(qc);
4923
4924 return 0;
4925 }
4926
4927 /**
4928 * ata_std_qc_defer - Check whether a qc needs to be deferred
4929 * @qc: ATA command in question
4930 *
4931 * Non-NCQ commands cannot run with any other command, NCQ or
4932 * not. As upper layer only knows the queue depth, we are
4933 * responsible for maintaining exclusion. This function checks
4934 * whether a new command @qc can be issued.
4935 *
4936 * LOCKING:
4937 * spin_lock_irqsave(host lock)
4938 *
4939 * RETURNS:
4940 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4941 */
4942 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4943 {
4944 struct ata_link *link = qc->dev->link;
4945
4946 if (ata_is_ncq(qc->tf.protocol)) {
4947 if (!ata_tag_valid(link->active_tag))
4948 return 0;
4949 } else {
4950 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4951 return 0;
4952 }
4953
4954 return ATA_DEFER_LINK;
4955 }
4956
4957 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4958
4959 /**
4960 * ata_sg_init - Associate command with scatter-gather table.
4961 * @qc: Command to be associated
4962 * @sg: Scatter-gather table.
4963 * @n_elem: Number of elements in s/g table.
4964 *
4965 * Initialize the data-related elements of queued_cmd @qc
4966 * to point to a scatter-gather table @sg, containing @n_elem
4967 * elements.
4968 *
4969 * LOCKING:
4970 * spin_lock_irqsave(host lock)
4971 */
4972 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4973 unsigned int n_elem)
4974 {
4975 qc->sg = sg;
4976 qc->n_elem = n_elem;
4977 qc->cursg = qc->sg;
4978 }
4979
4980 #ifdef CONFIG_HAS_DMA
4981
4982 /**
4983 * ata_sg_clean - Unmap DMA memory associated with command
4984 * @qc: Command containing DMA memory to be released
4985 *
4986 * Unmap all mapped DMA memory associated with this command.
4987 *
4988 * LOCKING:
4989 * spin_lock_irqsave(host lock)
4990 */
4991 static void ata_sg_clean(struct ata_queued_cmd *qc)
4992 {
4993 struct ata_port *ap = qc->ap;
4994 struct scatterlist *sg = qc->sg;
4995 int dir = qc->dma_dir;
4996
4997 WARN_ON_ONCE(sg == NULL);
4998
4999 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5000
5001 if (qc->n_elem)
5002 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5003
5004 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5005 qc->sg = NULL;
5006 }
5007
5008 /**
5009 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5010 * @qc: Command with scatter-gather table to be mapped.
5011 *
5012 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5013 *
5014 * LOCKING:
5015 * spin_lock_irqsave(host lock)
5016 *
5017 * RETURNS:
5018 * Zero on success, negative on error.
5019 *
5020 */
5021 static int ata_sg_setup(struct ata_queued_cmd *qc)
5022 {
5023 struct ata_port *ap = qc->ap;
5024 unsigned int n_elem;
5025
5026 VPRINTK("ENTER, ata%u\n", ap->print_id);
5027
5028 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5029 if (n_elem < 1)
5030 return -1;
5031
5032 DPRINTK("%d sg elements mapped\n", n_elem);
5033 qc->orig_n_elem = qc->n_elem;
5034 qc->n_elem = n_elem;
5035 qc->flags |= ATA_QCFLAG_DMAMAP;
5036
5037 return 0;
5038 }
5039
5040 #else /* !CONFIG_HAS_DMA */
5041
5042 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5043 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5044
5045 #endif /* !CONFIG_HAS_DMA */
5046
5047 /**
5048 * swap_buf_le16 - swap halves of 16-bit words in place
5049 * @buf: Buffer to swap
5050 * @buf_words: Number of 16-bit words in buffer.
5051 *
5052 * Swap halves of 16-bit words if needed to convert from
5053 * little-endian byte order to native cpu byte order, or
5054 * vice-versa.
5055 *
5056 * LOCKING:
5057 * Inherited from caller.
5058 */
5059 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5060 {
5061 #ifdef __BIG_ENDIAN
5062 unsigned int i;
5063
5064 for (i = 0; i < buf_words; i++)
5065 buf[i] = le16_to_cpu(buf[i]);
5066 #endif /* __BIG_ENDIAN */
5067 }
5068
5069 /**
5070 * ata_qc_new_init - Request an available ATA command, and initialize it
5071 * @dev: Device from whom we request an available command structure
5072 * @tag: tag
5073 *
5074 * LOCKING:
5075 * None.
5076 */
5077
5078 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5079 {
5080 struct ata_port *ap = dev->link->ap;
5081 struct ata_queued_cmd *qc;
5082
5083 /* no command while frozen */
5084 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5085 return NULL;
5086
5087 /* libsas case */
5088 if (ap->flags & ATA_FLAG_SAS_HOST) {
5089 tag = ata_sas_allocate_tag(ap);
5090 if (tag < 0)
5091 return NULL;
5092 }
5093
5094 qc = __ata_qc_from_tag(ap, tag);
5095 qc->tag = tag;
5096 qc->scsicmd = NULL;
5097 qc->ap = ap;
5098 qc->dev = dev;
5099
5100 ata_qc_reinit(qc);
5101
5102 return qc;
5103 }
5104
5105 /**
5106 * ata_qc_free - free unused ata_queued_cmd
5107 * @qc: Command to complete
5108 *
5109 * Designed to free unused ata_queued_cmd object
5110 * in case something prevents using it.
5111 *
5112 * LOCKING:
5113 * spin_lock_irqsave(host lock)
5114 */
5115 void ata_qc_free(struct ata_queued_cmd *qc)
5116 {
5117 struct ata_port *ap;
5118 unsigned int tag;
5119
5120 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5121 ap = qc->ap;
5122
5123 qc->flags = 0;
5124 tag = qc->tag;
5125 if (likely(ata_tag_valid(tag))) {
5126 qc->tag = ATA_TAG_POISON;
5127 if (ap->flags & ATA_FLAG_SAS_HOST)
5128 ata_sas_free_tag(tag, ap);
5129 }
5130 }
5131
5132 void __ata_qc_complete(struct ata_queued_cmd *qc)
5133 {
5134 struct ata_port *ap;
5135 struct ata_link *link;
5136
5137 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5138 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5139 ap = qc->ap;
5140 link = qc->dev->link;
5141
5142 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5143 ata_sg_clean(qc);
5144
5145 /* command should be marked inactive atomically with qc completion */
5146 if (ata_is_ncq(qc->tf.protocol)) {
5147 link->sactive &= ~(1 << qc->tag);
5148 if (!link->sactive)
5149 ap->nr_active_links--;
5150 } else {
5151 link->active_tag = ATA_TAG_POISON;
5152 ap->nr_active_links--;
5153 }
5154
5155 /* clear exclusive status */
5156 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5157 ap->excl_link == link))
5158 ap->excl_link = NULL;
5159
5160 /* atapi: mark qc as inactive to prevent the interrupt handler
5161 * from completing the command twice later, before the error handler
5162 * is called. (when rc != 0 and atapi request sense is needed)
5163 */
5164 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5165 ap->qc_active &= ~(1 << qc->tag);
5166
5167 /* call completion callback */
5168 qc->complete_fn(qc);
5169 }
5170
5171 static void fill_result_tf(struct ata_queued_cmd *qc)
5172 {
5173 struct ata_port *ap = qc->ap;
5174
5175 qc->result_tf.flags = qc->tf.flags;
5176 ap->ops->qc_fill_rtf(qc);
5177 }
5178
5179 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5180 {
5181 struct ata_device *dev = qc->dev;
5182
5183 if (!ata_is_data(qc->tf.protocol))
5184 return;
5185
5186 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5187 return;
5188
5189 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5190 }
5191
5192 /**
5193 * ata_qc_complete - Complete an active ATA command
5194 * @qc: Command to complete
5195 *
5196 * Indicate to the mid and upper layers that an ATA command has
5197 * completed, with either an ok or not-ok status.
5198 *
5199 * Refrain from calling this function multiple times when
5200 * successfully completing multiple NCQ commands.
5201 * ata_qc_complete_multiple() should be used instead, which will
5202 * properly update IRQ expect state.
5203 *
5204 * LOCKING:
5205 * spin_lock_irqsave(host lock)
5206 */
5207 void ata_qc_complete(struct ata_queued_cmd *qc)
5208 {
5209 struct ata_port *ap = qc->ap;
5210
5211 /* Trigger the LED (if available) */
5212 ledtrig_disk_activity();
5213
5214 /* XXX: New EH and old EH use different mechanisms to
5215 * synchronize EH with regular execution path.
5216 *
5217 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5218 * Normal execution path is responsible for not accessing a
5219 * failed qc. libata core enforces the rule by returning NULL
5220 * from ata_qc_from_tag() for failed qcs.
5221 *
5222 * Old EH depends on ata_qc_complete() nullifying completion
5223 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5224 * not synchronize with interrupt handler. Only PIO task is
5225 * taken care of.
