]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
libata: use ata_exec_internal() for PMP register access
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable);
72 static void ata_dev_xfermask(struct ata_device *dev);
73 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int atapi_passthru16 = 1;
89 module_param(atapi_passthru16, int, 0444);
90 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
91
92 int libata_fua = 0;
93 module_param_named(fua, libata_fua, int, 0444);
94 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
95
96 static int ata_ignore_hpa = 0;
97 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
98 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
99
100 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
101 module_param_named(dma, libata_dma_mask, int, 0444);
102 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
103
104 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
105 module_param(ata_probe_timeout, int, 0444);
106 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
107
108 int libata_noacpi = 0;
109 module_param_named(noacpi, libata_noacpi, int, 0444);
110 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
111
112 MODULE_AUTHOR("Jeff Garzik");
113 MODULE_DESCRIPTION("Library module for ATA devices");
114 MODULE_LICENSE("GPL");
115 MODULE_VERSION(DRV_VERSION);
116
117
118 /**
119 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
120 * @tf: Taskfile to convert
121 * @pmp: Port multiplier port
122 * @is_cmd: This FIS is for command
123 * @fis: Buffer into which data will output
124 *
125 * Converts a standard ATA taskfile to a Serial ATA
126 * FIS structure (Register - Host to Device).
127 *
128 * LOCKING:
129 * Inherited from caller.
130 */
131 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
132 {
133 fis[0] = 0x27; /* Register - Host to Device FIS */
134 fis[1] = pmp & 0xf; /* Port multiplier number*/
135 if (is_cmd)
136 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
137
138 fis[2] = tf->command;
139 fis[3] = tf->feature;
140
141 fis[4] = tf->lbal;
142 fis[5] = tf->lbam;
143 fis[6] = tf->lbah;
144 fis[7] = tf->device;
145
146 fis[8] = tf->hob_lbal;
147 fis[9] = tf->hob_lbam;
148 fis[10] = tf->hob_lbah;
149 fis[11] = tf->hob_feature;
150
151 fis[12] = tf->nsect;
152 fis[13] = tf->hob_nsect;
153 fis[14] = 0;
154 fis[15] = tf->ctl;
155
156 fis[16] = 0;
157 fis[17] = 0;
158 fis[18] = 0;
159 fis[19] = 0;
160 }
161
162 /**
163 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
164 * @fis: Buffer from which data will be input
165 * @tf: Taskfile to output
166 *
167 * Converts a serial ATA FIS structure to a standard ATA taskfile.
168 *
169 * LOCKING:
170 * Inherited from caller.
171 */
172
173 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
174 {
175 tf->command = fis[2]; /* status */
176 tf->feature = fis[3]; /* error */
177
178 tf->lbal = fis[4];
179 tf->lbam = fis[5];
180 tf->lbah = fis[6];
181 tf->device = fis[7];
182
183 tf->hob_lbal = fis[8];
184 tf->hob_lbam = fis[9];
185 tf->hob_lbah = fis[10];
186
187 tf->nsect = fis[12];
188 tf->hob_nsect = fis[13];
189 }
190
191 static const u8 ata_rw_cmds[] = {
192 /* pio multi */
193 ATA_CMD_READ_MULTI,
194 ATA_CMD_WRITE_MULTI,
195 ATA_CMD_READ_MULTI_EXT,
196 ATA_CMD_WRITE_MULTI_EXT,
197 0,
198 0,
199 0,
200 ATA_CMD_WRITE_MULTI_FUA_EXT,
201 /* pio */
202 ATA_CMD_PIO_READ,
203 ATA_CMD_PIO_WRITE,
204 ATA_CMD_PIO_READ_EXT,
205 ATA_CMD_PIO_WRITE_EXT,
206 0,
207 0,
208 0,
209 0,
210 /* dma */
211 ATA_CMD_READ,
212 ATA_CMD_WRITE,
213 ATA_CMD_READ_EXT,
214 ATA_CMD_WRITE_EXT,
215 0,
216 0,
217 0,
218 ATA_CMD_WRITE_FUA_EXT
219 };
220
221 /**
222 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
223 * @tf: command to examine and configure
224 * @dev: device tf belongs to
225 *
226 * Examine the device configuration and tf->flags to calculate
227 * the proper read/write commands and protocol to use.
228 *
229 * LOCKING:
230 * caller.
231 */
232 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
233 {
234 u8 cmd;
235
236 int index, fua, lba48, write;
237
238 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
239 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
240 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
241
242 if (dev->flags & ATA_DFLAG_PIO) {
243 tf->protocol = ATA_PROT_PIO;
244 index = dev->multi_count ? 0 : 8;
245 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
246 /* Unable to use DMA due to host limitation */
247 tf->protocol = ATA_PROT_PIO;
248 index = dev->multi_count ? 0 : 8;
249 } else {
250 tf->protocol = ATA_PROT_DMA;
251 index = 16;
252 }
253
254 cmd = ata_rw_cmds[index + fua + lba48 + write];
255 if (cmd) {
256 tf->command = cmd;
257 return 0;
258 }
259 return -1;
260 }
261
262 /**
263 * ata_tf_read_block - Read block address from ATA taskfile
264 * @tf: ATA taskfile of interest
265 * @dev: ATA device @tf belongs to
266 *
267 * LOCKING:
268 * None.
269 *
270 * Read block address from @tf. This function can handle all
271 * three address formats - LBA, LBA48 and CHS. tf->protocol and
272 * flags select the address format to use.
273 *
274 * RETURNS:
275 * Block address read from @tf.
276 */
277 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
278 {
279 u64 block = 0;
280
281 if (tf->flags & ATA_TFLAG_LBA) {
282 if (tf->flags & ATA_TFLAG_LBA48) {
283 block |= (u64)tf->hob_lbah << 40;
284 block |= (u64)tf->hob_lbam << 32;
285 block |= tf->hob_lbal << 24;
286 } else
287 block |= (tf->device & 0xf) << 24;
288
289 block |= tf->lbah << 16;
290 block |= tf->lbam << 8;
291 block |= tf->lbal;
292 } else {
293 u32 cyl, head, sect;
294
295 cyl = tf->lbam | (tf->lbah << 8);
296 head = tf->device & 0xf;
297 sect = tf->lbal;
298
299 block = (cyl * dev->heads + head) * dev->sectors + sect;
300 }
301
302 return block;
303 }
304
305 /**
306 * ata_build_rw_tf - Build ATA taskfile for given read/write request
307 * @tf: Target ATA taskfile
308 * @dev: ATA device @tf belongs to
309 * @block: Block address
310 * @n_block: Number of blocks
311 * @tf_flags: RW/FUA etc...
312 * @tag: tag
313 *
314 * LOCKING:
315 * None.
316 *
317 * Build ATA taskfile @tf for read/write request described by
318 * @block, @n_block, @tf_flags and @tag on @dev.
319 *
320 * RETURNS:
321 *
322 * 0 on success, -ERANGE if the request is too large for @dev,
323 * -EINVAL if the request is invalid.
324 */
325 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
326 u64 block, u32 n_block, unsigned int tf_flags,
327 unsigned int tag)
328 {
329 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
330 tf->flags |= tf_flags;
331
332 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
333 /* yay, NCQ */
334 if (!lba_48_ok(block, n_block))
335 return -ERANGE;
336
337 tf->protocol = ATA_PROT_NCQ;
338 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
339
340 if (tf->flags & ATA_TFLAG_WRITE)
341 tf->command = ATA_CMD_FPDMA_WRITE;
342 else
343 tf->command = ATA_CMD_FPDMA_READ;
344
345 tf->nsect = tag << 3;
346 tf->hob_feature = (n_block >> 8) & 0xff;
347 tf->feature = n_block & 0xff;
348
349 tf->hob_lbah = (block >> 40) & 0xff;
350 tf->hob_lbam = (block >> 32) & 0xff;
351 tf->hob_lbal = (block >> 24) & 0xff;
352 tf->lbah = (block >> 16) & 0xff;
353 tf->lbam = (block >> 8) & 0xff;
354 tf->lbal = block & 0xff;
355
356 tf->device = 1 << 6;
357 if (tf->flags & ATA_TFLAG_FUA)
358 tf->device |= 1 << 7;
359 } else if (dev->flags & ATA_DFLAG_LBA) {
360 tf->flags |= ATA_TFLAG_LBA;
361
362 if (lba_28_ok(block, n_block)) {
363 /* use LBA28 */
364 tf->device |= (block >> 24) & 0xf;
365 } else if (lba_48_ok(block, n_block)) {
366 if (!(dev->flags & ATA_DFLAG_LBA48))
367 return -ERANGE;
368
369 /* use LBA48 */
370 tf->flags |= ATA_TFLAG_LBA48;
371
372 tf->hob_nsect = (n_block >> 8) & 0xff;
373
374 tf->hob_lbah = (block >> 40) & 0xff;
375 tf->hob_lbam = (block >> 32) & 0xff;
376 tf->hob_lbal = (block >> 24) & 0xff;
377 } else
378 /* request too large even for LBA48 */
379 return -ERANGE;
380
381 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
382 return -EINVAL;
383
384 tf->nsect = n_block & 0xff;
385
386 tf->lbah = (block >> 16) & 0xff;
387 tf->lbam = (block >> 8) & 0xff;
388 tf->lbal = block & 0xff;
389
390 tf->device |= ATA_LBA;
391 } else {
392 /* CHS */
393 u32 sect, head, cyl, track;
394
395 /* The request -may- be too large for CHS addressing. */
396 if (!lba_28_ok(block, n_block))
397 return -ERANGE;
398
399 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
400 return -EINVAL;
401
402 /* Convert LBA to CHS */
403 track = (u32)block / dev->sectors;
404 cyl = track / dev->heads;
405 head = track % dev->heads;
406 sect = (u32)block % dev->sectors + 1;
407
408 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
409 (u32)block, track, cyl, head, sect);
410
411 /* Check whether the converted CHS can fit.
412 Cylinder: 0-65535
413 Head: 0-15
414 Sector: 1-255*/
415 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
416 return -ERANGE;
417
418 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
419 tf->lbal = sect;
420 tf->lbam = cyl;
421 tf->lbah = cyl >> 8;
422 tf->device |= head;
423 }
424
425 return 0;
426 }
427
428 /**
429 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
430 * @pio_mask: pio_mask
431 * @mwdma_mask: mwdma_mask
432 * @udma_mask: udma_mask
433 *
434 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
435 * unsigned int xfer_mask.
436 *
437 * LOCKING:
438 * None.
439 *
440 * RETURNS:
441 * Packed xfer_mask.
442 */
443 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
444 unsigned int mwdma_mask,
445 unsigned int udma_mask)
446 {
447 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
448 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
449 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
450 }
451
452 /**
453 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
454 * @xfer_mask: xfer_mask to unpack
455 * @pio_mask: resulting pio_mask
456 * @mwdma_mask: resulting mwdma_mask
457 * @udma_mask: resulting udma_mask
458 *
459 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
460 * Any NULL distination masks will be ignored.
461 */
462 static void ata_unpack_xfermask(unsigned int xfer_mask,
463 unsigned int *pio_mask,
464 unsigned int *mwdma_mask,
465 unsigned int *udma_mask)
466 {
467 if (pio_mask)
468 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
469 if (mwdma_mask)
470 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
471 if (udma_mask)
472 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
473 }
474
475 static const struct ata_xfer_ent {
476 int shift, bits;
477 u8 base;
478 } ata_xfer_tbl[] = {
479 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
480 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
481 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
482 { -1, },
483 };
484
485 /**
486 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
487 * @xfer_mask: xfer_mask of interest
488 *
489 * Return matching XFER_* value for @xfer_mask. Only the highest
490 * bit of @xfer_mask is considered.
491 *
492 * LOCKING:
493 * None.
494 *
495 * RETURNS:
496 * Matching XFER_* value, 0 if no match found.
497 */
498 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
499 {
500 int highbit = fls(xfer_mask) - 1;
501 const struct ata_xfer_ent *ent;
502
503 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
504 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
505 return ent->base + highbit - ent->shift;
506 return 0;
507 }
508
509 /**
510 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
511 * @xfer_mode: XFER_* of interest
512 *
513 * Return matching xfer_mask for @xfer_mode.
514 *
515 * LOCKING:
516 * None.
517 *
518 * RETURNS:
519 * Matching xfer_mask, 0 if no match found.
520 */
521 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
522 {
523 const struct ata_xfer_ent *ent;
524
525 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
526 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
527 return 1 << (ent->shift + xfer_mode - ent->base);
528 return 0;
529 }
530
531 /**
532 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
533 * @xfer_mode: XFER_* of interest
534 *
535 * Return matching xfer_shift for @xfer_mode.
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Matching xfer_shift, -1 if no match found.
542 */
543 static int ata_xfer_mode2shift(unsigned int xfer_mode)
544 {
545 const struct ata_xfer_ent *ent;
546
547 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
548 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
549 return ent->shift;
550 return -1;
551 }
552
553 /**
554 * ata_mode_string - convert xfer_mask to string
555 * @xfer_mask: mask of bits supported; only highest bit counts.
556 *
557 * Determine string which represents the highest speed
558 * (highest bit in @modemask).
559 *
560 * LOCKING:
561 * None.
562 *
563 * RETURNS:
564 * Constant C string representing highest speed listed in
565 * @mode_mask, or the constant C string "<n/a>".
566 */
567 static const char *ata_mode_string(unsigned int xfer_mask)
568 {
569 static const char * const xfer_mode_str[] = {
570 "PIO0",
571 "PIO1",
572 "PIO2",
573 "PIO3",
574 "PIO4",
575 "PIO5",
576 "PIO6",
577 "MWDMA0",
578 "MWDMA1",
579 "MWDMA2",
580 "MWDMA3",
581 "MWDMA4",
582 "UDMA/16",
583 "UDMA/25",
584 "UDMA/33",
585 "UDMA/44",
586 "UDMA/66",
587 "UDMA/100",
588 "UDMA/133",
589 "UDMA7",
590 };
591 int highbit;
592
593 highbit = fls(xfer_mask) - 1;
594 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
595 return xfer_mode_str[highbit];
596 return "<n/a>";
597 }
598
599 static const char *sata_spd_string(unsigned int spd)
600 {
601 static const char * const spd_str[] = {
602 "1.5 Gbps",
603 "3.0 Gbps",
604 };
605
606 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
607 return "<unknown>";
608 return spd_str[spd - 1];
609 }
610
611 void ata_dev_disable(struct ata_device *dev)
612 {
613 if (ata_dev_enabled(dev)) {
614 if (ata_msg_drv(dev->link->ap))
615 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
616 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
617 ATA_DNXFER_QUIET);
618 dev->class++;
619 }
620 }
621
622 /**
623 * ata_devchk - PATA device presence detection
624 * @ap: ATA channel to examine
625 * @device: Device to examine (starting at zero)
626 *
627 * This technique was originally described in
628 * Hale Landis's ATADRVR (www.ata-atapi.com), and
629 * later found its way into the ATA/ATAPI spec.
630 *
631 * Write a pattern to the ATA shadow registers,
632 * and if a device is present, it will respond by
633 * correctly storing and echoing back the
634 * ATA shadow register contents.
635 *
636 * LOCKING:
637 * caller.
638 */
639
640 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
641 {
642 struct ata_ioports *ioaddr = &ap->ioaddr;
643 u8 nsect, lbal;
644
645 ap->ops->dev_select(ap, device);
646
647 iowrite8(0x55, ioaddr->nsect_addr);
648 iowrite8(0xaa, ioaddr->lbal_addr);
649
650 iowrite8(0xaa, ioaddr->nsect_addr);
651 iowrite8(0x55, ioaddr->lbal_addr);
652
653 iowrite8(0x55, ioaddr->nsect_addr);
654 iowrite8(0xaa, ioaddr->lbal_addr);
655
656 nsect = ioread8(ioaddr->nsect_addr);
657 lbal = ioread8(ioaddr->lbal_addr);
658
659 if ((nsect == 0x55) && (lbal == 0xaa))
660 return 1; /* we found a device */
661
662 return 0; /* nothing found */
663 }
664
665 /**
666 * ata_dev_classify - determine device type based on ATA-spec signature
667 * @tf: ATA taskfile register set for device to be identified
668 *
669 * Determine from taskfile register contents whether a device is
670 * ATA or ATAPI, as per "Signature and persistence" section
671 * of ATA/PI spec (volume 1, sect 5.14).
672 *
673 * LOCKING:
674 * None.
675 *
676 * RETURNS:
677 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
678 * %ATA_DEV_UNKNOWN the event of failure.
679 */
680 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
681 {
682 /* Apple's open source Darwin code hints that some devices only
683 * put a proper signature into the LBA mid/high registers,
684 * So, we only check those. It's sufficient for uniqueness.
685 *
686 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
687 * signatures for ATA and ATAPI devices attached on SerialATA,
688 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
689 * spec has never mentioned about using different signatures
690 * for ATA/ATAPI devices. Then, Serial ATA II: Port
691 * Multiplier specification began to use 0x69/0x96 to identify
692 * port multpliers and 0x3c/0xc3 to identify SEMB device.
