]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
iommu/vt-d: Don't over-free page table directories
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78
79 #include "libata.h"
80 #include "libata-transport.h"
81
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
86
87 const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
93 };
94
95 const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
100 };
101
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109
110 struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
117 unsigned int lflags;
118 };
119
120 struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124 };
125
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 return (sstatus & 0xf) == 0x3;
183 }
184
185 /**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
193 *
194 * RETURNS:
195 * Pointer to the next link.
196 */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
199 {
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
203 /* NULL link indicates start of iteration */
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
214
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
225 /* fall through */
226 case ATA_LITER_EDGE:
227 return NULL;
228 }
229
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
241 return NULL;
242 }
243
244 /**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258 {
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295 }
296
297 /**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320 }
321
322 /**
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 return;
351 }
352 }
353
354 /**
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
357 *
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
366 *
367 * LOCKING:
368 * EH context.
369 */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 bool did_spd = false;
373 int linkno = link->pmp;
374 int i;
375
376 if (ata_is_host_link(link))
377 linkno += 15;
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 fe->param.name);
393 did_spd = true;
394 }
395
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
403 }
404 }
405
406 /**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
456 return;
457 }
458 }
459
460 /**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
500 }
501 }
502
503 /**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515 int atapi_cmd_type(u8 opcode)
516 {
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
536 default:
537 return ATAPI_MISC;
538 }
539 }
540
541 /**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584
585 /**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612 }
613
614 static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
629 0,
630 0,
631 0,
632 0,
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
642 };
643
644 /**
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
648 *
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
651 *
652 * LOCKING:
653 * caller.
654 */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 u8 cmd;
658
659 int index, fua, lba48, write;
660
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
672 } else {
673 tf->protocol = ATA_PROT_DMA;
674 index = 16;
675 }
676
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
683 }
684
685 /**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 u64 block = 0;
703
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
722 if (!sect) {
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
725 return U64_MAX;
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 }
730
731 return block;
732 }
733
734 /**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 * @class: IO priority class
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
757 unsigned int tag, int class)
758 {
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
786 tf->device = ATA_LBA;
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
789
790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862 }
863
864 /**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
882 {
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887
888 /**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
897 */
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908
909 static const struct ata_xfer_ent {
910 int shift, bits;
911 u8 base;
912 } ata_xfer_tbl[] = {
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 { -1, },
917 };
918
919 /**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching XFER_* value, 0xff if no match found.
931 */
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
940 return 0xff;
941 }
942
943 /**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
963 return 0;
964 }
965
966 /**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986 }
987
988 /**
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
991 *
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1001 */
1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
1010 "PIO5",
1011 "PIO6",
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
1015 "MWDMA3",
1016 "MWDMA4",
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1026 int highbit;
1027
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1031 return "<n/a>";
1032 }
1033
1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
1039 "6.0 Gbps",
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045 }
1046
1047 /**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1084 */
1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
1103 }
1104
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112 }
1113
1114 /**
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1131 {
1132 unsigned int c;
1133
1134 BUG_ON(len & 1);
1135
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148 }
1149
1150 /**
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1166 {
1167 unsigned char *p;
1168
1169 ata_id_string(id, s, ofs, len - 1);
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175 }
1176
1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 else
1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 } else {
1185 if (ata_id_current_chs_valid(id))
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
1188 else
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
1191 }
1192 }
1193
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
1205 return sectors;
1206 }
1207
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
1217 return sectors;
1218 }
1219
1220 /**
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1224 *
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1227 *
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1231 */
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1237
1238 ata_tf_init(dev, &tf);
1239
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249 tf.protocol = ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1251
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1261
1262 if (lba48)
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 else
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 (*max_sectors)--;
1268 return 0;
1269 }
1270
1271 /**
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1275 *
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1282 */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 } else {
1303 tf.command = ATA_CMD_SET_MAX;
1304
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
1308 tf.protocol = ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
1347 int rc;
1348
1349 /* do we need to do it? */
1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 return 0;
1354
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1360 */
1361 if (rc == -EACCES || !unlock_hpa) {
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1369 }
1370
1371 return rc;
1372 }
1373 dev->n_native_sectors = native_sectors;
1374
1375 /* nothing to do? */
1376 if (native_sectors <= sectors || !unlock_hpa) {
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
1381 ata_dev_info(dev,
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
1416 ata_dev_info(dev,
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1429 *
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
1461 id[88],
1462 id[93]);
1463 }
1464
1465 /**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 if (mode < 5) /* Valid PIO range */
1496 pio_mask = (2 << mode) - 1;
1497 else
1498 pio_mask = 1;
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 struct completion *waiting = qc->private_data;
1537
1538 complete(waiting);
1539 }
1540
1541 /**
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
1562 */
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
1565 int dma_dir, struct scatterlist *sgl,
1566 unsigned int n_elem, unsigned long timeout)
1567 {
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
1570 u8 command = tf->command;
1571 int auto_timeout = 0;
1572 struct ata_queued_cmd *qc;
1573 unsigned int tag, preempted_tag;
1574 u32 preempted_sactive, preempted_qc_active;
1575 int preempted_nr_active_links;
1576 DECLARE_COMPLETION_ONSTACK(wait);
1577 unsigned long flags;
1578 unsigned int err_mask;
1579 int rc;
1580
1581 spin_lock_irqsave(ap->lock, flags);
1582
1583 /* no internal command while frozen */
1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 return AC_ERR_SYSTEM;
1587 }
1588
1589 /* initialize internal qc */
1590
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
1601 qc = __ata_qc_from_tag(ap, tag);
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
1611 preempted_qc_active = ap->qc_active;
1612 preempted_nr_active_links = ap->nr_active_links;
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
1615 ap->qc_active = 0;
1616 ap->nr_active_links = 0;
1617
1618 /* prepare & issue qc */
1619 qc->tf = *tf;
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
1631 unsigned int i, buflen = 0;
1632 struct scatterlist *sg;
1633
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
1636
1637 ata_sg_init(qc, sgl, n_elem);
1638 qc->nbytes = buflen;
1639 }
1640
1641 qc->private_data = &wait;
1642 qc->complete_fn = ata_qc_complete_internal;
1643
1644 ata_qc_issue(qc);
1645
1646 spin_unlock_irqrestore(ap->lock, flags);
1647
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
1656
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
1665 ata_sff_flush_pio_task(ap);
1666
1667 if (!rc) {
1668 spin_lock_irqsave(ap->lock, flags);
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
1674 */
1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
1682
1683 if (ata_msg_warn(ap))
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
1686 }
1687
1688 spin_unlock_irqrestore(ap->lock, flags);
1689 }
1690
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
1705 }
1706
1707 /* finish up */
1708 spin_lock_irqsave(ap->lock, flags);
1709
1710 *tf = qc->result_tf;
1711 err_mask = qc->err_mask;
1712
1713 ata_qc_free(qc);
1714 link->active_tag = preempted_tag;
1715 link->sactive = preempted_sactive;
1716 ap->qc_active = preempted_qc_active;
1717 ap->nr_active_links = preempted_nr_active_links;
1718
1719 spin_unlock_irqrestore(ap->lock, flags);
1720
1721 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1722 ata_internal_cmd_timed_out(dev, command);
1723
1724 return err_mask;
1725 }
1726
1727 /**
1728 * ata_exec_internal - execute libata internal command
1729 * @dev: Device to which the command is sent
1730 * @tf: Taskfile registers for the command and the result
1731 * @cdb: CDB for packet command
1732 * @dma_dir: Data transfer direction of the command
1733 * @buf: Data buffer of the command
1734 * @buflen: Length of data buffer
1735 * @timeout: Timeout in msecs (0 for default)
1736 *
1737 * Wrapper around ata_exec_internal_sg() which takes simple
1738 * buffer instead of sg list.
1739 *
1740 * LOCKING:
1741 * None. Should be called with kernel context, might sleep.
1742 *
1743 * RETURNS:
1744 * Zero on success, AC_ERR_* mask on failure
1745 */
1746 unsigned ata_exec_internal(struct ata_device *dev,
1747 struct ata_taskfile *tf, const u8 *cdb,
1748 int dma_dir, void *buf, unsigned int buflen,
1749 unsigned long timeout)
1750 {
1751 struct scatterlist *psg = NULL, sg;
1752 unsigned int n_elem = 0;
1753
1754 if (dma_dir != DMA_NONE) {
1755 WARN_ON(!buf);
1756 sg_init_one(&sg, buf, buflen);
1757 psg = &sg;
1758 n_elem++;
1759 }
1760
1761 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1762 timeout);
1763 }
1764
1765 /**
1766 * ata_pio_need_iordy - check if iordy needed
1767 * @adev: ATA device
1768 *
1769 * Check if the current speed of the device requires IORDY. Used
1770 * by various controllers for chip configuration.
1771 */
1772 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1773 {
1774 /* Don't set IORDY if we're preparing for reset. IORDY may
1775 * lead to controller lock up on certain controllers if the
1776 * port is not occupied. See bko#11703 for details.
1777 */
1778 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1779 return 0;
1780 /* Controller doesn't support IORDY. Probably a pointless
1781 * check as the caller should know this.
1782 */
1783 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1784 return 0;
1785 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1786 if (ata_id_is_cfa(adev->id)
1787 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1788 return 0;
1789 /* PIO3 and higher it is mandatory */
1790 if (adev->pio_mode > XFER_PIO_2)
1791 return 1;
1792 /* We turn it on when possible */
1793 if (ata_id_has_iordy(adev->id))
1794 return 1;
1795 return 0;
1796 }
1797
1798 /**
1799 * ata_pio_mask_no_iordy - Return the non IORDY mask
1800 * @adev: ATA device
1801 *
1802 * Compute the highest mode possible if we are not using iordy. Return
1803 * -1 if no iordy mode is available.
1804 */
1805 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1806 {
1807 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1808 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1809 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1810 /* Is the speed faster than the drive allows non IORDY ? */
1811 if (pio) {
1812 /* This is cycle times not frequency - watch the logic! */
1813 if (pio > 240) /* PIO2 is 240nS per cycle */
1814 return 3 << ATA_SHIFT_PIO;
1815 return 7 << ATA_SHIFT_PIO;
1816 }
1817 }
1818 return 3 << ATA_SHIFT_PIO;
1819 }
1820
1821 /**
1822 * ata_do_dev_read_id - default ID read method
1823 * @dev: device
1824 * @tf: proposed taskfile
1825 * @id: data buffer
1826 *
1827 * Issue the identify taskfile and hand back the buffer containing
1828 * identify data. For some RAID controllers and for pre ATA devices
1829 * this function is wrapped or replaced by the driver
1830 */
1831 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1832 struct ata_taskfile *tf, u16 *id)
1833 {
1834 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1835 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1836 }
1837
1838 /**
1839 * ata_dev_read_id - Read ID data from the specified device
1840 * @dev: target device
1841 * @p_class: pointer to class of the target device (may be changed)
1842 * @flags: ATA_READID_* flags
1843 * @id: buffer to read IDENTIFY data into
1844 *
1845 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1846 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1847 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1848 * for pre-ATA4 drives.
1849 *
1850 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1851 * now we abort if we hit that case.
1852 *
1853 * LOCKING:
1854 * Kernel thread context (may sleep)
1855 *
1856 * RETURNS:
1857 * 0 on success, -errno otherwise.
1858 */
1859 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1860 unsigned int flags, u16 *id)
1861 {
1862 struct ata_port *ap = dev->link->ap;
1863 unsigned int class = *p_class;
1864 struct ata_taskfile tf;
1865 unsigned int err_mask = 0;
1866 const char *reason;
1867 bool is_semb = class == ATA_DEV_SEMB;
1868 int may_fallback = 1, tried_spinup = 0;
1869 int rc;
1870
1871 if (ata_msg_ctl(ap))
1872 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1873
1874 retry:
1875 ata_tf_init(dev, &tf);
1876
1877 switch (class) {
1878 case ATA_DEV_SEMB:
1879 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1880 case ATA_DEV_ATA:
1881 case ATA_DEV_ZAC:
1882 tf.command = ATA_CMD_ID_ATA;
1883 break;
1884 case ATA_DEV_ATAPI:
1885 tf.command = ATA_CMD_ID_ATAPI;
1886 break;
1887 default:
1888 rc = -ENODEV;
1889 reason = "unsupported class";
1890 goto err_out;
1891 }
1892
1893 tf.protocol = ATA_PROT_PIO;
1894
1895 /* Some devices choke if TF registers contain garbage. Make
1896 * sure those are properly initialized.
1897 */
1898 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899
1900 /* Device presence detection is unreliable on some
1901 * controllers. Always poll IDENTIFY if available.
1902 */
1903 tf.flags |= ATA_TFLAG_POLLING;
1904
1905 if (ap->ops->read_id)
1906 err_mask = ap->ops->read_id(dev, &tf, id);
1907 else
1908 err_mask = ata_do_dev_read_id(dev, &tf, id);
1909
1910 if (err_mask) {
1911 if (err_mask & AC_ERR_NODEV_HINT) {
1912 ata_dev_dbg(dev, "NODEV after polling detection\n");
1913 return -ENOENT;
1914 }
1915
1916 if (is_semb) {
1917 ata_dev_info(dev,
1918 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1919 /* SEMB is not supported yet */
1920 *p_class = ATA_DEV_SEMB_UNSUP;
1921 return 0;
1922 }
1923
1924 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1925 /* Device or controller might have reported
1926 * the wrong device class. Give a shot at the
1927 * other IDENTIFY if the current one is
1928 * aborted by the device.
1929 */
1930 if (may_fallback) {
1931 may_fallback = 0;
1932
1933 if (class == ATA_DEV_ATA)
1934 class = ATA_DEV_ATAPI;
1935 else
1936 class = ATA_DEV_ATA;
1937 goto retry;
1938 }
1939
1940 /* Control reaches here iff the device aborted
1941 * both flavors of IDENTIFYs which happens
1942 * sometimes with phantom devices.
1943 */
1944 ata_dev_dbg(dev,
1945 "both IDENTIFYs aborted, assuming NODEV\n");
1946 return -ENOENT;
1947 }
1948
1949 rc = -EIO;
1950 reason = "I/O error";
1951 goto err_out;
1952 }
1953
1954 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1955 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1956 "class=%d may_fallback=%d tried_spinup=%d\n",
1957 class, may_fallback, tried_spinup);
1958 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1959 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1960 }
1961
1962 /* Falling back doesn't make sense if ID data was read
1963 * successfully at least once.
1964 */
1965 may_fallback = 0;
1966
1967 swap_buf_le16(id, ATA_ID_WORDS);
1968
1969 /* sanity check */
1970 rc = -EINVAL;
1971 reason = "device reports invalid type";
1972
1973 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1974 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975 goto err_out;
1976 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1977 ata_id_is_ata(id)) {
1978 ata_dev_dbg(dev,
1979 "host indicates ignore ATA devices, ignored\n");
1980 return -ENOENT;
1981 }
1982 } else {
1983 if (ata_id_is_ata(id))
1984 goto err_out;
1985 }
1986
1987 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1988 tried_spinup = 1;
1989 /*
1990 * Drive powered-up in standby mode, and requires a specific
1991 * SET_FEATURES spin-up subcommand before it will accept
1992 * anything other than the original IDENTIFY command.
1993 */
1994 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1995 if (err_mask && id[2] != 0x738c) {
1996 rc = -EIO;
1997 reason = "SPINUP failed";
1998 goto err_out;
1999 }
2000 /*
2001 * If the drive initially returned incomplete IDENTIFY info,
2002 * we now must reissue the IDENTIFY command.
2003 */
2004 if (id[2] == 0x37c8)
2005 goto retry;
2006 }
2007
2008 if ((flags & ATA_READID_POSTRESET) &&
2009 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2010 /*
2011 * The exact sequence expected by certain pre-ATA4 drives is:
2012 * SRST RESET
2013 * IDENTIFY (optional in early ATA)
2014 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2015 * anything else..
2016 * Some drives were very specific about that exact sequence.
2017 *
2018 * Note that ATA4 says lba is mandatory so the second check
2019 * should never trigger.
2020 */
2021 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2022 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2023 if (err_mask) {
2024 rc = -EIO;
2025 reason = "INIT_DEV_PARAMS failed";
2026 goto err_out;
2027 }
2028
2029 /* current CHS translation info (id[53-58]) might be
2030 * changed. reread the identify device info.
2031 */
2032 flags &= ~ATA_READID_POSTRESET;
2033 goto retry;
2034 }
2035 }
2036
2037 *p_class = class;
2038
2039 return 0;
2040
2041 err_out:
2042 if (ata_msg_warn(ap))
2043 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2044 reason, err_mask);
2045 return rc;
2046 }
2047
2048 static int ata_do_link_spd_horkage(struct ata_device *dev)
2049 {
2050 struct ata_link *plink = ata_dev_phys_link(dev);
2051 u32 target, target_limit;
2052
2053 if (!sata_scr_valid(plink))
2054 return 0;
2055
2056 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2057 target = 1;
2058 else
2059 return 0;
2060
2061 target_limit = (1 << target) - 1;
2062
2063 /* if already on stricter limit, no need to push further */
2064 if (plink->sata_spd_limit <= target_limit)
2065 return 0;
2066
2067 plink->sata_spd_limit = target_limit;
2068
2069 /* Request another EH round by returning -EAGAIN if link is
2070 * going faster than the target speed. Forward progress is
2071 * guaranteed by setting sata_spd_limit to target_limit above.
2072 */
2073 if (plink->sata_spd > target) {
2074 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2075 sata_spd_string(target));
2076 return -EAGAIN;
2077 }
2078 return 0;
2079 }
2080
2081 static inline u8 ata_dev_knobble(struct ata_device *dev)
2082 {
2083 struct ata_port *ap = dev->link->ap;
2084
2085 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2086 return 0;
2087
2088 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2089 }
2090
2091 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2092 {
2093 struct ata_port *ap = dev->link->ap;
2094 unsigned int err_mask;
2095 int log_index = ATA_LOG_NCQ_SEND_RECV * 2;
2096 u16 log_pages;
2097
2098 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2099 0, ap->sector_buf, 1);
2100 if (err_mask) {
2101 ata_dev_dbg(dev,
2102 "failed to get Log Directory Emask 0x%x\n",
2103 err_mask);
2104 return;
2105 }
2106 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2107 if (!log_pages) {
2108 ata_dev_warn(dev,
2109 "NCQ Send/Recv Log not supported\n");
2110 return;
2111 }
2112 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2113 0, ap->sector_buf, 1);
2114 if (err_mask) {
2115 ata_dev_dbg(dev,
2116 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2117 err_mask);
2118 } else {
2119 u8 *cmds = dev->ncq_send_recv_cmds;
2120
2121 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2122 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2123
2124 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2125 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2126 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2127 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2128 }
2129 }
2130 }
2131
2132 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2133 {
2134 struct ata_port *ap = dev->link->ap;
2135 unsigned int err_mask;
2136 int log_index = ATA_LOG_NCQ_NON_DATA * 2;
2137 u16 log_pages;
2138
2139 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2140 0, ap->sector_buf, 1);
2141 if (err_mask) {
2142 ata_dev_dbg(dev,
2143 "failed to get Log Directory Emask 0x%x\n",
2144 err_mask);
2145 return;
2146 }
2147 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2148 if (!log_pages) {
2149 ata_dev_warn(dev,
2150 "NCQ Send/Recv Log not supported\n");
2151 return;
2152 }
2153 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2154 0, ap->sector_buf, 1);
2155 if (err_mask) {
2156 ata_dev_dbg(dev,
2157 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2158 err_mask);
2159 } else {
2160 u8 *cmds = dev->ncq_non_data_cmds;
2161
2162 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2163 }
2164 }
2165
2166 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2167 {
2168 struct ata_port *ap = dev->link->ap;
2169 unsigned int err_mask;
2170
2171 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2172 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2173 return;
2174 }
2175
2176 err_mask = ata_read_log_page(dev,
2177 ATA_LOG_SATA_ID_DEV_DATA,
2178 ATA_LOG_SATA_SETTINGS,
2179 ap->sector_buf,
2180 1);
2181 if (err_mask) {
2182 ata_dev_dbg(dev,
2183 "failed to get Identify Device data, Emask 0x%x\n",
2184 err_mask);
2185 return;
2186 }
2187
2188 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2189 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2190 } else {
2191 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2192 ata_dev_dbg(dev, "SATA page does not support priority\n");
2193 }
2194
2195 }
2196
2197 static int ata_dev_config_ncq(struct ata_device *dev,
2198 char *desc, size_t desc_sz)
2199 {
2200 struct ata_port *ap = dev->link->ap;
2201 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2202 unsigned int err_mask;
2203 char *aa_desc = "";
2204
2205 if (!ata_id_has_ncq(dev->id)) {
2206 desc[0] = '\0';
2207 return 0;
2208 }
2209 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2210 snprintf(desc, desc_sz, "NCQ (not used)");
2211 return 0;
2212 }
2213 if (ap->flags & ATA_FLAG_NCQ) {
2214 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2215 dev->flags |= ATA_DFLAG_NCQ;
2216 }
2217
2218 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2219 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2220 ata_id_has_fpdma_aa(dev->id)) {
2221 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2222 SATA_FPDMA_AA);
2223 if (err_mask) {
2224 ata_dev_err(dev,
2225 "failed to enable AA (error_mask=0x%x)\n",
2226 err_mask);
2227 if (err_mask != AC_ERR_DEV) {
2228 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2229 return -EIO;
2230 }
2231 } else
2232 aa_desc = ", AA";
2233 }
2234
2235 if (hdepth >= ddepth)
2236 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2237 else
2238 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2239 ddepth, aa_desc);
2240
2241 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2242 if (ata_id_has_ncq_send_and_recv(dev->id))
2243 ata_dev_config_ncq_send_recv(dev);
2244 if (ata_id_has_ncq_non_data(dev->id))
2245 ata_dev_config_ncq_non_data(dev);
2246 if (ata_id_has_ncq_prio(dev->id))
2247 ata_dev_config_ncq_prio(dev);
2248 }
2249
2250 return 0;
2251 }
2252
2253 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2254 {
2255 unsigned int err_mask;
2256
2257 if (!ata_id_has_sense_reporting(dev->id))
2258 return;
2259
2260 if (ata_id_sense_reporting_enabled(dev->id))
2261 return;
2262
2263 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2264 if (err_mask) {
2265 ata_dev_dbg(dev,
2266 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2267 err_mask);
2268 }
2269 }
2270
2271 static void ata_dev_config_zac(struct ata_device *dev)
2272 {
2273 struct ata_port *ap = dev->link->ap;
2274 unsigned int err_mask;
2275 u8 *identify_buf = ap->sector_buf;
2276 int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0;
2277 u16 log_pages;
2278
2279 dev->zac_zones_optimal_open = U32_MAX;
2280 dev->zac_zones_optimal_nonseq = U32_MAX;
2281 dev->zac_zones_max_open = U32_MAX;
2282
2283 /*
2284 * Always set the 'ZAC' flag for Host-managed devices.