5226 */
5227 if (ap->ops->error_handler) {
5228 struct ata_device *dev = qc->dev;
5229 struct ata_eh_info *ehi = &dev->link->eh_info;
5230
5231 if (unlikely(qc->err_mask))
5232 qc->flags |= ATA_QCFLAG_FAILED;
5233
5234 /*
5235 * Finish internal commands without any further processing
5236 * and always with the result TF filled.
5237 */
5238 if (unlikely(ata_tag_internal(qc->tag))) {
5239 fill_result_tf(qc);
5240 trace_ata_qc_complete_internal(qc);
5241 __ata_qc_complete(qc);
5242 return;
5243 }
5244
5245 /*
5246 * Non-internal qc has failed. Fill the result TF and
5247 * summon EH.
5248 */
5249 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5250 fill_result_tf(qc);
5251 trace_ata_qc_complete_failed(qc);
5252 ata_qc_schedule_eh(qc);
5253 return;
5254 }
5255
5256 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5257
5258 /* read result TF if requested */
5259 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5260 fill_result_tf(qc);
5261
5262 trace_ata_qc_complete_done(qc);
5263 /* Some commands need post-processing after successful
5264 * completion.
5265 */
5266 switch (qc->tf.command) {
5267 case ATA_CMD_SET_FEATURES:
5268 if (qc->tf.feature != SETFEATURES_WC_ON &&
5269 qc->tf.feature != SETFEATURES_WC_OFF &&
5270 qc->tf.feature != SETFEATURES_RA_ON &&
5271 qc->tf.feature != SETFEATURES_RA_OFF)
5272 break;
5273 /* fall through */
5274 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5275 case ATA_CMD_SET_MULTI: /* multi_count changed */
5276 /* revalidate device */
5277 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5278 ata_port_schedule_eh(ap);
5279 break;
5280
5281 case ATA_CMD_SLEEP:
5282 dev->flags |= ATA_DFLAG_SLEEPING;
5283 break;
5284 }
5285
5286 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5287 ata_verify_xfer(qc);
5288
5289 __ata_qc_complete(qc);
5290 } else {
5291 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5292 return;
5293
5294 /* read result TF if failed or requested */
5295 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5296 fill_result_tf(qc);
5297
5298 __ata_qc_complete(qc);
5299 }
5300 }
5301
5302 /**
5303 * ata_qc_complete_multiple - Complete multiple qcs successfully
5304 * @ap: port in question
5305 * @qc_active: new qc_active mask
5306 *
5307 * Complete in-flight commands. This functions is meant to be
5308 * called from low-level driver's interrupt routine to complete
5309 * requests normally. ap->qc_active and @qc_active is compared
5310 * and commands are completed accordingly.
5311 *
5312 * Always use this function when completing multiple NCQ commands
5313 * from IRQ handlers instead of calling ata_qc_complete()
5314 * multiple times to keep IRQ expect status properly in sync.
5315 *
5316 * LOCKING:
5317 * spin_lock_irqsave(host lock)
5318 *
5319 * RETURNS:
5320 * Number of completed commands on success, -errno otherwise.
5321 */
5322 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5323 {
5324 int nr_done = 0;
5325 u32 done_mask;
5326
5327 done_mask = ap->qc_active ^ qc_active;
5328
5329 if (unlikely(done_mask & qc_active)) {
5330 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5331 ap->qc_active, qc_active);
5332 return -EINVAL;
5333 }
5334
5335 while (done_mask) {
5336 struct ata_queued_cmd *qc;
5337 unsigned int tag = __ffs(done_mask);
5338
5339 qc = ata_qc_from_tag(ap, tag);
5340 if (qc) {
5341 ata_qc_complete(qc);
5342 nr_done++;
5343 }
5344 done_mask &= ~(1 << tag);
5345 }
5346
5347 return nr_done;
5348 }
5349
5350 /**
5351 * ata_qc_issue - issue taskfile to device
5352 * @qc: command to issue to device
5353 *
5354 * Prepare an ATA command to submission to device.
5355 * This includes mapping the data into a DMA-able
5356 * area, filling in the S/G table, and finally
5357 * writing the taskfile to hardware, starting the command.
5358 *
5359 * LOCKING:
5360 * spin_lock_irqsave(host lock)
5361 */
5362 void ata_qc_issue(struct ata_queued_cmd *qc)
5363 {
5364 struct ata_port *ap = qc->ap;
5365 struct ata_link *link = qc->dev->link;
5366 u8 prot = qc->tf.protocol;
5367
5368 /* Make sure only one non-NCQ command is outstanding. The
5369 * check is skipped for old EH because it reuses active qc to
5370 * request ATAPI sense.
5371 */
5372 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5373
5374 if (ata_is_ncq(prot)) {
5375 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5376
5377 if (!link->sactive)
5378 ap->nr_active_links++;
5379 link->sactive |= 1 << qc->tag;
5380 } else {
5381 WARN_ON_ONCE(link->sactive);
5382
5383 ap->nr_active_links++;
5384 link->active_tag = qc->tag;
5385 }
5386
5387 qc->flags |= ATA_QCFLAG_ACTIVE;
5388 ap->qc_active |= 1 << qc->tag;
5389
5390 /*
5391 * We guarantee to LLDs that they will have at least one
5392 * non-zero sg if the command is a data command.
5393 */
5394 if (WARN_ON_ONCE(ata_is_data(prot) &&
5395 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5396 goto sys_err;
5397
5398 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5399 (ap->flags & ATA_FLAG_PIO_DMA)))
5400 if (ata_sg_setup(qc))
5401 goto sys_err;
5402
5403 /* if device is sleeping, schedule reset and abort the link */
5404 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5405 link->eh_info.action |= ATA_EH_RESET;
5406 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5407 ata_link_abort(link);
5408 return;
5409 }
5410
5411 ap->ops->qc_prep(qc);
5412 trace_ata_qc_issue(qc);
5413 qc->err_mask |= ap->ops->qc_issue(qc);
5414 if (unlikely(qc->err_mask))
5415 goto err;
5416 return;
5417
5418 sys_err:
5419 qc->err_mask |= AC_ERR_SYSTEM;
5420 err:
5421 ata_qc_complete(qc);
5422 }
5423
5424 /**
5425 * sata_scr_valid - test whether SCRs are accessible
5426 * @link: ATA link to test SCR accessibility for
5427 *
5428 * Test whether SCRs are accessible for @link.
5429 *
5430 * LOCKING:
5431 * None.
5432 *
5433 * RETURNS:
5434 * 1 if SCRs are accessible, 0 otherwise.
5435 */
5436 int sata_scr_valid(struct ata_link *link)
5437 {
5438 struct ata_port *ap = link->ap;
5439
5440 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5441 }
5442
5443 /**
5444 * sata_scr_read - read SCR register of the specified port
5445 * @link: ATA link to read SCR for
5446 * @reg: SCR to read
5447 * @val: Place to store read value
5448 *
5449 * Read SCR register @reg of @link into *@val. This function is
5450 * guaranteed to succeed if @link is ap->link, the cable type of
5451 * the port is SATA and the port implements ->scr_read.
5452 *
5453 * LOCKING:
5454 * None if @link is ap->link. Kernel thread context otherwise.
5455 *
5456 * RETURNS:
5457 * 0 on success, negative errno on failure.
5458 */
5459 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5460 {
5461 if (ata_is_host_link(link)) {
5462 if (sata_scr_valid(link))
5463 return link->ap->ops->scr_read(link, reg, val);
5464 return -EOPNOTSUPP;
5465 }
5466
5467 return sata_pmp_scr_read(link, reg, val);
5468 }
5469
5470 /**
5471 * sata_scr_write - write SCR register of the specified port
5472 * @link: ATA link to write SCR for
5473 * @reg: SCR to write
5474 * @val: value to write
5475 *
5476 * Write @val to SCR register @reg of @link. This function is
5477 * guaranteed to succeed if @link is ap->link, the cable type of
5478 * the port is SATA and the port implements ->scr_read.
5479 *
5480 * LOCKING:
5481 * None if @link is ap->link. Kernel thread context otherwise.
5482 *
5483 * RETURNS:
5484 * 0 on success, negative errno on failure.
5485 */
5486 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5487 {
5488 if (ata_is_host_link(link)) {
5489 if (sata_scr_valid(link))
5490 return link->ap->ops->scr_write(link, reg, val);
5491 return -EOPNOTSUPP;
5492 }
5493
5494 return sata_pmp_scr_write(link, reg, val);
5495 }
5496
5497 /**
5498 * sata_scr_write_flush - write SCR register of the specified port and flush
5499 * @link: ATA link to write SCR for
5500 * @reg: SCR to write
5501 * @val: value to write
5502 *
5503 * This function is identical to sata_scr_write() except that this
5504 * function performs flush after writing to the register.
5505 *
5506 * LOCKING:
5507 * None if @link is ap->link. Kernel thread context otherwise.
5508 *
5509 * RETURNS:
5510 * 0 on success, negative errno on failure.