693 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
694 * 0x69/0x96 shortly and described them as reserved for
695 * SerialATA.
696 *
697 * We follow the current spec and consider that 0x69/0x96
698 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
699 */
700 if ((tf->lbam == 0) && (tf->lbah == 0)) {
701 DPRINTK("found ATA device by sig\n");
702 return ATA_DEV_ATA;
703 }
704
705 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
706 DPRINTK("found ATAPI device by sig\n");
707 return ATA_DEV_ATAPI;
708 }
709
710 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
711 DPRINTK("found PMP device by sig\n");
712 return ATA_DEV_PMP;
713 }
714
715 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
716 printk("ata: SEMB device ignored\n");
717 return ATA_DEV_SEMB_UNSUP; /* not yet */
718 }
719
720 DPRINTK("unknown device\n");
721 return ATA_DEV_UNKNOWN;
722 }
723
724 /**
725 * ata_dev_try_classify - Parse returned ATA device signature
726 * @dev: ATA device to classify (starting at zero)
727 * @present: device seems present
728 * @r_err: Value of error register on completion
729 *
730 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
731 * an ATA/ATAPI-defined set of values is placed in the ATA
732 * shadow registers, indicating the results of device detection
733 * and diagnostics.
734 *
735 * Select the ATA device, and read the values from the ATA shadow
736 * registers. Then parse according to the Error register value,
737 * and the spec-defined values examined by ata_dev_classify().
738 *
739 * LOCKING:
740 * caller.
741 *
742 * RETURNS:
743 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
744 */
745 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
746 u8 *r_err)
747 {
748 struct ata_port *ap = dev->link->ap;
749 struct ata_taskfile tf;
750 unsigned int class;
751 u8 err;
752
753 ap->ops->dev_select(ap, dev->devno);
754
755 memset(&tf, 0, sizeof(tf));
756
757 ap->ops->tf_read(ap, &tf);
758 err = tf.feature;
759 if (r_err)
760 *r_err = err;
761
762 /* see if device passed diags: if master then continue and warn later */
763 if (err == 0 && dev->devno == 0)
764 /* diagnostic fail : do nothing _YET_ */
765 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
766 else if (err == 1)
767 /* do nothing */ ;
768 else if ((dev->devno == 0) && (err == 0x81))
769 /* do nothing */ ;
770 else
771 return ATA_DEV_NONE;
772
773 /* determine if device is ATA or ATAPI */
774 class = ata_dev_classify(&tf);
775
776 if (class == ATA_DEV_UNKNOWN) {
777 /* If the device failed diagnostic, it's likely to
778 * have reported incorrect device signature too.
779 * Assume ATA device if the device seems present but
780 * device signature is invalid with diagnostic
781 * failure.
782 */
783 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
784 class = ATA_DEV_ATA;
785 else
786 class = ATA_DEV_NONE;
787 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
788 class = ATA_DEV_NONE;
789
790 return class;
791 }
792
793 /**
794 * ata_id_string - Convert IDENTIFY DEVICE page into string
795 * @id: IDENTIFY DEVICE results we will examine
796 * @s: string into which data is output
797 * @ofs: offset into identify device page
798 * @len: length of string to return. must be an even number.
799 *
800 * The strings in the IDENTIFY DEVICE page are broken up into
801 * 16-bit chunks. Run through the string, and output each
802 * 8-bit chunk linearly, regardless of platform.
803 *
804 * LOCKING:
805 * caller.
806 */
807
808 void ata_id_string(const u16 *id, unsigned char *s,
809 unsigned int ofs, unsigned int len)
810 {
811 unsigned int c;
812
813 while (len > 0) {
814 c = id[ofs] >> 8;
815 *s = c;
816 s++;
817
818 c = id[ofs] & 0xff;
819 *s = c;
820 s++;
821
822 ofs++;
823 len -= 2;
824 }
825 }
826
827 /**
828 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
829 * @id: IDENTIFY DEVICE results we will examine
830 * @s: string into which data is output
831 * @ofs: offset into identify device page
832 * @len: length of string to return. must be an odd number.
833 *
834 * This function is identical to ata_id_string except that it
835 * trims trailing spaces and terminates the resulting string with
836 * null. @len must be actual maximum length (even number) + 1.
837 *
838 * LOCKING:
839 * caller.
840 */
841 void ata_id_c_string(const u16 *id, unsigned char *s,
842 unsigned int ofs, unsigned int len)
843 {
844 unsigned char *p;
845
846 WARN_ON(!(len & 1));
847
848 ata_id_string(id, s, ofs, len - 1);
849
850 p = s + strnlen(s, len - 1);
851 while (p > s && p[-1] == ' ')
852 p--;
853 *p = '\0';
854 }
855
856 static u64 ata_id_n_sectors(const u16 *id)
857 {
858 if (ata_id_has_lba(id)) {
859 if (ata_id_has_lba48(id))
860 return ata_id_u64(id, 100);
861 else
862 return ata_id_u32(id, 60);
863 } else {
864 if (ata_id_current_chs_valid(id))
865 return ata_id_u32(id, 57);
866 else
867 return id[1] * id[3] * id[6];
868 }
869 }
870
871 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
872 {
873 u64 sectors = 0;
874
875 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
876 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
877 sectors |= (tf->hob_lbal & 0xff) << 24;
878 sectors |= (tf->lbah & 0xff) << 16;
879 sectors |= (tf->lbam & 0xff) << 8;
880 sectors |= (tf->lbal & 0xff);
881
882 return ++sectors;
883 }
884
885 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
886 {
887 u64 sectors = 0;
888
889 sectors |= (tf->device & 0x0f) << 24;
890 sectors |= (tf->lbah & 0xff) << 16;
891 sectors |= (tf->lbam & 0xff) << 8;
892 sectors |= (tf->lbal & 0xff);
893
894 return ++sectors;
895 }
896
897 /**
898 * ata_read_native_max_address - Read native max address
899 * @dev: target device
900 * @max_sectors: out parameter for the result native max address
901 *
902 * Perform an LBA48 or LBA28 native size query upon the device in
903 * question.
904 *
905 * RETURNS:
906 * 0 on success, -EACCES if command is aborted by the drive.
907 * -EIO on other errors.
908 */
909 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
910 {
911 unsigned int err_mask;
912 struct ata_taskfile tf;
913 int lba48 = ata_id_has_lba48(dev->id);
914
915 ata_tf_init(dev, &tf);
916
917 /* always clear all address registers */
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
919
920 if (lba48) {
921 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
922 tf.flags |= ATA_TFLAG_LBA48;
923 } else
924 tf.command = ATA_CMD_READ_NATIVE_MAX;
925
926 tf.protocol |= ATA_PROT_NODATA;
927 tf.device |= ATA_LBA;
928
929 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
930 if (err_mask) {
931 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
932 "max address (err_mask=0x%x)\n", err_mask);
933 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
934 return -EACCES;
935 return -EIO;
936 }
937
938 if (lba48)
939 *max_sectors = ata_tf_to_lba48(&tf);
940 else
941 *max_sectors = ata_tf_to_lba(&tf);
942 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
943 (*max_sectors)--;
944 return 0;
945 }
946
947 /**
948 * ata_set_max_sectors - Set max sectors
949 * @dev: target device
950 * @new_sectors: new max sectors value to set for the device
951 *
952 * Set max sectors of @dev to @new_sectors.
953 *
954 * RETURNS:
955 * 0 on success, -EACCES if command is aborted or denied (due to
956 * previous non-volatile SET_MAX) by the drive. -EIO on other
957 * errors.
958 */
959 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
960 {
961 unsigned int err_mask;
962 struct ata_taskfile tf;
963 int lba48 = ata_id_has_lba48(dev->id);
964
965 new_sectors--;
966
967 ata_tf_init(dev, &tf);
968
969 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
970
971 if (lba48) {
972 tf.command = ATA_CMD_SET_MAX_EXT;
973 tf.flags |= ATA_TFLAG_LBA48;
974
975 tf.hob_lbal = (new_sectors >> 24) & 0xff;
976 tf.hob_lbam = (new_sectors >> 32) & 0xff;
977 tf.hob_lbah = (new_sectors >> 40) & 0xff;
978 } else {
979 tf.command = ATA_CMD_SET_MAX;
980
981 tf.device |= (new_sectors >> 24) & 0xf;
982 }
983
984 tf.protocol |= ATA_PROT_NODATA;
985 tf.device |= ATA_LBA;
986
987 tf.lbal = (new_sectors >> 0) & 0xff;
988 tf.lbam = (new_sectors >> 8) & 0xff;
989 tf.lbah = (new_sectors >> 16) & 0xff;
990
991 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
992 if (err_mask) {
993 ata_dev_printk(dev, KERN_WARNING, "failed to set "
994 "max address (err_mask=0x%x)\n", err_mask);
995 if (err_mask == AC_ERR_DEV &&
996 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
997 return -EACCES;
998 return -EIO;
999 }
1000
1001 return 0;
1002 }
1003
1004 /**
1005 * ata_hpa_resize - Resize a device with an HPA set
1006 * @dev: Device to resize
1007 *
1008 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1009 * it if required to the full size of the media. The caller must check
1010 * the drive has the HPA feature set enabled.
1011 *
1012 * RETURNS:
1013 * 0 on success, -errno on failure.
1014 */
1015 static int ata_hpa_resize(struct ata_device *dev)
1016 {
1017 struct ata_eh_context *ehc = &dev->link->eh_context;
1018 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1019 u64 sectors = ata_id_n_sectors(dev->id);
1020 u64 native_sectors;
1021 int rc;
1022
1023 /* do we need to do it? */
1024 if (dev->class != ATA_DEV_ATA ||
1025 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1026 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1027 return 0;
1028
1029 /* read native max address */
1030 rc = ata_read_native_max_address(dev, &native_sectors);
1031 if (rc) {
1032 /* If HPA isn't going to be unlocked, skip HPA
1033 * resizing from the next try.
1034 */
1035 if (!ata_ignore_hpa) {
1036 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1037 "broken, will skip HPA handling\n");
1038 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1039
1040 /* we can continue if device aborted the command */
1041 if (rc == -EACCES)
1042 rc = 0;
1043 }
1044
1045 return rc;
1046 }
1047
1048 /* nothing to do? */
1049 if (native_sectors <= sectors || !ata_ignore_hpa) {
1050 if (!print_info || native_sectors == sectors)
1051 return 0;
1052
1053 if (native_sectors > sectors)
1054 ata_dev_printk(dev, KERN_INFO,
1055 "HPA detected: current %llu, native %llu\n",
1056 (unsigned long long)sectors,
1057 (unsigned long long)native_sectors);
1058 else if (native_sectors < sectors)
1059 ata_dev_printk(dev, KERN_WARNING,
1060 "native sectors (%llu) is smaller than "
1061 "sectors (%llu)\n",
1062 (unsigned long long)native_sectors,
1063 (unsigned long long)sectors);
1064 return 0;
1065 }
1066
1067 /* let's unlock HPA */
1068 rc = ata_set_max_sectors(dev, native_sectors);
1069 if (rc == -EACCES) {
1070 /* if device aborted the command, skip HPA resizing */
1071 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1072 "(%llu -> %llu), skipping HPA handling\n",
1073 (unsigned long long)sectors,
1074 (unsigned long long)native_sectors);
1075 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1076 return 0;
1077 } else if (rc)
1078 return rc;
1079
1080 /* re-read IDENTIFY data */
1081 rc = ata_dev_reread_id(dev, 0);
1082 if (rc) {
1083 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1084 "data after HPA resizing\n");
1085 return rc;
1086 }
1087
1088 if (print_info) {
1089 u64 new_sectors = ata_id_n_sectors(dev->id);
1090 ata_dev_printk(dev, KERN_INFO,
1091 "HPA unlocked: %llu -> %llu, native %llu\n",
1092 (unsigned long long)sectors,
1093 (unsigned long long)new_sectors,
1094 (unsigned long long)native_sectors);
1095 }
1096
1097 return 0;
1098 }
1099
1100 /**
1101 * ata_id_to_dma_mode - Identify DMA mode from id block
1102 * @dev: device to identify
1103 * @unknown: mode to assume if we cannot tell
1104 *
1105 * Set up the timing values for the device based upon the identify
1106 * reported values for the DMA mode. This function is used by drivers
1107 * which rely upon firmware configured modes, but wish to report the
1108 * mode correctly when possible.
1109 *
1110 * In addition we emit similarly formatted messages to the default
1111 * ata_dev_set_mode handler, in order to provide consistency of
1112 * presentation.
1113 */
1114
1115 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1116 {
1117 unsigned int mask;
1118 u8 mode;
1119
1120 /* Pack the DMA modes */
1121 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1122 if (dev->id[53] & 0x04)
1123 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1124
1125 /* Select the mode in use */
1126 mode = ata_xfer_mask2mode(mask);
1127
1128 if (mode != 0) {
1129 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1130 ata_mode_string(mask));
1131 } else {
1132 /* SWDMA perhaps ? */
1133 mode = unknown;
1134 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1135 }
1136
1137 /* Configure the device reporting */
1138 dev->xfer_mode = mode;
1139 dev->xfer_shift = ata_xfer_mode2shift(mode);
1140 }
1141
1142 /**
1143 * ata_noop_dev_select - Select device 0/1 on ATA bus
1144 * @ap: ATA channel to manipulate
1145 * @device: ATA device (numbered from zero) to select
1146 *
1147 * This function performs no actual function.
1148 *
1149 * May be used as the dev_select() entry in ata_port_operations.
1150 *
1151 * LOCKING:
1152 * caller.
1153 */
1154 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1155 {
1156 }
1157
1158
1159 /**
1160 * ata_std_dev_select - Select device 0/1 on ATA bus
1161 * @ap: ATA channel to manipulate
1162 * @device: ATA device (numbered from zero) to select
1163 *
1164 * Use the method defined in the ATA specification to
1165 * make either device 0, or device 1, active on the
1166 * ATA channel. Works with both PIO and MMIO.
1167 *
1168 * May be used as the dev_select() entry in ata_port_operations.
1169 *
1170 * LOCKING:
1171 * caller.
1172 */
1173
1174 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1175 {
1176 u8 tmp;
1177
1178 if (device == 0)
1179 tmp = ATA_DEVICE_OBS;
1180 else
1181 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1182
1183 iowrite8(tmp, ap->ioaddr.device_addr);
1184 ata_pause(ap); /* needed; also flushes, for mmio */
1185 }
1186
1187 /**
1188 * ata_dev_select - Select device 0/1 on ATA bus
1189 * @ap: ATA channel to manipulate
1190 * @device: ATA device (numbered from zero) to select
1191 * @wait: non-zero to wait for Status register BSY bit to clear
1192 * @can_sleep: non-zero if context allows sleeping
1193 *
1194 * Use the method defined in the ATA specification to
1195 * make either device 0, or device 1, active on the
1196 * ATA channel.
1197 *
1198 * This is a high-level version of ata_std_dev_select(),
1199 * which additionally provides the services of inserting
1200 * the proper pauses and status polling, where needed.
1201 *
1202 * LOCKING:
1203 * caller.
1204 */
1205
1206 void ata_dev_select(struct ata_port *ap, unsigned int device,
1207 unsigned int wait, unsigned int can_sleep)
1208 {
1209 if (ata_msg_probe(ap))
1210 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1211 "device %u, wait %u\n", device, wait);
1212
1213 if (wait)
1214 ata_wait_idle(ap);
1215
1216 ap->ops->dev_select(ap, device);
1217
1218 if (wait) {
1219 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1220 msleep(150);
1221 ata_wait_idle(ap);
1222 }
1223 }
1224
1225 /**
1226 * ata_dump_id - IDENTIFY DEVICE info debugging output
1227 * @id: IDENTIFY DEVICE page to dump
1228 *
1229 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1230 * page.
1231 *
1232 * LOCKING:
1233 * caller.
1234 */
1235
1236 static inline void ata_dump_id(const u16 *id)
1237 {
1238 DPRINTK("49==0x%04x "
1239 "53==0x%04x "
1240 "63==0x%04x "
1241 "64==0x%04x "
1242 "75==0x%04x \n",
1243 id[49],
1244 id[53],
1245 id[63],
1246 id[64],
1247 id[75]);
1248 DPRINTK("80==0x%04x "
1249 "81==0x%04x "
1250 "82==0x%04x "
1251 "83==0x%04x "
1252 "84==0x%04x \n",
1253 id[80],
1254 id[81],
1255 id[82],
1256 id[83],
1257 id[84]);
1258 DPRINTK("88==0x%04x "
1259 "93==0x%04x\n",
1260 id[88],
1261 id[93]);
1262 }
1263
1264 /**
1265 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1266 * @id: IDENTIFY data to compute xfer mask from
1267 *
1268 * Compute the xfermask for this device. This is not as trivial
1269 * as it seems if we must consider early devices correctly.
1270 *
1271 * FIXME: pre IDE drive timing (do we care ?).
1272 *
1273 * LOCKING:
1274 * None.