2285 */
2286 if (dev->class == ATA_DEV_ZAC)
2287 dev->flags |= ATA_DFLAG_ZAC;
2288 else if (ata_id_zoned_cap(dev->id) == 0x01)
2289 /*
2290 * Check for host-aware devices.
2291 */
2292 dev->flags |= ATA_DFLAG_ZAC;
2293
2294 if (!(dev->flags & ATA_DFLAG_ZAC))
2295 return;
2296
2297 /*
2298 * Read Log Directory to figure out if IDENTIFY DEVICE log
2299 * is supported.
2300 */
2301 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2302 0, ap->sector_buf, 1);
2303 if (err_mask) {
2304 ata_dev_info(dev,
2305 "failed to get Log Directory Emask 0x%x\n",
2306 err_mask);
2307 return;
2308 }
2309 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2310 if (log_pages == 0) {
2311 ata_dev_warn(dev,
2312 "ATA Identify Device Log not supported\n");
2313 return;
2314 }
2315 /*
2316 * Read IDENTIFY DEVICE data log, page 0, to figure out
2317 * if page 9 is supported.
2318 */
2319 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0,
2320 identify_buf, 1);
2321 if (err_mask) {
2322 ata_dev_info(dev,
2323 "failed to get Device Identify Log Emask 0x%x\n",
2324 err_mask);
2325 return;
2326 }
2327 log_pages = identify_buf[8];
2328 for (i = 0; i < log_pages; i++) {
2329 if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) {
2330 found++;
2331 break;
2332 }
2333 }
2334 if (!found) {
2335 ata_dev_warn(dev,
2336 "ATA Zoned Information Log not supported\n");
2337 return;
2338 }
2339
2340 /*
2341 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2342 */
2343 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA,
2344 ATA_LOG_ZONED_INFORMATION,
2345 identify_buf, 1);
2346 if (!err_mask) {
2347 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2348
2349 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2350 if ((zoned_cap >> 63))
2351 dev->zac_zoned_cap = (zoned_cap & 1);
2352 opt_open = get_unaligned_le64(&identify_buf[24]);
2353 if ((opt_open >> 63))
2354 dev->zac_zones_optimal_open = (u32)opt_open;
2355 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2356 if ((opt_nonseq >> 63))
2357 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2358 max_open = get_unaligned_le64(&identify_buf[40]);
2359 if ((max_open >> 63))
2360 dev->zac_zones_max_open = (u32)max_open;
2361 }
2362 }
2363
2364 /**
2365 * ata_dev_configure - Configure the specified ATA/ATAPI device
2366 * @dev: Target device to configure
2367 *
2368 * Configure @dev according to @dev->id. Generic and low-level
2369 * driver specific fixups are also applied.
2370 *
2371 * LOCKING:
2372 * Kernel thread context (may sleep)
2373 *
2374 * RETURNS:
2375 * 0 on success, -errno otherwise
2376 */
2377 int ata_dev_configure(struct ata_device *dev)
2378 {
2379 struct ata_port *ap = dev->link->ap;
2380 struct ata_eh_context *ehc = &dev->link->eh_context;
2381 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2382 const u16 *id = dev->id;
2383 unsigned long xfer_mask;
2384 unsigned int err_mask;
2385 char revbuf[7]; /* XYZ-99\0 */
2386 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2387 char modelbuf[ATA_ID_PROD_LEN+1];
2388 int rc;
2389
2390 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2391 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2392 return 0;
2393 }
2394
2395 if (ata_msg_probe(ap))
2396 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2397
2398 /* set horkage */
2399 dev->horkage |= ata_dev_blacklisted(dev);
2400 ata_force_horkage(dev);
2401
2402 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2403 ata_dev_info(dev, "unsupported device, disabling\n");
2404 ata_dev_disable(dev);
2405 return 0;
2406 }
2407
2408 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2409 dev->class == ATA_DEV_ATAPI) {
2410 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2411 atapi_enabled ? "not supported with this driver"
2412 : "disabled");
2413 ata_dev_disable(dev);
2414 return 0;
2415 }
2416
2417 rc = ata_do_link_spd_horkage(dev);
2418 if (rc)
2419 return rc;
2420
2421 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2422 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2423 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2424 dev->horkage |= ATA_HORKAGE_NOLPM;
2425
2426 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2427 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2428 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2429 }
2430
2431 /* let ACPI work its magic */
2432 rc = ata_acpi_on_devcfg(dev);
2433 if (rc)
2434 return rc;
2435
2436 /* massage HPA, do it early as it might change IDENTIFY data */
2437 rc = ata_hpa_resize(dev);
2438 if (rc)
2439 return rc;
2440
2441 /* print device capabilities */
2442 if (ata_msg_probe(ap))
2443 ata_dev_dbg(dev,
2444 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2445 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2446 __func__,
2447 id[49], id[82], id[83], id[84],
2448 id[85], id[86], id[87], id[88]);
2449
2450 /* initialize to-be-configured parameters */
2451 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2452 dev->max_sectors = 0;
2453 dev->cdb_len = 0;
2454 dev->n_sectors = 0;
2455 dev->cylinders = 0;
2456 dev->heads = 0;
2457 dev->sectors = 0;
2458 dev->multi_count = 0;
2459
2460 /*
2461 * common ATA, ATAPI feature tests
2462 */
2463
2464 /* find max transfer mode; for printk only */
2465 xfer_mask = ata_id_xfermask(id);
2466
2467 if (ata_msg_probe(ap))
2468 ata_dump_id(id);
2469
2470 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2471 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2472 sizeof(fwrevbuf));
2473
2474 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2475 sizeof(modelbuf));
2476
2477 /* ATA-specific feature tests */
2478 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2479 if (ata_id_is_cfa(id)) {
2480 /* CPRM may make this media unusable */
2481 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2482 ata_dev_warn(dev,
2483 "supports DRM functions and may not be fully accessible\n");
2484 snprintf(revbuf, 7, "CFA");
2485 } else {
2486 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2487 /* Warn the user if the device has TPM extensions */
2488 if (ata_id_has_tpm(id))
2489 ata_dev_warn(dev,
2490 "supports DRM functions and may not be fully accessible\n");
2491 }
2492
2493 dev->n_sectors = ata_id_n_sectors(id);
2494
2495 /* get current R/W Multiple count setting */
2496 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2497 unsigned int max = dev->id[47] & 0xff;
2498 unsigned int cnt = dev->id[59] & 0xff;
2499 /* only recognize/allow powers of two here */
2500 if (is_power_of_2(max) && is_power_of_2(cnt))
2501 if (cnt <= max)
2502 dev->multi_count = cnt;
2503 }
2504
2505 if (ata_id_has_lba(id)) {
2506 const char *lba_desc;
2507 char ncq_desc[24];
2508
2509 lba_desc = "LBA";
2510 dev->flags |= ATA_DFLAG_LBA;
2511 if (ata_id_has_lba48(id)) {
2512 dev->flags |= ATA_DFLAG_LBA48;
2513 lba_desc = "LBA48";
2514
2515 if (dev->n_sectors >= (1UL << 28) &&
2516 ata_id_has_flush_ext(id))
2517 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2518 }
2519
2520 /* config NCQ */
2521 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2522 if (rc)
2523 return rc;
2524
2525 /* print device info to dmesg */
2526 if (ata_msg_drv(ap) && print_info) {
2527 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2528 revbuf, modelbuf, fwrevbuf,
2529 ata_mode_string(xfer_mask));
2530 ata_dev_info(dev,
2531 "%llu sectors, multi %u: %s %s\n",
2532 (unsigned long long)dev->n_sectors,
2533 dev->multi_count, lba_desc, ncq_desc);
2534 }
2535 } else {
2536 /* CHS */
2537
2538 /* Default translation */
2539 dev->cylinders = id[1];
2540 dev->heads = id[3];
2541 dev->sectors = id[6];
2542
2543 if (ata_id_current_chs_valid(id)) {
2544 /* Current CHS translation is valid. */
2545 dev->cylinders = id[54];
2546 dev->heads = id[55];
2547 dev->sectors = id[56];
2548 }
2549
2550 /* print device info to dmesg */
2551 if (ata_msg_drv(ap) && print_info) {
2552 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2553 revbuf, modelbuf, fwrevbuf,
2554 ata_mode_string(xfer_mask));
2555 ata_dev_info(dev,
2556 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2557 (unsigned long long)dev->n_sectors,
2558 dev->multi_count, dev->cylinders,
2559 dev->heads, dev->sectors);
2560 }
2561 }
2562
2563 /* Check and mark DevSlp capability. Get DevSlp timing variables
2564 * from SATA Settings page of Identify Device Data Log.
2565 */
2566 if (ata_id_has_devslp(dev->id)) {
2567 u8 *sata_setting = ap->sector_buf;
2568 int i, j;
2569
2570 dev->flags |= ATA_DFLAG_DEVSLP;
2571 err_mask = ata_read_log_page(dev,
2572 ATA_LOG_SATA_ID_DEV_DATA,
2573 ATA_LOG_SATA_SETTINGS,
2574 sata_setting,
2575 1);
2576 if (err_mask)
2577 ata_dev_dbg(dev,
2578 "failed to get Identify Device Data, Emask 0x%x\n",
2579 err_mask);
2580 else
2581 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2582 j = ATA_LOG_DEVSLP_OFFSET + i;
2583 dev->devslp_timing[i] = sata_setting[j];
2584 }
2585 }
2586 ata_dev_config_sense_reporting(dev);
2587 ata_dev_config_zac(dev);
2588 dev->cdb_len = 16;
2589 }
2590
2591 /* ATAPI-specific feature tests */
2592 else if (dev->class == ATA_DEV_ATAPI) {
2593 const char *cdb_intr_string = "";
2594 const char *atapi_an_string = "";
2595 const char *dma_dir_string = "";
2596 u32 sntf;
2597
2598 rc = atapi_cdb_len(id);
2599 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2600 if (ata_msg_warn(ap))
2601 ata_dev_warn(dev, "unsupported CDB len\n");
2602 rc = -EINVAL;
2603 goto err_out_nosup;
2604 }
2605 dev->cdb_len = (unsigned int) rc;
2606
2607 /* Enable ATAPI AN if both the host and device have
2608 * the support. If PMP is attached, SNTF is required
2609 * to enable ATAPI AN to discern between PHY status
2610 * changed notifications and ATAPI ANs.
2611 */
2612 if (atapi_an &&
2613 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2614 (!sata_pmp_attached(ap) ||
2615 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2616 /* issue SET feature command to turn this on */
2617 err_mask = ata_dev_set_feature(dev,
2618 SETFEATURES_SATA_ENABLE, SATA_AN);
2619 if (err_mask)
2620 ata_dev_err(dev,
2621 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2622 err_mask);
2623 else {
2624 dev->flags |= ATA_DFLAG_AN;
2625 atapi_an_string = ", ATAPI AN";
2626 }
2627 }
2628
2629 if (ata_id_cdb_intr(dev->id)) {
2630 dev->flags |= ATA_DFLAG_CDB_INTR;
2631 cdb_intr_string = ", CDB intr";
2632 }
2633
2634 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2635 dev->flags |= ATA_DFLAG_DMADIR;
2636 dma_dir_string = ", DMADIR";
2637 }
2638
2639 if (ata_id_has_da(dev->id)) {
2640 dev->flags |= ATA_DFLAG_DA;
2641 zpodd_init(dev);
2642 }
2643
2644 /* print device info to dmesg */
2645 if (ata_msg_drv(ap) && print_info)
2646 ata_dev_info(dev,
2647 "ATAPI: %s, %s, max %s%s%s%s\n",
2648 modelbuf, fwrevbuf,
2649 ata_mode_string(xfer_mask),
2650 cdb_intr_string, atapi_an_string,
2651 dma_dir_string);
2652 }
2653
2654 /* determine max_sectors */
2655 dev->max_sectors = ATA_MAX_SECTORS;
2656 if (dev->flags & ATA_DFLAG_LBA48)
2657 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2658
2659 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2660 200 sectors */
2661 if (ata_dev_knobble(dev)) {
2662 if (ata_msg_drv(ap) && print_info)
2663 ata_dev_info(dev, "applying bridge limits\n");
2664 dev->udma_mask &= ATA_UDMA5;
2665 dev->max_sectors = ATA_MAX_SECTORS;
2666 }
2667
2668 if ((dev->class == ATA_DEV_ATAPI) &&
2669 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2670 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2671 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2672 }
2673
2674 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2675 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2676 dev->max_sectors);
2677
2678 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2679 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2680 dev->max_sectors);
2681
2682 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2683 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2684
2685 if (ap->ops->dev_config)
2686 ap->ops->dev_config(dev);
2687
2688 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2689 /* Let the user know. We don't want to disallow opens for
2690 rescue purposes, or in case the vendor is just a blithering
2691 idiot. Do this after the dev_config call as some controllers
2692 with buggy firmware may want to avoid reporting false device
2693 bugs */
2694
2695 if (print_info) {
2696 ata_dev_warn(dev,
2697 "Drive reports diagnostics failure. This may indicate a drive\n");
2698 ata_dev_warn(dev,
2699 "fault or invalid emulation. Contact drive vendor for information.\n");
2700 }
2701 }
2702
2703 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2704 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2705 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2706 }
2707
2708 return 0;
2709
2710 err_out_nosup:
2711 if (ata_msg_probe(ap))
2712 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2713 return rc;
2714 }
2715
2716 /**
2717 * ata_cable_40wire - return 40 wire cable type
2718 * @ap: port
2719 *
2720 * Helper method for drivers which want to hardwire 40 wire cable
2721 * detection.
2722 */
2723
2724 int ata_cable_40wire(struct ata_port *ap)
2725 {
2726 return ATA_CBL_PATA40;
2727 }
2728
2729 /**
2730 * ata_cable_80wire - return 80 wire cable type
2731 * @ap: port
2732 *
2733 * Helper method for drivers which want to hardwire 80 wire cable
2734 * detection.
2735 */
2736
2737 int ata_cable_80wire(struct ata_port *ap)
2738 {
2739 return ATA_CBL_PATA80;
2740 }
2741
2742 /**
2743 * ata_cable_unknown - return unknown PATA cable.
2744 * @ap: port
2745 *
2746 * Helper method for drivers which have no PATA cable detection.
2747 */
2748
2749 int ata_cable_unknown(struct ata_port *ap)
2750 {
2751 return ATA_CBL_PATA_UNK;
2752 }
2753
2754 /**
2755 * ata_cable_ignore - return ignored PATA cable.
2756 * @ap: port
2757 *
2758 * Helper method for drivers which don't use cable type to limit
2759 * transfer mode.
2760 */
2761 int ata_cable_ignore(struct ata_port *ap)
2762 {
2763 return ATA_CBL_PATA_IGN;
2764 }
2765
2766 /**
2767 * ata_cable_sata - return SATA cable type
2768 * @ap: port
2769 *
2770 * Helper method for drivers which have SATA cables
2771 */
2772
2773 int ata_cable_sata(struct ata_port *ap)
2774 {
2775 return ATA_CBL_SATA;
2776 }
2777
2778 /**
2779 * ata_bus_probe - Reset and probe ATA bus
2780 * @ap: Bus to probe
2781 *
2782 * Master ATA bus probing function. Initiates a hardware-dependent
2783 * bus reset, then attempts to identify any devices found on
2784 * the bus.
2785 *
2786 * LOCKING:
2787 * PCI/etc. bus probe sem.
2788 *
2789 * RETURNS:
2790 * Zero on success, negative errno otherwise.
2791 */
2792
2793 int ata_bus_probe(struct ata_port *ap)
2794 {
2795 unsigned int classes[ATA_MAX_DEVICES];
2796 int tries[ATA_MAX_DEVICES];
2797 int rc;
2798 struct ata_device *dev;
2799
2800 ata_for_each_dev(dev, &ap->link, ALL)
2801 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2802
2803 retry:
2804 ata_for_each_dev(dev, &ap->link, ALL) {
2805 /* If we issue an SRST then an ATA drive (not ATAPI)
2806 * may change configuration and be in PIO0 timing. If
2807 * we do a hard reset (or are coming from power on)
2808 * this is true for ATA or ATAPI. Until we've set a
2809 * suitable controller mode we should not touch the
2810 * bus as we may be talking too fast.
2811 */
2812 dev->pio_mode = XFER_PIO_0;
2813 dev->dma_mode = 0xff;
2814
2815 /* If the controller has a pio mode setup function
2816 * then use it to set the chipset to rights. Don't
2817 * touch the DMA setup as that will be dealt with when
2818 * configuring devices.
2819 */
2820 if (ap->ops->set_piomode)
2821 ap->ops->set_piomode(ap, dev);
2822 }
2823
2824 /* reset and determine device classes */
2825 ap->ops->phy_reset(ap);
2826
2827 ata_for_each_dev(dev, &ap->link, ALL) {
2828 if (dev->class != ATA_DEV_UNKNOWN)
2829 classes[dev->devno] = dev->class;
2830 else
2831 classes[dev->devno] = ATA_DEV_NONE;
2832
2833 dev->class = ATA_DEV_UNKNOWN;
2834 }
2835
2836 /* read IDENTIFY page and configure devices. We have to do the identify
2837 specific sequence bass-ackwards so that PDIAG- is released by
2838 the slave device */
2839
2840 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2841 if (tries[dev->devno])
2842 dev->class = classes[dev->devno];
2843
2844 if (!ata_dev_enabled(dev))
2845 continue;
2846
2847 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2848 dev->id);
2849 if (rc)
2850 goto fail;
2851 }
2852
2853 /* Now ask for the cable type as PDIAG- should have been released */
2854 if (ap->ops->cable_detect)
2855 ap->cbl = ap->ops->cable_detect(ap);
2856
2857 /* We may have SATA bridge glue hiding here irrespective of
2858 * the reported cable types and sensed types. When SATA
2859 * drives indicate we have a bridge, we don't know which end
2860 * of the link the bridge is which is a problem.
2861 */
2862 ata_for_each_dev(dev, &ap->link, ENABLED)
2863 if (ata_id_is_sata(dev->id))
2864 ap->cbl = ATA_CBL_SATA;
2865
2866 /* After the identify sequence we can now set up the devices. We do
2867 this in the normal order so that the user doesn't get confused */
2868
2869 ata_for_each_dev(dev, &ap->link, ENABLED) {
2870 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2871 rc = ata_dev_configure(dev);
2872 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2873 if (rc)
2874 goto fail;
2875 }
2876
2877 /* configure transfer mode */
2878 rc = ata_set_mode(&ap->link, &dev);
2879 if (rc)
2880 goto fail;
2881
2882 ata_for_each_dev(dev, &ap->link, ENABLED)
2883 return 0;
2884
2885 return -ENODEV;
2886
2887 fail:
2888 tries[dev->devno]--;
2889
2890 switch (rc) {
2891 case -EINVAL:
2892 /* eeek, something went very wrong, give up */
2893 tries[dev->devno] = 0;
2894 break;
2895
2896 case -ENODEV:
2897 /* give it just one more chance */
2898 tries[dev->devno] = min(tries[dev->devno], 1);
2899 case -EIO:
2900 if (tries[dev->devno] == 1) {
2901 /* This is the last chance, better to slow
2902 * down than lose it.