5511 */
5512 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5513 {
5514 if (ata_is_host_link(link)) {
5515 int rc;
5516
5517 if (sata_scr_valid(link)) {
5518 rc = link->ap->ops->scr_write(link, reg, val);
5519 if (rc == 0)
5520 rc = link->ap->ops->scr_read(link, reg, &val);
5521 return rc;
5522 }
5523 return -EOPNOTSUPP;
5524 }
5525
5526 return sata_pmp_scr_write(link, reg, val);
5527 }
5528
5529 /**
5530 * ata_phys_link_online - test whether the given link is online
5531 * @link: ATA link to test
5532 *
5533 * Test whether @link is online. Note that this function returns
5534 * 0 if online status of @link cannot be obtained, so
5535 * ata_link_online(link) != !ata_link_offline(link).
5536 *
5537 * LOCKING:
5538 * None.
5539 *
5540 * RETURNS:
5541 * True if the port online status is available and online.
5542 */
5543 bool ata_phys_link_online(struct ata_link *link)
5544 {
5545 u32 sstatus;
5546
5547 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5548 ata_sstatus_online(sstatus))
5549 return true;
5550 return false;
5551 }
5552
5553 /**
5554 * ata_phys_link_offline - test whether the given link is offline
5555 * @link: ATA link to test
5556 *
5557 * Test whether @link is offline. Note that this function
5558 * returns 0 if offline status of @link cannot be obtained, so
5559 * ata_link_online(link) != !ata_link_offline(link).
5560 *
5561 * LOCKING:
5562 * None.
5563 *
5564 * RETURNS:
5565 * True if the port offline status is available and offline.
5566 */
5567 bool ata_phys_link_offline(struct ata_link *link)
5568 {
5569 u32 sstatus;
5570
5571 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5572 !ata_sstatus_online(sstatus))
5573 return true;
5574 return false;
5575 }
5576
5577 /**
5578 * ata_link_online - test whether the given link is online
5579 * @link: ATA link to test
5580 *
5581 * Test whether @link is online. This is identical to
5582 * ata_phys_link_online() when there's no slave link. When
5583 * there's a slave link, this function should only be called on
5584 * the master link and will return true if any of M/S links is
5585 * online.
5586 *
5587 * LOCKING:
5588 * None.
5589 *
5590 * RETURNS:
5591 * True if the port online status is available and online.
5592 */
5593 bool ata_link_online(struct ata_link *link)
5594 {
5595 struct ata_link *slave = link->ap->slave_link;
5596
5597 WARN_ON(link == slave); /* shouldn't be called on slave link */
5598
5599 return ata_phys_link_online(link) ||
5600 (slave && ata_phys_link_online(slave));
5601 }
5602
5603 /**
5604 * ata_link_offline - test whether the given link is offline
5605 * @link: ATA link to test
5606 *
5607 * Test whether @link is offline. This is identical to
5608 * ata_phys_link_offline() when there's no slave link. When
5609 * there's a slave link, this function should only be called on
5610 * the master link and will return true if both M/S links are
5611 * offline.
5612 *
5613 * LOCKING:
5614 * None.
5615 *
5616 * RETURNS:
5617 * True if the port offline status is available and offline.
5618 */
5619 bool ata_link_offline(struct ata_link *link)
5620 {
5621 struct ata_link *slave = link->ap->slave_link;
5622
5623 WARN_ON(link == slave); /* shouldn't be called on slave link */
5624
5625 return ata_phys_link_offline(link) &&
5626 (!slave || ata_phys_link_offline(slave));
5627 }
5628
5629 #ifdef CONFIG_PM
5630 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5631 unsigned int action, unsigned int ehi_flags,
5632 bool async)
5633 {
5634 struct ata_link *link;
5635 unsigned long flags;
5636
5637 /* Previous resume operation might still be in
5638 * progress. Wait for PM_PENDING to clear.
5639 */
5640 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5641 ata_port_wait_eh(ap);
5642 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5643 }
5644
5645 /* request PM ops to EH */
5646 spin_lock_irqsave(ap->lock, flags);
5647
5648 ap->pm_mesg = mesg;
5649 ap->pflags |= ATA_PFLAG_PM_PENDING;
5650 ata_for_each_link(link, ap, HOST_FIRST) {
5651 link->eh_info.action |= action;
5652 link->eh_info.flags |= ehi_flags;
5653 }
5654
5655 ata_port_schedule_eh(ap);
5656
5657 spin_unlock_irqrestore(ap->lock, flags);
5658
5659 if (!async) {
5660 ata_port_wait_eh(ap);
5661 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5662 }
5663 }
5664
5665 /*
5666 * On some hardware, device fails to respond after spun down for suspend. As
5667 * the device won't be used before being resumed, we don't need to touch the
5668 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5669 *
5670 * http://thread.gmane.org/gmane.linux.ide/46764
5671 */
5672 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5673 | ATA_EHI_NO_AUTOPSY
5674 | ATA_EHI_NO_RECOVERY;
5675
5676 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5677 {
5678 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5679 }
5680
5681 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5682 {
5683 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5684 }
5685
5686 static int ata_port_pm_suspend(struct device *dev)
5687 {
5688 struct ata_port *ap = to_ata_port(dev);
5689
5690 if (pm_runtime_suspended(dev))
5691 return 0;
5692
5693 ata_port_suspend(ap, PMSG_SUSPEND);
5694 return 0;
5695 }
5696
5697 static int ata_port_pm_freeze(struct device *dev)
5698 {
5699 struct ata_port *ap = to_ata_port(dev);
5700
5701 if (pm_runtime_suspended(dev))
5702 return 0;
5703
5704 ata_port_suspend(ap, PMSG_FREEZE);
5705 return 0;
5706 }
5707
5708 static int ata_port_pm_poweroff(struct device *dev)
5709 {
5710 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5711 return 0;
5712 }
5713
5714 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5715 | ATA_EHI_QUIET;
5716
5717 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5718 {
5719 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5720 }
5721
5722 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5723 {
5724 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5725 }
5726
5727 static int ata_port_pm_resume(struct device *dev)
5728 {
5729 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5730 pm_runtime_disable(dev);
5731 pm_runtime_set_active(dev);
5732 pm_runtime_enable(dev);
5733 return 0;
5734 }
5735
5736 /*
5737 * For ODDs, the upper layer will poll for media change every few seconds,
5738 * which will make it enter and leave suspend state every few seconds. And
5739 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5740 * is very little and the ODD may malfunction after constantly being reset.
5741 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5742 * ODD is attached to the port.
5743 */
5744 static int ata_port_runtime_idle(struct device *dev)
5745 {
5746 struct ata_port *ap = to_ata_port(dev);
5747 struct ata_link *link;
5748 struct ata_device *adev;
5749
5750 ata_for_each_link(link, ap, HOST_FIRST) {
5751 ata_for_each_dev(adev, link, ENABLED)
5752 if (adev->class == ATA_DEV_ATAPI &&
5753 !zpodd_dev_enabled(adev))
5754 return -EBUSY;
5755 }
5756
5757 return 0;
5758 }
5759
5760 static int ata_port_runtime_suspend(struct device *dev)
5761 {
5762 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5763 return 0;
5764 }
5765
5766 static int ata_port_runtime_resume(struct device *dev)
5767 {
5768 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5769 return 0;
5770 }
5771
5772 static const struct dev_pm_ops ata_port_pm_ops = {
5773 .suspend = ata_port_pm_suspend,
5774 .resume = ata_port_pm_resume,
5775 .freeze = ata_port_pm_freeze,
5776 .thaw = ata_port_pm_resume,
5777 .poweroff = ata_port_pm_poweroff,
5778 .restore = ata_port_pm_resume,
5779
5780 .runtime_suspend = ata_port_runtime_suspend,
5781 .runtime_resume = ata_port_runtime_resume,
5782 .runtime_idle = ata_port_runtime_idle,
5783 };
5784
5785 /* sas ports don't participate in pm runtime management of ata_ports,
5786 * and need to resume ata devices at the domain level, not the per-port
5787 * level. sas suspend/resume is async to allow parallel port recovery
5788 * since sas has multiple ata_port instances per Scsi_Host.
5789 */
5790 void ata_sas_port_suspend(struct ata_port *ap)
5791 {
5792 ata_port_suspend_async(ap, PMSG_SUSPEND);
5793 }
5794 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5795
5796 void ata_sas_port_resume(struct ata_port *ap)
5797 {
5798 ata_port_resume_async(ap, PMSG_RESUME);
5799 }
5800 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5801
5802 /**
5803 * ata_host_suspend - suspend host
5804 * @host: host to suspend
5805 * @mesg: PM message
5806 *
5807 * Suspend @host. Actual operation is performed by port suspend.
5808 */
5809 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5810 {
5811 host->dev->power.power_state = mesg;
5812 return 0;
5813 }
5814
5815 /**
5816 * ata_host_resume - resume host
5817 * @host: host to resume
5818 *
5819 * Resume @host. Actual operation is performed by port resume.