1275 *
1276 * RETURNS:
1277 * Computed xfermask
1278 */
1279 static unsigned int ata_id_xfermask(const u16 *id)
1280 {
1281 unsigned int pio_mask, mwdma_mask, udma_mask;
1282
1283 /* Usual case. Word 53 indicates word 64 is valid */
1284 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1285 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1286 pio_mask <<= 3;
1287 pio_mask |= 0x7;
1288 } else {
1289 /* If word 64 isn't valid then Word 51 high byte holds
1290 * the PIO timing number for the maximum. Turn it into
1291 * a mask.
1292 */
1293 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1294 if (mode < 5) /* Valid PIO range */
1295 pio_mask = (2 << mode) - 1;
1296 else
1297 pio_mask = 1;
1298
1299 /* But wait.. there's more. Design your standards by
1300 * committee and you too can get a free iordy field to
1301 * process. However its the speeds not the modes that
1302 * are supported... Note drivers using the timing API
1303 * will get this right anyway
1304 */
1305 }
1306
1307 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1308
1309 if (ata_id_is_cfa(id)) {
1310 /*
1311 * Process compact flash extended modes
1312 */
1313 int pio = id[163] & 0x7;
1314 int dma = (id[163] >> 3) & 7;
1315
1316 if (pio)
1317 pio_mask |= (1 << 5);
1318 if (pio > 1)
1319 pio_mask |= (1 << 6);
1320 if (dma)
1321 mwdma_mask |= (1 << 3);
1322 if (dma > 1)
1323 mwdma_mask |= (1 << 4);
1324 }
1325
1326 udma_mask = 0;
1327 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1328 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1329
1330 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1331 }
1332
1333 /**
1334 * ata_port_queue_task - Queue port_task
1335 * @ap: The ata_port to queue port_task for
1336 * @fn: workqueue function to be scheduled
1337 * @data: data for @fn to use
1338 * @delay: delay time for workqueue function
1339 *
1340 * Schedule @fn(@data) for execution after @delay jiffies using
1341 * port_task. There is one port_task per port and it's the
1342 * user(low level driver)'s responsibility to make sure that only
1343 * one task is active at any given time.
1344 *
1345 * libata core layer takes care of synchronization between
1346 * port_task and EH. ata_port_queue_task() may be ignored for EH
1347 * synchronization.
1348 *
1349 * LOCKING:
1350 * Inherited from caller.
1351 */
1352 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1353 unsigned long delay)
1354 {
1355 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1356 ap->port_task_data = data;
1357
1358 /* may fail if ata_port_flush_task() in progress */
1359 queue_delayed_work(ata_wq, &ap->port_task, delay);
1360 }
1361
1362 /**
1363 * ata_port_flush_task - Flush port_task
1364 * @ap: The ata_port to flush port_task for
1365 *
1366 * After this function completes, port_task is guranteed not to
1367 * be running or scheduled.
1368 *
1369 * LOCKING:
1370 * Kernel thread context (may sleep)
1371 */
1372 void ata_port_flush_task(struct ata_port *ap)
1373 {
1374 DPRINTK("ENTER\n");
1375
1376 cancel_rearming_delayed_work(&ap->port_task);
1377
1378 if (ata_msg_ctl(ap))
1379 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1380 }
1381
1382 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1383 {
1384 struct completion *waiting = qc->private_data;
1385
1386 complete(waiting);
1387 }
1388
1389 /**
1390 * ata_exec_internal_sg - execute libata internal command
1391 * @dev: Device to which the command is sent
1392 * @tf: Taskfile registers for the command and the result
1393 * @cdb: CDB for packet command
1394 * @dma_dir: Data tranfer direction of the command
1395 * @sg: sg list for the data buffer of the command
1396 * @n_elem: Number of sg entries
1397 * @timeout: Timeout in msecs (0 for default)
1398 *
1399 * Executes libata internal command with timeout. @tf contains
1400 * command on entry and result on return. Timeout and error
1401 * conditions are reported via return value. No recovery action
1402 * is taken after a command times out. It's caller's duty to
1403 * clean up after timeout.
1404 *
1405 * LOCKING:
1406 * None. Should be called with kernel context, might sleep.
1407 *
1408 * RETURNS:
1409 * Zero on success, AC_ERR_* mask on failure
1410 */
1411 unsigned ata_exec_internal_sg(struct ata_device *dev,
1412 struct ata_taskfile *tf, const u8 *cdb,
1413 int dma_dir, struct scatterlist *sg,
1414 unsigned int n_elem, unsigned long timeout)
1415 {
1416 struct ata_link *link = dev->link;
1417 struct ata_port *ap = link->ap;
1418 u8 command = tf->command;
1419 struct ata_queued_cmd *qc;
1420 unsigned int tag, preempted_tag;
1421 u32 preempted_sactive, preempted_qc_active;
1422 int preempted_nr_active_links;
1423 DECLARE_COMPLETION_ONSTACK(wait);
1424 unsigned long flags;
1425 unsigned int err_mask;
1426 int rc;
1427
1428 spin_lock_irqsave(ap->lock, flags);
1429
1430 /* no internal command while frozen */
1431 if (ap->pflags & ATA_PFLAG_FROZEN) {
1432 spin_unlock_irqrestore(ap->lock, flags);
1433 return AC_ERR_SYSTEM;
1434 }
1435
1436 /* initialize internal qc */
1437
1438 /* XXX: Tag 0 is used for drivers with legacy EH as some
1439 * drivers choke if any other tag is given. This breaks
1440 * ata_tag_internal() test for those drivers. Don't use new
1441 * EH stuff without converting to it.
1442 */
1443 if (ap->ops->error_handler)
1444 tag = ATA_TAG_INTERNAL;
1445 else
1446 tag = 0;
1447
1448 if (test_and_set_bit(tag, &ap->qc_allocated))
1449 BUG();
1450 qc = __ata_qc_from_tag(ap, tag);
1451
1452 qc->tag = tag;
1453 qc->scsicmd = NULL;
1454 qc->ap = ap;
1455 qc->dev = dev;
1456 ata_qc_reinit(qc);
1457
1458 preempted_tag = link->active_tag;
1459 preempted_sactive = link->sactive;
1460 preempted_qc_active = ap->qc_active;
1461 preempted_nr_active_links = ap->nr_active_links;
1462 link->active_tag = ATA_TAG_POISON;
1463 link->sactive = 0;
1464 ap->qc_active = 0;
1465 ap->nr_active_links = 0;
1466
1467 /* prepare & issue qc */
1468 qc->tf = *tf;
1469 if (cdb)
1470 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1471 qc->flags |= ATA_QCFLAG_RESULT_TF;
1472 qc->dma_dir = dma_dir;
1473 if (dma_dir != DMA_NONE) {
1474 unsigned int i, buflen = 0;
1475
1476 for (i = 0; i < n_elem; i++)
1477 buflen += sg[i].length;
1478
1479 ata_sg_init(qc, sg, n_elem);
1480 qc->nbytes = buflen;
1481 }
1482
1483 qc->private_data = &wait;
1484 qc->complete_fn = ata_qc_complete_internal;
1485
1486 ata_qc_issue(qc);
1487
1488 spin_unlock_irqrestore(ap->lock, flags);
1489
1490 if (!timeout)
1491 timeout = ata_probe_timeout * 1000 / HZ;
1492
1493 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1494
1495 ata_port_flush_task(ap);
1496
1497 if (!rc) {
1498 spin_lock_irqsave(ap->lock, flags);
1499
1500 /* We're racing with irq here. If we lose, the
1501 * following test prevents us from completing the qc
1502 * twice. If we win, the port is frozen and will be
1503 * cleaned up by ->post_internal_cmd().
1504 */
1505 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1506 qc->err_mask |= AC_ERR_TIMEOUT;
1507
1508 if (ap->ops->error_handler)
1509 ata_port_freeze(ap);
1510 else
1511 ata_qc_complete(qc);
1512
1513 if (ata_msg_warn(ap))
1514 ata_dev_printk(dev, KERN_WARNING,
1515 "qc timeout (cmd 0x%x)\n", command);
1516 }
1517
1518 spin_unlock_irqrestore(ap->lock, flags);
1519 }
1520
1521 /* do post_internal_cmd */
1522 if (ap->ops->post_internal_cmd)
1523 ap->ops->post_internal_cmd(qc);
1524
1525 /* perform minimal error analysis */
1526 if (qc->flags & ATA_QCFLAG_FAILED) {
1527 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1528 qc->err_mask |= AC_ERR_DEV;
1529
1530 if (!qc->err_mask)
1531 qc->err_mask |= AC_ERR_OTHER;
1532
1533 if (qc->err_mask & ~AC_ERR_OTHER)
1534 qc->err_mask &= ~AC_ERR_OTHER;
1535 }
1536
1537 /* finish up */
1538 spin_lock_irqsave(ap->lock, flags);
1539
1540 *tf = qc->result_tf;
1541 err_mask = qc->err_mask;
1542
1543 ata_qc_free(qc);
1544 link->active_tag = preempted_tag;
1545 link->sactive = preempted_sactive;
1546 ap->qc_active = preempted_qc_active;
1547 ap->nr_active_links = preempted_nr_active_links;
1548
1549 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1550 * Until those drivers are fixed, we detect the condition
1551 * here, fail the command with AC_ERR_SYSTEM and reenable the
1552 * port.
1553 *
1554 * Note that this doesn't change any behavior as internal
1555 * command failure results in disabling the device in the
1556 * higher layer for LLDDs without new reset/EH callbacks.
1557 *
1558 * Kill the following code as soon as those drivers are fixed.
1559 */
1560 if (ap->flags & ATA_FLAG_DISABLED) {
1561 err_mask |= AC_ERR_SYSTEM;
1562 ata_port_probe(ap);
1563 }
1564
1565 spin_unlock_irqrestore(ap->lock, flags);
1566
1567 return err_mask;
1568 }
1569
1570 /**
1571 * ata_exec_internal - execute libata internal command
1572 * @dev: Device to which the command is sent
1573 * @tf: Taskfile registers for the command and the result
1574 * @cdb: CDB for packet command
1575 * @dma_dir: Data tranfer direction of the command
1576 * @buf: Data buffer of the command
1577 * @buflen: Length of data buffer
1578 * @timeout: Timeout in msecs (0 for default)
1579 *
1580 * Wrapper around ata_exec_internal_sg() which takes simple
1581 * buffer instead of sg list.
1582 *
1583 * LOCKING:
1584 * None. Should be called with kernel context, might sleep.
1585 *
1586 * RETURNS:
1587 * Zero on success, AC_ERR_* mask on failure
1588 */
1589 unsigned ata_exec_internal(struct ata_device *dev,
1590 struct ata_taskfile *tf, const u8 *cdb,
1591 int dma_dir, void *buf, unsigned int buflen,
1592 unsigned long timeout)
1593 {
1594 struct scatterlist *psg = NULL, sg;
1595 unsigned int n_elem = 0;
1596
1597 if (dma_dir != DMA_NONE) {
1598 WARN_ON(!buf);
1599 sg_init_one(&sg, buf, buflen);
1600 psg = &sg;
1601 n_elem++;
1602 }
1603
1604 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1605 timeout);
1606 }
1607
1608 /**
1609 * ata_do_simple_cmd - execute simple internal command
1610 * @dev: Device to which the command is sent
1611 * @cmd: Opcode to execute
1612 *
1613 * Execute a 'simple' command, that only consists of the opcode
1614 * 'cmd' itself, without filling any other registers
1615 *
1616 * LOCKING:
1617 * Kernel thread context (may sleep).
1618 *
1619 * RETURNS:
1620 * Zero on success, AC_ERR_* mask on failure
1621 */
1622 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1623 {
1624 struct ata_taskfile tf;
1625
1626 ata_tf_init(dev, &tf);
1627
1628 tf.command = cmd;
1629 tf.flags |= ATA_TFLAG_DEVICE;
1630 tf.protocol = ATA_PROT_NODATA;
1631
1632 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1633 }
1634
1635 /**
1636 * ata_pio_need_iordy - check if iordy needed
1637 * @adev: ATA device
1638 *
1639 * Check if the current speed of the device requires IORDY. Used
1640 * by various controllers for chip configuration.
1641 */
1642
1643 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1644 {
1645 /* Controller doesn't support IORDY. Probably a pointless check
1646 as the caller should know this */
1647 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1648 return 0;
1649 /* PIO3 and higher it is mandatory */
1650 if (adev->pio_mode > XFER_PIO_2)
1651 return 1;
1652 /* We turn it on when possible */
1653 if (ata_id_has_iordy(adev->id))
1654 return 1;
1655 return 0;
1656 }
1657
1658 /**
1659 * ata_pio_mask_no_iordy - Return the non IORDY mask
1660 * @adev: ATA device
1661 *
1662 * Compute the highest mode possible if we are not using iordy. Return
1663 * -1 if no iordy mode is available.
1664 */
1665
1666 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1667 {
1668 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1669 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1670 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1671 /* Is the speed faster than the drive allows non IORDY ? */
1672 if (pio) {
1673 /* This is cycle times not frequency - watch the logic! */
1674 if (pio > 240) /* PIO2 is 240nS per cycle */
1675 return 3 << ATA_SHIFT_PIO;
1676 return 7 << ATA_SHIFT_PIO;
1677 }
1678 }
1679 return 3 << ATA_SHIFT_PIO;
1680 }
1681
1682 /**
1683 * ata_dev_read_id - Read ID data from the specified device
1684 * @dev: target device
1685 * @p_class: pointer to class of the target device (may be changed)
1686 * @flags: ATA_READID_* flags
1687 * @id: buffer to read IDENTIFY data into
1688 *
1689 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1690 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1691 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1692 * for pre-ATA4 drives.
1693 *
1694 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1695 * now we abort if we hit that case.
1696 *
1697 * LOCKING:
1698 * Kernel thread context (may sleep)
1699 *
1700 * RETURNS:
1701 * 0 on success, -errno otherwise.
1702 */
1703 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1704 unsigned int flags, u16 *id)
1705 {
1706 struct ata_port *ap = dev->link->ap;
1707 unsigned int class = *p_class;
1708 struct ata_taskfile tf;
1709 unsigned int err_mask = 0;
1710 const char *reason;
1711 int may_fallback = 1, tried_spinup = 0;
1712 int rc;
1713
1714 if (ata_msg_ctl(ap))
1715 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1716
1717 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1718 retry:
1719 ata_tf_init(dev, &tf);
1720
1721 switch (class) {
1722 case ATA_DEV_ATA:
1723 tf.command = ATA_CMD_ID_ATA;
1724 break;
1725 case ATA_DEV_ATAPI:
1726 tf.command = ATA_CMD_ID_ATAPI;
1727 break;
1728 default:
1729 rc = -ENODEV;
1730 reason = "unsupported class";
1731 goto err_out;
1732 }
1733
1734 tf.protocol = ATA_PROT_PIO;
1735
1736 /* Some devices choke if TF registers contain garbage. Make
1737 * sure those are properly initialized.
1738 */
1739 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1740
1741 /* Device presence detection is unreliable on some
1742 * controllers. Always poll IDENTIFY if available.
1743 */
1744 tf.flags |= ATA_TFLAG_POLLING;
1745
1746 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1747 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1748 if (err_mask) {
1749 if (err_mask & AC_ERR_NODEV_HINT) {
1750 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1751 ap->print_id, dev->devno);
1752 return -ENOENT;
1753 }
1754
1755 /* Device or controller might have reported the wrong
1756 * device class. Give a shot at the other IDENTIFY if
1757 * the current one is aborted by the device.
1758 */
1759 if (may_fallback &&
1760 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1761 may_fallback = 0;
1762
1763 if (class == ATA_DEV_ATA)
1764 class = ATA_DEV_ATAPI;
1765 else
1766 class = ATA_DEV_ATA;
1767 goto retry;
1768 }
1769
1770 rc = -EIO;
1771 reason = "I/O error";
1772 goto err_out;
1773 }
1774
1775 /* Falling back doesn't make sense if ID data was read
1776 * successfully at least once.
1777 */
1778 may_fallback = 0;
1779
1780 swap_buf_le16(id, ATA_ID_WORDS);
1781
1782 /* sanity check */
1783 rc = -EINVAL;
1784 reason = "device reports invalid type";
1785
1786 if (class == ATA_DEV_ATA) {
1787 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1788 goto err_out;
1789 } else {
1790 if (ata_id_is_ata(id))
1791 goto err_out;
1792 }
1793
1794 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1795 tried_spinup = 1;
1796 /*
1797 * Drive powered-up in standby mode, and requires a specific
1798 * SET_FEATURES spin-up subcommand before it will accept
1799 * anything other than the original IDENTIFY command.
1800 */
1801 ata_tf_init(dev, &tf);
1802 tf.command = ATA_CMD_SET_FEATURES;
1803 tf.feature = SETFEATURES_SPINUP;
1804 tf.protocol = ATA_PROT_NODATA;
1805 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1806 err_mask = ata_exec_internal(dev, &tf, NULL,
1807 DMA_NONE, NULL, 0, 0);
1808 if (err_mask && id[2] != 0x738c) {
1809 rc = -EIO;
1810 reason = "SPINUP failed";
1811 goto err_out;
1812 }
1813 /*
1814 * If the drive initially returned incomplete IDENTIFY info,
1815 * we now must reissue the IDENTIFY command.