2903 */
2904 sata_down_spd_limit(&ap->link, 0);
2905 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2906 }
2907 }
2908
2909 if (!tries[dev->devno])
2910 ata_dev_disable(dev);
2911
2912 goto retry;
2913 }
2914
2915 /**
2916 * sata_print_link_status - Print SATA link status
2917 * @link: SATA link to printk link status about
2918 *
2919 * This function prints link speed and status of a SATA link.
2920 *
2921 * LOCKING:
2922 * None.
2923 */
2924 static void sata_print_link_status(struct ata_link *link)
2925 {
2926 u32 sstatus, scontrol, tmp;
2927
2928 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2929 return;
2930 sata_scr_read(link, SCR_CONTROL, &scontrol);
2931
2932 if (ata_phys_link_online(link)) {
2933 tmp = (sstatus >> 4) & 0xf;
2934 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2935 sata_spd_string(tmp), sstatus, scontrol);
2936 } else {
2937 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2938 sstatus, scontrol);
2939 }
2940 }
2941
2942 /**
2943 * ata_dev_pair - return other device on cable
2944 * @adev: device
2945 *
2946 * Obtain the other device on the same cable, or if none is
2947 * present NULL is returned
2948 */
2949
2950 struct ata_device *ata_dev_pair(struct ata_device *adev)
2951 {
2952 struct ata_link *link = adev->link;
2953 struct ata_device *pair = &link->device[1 - adev->devno];
2954 if (!ata_dev_enabled(pair))
2955 return NULL;
2956 return pair;
2957 }
2958
2959 /**
2960 * sata_down_spd_limit - adjust SATA spd limit downward
2961 * @link: Link to adjust SATA spd limit for
2962 * @spd_limit: Additional limit
2963 *
2964 * Adjust SATA spd limit of @link downward. Note that this
2965 * function only adjusts the limit. The change must be applied
2966 * using sata_set_spd().
2967 *
2968 * If @spd_limit is non-zero, the speed is limited to equal to or
2969 * lower than @spd_limit if such speed is supported. If
2970 * @spd_limit is slower than any supported speed, only the lowest
2971 * supported speed is allowed.
2972 *
2973 * LOCKING:
2974 * Inherited from caller.
2975 *
2976 * RETURNS:
2977 * 0 on success, negative errno on failure
2978 */
2979 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2980 {
2981 u32 sstatus, spd, mask;
2982 int rc, bit;
2983
2984 if (!sata_scr_valid(link))
2985 return -EOPNOTSUPP;
2986
2987 /* If SCR can be read, use it to determine the current SPD.
2988 * If not, use cached value in link->sata_spd.
2989 */
2990 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2991 if (rc == 0 && ata_sstatus_online(sstatus))
2992 spd = (sstatus >> 4) & 0xf;
2993 else
2994 spd = link->sata_spd;
2995
2996 mask = link->sata_spd_limit;
2997 if (mask <= 1)
2998 return -EINVAL;
2999
3000 /* unconditionally mask off the highest bit */
3001 bit = fls(mask) - 1;
3002 mask &= ~(1 << bit);
3003
3004 /* Mask off all speeds higher than or equal to the current
3005 * one. Force 1.5Gbps if current SPD is not available.
3006 */
3007 if (spd > 1)
3008 mask &= (1 << (spd - 1)) - 1;
3009 else
3010 mask &= 1;
3011
3012 /* were we already at the bottom? */
3013 if (!mask)
3014 return -EINVAL;
3015
3016 if (spd_limit) {
3017 if (mask & ((1 << spd_limit) - 1))
3018 mask &= (1 << spd_limit) - 1;
3019 else {
3020 bit = ffs(mask) - 1;
3021 mask = 1 << bit;
3022 }
3023 }
3024
3025 link->sata_spd_limit = mask;
3026
3027 ata_link_warn(link, "limiting SATA link speed to %s\n",
3028 sata_spd_string(fls(mask)));
3029
3030 return 0;
3031 }
3032
3033 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3034 {
3035 struct ata_link *host_link = &link->ap->link;
3036 u32 limit, target, spd;
3037
3038 limit = link->sata_spd_limit;
3039
3040 /* Don't configure downstream link faster than upstream link.
3041 * It doesn't speed up anything and some PMPs choke on such
3042 * configuration.
3043 */
3044 if (!ata_is_host_link(link) && host_link->sata_spd)
3045 limit &= (1 << host_link->sata_spd) - 1;
3046
3047 if (limit == UINT_MAX)
3048 target = 0;
3049 else
3050 target = fls(limit);
3051
3052 spd = (*scontrol >> 4) & 0xf;
3053 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3054
3055 return spd != target;
3056 }
3057
3058 /**
3059 * sata_set_spd_needed - is SATA spd configuration needed
3060 * @link: Link in question
3061 *
3062 * Test whether the spd limit in SControl matches
3063 * @link->sata_spd_limit. This function is used to determine
3064 * whether hardreset is necessary to apply SATA spd
3065 * configuration.
3066 *
3067 * LOCKING:
3068 * Inherited from caller.
3069 *
3070 * RETURNS:
3071 * 1 if SATA spd configuration is needed, 0 otherwise.
3072 */
3073 static int sata_set_spd_needed(struct ata_link *link)
3074 {
3075 u32 scontrol;
3076
3077 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3078 return 1;
3079
3080 return __sata_set_spd_needed(link, &scontrol);
3081 }
3082
3083 /**
3084 * sata_set_spd - set SATA spd according to spd limit
3085 * @link: Link to set SATA spd for
3086 *
3087 * Set SATA spd of @link according to sata_spd_limit.
3088 *
3089 * LOCKING:
3090 * Inherited from caller.
3091 *
3092 * RETURNS:
3093 * 0 if spd doesn't need to be changed, 1 if spd has been
3094 * changed. Negative errno if SCR registers are inaccessible.
3095 */
3096 int sata_set_spd(struct ata_link *link)
3097 {
3098 u32 scontrol;
3099 int rc;
3100
3101 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3102 return rc;
3103
3104 if (!__sata_set_spd_needed(link, &scontrol))
3105 return 0;
3106
3107 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3108 return rc;
3109
3110 return 1;
3111 }
3112
3113 /*
3114 * This mode timing computation functionality is ported over from
3115 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3116 */
3117 /*
3118 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3119 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3120 * for UDMA6, which is currently supported only by Maxtor drives.
3121 *
3122 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3123 */
3124
3125 static const struct ata_timing ata_timing[] = {
3126 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3127 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3128 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3129 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3130 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3131 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3132 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3133 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3134
3135 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3136 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3137 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3138
3139 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3140 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3141 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3142 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3143 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3144
3145 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3146 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3147 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3148 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3149 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3150 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3151 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3152 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3153
3154 { 0xFF }
3155 };
3156
3157 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3158 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3159
3160 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3161 {
3162 q->setup = EZ(t->setup * 1000, T);
3163 q->act8b = EZ(t->act8b * 1000, T);
3164 q->rec8b = EZ(t->rec8b * 1000, T);
3165 q->cyc8b = EZ(t->cyc8b * 1000, T);
3166 q->active = EZ(t->active * 1000, T);
3167 q->recover = EZ(t->recover * 1000, T);
3168 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3169 q->cycle = EZ(t->cycle * 1000, T);
3170 q->udma = EZ(t->udma * 1000, UT);
3171 }
3172
3173 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3174 struct ata_timing *m, unsigned int what)
3175 {
3176 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3177 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3178 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3179 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3180 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3181 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3182 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3183 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3184 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3185 }
3186
3187 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3188 {
3189 const struct ata_timing *t = ata_timing;
3190
3191 while (xfer_mode > t->mode)
3192 t++;
3193
3194 if (xfer_mode == t->mode)
3195 return t;
3196
3197 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3198 __func__, xfer_mode);
3199
3200 return NULL;
3201 }
3202
3203 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3204 struct ata_timing *t, int T, int UT)
3205 {
3206 const u16 *id = adev->id;
3207 const struct ata_timing *s;
3208 struct ata_timing p;
3209
3210 /*
3211 * Find the mode.
3212 */
3213
3214 if (!(s = ata_timing_find_mode(speed)))
3215 return -EINVAL;
3216
3217 memcpy(t, s, sizeof(*s));
3218
3219 /*
3220 * If the drive is an EIDE drive, it can tell us it needs extended
3221 * PIO/MW_DMA cycle timing.
3222 */
3223
3224 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3225 memset(&p, 0, sizeof(p));
3226
3227 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3228 if (speed <= XFER_PIO_2)
3229 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3230 else if ((speed <= XFER_PIO_4) ||
3231 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3232 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3233 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3234 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3235
3236 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3237 }
3238
3239 /*
3240 * Convert the timing to bus clock counts.
3241 */
3242
3243 ata_timing_quantize(t, t, T, UT);
3244
3245 /*
3246 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3247 * S.M.A.R.T * and some other commands. We have to ensure that the
3248 * DMA cycle timing is slower/equal than the fastest PIO timing.
3249 */
3250
3251 if (speed > XFER_PIO_6) {
3252 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3253 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3254 }
3255
3256 /*
3257 * Lengthen active & recovery time so that cycle time is correct.
3258 */
3259
3260 if (t->act8b + t->rec8b < t->cyc8b) {
3261 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3262 t->rec8b = t->cyc8b - t->act8b;
3263 }
3264
3265 if (t->active + t->recover < t->cycle) {
3266 t->active += (t->cycle - (t->active + t->recover)) / 2;
3267 t->recover = t->cycle - t->active;
3268 }
3269
3270 /* In a few cases quantisation may produce enough errors to
3271 leave t->cycle too low for the sum of active and recovery
3272 if so we must correct this */
3273 if (t->active + t->recover > t->cycle)
3274 t->cycle = t->active + t->recover;
3275
3276 return 0;
3277 }
3278
3279 /**
3280 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3281 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3282 * @cycle: cycle duration in ns
3283 *
3284 * Return matching xfer mode for @cycle. The returned mode is of
3285 * the transfer type specified by @xfer_shift. If @cycle is too
3286 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3287 * than the fastest known mode, the fasted mode is returned.
3288 *
3289 * LOCKING:
3290 * None.
3291 *
3292 * RETURNS:
3293 * Matching xfer_mode, 0xff if no match found.
3294 */
3295 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3296 {
3297 u8 base_mode = 0xff, last_mode = 0xff;
3298 const struct ata_xfer_ent *ent;
3299 const struct ata_timing *t;
3300
3301 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3302 if (ent->shift == xfer_shift)
3303 base_mode = ent->base;
3304
3305 for (t = ata_timing_find_mode(base_mode);
3306 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3307 unsigned short this_cycle;
3308
3309 switch (xfer_shift) {
3310 case ATA_SHIFT_PIO:
3311 case ATA_SHIFT_MWDMA:
3312 this_cycle = t->cycle;
3313 break;
3314 case ATA_SHIFT_UDMA:
3315 this_cycle = t->udma;
3316 break;
3317 default:
3318 return 0xff;
3319 }
3320
3321 if (cycle > this_cycle)
3322 break;
3323
3324 last_mode = t->mode;
3325 }
3326
3327 return last_mode;
3328 }
3329
3330 /**
3331 * ata_down_xfermask_limit - adjust dev xfer masks downward
3332 * @dev: Device to adjust xfer masks
3333 * @sel: ATA_DNXFER_* selector
3334 *
3335 * Adjust xfer masks of @dev downward. Note that this function
3336 * does not apply the change. Invoking ata_set_mode() afterwards
3337 * will apply the limit.
3338 *
3339 * LOCKING:
3340 * Inherited from caller.
3341 *
3342 * RETURNS:
3343 * 0 on success, negative errno on failure
3344 */
3345 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3346 {
3347 char buf[32];
3348 unsigned long orig_mask, xfer_mask;
3349 unsigned long pio_mask, mwdma_mask, udma_mask;
3350 int quiet, highbit;
3351
3352 quiet = !!(sel & ATA_DNXFER_QUIET);
3353 sel &= ~ATA_DNXFER_QUIET;
3354
3355 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3356 dev->mwdma_mask,
3357 dev->udma_mask);
3358 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3359
3360 switch (sel) {
3361 case ATA_DNXFER_PIO:
3362 highbit = fls(pio_mask) - 1;
3363 pio_mask &= ~(1 << highbit);
3364 break;
3365
3366 case ATA_DNXFER_DMA:
3367 if (udma_mask) {
3368 highbit = fls(udma_mask) - 1;
3369 udma_mask &= ~(1 << highbit);
3370 if (!udma_mask)
3371 return -ENOENT;
3372 } else if (mwdma_mask) {
3373 highbit = fls(mwdma_mask) - 1;
3374 mwdma_mask &= ~(1 << highbit);
3375 if (!mwdma_mask)
3376 return -ENOENT;
3377 }
3378 break;
3379
3380 case ATA_DNXFER_40C:
3381 udma_mask &= ATA_UDMA_MASK_40C;
3382 break;
3383
3384 case ATA_DNXFER_FORCE_PIO0:
3385 pio_mask &= 1;
3386 case ATA_DNXFER_FORCE_PIO:
3387 mwdma_mask = 0;
3388 udma_mask = 0;
3389 break;
3390
3391 default:
3392 BUG();
3393 }
3394
3395 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3396
3397 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3398 return -ENOENT;
3399
3400 if (!quiet) {
3401 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3402 snprintf(buf, sizeof(buf), "%s:%s",
3403 ata_mode_string(xfer_mask),
3404 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3405 else
3406 snprintf(buf, sizeof(buf), "%s",
3407 ata_mode_string(xfer_mask));
3408
3409 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3410 }
3411
3412 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3413 &dev->udma_mask);
3414
3415 return 0;
3416 }
3417
3418 static int ata_dev_set_mode(struct ata_device *dev)
3419 {
3420 struct ata_port *ap = dev->link->ap;
3421 struct ata_eh_context *ehc = &dev->link->eh_context;
3422 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3423 const char *dev_err_whine = "";
3424 int ign_dev_err = 0;
3425 unsigned int err_mask = 0;
3426 int rc;
3427
3428 dev->flags &= ~ATA_DFLAG_PIO;
3429 if (dev->xfer_shift == ATA_SHIFT_PIO)
3430 dev->flags |= ATA_DFLAG_PIO;
3431
3432 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3433 dev_err_whine = " (SET_XFERMODE skipped)";
3434 else {
3435 if (nosetxfer)
3436 ata_dev_warn(dev,
3437 "NOSETXFER but PATA detected - can't "
3438 "skip SETXFER, might malfunction\n");
3439 err_mask = ata_dev_set_xfermode(dev);
3440 }
3441
3442 if (err_mask & ~AC_ERR_DEV)
3443 goto fail;
3444
3445 /* revalidate */
3446 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3447 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3448 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3449 if (rc)
3450 return rc;
3451
3452 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3453 /* Old CFA may refuse this command, which is just fine */
3454 if (ata_id_is_cfa(dev->id))
3455 ign_dev_err = 1;
3456 /* Catch several broken garbage emulations plus some pre
3457 ATA devices */
3458 if (ata_id_major_version(dev->id) == 0 &&
3459 dev->pio_mode <= XFER_PIO_2)
3460 ign_dev_err = 1;
3461 /* Some very old devices and some bad newer ones fail
3462 any kind of SET_XFERMODE request but support PIO0-2
3463 timings and no IORDY */
3464 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3465 ign_dev_err = 1;
3466 }
3467 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3468 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3469 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3470 dev->dma_mode == XFER_MW_DMA_0 &&
3471 (dev->id[63] >> 8) & 1)
3472 ign_dev_err = 1;
3473
3474 /* if the device is actually configured correctly, ignore dev err */
3475 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3476 ign_dev_err = 1;
3477
3478 if (err_mask & AC_ERR_DEV) {
3479 if (!ign_dev_err)
3480 goto fail;
3481 else
3482 dev_err_whine = " (device error ignored)";
3483 }
3484
3485 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3486 dev->xfer_shift, (int)dev->xfer_mode);
3487
3488 ata_dev_info(dev, "configured for %s%s\n",
3489 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3490 dev_err_whine);
3491
3492 return 0;
3493
3494 fail:
3495 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3496 return -EIO;
3497 }
3498
3499 /**
3500 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3501 * @link: link on which timings will be programmed
3502 * @r_failed_dev: out parameter for failed device
3503 *
3504 * Standard implementation of the function used to tune and set
3505 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3506 * ata_dev_set_mode() fails, pointer to the failing device is
3507 * returned in @r_failed_dev.
3508 *
3509 * LOCKING:
3510 * PCI/etc. bus probe sem.
3511 *
3512 * RETURNS:
3513 * 0 on success, negative errno otherwise
3514 */
3515
3516 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3517 {
3518 struct ata_port *ap = link->ap;
3519 struct ata_device *dev;
3520 int rc = 0, used_dma = 0, found = 0;
3521
3522 /* step 1: calculate xfer_mask */
3523 ata_for_each_dev(dev, link, ENABLED) {
3524 unsigned long pio_mask, dma_mask;
3525 unsigned int mode_mask;
3526
3527 mode_mask = ATA_DMA_MASK_ATA;
3528 if (dev->class == ATA_DEV_ATAPI)
3529 mode_mask = ATA_DMA_MASK_ATAPI;
3530 else if (ata_id_is_cfa(dev->id))
3531 mode_mask = ATA_DMA_MASK_CFA;
3532
3533 ata_dev_xfermask(dev);
3534 ata_force_xfermask(dev);
3535
3536 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3537
3538 if (libata_dma_mask & mode_mask)
3539 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3540 dev->udma_mask);
3541 else
3542 dma_mask = 0;
3543
3544 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3545 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3546
3547 found = 1;
3548 if (ata_dma_enabled(dev))
3549 used_dma = 1;
3550 }
3551 if (!found)
3552 goto out;
3553
3554 /* step 2: always set host PIO timings */
3555 ata_for_each_dev(dev, link, ENABLED) {
3556 if (dev->pio_mode == 0xff) {
3557 ata_dev_warn(dev, "no PIO support\n");
3558 rc = -EINVAL;
3559 goto out;
3560 }
3561
3562 dev->xfer_mode = dev->pio_mode;
3563 dev->xfer_shift = ATA_SHIFT_PIO;
3564 if (ap->ops->set_piomode)
3565 ap->ops->set_piomode(ap, dev);
3566 }
3567
3568 /* step 3: set host DMA timings */
3569 ata_for_each_dev(dev, link, ENABLED) {
3570 if (!ata_dma_enabled(dev))
3571 continue;
3572
3573 dev->xfer_mode = dev->dma_mode;
3574 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3575 if (ap->ops->set_dmamode)
3576 ap->ops->set_dmamode(ap, dev);
3577 }
3578
3579 /* step 4: update devices' xfer mode */
3580 ata_for_each_dev(dev, link, ENABLED) {
3581 rc = ata_dev_set_mode(dev);
3582 if (rc)
3583 goto out;
3584 }
3585
3586 /* Record simplex status. If we selected DMA then the other
3587 * host channels are not permitted to do so.
3588 */
3589 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3590 ap->host->simplex_claimed = ap;
3591
3592 out:
3593 if (rc)
3594 *r_failed_dev = dev;
3595 return rc;
3596 }
3597
3598 /**
3599 * ata_wait_ready - wait for link to become ready
3600 * @link: link to be waited on
3601 * @deadline: deadline jiffies for the operation
3602 * @check_ready: callback to check link readiness
3603 *
3604 * Wait for @link to become ready. @check_ready should return
3605 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3606 * link doesn't seem to be occupied, other errno for other error
3607 * conditions.
3608 *
3609 * Transient -ENODEV conditions are allowed for
3610 * ATA_TMOUT_FF_WAIT.
3611 *
3612 * LOCKING:
3613 * EH context.
3614 *
3615 * RETURNS:
3616 * 0 if @link is ready before @deadline; otherwise, -errno.
3617 */
3618 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3619 int (*check_ready)(struct ata_link *link))
3620 {
3621 unsigned long start = jiffies;
3622 unsigned long nodev_deadline;
3623 int warned = 0;
3624
3625 /* choose which 0xff timeout to use, read comment in libata.h */
3626 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3627 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3628 else
3629 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3630
3631 /* Slave readiness can't be tested separately from master. On
3632 * M/S emulation configuration, this function should be called
3633 * only on the master and it will handle both master and slave.
3634 */
3635 WARN_ON(link == link->ap->slave_link);
3636
3637 if (time_after(nodev_deadline, deadline))
3638 nodev_deadline = deadline;
3639
3640 while (1) {
3641 unsigned long now = jiffies;
3642 int ready, tmp;
3643
3644 ready = tmp = check_ready(link);
3645 if (ready > 0)
3646 return 0;
3647
3648 /*
3649 * -ENODEV could be transient. Ignore -ENODEV if link
3650 * is online. Also, some SATA devices take a long
3651 * time to clear 0xff after reset. Wait for
3652 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3653 * offline.