5820 */
5821 void ata_host_resume(struct ata_host *host)
5822 {
5823 host->dev->power.power_state = PMSG_ON;
5824 }
5825 #endif
5826
5827 struct device_type ata_port_type = {
5828 .name = "ata_port",
5829 #ifdef CONFIG_PM
5830 .pm = &ata_port_pm_ops,
5831 #endif
5832 };
5833
5834 /**
5835 * ata_dev_init - Initialize an ata_device structure
5836 * @dev: Device structure to initialize
5837 *
5838 * Initialize @dev in preparation for probing.
5839 *
5840 * LOCKING:
5841 * Inherited from caller.
5842 */
5843 void ata_dev_init(struct ata_device *dev)
5844 {
5845 struct ata_link *link = ata_dev_phys_link(dev);
5846 struct ata_port *ap = link->ap;
5847 unsigned long flags;
5848
5849 /* SATA spd limit is bound to the attached device, reset together */
5850 link->sata_spd_limit = link->hw_sata_spd_limit;
5851 link->sata_spd = 0;
5852
5853 /* High bits of dev->flags are used to record warm plug
5854 * requests which occur asynchronously. Synchronize using
5855 * host lock.
5856 */
5857 spin_lock_irqsave(ap->lock, flags);
5858 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5859 dev->horkage = 0;
5860 spin_unlock_irqrestore(ap->lock, flags);
5861
5862 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5863 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5864 dev->pio_mask = UINT_MAX;
5865 dev->mwdma_mask = UINT_MAX;
5866 dev->udma_mask = UINT_MAX;
5867 }
5868
5869 /**
5870 * ata_link_init - Initialize an ata_link structure
5871 * @ap: ATA port link is attached to
5872 * @link: Link structure to initialize
5873 * @pmp: Port multiplier port number
5874 *
5875 * Initialize @link.
5876 *
5877 * LOCKING:
5878 * Kernel thread context (may sleep)
5879 */
5880 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5881 {
5882 int i;
5883
5884 /* clear everything except for devices */
5885 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5886 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5887
5888 link->ap = ap;
5889 link->pmp = pmp;
5890 link->active_tag = ATA_TAG_POISON;
5891 link->hw_sata_spd_limit = UINT_MAX;
5892
5893 /* can't use iterator, ap isn't initialized yet */
5894 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5895 struct ata_device *dev = &link->device[i];
5896
5897 dev->link = link;
5898 dev->devno = dev - link->device;
5899 #ifdef CONFIG_ATA_ACPI
5900 dev->gtf_filter = ata_acpi_gtf_filter;
5901 #endif
5902 ata_dev_init(dev);
5903 }
5904 }
5905
5906 /**
5907 * sata_link_init_spd - Initialize link->sata_spd_limit
5908 * @link: Link to configure sata_spd_limit for
5909 *
5910 * Initialize @link->[hw_]sata_spd_limit to the currently
5911 * configured value.
5912 *
5913 * LOCKING:
5914 * Kernel thread context (may sleep).
5915 *
5916 * RETURNS:
5917 * 0 on success, -errno on failure.
5918 */
5919 int sata_link_init_spd(struct ata_link *link)
5920 {
5921 u8 spd;
5922 int rc;
5923
5924 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5925 if (rc)
5926 return rc;
5927
5928 spd = (link->saved_scontrol >> 4) & 0xf;
5929 if (spd)
5930 link->hw_sata_spd_limit &= (1 << spd) - 1;
5931
5932 ata_force_link_limits(link);
5933
5934 link->sata_spd_limit = link->hw_sata_spd_limit;
5935
5936 return 0;
5937 }
5938
5939 /**
5940 * ata_port_alloc - allocate and initialize basic ATA port resources
5941 * @host: ATA host this allocated port belongs to
5942 *
5943 * Allocate and initialize basic ATA port resources.
5944 *
5945 * RETURNS:
5946 * Allocate ATA port on success, NULL on failure.
5947 *
5948 * LOCKING:
5949 * Inherited from calling layer (may sleep).
5950 */
5951 struct ata_port *ata_port_alloc(struct ata_host *host)
5952 {
5953 struct ata_port *ap;
5954
5955 DPRINTK("ENTER\n");
5956
5957 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5958 if (!ap)
5959 return NULL;
5960
5961 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5962 ap->lock = &host->lock;
5963 ap->print_id = -1;
5964 ap->local_port_no = -1;
5965 ap->host = host;
5966 ap->dev = host->dev;
5967
5968 #if defined(ATA_VERBOSE_DEBUG)
5969 /* turn on all debugging levels */
5970 ap->msg_enable = 0x00FF;
5971 #elif defined(ATA_DEBUG)
5972 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5973 #else
5974 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5975 #endif
5976
5977 mutex_init(&ap->scsi_scan_mutex);
5978 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5979 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5980 INIT_LIST_HEAD(&ap->eh_done_q);
5981 init_waitqueue_head(&ap->eh_wait_q);
5982 init_completion(&ap->park_req_pending);
5983 setup_deferrable_timer(&ap->fastdrain_timer,
5984 ata_eh_fastdrain_timerfn,
5985 (unsigned long)ap);
5986
5987 ap->cbl = ATA_CBL_NONE;
5988
5989 ata_link_init(ap, &ap->link, 0);
5990
5991 #ifdef ATA_IRQ_TRAP
5992 ap->stats.unhandled_irq = 1;
5993 ap->stats.idle_irq = 1;
5994 #endif
5995 ata_sff_port_init(ap);
5996
5997 return ap;
5998 }
5999
6000 static void ata_host_release(struct device *gendev, void *res)
6001 {
6002 struct ata_host *host = dev_get_drvdata(gendev);
6003 int i;
6004
6005 for (i = 0; i < host->n_ports; i++) {
6006 struct ata_port *ap = host->ports[i];
6007
6008 if (!ap)
6009 continue;
6010
6011 if (ap->scsi_host)
6012 scsi_host_put(ap->scsi_host);
6013
6014 kfree(ap->pmp_link);
6015 kfree(ap->slave_link);
6016 kfree(ap);
6017 host->ports[i] = NULL;
6018 }
6019
6020 dev_set_drvdata(gendev, NULL);
6021 }
6022
6023 /**
6024 * ata_host_alloc - allocate and init basic ATA host resources
6025 * @dev: generic device this host is associated with
6026 * @max_ports: maximum number of ATA ports associated with this host
6027 *
6028 * Allocate and initialize basic ATA host resources. LLD calls
6029 * this function to allocate a host, initializes it fully and
6030 * attaches it using ata_host_register().
6031 *
6032 * @max_ports ports are allocated and host->n_ports is
6033 * initialized to @max_ports. The caller is allowed to decrease
6034 * host->n_ports before calling ata_host_register(). The unused
6035 * ports will be automatically freed on registration.
6036 *
6037 * RETURNS:
6038 * Allocate ATA host on success, NULL on failure.
6039 *
6040 * LOCKING:
6041 * Inherited from calling layer (may sleep).
6042 */
6043 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6044 {
6045 struct ata_host *host;
6046 size_t sz;
6047 int i;
6048
6049 DPRINTK("ENTER\n");
6050
6051 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6052 return NULL;
6053
6054 /* alloc a container for our list of ATA ports (buses) */
6055 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6056 /* alloc a container for our list of ATA ports (buses) */
6057 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6058 if (!host)
6059 goto err_out;
6060
6061 devres_add(dev, host);
6062 dev_set_drvdata(dev, host);
6063
6064 spin_lock_init(&host->lock);
6065 mutex_init(&host->eh_mutex);
6066 host->dev = dev;
6067 host->n_ports = max_ports;
6068
6069 /* allocate ports bound to this host */
6070 for (i = 0; i < max_ports; i++) {
6071 struct ata_port *ap;
6072
6073 ap = ata_port_alloc(host);
6074 if (!ap)
6075 goto err_out;
6076
6077 ap->port_no = i;
6078 host->ports[i] = ap;
6079 }
6080
6081 devres_remove_group(dev, NULL);
6082 return host;
6083
6084 err_out:
6085 devres_release_group(dev, NULL);
6086 return NULL;
6087 }
6088
6089 /**
6090 * ata_host_alloc_pinfo - alloc host and init with port_info array
6091 * @dev: generic device this host is associated with
6092 * @ppi: array of ATA port_info to initialize host with
6093 * @n_ports: number of ATA ports attached to this host
6094 *
6095 * Allocate ATA host and initialize with info from @ppi. If NULL
6096 * terminated, @ppi may contain fewer entries than @n_ports. The
6097 * last entry will be used for the remaining ports.
6098 *
6099 * RETURNS:
6100 * Allocate ATA host on success, NULL on failure.
6101 *
6102 * LOCKING:
6103 * Inherited from calling layer (may sleep).