1816 */
1817 if (id[2] == 0x37c8)
1818 goto retry;
1819 }
1820
1821 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1822 /*
1823 * The exact sequence expected by certain pre-ATA4 drives is:
1824 * SRST RESET
1825 * IDENTIFY (optional in early ATA)
1826 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1827 * anything else..
1828 * Some drives were very specific about that exact sequence.
1829 *
1830 * Note that ATA4 says lba is mandatory so the second check
1831 * shoud never trigger.
1832 */
1833 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1834 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1835 if (err_mask) {
1836 rc = -EIO;
1837 reason = "INIT_DEV_PARAMS failed";
1838 goto err_out;
1839 }
1840
1841 /* current CHS translation info (id[53-58]) might be
1842 * changed. reread the identify device info.
1843 */
1844 flags &= ~ATA_READID_POSTRESET;
1845 goto retry;
1846 }
1847 }
1848
1849 *p_class = class;
1850
1851 return 0;
1852
1853 err_out:
1854 if (ata_msg_warn(ap))
1855 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1856 "(%s, err_mask=0x%x)\n", reason, err_mask);
1857 return rc;
1858 }
1859
1860 static inline u8 ata_dev_knobble(struct ata_device *dev)
1861 {
1862 struct ata_port *ap = dev->link->ap;
1863 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1864 }
1865
1866 static void ata_dev_config_ncq(struct ata_device *dev,
1867 char *desc, size_t desc_sz)
1868 {
1869 struct ata_port *ap = dev->link->ap;
1870 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1871
1872 if (!ata_id_has_ncq(dev->id)) {
1873 desc[0] = '\0';
1874 return;
1875 }
1876 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1877 snprintf(desc, desc_sz, "NCQ (not used)");
1878 return;
1879 }
1880 if (ap->flags & ATA_FLAG_NCQ) {
1881 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1882 dev->flags |= ATA_DFLAG_NCQ;
1883 }
1884
1885 if (hdepth >= ddepth)
1886 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1887 else
1888 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1889 }
1890
1891 /**
1892 * ata_dev_configure - Configure the specified ATA/ATAPI device
1893 * @dev: Target device to configure
1894 *
1895 * Configure @dev according to @dev->id. Generic and low-level
1896 * driver specific fixups are also applied.
1897 *
1898 * LOCKING:
1899 * Kernel thread context (may sleep)
1900 *
1901 * RETURNS:
1902 * 0 on success, -errno otherwise
1903 */
1904 int ata_dev_configure(struct ata_device *dev)
1905 {
1906 struct ata_port *ap = dev->link->ap;
1907 struct ata_eh_context *ehc = &dev->link->eh_context;
1908 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1909 const u16 *id = dev->id;
1910 unsigned int xfer_mask;
1911 char revbuf[7]; /* XYZ-99\0 */
1912 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1913 char modelbuf[ATA_ID_PROD_LEN+1];
1914 int rc;
1915
1916 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1917 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1918 __FUNCTION__);
1919 return 0;
1920 }
1921
1922 if (ata_msg_probe(ap))
1923 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1924
1925 /* set horkage */
1926 dev->horkage |= ata_dev_blacklisted(dev);
1927
1928 /* let ACPI work its magic */
1929 rc = ata_acpi_on_devcfg(dev);
1930 if (rc)
1931 return rc;
1932
1933 /* massage HPA, do it early as it might change IDENTIFY data */
1934 rc = ata_hpa_resize(dev);
1935 if (rc)
1936 return rc;
1937
1938 /* print device capabilities */
1939 if (ata_msg_probe(ap))
1940 ata_dev_printk(dev, KERN_DEBUG,
1941 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1942 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1943 __FUNCTION__,
1944 id[49], id[82], id[83], id[84],
1945 id[85], id[86], id[87], id[88]);
1946
1947 /* initialize to-be-configured parameters */
1948 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1949 dev->max_sectors = 0;
1950 dev->cdb_len = 0;
1951 dev->n_sectors = 0;
1952 dev->cylinders = 0;
1953 dev->heads = 0;
1954 dev->sectors = 0;
1955
1956 /*
1957 * common ATA, ATAPI feature tests
1958 */
1959
1960 /* find max transfer mode; for printk only */
1961 xfer_mask = ata_id_xfermask(id);
1962
1963 if (ata_msg_probe(ap))
1964 ata_dump_id(id);
1965
1966 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1967 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1968 sizeof(fwrevbuf));
1969
1970 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1971 sizeof(modelbuf));
1972
1973 /* ATA-specific feature tests */
1974 if (dev->class == ATA_DEV_ATA) {
1975 if (ata_id_is_cfa(id)) {
1976 if (id[162] & 1) /* CPRM may make this media unusable */
1977 ata_dev_printk(dev, KERN_WARNING,
1978 "supports DRM functions and may "
1979 "not be fully accessable.\n");
1980 snprintf(revbuf, 7, "CFA");
1981 }
1982 else
1983 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1984
1985 dev->n_sectors = ata_id_n_sectors(id);
1986
1987 if (dev->id[59] & 0x100)
1988 dev->multi_count = dev->id[59] & 0xff;
1989
1990 if (ata_id_has_lba(id)) {
1991 const char *lba_desc;
1992 char ncq_desc[20];
1993
1994 lba_desc = "LBA";
1995 dev->flags |= ATA_DFLAG_LBA;
1996 if (ata_id_has_lba48(id)) {
1997 dev->flags |= ATA_DFLAG_LBA48;
1998 lba_desc = "LBA48";
1999
2000 if (dev->n_sectors >= (1UL << 28) &&
2001 ata_id_has_flush_ext(id))
2002 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2003 }
2004
2005 /* config NCQ */
2006 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2007
2008 /* print device info to dmesg */
2009 if (ata_msg_drv(ap) && print_info) {
2010 ata_dev_printk(dev, KERN_INFO,
2011 "%s: %s, %s, max %s\n",
2012 revbuf, modelbuf, fwrevbuf,
2013 ata_mode_string(xfer_mask));
2014 ata_dev_printk(dev, KERN_INFO,
2015 "%Lu sectors, multi %u: %s %s\n",
2016 (unsigned long long)dev->n_sectors,
2017 dev->multi_count, lba_desc, ncq_desc);
2018 }
2019 } else {
2020 /* CHS */
2021
2022 /* Default translation */
2023 dev->cylinders = id[1];
2024 dev->heads = id[3];
2025 dev->sectors = id[6];
2026
2027 if (ata_id_current_chs_valid(id)) {
2028 /* Current CHS translation is valid. */
2029 dev->cylinders = id[54];
2030 dev->heads = id[55];
2031 dev->sectors = id[56];
2032 }
2033
2034 /* print device info to dmesg */
2035 if (ata_msg_drv(ap) && print_info) {
2036 ata_dev_printk(dev, KERN_INFO,
2037 "%s: %s, %s, max %s\n",
2038 revbuf, modelbuf, fwrevbuf,
2039 ata_mode_string(xfer_mask));
2040 ata_dev_printk(dev, KERN_INFO,
2041 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2042 (unsigned long long)dev->n_sectors,
2043 dev->multi_count, dev->cylinders,
2044 dev->heads, dev->sectors);
2045 }
2046 }
2047
2048 dev->cdb_len = 16;
2049 }
2050
2051 /* ATAPI-specific feature tests */
2052 else if (dev->class == ATA_DEV_ATAPI) {
2053 const char *cdb_intr_string = "";
2054 const char *atapi_an_string = "";
2055 u32 sntf;
2056
2057 rc = atapi_cdb_len(id);
2058 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2059 if (ata_msg_warn(ap))
2060 ata_dev_printk(dev, KERN_WARNING,
2061 "unsupported CDB len\n");
2062 rc = -EINVAL;
2063 goto err_out_nosup;
2064 }
2065 dev->cdb_len = (unsigned int) rc;
2066
2067 /* Enable ATAPI AN if both the host and device have
2068 * the support. If PMP is attached, SNTF is required
2069 * to enable ATAPI AN to discern between PHY status
2070 * changed notifications and ATAPI ANs.
2071 */
2072 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2073 (!ap->nr_pmp_links ||
2074 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2075 unsigned int err_mask;
2076
2077 /* issue SET feature command to turn this on */
2078 err_mask = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE);
2079 if (err_mask)
2080 ata_dev_printk(dev, KERN_ERR,
2081 "failed to enable ATAPI AN "
2082 "(err_mask=0x%x)\n", err_mask);
2083 else {
2084 dev->flags |= ATA_DFLAG_AN;
2085 atapi_an_string = ", ATAPI AN";
2086 }
2087 }
2088
2089 if (ata_id_cdb_intr(dev->id)) {
2090 dev->flags |= ATA_DFLAG_CDB_INTR;
2091 cdb_intr_string = ", CDB intr";
2092 }
2093
2094 /* print device info to dmesg */
2095 if (ata_msg_drv(ap) && print_info)
2096 ata_dev_printk(dev, KERN_INFO,
2097 "ATAPI: %s, %s, max %s%s%s\n",
2098 modelbuf, fwrevbuf,
2099 ata_mode_string(xfer_mask),
2100 cdb_intr_string, atapi_an_string);
2101 }
2102
2103 /* determine max_sectors */
2104 dev->max_sectors = ATA_MAX_SECTORS;
2105 if (dev->flags & ATA_DFLAG_LBA48)
2106 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2107
2108 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2109 /* Let the user know. We don't want to disallow opens for
2110 rescue purposes, or in case the vendor is just a blithering
2111 idiot */
2112 if (print_info) {
2113 ata_dev_printk(dev, KERN_WARNING,
2114 "Drive reports diagnostics failure. This may indicate a drive\n");
2115 ata_dev_printk(dev, KERN_WARNING,
2116 "fault or invalid emulation. Contact drive vendor for information.\n");
2117 }
2118 }
2119
2120 /* limit bridge transfers to udma5, 200 sectors */
2121 if (ata_dev_knobble(dev)) {
2122 if (ata_msg_drv(ap) && print_info)
2123 ata_dev_printk(dev, KERN_INFO,
2124 "applying bridge limits\n");
2125 dev->udma_mask &= ATA_UDMA5;
2126 dev->max_sectors = ATA_MAX_SECTORS;
2127 }
2128
2129 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2130 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2131 dev->max_sectors);
2132
2133 if (ap->ops->dev_config)
2134 ap->ops->dev_config(dev);
2135
2136 if (ata_msg_probe(ap))
2137 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2138 __FUNCTION__, ata_chk_status(ap));
2139 return 0;
2140
2141 err_out_nosup:
2142 if (ata_msg_probe(ap))
2143 ata_dev_printk(dev, KERN_DEBUG,
2144 "%s: EXIT, err\n", __FUNCTION__);
2145 return rc;
2146 }
2147
2148 /**
2149 * ata_cable_40wire - return 40 wire cable type
2150 * @ap: port
2151 *
2152 * Helper method for drivers which want to hardwire 40 wire cable
2153 * detection.
2154 */
2155
2156 int ata_cable_40wire(struct ata_port *ap)
2157 {
2158 return ATA_CBL_PATA40;
2159 }
2160
2161 /**
2162 * ata_cable_80wire - return 80 wire cable type
2163 * @ap: port
2164 *
2165 * Helper method for drivers which want to hardwire 80 wire cable
2166 * detection.
2167 */
2168
2169 int ata_cable_80wire(struct ata_port *ap)
2170 {
2171 return ATA_CBL_PATA80;
2172 }
2173
2174 /**
2175 * ata_cable_unknown - return unknown PATA cable.
2176 * @ap: port
2177 *
2178 * Helper method for drivers which have no PATA cable detection.
2179 */
2180
2181 int ata_cable_unknown(struct ata_port *ap)
2182 {
2183 return ATA_CBL_PATA_UNK;
2184 }
2185
2186 /**
2187 * ata_cable_sata - return SATA cable type
2188 * @ap: port
2189 *
2190 * Helper method for drivers which have SATA cables
2191 */
2192
2193 int ata_cable_sata(struct ata_port *ap)
2194 {
2195 return ATA_CBL_SATA;
2196 }
2197
2198 /**
2199 * ata_bus_probe - Reset and probe ATA bus
2200 * @ap: Bus to probe
2201 *
2202 * Master ATA bus probing function. Initiates a hardware-dependent
2203 * bus reset, then attempts to identify any devices found on
2204 * the bus.
2205 *
2206 * LOCKING:
2207 * PCI/etc. bus probe sem.
2208 *
2209 * RETURNS:
2210 * Zero on success, negative errno otherwise.
2211 */
2212
2213 int ata_bus_probe(struct ata_port *ap)
2214 {
2215 unsigned int classes[ATA_MAX_DEVICES];
2216 int tries[ATA_MAX_DEVICES];
2217 int rc;
2218 struct ata_device *dev;
2219
2220 ata_port_probe(ap);
2221
2222 ata_link_for_each_dev(dev, &ap->link)
2223 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2224
2225 retry:
2226 /* reset and determine device classes */
2227 ap->ops->phy_reset(ap);
2228
2229 ata_link_for_each_dev(dev, &ap->link) {
2230 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2231 dev->class != ATA_DEV_UNKNOWN)
2232 classes[dev->devno] = dev->class;
2233 else
2234 classes[dev->devno] = ATA_DEV_NONE;
2235
2236 dev->class = ATA_DEV_UNKNOWN;
2237 }
2238
2239 ata_port_probe(ap);
2240
2241 /* after the reset the device state is PIO 0 and the controller
2242 state is undefined. Record the mode */
2243
2244 ata_link_for_each_dev(dev, &ap->link)
2245 dev->pio_mode = XFER_PIO_0;
2246
2247 /* read IDENTIFY page and configure devices. We have to do the identify
2248 specific sequence bass-ackwards so that PDIAG- is released by
2249 the slave device */
2250
2251 ata_link_for_each_dev(dev, &ap->link) {
2252 if (tries[dev->devno])
2253 dev->class = classes[dev->devno];
2254
2255 if (!ata_dev_enabled(dev))
2256 continue;
2257
2258 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2259 dev->id);
2260 if (rc)
2261 goto fail;
2262 }
2263
2264 /* Now ask for the cable type as PDIAG- should have been released */
2265 if (ap->ops->cable_detect)
2266 ap->cbl = ap->ops->cable_detect(ap);
2267
2268 /* We may have SATA bridge glue hiding here irrespective of the
2269 reported cable types and sensed types */
2270 ata_link_for_each_dev(dev, &ap->link) {
2271 if (!ata_dev_enabled(dev))
2272 continue;
2273 /* SATA drives indicate we have a bridge. We don't know which
2274 end of the link the bridge is which is a problem */
2275 if (ata_id_is_sata(dev->id))
2276 ap->cbl = ATA_CBL_SATA;
2277 }
2278
2279 /* After the identify sequence we can now set up the devices. We do
2280 this in the normal order so that the user doesn't get confused */
2281
2282 ata_link_for_each_dev(dev, &ap->link) {
2283 if (!ata_dev_enabled(dev))
2284 continue;
2285
2286 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2287 rc = ata_dev_configure(dev);
2288 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2289 if (rc)
2290 goto fail;
2291 }
2292
2293 /* configure transfer mode */
2294 rc = ata_set_mode(&ap->link, &dev);
2295 if (rc)
2296 goto fail;
2297
2298 ata_link_for_each_dev(dev, &ap->link)
2299 if (ata_dev_enabled(dev))
2300 return 0;
2301
2302 /* no device present, disable port */
2303 ata_port_disable(ap);
2304 return -ENODEV;
2305
2306 fail:
2307 tries[dev->devno]--;
2308
2309 switch (rc) {
2310 case -EINVAL:
2311 /* eeek, something went very wrong, give up */
2312 tries[dev->devno] = 0;
2313 break;
2314
2315 case -ENODEV:
2316 /* give it just one more chance */
2317 tries[dev->devno] = min(tries[dev->devno], 1);
2318 case -EIO:
2319 if (tries[dev->devno] == 1) {
2320 /* This is the last chance, better to slow
2321 * down than lose it.
2322 */
2323 sata_down_spd_limit(&ap->link);
2324 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2325 }
2326 }
2327
2328 if (!tries[dev->devno])
2329 ata_dev_disable(dev);
2330
2331 goto retry;
2332 }
2333
2334 /**
2335 * ata_port_probe - Mark port as enabled
2336 * @ap: Port for which we indicate enablement
2337 *
2338 * Modify @ap data structure such that the system
2339 * thinks that the entire port is enabled.
2340 *
2341 * LOCKING: host lock, or some other form of
2342 * serialization.
2343 */
2344
2345 void ata_port_probe(struct ata_port *ap)
2346 {
2347 ap->flags &= ~ATA_FLAG_DISABLED;
2348 }
2349
2350 /**
2351 * sata_print_link_status - Print SATA link status
2352 * @link: SATA link to printk link status about
2353 *
2354 * This function prints link speed and status of a SATA link.