3654 *
3655 * Note that some PATA controllers (pata_ali) explode
3656 * if status register is read more than once when
3657 * there's no device attached.
3658 */
3659 if (ready == -ENODEV) {
3660 if (ata_link_online(link))
3661 ready = 0;
3662 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3663 !ata_link_offline(link) &&
3664 time_before(now, nodev_deadline))
3665 ready = 0;
3666 }
3667
3668 if (ready)
3669 return ready;
3670 if (time_after(now, deadline))
3671 return -EBUSY;
3672
3673 if (!warned && time_after(now, start + 5 * HZ) &&
3674 (deadline - now > 3 * HZ)) {
3675 ata_link_warn(link,
3676 "link is slow to respond, please be patient "
3677 "(ready=%d)\n", tmp);
3678 warned = 1;
3679 }
3680
3681 ata_msleep(link->ap, 50);
3682 }
3683 }
3684
3685 /**
3686 * ata_wait_after_reset - wait for link to become ready after reset
3687 * @link: link to be waited on
3688 * @deadline: deadline jiffies for the operation
3689 * @check_ready: callback to check link readiness
3690 *
3691 * Wait for @link to become ready after reset.
3692 *
3693 * LOCKING:
3694 * EH context.
3695 *
3696 * RETURNS:
3697 * 0 if @link is ready before @deadline; otherwise, -errno.
3698 */
3699 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3700 int (*check_ready)(struct ata_link *link))
3701 {
3702 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3703
3704 return ata_wait_ready(link, deadline, check_ready);
3705 }
3706
3707 /**
3708 * sata_link_debounce - debounce SATA phy status
3709 * @link: ATA link to debounce SATA phy status for
3710 * @params: timing parameters { interval, duration, timeout } in msec
3711 * @deadline: deadline jiffies for the operation
3712 *
3713 * Make sure SStatus of @link reaches stable state, determined by
3714 * holding the same value where DET is not 1 for @duration polled
3715 * every @interval, before @timeout. Timeout constraints the
3716 * beginning of the stable state. Because DET gets stuck at 1 on
3717 * some controllers after hot unplugging, this functions waits
3718 * until timeout then returns 0 if DET is stable at 1.
3719 *
3720 * @timeout is further limited by @deadline. The sooner of the
3721 * two is used.
3722 *
3723 * LOCKING:
3724 * Kernel thread context (may sleep)
3725 *
3726 * RETURNS:
3727 * 0 on success, -errno on failure.
3728 */
3729 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3730 unsigned long deadline)
3731 {
3732 unsigned long interval = params[0];
3733 unsigned long duration = params[1];
3734 unsigned long last_jiffies, t;
3735 u32 last, cur;
3736 int rc;
3737
3738 t = ata_deadline(jiffies, params[2]);
3739 if (time_before(t, deadline))
3740 deadline = t;
3741
3742 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3743 return rc;
3744 cur &= 0xf;
3745
3746 last = cur;
3747 last_jiffies = jiffies;
3748
3749 while (1) {
3750 ata_msleep(link->ap, interval);
3751 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3752 return rc;
3753 cur &= 0xf;
3754
3755 /* DET stable? */
3756 if (cur == last) {
3757 if (cur == 1 && time_before(jiffies, deadline))
3758 continue;
3759 if (time_after(jiffies,
3760 ata_deadline(last_jiffies, duration)))
3761 return 0;
3762 continue;
3763 }
3764
3765 /* unstable, start over */
3766 last = cur;
3767 last_jiffies = jiffies;
3768
3769 /* Check deadline. If debouncing failed, return
3770 * -EPIPE to tell upper layer to lower link speed.
3771 */
3772 if (time_after(jiffies, deadline))
3773 return -EPIPE;
3774 }
3775 }
3776
3777 /**
3778 * sata_link_resume - resume SATA link
3779 * @link: ATA link to resume SATA
3780 * @params: timing parameters { interval, duration, timeout } in msec
3781 * @deadline: deadline jiffies for the operation
3782 *
3783 * Resume SATA phy @link and debounce it.
3784 *
3785 * LOCKING:
3786 * Kernel thread context (may sleep)
3787 *
3788 * RETURNS:
3789 * 0 on success, -errno on failure.
3790 */
3791 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3792 unsigned long deadline)
3793 {
3794 int tries = ATA_LINK_RESUME_TRIES;
3795 u32 scontrol, serror;
3796 int rc;
3797
3798 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3799 return rc;
3800
3801 /*
3802 * Writes to SControl sometimes get ignored under certain
3803 * controllers (ata_piix SIDPR). Make sure DET actually is
3804 * cleared.
3805 */
3806 do {
3807 scontrol = (scontrol & 0x0f0) | 0x300;
3808 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3809 return rc;
3810 /*
3811 * Some PHYs react badly if SStatus is pounded
3812 * immediately after resuming. Delay 200ms before
3813 * debouncing.
3814 */
3815 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3816 ata_msleep(link->ap, 200);
3817
3818 /* is SControl restored correctly? */
3819 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3820 return rc;
3821 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3822
3823 if ((scontrol & 0xf0f) != 0x300) {
3824 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3825 scontrol);
3826 return 0;
3827 }
3828
3829 if (tries < ATA_LINK_RESUME_TRIES)
3830 ata_link_warn(link, "link resume succeeded after %d retries\n",
3831 ATA_LINK_RESUME_TRIES - tries);
3832
3833 if ((rc = sata_link_debounce(link, params, deadline)))
3834 return rc;
3835
3836 /* clear SError, some PHYs require this even for SRST to work */
3837 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3838 rc = sata_scr_write(link, SCR_ERROR, serror);
3839
3840 return rc != -EINVAL ? rc : 0;
3841 }
3842
3843 /**
3844 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3845 * @link: ATA link to manipulate SControl for
3846 * @policy: LPM policy to configure
3847 * @spm_wakeup: initiate LPM transition to active state
3848 *
3849 * Manipulate the IPM field of the SControl register of @link
3850 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3851 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3852 * the link. This function also clears PHYRDY_CHG before
3853 * returning.
3854 *
3855 * LOCKING:
3856 * EH context.
3857 *
3858 * RETURNS:
3859 * 0 on success, -errno otherwise.
3860 */
3861 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3862 bool spm_wakeup)
3863 {
3864 struct ata_eh_context *ehc = &link->eh_context;
3865 bool woken_up = false;
3866 u32 scontrol;
3867 int rc;
3868
3869 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3870 if (rc)
3871 return rc;
3872
3873 switch (policy) {
3874 case ATA_LPM_MAX_POWER:
3875 /* disable all LPM transitions */
3876 scontrol |= (0x7 << 8);
3877 /* initiate transition to active state */
3878 if (spm_wakeup) {
3879 scontrol |= (0x4 << 12);
3880 woken_up = true;
3881 }
3882 break;
3883 case ATA_LPM_MED_POWER:
3884 /* allow LPM to PARTIAL */
3885 scontrol &= ~(0x1 << 8);
3886 scontrol |= (0x6 << 8);
3887 break;
3888 case ATA_LPM_MIN_POWER:
3889 if (ata_link_nr_enabled(link) > 0)
3890 /* no restrictions on LPM transitions */
3891 scontrol &= ~(0x7 << 8);
3892 else {
3893 /* empty port, power off */
3894 scontrol &= ~0xf;
3895 scontrol |= (0x1 << 2);
3896 }
3897 break;
3898 default:
3899 WARN_ON(1);
3900 }
3901
3902 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3903 if (rc)
3904 return rc;
3905
3906 /* give the link time to transit out of LPM state */
3907 if (woken_up)
3908 msleep(10);
3909
3910 /* clear PHYRDY_CHG from SError */
3911 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3912 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3913 }
3914
3915 /**
3916 * ata_std_prereset - prepare for reset
3917 * @link: ATA link to be reset
3918 * @deadline: deadline jiffies for the operation
3919 *
3920 * @link is about to be reset. Initialize it. Failure from
3921 * prereset makes libata abort whole reset sequence and give up
3922 * that port, so prereset should be best-effort. It does its
3923 * best to prepare for reset sequence but if things go wrong, it
3924 * should just whine, not fail.
3925 *
3926 * LOCKING:
3927 * Kernel thread context (may sleep)
3928 *
3929 * RETURNS:
3930 * 0 on success, -errno otherwise.
3931 */
3932 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3933 {
3934 struct ata_port *ap = link->ap;
3935 struct ata_eh_context *ehc = &link->eh_context;
3936 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3937 int rc;
3938
3939 /* if we're about to do hardreset, nothing more to do */
3940 if (ehc->i.action & ATA_EH_HARDRESET)
3941 return 0;
3942
3943 /* if SATA, resume link */
3944 if (ap->flags & ATA_FLAG_SATA) {
3945 rc = sata_link_resume(link, timing, deadline);
3946 /* whine about phy resume failure but proceed */
3947 if (rc && rc != -EOPNOTSUPP)
3948 ata_link_warn(link,
3949 "failed to resume link for reset (errno=%d)\n",
3950 rc);
3951 }
3952
3953 /* no point in trying softreset on offline link */
3954 if (ata_phys_link_offline(link))
3955 ehc->i.action &= ~ATA_EH_SOFTRESET;
3956
3957 return 0;
3958 }
3959
3960 /**
3961 * sata_link_hardreset - reset link via SATA phy reset
3962 * @link: link to reset
3963 * @timing: timing parameters { interval, duration, timeout } in msec
3964 * @deadline: deadline jiffies for the operation
3965 * @online: optional out parameter indicating link onlineness
3966 * @check_ready: optional callback to check link readiness
3967 *
3968 * SATA phy-reset @link using DET bits of SControl register.
3969 * After hardreset, link readiness is waited upon using
3970 * ata_wait_ready() if @check_ready is specified. LLDs are
3971 * allowed to not specify @check_ready and wait itself after this
3972 * function returns. Device classification is LLD's
3973 * responsibility.
3974 *
3975 * *@online is set to one iff reset succeeded and @link is online
3976 * after reset.
3977 *
3978 * LOCKING:
3979 * Kernel thread context (may sleep)
3980 *
3981 * RETURNS:
3982 * 0 on success, -errno otherwise.
3983 */
3984 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3985 unsigned long deadline,
3986 bool *online, int (*check_ready)(struct ata_link *))
3987 {
3988 u32 scontrol;
3989 int rc;
3990
3991 DPRINTK("ENTER\n");
3992
3993 if (online)
3994 *online = false;
3995
3996 if (sata_set_spd_needed(link)) {
3997 /* SATA spec says nothing about how to reconfigure
3998 * spd. To be on the safe side, turn off phy during
3999 * reconfiguration. This works for at least ICH7 AHCI
4000 * and Sil3124.
4001 */
4002 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4003 goto out;
4004
4005 scontrol = (scontrol & 0x0f0) | 0x304;
4006
4007 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4008 goto out;
4009
4010 sata_set_spd(link);
4011 }
4012
4013 /* issue phy wake/reset */
4014 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4015 goto out;
4016
4017 scontrol = (scontrol & 0x0f0) | 0x301;
4018
4019 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4020 goto out;
4021
4022 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4023 * 10.4.2 says at least 1 ms.
4024 */
4025 ata_msleep(link->ap, 1);
4026
4027 /* bring link back */
4028 rc = sata_link_resume(link, timing, deadline);
4029 if (rc)
4030 goto out;
4031 /* if link is offline nothing more to do */
4032 if (ata_phys_link_offline(link))
4033 goto out;
4034
4035 /* Link is online. From this point, -ENODEV too is an error. */
4036 if (online)
4037 *online = true;
4038
4039 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4040 /* If PMP is supported, we have to do follow-up SRST.
4041 * Some PMPs don't send D2H Reg FIS after hardreset if
4042 * the first port is empty. Wait only for
4043 * ATA_TMOUT_PMP_SRST_WAIT.
4044 */
4045 if (check_ready) {
4046 unsigned long pmp_deadline;
4047
4048 pmp_deadline = ata_deadline(jiffies,
4049 ATA_TMOUT_PMP_SRST_WAIT);
4050 if (time_after(pmp_deadline, deadline))
4051 pmp_deadline = deadline;
4052 ata_wait_ready(link, pmp_deadline, check_ready);
4053 }
4054 rc = -EAGAIN;
4055 goto out;
4056 }
4057
4058 rc = 0;
4059 if (check_ready)
4060 rc = ata_wait_ready(link, deadline, check_ready);
4061 out:
4062 if (rc && rc != -EAGAIN) {
4063 /* online is set iff link is online && reset succeeded */
4064 if (online)
4065 *online = false;
4066 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4067 }
4068 DPRINTK("EXIT, rc=%d\n", rc);
4069 return rc;
4070 }
4071
4072 /**
4073 * sata_std_hardreset - COMRESET w/o waiting or classification
4074 * @link: link to reset
4075 * @class: resulting class of attached device
4076 * @deadline: deadline jiffies for the operation
4077 *
4078 * Standard SATA COMRESET w/o waiting or classification.
4079 *
4080 * LOCKING:
4081 * Kernel thread context (may sleep)
4082 *
4083 * RETURNS:
4084 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4085 */
4086 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4087 unsigned long deadline)
4088 {
4089 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4090 bool online;
4091 int rc;
4092
4093 /* do hardreset */
4094 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4095 return online ? -EAGAIN : rc;
4096 }
4097
4098 /**
4099 * ata_std_postreset - standard postreset callback
4100 * @link: the target ata_link
4101 * @classes: classes of attached devices
4102 *
4103 * This function is invoked after a successful reset. Note that
4104 * the device might have been reset more than once using
4105 * different reset methods before postreset is invoked.
4106 *
4107 * LOCKING:
4108 * Kernel thread context (may sleep)
4109 */
4110 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4111 {
4112 u32 serror;
4113
4114 DPRINTK("ENTER\n");
4115
4116 /* reset complete, clear SError */
4117 if (!sata_scr_read(link, SCR_ERROR, &serror))
4118 sata_scr_write(link, SCR_ERROR, serror);
4119
4120 /* print link status */
4121 sata_print_link_status(link);
4122
4123 DPRINTK("EXIT\n");
4124 }
4125
4126 /**
4127 * ata_dev_same_device - Determine whether new ID matches configured device
4128 * @dev: device to compare against
4129 * @new_class: class of the new device
4130 * @new_id: IDENTIFY page of the new device
4131 *
4132 * Compare @new_class and @new_id against @dev and determine
4133 * whether @dev is the device indicated by @new_class and
4134 * @new_id.
4135 *
4136 * LOCKING:
4137 * None.
4138 *
4139 * RETURNS:
4140 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4141 */
4142 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4143 const u16 *new_id)
4144 {
4145 const u16 *old_id = dev->id;
4146 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4147 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4148
4149 if (dev->class != new_class) {
4150 ata_dev_info(dev, "class mismatch %d != %d\n",
4151 dev->class, new_class);
4152 return 0;
4153 }
4154
4155 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4156 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4157 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4158 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4159
4160 if (strcmp(model[0], model[1])) {
4161 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4162 model[0], model[1]);
4163 return 0;
4164 }
4165
4166 if (strcmp(serial[0], serial[1])) {
4167 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4168 serial[0], serial[1]);
4169 return 0;
4170 }
4171
4172 return 1;
4173 }
4174
4175 /**
4176 * ata_dev_reread_id - Re-read IDENTIFY data
4177 * @dev: target ATA device
4178 * @readid_flags: read ID flags
4179 *
4180 * Re-read IDENTIFY page and make sure @dev is still attached to
4181 * the port.
4182 *
4183 * LOCKING:
4184 * Kernel thread context (may sleep)
4185 *
4186 * RETURNS:
4187 * 0 on success, negative errno otherwise
4188 */
4189 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4190 {
4191 unsigned int class = dev->class;
4192 u16 *id = (void *)dev->link->ap->sector_buf;
4193 int rc;
4194
4195 /* read ID data */
4196 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4197 if (rc)
4198 return rc;
4199
4200 /* is the device still there? */
4201 if (!ata_dev_same_device(dev, class, id))
4202 return -ENODEV;
4203
4204 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4205 return 0;
4206 }
4207
4208 /**
4209 * ata_dev_revalidate - Revalidate ATA device
4210 * @dev: device to revalidate
4211 * @new_class: new class code
4212 * @readid_flags: read ID flags
4213 *
4214 * Re-read IDENTIFY page, make sure @dev is still attached to the
4215 * port and reconfigure it according to the new IDENTIFY page.
4216 *
4217 * LOCKING:
4218 * Kernel thread context (may sleep)
4219 *
4220 * RETURNS:
4221 * 0 on success, negative errno otherwise
4222 */
4223 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4224 unsigned int readid_flags)
4225 {
4226 u64 n_sectors = dev->n_sectors;
4227 u64 n_native_sectors = dev->n_native_sectors;
4228 int rc;
4229
4230 if (!ata_dev_enabled(dev))
4231 return -ENODEV;
4232
4233 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4234 if (ata_class_enabled(new_class) &&
4235 new_class != ATA_DEV_ATA &&
4236 new_class != ATA_DEV_ATAPI &&
4237 new_class != ATA_DEV_ZAC &&
4238 new_class != ATA_DEV_SEMB) {
4239 ata_dev_info(dev, "class mismatch %u != %u\n",
4240 dev->class, new_class);
4241 rc = -ENODEV;
4242 goto fail;
4243 }
4244
4245 /* re-read ID */
4246 rc = ata_dev_reread_id(dev, readid_flags);
4247 if (rc)
4248 goto fail;
4249
4250 /* configure device according to the new ID */
4251 rc = ata_dev_configure(dev);
4252 if (rc)
4253 goto fail;
4254
4255 /* verify n_sectors hasn't changed */
4256 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4257 dev->n_sectors == n_sectors)
4258 return 0;
4259
4260 /* n_sectors has changed */
4261 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4262 (unsigned long long)n_sectors,
4263 (unsigned long long)dev->n_sectors);
4264
4265 /*
4266 * Something could have caused HPA to be unlocked
4267 * involuntarily. If n_native_sectors hasn't changed and the
4268 * new size matches it, keep the device.
4269 */
4270 if (dev->n_native_sectors == n_native_sectors &&
4271 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4272 ata_dev_warn(dev,
4273 "new n_sectors matches native, probably "
4274 "late HPA unlock, n_sectors updated\n");
4275 /* use the larger n_sectors */
4276 return 0;
4277 }
4278
4279 /*
4280 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4281 * unlocking HPA in those cases.
4282 *
4283 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4284 */
4285 if (dev->n_native_sectors == n_native_sectors &&
4286 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4287 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4288 ata_dev_warn(dev,
4289 "old n_sectors matches native, probably "
4290 "late HPA lock, will try to unlock HPA\n");
4291 /* try unlocking HPA */
4292 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4293 rc = -EIO;
4294 } else
4295 rc = -ENODEV;
4296
4297 /* restore original n_[native_]sectors and fail */
4298 dev->n_native_sectors = n_native_sectors;
4299 dev->n_sectors = n_sectors;
4300 fail:
4301 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4302 return rc;
4303 }
4304
4305 struct ata_blacklist_entry {
4306 const char *model_num;
4307 const char *model_rev;
4308 unsigned long horkage;
4309 };
4310
4311 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4312 /* Devices with DMA related problems under Linux */
4313 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4314 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4315 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4316 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4317 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4318 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4319 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4320 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4321 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4322 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4323 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4324 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4325 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4326 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4327 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4328 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4329 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4330 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4331 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4332 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4333 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4334 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4335 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4336 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4337 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4338 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4339 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4340 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4341 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4342 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4343 /* Odd clown on sil3726/4726 PMPs */
4344 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4345
4346 /* Weird ATAPI devices */
4347 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4348 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4349 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4350 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4351
4352 /*
4353 * Causes silent data corruption with higher max sects.
4354 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4355 */
4356 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4357
4358 /*
4359 * Device times out with higher max sects.
4360 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4361 */
4362 { "LITEON CX1-JB256-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4363
4364 /* Devices we expect to fail diagnostics */
4365
4366 /* Devices where NCQ should be avoided */
4367 /* NCQ is slow */
4368 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4369 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4370 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4371 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4372 /* NCQ is broken */
4373 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4374 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4375 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4376 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4377 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4378
4379 /* Seagate NCQ + FLUSH CACHE firmware bug */
4380 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4381 ATA_HORKAGE_FIRMWARE_WARN },
4382
4383 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4384 ATA_HORKAGE_FIRMWARE_WARN },
4385
4386 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4387 ATA_HORKAGE_FIRMWARE_WARN },
4388
4389 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4390 ATA_HORKAGE_FIRMWARE_WARN },
4391
4392 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4393 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4394 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4395 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4396
4397 /* Blacklist entries taken from Silicon Image 3124/3132
4398 Windows driver .inf file - also several Linux problem reports */
4399 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4400 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4401 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4402
4403 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4404 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4405
4406 /* devices which puke on READ_NATIVE_MAX */
4407 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4408 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4409 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4410 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4411
4412 /* this one allows HPA unlocking but fails IOs on the area */
4413 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4414
4415 /* Devices which report 1 sector over size HPA */
4416 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4417 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4418 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4419
4420 /* Devices which get the IVB wrong */
4421 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4422 /* Maybe we should just blacklist TSSTcorp... */
4423 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4424
4425 /* Devices that do not need bridging limits applied */
4426 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4427 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4428
4429 /* Devices which aren't very happy with higher link speeds */
4430 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4431 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4432
4433 /*
4434 * Devices which choke on SETXFER. Applies only if both the
4435 * device and controller are SATA.