6104 */
6105 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6106 const struct ata_port_info * const * ppi,
6107 int n_ports)
6108 {
6109 const struct ata_port_info *pi;
6110 struct ata_host *host;
6111 int i, j;
6112
6113 host = ata_host_alloc(dev, n_ports);
6114 if (!host)
6115 return NULL;
6116
6117 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6118 struct ata_port *ap = host->ports[i];
6119
6120 if (ppi[j])
6121 pi = ppi[j++];
6122
6123 ap->pio_mask = pi->pio_mask;
6124 ap->mwdma_mask = pi->mwdma_mask;
6125 ap->udma_mask = pi->udma_mask;
6126 ap->flags |= pi->flags;
6127 ap->link.flags |= pi->link_flags;
6128 ap->ops = pi->port_ops;
6129
6130 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6131 host->ops = pi->port_ops;
6132 }
6133
6134 return host;
6135 }
6136
6137 /**
6138 * ata_slave_link_init - initialize slave link
6139 * @ap: port to initialize slave link for
6140 *
6141 * Create and initialize slave link for @ap. This enables slave
6142 * link handling on the port.
6143 *
6144 * In libata, a port contains links and a link contains devices.
6145 * There is single host link but if a PMP is attached to it,
6146 * there can be multiple fan-out links. On SATA, there's usually
6147 * a single device connected to a link but PATA and SATA
6148 * controllers emulating TF based interface can have two - master
6149 * and slave.
6150 *
6151 * However, there are a few controllers which don't fit into this
6152 * abstraction too well - SATA controllers which emulate TF
6153 * interface with both master and slave devices but also have
6154 * separate SCR register sets for each device. These controllers
6155 * need separate links for physical link handling
6156 * (e.g. onlineness, link speed) but should be treated like a
6157 * traditional M/S controller for everything else (e.g. command
6158 * issue, softreset).
6159 *
6160 * slave_link is libata's way of handling this class of
6161 * controllers without impacting core layer too much. For
6162 * anything other than physical link handling, the default host
6163 * link is used for both master and slave. For physical link
6164 * handling, separate @ap->slave_link is used. All dirty details
6165 * are implemented inside libata core layer. From LLD's POV, the
6166 * only difference is that prereset, hardreset and postreset are
6167 * called once more for the slave link, so the reset sequence
6168 * looks like the following.
6169 *
6170 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6171 * softreset(M) -> postreset(M) -> postreset(S)
6172 *
6173 * Note that softreset is called only for the master. Softreset
6174 * resets both M/S by definition, so SRST on master should handle
6175 * both (the standard method will work just fine).
6176 *
6177 * LOCKING:
6178 * Should be called before host is registered.
6179 *
6180 * RETURNS:
6181 * 0 on success, -errno on failure.
6182 */
6183 int ata_slave_link_init(struct ata_port *ap)
6184 {
6185 struct ata_link *link;
6186
6187 WARN_ON(ap->slave_link);
6188 WARN_ON(ap->flags & ATA_FLAG_PMP);
6189
6190 link = kzalloc(sizeof(*link), GFP_KERNEL);
6191 if (!link)
6192 return -ENOMEM;
6193
6194 ata_link_init(ap, link, 1);
6195 ap->slave_link = link;
6196 return 0;
6197 }
6198
6199 static void ata_host_stop(struct device *gendev, void *res)
6200 {
6201 struct ata_host *host = dev_get_drvdata(gendev);
6202 int i;
6203
6204 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6205
6206 for (i = 0; i < host->n_ports; i++) {
6207 struct ata_port *ap = host->ports[i];
6208
6209 if (ap->ops->port_stop)
6210 ap->ops->port_stop(ap);
6211 }
6212
6213 if (host->ops->host_stop)
6214 host->ops->host_stop(host);
6215 }
6216
6217 /**
6218 * ata_finalize_port_ops - finalize ata_port_operations
6219 * @ops: ata_port_operations to finalize
6220 *
6221 * An ata_port_operations can inherit from another ops and that
6222 * ops can again inherit from another. This can go on as many
6223 * times as necessary as long as there is no loop in the
6224 * inheritance chain.
6225 *
6226 * Ops tables are finalized when the host is started. NULL or
6227 * unspecified entries are inherited from the closet ancestor
6228 * which has the method and the entry is populated with it.
6229 * After finalization, the ops table directly points to all the
6230 * methods and ->inherits is no longer necessary and cleared.
6231 *
6232 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6233 *
6234 * LOCKING:
6235 * None.
6236 */
6237 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6238 {
6239 static DEFINE_SPINLOCK(lock);
6240 const struct ata_port_operations *cur;
6241 void **begin = (void **)ops;
6242 void **end = (void **)&ops->inherits;
6243 void **pp;
6244
6245 if (!ops || !ops->inherits)
6246 return;
6247
6248 spin_lock(&lock);
6249
6250 for (cur = ops->inherits; cur; cur = cur->inherits) {
6251 void **inherit = (void **)cur;
6252
6253 for (pp = begin; pp < end; pp++, inherit++)
6254 if (!*pp)
6255 *pp = *inherit;
6256 }
6257
6258 for (pp = begin; pp < end; pp++)
6259 if (IS_ERR(*pp))
6260 *pp = NULL;
6261
6262 ops->inherits = NULL;
6263
6264 spin_unlock(&lock);
6265 }
6266
6267 /**
6268 * ata_host_start - start and freeze ports of an ATA host
6269 * @host: ATA host to start ports for
6270 *
6271 * Start and then freeze ports of @host. Started status is
6272 * recorded in host->flags, so this function can be called
6273 * multiple times. Ports are guaranteed to get started only
6274 * once. If host->ops isn't initialized yet, its set to the
6275 * first non-dummy port ops.
6276 *
6277 * LOCKING:
6278 * Inherited from calling layer (may sleep).
6279 *
6280 * RETURNS:
6281 * 0 if all ports are started successfully, -errno otherwise.
6282 */
6283 int ata_host_start(struct ata_host *host)
6284 {
6285 int have_stop = 0;
6286 void *start_dr = NULL;
6287 int i, rc;
6288
6289 if (host->flags & ATA_HOST_STARTED)
6290 return 0;
6291
6292 ata_finalize_port_ops(host->ops);
6293
6294 for (i = 0; i < host->n_ports; i++) {
6295 struct ata_port *ap = host->ports[i];
6296
6297 ata_finalize_port_ops(ap->ops);
6298
6299 if (!host->ops && !ata_port_is_dummy(ap))
6300 host->ops = ap->ops;
6301
6302 if (ap->ops->port_stop)
6303 have_stop = 1;
6304 }
6305
6306 if (host->ops->host_stop)
6307 have_stop = 1;
6308
6309 if (have_stop) {
6310 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6311 if (!start_dr)
6312 return -ENOMEM;
6313 }
6314
6315 for (i = 0; i < host->n_ports; i++) {
6316 struct ata_port *ap = host->ports[i];
6317
6318 if (ap->ops->port_start) {
6319 rc = ap->ops->port_start(ap);
6320 if (rc) {
6321 if (rc != -ENODEV)
6322 dev_err(host->dev,
6323 "failed to start port %d (errno=%d)\n",
6324 i, rc);
6325 goto err_out;
6326 }
6327 }
6328 ata_eh_freeze_port(ap);
6329 }
6330
6331 if (start_dr)
6332 devres_add(host->dev, start_dr);
6333 host->flags |= ATA_HOST_STARTED;
6334 return 0;
6335
6336 err_out:
6337 while (--i >= 0) {
6338 struct ata_port *ap = host->ports[i];
6339
6340 if (ap->ops->port_stop)
6341 ap->ops->port_stop(ap);
6342 }
6343 devres_free(start_dr);
6344 return rc;
6345 }
6346
6347 /**
6348 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6349 * @host: host to initialize
6350 * @dev: device host is attached to
6351 * @ops: port_ops
6352 *
6353 */
6354 void ata_host_init(struct ata_host *host, struct device *dev,
6355 struct ata_port_operations *ops)
6356 {
6357 spin_lock_init(&host->lock);
6358 mutex_init(&host->eh_mutex);
6359 host->n_tags = ATA_MAX_QUEUE - 1;
6360 host->dev = dev;
6361 host->ops = ops;
6362 }
6363
6364 void __ata_port_probe(struct ata_port *ap)
6365 {
6366 struct ata_eh_info *ehi = &ap->link.eh_info;
6367 unsigned long flags;
6368
6369 /* kick EH for boot probing */
6370 spin_lock_irqsave(ap->lock, flags);
6371
6372 ehi->probe_mask |= ATA_ALL_DEVICES;
6373 ehi->action |= ATA_EH_RESET;
6374 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6375
6376 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6377 ap->pflags |= ATA_PFLAG_LOADING;
6378 ata_port_schedule_eh(ap);
6379
6380 spin_unlock_irqrestore(ap->lock, flags);
6381 }
6382
6383 int ata_port_probe(struct ata_port *ap)
6384 {
6385 int rc = 0;
6386
6387 if (ap->ops->error_handler) {
6388 __ata_port_probe(ap);
6389 ata_port_wait_eh(ap);
6390 } else {
6391 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6392 rc = ata_bus_probe(ap);
6393 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6394 }
6395 return rc;
6396 }
6397
6398
6399 static void async_port_probe(void *data, async_cookie_t cookie)
6400 {
6401 struct ata_port *ap = data;
6402
6403 /*
6404 * If we're not allowed to scan this host in parallel,
6405 * we need to wait until all previous scans have completed
6406 * before going further.