2355 *
2356 * LOCKING:
2357 * None.
2358 */
2359 void sata_print_link_status(struct ata_link *link)
2360 {
2361 u32 sstatus, scontrol, tmp;
2362
2363 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2364 return;
2365 sata_scr_read(link, SCR_CONTROL, &scontrol);
2366
2367 if (ata_link_online(link)) {
2368 tmp = (sstatus >> 4) & 0xf;
2369 ata_link_printk(link, KERN_INFO,
2370 "SATA link up %s (SStatus %X SControl %X)\n",
2371 sata_spd_string(tmp), sstatus, scontrol);
2372 } else {
2373 ata_link_printk(link, KERN_INFO,
2374 "SATA link down (SStatus %X SControl %X)\n",
2375 sstatus, scontrol);
2376 }
2377 }
2378
2379 /**
2380 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2381 * @ap: SATA port associated with target SATA PHY.
2382 *
2383 * This function issues commands to standard SATA Sxxx
2384 * PHY registers, to wake up the phy (and device), and
2385 * clear any reset condition.
2386 *
2387 * LOCKING:
2388 * PCI/etc. bus probe sem.
2389 *
2390 */
2391 void __sata_phy_reset(struct ata_port *ap)
2392 {
2393 struct ata_link *link = &ap->link;
2394 unsigned long timeout = jiffies + (HZ * 5);
2395 u32 sstatus;
2396
2397 if (ap->flags & ATA_FLAG_SATA_RESET) {
2398 /* issue phy wake/reset */
2399 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2400 /* Couldn't find anything in SATA I/II specs, but
2401 * AHCI-1.1 10.4.2 says at least 1 ms. */
2402 mdelay(1);
2403 }
2404 /* phy wake/clear reset */
2405 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2406
2407 /* wait for phy to become ready, if necessary */
2408 do {
2409 msleep(200);
2410 sata_scr_read(link, SCR_STATUS, &sstatus);
2411 if ((sstatus & 0xf) != 1)
2412 break;
2413 } while (time_before(jiffies, timeout));
2414
2415 /* print link status */
2416 sata_print_link_status(link);
2417
2418 /* TODO: phy layer with polling, timeouts, etc. */
2419 if (!ata_link_offline(link))
2420 ata_port_probe(ap);
2421 else
2422 ata_port_disable(ap);
2423
2424 if (ap->flags & ATA_FLAG_DISABLED)
2425 return;
2426
2427 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2428 ata_port_disable(ap);
2429 return;
2430 }
2431
2432 ap->cbl = ATA_CBL_SATA;
2433 }
2434
2435 /**
2436 * sata_phy_reset - Reset SATA bus.
2437 * @ap: SATA port associated with target SATA PHY.
2438 *
2439 * This function resets the SATA bus, and then probes
2440 * the bus for devices.
2441 *
2442 * LOCKING:
2443 * PCI/etc. bus probe sem.
2444 *
2445 */
2446 void sata_phy_reset(struct ata_port *ap)
2447 {
2448 __sata_phy_reset(ap);
2449 if (ap->flags & ATA_FLAG_DISABLED)
2450 return;
2451 ata_bus_reset(ap);
2452 }
2453
2454 /**
2455 * ata_dev_pair - return other device on cable
2456 * @adev: device
2457 *
2458 * Obtain the other device on the same cable, or if none is
2459 * present NULL is returned
2460 */
2461
2462 struct ata_device *ata_dev_pair(struct ata_device *adev)
2463 {
2464 struct ata_link *link = adev->link;
2465 struct ata_device *pair = &link->device[1 - adev->devno];
2466 if (!ata_dev_enabled(pair))
2467 return NULL;
2468 return pair;
2469 }
2470
2471 /**
2472 * ata_port_disable - Disable port.
2473 * @ap: Port to be disabled.
2474 *
2475 * Modify @ap data structure such that the system
2476 * thinks that the entire port is disabled, and should
2477 * never attempt to probe or communicate with devices
2478 * on this port.
2479 *
2480 * LOCKING: host lock, or some other form of
2481 * serialization.
2482 */
2483
2484 void ata_port_disable(struct ata_port *ap)
2485 {
2486 ap->link.device[0].class = ATA_DEV_NONE;
2487 ap->link.device[1].class = ATA_DEV_NONE;
2488 ap->flags |= ATA_FLAG_DISABLED;
2489 }
2490
2491 /**
2492 * sata_down_spd_limit - adjust SATA spd limit downward
2493 * @link: Link to adjust SATA spd limit for
2494 *
2495 * Adjust SATA spd limit of @link downward. Note that this
2496 * function only adjusts the limit. The change must be applied
2497 * using sata_set_spd().
2498 *
2499 * LOCKING:
2500 * Inherited from caller.
2501 *
2502 * RETURNS:
2503 * 0 on success, negative errno on failure
2504 */
2505 int sata_down_spd_limit(struct ata_link *link)
2506 {
2507 u32 sstatus, spd, mask;
2508 int rc, highbit;
2509
2510 if (!sata_scr_valid(link))
2511 return -EOPNOTSUPP;
2512
2513 /* If SCR can be read, use it to determine the current SPD.
2514 * If not, use cached value in link->sata_spd.
2515 */
2516 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2517 if (rc == 0)
2518 spd = (sstatus >> 4) & 0xf;
2519 else
2520 spd = link->sata_spd;
2521
2522 mask = link->sata_spd_limit;
2523 if (mask <= 1)
2524 return -EINVAL;
2525
2526 /* unconditionally mask off the highest bit */
2527 highbit = fls(mask) - 1;
2528 mask &= ~(1 << highbit);
2529
2530 /* Mask off all speeds higher than or equal to the current
2531 * one. Force 1.5Gbps if current SPD is not available.
2532 */
2533 if (spd > 1)
2534 mask &= (1 << (spd - 1)) - 1;
2535 else
2536 mask &= 1;
2537
2538 /* were we already at the bottom? */
2539 if (!mask)
2540 return -EINVAL;
2541
2542 link->sata_spd_limit = mask;
2543
2544 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2545 sata_spd_string(fls(mask)));
2546
2547 return 0;
2548 }
2549
2550 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2551 {
2552 u32 spd, limit;
2553
2554 if (link->sata_spd_limit == UINT_MAX)
2555 limit = 0;
2556 else
2557 limit = fls(link->sata_spd_limit);
2558
2559 spd = (*scontrol >> 4) & 0xf;
2560 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2561
2562 return spd != limit;
2563 }
2564
2565 /**
2566 * sata_set_spd_needed - is SATA spd configuration needed
2567 * @link: Link in question
2568 *
2569 * Test whether the spd limit in SControl matches
2570 * @link->sata_spd_limit. This function is used to determine
2571 * whether hardreset is necessary to apply SATA spd
2572 * configuration.
2573 *
2574 * LOCKING:
2575 * Inherited from caller.
2576 *
2577 * RETURNS:
2578 * 1 if SATA spd configuration is needed, 0 otherwise.
2579 */
2580 int sata_set_spd_needed(struct ata_link *link)
2581 {
2582 u32 scontrol;
2583
2584 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2585 return 0;
2586
2587 return __sata_set_spd_needed(link, &scontrol);
2588 }
2589
2590 /**
2591 * sata_set_spd - set SATA spd according to spd limit
2592 * @link: Link to set SATA spd for
2593 *
2594 * Set SATA spd of @link according to sata_spd_limit.
2595 *
2596 * LOCKING:
2597 * Inherited from caller.
2598 *
2599 * RETURNS:
2600 * 0 if spd doesn't need to be changed, 1 if spd has been
2601 * changed. Negative errno if SCR registers are inaccessible.
2602 */
2603 int sata_set_spd(struct ata_link *link)
2604 {
2605 u32 scontrol;
2606 int rc;
2607
2608 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2609 return rc;
2610
2611 if (!__sata_set_spd_needed(link, &scontrol))
2612 return 0;
2613
2614 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2615 return rc;
2616
2617 return 1;
2618 }
2619
2620 /*
2621 * This mode timing computation functionality is ported over from
2622 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2623 */
2624 /*
2625 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2626 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2627 * for UDMA6, which is currently supported only by Maxtor drives.
2628 *
2629 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2630 */
2631
2632 static const struct ata_timing ata_timing[] = {
2633
2634 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2635 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2636 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2637 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2638
2639 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2640 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2641 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2642 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2643 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2644
2645 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2646
2647 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2648 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2649 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2650
2651 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2652 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2653 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2654
2655 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2656 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2657 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2658 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2659
2660 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2661 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2662 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2663
2664 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2665
2666 { 0xFF }
2667 };
2668
2669 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2670 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2671
2672 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2673 {
2674 q->setup = EZ(t->setup * 1000, T);
2675 q->act8b = EZ(t->act8b * 1000, T);
2676 q->rec8b = EZ(t->rec8b * 1000, T);
2677 q->cyc8b = EZ(t->cyc8b * 1000, T);
2678 q->active = EZ(t->active * 1000, T);
2679 q->recover = EZ(t->recover * 1000, T);
2680 q->cycle = EZ(t->cycle * 1000, T);
2681 q->udma = EZ(t->udma * 1000, UT);
2682 }
2683
2684 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2685 struct ata_timing *m, unsigned int what)
2686 {
2687 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2688 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2689 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2690 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2691 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2692 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2693 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2694 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2695 }
2696
2697 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2698 {
2699 const struct ata_timing *t;
2700
2701 for (t = ata_timing; t->mode != speed; t++)
2702 if (t->mode == 0xFF)
2703 return NULL;
2704 return t;
2705 }
2706
2707 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2708 struct ata_timing *t, int T, int UT)
2709 {
2710 const struct ata_timing *s;
2711 struct ata_timing p;
2712
2713 /*
2714 * Find the mode.
2715 */
2716
2717 if (!(s = ata_timing_find_mode(speed)))
2718 return -EINVAL;
2719
2720 memcpy(t, s, sizeof(*s));
2721
2722 /*
2723 * If the drive is an EIDE drive, it can tell us it needs extended
2724 * PIO/MW_DMA cycle timing.
2725 */
2726
2727 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2728 memset(&p, 0, sizeof(p));
2729 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2730 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2731 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2732 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2733 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2734 }
2735 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2736 }
2737
2738 /*
2739 * Convert the timing to bus clock counts.
2740 */
2741
2742 ata_timing_quantize(t, t, T, UT);
2743
2744 /*
2745 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2746 * S.M.A.R.T * and some other commands. We have to ensure that the
2747 * DMA cycle timing is slower/equal than the fastest PIO timing.
2748 */
2749
2750 if (speed > XFER_PIO_6) {
2751 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2752 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2753 }
2754
2755 /*
2756 * Lengthen active & recovery time so that cycle time is correct.
2757 */
2758
2759 if (t->act8b + t->rec8b < t->cyc8b) {
2760 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2761 t->rec8b = t->cyc8b - t->act8b;
2762 }
2763
2764 if (t->active + t->recover < t->cycle) {
2765 t->active += (t->cycle - (t->active + t->recover)) / 2;
2766 t->recover = t->cycle - t->active;
2767 }
2768
2769 /* In a few cases quantisation may produce enough errors to
2770 leave t->cycle too low for the sum of active and recovery
2771 if so we must correct this */
2772 if (t->active + t->recover > t->cycle)
2773 t->cycle = t->active + t->recover;
2774
2775 return 0;
2776 }
2777
2778 /**
2779 * ata_down_xfermask_limit - adjust dev xfer masks downward
2780 * @dev: Device to adjust xfer masks
2781 * @sel: ATA_DNXFER_* selector
2782 *
2783 * Adjust xfer masks of @dev downward. Note that this function
2784 * does not apply the change. Invoking ata_set_mode() afterwards
2785 * will apply the limit.
2786 *
2787 * LOCKING:
2788 * Inherited from caller.
2789 *
2790 * RETURNS:
2791 * 0 on success, negative errno on failure
2792 */
2793 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2794 {
2795 char buf[32];
2796 unsigned int orig_mask, xfer_mask;
2797 unsigned int pio_mask, mwdma_mask, udma_mask;
2798 int quiet, highbit;
2799
2800 quiet = !!(sel & ATA_DNXFER_QUIET);
2801 sel &= ~ATA_DNXFER_QUIET;
2802
2803 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2804 dev->mwdma_mask,
2805 dev->udma_mask);
2806 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2807
2808 switch (sel) {
2809 case ATA_DNXFER_PIO:
2810 highbit = fls(pio_mask) - 1;
2811 pio_mask &= ~(1 << highbit);
2812 break;
2813
2814 case ATA_DNXFER_DMA:
2815 if (udma_mask) {
2816 highbit = fls(udma_mask) - 1;
2817 udma_mask &= ~(1 << highbit);
2818 if (!udma_mask)
2819 return -ENOENT;
2820 } else if (mwdma_mask) {
2821 highbit = fls(mwdma_mask) - 1;
2822 mwdma_mask &= ~(1 << highbit);
2823 if (!mwdma_mask)
2824 return -ENOENT;
2825 }
2826 break;
2827
2828 case ATA_DNXFER_40C:
2829 udma_mask &= ATA_UDMA_MASK_40C;
2830 break;
2831
2832 case ATA_DNXFER_FORCE_PIO0:
2833 pio_mask &= 1;
2834 case ATA_DNXFER_FORCE_PIO:
2835 mwdma_mask = 0;
2836 udma_mask = 0;
2837 break;
2838
2839 default:
2840 BUG();
2841 }
2842
2843 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2844
2845 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2846 return -ENOENT;
2847
2848 if (!quiet) {
2849 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2850 snprintf(buf, sizeof(buf), "%s:%s",
2851 ata_mode_string(xfer_mask),
2852 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2853 else
2854 snprintf(buf, sizeof(buf), "%s",
2855 ata_mode_string(xfer_mask));
2856
2857 ata_dev_printk(dev, KERN_WARNING,
2858 "limiting speed to %s\n", buf);
2859 }
2860
2861 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2862 &dev->udma_mask);
2863
2864 return 0;
2865 }
2866
2867 static int ata_dev_set_mode(struct ata_device *dev)
2868 {
2869 struct ata_eh_context *ehc = &dev->link->eh_context;
2870 unsigned int err_mask;
2871 int rc;
2872
2873 dev->flags &= ~ATA_DFLAG_PIO;
2874 if (dev->xfer_shift == ATA_SHIFT_PIO)
2875 dev->flags |= ATA_DFLAG_PIO;
2876
2877 err_mask = ata_dev_set_xfermode(dev);
2878 /* Old CFA may refuse this command, which is just fine */
2879 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2880 err_mask &= ~AC_ERR_DEV;
2881 /* Some very old devices and some bad newer ones fail any kind of
2882 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2883 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2884 dev->pio_mode <= XFER_PIO_2)
2885 err_mask &= ~AC_ERR_DEV;
2886 if (err_mask) {
2887 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2888 "(err_mask=0x%x)\n", err_mask);
2889 return -EIO;
2890 }
2891
2892 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2893 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
2894 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2895 if (rc)
2896 return rc;
2897
2898 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2899 dev->xfer_shift, (int)dev->xfer_mode);
2900
2901 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2902 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2903 return 0;
2904 }
2905
2906 /**
2907 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2908 * @link: link on which timings will be programmed
2909 * @r_failed_dev: out paramter for failed device
2910 *
2911 * Standard implementation of the function used to tune and set
2912 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2913 * ata_dev_set_mode() fails, pointer to the failing device is
2914 * returned in @r_failed_dev.
2915 *
2916 * LOCKING:
2917 * PCI/etc. bus probe sem.
2918 *
2919 * RETURNS:
2920 * 0 on success, negative errno otherwise
2921 */
2922
2923 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2924 {
2925 struct ata_port *ap = link->ap;
2926 struct ata_device *dev;
2927 int rc = 0, used_dma = 0, found = 0;
2928
2929 /* step 1: calculate xfer_mask */
2930 ata_link_for_each_dev(dev, link) {
2931 unsigned int pio_mask, dma_mask;
2932 unsigned int mode_mask;
2933
2934 if (!ata_dev_enabled(dev))
2935 continue;
2936
2937 mode_mask = ATA_DMA_MASK_ATA;
2938 if (dev->class == ATA_DEV_ATAPI)
2939 mode_mask = ATA_DMA_MASK_ATAPI;
2940 else if (ata_id_is_cfa(dev->id))
2941 mode_mask = ATA_DMA_MASK_CFA;
2942
2943 ata_dev_xfermask(dev);
2944
2945 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2946 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2947
2948 if (libata_dma_mask & mode_mask)
2949 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2950 else
2951 dma_mask = 0;
2952
2953 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2954 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2955
2956 found = 1;
2957 if (dev->dma_mode)
2958 used_dma = 1;
2959 }
2960 if (!found)
2961 goto out;
2962
2963 /* step 2: always set host PIO timings */
2964 ata_link_for_each_dev(dev, link) {
2965 if (!ata_dev_enabled(dev))
2966 continue;
2967
2968 if (!dev->pio_mode) {
2969 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2970 rc = -EINVAL;
2971 goto out;
2972 }
2973
2974 dev->xfer_mode = dev->pio_mode;
2975 dev->xfer_shift = ATA_SHIFT_PIO;
2976 if (ap->ops->set_piomode)
2977 ap->ops->set_piomode(ap, dev);
2978 }
2979
2980 /* step 3: set host DMA timings */
2981 ata_link_for_each_dev(dev, link) {
2982 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2983 continue;
2984
2985 dev->xfer_mode = dev->dma_mode;
2986 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2987 if (ap->ops->set_dmamode)
2988 ap->ops->set_dmamode(ap, dev);
2989 }
2990
2991 /* step 4: update devices' xfer mode */
2992 ata_link_for_each_dev(dev, link) {
2993 /* don't update suspended devices' xfer mode */
2994 if (!ata_dev_enabled(dev))
2995 continue;
2996
2997 rc = ata_dev_set_mode(dev);
2998 if (rc)
2999 goto out;
3000 }
3001
3002 /* Record simplex status. If we selected DMA then the other
3003 * host channels are not permitted to do so.