4436 */
4437 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4438 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4439 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4440 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4441 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4442
4443 /* devices that don't properly handle queued TRIM commands */
4444 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4445 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4446 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4447 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4448 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4449 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4450 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4451 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4452 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4453 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4454 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4455 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4456 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4457 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4458
4459 /* devices that don't properly handle TRIM commands */
4460 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4461
4462 /*
4463 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4464 * (Return Zero After Trim) flags in the ATA Command Set are
4465 * unreliable in the sense that they only define what happens if
4466 * the device successfully executed the DSM TRIM command. TRIM
4467 * is only advisory, however, and the device is free to silently
4468 * ignore all or parts of the request.
4469 *
4470 * Whitelist drives that are known to reliably return zeroes
4471 * after TRIM.
4472 */
4473
4474 /*
4475 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4476 * that model before whitelisting all other intel SSDs.
4477 */
4478 { "INTEL*SSDSC2MH*", NULL, 0, },
4479
4480 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4481 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4482 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4483 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4484 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4485 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4486 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4487
4488 /*
4489 * Some WD SATA-I drives spin up and down erratically when the link
4490 * is put into the slumber mode. We don't have full list of the
4491 * affected devices. Disable LPM if the device matches one of the
4492 * known prefixes and is SATA-1. As a side effect LPM partial is
4493 * lost too.
4494 *
4495 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4496 */
4497 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4498 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4499 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4500 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4501 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4502 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4503 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4504
4505 /* End Marker */
4506 { }
4507 };
4508
4509 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4510 {
4511 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4512 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4513 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4514
4515 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4516 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4517
4518 while (ad->model_num) {
4519 if (glob_match(ad->model_num, model_num)) {
4520 if (ad->model_rev == NULL)
4521 return ad->horkage;
4522 if (glob_match(ad->model_rev, model_rev))
4523 return ad->horkage;
4524 }
4525 ad++;
4526 }
4527 return 0;
4528 }
4529
4530 static int ata_dma_blacklisted(const struct ata_device *dev)
4531 {
4532 /* We don't support polling DMA.
4533 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4534 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4535 */
4536 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4537 (dev->flags & ATA_DFLAG_CDB_INTR))
4538 return 1;
4539 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4540 }
4541
4542 /**
4543 * ata_is_40wire - check drive side detection
4544 * @dev: device
4545 *
4546 * Perform drive side detection decoding, allowing for device vendors
4547 * who can't follow the documentation.
4548 */
4549
4550 static int ata_is_40wire(struct ata_device *dev)
4551 {
4552 if (dev->horkage & ATA_HORKAGE_IVB)
4553 return ata_drive_40wire_relaxed(dev->id);
4554 return ata_drive_40wire(dev->id);
4555 }
4556
4557 /**
4558 * cable_is_40wire - 40/80/SATA decider
4559 * @ap: port to consider
4560 *
4561 * This function encapsulates the policy for speed management
4562 * in one place. At the moment we don't cache the result but
4563 * there is a good case for setting ap->cbl to the result when
4564 * we are called with unknown cables (and figuring out if it
4565 * impacts hotplug at all).
4566 *
4567 * Return 1 if the cable appears to be 40 wire.
4568 */
4569
4570 static int cable_is_40wire(struct ata_port *ap)
4571 {
4572 struct ata_link *link;
4573 struct ata_device *dev;
4574
4575 /* If the controller thinks we are 40 wire, we are. */
4576 if (ap->cbl == ATA_CBL_PATA40)
4577 return 1;
4578
4579 /* If the controller thinks we are 80 wire, we are. */
4580 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4581 return 0;
4582
4583 /* If the system is known to be 40 wire short cable (eg
4584 * laptop), then we allow 80 wire modes even if the drive
4585 * isn't sure.
4586 */
4587 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4588 return 0;
4589
4590 /* If the controller doesn't know, we scan.
4591 *
4592 * Note: We look for all 40 wire detects at this point. Any
4593 * 80 wire detect is taken to be 80 wire cable because
4594 * - in many setups only the one drive (slave if present) will
4595 * give a valid detect
4596 * - if you have a non detect capable drive you don't want it
4597 * to colour the choice
4598 */
4599 ata_for_each_link(link, ap, EDGE) {
4600 ata_for_each_dev(dev, link, ENABLED) {
4601 if (!ata_is_40wire(dev))
4602 return 0;
4603 }
4604 }
4605 return 1;
4606 }
4607
4608 /**
4609 * ata_dev_xfermask - Compute supported xfermask of the given device
4610 * @dev: Device to compute xfermask for
4611 *
4612 * Compute supported xfermask of @dev and store it in
4613 * dev->*_mask. This function is responsible for applying all
4614 * known limits including host controller limits, device
4615 * blacklist, etc...
4616 *
4617 * LOCKING:
4618 * None.
4619 */
4620 static void ata_dev_xfermask(struct ata_device *dev)
4621 {
4622 struct ata_link *link = dev->link;
4623 struct ata_port *ap = link->ap;
4624 struct ata_host *host = ap->host;
4625 unsigned long xfer_mask;
4626
4627 /* controller modes available */
4628 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4629 ap->mwdma_mask, ap->udma_mask);
4630
4631 /* drive modes available */
4632 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4633 dev->mwdma_mask, dev->udma_mask);
4634 xfer_mask &= ata_id_xfermask(dev->id);
4635
4636 /*
4637 * CFA Advanced TrueIDE timings are not allowed on a shared
4638 * cable
4639 */
4640 if (ata_dev_pair(dev)) {
4641 /* No PIO5 or PIO6 */
4642 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4643 /* No MWDMA3 or MWDMA 4 */
4644 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4645 }
4646
4647 if (ata_dma_blacklisted(dev)) {
4648 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4649 ata_dev_warn(dev,
4650 "device is on DMA blacklist, disabling DMA\n");
4651 }
4652
4653 if ((host->flags & ATA_HOST_SIMPLEX) &&
4654 host->simplex_claimed && host->simplex_claimed != ap) {
4655 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4656 ata_dev_warn(dev,
4657 "simplex DMA is claimed by other device, disabling DMA\n");
4658 }
4659
4660 if (ap->flags & ATA_FLAG_NO_IORDY)
4661 xfer_mask &= ata_pio_mask_no_iordy(dev);
4662
4663 if (ap->ops->mode_filter)
4664 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4665
4666 /* Apply cable rule here. Don't apply it early because when
4667 * we handle hot plug the cable type can itself change.
4668 * Check this last so that we know if the transfer rate was
4669 * solely limited by the cable.
4670 * Unknown or 80 wire cables reported host side are checked
4671 * drive side as well. Cases where we know a 40wire cable
4672 * is used safely for 80 are not checked here.
4673 */
4674 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4675 /* UDMA/44 or higher would be available */
4676 if (cable_is_40wire(ap)) {
4677 ata_dev_warn(dev,
4678 "limited to UDMA/33 due to 40-wire cable\n");
4679 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4680 }
4681
4682 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4683 &dev->mwdma_mask, &dev->udma_mask);
4684 }
4685
4686 /**
4687 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4688 * @dev: Device to which command will be sent
4689 *
4690 * Issue SET FEATURES - XFER MODE command to device @dev
4691 * on port @ap.
4692 *
4693 * LOCKING:
4694 * PCI/etc. bus probe sem.
4695 *
4696 * RETURNS:
4697 * 0 on success, AC_ERR_* mask otherwise.
4698 */
4699
4700 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4701 {
4702 struct ata_taskfile tf;
4703 unsigned int err_mask;
4704
4705 /* set up set-features taskfile */
4706 DPRINTK("set features - xfer mode\n");
4707
4708 /* Some controllers and ATAPI devices show flaky interrupt
4709 * behavior after setting xfer mode. Use polling instead.
4710 */
4711 ata_tf_init(dev, &tf);
4712 tf.command = ATA_CMD_SET_FEATURES;
4713 tf.feature = SETFEATURES_XFER;
4714 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4715 tf.protocol = ATA_PROT_NODATA;
4716 /* If we are using IORDY we must send the mode setting command */
4717 if (ata_pio_need_iordy(dev))
4718 tf.nsect = dev->xfer_mode;
4719 /* If the device has IORDY and the controller does not - turn it off */
4720 else if (ata_id_has_iordy(dev->id))
4721 tf.nsect = 0x01;
4722 else /* In the ancient relic department - skip all of this */
4723 return 0;
4724
4725 /* On some disks, this command causes spin-up, so we need longer timeout */
4726 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4727
4728 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4729 return err_mask;
4730 }
4731
4732 /**
4733 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4734 * @dev: Device to which command will be sent
4735 * @enable: Whether to enable or disable the feature
4736 * @feature: The sector count represents the feature to set
4737 *
4738 * Issue SET FEATURES - SATA FEATURES command to device @dev
4739 * on port @ap with sector count
4740 *
4741 * LOCKING:
4742 * PCI/etc. bus probe sem.
4743 *
4744 * RETURNS:
4745 * 0 on success, AC_ERR_* mask otherwise.
4746 */
4747 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4748 {
4749 struct ata_taskfile tf;
4750 unsigned int err_mask;
4751 unsigned long timeout = 0;
4752
4753 /* set up set-features taskfile */
4754 DPRINTK("set features - SATA features\n");
4755
4756 ata_tf_init(dev, &tf);
4757 tf.command = ATA_CMD_SET_FEATURES;
4758 tf.feature = enable;
4759 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4760 tf.protocol = ATA_PROT_NODATA;
4761 tf.nsect = feature;
4762
4763 if (enable == SETFEATURES_SPINUP)
4764 timeout = ata_probe_timeout ?
4765 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4766 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4767
4768 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4769 return err_mask;
4770 }
4771 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4772
4773 /**
4774 * ata_dev_init_params - Issue INIT DEV PARAMS command
4775 * @dev: Device to which command will be sent
4776 * @heads: Number of heads (taskfile parameter)
4777 * @sectors: Number of sectors (taskfile parameter)
4778 *
4779 * LOCKING:
4780 * Kernel thread context (may sleep)
4781 *
4782 * RETURNS:
4783 * 0 on success, AC_ERR_* mask otherwise.
4784 */
4785 static unsigned int ata_dev_init_params(struct ata_device *dev,
4786 u16 heads, u16 sectors)
4787 {
4788 struct ata_taskfile tf;
4789 unsigned int err_mask;
4790
4791 /* Number of sectors per track 1-255. Number of heads 1-16 */
4792 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4793 return AC_ERR_INVALID;
4794
4795 /* set up init dev params taskfile */
4796 DPRINTK("init dev params \n");
4797
4798 ata_tf_init(dev, &tf);
4799 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4800 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4801 tf.protocol = ATA_PROT_NODATA;
4802 tf.nsect = sectors;
4803 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4804
4805 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4806 /* A clean abort indicates an original or just out of spec drive
4807 and we should continue as we issue the setup based on the
4808 drive reported working geometry */
4809 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4810 err_mask = 0;
4811
4812 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4813 return err_mask;
4814 }
4815
4816 /**
4817 * ata_sg_clean - Unmap DMA memory associated with command
4818 * @qc: Command containing DMA memory to be released
4819 *
4820 * Unmap all mapped DMA memory associated with this command.
4821 *
4822 * LOCKING:
4823 * spin_lock_irqsave(host lock)
4824 */
4825 void ata_sg_clean(struct ata_queued_cmd *qc)
4826 {
4827 struct ata_port *ap = qc->ap;
4828 struct scatterlist *sg = qc->sg;
4829 int dir = qc->dma_dir;
4830
4831 WARN_ON_ONCE(sg == NULL);
4832
4833 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4834
4835 if (qc->n_elem)
4836 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4837
4838 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4839 qc->sg = NULL;
4840 }
4841
4842 /**
4843 * atapi_check_dma - Check whether ATAPI DMA can be supported
4844 * @qc: Metadata associated with taskfile to check
4845 *
4846 * Allow low-level driver to filter ATA PACKET commands, returning
4847 * a status indicating whether or not it is OK to use DMA for the
4848 * supplied PACKET command.
4849 *
4850 * LOCKING:
4851 * spin_lock_irqsave(host lock)
4852 *
4853 * RETURNS: 0 when ATAPI DMA can be used
4854 * nonzero otherwise
4855 */
4856 int atapi_check_dma(struct ata_queued_cmd *qc)
4857 {
4858 struct ata_port *ap = qc->ap;
4859
4860 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4861 * few ATAPI devices choke on such DMA requests.
4862 */
4863 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4864 unlikely(qc->nbytes & 15))
4865 return 1;
4866
4867 if (ap->ops->check_atapi_dma)
4868 return ap->ops->check_atapi_dma(qc);
4869
4870 return 0;
4871 }
4872
4873 /**
4874 * ata_std_qc_defer - Check whether a qc needs to be deferred
4875 * @qc: ATA command in question
4876 *
4877 * Non-NCQ commands cannot run with any other command, NCQ or
4878 * not. As upper layer only knows the queue depth, we are
4879 * responsible for maintaining exclusion. This function checks
4880 * whether a new command @qc can be issued.
4881 *
4882 * LOCKING:
4883 * spin_lock_irqsave(host lock)
4884 *
4885 * RETURNS:
4886 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4887 */
4888 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4889 {
4890 struct ata_link *link = qc->dev->link;
4891
4892 if (ata_is_ncq(qc->tf.protocol)) {
4893 if (!ata_tag_valid(link->active_tag))
4894 return 0;
4895 } else {
4896 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4897 return 0;
4898 }
4899
4900 return ATA_DEFER_LINK;
4901 }
4902
4903 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4904
4905 /**
4906 * ata_sg_init - Associate command with scatter-gather table.
4907 * @qc: Command to be associated
4908 * @sg: Scatter-gather table.
4909 * @n_elem: Number of elements in s/g table.
4910 *
4911 * Initialize the data-related elements of queued_cmd @qc
4912 * to point to a scatter-gather table @sg, containing @n_elem
4913 * elements.
4914 *
4915 * LOCKING:
4916 * spin_lock_irqsave(host lock)
4917 */
4918 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4919 unsigned int n_elem)
4920 {
4921 qc->sg = sg;
4922 qc->n_elem = n_elem;
4923 qc->cursg = qc->sg;
4924 }
4925
4926 /**
4927 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4928 * @qc: Command with scatter-gather table to be mapped.
4929 *
4930 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4931 *
4932 * LOCKING:
4933 * spin_lock_irqsave(host lock)
4934 *
4935 * RETURNS:
4936 * Zero on success, negative on error.
4937 *
4938 */
4939 static int ata_sg_setup(struct ata_queued_cmd *qc)
4940 {
4941 struct ata_port *ap = qc->ap;
4942 unsigned int n_elem;
4943
4944 VPRINTK("ENTER, ata%u\n", ap->print_id);
4945
4946 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4947 if (n_elem < 1)
4948 return -1;
4949
4950 DPRINTK("%d sg elements mapped\n", n_elem);
4951 qc->orig_n_elem = qc->n_elem;
4952 qc->n_elem = n_elem;
4953 qc->flags |= ATA_QCFLAG_DMAMAP;
4954
4955 return 0;
4956 }
4957
4958 /**
4959 * swap_buf_le16 - swap halves of 16-bit words in place
4960 * @buf: Buffer to swap
4961 * @buf_words: Number of 16-bit words in buffer.
4962 *
4963 * Swap halves of 16-bit words if needed to convert from
4964 * little-endian byte order to native cpu byte order, or
4965 * vice-versa.
4966 *
4967 * LOCKING:
4968 * Inherited from caller.
4969 */
4970 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4971 {
4972 #ifdef __BIG_ENDIAN
4973 unsigned int i;
4974
4975 for (i = 0; i < buf_words; i++)
4976 buf[i] = le16_to_cpu(buf[i]);
4977 #endif /* __BIG_ENDIAN */
4978 }
4979
4980 /**
4981 * ata_qc_new_init - Request an available ATA command, and initialize it
4982 * @dev: Device from whom we request an available command structure
4983 * @tag: tag
4984 *
4985 * LOCKING:
4986 * None.
4987 */
4988
4989 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4990 {
4991 struct ata_port *ap = dev->link->ap;
4992 struct ata_queued_cmd *qc;
4993
4994 /* no command while frozen */
4995 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4996 return NULL;
4997
4998 /* libsas case */
4999 if (ap->flags & ATA_FLAG_SAS_HOST) {
5000 tag = ata_sas_allocate_tag(ap);
5001 if (tag < 0)
5002 return NULL;
5003 }
5004
5005 qc = __ata_qc_from_tag(ap, tag);
5006 qc->tag = tag;
5007 qc->scsicmd = NULL;
5008 qc->ap = ap;
5009 qc->dev = dev;
5010
5011 ata_qc_reinit(qc);
5012
5013 return qc;
5014 }
5015
5016 /**
5017 * ata_qc_free - free unused ata_queued_cmd
5018 * @qc: Command to complete
5019 *
5020 * Designed to free unused ata_queued_cmd object
5021 * in case something prevents using it.
5022 *
5023 * LOCKING:
5024 * spin_lock_irqsave(host lock)
5025 */
5026 void ata_qc_free(struct ata_queued_cmd *qc)
5027 {
5028 struct ata_port *ap;
5029 unsigned int tag;
5030
5031 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5032 ap = qc->ap;
5033
5034 qc->flags = 0;
5035 tag = qc->tag;
5036 if (likely(ata_tag_valid(tag))) {
5037 qc->tag = ATA_TAG_POISON;
5038 if (ap->flags & ATA_FLAG_SAS_HOST)
5039 ata_sas_free_tag(tag, ap);
5040 }
5041 }
5042
5043 void __ata_qc_complete(struct ata_queued_cmd *qc)
5044 {
5045 struct ata_port *ap;
5046 struct ata_link *link;
5047
5048 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5049 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5050 ap = qc->ap;
5051 link = qc->dev->link;
5052
5053 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5054 ata_sg_clean(qc);
5055
5056 /* command should be marked inactive atomically with qc completion */
5057 if (ata_is_ncq(qc->tf.protocol)) {
5058 link->sactive &= ~(1 << qc->tag);
5059 if (!link->sactive)
5060 ap->nr_active_links--;
5061 } else {
5062 link->active_tag = ATA_TAG_POISON;
5063 ap->nr_active_links--;
5064 }
5065
5066 /* clear exclusive status */
5067 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5068 ap->excl_link == link))
5069 ap->excl_link = NULL;
5070
5071 /* atapi: mark qc as inactive to prevent the interrupt handler
5072 * from completing the command twice later, before the error handler
5073 * is called. (when rc != 0 and atapi request sense is needed)
5074 */
5075 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5076 ap->qc_active &= ~(1 << qc->tag);
5077
5078 /* call completion callback */
5079 qc->complete_fn(qc);
5080 }
5081
5082 static void fill_result_tf(struct ata_queued_cmd *qc)
5083 {
5084 struct ata_port *ap = qc->ap;
5085
5086 qc->result_tf.flags = qc->tf.flags;
5087 ap->ops->qc_fill_rtf(qc);
5088 }
5089
5090 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5091 {
5092 struct ata_device *dev = qc->dev;
5093
5094 if (!ata_is_data(qc->tf.protocol))
5095 return;
5096
5097 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5098 return;
5099
5100 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5101 }
5102
5103 /**
5104 * ata_qc_complete - Complete an active ATA command
5105 * @qc: Command to complete
5106 *
5107 * Indicate to the mid and upper layers that an ATA command has
5108 * completed, with either an ok or not-ok status.
5109 *
5110 * Refrain from calling this function multiple times when
5111 * successfully completing multiple NCQ commands.
5112 * ata_qc_complete_multiple() should be used instead, which will
5113 * properly update IRQ expect state.
5114 *
5115 * LOCKING:
5116 * spin_lock_irqsave(host lock)
5117 */
5118 void ata_qc_complete(struct ata_queued_cmd *qc)
5119 {
5120 struct ata_port *ap = qc->ap;
5121
5122 /* Trigger the LED (if available) */
5123 ledtrig_disk_activity();
5124
5125 /* XXX: New EH and old EH use different mechanisms to
5126 * synchronize EH with regular execution path.