6407 * Jeff Garzik says this is only within a controller, so we
6408 * don't need to wait for port 0, only for later ports.
6409 */
6410 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6411 async_synchronize_cookie(cookie);
6412
6413 (void)ata_port_probe(ap);
6414
6415 /* in order to keep device order, we need to synchronize at this point */
6416 async_synchronize_cookie(cookie);
6417
6418 ata_scsi_scan_host(ap, 1);
6419 }
6420
6421 /**
6422 * ata_host_register - register initialized ATA host
6423 * @host: ATA host to register
6424 * @sht: template for SCSI host
6425 *
6426 * Register initialized ATA host. @host is allocated using
6427 * ata_host_alloc() and fully initialized by LLD. This function
6428 * starts ports, registers @host with ATA and SCSI layers and
6429 * probe registered devices.
6430 *
6431 * LOCKING:
6432 * Inherited from calling layer (may sleep).
6433 *
6434 * RETURNS:
6435 * 0 on success, -errno otherwise.
6436 */
6437 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6438 {
6439 int i, rc;
6440
6441 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6442
6443 /* host must have been started */
6444 if (!(host->flags & ATA_HOST_STARTED)) {
6445 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6446 WARN_ON(1);
6447 return -EINVAL;
6448 }
6449
6450 /* Blow away unused ports. This happens when LLD can't
6451 * determine the exact number of ports to allocate at
6452 * allocation time.
6453 */
6454 for (i = host->n_ports; host->ports[i]; i++)
6455 kfree(host->ports[i]);
6456
6457 /* give ports names and add SCSI hosts */
6458 for (i = 0; i < host->n_ports; i++) {
6459 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6460 host->ports[i]->local_port_no = i + 1;
6461 }
6462
6463 /* Create associated sysfs transport objects */
6464 for (i = 0; i < host->n_ports; i++) {
6465 rc = ata_tport_add(host->dev,host->ports[i]);
6466 if (rc) {
6467 goto err_tadd;
6468 }
6469 }
6470
6471 rc = ata_scsi_add_hosts(host, sht);
6472 if (rc)
6473 goto err_tadd;
6474
6475 /* set cable, sata_spd_limit and report */
6476 for (i = 0; i < host->n_ports; i++) {
6477 struct ata_port *ap = host->ports[i];
6478 unsigned long xfer_mask;
6479
6480 /* set SATA cable type if still unset */
6481 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6482 ap->cbl = ATA_CBL_SATA;
6483
6484 /* init sata_spd_limit to the current value */
6485 sata_link_init_spd(&ap->link);
6486 if (ap->slave_link)
6487 sata_link_init_spd(ap->slave_link);
6488
6489 /* print per-port info to dmesg */
6490 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6491 ap->udma_mask);
6492
6493 if (!ata_port_is_dummy(ap)) {
6494 ata_port_info(ap, "%cATA max %s %s\n",
6495 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6496 ata_mode_string(xfer_mask),
6497 ap->link.eh_info.desc);
6498 ata_ehi_clear_desc(&ap->link.eh_info);
6499 } else
6500 ata_port_info(ap, "DUMMY\n");
6501 }
6502
6503 /* perform each probe asynchronously */
6504 for (i = 0; i < host->n_ports; i++) {
6505 struct ata_port *ap = host->ports[i];
6506 async_schedule(async_port_probe, ap);
6507 }
6508
6509 return 0;
6510
6511 err_tadd:
6512 while (--i >= 0) {
6513 ata_tport_delete(host->ports[i]);
6514 }
6515 return rc;
6516
6517 }
6518
6519 /**
6520 * ata_host_activate - start host, request IRQ and register it
6521 * @host: target ATA host
6522 * @irq: IRQ to request
6523 * @irq_handler: irq_handler used when requesting IRQ
6524 * @irq_flags: irq_flags used when requesting IRQ
6525 * @sht: scsi_host_template to use when registering the host
6526 *
6527 * After allocating an ATA host and initializing it, most libata
6528 * LLDs perform three steps to activate the host - start host,
6529 * request IRQ and register it. This helper takes necessary
6530 * arguments and performs the three steps in one go.
6531 *
6532 * An invalid IRQ skips the IRQ registration and expects the host to
6533 * have set polling mode on the port. In this case, @irq_handler
6534 * should be NULL.
6535 *
6536 * LOCKING:
6537 * Inherited from calling layer (may sleep).
6538 *
6539 * RETURNS:
6540 * 0 on success, -errno otherwise.
6541 */
6542 int ata_host_activate(struct ata_host *host, int irq,
6543 irq_handler_t irq_handler, unsigned long irq_flags,
6544 struct scsi_host_template *sht)
6545 {
6546 int i, rc;
6547 char *irq_desc;
6548
6549 rc = ata_host_start(host);
6550 if (rc)
6551 return rc;
6552
6553 /* Special case for polling mode */
6554 if (!irq) {
6555 WARN_ON(irq_handler);
6556 return ata_host_register(host, sht);
6557 }
6558
6559 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6560 dev_driver_string(host->dev),
6561 dev_name(host->dev));
6562 if (!irq_desc)
6563 return -ENOMEM;
6564
6565 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6566 irq_desc, host);
6567 if (rc)
6568 return rc;
6569
6570 for (i = 0; i < host->n_ports; i++)
6571 ata_port_desc(host->ports[i], "irq %d", irq);
6572
6573 rc = ata_host_register(host, sht);
6574 /* if failed, just free the IRQ and leave ports alone */
6575 if (rc)
6576 devm_free_irq(host->dev, irq, host);
6577
6578 return rc;
6579 }
6580
6581 /**
6582 * ata_port_detach - Detach ATA port in preparation of device removal
6583 * @ap: ATA port to be detached
6584 *
6585 * Detach all ATA devices and the associated SCSI devices of @ap;
6586 * then, remove the associated SCSI host. @ap is guaranteed to
6587 * be quiescent on return from this function.
6588 *
6589 * LOCKING:
6590 * Kernel thread context (may sleep).
6591 */
6592 static void ata_port_detach(struct ata_port *ap)
6593 {
6594 unsigned long flags;
6595 struct ata_link *link;
6596 struct ata_device *dev;
6597
6598 if (!ap->ops->error_handler)
6599 goto skip_eh;
6600
6601 /* tell EH we're leaving & flush EH */
6602 spin_lock_irqsave(ap->lock, flags);
6603 ap->pflags |= ATA_PFLAG_UNLOADING;
6604 ata_port_schedule_eh(ap);
6605 spin_unlock_irqrestore(ap->lock, flags);
6606
6607 /* wait till EH commits suicide */
6608 ata_port_wait_eh(ap);
6609
6610 /* it better be dead now */
6611 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6612
6613 cancel_delayed_work_sync(&ap->hotplug_task);
6614
6615 skip_eh:
6616 /* clean up zpodd on port removal */
6617 ata_for_each_link(link, ap, HOST_FIRST) {
6618 ata_for_each_dev(dev, link, ALL) {
6619 if (zpodd_dev_enabled(dev))
6620 zpodd_exit(dev);
6621 }
6622 }
6623 if (ap->pmp_link) {
6624 int i;
6625 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6626 ata_tlink_delete(&ap->pmp_link[i]);
6627 }
6628 /* remove the associated SCSI host */
6629 scsi_remove_host(ap->scsi_host);
6630 ata_tport_delete(ap);
6631 }
6632
6633 /**
6634 * ata_host_detach - Detach all ports of an ATA host
6635 * @host: Host to detach
6636 *
6637 * Detach all ports of @host.
6638 *
6639 * LOCKING:
6640 * Kernel thread context (may sleep).
6641 */
6642 void ata_host_detach(struct ata_host *host)
6643 {
6644 int i;
6645
6646 for (i = 0; i < host->n_ports; i++)
6647 ata_port_detach(host->ports[i]);
6648
6649 /* the host is dead now, dissociate ACPI */
6650 ata_acpi_dissociate(host);
6651 }
6652
6653 #ifdef CONFIG_PCI
6654
6655 /**
6656 * ata_pci_remove_one - PCI layer callback for device removal
6657 * @pdev: PCI device that was removed
6658 *
6659 * PCI layer indicates to libata via this hook that hot-unplug or
6660 * module unload event has occurred. Detach all ports. Resource
6661 * release is handled via devres.
6662 *
6663 * LOCKING:
6664 * Inherited from PCI layer (may sleep).