3004 */
3005 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3006 ap->host->simplex_claimed = ap;
3007
3008 out:
3009 if (rc)
3010 *r_failed_dev = dev;
3011 return rc;
3012 }
3013
3014 /**
3015 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3016 * @link: link on which timings will be programmed
3017 * @r_failed_dev: out paramter for failed device
3018 *
3019 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3020 * ata_set_mode() fails, pointer to the failing device is
3021 * returned in @r_failed_dev.
3022 *
3023 * LOCKING:
3024 * PCI/etc. bus probe sem.
3025 *
3026 * RETURNS:
3027 * 0 on success, negative errno otherwise
3028 */
3029 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3030 {
3031 struct ata_port *ap = link->ap;
3032
3033 /* has private set_mode? */
3034 if (ap->ops->set_mode)
3035 return ap->ops->set_mode(link, r_failed_dev);
3036 return ata_do_set_mode(link, r_failed_dev);
3037 }
3038
3039 /**
3040 * ata_tf_to_host - issue ATA taskfile to host controller
3041 * @ap: port to which command is being issued
3042 * @tf: ATA taskfile register set
3043 *
3044 * Issues ATA taskfile register set to ATA host controller,
3045 * with proper synchronization with interrupt handler and
3046 * other threads.
3047 *
3048 * LOCKING:
3049 * spin_lock_irqsave(host lock)
3050 */
3051
3052 static inline void ata_tf_to_host(struct ata_port *ap,
3053 const struct ata_taskfile *tf)
3054 {
3055 ap->ops->tf_load(ap, tf);
3056 ap->ops->exec_command(ap, tf);
3057 }
3058
3059 /**
3060 * ata_busy_sleep - sleep until BSY clears, or timeout
3061 * @ap: port containing status register to be polled
3062 * @tmout_pat: impatience timeout
3063 * @tmout: overall timeout
3064 *
3065 * Sleep until ATA Status register bit BSY clears,
3066 * or a timeout occurs.
3067 *
3068 * LOCKING:
3069 * Kernel thread context (may sleep).
3070 *
3071 * RETURNS:
3072 * 0 on success, -errno otherwise.
3073 */
3074 int ata_busy_sleep(struct ata_port *ap,
3075 unsigned long tmout_pat, unsigned long tmout)
3076 {
3077 unsigned long timer_start, timeout;
3078 u8 status;
3079
3080 status = ata_busy_wait(ap, ATA_BUSY, 300);
3081 timer_start = jiffies;
3082 timeout = timer_start + tmout_pat;
3083 while (status != 0xff && (status & ATA_BUSY) &&
3084 time_before(jiffies, timeout)) {
3085 msleep(50);
3086 status = ata_busy_wait(ap, ATA_BUSY, 3);
3087 }
3088
3089 if (status != 0xff && (status & ATA_BUSY))
3090 ata_port_printk(ap, KERN_WARNING,
3091 "port is slow to respond, please be patient "
3092 "(Status 0x%x)\n", status);
3093
3094 timeout = timer_start + tmout;
3095 while (status != 0xff && (status & ATA_BUSY) &&
3096 time_before(jiffies, timeout)) {
3097 msleep(50);
3098 status = ata_chk_status(ap);
3099 }
3100
3101 if (status == 0xff)
3102 return -ENODEV;
3103
3104 if (status & ATA_BUSY) {
3105 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3106 "(%lu secs, Status 0x%x)\n",
3107 tmout / HZ, status);
3108 return -EBUSY;
3109 }
3110
3111 return 0;
3112 }
3113
3114 /**
3115 * ata_wait_ready - sleep until BSY clears, or timeout
3116 * @ap: port containing status register to be polled
3117 * @deadline: deadline jiffies for the operation
3118 *
3119 * Sleep until ATA Status register bit BSY clears, or timeout
3120 * occurs.
3121 *
3122 * LOCKING:
3123 * Kernel thread context (may sleep).
3124 *
3125 * RETURNS:
3126 * 0 on success, -errno otherwise.
3127 */
3128 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3129 {
3130 unsigned long start = jiffies;
3131 int warned = 0;
3132
3133 while (1) {
3134 u8 status = ata_chk_status(ap);
3135 unsigned long now = jiffies;
3136
3137 if (!(status & ATA_BUSY))
3138 return 0;
3139 if (!ata_link_online(&ap->link) && status == 0xff)
3140 return -ENODEV;
3141 if (time_after(now, deadline))
3142 return -EBUSY;
3143
3144 if (!warned && time_after(now, start + 5 * HZ) &&
3145 (deadline - now > 3 * HZ)) {
3146 ata_port_printk(ap, KERN_WARNING,
3147 "port is slow to respond, please be patient "
3148 "(Status 0x%x)\n", status);
3149 warned = 1;
3150 }
3151
3152 msleep(50);
3153 }
3154 }
3155
3156 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3157 unsigned long deadline)
3158 {
3159 struct ata_ioports *ioaddr = &ap->ioaddr;
3160 unsigned int dev0 = devmask & (1 << 0);
3161 unsigned int dev1 = devmask & (1 << 1);
3162 int rc, ret = 0;
3163
3164 /* if device 0 was found in ata_devchk, wait for its
3165 * BSY bit to clear
3166 */
3167 if (dev0) {
3168 rc = ata_wait_ready(ap, deadline);
3169 if (rc) {
3170 if (rc != -ENODEV)
3171 return rc;
3172 ret = rc;
3173 }
3174 }
3175
3176 /* if device 1 was found in ata_devchk, wait for register
3177 * access briefly, then wait for BSY to clear.
3178 */
3179 if (dev1) {
3180 int i;
3181
3182 ap->ops->dev_select(ap, 1);
3183
3184 /* Wait for register access. Some ATAPI devices fail
3185 * to set nsect/lbal after reset, so don't waste too
3186 * much time on it. We're gonna wait for !BSY anyway.
3187 */
3188 for (i = 0; i < 2; i++) {
3189 u8 nsect, lbal;
3190
3191 nsect = ioread8(ioaddr->nsect_addr);
3192 lbal = ioread8(ioaddr->lbal_addr);
3193 if ((nsect == 1) && (lbal == 1))
3194 break;
3195 msleep(50); /* give drive a breather */
3196 }
3197
3198 rc = ata_wait_ready(ap, deadline);
3199 if (rc) {
3200 if (rc != -ENODEV)
3201 return rc;
3202 ret = rc;
3203 }
3204 }
3205
3206 /* is all this really necessary? */
3207 ap->ops->dev_select(ap, 0);
3208 if (dev1)
3209 ap->ops->dev_select(ap, 1);
3210 if (dev0)
3211 ap->ops->dev_select(ap, 0);
3212
3213 return ret;
3214 }
3215
3216 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3217 unsigned long deadline)
3218 {
3219 struct ata_ioports *ioaddr = &ap->ioaddr;
3220 struct ata_device *dev;
3221 int i = 0;
3222
3223 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3224
3225 /* software reset. causes dev0 to be selected */
3226 iowrite8(ap->ctl, ioaddr->ctl_addr);
3227 udelay(20); /* FIXME: flush */
3228 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3229 udelay(20); /* FIXME: flush */
3230 iowrite8(ap->ctl, ioaddr->ctl_addr);
3231
3232 /* If we issued an SRST then an ATA drive (not ATAPI)
3233 * may have changed configuration and be in PIO0 timing. If
3234 * we did a hard reset (or are coming from power on) this is
3235 * true for ATA or ATAPI. Until we've set a suitable controller
3236 * mode we should not touch the bus as we may be talking too fast.
3237 */
3238
3239 ata_link_for_each_dev(dev, &ap->link)
3240 dev->pio_mode = XFER_PIO_0;
3241
3242 /* If the controller has a pio mode setup function then use
3243 it to set the chipset to rights. Don't touch the DMA setup
3244 as that will be dealt with when revalidating */
3245 if (ap->ops->set_piomode) {
3246 ata_link_for_each_dev(dev, &ap->link)
3247 if (devmask & (1 << i++))
3248 ap->ops->set_piomode(ap, dev);
3249 }
3250
3251 /* spec mandates ">= 2ms" before checking status.
3252 * We wait 150ms, because that was the magic delay used for
3253 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3254 * between when the ATA command register is written, and then
3255 * status is checked. Because waiting for "a while" before
3256 * checking status is fine, post SRST, we perform this magic
3257 * delay here as well.
3258 *
3259 * Old drivers/ide uses the 2mS rule and then waits for ready
3260 */
3261 msleep(150);
3262
3263 /* Before we perform post reset processing we want to see if
3264 * the bus shows 0xFF because the odd clown forgets the D7
3265 * pulldown resistor.
3266 */
3267 if (ata_check_status(ap) == 0xFF)
3268 return -ENODEV;
3269
3270 return ata_bus_post_reset(ap, devmask, deadline);
3271 }
3272
3273 /**
3274 * ata_bus_reset - reset host port and associated ATA channel
3275 * @ap: port to reset
3276 *
3277 * This is typically the first time we actually start issuing
3278 * commands to the ATA channel. We wait for BSY to clear, then
3279 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3280 * result. Determine what devices, if any, are on the channel
3281 * by looking at the device 0/1 error register. Look at the signature
3282 * stored in each device's taskfile registers, to determine if
3283 * the device is ATA or ATAPI.
3284 *
3285 * LOCKING:
3286 * PCI/etc. bus probe sem.
3287 * Obtains host lock.
3288 *
3289 * SIDE EFFECTS:
3290 * Sets ATA_FLAG_DISABLED if bus reset fails.
3291 */
3292
3293 void ata_bus_reset(struct ata_port *ap)
3294 {
3295 struct ata_device *device = ap->link.device;
3296 struct ata_ioports *ioaddr = &ap->ioaddr;
3297 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3298 u8 err;
3299 unsigned int dev0, dev1 = 0, devmask = 0;
3300 int rc;
3301
3302 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3303
3304 /* determine if device 0/1 are present */
3305 if (ap->flags & ATA_FLAG_SATA_RESET)
3306 dev0 = 1;
3307 else {
3308 dev0 = ata_devchk(ap, 0);
3309 if (slave_possible)
3310 dev1 = ata_devchk(ap, 1);
3311 }
3312
3313 if (dev0)
3314 devmask |= (1 << 0);
3315 if (dev1)
3316 devmask |= (1 << 1);
3317
3318 /* select device 0 again */
3319 ap->ops->dev_select(ap, 0);
3320
3321 /* issue bus reset */
3322 if (ap->flags & ATA_FLAG_SRST) {
3323 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3324 if (rc && rc != -ENODEV)
3325 goto err_out;
3326 }
3327
3328 /*
3329 * determine by signature whether we have ATA or ATAPI devices
3330 */
3331 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3332 if ((slave_possible) && (err != 0x81))
3333 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3334
3335 /* is double-select really necessary? */
3336 if (device[1].class != ATA_DEV_NONE)
3337 ap->ops->dev_select(ap, 1);
3338 if (device[0].class != ATA_DEV_NONE)
3339 ap->ops->dev_select(ap, 0);
3340
3341 /* if no devices were detected, disable this port */
3342 if ((device[0].class == ATA_DEV_NONE) &&
3343 (device[1].class == ATA_DEV_NONE))
3344 goto err_out;
3345
3346 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3347 /* set up device control for ATA_FLAG_SATA_RESET */
3348 iowrite8(ap->ctl, ioaddr->ctl_addr);
3349 }
3350
3351 DPRINTK("EXIT\n");
3352 return;
3353
3354 err_out:
3355 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3356 ata_port_disable(ap);
3357
3358 DPRINTK("EXIT\n");
3359 }
3360
3361 /**
3362 * sata_link_debounce - debounce SATA phy status
3363 * @link: ATA link to debounce SATA phy status for
3364 * @params: timing parameters { interval, duratinon, timeout } in msec
3365 * @deadline: deadline jiffies for the operation
3366 *
3367 * Make sure SStatus of @link reaches stable state, determined by
3368 * holding the same value where DET is not 1 for @duration polled
3369 * every @interval, before @timeout. Timeout constraints the
3370 * beginning of the stable state. Because DET gets stuck at 1 on
3371 * some controllers after hot unplugging, this functions waits
3372 * until timeout then returns 0 if DET is stable at 1.
3373 *
3374 * @timeout is further limited by @deadline. The sooner of the
3375 * two is used.
3376 *
3377 * LOCKING:
3378 * Kernel thread context (may sleep)
3379 *
3380 * RETURNS:
3381 * 0 on success, -errno on failure.
3382 */
3383 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3384 unsigned long deadline)
3385 {
3386 unsigned long interval_msec = params[0];
3387 unsigned long duration = msecs_to_jiffies(params[1]);
3388 unsigned long last_jiffies, t;
3389 u32 last, cur;
3390 int rc;
3391
3392 t = jiffies + msecs_to_jiffies(params[2]);
3393 if (time_before(t, deadline))
3394 deadline = t;
3395
3396 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3397 return rc;
3398 cur &= 0xf;
3399
3400 last = cur;
3401 last_jiffies = jiffies;
3402
3403 while (1) {
3404 msleep(interval_msec);
3405 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3406 return rc;
3407 cur &= 0xf;
3408
3409 /* DET stable? */
3410 if (cur == last) {
3411 if (cur == 1 && time_before(jiffies, deadline))
3412 continue;
3413 if (time_after(jiffies, last_jiffies + duration))
3414 return 0;
3415 continue;
3416 }
3417
3418 /* unstable, start over */
3419 last = cur;
3420 last_jiffies = jiffies;
3421
3422 /* Check deadline. If debouncing failed, return
3423 * -EPIPE to tell upper layer to lower link speed.
3424 */
3425 if (time_after(jiffies, deadline))
3426 return -EPIPE;
3427 }
3428 }
3429
3430 /**
3431 * sata_link_resume - resume SATA link
3432 * @link: ATA link to resume SATA
3433 * @params: timing parameters { interval, duratinon, timeout } in msec
3434 * @deadline: deadline jiffies for the operation
3435 *
3436 * Resume SATA phy @link and debounce it.
3437 *
3438 * LOCKING:
3439 * Kernel thread context (may sleep)
3440 *
3441 * RETURNS:
3442 * 0 on success, -errno on failure.
3443 */
3444 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3445 unsigned long deadline)
3446 {
3447 u32 scontrol;
3448 int rc;
3449
3450 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3451 return rc;
3452
3453 scontrol = (scontrol & 0x0f0) | 0x300;
3454
3455 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3456 return rc;
3457
3458 /* Some PHYs react badly if SStatus is pounded immediately
3459 * after resuming. Delay 200ms before debouncing.
3460 */
3461 msleep(200);
3462
3463 return sata_link_debounce(link, params, deadline);
3464 }
3465
3466 /**
3467 * ata_std_prereset - prepare for reset
3468 * @link: ATA link to be reset
3469 * @deadline: deadline jiffies for the operation
3470 *
3471 * @link is about to be reset. Initialize it. Failure from
3472 * prereset makes libata abort whole reset sequence and give up
3473 * that port, so prereset should be best-effort. It does its
3474 * best to prepare for reset sequence but if things go wrong, it
3475 * should just whine, not fail.
3476 *
3477 * LOCKING:
3478 * Kernel thread context (may sleep)
3479 *
3480 * RETURNS:
3481 * 0 on success, -errno otherwise.
3482 */
3483 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3484 {
3485 struct ata_port *ap = link->ap;
3486 struct ata_eh_context *ehc = &link->eh_context;
3487 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3488 int rc;
3489
3490 /* handle link resume */
3491 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3492 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3493 ehc->i.action |= ATA_EH_HARDRESET;
3494
3495 /* Some PMPs don't work with only SRST, force hardreset if PMP
3496 * is supported.