5127 *
5128 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5129 * Normal execution path is responsible for not accessing a
5130 * failed qc. libata core enforces the rule by returning NULL
5131 * from ata_qc_from_tag() for failed qcs.
5132 *
5133 * Old EH depends on ata_qc_complete() nullifying completion
5134 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5135 * not synchronize with interrupt handler. Only PIO task is
5136 * taken care of.
5137 */
5138 if (ap->ops->error_handler) {
5139 struct ata_device *dev = qc->dev;
5140 struct ata_eh_info *ehi = &dev->link->eh_info;
5141
5142 if (unlikely(qc->err_mask))
5143 qc->flags |= ATA_QCFLAG_FAILED;
5144
5145 /*
5146 * Finish internal commands without any further processing
5147 * and always with the result TF filled.
5148 */
5149 if (unlikely(ata_tag_internal(qc->tag))) {
5150 fill_result_tf(qc);
5151 trace_ata_qc_complete_internal(qc);
5152 __ata_qc_complete(qc);
5153 return;
5154 }
5155
5156 /*
5157 * Non-internal qc has failed. Fill the result TF and
5158 * summon EH.
5159 */
5160 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5161 fill_result_tf(qc);
5162 trace_ata_qc_complete_failed(qc);
5163 ata_qc_schedule_eh(qc);
5164 return;
5165 }
5166
5167 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5168
5169 /* read result TF if requested */
5170 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5171 fill_result_tf(qc);
5172
5173 trace_ata_qc_complete_done(qc);
5174 /* Some commands need post-processing after successful
5175 * completion.
5176 */
5177 switch (qc->tf.command) {
5178 case ATA_CMD_SET_FEATURES:
5179 if (qc->tf.feature != SETFEATURES_WC_ON &&
5180 qc->tf.feature != SETFEATURES_WC_OFF &&
5181 qc->tf.feature != SETFEATURES_RA_ON &&
5182 qc->tf.feature != SETFEATURES_RA_OFF)
5183 break;
5184 /* fall through */
5185 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5186 case ATA_CMD_SET_MULTI: /* multi_count changed */
5187 /* revalidate device */
5188 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5189 ata_port_schedule_eh(ap);
5190 break;
5191
5192 case ATA_CMD_SLEEP:
5193 dev->flags |= ATA_DFLAG_SLEEPING;
5194 break;
5195 }
5196
5197 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5198 ata_verify_xfer(qc);
5199
5200 __ata_qc_complete(qc);
5201 } else {
5202 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5203 return;
5204
5205 /* read result TF if failed or requested */
5206 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5207 fill_result_tf(qc);
5208
5209 __ata_qc_complete(qc);
5210 }
5211 }
5212
5213 /**
5214 * ata_qc_complete_multiple - Complete multiple qcs successfully
5215 * @ap: port in question
5216 * @qc_active: new qc_active mask
5217 *
5218 * Complete in-flight commands. This functions is meant to be
5219 * called from low-level driver's interrupt routine to complete
5220 * requests normally. ap->qc_active and @qc_active is compared
5221 * and commands are completed accordingly.
5222 *
5223 * Always use this function when completing multiple NCQ commands
5224 * from IRQ handlers instead of calling ata_qc_complete()
5225 * multiple times to keep IRQ expect status properly in sync.
5226 *
5227 * LOCKING:
5228 * spin_lock_irqsave(host lock)
5229 *
5230 * RETURNS:
5231 * Number of completed commands on success, -errno otherwise.
5232 */
5233 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5234 {
5235 int nr_done = 0;
5236 u32 done_mask;
5237
5238 done_mask = ap->qc_active ^ qc_active;
5239
5240 if (unlikely(done_mask & qc_active)) {
5241 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5242 ap->qc_active, qc_active);
5243 return -EINVAL;
5244 }
5245
5246 while (done_mask) {
5247 struct ata_queued_cmd *qc;
5248 unsigned int tag = __ffs(done_mask);
5249
5250 qc = ata_qc_from_tag(ap, tag);
5251 if (qc) {
5252 ata_qc_complete(qc);
5253 nr_done++;
5254 }
5255 done_mask &= ~(1 << tag);
5256 }
5257
5258 return nr_done;
5259 }
5260
5261 /**
5262 * ata_qc_issue - issue taskfile to device
5263 * @qc: command to issue to device
5264 *
5265 * Prepare an ATA command to submission to device.
5266 * This includes mapping the data into a DMA-able
5267 * area, filling in the S/G table, and finally
5268 * writing the taskfile to hardware, starting the command.
5269 *
5270 * LOCKING:
5271 * spin_lock_irqsave(host lock)
5272 */
5273 void ata_qc_issue(struct ata_queued_cmd *qc)
5274 {
5275 struct ata_port *ap = qc->ap;
5276 struct ata_link *link = qc->dev->link;
5277 u8 prot = qc->tf.protocol;
5278
5279 /* Make sure only one non-NCQ command is outstanding. The
5280 * check is skipped for old EH because it reuses active qc to
5281 * request ATAPI sense.
5282 */
5283 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5284
5285 if (ata_is_ncq(prot)) {
5286 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5287
5288 if (!link->sactive)
5289 ap->nr_active_links++;
5290 link->sactive |= 1 << qc->tag;
5291 } else {
5292 WARN_ON_ONCE(link->sactive);
5293
5294 ap->nr_active_links++;
5295 link->active_tag = qc->tag;
5296 }
5297
5298 qc->flags |= ATA_QCFLAG_ACTIVE;
5299 ap->qc_active |= 1 << qc->tag;
5300
5301 /*
5302 * We guarantee to LLDs that they will have at least one
5303 * non-zero sg if the command is a data command.
5304 */
5305 if (WARN_ON_ONCE(ata_is_data(prot) &&
5306 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5307 goto sys_err;
5308
5309 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5310 (ap->flags & ATA_FLAG_PIO_DMA)))
5311 if (ata_sg_setup(qc))
5312 goto sys_err;
5313
5314 /* if device is sleeping, schedule reset and abort the link */
5315 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5316 link->eh_info.action |= ATA_EH_RESET;
5317 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5318 ata_link_abort(link);
5319 return;
5320 }
5321
5322 ap->ops->qc_prep(qc);
5323 trace_ata_qc_issue(qc);
5324 qc->err_mask |= ap->ops->qc_issue(qc);
5325 if (unlikely(qc->err_mask))
5326 goto err;
5327 return;
5328
5329 sys_err:
5330 qc->err_mask |= AC_ERR_SYSTEM;
5331 err:
5332 ata_qc_complete(qc);
5333 }
5334
5335 /**
5336 * sata_scr_valid - test whether SCRs are accessible
5337 * @link: ATA link to test SCR accessibility for
5338 *
5339 * Test whether SCRs are accessible for @link.
5340 *
5341 * LOCKING:
5342 * None.
5343 *
5344 * RETURNS:
5345 * 1 if SCRs are accessible, 0 otherwise.
5346 */
5347 int sata_scr_valid(struct ata_link *link)
5348 {
5349 struct ata_port *ap = link->ap;
5350
5351 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5352 }
5353
5354 /**
5355 * sata_scr_read - read SCR register of the specified port
5356 * @link: ATA link to read SCR for
5357 * @reg: SCR to read
5358 * @val: Place to store read value
5359 *
5360 * Read SCR register @reg of @link into *@val. This function is
5361 * guaranteed to succeed if @link is ap->link, the cable type of
5362 * the port is SATA and the port implements ->scr_read.
5363 *
5364 * LOCKING:
5365 * None if @link is ap->link. Kernel thread context otherwise.
5366 *
5367 * RETURNS:
5368 * 0 on success, negative errno on failure.
5369 */
5370 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5371 {
5372 if (ata_is_host_link(link)) {
5373 if (sata_scr_valid(link))
5374 return link->ap->ops->scr_read(link, reg, val);
5375 return -EOPNOTSUPP;
5376 }
5377
5378 return sata_pmp_scr_read(link, reg, val);
5379 }
5380
5381 /**
5382 * sata_scr_write - write SCR register of the specified port
5383 * @link: ATA link to write SCR for
5384 * @reg: SCR to write
5385 * @val: value to write
5386 *
5387 * Write @val to SCR register @reg of @link. This function is
5388 * guaranteed to succeed if @link is ap->link, the cable type of
5389 * the port is SATA and the port implements ->scr_read.
5390 *
5391 * LOCKING:
5392 * None if @link is ap->link. Kernel thread context otherwise.
5393 *
5394 * RETURNS:
5395 * 0 on success, negative errno on failure.
5396 */
5397 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5398 {
5399 if (ata_is_host_link(link)) {
5400 if (sata_scr_valid(link))
5401 return link->ap->ops->scr_write(link, reg, val);
5402 return -EOPNOTSUPP;
5403 }
5404
5405 return sata_pmp_scr_write(link, reg, val);
5406 }
5407
5408 /**
5409 * sata_scr_write_flush - write SCR register of the specified port and flush
5410 * @link: ATA link to write SCR for
5411 * @reg: SCR to write
5412 * @val: value to write
5413 *
5414 * This function is identical to sata_scr_write() except that this
5415 * function performs flush after writing to the register.
5416 *
5417 * LOCKING:
5418 * None if @link is ap->link. Kernel thread context otherwise.
5419 *
5420 * RETURNS:
5421 * 0 on success, negative errno on failure.
5422 */
5423 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5424 {
5425 if (ata_is_host_link(link)) {
5426 int rc;
5427
5428 if (sata_scr_valid(link)) {
5429 rc = link->ap->ops->scr_write(link, reg, val);
5430 if (rc == 0)
5431 rc = link->ap->ops->scr_read(link, reg, &val);
5432 return rc;
5433 }
5434 return -EOPNOTSUPP;
5435 }
5436
5437 return sata_pmp_scr_write(link, reg, val);
5438 }
5439
5440 /**
5441 * ata_phys_link_online - test whether the given link is online
5442 * @link: ATA link to test
5443 *
5444 * Test whether @link is online. Note that this function returns
5445 * 0 if online status of @link cannot be obtained, so
5446 * ata_link_online(link) != !ata_link_offline(link).
5447 *
5448 * LOCKING:
5449 * None.
5450 *
5451 * RETURNS:
5452 * True if the port online status is available and online.
5453 */
5454 bool ata_phys_link_online(struct ata_link *link)
5455 {
5456 u32 sstatus;
5457
5458 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5459 ata_sstatus_online(sstatus))
5460 return true;
5461 return false;
5462 }
5463
5464 /**
5465 * ata_phys_link_offline - test whether the given link is offline
5466 * @link: ATA link to test
5467 *
5468 * Test whether @link is offline. Note that this function
5469 * returns 0 if offline status of @link cannot be obtained, so
5470 * ata_link_online(link) != !ata_link_offline(link).
5471 *
5472 * LOCKING:
5473 * None.
5474 *
5475 * RETURNS:
5476 * True if the port offline status is available and offline.
5477 */
5478 bool ata_phys_link_offline(struct ata_link *link)
5479 {
5480 u32 sstatus;
5481
5482 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5483 !ata_sstatus_online(sstatus))
5484 return true;
5485 return false;
5486 }
5487
5488 /**
5489 * ata_link_online - test whether the given link is online
5490 * @link: ATA link to test
5491 *
5492 * Test whether @link is online. This is identical to
5493 * ata_phys_link_online() when there's no slave link. When
5494 * there's a slave link, this function should only be called on
5495 * the master link and will return true if any of M/S links is
5496 * online.
5497 *
5498 * LOCKING:
5499 * None.
5500 *
5501 * RETURNS:
5502 * True if the port online status is available and online.
5503 */
5504 bool ata_link_online(struct ata_link *link)
5505 {
5506 struct ata_link *slave = link->ap->slave_link;
5507
5508 WARN_ON(link == slave); /* shouldn't be called on slave link */
5509
5510 return ata_phys_link_online(link) ||
5511 (slave && ata_phys_link_online(slave));
5512 }
5513
5514 /**
5515 * ata_link_offline - test whether the given link is offline
5516 * @link: ATA link to test
5517 *
5518 * Test whether @link is offline. This is identical to
5519 * ata_phys_link_offline() when there's no slave link. When
5520 * there's a slave link, this function should only be called on
5521 * the master link and will return true if both M/S links are
5522 * offline.
5523 *
5524 * LOCKING:
5525 * None.
5526 *
5527 * RETURNS:
5528 * True if the port offline status is available and offline.
5529 */
5530 bool ata_link_offline(struct ata_link *link)
5531 {
5532 struct ata_link *slave = link->ap->slave_link;
5533
5534 WARN_ON(link == slave); /* shouldn't be called on slave link */
5535
5536 return ata_phys_link_offline(link) &&
5537 (!slave || ata_phys_link_offline(slave));
5538 }
5539
5540 #ifdef CONFIG_PM
5541 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5542 unsigned int action, unsigned int ehi_flags,
5543 bool async)
5544 {
5545 struct ata_link *link;
5546 unsigned long flags;
5547
5548 /* Previous resume operation might still be in
5549 * progress. Wait for PM_PENDING to clear.
5550 */
5551 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5552 ata_port_wait_eh(ap);
5553 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5554 }
5555
5556 /* request PM ops to EH */
5557 spin_lock_irqsave(ap->lock, flags);
5558
5559 ap->pm_mesg = mesg;
5560 ap->pflags |= ATA_PFLAG_PM_PENDING;
5561 ata_for_each_link(link, ap, HOST_FIRST) {
5562 link->eh_info.action |= action;
5563 link->eh_info.flags |= ehi_flags;
5564 }
5565
5566 ata_port_schedule_eh(ap);
5567
5568 spin_unlock_irqrestore(ap->lock, flags);
5569
5570 if (!async) {
5571 ata_port_wait_eh(ap);
5572 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5573 }
5574 }
5575
5576 /*
5577 * On some hardware, device fails to respond after spun down for suspend. As
5578 * the device won't be used before being resumed, we don't need to touch the
5579 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5580 *
5581 * http://thread.gmane.org/gmane.linux.ide/46764
5582 */
5583 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5584 | ATA_EHI_NO_AUTOPSY
5585 | ATA_EHI_NO_RECOVERY;
5586
5587 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5588 {
5589 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5590 }
5591
5592 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5593 {
5594 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5595 }
5596
5597 static int ata_port_pm_suspend(struct device *dev)
5598 {
5599 struct ata_port *ap = to_ata_port(dev);
5600
5601 if (pm_runtime_suspended(dev))
5602 return 0;
5603
5604 ata_port_suspend(ap, PMSG_SUSPEND);
5605 return 0;
5606 }
5607
5608 static int ata_port_pm_freeze(struct device *dev)
5609 {
5610 struct ata_port *ap = to_ata_port(dev);
5611
5612 if (pm_runtime_suspended(dev))
5613 return 0;
5614
5615 ata_port_suspend(ap, PMSG_FREEZE);
5616 return 0;
5617 }
5618
5619 static int ata_port_pm_poweroff(struct device *dev)
5620 {
5621 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5622 return 0;
5623 }
5624
5625 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5626 | ATA_EHI_QUIET;
5627
5628 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5629 {
5630 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5631 }
5632
5633 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5634 {
5635 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5636 }
5637
5638 static int ata_port_pm_resume(struct device *dev)
5639 {
5640 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5641 pm_runtime_disable(dev);
5642 pm_runtime_set_active(dev);
5643 pm_runtime_enable(dev);
5644 return 0;
5645 }
5646
5647 /*
5648 * For ODDs, the upper layer will poll for media change every few seconds,
5649 * which will make it enter and leave suspend state every few seconds. And
5650 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5651 * is very little and the ODD may malfunction after constantly being reset.
5652 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5653 * ODD is attached to the port.
5654 */
5655 static int ata_port_runtime_idle(struct device *dev)
5656 {
5657 struct ata_port *ap = to_ata_port(dev);
5658 struct ata_link *link;
5659 struct ata_device *adev;
5660
5661 ata_for_each_link(link, ap, HOST_FIRST) {
5662 ata_for_each_dev(adev, link, ENABLED)
5663 if (adev->class == ATA_DEV_ATAPI &&
5664 !zpodd_dev_enabled(adev))
5665 return -EBUSY;
5666 }
5667
5668 return 0;
5669 }
5670
5671 static int ata_port_runtime_suspend(struct device *dev)
5672 {
5673 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5674 return 0;
5675 }
5676
5677 static int ata_port_runtime_resume(struct device *dev)
5678 {
5679 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5680 return 0;
5681 }
5682
5683 static const struct dev_pm_ops ata_port_pm_ops = {
5684 .suspend = ata_port_pm_suspend,
5685 .resume = ata_port_pm_resume,
5686 .freeze = ata_port_pm_freeze,
5687 .thaw = ata_port_pm_resume,
5688 .poweroff = ata_port_pm_poweroff,
5689 .restore = ata_port_pm_resume,
5690
5691 .runtime_suspend = ata_port_runtime_suspend,
5692 .runtime_resume = ata_port_runtime_resume,
5693 .runtime_idle = ata_port_runtime_idle,
5694 };
5695
5696 /* sas ports don't participate in pm runtime management of ata_ports,
5697 * and need to resume ata devices at the domain level, not the per-port
5698 * level. sas suspend/resume is async to allow parallel port recovery
5699 * since sas has multiple ata_port instances per Scsi_Host.
5700 */
5701 void ata_sas_port_suspend(struct ata_port *ap)
5702 {
5703 ata_port_suspend_async(ap, PMSG_SUSPEND);
5704 }
5705 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5706
5707 void ata_sas_port_resume(struct ata_port *ap)
5708 {
5709 ata_port_resume_async(ap, PMSG_RESUME);
5710 }
5711 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5712
5713 /**
5714 * ata_host_suspend - suspend host
5715 * @host: host to suspend
5716 * @mesg: PM message
5717 *
5718 * Suspend @host. Actual operation is performed by port suspend.
5719 */
5720 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5721 {
5722 host->dev->power.power_state = mesg;
5723 return 0;
5724 }
5725
5726 /**
5727 * ata_host_resume - resume host
5728 * @host: host to resume
5729 *
5730 * Resume @host. Actual operation is performed by port resume.
5731 */
5732 void ata_host_resume(struct ata_host *host)
5733 {
5734 host->dev->power.power_state = PMSG_ON;
5735 }
5736 #endif
5737
5738 struct device_type ata_port_type = {
5739 .name = "ata_port",
5740 #ifdef CONFIG_PM
5741 .pm = &ata_port_pm_ops,
5742 #endif
5743 };
5744
5745 /**
5746 * ata_dev_init - Initialize an ata_device structure
5747 * @dev: Device structure to initialize
5748 *
5749 * Initialize @dev in preparation for probing.
5750 *
5751 * LOCKING:
5752 * Inherited from caller.
5753 */
5754 void ata_dev_init(struct ata_device *dev)
5755 {
5756 struct ata_link *link = ata_dev_phys_link(dev);
5757 struct ata_port *ap = link->ap;
5758 unsigned long flags;
5759
5760 /* SATA spd limit is bound to the attached device, reset together */
5761 link->sata_spd_limit = link->hw_sata_spd_limit;
5762 link->sata_spd = 0;
5763
5764 /* High bits of dev->flags are used to record warm plug
5765 * requests which occur asynchronously. Synchronize using
5766 * host lock.
5767 */
5768 spin_lock_irqsave(ap->lock, flags);
5769 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5770 dev->horkage = 0;
5771 spin_unlock_irqrestore(ap->lock, flags);
5772
5773 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5774 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5775 dev->pio_mask = UINT_MAX;
5776 dev->mwdma_mask = UINT_MAX;
5777 dev->udma_mask = UINT_MAX;
5778 }
5779
5780 /**
5781 * ata_link_init - Initialize an ata_link structure
5782 * @ap: ATA port link is attached to
5783 * @link: Link structure to initialize
5784 * @pmp: Port multiplier port number
5785 *
5786 * Initialize @link.
5787 *
5788 * LOCKING:
5789 * Kernel thread context (may sleep)
5790 */
5791 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5792 {
5793 int i;
5794
5795 /* clear everything except for devices */
5796 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5797 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5798
5799 link->ap = ap;
5800 link->pmp = pmp;
5801 link->active_tag = ATA_TAG_POISON;
5802 link->hw_sata_spd_limit = UINT_MAX;
5803
5804 /* can't use iterator, ap isn't initialized yet */
5805 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5806 struct ata_device *dev = &link->device[i];
5807
5808 dev->link = link;
5809 dev->devno = dev - link->device;
5810 #ifdef CONFIG_ATA_ACPI
5811 dev->gtf_filter = ata_acpi_gtf_filter;
5812 #endif
5813 ata_dev_init(dev);
5814 }
5815 }
5816
5817 /**
5818 * sata_link_init_spd - Initialize link->sata_spd_limit
5819 * @link: Link to configure sata_spd_limit for
5820 *
5821 * Initialize @link->[hw_]sata_spd_limit to the currently
5822 * configured value.
5823 *
5824 * LOCKING:
5825 * Kernel thread context (may sleep).