6665 */
6666 void ata_pci_remove_one(struct pci_dev *pdev)
6667 {
6668 struct ata_host *host = pci_get_drvdata(pdev);
6669
6670 ata_host_detach(host);
6671 }
6672
6673 /* move to PCI subsystem */
6674 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6675 {
6676 unsigned long tmp = 0;
6677
6678 switch (bits->width) {
6679 case 1: {
6680 u8 tmp8 = 0;
6681 pci_read_config_byte(pdev, bits->reg, &tmp8);
6682 tmp = tmp8;
6683 break;
6684 }
6685 case 2: {
6686 u16 tmp16 = 0;
6687 pci_read_config_word(pdev, bits->reg, &tmp16);
6688 tmp = tmp16;
6689 break;
6690 }
6691 case 4: {
6692 u32 tmp32 = 0;
6693 pci_read_config_dword(pdev, bits->reg, &tmp32);
6694 tmp = tmp32;
6695 break;
6696 }
6697
6698 default:
6699 return -EINVAL;
6700 }
6701
6702 tmp &= bits->mask;
6703
6704 return (tmp == bits->val) ? 1 : 0;
6705 }
6706
6707 #ifdef CONFIG_PM
6708 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6709 {
6710 pci_save_state(pdev);
6711 pci_disable_device(pdev);
6712
6713 if (mesg.event & PM_EVENT_SLEEP)
6714 pci_set_power_state(pdev, PCI_D3hot);
6715 }
6716
6717 int ata_pci_device_do_resume(struct pci_dev *pdev)
6718 {
6719 int rc;
6720
6721 pci_set_power_state(pdev, PCI_D0);
6722 pci_restore_state(pdev);
6723
6724 rc = pcim_enable_device(pdev);
6725 if (rc) {
6726 dev_err(&pdev->dev,
6727 "failed to enable device after resume (%d)\n", rc);
6728 return rc;
6729 }
6730
6731 pci_set_master(pdev);
6732 return 0;
6733 }
6734
6735 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6736 {
6737 struct ata_host *host = pci_get_drvdata(pdev);
6738 int rc = 0;
6739
6740 rc = ata_host_suspend(host, mesg);
6741 if (rc)
6742 return rc;
6743
6744 ata_pci_device_do_suspend(pdev, mesg);
6745
6746 return 0;
6747 }
6748
6749 int ata_pci_device_resume(struct pci_dev *pdev)
6750 {
6751 struct ata_host *host = pci_get_drvdata(pdev);
6752 int rc;
6753
6754 rc = ata_pci_device_do_resume(pdev);
6755 if (rc == 0)
6756 ata_host_resume(host);
6757 return rc;
6758 }
6759 #endif /* CONFIG_PM */
6760
6761 #endif /* CONFIG_PCI */
6762
6763 /**
6764 * ata_platform_remove_one - Platform layer callback for device removal
6765 * @pdev: Platform device that was removed
6766 *
6767 * Platform layer indicates to libata via this hook that hot-unplug or
6768 * module unload event has occurred. Detach all ports. Resource
6769 * release is handled via devres.
6770 *
6771 * LOCKING:
6772 * Inherited from platform layer (may sleep).
6773 */
6774 int ata_platform_remove_one(struct platform_device *pdev)
6775 {
6776 struct ata_host *host = platform_get_drvdata(pdev);
6777
6778 ata_host_detach(host);
6779
6780 return 0;
6781 }
6782
6783 static int __init ata_parse_force_one(char **cur,
6784 struct ata_force_ent *force_ent,
6785 const char **reason)
6786 {
6787 static const struct ata_force_param force_tbl[] __initconst = {
6788 { "40c", .cbl = ATA_CBL_PATA40 },
6789 { "80c", .cbl = ATA_CBL_PATA80 },
6790 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6791 { "unk", .cbl = ATA_CBL_PATA_UNK },
6792 { "ign", .cbl = ATA_CBL_PATA_IGN },
6793 { "sata", .cbl = ATA_CBL_SATA },
6794 { "1.5Gbps", .spd_limit = 1 },
6795 { "3.0Gbps", .spd_limit = 2 },
6796 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6797 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6798 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6799 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6800 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6801 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6802 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6803 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6804 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6805 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6806 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6807 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6808 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6809 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6810 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6811 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6812 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6813 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6814 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6815 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6816 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6817 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6818 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6819 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6820 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6821 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6822 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6823 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6824 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6825 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6826 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6827 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6828 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6829 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6830 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6831 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6832 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6833 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6834 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6835 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6836 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6837 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6838 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6839 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6840 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6841 };
6842 char *start = *cur, *p = *cur;
6843 char *id, *val, *endp;
6844 const struct ata_force_param *match_fp = NULL;
6845 int nr_matches = 0, i;
6846
6847 /* find where this param ends and update *cur */
6848 while (*p != '\0' && *p != ',')
6849 p++;
6850
6851 if (*p == '\0')
6852 *cur = p;
6853 else
6854 *cur = p + 1;
6855
6856 *p = '\0';
6857
6858 /* parse */
6859 p = strchr(start, ':');
6860 if (!p) {
6861 val = strstrip(start);
6862 goto parse_val;
6863 }
6864 *p = '\0';
6865
6866 id = strstrip(start);
6867 val = strstrip(p + 1);
6868
6869 /* parse id */
6870 p = strchr(id, '.');
6871 if (p) {
6872 *p++ = '\0';
6873 force_ent->device = simple_strtoul(p, &endp, 10);
6874 if (p == endp || *endp != '\0') {
6875 *reason = "invalid device";
6876 return -EINVAL;
6877 }
6878 }
6879
6880 force_ent->port = simple_strtoul(id, &endp, 10);
6881 if (id == endp || *endp != '\0') {
6882 *reason = "invalid port/link";
6883 return -EINVAL;
6884 }
6885
6886 parse_val:
6887 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6888 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6889 const struct ata_force_param *fp = &force_tbl[i];
6890
6891 if (strncasecmp(val, fp->name, strlen(val)))
6892 continue;
6893
6894 nr_matches++;
6895 match_fp = fp;
6896
6897 if (strcasecmp(val, fp->name) == 0) {
6898 nr_matches = 1;
6899 break;
6900 }
6901 }
6902
6903 if (!nr_matches) {
6904 *reason = "unknown value";
6905 return -EINVAL;
6906 }
6907 if (nr_matches > 1) {
6908 *reason = "ambigious value";
6909 return -EINVAL;
6910 }
6911
6912 force_ent->param = *match_fp;
6913
6914 return 0;
6915 }
6916
6917 static void __init ata_parse_force_param(void)
6918 {
6919 int idx = 0, size = 1;
6920 int last_port = -1, last_device = -1;
6921 char *p, *cur, *next;
6922
6923 /* calculate maximum number of params and allocate force_tbl */
6924 for (p = ata_force_param_buf; *p; p++)
6925 if (*p == ',')
6926 size++;
6927
6928 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6929 if (!ata_force_tbl) {
6930 printk(KERN_WARNING "ata: failed to extend force table, "
6931 "libata.force ignored\n");
6932 return;
6933 }
6934
6935 /* parse and populate the table */
6936 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6937 const char *reason = "";
6938 struct ata_force_ent te = { .port = -1, .device = -1 };
6939
6940 next = cur;
6941 if (ata_parse_force_one(&next, &te, &reason)) {
6942 printk(KERN_WARNING "ata: failed to parse force "
6943 "parameter \"%s\" (%s)\n",
6944 cur, reason);
6945 continue;
6946 }
6947
6948 if (te.port == -1) {
6949 te.port = last_port;
6950 te.device = last_device;
6951 }
6952
6953 ata_force_tbl[idx++] = te;
6954
6955 last_port = te.port;
6956 last_device = te.device;
6957 }
6958
6959 ata_force_tbl_size = idx;
6960 }
6961
6962 static int __init ata_init(void)
6963 {
6964 int rc;
6965
6966 ata_parse_force_param();
6967
6968 rc = ata_sff_init();
6969 if (rc) {
6970 kfree(ata_force_tbl);
6971 return rc;
6972 }
6973
6974 libata_transport_init();
6975 ata_scsi_transport_template = ata_attach_transport();
6976 if (!ata_scsi_transport_template) {
6977 ata_sff_exit();
6978 rc = -ENOMEM;
6979 goto err_out;
6980 }
6981
6982 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6983 return 0;
6984
6985 err_out:
6986 return rc;
6987 }
6988
6989 static void __exit ata_exit(void)
6990 {
6991 ata_release_transport(ata_scsi_transport_template);
6992 libata_transport_exit();
6993 ata_sff_exit();
6994 kfree(ata_force_tbl);
6995 }
6996
6997 subsys_initcall(ata_init);
6998 module_exit(ata_exit);
6999
7000 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7001
7002 int ata_ratelimit(void)
7003 {
7004 return __ratelimit(&ratelimit);
7005 }
7006
7007 /**
7008 * ata_msleep - ATA EH owner aware msleep
7009 * @ap: ATA port to attribute the sleep to
7010 * @msecs: duration to sleep in milliseconds
7011 *
7012 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7013 * ownership is released before going to sleep and reacquired
7014 * after the sleep is complete. IOW, other ports sharing the
7015 * @ap->host will be allowed to own the EH while this task is
7016 * sleeping.
7017 *
7018 * LOCKING:
7019 * Might sleep.