3497 */
3498 if (ap->flags & ATA_FLAG_PMP)
3499 ehc->i.action |= ATA_EH_HARDRESET;
3500
3501 /* if we're about to do hardreset, nothing more to do */
3502 if (ehc->i.action & ATA_EH_HARDRESET)
3503 return 0;
3504
3505 /* if SATA, resume link */
3506 if (ap->flags & ATA_FLAG_SATA) {
3507 rc = sata_link_resume(link, timing, deadline);
3508 /* whine about phy resume failure but proceed */
3509 if (rc && rc != -EOPNOTSUPP)
3510 ata_link_printk(link, KERN_WARNING, "failed to resume "
3511 "link for reset (errno=%d)\n", rc);
3512 }
3513
3514 /* Wait for !BSY if the controller can wait for the first D2H
3515 * Reg FIS and we don't know that no device is attached.
3516 */
3517 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3518 rc = ata_wait_ready(ap, deadline);
3519 if (rc && rc != -ENODEV) {
3520 ata_link_printk(link, KERN_WARNING, "device not ready "
3521 "(errno=%d), forcing hardreset\n", rc);
3522 ehc->i.action |= ATA_EH_HARDRESET;
3523 }
3524 }
3525
3526 return 0;
3527 }
3528
3529 /**
3530 * ata_std_softreset - reset host port via ATA SRST
3531 * @link: ATA link to reset
3532 * @classes: resulting classes of attached devices
3533 * @deadline: deadline jiffies for the operation
3534 *
3535 * Reset host port using ATA SRST.
3536 *
3537 * LOCKING:
3538 * Kernel thread context (may sleep)
3539 *
3540 * RETURNS:
3541 * 0 on success, -errno otherwise.
3542 */
3543 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3544 unsigned long deadline)
3545 {
3546 struct ata_port *ap = link->ap;
3547 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3548 unsigned int devmask = 0;
3549 int rc;
3550 u8 err;
3551
3552 DPRINTK("ENTER\n");
3553
3554 if (ata_link_offline(link)) {
3555 classes[0] = ATA_DEV_NONE;
3556 goto out;
3557 }
3558
3559 /* determine if device 0/1 are present */
3560 if (ata_devchk(ap, 0))
3561 devmask |= (1 << 0);
3562 if (slave_possible && ata_devchk(ap, 1))
3563 devmask |= (1 << 1);
3564
3565 /* select device 0 again */
3566 ap->ops->dev_select(ap, 0);
3567
3568 /* issue bus reset */
3569 DPRINTK("about to softreset, devmask=%x\n", devmask);
3570 rc = ata_bus_softreset(ap, devmask, deadline);
3571 /* if link is occupied, -ENODEV too is an error */
3572 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3573 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3574 return rc;
3575 }
3576
3577 /* determine by signature whether we have ATA or ATAPI devices */
3578 classes[0] = ata_dev_try_classify(&link->device[0],
3579 devmask & (1 << 0), &err);
3580 if (slave_possible && err != 0x81)
3581 classes[1] = ata_dev_try_classify(&link->device[1],
3582 devmask & (1 << 1), &err);
3583
3584 out:
3585 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3586 return 0;
3587 }
3588
3589 /**
3590 * sata_link_hardreset - reset link via SATA phy reset
3591 * @link: link to reset
3592 * @timing: timing parameters { interval, duratinon, timeout } in msec
3593 * @deadline: deadline jiffies for the operation
3594 *
3595 * SATA phy-reset @link using DET bits of SControl register.
3596 *
3597 * LOCKING:
3598 * Kernel thread context (may sleep)
3599 *
3600 * RETURNS:
3601 * 0 on success, -errno otherwise.
3602 */
3603 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3604 unsigned long deadline)
3605 {
3606 u32 scontrol;
3607 int rc;
3608
3609 DPRINTK("ENTER\n");
3610
3611 if (sata_set_spd_needed(link)) {
3612 /* SATA spec says nothing about how to reconfigure
3613 * spd. To be on the safe side, turn off phy during
3614 * reconfiguration. This works for at least ICH7 AHCI
3615 * and Sil3124.
3616 */
3617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3618 goto out;
3619
3620 scontrol = (scontrol & 0x0f0) | 0x304;
3621
3622 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3623 goto out;
3624
3625 sata_set_spd(link);
3626 }
3627
3628 /* issue phy wake/reset */
3629 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3630 goto out;
3631
3632 scontrol = (scontrol & 0x0f0) | 0x301;
3633
3634 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3635 goto out;
3636
3637 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3638 * 10.4.2 says at least 1 ms.
3639 */
3640 msleep(1);
3641
3642 /* bring link back */
3643 rc = sata_link_resume(link, timing, deadline);
3644 out:
3645 DPRINTK("EXIT, rc=%d\n", rc);
3646 return rc;
3647 }
3648
3649 /**
3650 * sata_std_hardreset - reset host port via SATA phy reset
3651 * @link: link to reset
3652 * @class: resulting class of attached device
3653 * @deadline: deadline jiffies for the operation
3654 *
3655 * SATA phy-reset host port using DET bits of SControl register,
3656 * wait for !BSY and classify the attached device.
3657 *
3658 * LOCKING:
3659 * Kernel thread context (may sleep)
3660 *
3661 * RETURNS:
3662 * 0 on success, -errno otherwise.
3663 */
3664 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3665 unsigned long deadline)
3666 {
3667 struct ata_port *ap = link->ap;
3668 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3669 int rc;
3670
3671 DPRINTK("ENTER\n");
3672
3673 /* do hardreset */
3674 rc = sata_link_hardreset(link, timing, deadline);
3675 if (rc) {
3676 ata_link_printk(link, KERN_ERR,
3677 "COMRESET failed (errno=%d)\n", rc);
3678 return rc;
3679 }
3680
3681 /* TODO: phy layer with polling, timeouts, etc. */
3682 if (ata_link_offline(link)) {
3683 *class = ATA_DEV_NONE;
3684 DPRINTK("EXIT, link offline\n");
3685 return 0;
3686 }
3687
3688 /* wait a while before checking status, see SRST for more info */
3689 msleep(150);
3690
3691 /* If PMP is supported, we have to do follow-up SRST. Note
3692 * that some PMPs don't send D2H Reg FIS after hardreset at
3693 * all if the first port is empty. Wait for it just for a
3694 * second and request follow-up SRST.
3695 */
3696 if (ap->flags & ATA_FLAG_PMP) {
3697 ata_wait_ready(ap, jiffies + HZ);
3698 return -EAGAIN;
3699 }
3700
3701 rc = ata_wait_ready(ap, deadline);
3702 /* link occupied, -ENODEV too is an error */
3703 if (rc) {
3704 ata_link_printk(link, KERN_ERR,
3705 "COMRESET failed (errno=%d)\n", rc);
3706 return rc;
3707 }
3708
3709 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3710
3711 *class = ata_dev_try_classify(link->device, 1, NULL);
3712
3713 DPRINTK("EXIT, class=%u\n", *class);
3714 return 0;
3715 }
3716
3717 /**
3718 * ata_std_postreset - standard postreset callback
3719 * @link: the target ata_link
3720 * @classes: classes of attached devices
3721 *
3722 * This function is invoked after a successful reset. Note that
3723 * the device might have been reset more than once using
3724 * different reset methods before postreset is invoked.
3725 *
3726 * LOCKING:
3727 * Kernel thread context (may sleep)
3728 */
3729 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3730 {
3731 struct ata_port *ap = link->ap;
3732 u32 serror;
3733
3734 DPRINTK("ENTER\n");
3735
3736 /* print link status */
3737 sata_print_link_status(link);
3738
3739 /* clear SError */
3740 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3741 sata_scr_write(link, SCR_ERROR, serror);
3742
3743 /* is double-select really necessary? */
3744 if (classes[0] != ATA_DEV_NONE)
3745 ap->ops->dev_select(ap, 1);
3746 if (classes[1] != ATA_DEV_NONE)
3747 ap->ops->dev_select(ap, 0);
3748
3749 /* bail out if no device is present */
3750 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3751 DPRINTK("EXIT, no device\n");
3752 return;
3753 }
3754
3755 /* set up device control */
3756 if (ap->ioaddr.ctl_addr)
3757 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3758
3759 DPRINTK("EXIT\n");
3760 }
3761
3762 /**
3763 * ata_dev_same_device - Determine whether new ID matches configured device
3764 * @dev: device to compare against
3765 * @new_class: class of the new device
3766 * @new_id: IDENTIFY page of the new device
3767 *
3768 * Compare @new_class and @new_id against @dev and determine
3769 * whether @dev is the device indicated by @new_class and
3770 * @new_id.
3771 *
3772 * LOCKING:
3773 * None.
3774 *
3775 * RETURNS:
3776 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3777 */
3778 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3779 const u16 *new_id)
3780 {
3781 const u16 *old_id = dev->id;
3782 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3783 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3784
3785 if (dev->class != new_class) {
3786 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3787 dev->class, new_class);
3788 return 0;
3789 }
3790
3791 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3792 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3793 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3794 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3795
3796 if (strcmp(model[0], model[1])) {
3797 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3798 "'%s' != '%s'\n", model[0], model[1]);
3799 return 0;
3800 }
3801
3802 if (strcmp(serial[0], serial[1])) {
3803 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3804 "'%s' != '%s'\n", serial[0], serial[1]);
3805 return 0;
3806 }
3807
3808 return 1;
3809 }
3810
3811 /**
3812 * ata_dev_reread_id - Re-read IDENTIFY data
3813 * @dev: target ATA device
3814 * @readid_flags: read ID flags
3815 *
3816 * Re-read IDENTIFY page and make sure @dev is still attached to
3817 * the port.
3818 *
3819 * LOCKING:
3820 * Kernel thread context (may sleep)
3821 *
3822 * RETURNS:
3823 * 0 on success, negative errno otherwise
3824 */
3825 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3826 {
3827 unsigned int class = dev->class;
3828 u16 *id = (void *)dev->link->ap->sector_buf;
3829 int rc;
3830
3831 /* read ID data */
3832 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3833 if (rc)
3834 return rc;
3835
3836 /* is the device still there? */
3837 if (!ata_dev_same_device(dev, class, id))
3838 return -ENODEV;
3839
3840 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3841 return 0;
3842 }
3843
3844 /**
3845 * ata_dev_revalidate - Revalidate ATA device
3846 * @dev: device to revalidate
3847 * @new_class: new class code
3848 * @readid_flags: read ID flags
3849 *
3850 * Re-read IDENTIFY page, make sure @dev is still attached to the
3851 * port and reconfigure it according to the new IDENTIFY page.
3852 *
3853 * LOCKING:
3854 * Kernel thread context (may sleep)
3855 *
3856 * RETURNS:
3857 * 0 on success, negative errno otherwise
3858 */
3859 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3860 unsigned int readid_flags)
3861 {
3862 u64 n_sectors = dev->n_sectors;
3863 int rc;
3864
3865 if (!ata_dev_enabled(dev))
3866 return -ENODEV;
3867
3868 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3869 if (ata_class_enabled(new_class) &&
3870 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3871 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3872 dev->class, new_class);
3873 rc = -ENODEV;
3874 goto fail;
3875 }
3876
3877 /* re-read ID */
3878 rc = ata_dev_reread_id(dev, readid_flags);
3879 if (rc)
3880 goto fail;
3881
3882 /* configure device according to the new ID */
3883 rc = ata_dev_configure(dev);
3884 if (rc)
3885 goto fail;
3886
3887 /* verify n_sectors hasn't changed */
3888 if (dev->class == ATA_DEV_ATA && n_sectors &&
3889 dev->n_sectors != n_sectors) {
3890 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3891 "%llu != %llu\n",
3892 (unsigned long long)n_sectors,
3893 (unsigned long long)dev->n_sectors);
3894
3895 /* restore original n_sectors */
3896 dev->n_sectors = n_sectors;
3897
3898 rc = -ENODEV;
3899 goto fail;
3900 }
3901
3902 return 0;
3903
3904 fail:
3905 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3906 return rc;
3907 }
3908
3909 struct ata_blacklist_entry {
3910 const char *model_num;
3911 const char *model_rev;
3912 unsigned long horkage;
3913 };
3914
3915 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3916 /* Devices with DMA related problems under Linux */
3917 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3918 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3919 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3920 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3921 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3922 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3923 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3924 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3925 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3926 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3927 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3928 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3929 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3930 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3931 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3932 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3933 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3934 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3935 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3936 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3937 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3938 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3939 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3940 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3941 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3942 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3943 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3944 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3945 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3946 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3947 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3948 { "IOMEGA ZIP 250 ATAPI Floppy",
3949 NULL, ATA_HORKAGE_NODMA },
3950 /* Odd clown on sil3726/4726 PMPs */
3951 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3952 ATA_HORKAGE_SKIP_PM },
3953
3954 /* Weird ATAPI devices */
3955 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3956
3957 /* Devices we expect to fail diagnostics */
3958
3959 /* Devices where NCQ should be avoided */
3960 /* NCQ is slow */
3961 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3962 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3963 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3964 /* NCQ is broken */
3965 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3966 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3967 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
3968 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
3969 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3970
3971 /* Blacklist entries taken from Silicon Image 3124/3132
3972 Windows driver .inf file - also several Linux problem reports */
3973 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3974 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3975 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3976 /* Drives which do spurious command completion */
3977 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3978 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3979 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
3980 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3981 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3982 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
3983 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3984 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3985 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3986 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
3987 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
3988 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
3989 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3990
3991 /* devices which puke on READ_NATIVE_MAX */
3992 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3993 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3994 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3995 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3996
3997 /* Devices which report 1 sector over size HPA */
3998 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3999 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4000
4001 /* End Marker */
4002 { }
4003 };
4004
4005 int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4006 {
4007 const char *p;
4008 int len;
4009
4010 /*
4011 * check for trailing wildcard: *\0
4012 */
4013 p = strchr(patt, wildchar);
4014 if (p && ((*(p + 1)) == 0))
4015 len = p - patt;
4016 else
4017 len = strlen(name);
4018
4019 return strncmp(patt, name, len);
4020 }
4021
4022 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4023 {
4024 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4025 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4026 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4027
4028 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4029 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4030
4031 while (ad->model_num) {
4032 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4033 if (ad->model_rev == NULL)
4034 return ad->horkage;
4035 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4036 return ad->horkage;
4037 }
4038 ad++;
4039 }
4040 return 0;
4041 }
4042
4043 static int ata_dma_blacklisted(const struct ata_device *dev)
4044 {
4045 /* We don't support polling DMA.
4046 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4047 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4048 */
4049 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4050 (dev->flags & ATA_DFLAG_CDB_INTR))
4051 return 1;
4052 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4053 }
4054
4055 /**
4056 * ata_dev_xfermask - Compute supported xfermask of the given device
4057 * @dev: Device to compute xfermask for
4058 *
4059 * Compute supported xfermask of @dev and store it in
4060 * dev->*_mask. This function is responsible for applying all
4061 * known limits including host controller limits, device
4062 * blacklist, etc...
4063 *
4064 * LOCKING:
4065 * None.
4066 */
4067 static void ata_dev_xfermask(struct ata_device *dev)
4068 {
4069 struct ata_link *link = dev->link;
4070 struct ata_port *ap = link->ap;
4071 struct ata_host *host = ap->host;
4072 unsigned long xfer_mask;
4073
4074 /* controller modes available */
4075 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4076 ap->mwdma_mask, ap->udma_mask);
4077
4078 /* drive modes available */
4079 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4080 dev->mwdma_mask, dev->udma_mask);
4081 xfer_mask &= ata_id_xfermask(dev->id);
4082
4083 /*
4084 * CFA Advanced TrueIDE timings are not allowed on a shared
4085 * cable
4086 */
4087 if (ata_dev_pair(dev)) {
4088 /* No PIO5 or PIO6 */
4089 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4090 /* No MWDMA3 or MWDMA 4 */
4091 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4092 }
4093
4094 if (ata_dma_blacklisted(dev)) {
4095 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4096 ata_dev_printk(dev, KERN_WARNING,
4097 "device is on DMA blacklist, disabling DMA\n");
4098 }
4099
4100 if ((host->flags & ATA_HOST_SIMPLEX) &&
4101 host->simplex_claimed && host->simplex_claimed != ap) {
4102 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4103 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4104 "other device, disabling DMA\n");
4105 }
4106
4107 if (ap->flags & ATA_FLAG_NO_IORDY)
4108 xfer_mask &= ata_pio_mask_no_iordy(dev);
4109
4110 if (ap->ops->mode_filter)
4111 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4112
4113 /* Apply cable rule here. Don't apply it early because when
4114 * we handle hot plug the cable type can itself change.
4115 * Check this last so that we know if the transfer rate was
4116 * solely limited by the cable.
4117 * Unknown or 80 wire cables reported host side are checked
4118 * drive side as well. Cases where we know a 40wire cable
4119 * is used safely for 80 are not checked here.
4120 */
4121 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4122 /* UDMA/44 or higher would be available */
4123 if((ap->cbl == ATA_CBL_PATA40) ||
4124 (ata_drive_40wire(dev->id) &&
4125 (ap->cbl == ATA_CBL_PATA_UNK ||
4126 ap->cbl == ATA_CBL_PATA80))) {
4127 ata_dev_printk(dev, KERN_WARNING,
4128 "limited to UDMA/33 due to 40-wire cable\n");
4129 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4130 }
4131
4132 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4133 &dev->mwdma_mask, &dev->udma_mask);
4134 }
4135
4136 /**
4137 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4138 * @dev: Device to which command will be sent
4139 *
4140 * Issue SET FEATURES - XFER MODE command to device @dev
4141 * on port @ap.