5826 *
5827 * RETURNS:
5828 * 0 on success, -errno on failure.
5829 */
5830 int sata_link_init_spd(struct ata_link *link)
5831 {
5832 u8 spd;
5833 int rc;
5834
5835 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5836 if (rc)
5837 return rc;
5838
5839 spd = (link->saved_scontrol >> 4) & 0xf;
5840 if (spd)
5841 link->hw_sata_spd_limit &= (1 << spd) - 1;
5842
5843 ata_force_link_limits(link);
5844
5845 link->sata_spd_limit = link->hw_sata_spd_limit;
5846
5847 return 0;
5848 }
5849
5850 /**
5851 * ata_port_alloc - allocate and initialize basic ATA port resources
5852 * @host: ATA host this allocated port belongs to
5853 *
5854 * Allocate and initialize basic ATA port resources.
5855 *
5856 * RETURNS:
5857 * Allocate ATA port on success, NULL on failure.
5858 *
5859 * LOCKING:
5860 * Inherited from calling layer (may sleep).
5861 */
5862 struct ata_port *ata_port_alloc(struct ata_host *host)
5863 {
5864 struct ata_port *ap;
5865
5866 DPRINTK("ENTER\n");
5867
5868 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5869 if (!ap)
5870 return NULL;
5871
5872 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5873 ap->lock = &host->lock;
5874 ap->print_id = -1;
5875 ap->local_port_no = -1;
5876 ap->host = host;
5877 ap->dev = host->dev;
5878
5879 #if defined(ATA_VERBOSE_DEBUG)
5880 /* turn on all debugging levels */
5881 ap->msg_enable = 0x00FF;
5882 #elif defined(ATA_DEBUG)
5883 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5884 #else
5885 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5886 #endif
5887
5888 mutex_init(&ap->scsi_scan_mutex);
5889 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5890 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5891 INIT_LIST_HEAD(&ap->eh_done_q);
5892 init_waitqueue_head(&ap->eh_wait_q);
5893 init_completion(&ap->park_req_pending);
5894 init_timer_deferrable(&ap->fastdrain_timer);
5895 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5896 ap->fastdrain_timer.data = (unsigned long)ap;
5897
5898 ap->cbl = ATA_CBL_NONE;
5899
5900 ata_link_init(ap, &ap->link, 0);
5901
5902 #ifdef ATA_IRQ_TRAP
5903 ap->stats.unhandled_irq = 1;
5904 ap->stats.idle_irq = 1;
5905 #endif
5906 ata_sff_port_init(ap);
5907
5908 return ap;
5909 }
5910
5911 static void ata_host_release(struct device *gendev, void *res)
5912 {
5913 struct ata_host *host = dev_get_drvdata(gendev);
5914 int i;
5915
5916 for (i = 0; i < host->n_ports; i++) {
5917 struct ata_port *ap = host->ports[i];
5918
5919 if (!ap)
5920 continue;
5921
5922 if (ap->scsi_host)
5923 scsi_host_put(ap->scsi_host);
5924
5925 kfree(ap->pmp_link);
5926 kfree(ap->slave_link);
5927 kfree(ap);
5928 host->ports[i] = NULL;
5929 }
5930
5931 dev_set_drvdata(gendev, NULL);
5932 }
5933
5934 /**
5935 * ata_host_alloc - allocate and init basic ATA host resources
5936 * @dev: generic device this host is associated with
5937 * @max_ports: maximum number of ATA ports associated with this host
5938 *
5939 * Allocate and initialize basic ATA host resources. LLD calls
5940 * this function to allocate a host, initializes it fully and
5941 * attaches it using ata_host_register().
5942 *
5943 * @max_ports ports are allocated and host->n_ports is
5944 * initialized to @max_ports. The caller is allowed to decrease
5945 * host->n_ports before calling ata_host_register(). The unused
5946 * ports will be automatically freed on registration.
5947 *
5948 * RETURNS:
5949 * Allocate ATA host on success, NULL on failure.
5950 *
5951 * LOCKING:
5952 * Inherited from calling layer (may sleep).
5953 */
5954 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5955 {
5956 struct ata_host *host;
5957 size_t sz;
5958 int i;
5959
5960 DPRINTK("ENTER\n");
5961
5962 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5963 return NULL;
5964
5965 /* alloc a container for our list of ATA ports (buses) */
5966 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5967 /* alloc a container for our list of ATA ports (buses) */
5968 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5969 if (!host)
5970 goto err_out;
5971
5972 devres_add(dev, host);
5973 dev_set_drvdata(dev, host);
5974
5975 spin_lock_init(&host->lock);
5976 mutex_init(&host->eh_mutex);
5977 host->dev = dev;
5978 host->n_ports = max_ports;
5979
5980 /* allocate ports bound to this host */
5981 for (i = 0; i < max_ports; i++) {
5982 struct ata_port *ap;
5983
5984 ap = ata_port_alloc(host);
5985 if (!ap)
5986 goto err_out;
5987
5988 ap->port_no = i;
5989 host->ports[i] = ap;
5990 }
5991
5992 devres_remove_group(dev, NULL);
5993 return host;
5994
5995 err_out:
5996 devres_release_group(dev, NULL);
5997 return NULL;
5998 }
5999
6000 /**
6001 * ata_host_alloc_pinfo - alloc host and init with port_info array
6002 * @dev: generic device this host is associated with
6003 * @ppi: array of ATA port_info to initialize host with
6004 * @n_ports: number of ATA ports attached to this host
6005 *
6006 * Allocate ATA host and initialize with info from @ppi. If NULL
6007 * terminated, @ppi may contain fewer entries than @n_ports. The
6008 * last entry will be used for the remaining ports.
6009 *
6010 * RETURNS:
6011 * Allocate ATA host on success, NULL on failure.
6012 *
6013 * LOCKING:
6014 * Inherited from calling layer (may sleep).
6015 */
6016 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6017 const struct ata_port_info * const * ppi,
6018 int n_ports)
6019 {
6020 const struct ata_port_info *pi;
6021 struct ata_host *host;
6022 int i, j;
6023
6024 host = ata_host_alloc(dev, n_ports);
6025 if (!host)
6026 return NULL;
6027
6028 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6029 struct ata_port *ap = host->ports[i];
6030
6031 if (ppi[j])
6032 pi = ppi[j++];
6033
6034 ap->pio_mask = pi->pio_mask;
6035 ap->mwdma_mask = pi->mwdma_mask;
6036 ap->udma_mask = pi->udma_mask;
6037 ap->flags |= pi->flags;
6038 ap->link.flags |= pi->link_flags;
6039 ap->ops = pi->port_ops;
6040
6041 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6042 host->ops = pi->port_ops;
6043 }
6044
6045 return host;
6046 }
6047
6048 /**
6049 * ata_slave_link_init - initialize slave link
6050 * @ap: port to initialize slave link for
6051 *
6052 * Create and initialize slave link for @ap. This enables slave
6053 * link handling on the port.
6054 *
6055 * In libata, a port contains links and a link contains devices.
6056 * There is single host link but if a PMP is attached to it,
6057 * there can be multiple fan-out links. On SATA, there's usually
6058 * a single device connected to a link but PATA and SATA
6059 * controllers emulating TF based interface can have two - master
6060 * and slave.
6061 *
6062 * However, there are a few controllers which don't fit into this
6063 * abstraction too well - SATA controllers which emulate TF
6064 * interface with both master and slave devices but also have
6065 * separate SCR register sets for each device. These controllers
6066 * need separate links for physical link handling
6067 * (e.g. onlineness, link speed) but should be treated like a
6068 * traditional M/S controller for everything else (e.g. command
6069 * issue, softreset).
6070 *
6071 * slave_link is libata's way of handling this class of
6072 * controllers without impacting core layer too much. For
6073 * anything other than physical link handling, the default host
6074 * link is used for both master and slave. For physical link
6075 * handling, separate @ap->slave_link is used. All dirty details
6076 * are implemented inside libata core layer. From LLD's POV, the
6077 * only difference is that prereset, hardreset and postreset are
6078 * called once more for the slave link, so the reset sequence
6079 * looks like the following.
6080 *
6081 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6082 * softreset(M) -> postreset(M) -> postreset(S)
6083 *
6084 * Note that softreset is called only for the master. Softreset
6085 * resets both M/S by definition, so SRST on master should handle
6086 * both (the standard method will work just fine).
6087 *
6088 * LOCKING:
6089 * Should be called before host is registered.
6090 *
6091 * RETURNS:
6092 * 0 on success, -errno on failure.
6093 */
6094 int ata_slave_link_init(struct ata_port *ap)
6095 {
6096 struct ata_link *link;
6097
6098 WARN_ON(ap->slave_link);
6099 WARN_ON(ap->flags & ATA_FLAG_PMP);
6100
6101 link = kzalloc(sizeof(*link), GFP_KERNEL);
6102 if (!link)
6103 return -ENOMEM;
6104
6105 ata_link_init(ap, link, 1);
6106 ap->slave_link = link;
6107 return 0;
6108 }
6109
6110 static void ata_host_stop(struct device *gendev, void *res)
6111 {
6112 struct ata_host *host = dev_get_drvdata(gendev);
6113 int i;
6114
6115 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6116
6117 for (i = 0; i < host->n_ports; i++) {
6118 struct ata_port *ap = host->ports[i];
6119
6120 if (ap->ops->port_stop)
6121 ap->ops->port_stop(ap);
6122 }
6123
6124 if (host->ops->host_stop)
6125 host->ops->host_stop(host);
6126 }
6127
6128 /**
6129 * ata_finalize_port_ops - finalize ata_port_operations
6130 * @ops: ata_port_operations to finalize
6131 *
6132 * An ata_port_operations can inherit from another ops and that
6133 * ops can again inherit from another. This can go on as many
6134 * times as necessary as long as there is no loop in the
6135 * inheritance chain.
6136 *
6137 * Ops tables are finalized when the host is started. NULL or
6138 * unspecified entries are inherited from the closet ancestor
6139 * which has the method and the entry is populated with it.
6140 * After finalization, the ops table directly points to all the
6141 * methods and ->inherits is no longer necessary and cleared.
6142 *
6143 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6144 *
6145 * LOCKING:
6146 * None.
6147 */
6148 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6149 {
6150 static DEFINE_SPINLOCK(lock);
6151 const struct ata_port_operations *cur;
6152 void **begin = (void **)ops;
6153 void **end = (void **)&ops->inherits;
6154 void **pp;
6155
6156 if (!ops || !ops->inherits)
6157 return;
6158
6159 spin_lock(&lock);
6160
6161 for (cur = ops->inherits; cur; cur = cur->inherits) {
6162 void **inherit = (void **)cur;
6163
6164 for (pp = begin; pp < end; pp++, inherit++)
6165 if (!*pp)
6166 *pp = *inherit;
6167 }
6168
6169 for (pp = begin; pp < end; pp++)
6170 if (IS_ERR(*pp))
6171 *pp = NULL;
6172
6173 ops->inherits = NULL;
6174
6175 spin_unlock(&lock);
6176 }
6177
6178 /**
6179 * ata_host_start - start and freeze ports of an ATA host
6180 * @host: ATA host to start ports for
6181 *
6182 * Start and then freeze ports of @host. Started status is
6183 * recorded in host->flags, so this function can be called
6184 * multiple times. Ports are guaranteed to get started only
6185 * once. If host->ops isn't initialized yet, its set to the
6186 * first non-dummy port ops.
6187 *
6188 * LOCKING:
6189 * Inherited from calling layer (may sleep).
6190 *
6191 * RETURNS:
6192 * 0 if all ports are started successfully, -errno otherwise.
6193 */
6194 int ata_host_start(struct ata_host *host)
6195 {
6196 int have_stop = 0;
6197 void *start_dr = NULL;
6198 int i, rc;
6199
6200 if (host->flags & ATA_HOST_STARTED)
6201 return 0;
6202
6203 ata_finalize_port_ops(host->ops);
6204
6205 for (i = 0; i < host->n_ports; i++) {
6206 struct ata_port *ap = host->ports[i];
6207
6208 ata_finalize_port_ops(ap->ops);
6209
6210 if (!host->ops && !ata_port_is_dummy(ap))
6211 host->ops = ap->ops;
6212
6213 if (ap->ops->port_stop)
6214 have_stop = 1;
6215 }
6216
6217 if (host->ops->host_stop)
6218 have_stop = 1;
6219
6220 if (have_stop) {
6221 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6222 if (!start_dr)
6223 return -ENOMEM;
6224 }
6225
6226 for (i = 0; i < host->n_ports; i++) {
6227 struct ata_port *ap = host->ports[i];
6228
6229 if (ap->ops->port_start) {
6230 rc = ap->ops->port_start(ap);
6231 if (rc) {
6232 if (rc != -ENODEV)
6233 dev_err(host->dev,
6234 "failed to start port %d (errno=%d)\n",
6235 i, rc);
6236 goto err_out;
6237 }
6238 }
6239 ata_eh_freeze_port(ap);
6240 }
6241
6242 if (start_dr)
6243 devres_add(host->dev, start_dr);
6244 host->flags |= ATA_HOST_STARTED;
6245 return 0;
6246
6247 err_out:
6248 while (--i >= 0) {
6249 struct ata_port *ap = host->ports[i];
6250
6251 if (ap->ops->port_stop)
6252 ap->ops->port_stop(ap);
6253 }
6254 devres_free(start_dr);
6255 return rc;
6256 }
6257
6258 /**
6259 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6260 * @host: host to initialize
6261 * @dev: device host is attached to
6262 * @ops: port_ops
6263 *
6264 */
6265 void ata_host_init(struct ata_host *host, struct device *dev,
6266 struct ata_port_operations *ops)
6267 {
6268 spin_lock_init(&host->lock);
6269 mutex_init(&host->eh_mutex);
6270 host->n_tags = ATA_MAX_QUEUE - 1;
6271 host->dev = dev;
6272 host->ops = ops;
6273 }
6274
6275 void __ata_port_probe(struct ata_port *ap)
6276 {
6277 struct ata_eh_info *ehi = &ap->link.eh_info;
6278 unsigned long flags;
6279
6280 /* kick EH for boot probing */
6281 spin_lock_irqsave(ap->lock, flags);
6282
6283 ehi->probe_mask |= ATA_ALL_DEVICES;
6284 ehi->action |= ATA_EH_RESET;
6285 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6286
6287 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6288 ap->pflags |= ATA_PFLAG_LOADING;
6289 ata_port_schedule_eh(ap);
6290
6291 spin_unlock_irqrestore(ap->lock, flags);
6292 }
6293
6294 int ata_port_probe(struct ata_port *ap)
6295 {
6296 int rc = 0;
6297
6298 if (ap->ops->error_handler) {
6299 __ata_port_probe(ap);
6300 ata_port_wait_eh(ap);
6301 } else {
6302 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6303 rc = ata_bus_probe(ap);
6304 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6305 }
6306 return rc;
6307 }
6308
6309
6310 static void async_port_probe(void *data, async_cookie_t cookie)
6311 {
6312 struct ata_port *ap = data;
6313
6314 /*
6315 * If we're not allowed to scan this host in parallel,
6316 * we need to wait until all previous scans have completed
6317 * before going further.
6318 * Jeff Garzik says this is only within a controller, so we
6319 * don't need to wait for port 0, only for later ports.
6320 */
6321 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6322 async_synchronize_cookie(cookie);
6323
6324 (void)ata_port_probe(ap);
6325
6326 /* in order to keep device order, we need to synchronize at this point */
6327 async_synchronize_cookie(cookie);
6328
6329 ata_scsi_scan_host(ap, 1);
6330 }
6331
6332 /**
6333 * ata_host_register - register initialized ATA host
6334 * @host: ATA host to register
6335 * @sht: template for SCSI host
6336 *
6337 * Register initialized ATA host. @host is allocated using
6338 * ata_host_alloc() and fully initialized by LLD. This function
6339 * starts ports, registers @host with ATA and SCSI layers and
6340 * probe registered devices.
6341 *
6342 * LOCKING:
6343 * Inherited from calling layer (may sleep).
6344 *
6345 * RETURNS:
6346 * 0 on success, -errno otherwise.
6347 */
6348 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6349 {
6350 int i, rc;
6351
6352 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6353
6354 /* host must have been started */
6355 if (!(host->flags & ATA_HOST_STARTED)) {
6356 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6357 WARN_ON(1);
6358 return -EINVAL;
6359 }
6360
6361 /* Blow away unused ports. This happens when LLD can't
6362 * determine the exact number of ports to allocate at
6363 * allocation time.
6364 */
6365 for (i = host->n_ports; host->ports[i]; i++)
6366 kfree(host->ports[i]);
6367
6368 /* give ports names and add SCSI hosts */
6369 for (i = 0; i < host->n_ports; i++) {
6370 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6371 host->ports[i]->local_port_no = i + 1;
6372 }
6373
6374 /* Create associated sysfs transport objects */
6375 for (i = 0; i < host->n_ports; i++) {
6376 rc = ata_tport_add(host->dev,host->ports[i]);
6377 if (rc) {
6378 goto err_tadd;
6379 }
6380 }
6381
6382 rc = ata_scsi_add_hosts(host, sht);
6383 if (rc)
6384 goto err_tadd;
6385
6386 /* set cable, sata_spd_limit and report */
6387 for (i = 0; i < host->n_ports; i++) {
6388 struct ata_port *ap = host->ports[i];
6389 unsigned long xfer_mask;
6390
6391 /* set SATA cable type if still unset */
6392 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6393 ap->cbl = ATA_CBL_SATA;
6394
6395 /* init sata_spd_limit to the current value */
6396 sata_link_init_spd(&ap->link);
6397 if (ap->slave_link)
6398 sata_link_init_spd(ap->slave_link);
6399
6400 /* print per-port info to dmesg */
6401 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6402 ap->udma_mask);
6403
6404 if (!ata_port_is_dummy(ap)) {
6405 ata_port_info(ap, "%cATA max %s %s\n",
6406 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6407 ata_mode_string(xfer_mask),
6408 ap->link.eh_info.desc);
6409 ata_ehi_clear_desc(&ap->link.eh_info);
6410 } else
6411 ata_port_info(ap, "DUMMY\n");
6412 }
6413
6414 /* perform each probe asynchronously */
6415 for (i = 0; i < host->n_ports; i++) {
6416 struct ata_port *ap = host->ports[i];
6417 async_schedule(async_port_probe, ap);
6418 }
6419
6420 return 0;
6421
6422 err_tadd:
6423 while (--i >= 0) {
6424 ata_tport_delete(host->ports[i]);
6425 }
6426 return rc;
6427
6428 }
6429
6430 /**
6431 * ata_host_activate - start host, request IRQ and register it
6432 * @host: target ATA host
6433 * @irq: IRQ to request
6434 * @irq_handler: irq_handler used when requesting IRQ
6435 * @irq_flags: irq_flags used when requesting IRQ
6436 * @sht: scsi_host_template to use when registering the host
6437 *
6438 * After allocating an ATA host and initializing it, most libata
6439 * LLDs perform three steps to activate the host - start host,
6440 * request IRQ and register it. This helper takes necessary
6441 * arguments and performs the three steps in one go.
6442 *
6443 * An invalid IRQ skips the IRQ registration and expects the host to
6444 * have set polling mode on the port. In this case, @irq_handler
6445 * should be NULL.
6446 *
6447 * LOCKING:
6448 * Inherited from calling layer (may sleep).
6449 *
6450 * RETURNS:
6451 * 0 on success, -errno otherwise.
6452 */
6453 int ata_host_activate(struct ata_host *host, int irq,
6454 irq_handler_t irq_handler, unsigned long irq_flags,
6455 struct scsi_host_template *sht)
6456 {
6457 int i, rc;
6458 char *irq_desc;
6459
6460 rc = ata_host_start(host);
6461 if (rc)
6462 return rc;
6463
6464 /* Special case for polling mode */
6465 if (!irq) {
6466 WARN_ON(irq_handler);
6467 return ata_host_register(host, sht);
6468 }
6469
6470 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6471 dev_driver_string(host->dev),
6472 dev_name(host->dev));
6473 if (!irq_desc)
6474 return -ENOMEM;
6475
6476 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6477 irq_desc, host);
6478 if (rc)
6479 return rc;
6480
6481 for (i = 0; i < host->n_ports; i++)
6482 ata_port_desc(host->ports[i], "irq %d", irq);
6483
6484 rc = ata_host_register(host, sht);
6485 /* if failed, just free the IRQ and leave ports alone */
6486 if (rc)
6487 devm_free_irq(host->dev, irq, host);
6488
6489 return rc;
6490 }
6491
6492 /**
6493 * ata_port_detach - Detach ATA port in preparation of device removal
6494 * @ap: ATA port to be detached
6495 *
6496 * Detach all ATA devices and the associated SCSI devices of @ap;
6497 * then, remove the associated SCSI host. @ap is guaranteed to
6498 * be quiescent on return from this function.
6499 *
6500 * LOCKING:
6501 * Kernel thread context (may sleep).