7020 */
7021 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7022 {
7023 bool owns_eh = ap && ap->host->eh_owner == current;
7024
7025 if (owns_eh)
7026 ata_eh_release(ap);
7027
7028 if (msecs < 20) {
7029 unsigned long usecs = msecs * USEC_PER_MSEC;
7030 usleep_range(usecs, usecs + 50);
7031 } else {
7032 msleep(msecs);
7033 }
7034
7035 if (owns_eh)
7036 ata_eh_acquire(ap);
7037 }
7038
7039 /**
7040 * ata_wait_register - wait until register value changes
7041 * @ap: ATA port to wait register for, can be NULL
7042 * @reg: IO-mapped register
7043 * @mask: Mask to apply to read register value
7044 * @val: Wait condition
7045 * @interval: polling interval in milliseconds
7046 * @timeout: timeout in milliseconds
7047 *
7048 * Waiting for some bits of register to change is a common
7049 * operation for ATA controllers. This function reads 32bit LE
7050 * IO-mapped register @reg and tests for the following condition.
7051 *
7052 * (*@reg & mask) != val
7053 *
7054 * If the condition is met, it returns; otherwise, the process is
7055 * repeated after @interval_msec until timeout.
7056 *
7057 * LOCKING:
7058 * Kernel thread context (may sleep)
7059 *
7060 * RETURNS:
7061 * The final register value.
7062 */
7063 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7064 unsigned long interval, unsigned long timeout)
7065 {
7066 unsigned long deadline;
7067 u32 tmp;
7068
7069 tmp = ioread32(reg);
7070
7071 /* Calculate timeout _after_ the first read to make sure
7072 * preceding writes reach the controller before starting to
7073 * eat away the timeout.
7074 */
7075 deadline = ata_deadline(jiffies, timeout);
7076
7077 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7078 ata_msleep(ap, interval);
7079 tmp = ioread32(reg);
7080 }
7081
7082 return tmp;
7083 }
7084
7085 /**
7086 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7087 * @link: Link receiving the event
7088 *
7089 * Test whether the received PHY event has to be ignored or not.
7090 *
7091 * LOCKING:
7092 * None:
7093 *
7094 * RETURNS:
7095 * True if the event has to be ignored.
7096 */
7097 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7098 {
7099 unsigned long lpm_timeout = link->last_lpm_change +
7100 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7101
7102 /* if LPM is enabled, PHYRDY doesn't mean anything */
7103 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7104 return true;
7105
7106 /* ignore the first PHY event after the LPM policy changed
7107 * as it is might be spurious
7108 */
7109 if ((link->flags & ATA_LFLAG_CHANGED) &&
7110 time_before(jiffies, lpm_timeout))
7111 return true;
7112
7113 return false;
7114 }
7115 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7116
7117 /*
7118 * Dummy port_ops
7119 */
7120 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7121 {
7122 return AC_ERR_SYSTEM;
7123 }
7124
7125 static void ata_dummy_error_handler(struct ata_port *ap)
7126 {
7127 /* truly dummy */
7128 }
7129
7130 struct ata_port_operations ata_dummy_port_ops = {
7131 .qc_prep = ata_noop_qc_prep,
7132 .qc_issue = ata_dummy_qc_issue,
7133 .error_handler = ata_dummy_error_handler,
7134 .sched_eh = ata_std_sched_eh,
7135 .end_eh = ata_std_end_eh,
7136 };
7137
7138 const struct ata_port_info ata_dummy_port_info = {
7139 .port_ops = &ata_dummy_port_ops,
7140 };
7141
7142 /*
7143 * Utility print functions
7144 */
7145 void ata_port_printk(const struct ata_port *ap, const char *level,
7146 const char *fmt, ...)
7147 {
7148 struct va_format vaf;
7149 va_list args;
7150
7151 va_start(args, fmt);
7152
7153 vaf.fmt = fmt;
7154 vaf.va = &args;
7155
7156 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7157
7158 va_end(args);
7159 }
7160 EXPORT_SYMBOL(ata_port_printk);
7161
7162 void ata_link_printk(const struct ata_link *link, const char *level,
7163 const char *fmt, ...)
7164 {
7165 struct va_format vaf;
7166 va_list args;
7167
7168 va_start(args, fmt);
7169
7170 vaf.fmt = fmt;
7171 vaf.va = &args;
7172
7173 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7174 printk("%sata%u.%02u: %pV",
7175 level, link->ap->print_id, link->pmp, &vaf);
7176 else
7177 printk("%sata%u: %pV",
7178 level, link->ap->print_id, &vaf);
7179
7180 va_end(args);
7181 }
7182 EXPORT_SYMBOL(ata_link_printk);
7183
7184 void ata_dev_printk(const struct ata_device *dev, const char *level,
7185 const char *fmt, ...)
7186 {
7187 struct va_format vaf;
7188 va_list args;
7189
7190 va_start(args, fmt);
7191
7192 vaf.fmt = fmt;
7193 vaf.va = &args;
7194
7195 printk("%sata%u.%02u: %pV",
7196 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7197 &vaf);
7198
7199 va_end(args);
7200 }
7201 EXPORT_SYMBOL(ata_dev_printk);
7202
7203 void ata_print_version(const struct device *dev, const char *version)
7204 {
7205 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7206 }
7207 EXPORT_SYMBOL(ata_print_version);
7208
7209 /*
7210 * libata is essentially a library of internal helper functions for
7211 * low-level ATA host controller drivers. As such, the API/ABI is
7212 * likely to change as new drivers are added and updated.
7213 * Do not depend on ABI/API stability.
7214 */
7215 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7216 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7217 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7218 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7219 EXPORT_SYMBOL_GPL(sata_port_ops);
7220 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7221 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7222 EXPORT_SYMBOL_GPL(ata_link_next);
7223 EXPORT_SYMBOL_GPL(ata_dev_next);
7224 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7225 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7226 EXPORT_SYMBOL_GPL(ata_host_init);
7227 EXPORT_SYMBOL_GPL(ata_host_alloc);
7228 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7229 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7230 EXPORT_SYMBOL_GPL(ata_host_start);
7231 EXPORT_SYMBOL_GPL(ata_host_register);
7232 EXPORT_SYMBOL_GPL(ata_host_activate);
7233 EXPORT_SYMBOL_GPL(ata_host_detach);
7234 EXPORT_SYMBOL_GPL(ata_sg_init);
7235 EXPORT_SYMBOL_GPL(ata_qc_complete);
7236 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7237 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7238 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7239 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7240 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7241 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7242 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7243 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7244 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7245 EXPORT_SYMBOL_GPL(ata_mode_string);
7246 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7247 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7248 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7249 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7250 EXPORT_SYMBOL_GPL(ata_dev_disable);
7251 EXPORT_SYMBOL_GPL(sata_set_spd);
7252 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7253 EXPORT_SYMBOL_GPL(sata_link_debounce);
7254 EXPORT_SYMBOL_GPL(sata_link_resume);
7255 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7256 EXPORT_SYMBOL_GPL(ata_std_prereset);
7257 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7258 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7259 EXPORT_SYMBOL_GPL(ata_std_postreset);
7260 EXPORT_SYMBOL_GPL(ata_dev_classify);
7261 EXPORT_SYMBOL_GPL(ata_dev_pair);
7262 EXPORT_SYMBOL_GPL(ata_ratelimit);
7263 EXPORT_SYMBOL_GPL(ata_msleep);
7264 EXPORT_SYMBOL_GPL(ata_wait_register);
7265 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7266 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7267 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7268 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7269 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7270 EXPORT_SYMBOL_GPL(sata_scr_valid);
7271 EXPORT_SYMBOL_GPL(sata_scr_read);
7272 EXPORT_SYMBOL_GPL(sata_scr_write);
7273 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7274 EXPORT_SYMBOL_GPL(ata_link_online);
7275 EXPORT_SYMBOL_GPL(ata_link_offline);
7276 #ifdef CONFIG_PM
7277 EXPORT_SYMBOL_GPL(ata_host_suspend);
7278 EXPORT_SYMBOL_GPL(ata_host_resume);
7279 #endif /* CONFIG_PM */
7280 EXPORT_SYMBOL_GPL(ata_id_string);
7281 EXPORT_SYMBOL_GPL(ata_id_c_string);
7282 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7283 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7284
7285 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7286 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7287 EXPORT_SYMBOL_GPL(ata_timing_compute);
7288 EXPORT_SYMBOL_GPL(ata_timing_merge);
7289 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7290
7291 #ifdef CONFIG_PCI
7292 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7293 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7294 #ifdef CONFIG_PM
7295 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7296 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7297 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7298 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7299 #endif /* CONFIG_PM */
7300 #endif /* CONFIG_PCI */
7301
7302 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7303
7304 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7305 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7306 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7307 EXPORT_SYMBOL_GPL(ata_port_desc);
7308 #ifdef CONFIG_PCI
7309 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7310 #endif /* CONFIG_PCI */
7311 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7312 EXPORT_SYMBOL_GPL(ata_link_abort);
7313 EXPORT_SYMBOL_GPL(ata_port_abort);
7314 EXPORT_SYMBOL_GPL(ata_port_freeze);
7315 EXPORT_SYMBOL_GPL(sata_async_notification);
7316 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7317 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7318 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7319 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7320 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7321 EXPORT_SYMBOL_GPL(ata_do_eh);
7322 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7323
7324 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7325 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7326 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7327 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7328 EXPORT_SYMBOL_GPL(ata_cable_sata);