6502 */
6503 static void ata_port_detach(struct ata_port *ap)
6504 {
6505 unsigned long flags;
6506 struct ata_link *link;
6507 struct ata_device *dev;
6508
6509 if (!ap->ops->error_handler)
6510 goto skip_eh;
6511
6512 /* tell EH we're leaving & flush EH */
6513 spin_lock_irqsave(ap->lock, flags);
6514 ap->pflags |= ATA_PFLAG_UNLOADING;
6515 ata_port_schedule_eh(ap);
6516 spin_unlock_irqrestore(ap->lock, flags);
6517
6518 /* wait till EH commits suicide */
6519 ata_port_wait_eh(ap);
6520
6521 /* it better be dead now */
6522 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6523
6524 cancel_delayed_work_sync(&ap->hotplug_task);
6525
6526 skip_eh:
6527 /* clean up zpodd on port removal */
6528 ata_for_each_link(link, ap, HOST_FIRST) {
6529 ata_for_each_dev(dev, link, ALL) {
6530 if (zpodd_dev_enabled(dev))
6531 zpodd_exit(dev);
6532 }
6533 }
6534 if (ap->pmp_link) {
6535 int i;
6536 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6537 ata_tlink_delete(&ap->pmp_link[i]);
6538 }
6539 /* remove the associated SCSI host */
6540 scsi_remove_host(ap->scsi_host);
6541 ata_tport_delete(ap);
6542 }
6543
6544 /**
6545 * ata_host_detach - Detach all ports of an ATA host
6546 * @host: Host to detach
6547 *
6548 * Detach all ports of @host.
6549 *
6550 * LOCKING:
6551 * Kernel thread context (may sleep).
6552 */
6553 void ata_host_detach(struct ata_host *host)
6554 {
6555 int i;
6556
6557 for (i = 0; i < host->n_ports; i++)
6558 ata_port_detach(host->ports[i]);
6559
6560 /* the host is dead now, dissociate ACPI */
6561 ata_acpi_dissociate(host);
6562 }
6563
6564 #ifdef CONFIG_PCI
6565
6566 /**
6567 * ata_pci_remove_one - PCI layer callback for device removal
6568 * @pdev: PCI device that was removed
6569 *
6570 * PCI layer indicates to libata via this hook that hot-unplug or
6571 * module unload event has occurred. Detach all ports. Resource
6572 * release is handled via devres.
6573 *
6574 * LOCKING:
6575 * Inherited from PCI layer (may sleep).
6576 */
6577 void ata_pci_remove_one(struct pci_dev *pdev)
6578 {
6579 struct ata_host *host = pci_get_drvdata(pdev);
6580
6581 ata_host_detach(host);
6582 }
6583
6584 /* move to PCI subsystem */
6585 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6586 {
6587 unsigned long tmp = 0;
6588
6589 switch (bits->width) {
6590 case 1: {
6591 u8 tmp8 = 0;
6592 pci_read_config_byte(pdev, bits->reg, &tmp8);
6593 tmp = tmp8;
6594 break;
6595 }
6596 case 2: {
6597 u16 tmp16 = 0;
6598 pci_read_config_word(pdev, bits->reg, &tmp16);
6599 tmp = tmp16;
6600 break;
6601 }
6602 case 4: {
6603 u32 tmp32 = 0;
6604 pci_read_config_dword(pdev, bits->reg, &tmp32);
6605 tmp = tmp32;
6606 break;
6607 }
6608
6609 default:
6610 return -EINVAL;
6611 }
6612
6613 tmp &= bits->mask;
6614
6615 return (tmp == bits->val) ? 1 : 0;
6616 }
6617
6618 #ifdef CONFIG_PM
6619 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6620 {
6621 pci_save_state(pdev);
6622 pci_disable_device(pdev);
6623
6624 if (mesg.event & PM_EVENT_SLEEP)
6625 pci_set_power_state(pdev, PCI_D3hot);
6626 }
6627
6628 int ata_pci_device_do_resume(struct pci_dev *pdev)
6629 {
6630 int rc;
6631
6632 pci_set_power_state(pdev, PCI_D0);
6633 pci_restore_state(pdev);
6634
6635 rc = pcim_enable_device(pdev);
6636 if (rc) {
6637 dev_err(&pdev->dev,
6638 "failed to enable device after resume (%d)\n", rc);
6639 return rc;
6640 }
6641
6642 pci_set_master(pdev);
6643 return 0;
6644 }
6645
6646 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6647 {
6648 struct ata_host *host = pci_get_drvdata(pdev);
6649 int rc = 0;
6650
6651 rc = ata_host_suspend(host, mesg);
6652 if (rc)
6653 return rc;
6654
6655 ata_pci_device_do_suspend(pdev, mesg);
6656
6657 return 0;
6658 }
6659
6660 int ata_pci_device_resume(struct pci_dev *pdev)
6661 {
6662 struct ata_host *host = pci_get_drvdata(pdev);
6663 int rc;
6664
6665 rc = ata_pci_device_do_resume(pdev);
6666 if (rc == 0)
6667 ata_host_resume(host);
6668 return rc;
6669 }
6670 #endif /* CONFIG_PM */
6671
6672 #endif /* CONFIG_PCI */
6673
6674 /**
6675 * ata_platform_remove_one - Platform layer callback for device removal
6676 * @pdev: Platform device that was removed
6677 *
6678 * Platform layer indicates to libata via this hook that hot-unplug or
6679 * module unload event has occurred. Detach all ports. Resource
6680 * release is handled via devres.
6681 *
6682 * LOCKING:
6683 * Inherited from platform layer (may sleep).
6684 */
6685 int ata_platform_remove_one(struct platform_device *pdev)
6686 {
6687 struct ata_host *host = platform_get_drvdata(pdev);
6688
6689 ata_host_detach(host);
6690
6691 return 0;
6692 }
6693
6694 static int __init ata_parse_force_one(char **cur,
6695 struct ata_force_ent *force_ent,
6696 const char **reason)
6697 {
6698 static const struct ata_force_param force_tbl[] __initconst = {
6699 { "40c", .cbl = ATA_CBL_PATA40 },
6700 { "80c", .cbl = ATA_CBL_PATA80 },
6701 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6702 { "unk", .cbl = ATA_CBL_PATA_UNK },
6703 { "ign", .cbl = ATA_CBL_PATA_IGN },
6704 { "sata", .cbl = ATA_CBL_SATA },
6705 { "1.5Gbps", .spd_limit = 1 },
6706 { "3.0Gbps", .spd_limit = 2 },
6707 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6708 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6709 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6710 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6711 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6712 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6713 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6714 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6715 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6716 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6717 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6718 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6719 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6720 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6721 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6722 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6723 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6724 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6725 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6726 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6727 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6728 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6729 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6730 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6731 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6732 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6733 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6734 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6735 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6736 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6737 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6738 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6739 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6740 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6741 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6742 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6743 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6744 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6745 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6746 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6747 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6748 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6749 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6750 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6751 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6752 };
6753 char *start = *cur, *p = *cur;
6754 char *id, *val, *endp;
6755 const struct ata_force_param *match_fp = NULL;
6756 int nr_matches = 0, i;
6757
6758 /* find where this param ends and update *cur */
6759 while (*p != '\0' && *p != ',')
6760 p++;
6761
6762 if (*p == '\0')
6763 *cur = p;
6764 else
6765 *cur = p + 1;
6766
6767 *p = '\0';
6768
6769 /* parse */
6770 p = strchr(start, ':');
6771 if (!p) {
6772 val = strstrip(start);
6773 goto parse_val;
6774 }
6775 *p = '\0';
6776
6777 id = strstrip(start);
6778 val = strstrip(p + 1);
6779
6780 /* parse id */
6781 p = strchr(id, '.');
6782 if (p) {
6783 *p++ = '\0';
6784 force_ent->device = simple_strtoul(p, &endp, 10);
6785 if (p == endp || *endp != '\0') {
6786 *reason = "invalid device";
6787 return -EINVAL;
6788 }
6789 }
6790
6791 force_ent->port = simple_strtoul(id, &endp, 10);
6792 if (p == endp || *endp != '\0') {
6793 *reason = "invalid port/link";
6794 return -EINVAL;
6795 }
6796
6797 parse_val:
6798 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6799 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6800 const struct ata_force_param *fp = &force_tbl[i];
6801
6802 if (strncasecmp(val, fp->name, strlen(val)))
6803 continue;
6804
6805 nr_matches++;
6806 match_fp = fp;
6807
6808 if (strcasecmp(val, fp->name) == 0) {
6809 nr_matches = 1;
6810 break;
6811 }
6812 }
6813
6814 if (!nr_matches) {
6815 *reason = "unknown value";
6816 return -EINVAL;
6817 }
6818 if (nr_matches > 1) {
6819 *reason = "ambigious value";
6820 return -EINVAL;
6821 }
6822
6823 force_ent->param = *match_fp;
6824
6825 return 0;
6826 }
6827
6828 static void __init ata_parse_force_param(void)
6829 {
6830 int idx = 0, size = 1;
6831 int last_port = -1, last_device = -1;
6832 char *p, *cur, *next;
6833
6834 /* calculate maximum number of params and allocate force_tbl */
6835 for (p = ata_force_param_buf; *p; p++)
6836 if (*p == ',')
6837 size++;
6838
6839 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6840 if (!ata_force_tbl) {
6841 printk(KERN_WARNING "ata: failed to extend force table, "
6842 "libata.force ignored\n");
6843 return;
6844 }
6845
6846 /* parse and populate the table */
6847 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6848 const char *reason = "";
6849 struct ata_force_ent te = { .port = -1, .device = -1 };
6850
6851 next = cur;
6852 if (ata_parse_force_one(&next, &te, &reason)) {
6853 printk(KERN_WARNING "ata: failed to parse force "
6854 "parameter \"%s\" (%s)\n",
6855 cur, reason);
6856 continue;
6857 }
6858
6859 if (te.port == -1) {
6860 te.port = last_port;
6861 te.device = last_device;
6862 }
6863
6864 ata_force_tbl[idx++] = te;
6865
6866 last_port = te.port;
6867 last_device = te.device;
6868 }
6869
6870 ata_force_tbl_size = idx;
6871 }
6872
6873 static int __init ata_init(void)
6874 {
6875 int rc;
6876
6877 ata_parse_force_param();
6878
6879 rc = ata_sff_init();
6880 if (rc) {
6881 kfree(ata_force_tbl);
6882 return rc;
6883 }
6884
6885 libata_transport_init();
6886 ata_scsi_transport_template = ata_attach_transport();
6887 if (!ata_scsi_transport_template) {
6888 ata_sff_exit();
6889 rc = -ENOMEM;
6890 goto err_out;
6891 }
6892
6893 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6894 return 0;
6895
6896 err_out:
6897 return rc;
6898 }
6899
6900 static void __exit ata_exit(void)
6901 {
6902 ata_release_transport(ata_scsi_transport_template);
6903 libata_transport_exit();
6904 ata_sff_exit();
6905 kfree(ata_force_tbl);
6906 }
6907
6908 subsys_initcall(ata_init);
6909 module_exit(ata_exit);
6910
6911 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6912
6913 int ata_ratelimit(void)
6914 {
6915 return __ratelimit(&ratelimit);
6916 }
6917
6918 /**
6919 * ata_msleep - ATA EH owner aware msleep
6920 * @ap: ATA port to attribute the sleep to
6921 * @msecs: duration to sleep in milliseconds
6922 *
6923 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6924 * ownership is released before going to sleep and reacquired
6925 * after the sleep is complete. IOW, other ports sharing the
6926 * @ap->host will be allowed to own the EH while this task is
6927 * sleeping.
6928 *
6929 * LOCKING:
6930 * Might sleep.
6931 */
6932 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6933 {
6934 bool owns_eh = ap && ap->host->eh_owner == current;
6935
6936 if (owns_eh)
6937 ata_eh_release(ap);
6938
6939 if (msecs < 20) {
6940 unsigned long usecs = msecs * USEC_PER_MSEC;
6941 usleep_range(usecs, usecs + 50);
6942 } else {
6943 msleep(msecs);
6944 }
6945
6946 if (owns_eh)
6947 ata_eh_acquire(ap);
6948 }
6949
6950 /**
6951 * ata_wait_register - wait until register value changes
6952 * @ap: ATA port to wait register for, can be NULL
6953 * @reg: IO-mapped register
6954 * @mask: Mask to apply to read register value
6955 * @val: Wait condition
6956 * @interval: polling interval in milliseconds
6957 * @timeout: timeout in milliseconds
6958 *
6959 * Waiting for some bits of register to change is a common
6960 * operation for ATA controllers. This function reads 32bit LE
6961 * IO-mapped register @reg and tests for the following condition.
6962 *
6963 * (*@reg & mask) != val
6964 *
6965 * If the condition is met, it returns; otherwise, the process is
6966 * repeated after @interval_msec until timeout.
6967 *
6968 * LOCKING:
6969 * Kernel thread context (may sleep)
6970 *
6971 * RETURNS:
6972 * The final register value.
6973 */
6974 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6975 unsigned long interval, unsigned long timeout)
6976 {
6977 unsigned long deadline;
6978 u32 tmp;
6979
6980 tmp = ioread32(reg);
6981
6982 /* Calculate timeout _after_ the first read to make sure
6983 * preceding writes reach the controller before starting to
6984 * eat away the timeout.
6985 */
6986 deadline = ata_deadline(jiffies, timeout);
6987
6988 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6989 ata_msleep(ap, interval);
6990 tmp = ioread32(reg);
6991 }
6992
6993 return tmp;
6994 }
6995
6996 /**
6997 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6998 * @link: Link receiving the event
6999 *
7000 * Test whether the received PHY event has to be ignored or not.
7001 *
7002 * LOCKING:
7003 * None:
7004 *
7005 * RETURNS:
7006 * True if the event has to be ignored.
7007 */
7008 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7009 {
7010 unsigned long lpm_timeout = link->last_lpm_change +
7011 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7012
7013 /* if LPM is enabled, PHYRDY doesn't mean anything */
7014 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7015 return true;
7016
7017 /* ignore the first PHY event after the LPM policy changed
7018 * as it is might be spurious
7019 */
7020 if ((link->flags & ATA_LFLAG_CHANGED) &&
7021 time_before(jiffies, lpm_timeout))
7022 return true;
7023
7024 return false;
7025 }
7026 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7027
7028 /*
7029 * Dummy port_ops
7030 */
7031 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7032 {
7033 return AC_ERR_SYSTEM;
7034 }
7035
7036 static void ata_dummy_error_handler(struct ata_port *ap)
7037 {
7038 /* truly dummy */
7039 }
7040
7041 struct ata_port_operations ata_dummy_port_ops = {
7042 .qc_prep = ata_noop_qc_prep,
7043 .qc_issue = ata_dummy_qc_issue,
7044 .error_handler = ata_dummy_error_handler,
7045 .sched_eh = ata_std_sched_eh,
7046 .end_eh = ata_std_end_eh,
7047 };
7048
7049 const struct ata_port_info ata_dummy_port_info = {
7050 .port_ops = &ata_dummy_port_ops,
7051 };
7052
7053 /*
7054 * Utility print functions
7055 */
7056 void ata_port_printk(const struct ata_port *ap, const char *level,
7057 const char *fmt, ...)
7058 {
7059 struct va_format vaf;
7060 va_list args;
7061
7062 va_start(args, fmt);
7063
7064 vaf.fmt = fmt;
7065 vaf.va = &args;
7066
7067 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7068
7069 va_end(args);
7070 }
7071 EXPORT_SYMBOL(ata_port_printk);
7072
7073 void ata_link_printk(const struct ata_link *link, const char *level,
7074 const char *fmt, ...)
7075 {
7076 struct va_format vaf;
7077 va_list args;
7078
7079 va_start(args, fmt);
7080
7081 vaf.fmt = fmt;
7082 vaf.va = &args;
7083
7084 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7085 printk("%sata%u.%02u: %pV",
7086 level, link->ap->print_id, link->pmp, &vaf);
7087 else
7088 printk("%sata%u: %pV",
7089 level, link->ap->print_id, &vaf);
7090
7091 va_end(args);
7092 }
7093 EXPORT_SYMBOL(ata_link_printk);
7094
7095 void ata_dev_printk(const struct ata_device *dev, const char *level,
7096 const char *fmt, ...)
7097 {
7098 struct va_format vaf;
7099 va_list args;
7100
7101 va_start(args, fmt);
7102
7103 vaf.fmt = fmt;
7104 vaf.va = &args;
7105
7106 printk("%sata%u.%02u: %pV",
7107 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7108 &vaf);
7109
7110 va_end(args);
7111 }
7112 EXPORT_SYMBOL(ata_dev_printk);
7113
7114 void ata_print_version(const struct device *dev, const char *version)
7115 {
7116 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7117 }
7118 EXPORT_SYMBOL(ata_print_version);
7119
7120 /*
7121 * libata is essentially a library of internal helper functions for
7122 * low-level ATA host controller drivers. As such, the API/ABI is
7123 * likely to change as new drivers are added and updated.
7124 * Do not depend on ABI/API stability.
7125 */
7126 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7127 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7128 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7129 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7130 EXPORT_SYMBOL_GPL(sata_port_ops);
7131 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7132 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7133 EXPORT_SYMBOL_GPL(ata_link_next);
7134 EXPORT_SYMBOL_GPL(ata_dev_next);
7135 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7136 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7137 EXPORT_SYMBOL_GPL(ata_host_init);
7138 EXPORT_SYMBOL_GPL(ata_host_alloc);
7139 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7140 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7141 EXPORT_SYMBOL_GPL(ata_host_start);
7142 EXPORT_SYMBOL_GPL(ata_host_register);
7143 EXPORT_SYMBOL_GPL(ata_host_activate);
7144 EXPORT_SYMBOL_GPL(ata_host_detach);
7145 EXPORT_SYMBOL_GPL(ata_sg_init);
7146 EXPORT_SYMBOL_GPL(ata_qc_complete);
7147 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7148 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7149 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7150 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7151 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7152 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7153 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7154 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7155 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7156 EXPORT_SYMBOL_GPL(ata_mode_string);
7157 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7158 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7159 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7160 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7161 EXPORT_SYMBOL_GPL(ata_dev_disable);
7162 EXPORT_SYMBOL_GPL(sata_set_spd);
7163 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7164 EXPORT_SYMBOL_GPL(sata_link_debounce);
7165 EXPORT_SYMBOL_GPL(sata_link_resume);
7166 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7167 EXPORT_SYMBOL_GPL(ata_std_prereset);
7168 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7169 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7170 EXPORT_SYMBOL_GPL(ata_std_postreset);
7171 EXPORT_SYMBOL_GPL(ata_dev_classify);
7172 EXPORT_SYMBOL_GPL(ata_dev_pair);
7173 EXPORT_SYMBOL_GPL(ata_ratelimit);
7174 EXPORT_SYMBOL_GPL(ata_msleep);
7175 EXPORT_SYMBOL_GPL(ata_wait_register);
7176 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7177 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7178 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7179 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7180 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7181 EXPORT_SYMBOL_GPL(sata_scr_valid);
7182 EXPORT_SYMBOL_GPL(sata_scr_read);
7183 EXPORT_SYMBOL_GPL(sata_scr_write);
7184 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7185 EXPORT_SYMBOL_GPL(ata_link_online);
7186 EXPORT_SYMBOL_GPL(ata_link_offline);
7187 #ifdef CONFIG_PM
7188 EXPORT_SYMBOL_GPL(ata_host_suspend);
7189 EXPORT_SYMBOL_GPL(ata_host_resume);
7190 #endif /* CONFIG_PM */
7191 EXPORT_SYMBOL_GPL(ata_id_string);
7192 EXPORT_SYMBOL_GPL(ata_id_c_string);
7193 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7194 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7195
7196 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7197 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7198 EXPORT_SYMBOL_GPL(ata_timing_compute);
7199 EXPORT_SYMBOL_GPL(ata_timing_merge);
7200 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7201
7202 #ifdef CONFIG_PCI
7203 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7204 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7205 #ifdef CONFIG_PM
7206 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7207 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7208 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7209 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7210 #endif /* CONFIG_PM */
7211 #endif /* CONFIG_PCI */
7212
7213 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7214
7215 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7216 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7217 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7218 EXPORT_SYMBOL_GPL(ata_port_desc);
7219 #ifdef CONFIG_PCI
7220 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7221 #endif /* CONFIG_PCI */
7222 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7223 EXPORT_SYMBOL_GPL(ata_link_abort);
7224 EXPORT_SYMBOL_GPL(ata_port_abort);
7225 EXPORT_SYMBOL_GPL(ata_port_freeze);
7226 EXPORT_SYMBOL_GPL(sata_async_notification);
7227 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7228 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7229 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7230 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7231 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7232 EXPORT_SYMBOL_GPL(ata_do_eh);
7233 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7234
7235 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7236 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7237 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7238 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7239 EXPORT_SYMBOL_GPL(ata_cable_sata);