4142 *
4143 * LOCKING:
4144 * PCI/etc. bus probe sem.
4145 *
4146 * RETURNS:
4147 * 0 on success, AC_ERR_* mask otherwise.
4148 */
4149
4150 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4151 {
4152 struct ata_taskfile tf;
4153 unsigned int err_mask;
4154
4155 /* set up set-features taskfile */
4156 DPRINTK("set features - xfer mode\n");
4157
4158 /* Some controllers and ATAPI devices show flaky interrupt
4159 * behavior after setting xfer mode. Use polling instead.
4160 */
4161 ata_tf_init(dev, &tf);
4162 tf.command = ATA_CMD_SET_FEATURES;
4163 tf.feature = SETFEATURES_XFER;
4164 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4165 tf.protocol = ATA_PROT_NODATA;
4166 tf.nsect = dev->xfer_mode;
4167
4168 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4169
4170 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4171 return err_mask;
4172 }
4173
4174 /**
4175 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES
4176 * @dev: Device to which command will be sent
4177 * @enable: Whether to enable or disable the feature
4178 *
4179 * Issue SET FEATURES - SATA FEATURES command to device @dev
4180 * on port @ap with sector count set to indicate Asynchronous
4181 * Notification feature
4182 *
4183 * LOCKING:
4184 * PCI/etc. bus probe sem.
4185 *
4186 * RETURNS:
4187 * 0 on success, AC_ERR_* mask otherwise.
4188 */
4189 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable)
4190 {
4191 struct ata_taskfile tf;
4192 unsigned int err_mask;
4193
4194 /* set up set-features taskfile */
4195 DPRINTK("set features - SATA features\n");
4196
4197 ata_tf_init(dev, &tf);
4198 tf.command = ATA_CMD_SET_FEATURES;
4199 tf.feature = enable;
4200 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4201 tf.protocol = ATA_PROT_NODATA;
4202 tf.nsect = SATA_AN;
4203
4204 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4205
4206 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4207 return err_mask;
4208 }
4209
4210 /**
4211 * ata_dev_init_params - Issue INIT DEV PARAMS command
4212 * @dev: Device to which command will be sent
4213 * @heads: Number of heads (taskfile parameter)
4214 * @sectors: Number of sectors (taskfile parameter)
4215 *
4216 * LOCKING:
4217 * Kernel thread context (may sleep)
4218 *
4219 * RETURNS:
4220 * 0 on success, AC_ERR_* mask otherwise.
4221 */
4222 static unsigned int ata_dev_init_params(struct ata_device *dev,
4223 u16 heads, u16 sectors)
4224 {
4225 struct ata_taskfile tf;
4226 unsigned int err_mask;
4227
4228 /* Number of sectors per track 1-255. Number of heads 1-16 */
4229 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4230 return AC_ERR_INVALID;
4231
4232 /* set up init dev params taskfile */
4233 DPRINTK("init dev params \n");
4234
4235 ata_tf_init(dev, &tf);
4236 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4237 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4238 tf.protocol = ATA_PROT_NODATA;
4239 tf.nsect = sectors;
4240 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4241
4242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4243 /* A clean abort indicates an original or just out of spec drive
4244 and we should continue as we issue the setup based on the
4245 drive reported working geometry */
4246 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4247 err_mask = 0;
4248
4249 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4250 return err_mask;
4251 }
4252
4253 /**
4254 * ata_sg_clean - Unmap DMA memory associated with command
4255 * @qc: Command containing DMA memory to be released
4256 *
4257 * Unmap all mapped DMA memory associated with this command.
4258 *
4259 * LOCKING:
4260 * spin_lock_irqsave(host lock)
4261 */
4262 void ata_sg_clean(struct ata_queued_cmd *qc)
4263 {
4264 struct ata_port *ap = qc->ap;
4265 struct scatterlist *sg = qc->__sg;
4266 int dir = qc->dma_dir;
4267 void *pad_buf = NULL;
4268
4269 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4270 WARN_ON(sg == NULL);
4271
4272 if (qc->flags & ATA_QCFLAG_SINGLE)
4273 WARN_ON(qc->n_elem > 1);
4274
4275 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4276
4277 /* if we padded the buffer out to 32-bit bound, and data
4278 * xfer direction is from-device, we must copy from the
4279 * pad buffer back into the supplied buffer
4280 */
4281 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4282 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4283
4284 if (qc->flags & ATA_QCFLAG_SG) {
4285 if (qc->n_elem)
4286 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4287 /* restore last sg */
4288 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4289 if (pad_buf) {
4290 struct scatterlist *psg = &qc->pad_sgent;
4291 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4292 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4293 kunmap_atomic(addr, KM_IRQ0);
4294 }
4295 } else {
4296 if (qc->n_elem)
4297 dma_unmap_single(ap->dev,
4298 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4299 dir);
4300 /* restore sg */
4301 sg->length += qc->pad_len;
4302 if (pad_buf)
4303 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4304 pad_buf, qc->pad_len);
4305 }
4306
4307 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4308 qc->__sg = NULL;
4309 }
4310
4311 /**
4312 * ata_fill_sg - Fill PCI IDE PRD table
4313 * @qc: Metadata associated with taskfile to be transferred
4314 *
4315 * Fill PCI IDE PRD (scatter-gather) table with segments
4316 * associated with the current disk command.
4317 *
4318 * LOCKING:
4319 * spin_lock_irqsave(host lock)
4320 *
4321 */
4322 static void ata_fill_sg(struct ata_queued_cmd *qc)
4323 {
4324 struct ata_port *ap = qc->ap;
4325 struct scatterlist *sg;
4326 unsigned int idx;
4327
4328 WARN_ON(qc->__sg == NULL);
4329 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4330
4331 idx = 0;
4332 ata_for_each_sg(sg, qc) {
4333 u32 addr, offset;
4334 u32 sg_len, len;
4335
4336 /* determine if physical DMA addr spans 64K boundary.
4337 * Note h/w doesn't support 64-bit, so we unconditionally
4338 * truncate dma_addr_t to u32.
4339 */
4340 addr = (u32) sg_dma_address(sg);
4341 sg_len = sg_dma_len(sg);
4342
4343 while (sg_len) {
4344 offset = addr & 0xffff;
4345 len = sg_len;
4346 if ((offset + sg_len) > 0x10000)
4347 len = 0x10000 - offset;
4348
4349 ap->prd[idx].addr = cpu_to_le32(addr);
4350 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4351 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4352
4353 idx++;
4354 sg_len -= len;
4355 addr += len;
4356 }
4357 }
4358
4359 if (idx)
4360 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4361 }
4362
4363 /**
4364 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4365 * @qc: Metadata associated with taskfile to be transferred
4366 *
4367 * Fill PCI IDE PRD (scatter-gather) table with segments
4368 * associated with the current disk command. Perform the fill
4369 * so that we avoid writing any length 64K records for
4370 * controllers that don't follow the spec.
4371 *
4372 * LOCKING:
4373 * spin_lock_irqsave(host lock)
4374 *
4375 */
4376 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4377 {
4378 struct ata_port *ap = qc->ap;
4379 struct scatterlist *sg;
4380 unsigned int idx;
4381
4382 WARN_ON(qc->__sg == NULL);
4383 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4384
4385 idx = 0;
4386 ata_for_each_sg(sg, qc) {
4387 u32 addr, offset;
4388 u32 sg_len, len, blen;
4389
4390 /* determine if physical DMA addr spans 64K boundary.
4391 * Note h/w doesn't support 64-bit, so we unconditionally
4392 * truncate dma_addr_t to u32.
4393 */
4394 addr = (u32) sg_dma_address(sg);
4395 sg_len = sg_dma_len(sg);
4396
4397 while (sg_len) {
4398 offset = addr & 0xffff;
4399 len = sg_len;
4400 if ((offset + sg_len) > 0x10000)
4401 len = 0x10000 - offset;
4402
4403 blen = len & 0xffff;
4404 ap->prd[idx].addr = cpu_to_le32(addr);
4405 if (blen == 0) {
4406 /* Some PATA chipsets like the CS5530 can't
4407 cope with 0x0000 meaning 64K as the spec says */
4408 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4409 blen = 0x8000;
4410 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4411 }
4412 ap->prd[idx].flags_len = cpu_to_le32(blen);
4413 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4414
4415 idx++;
4416 sg_len -= len;
4417 addr += len;
4418 }
4419 }
4420
4421 if (idx)
4422 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4423 }
4424
4425 /**
4426 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4427 * @qc: Metadata associated with taskfile to check
4428 *
4429 * Allow low-level driver to filter ATA PACKET commands, returning
4430 * a status indicating whether or not it is OK to use DMA for the
4431 * supplied PACKET command.
4432 *
4433 * LOCKING:
4434 * spin_lock_irqsave(host lock)
4435 *
4436 * RETURNS: 0 when ATAPI DMA can be used
4437 * nonzero otherwise
4438 */
4439 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4440 {
4441 struct ata_port *ap = qc->ap;
4442
4443 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4444 * few ATAPI devices choke on such DMA requests.
4445 */
4446 if (unlikely(qc->nbytes & 15))
4447 return 1;
4448
4449 if (ap->ops->check_atapi_dma)
4450 return ap->ops->check_atapi_dma(qc);
4451
4452 return 0;
4453 }
4454
4455 /**
4456 * ata_std_qc_defer - Check whether a qc needs to be deferred
4457 * @qc: ATA command in question
4458 *
4459 * Non-NCQ commands cannot run with any other command, NCQ or
4460 * not. As upper layer only knows the queue depth, we are
4461 * responsible for maintaining exclusion. This function checks
4462 * whether a new command @qc can be issued.
4463 *
4464 * LOCKING:
4465 * spin_lock_irqsave(host lock)
4466 *
4467 * RETURNS:
4468 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4469 */
4470 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4471 {
4472 struct ata_link *link = qc->dev->link;
4473
4474 if (qc->tf.protocol == ATA_PROT_NCQ) {
4475 if (!ata_tag_valid(link->active_tag))
4476 return 0;
4477 } else {
4478 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4479 return 0;
4480 }
4481
4482 return ATA_DEFER_LINK;
4483 }
4484
4485 /**
4486 * ata_qc_prep - Prepare taskfile for submission
4487 * @qc: Metadata associated with taskfile to be prepared
4488 *
4489 * Prepare ATA taskfile for submission.
4490 *
4491 * LOCKING:
4492 * spin_lock_irqsave(host lock)
4493 */
4494 void ata_qc_prep(struct ata_queued_cmd *qc)
4495 {
4496 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4497 return;
4498
4499 ata_fill_sg(qc);
4500 }
4501
4502 /**
4503 * ata_dumb_qc_prep - Prepare taskfile for submission
4504 * @qc: Metadata associated with taskfile to be prepared
4505 *
4506 * Prepare ATA taskfile for submission.
4507 *
4508 * LOCKING:
4509 * spin_lock_irqsave(host lock)
4510 */
4511 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4512 {
4513 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4514 return;
4515
4516 ata_fill_sg_dumb(qc);
4517 }
4518
4519 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4520
4521 /**
4522 * ata_sg_init_one - Associate command with memory buffer
4523 * @qc: Command to be associated
4524 * @buf: Memory buffer
4525 * @buflen: Length of memory buffer, in bytes.
4526 *
4527 * Initialize the data-related elements of queued_cmd @qc
4528 * to point to a single memory buffer, @buf of byte length @buflen.
4529 *
4530 * LOCKING:
4531 * spin_lock_irqsave(host lock)
4532 */
4533
4534 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4535 {
4536 qc->flags |= ATA_QCFLAG_SINGLE;
4537
4538 qc->__sg = &qc->sgent;
4539 qc->n_elem = 1;
4540 qc->orig_n_elem = 1;
4541 qc->buf_virt = buf;
4542 qc->nbytes = buflen;
4543
4544 sg_init_one(&qc->sgent, buf, buflen);
4545 }
4546
4547 /**
4548 * ata_sg_init - Associate command with scatter-gather table.
4549 * @qc: Command to be associated
4550 * @sg: Scatter-gather table.
4551 * @n_elem: Number of elements in s/g table.
4552 *
4553 * Initialize the data-related elements of queued_cmd @qc
4554 * to point to a scatter-gather table @sg, containing @n_elem
4555 * elements.
4556 *
4557 * LOCKING:
4558 * spin_lock_irqsave(host lock)
4559 */
4560
4561 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4562 unsigned int n_elem)
4563 {
4564 qc->flags |= ATA_QCFLAG_SG;
4565 qc->__sg = sg;
4566 qc->n_elem = n_elem;
4567 qc->orig_n_elem = n_elem;
4568 }
4569
4570 /**
4571 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4572 * @qc: Command with memory buffer to be mapped.
4573 *
4574 * DMA-map the memory buffer associated with queued_cmd @qc.
4575 *
4576 * LOCKING:
4577 * spin_lock_irqsave(host lock)
4578 *
4579 * RETURNS:
4580 * Zero on success, negative on error.
4581 */
4582
4583 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4584 {
4585 struct ata_port *ap = qc->ap;
4586 int dir = qc->dma_dir;
4587 struct scatterlist *sg = qc->__sg;
4588 dma_addr_t dma_address;
4589 int trim_sg = 0;
4590
4591 /* we must lengthen transfers to end on a 32-bit boundary */
4592 qc->pad_len = sg->length & 3;
4593 if (qc->pad_len) {
4594 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4595 struct scatterlist *psg = &qc->pad_sgent;
4596
4597 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4598
4599 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4600
4601 if (qc->tf.flags & ATA_TFLAG_WRITE)
4602 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4603 qc->pad_len);
4604
4605 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4606 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4607 /* trim sg */
4608 sg->length -= qc->pad_len;
4609 if (sg->length == 0)
4610 trim_sg = 1;
4611
4612 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4613 sg->length, qc->pad_len);
4614 }
4615
4616 if (trim_sg) {
4617 qc->n_elem--;
4618 goto skip_map;
4619 }
4620
4621 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4622 sg->length, dir);
4623 if (dma_mapping_error(dma_address)) {
4624 /* restore sg */
4625 sg->length += qc->pad_len;
4626 return -1;
4627 }
4628
4629 sg_dma_address(sg) = dma_address;
4630 sg_dma_len(sg) = sg->length;
4631
4632 skip_map:
4633 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4634 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4635
4636 return 0;
4637 }
4638
4639 /**
4640 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4641 * @qc: Command with scatter-gather table to be mapped.
4642 *
4643 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4644 *
4645 * LOCKING:
4646 * spin_lock_irqsave(host lock)
4647 *
4648 * RETURNS:
4649 * Zero on success, negative on error.
4650 *
4651 */
4652
4653 static int ata_sg_setup(struct ata_queued_cmd *qc)
4654 {
4655 struct ata_port *ap = qc->ap;
4656 struct scatterlist *sg = qc->__sg;
4657 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4658 int n_elem, pre_n_elem, dir, trim_sg = 0;
4659
4660 VPRINTK("ENTER, ata%u\n", ap->print_id);
4661 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4662
4663 /* we must lengthen transfers to end on a 32-bit boundary */
4664 qc->pad_len = lsg->length & 3;
4665 if (qc->pad_len) {
4666 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4667 struct scatterlist *psg = &qc->pad_sgent;
4668 unsigned int offset;
4669
4670 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4671
4672 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4673
4674 /*
4675 * psg->page/offset are used to copy to-be-written
4676 * data in this function or read data in ata_sg_clean.
4677 */
4678 offset = lsg->offset + lsg->length - qc->pad_len;
4679 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4680 psg->offset = offset_in_page(offset);
4681
4682 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4683 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4684 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4685 kunmap_atomic(addr, KM_IRQ0);
4686 }
4687
4688 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4689 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4690 /* trim last sg */
4691 lsg->length -= qc->pad_len;
4692 if (lsg->length == 0)
4693 trim_sg = 1;
4694
4695 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4696 qc->n_elem - 1, lsg->length, qc->pad_len);
4697 }
4698
4699 pre_n_elem = qc->n_elem;
4700 if (trim_sg && pre_n_elem)
4701 pre_n_elem--;
4702
4703 if (!pre_n_elem) {
4704 n_elem = 0;
4705 goto skip_map;
4706 }
4707
4708 dir = qc->dma_dir;
4709 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4710 if (n_elem < 1) {
4711 /* restore last sg */
4712 lsg->length += qc->pad_len;
4713 return -1;
4714 }
4715
4716 DPRINTK("%d sg elements mapped\n", n_elem);
4717
4718 skip_map:
4719 qc->n_elem = n_elem;
4720
4721 return 0;
4722 }
4723
4724 /**
4725 * swap_buf_le16 - swap halves of 16-bit words in place
4726 * @buf: Buffer to swap
4727 * @buf_words: Number of 16-bit words in buffer.
4728 *
4729 * Swap halves of 16-bit words if needed to convert from
4730 * little-endian byte order to native cpu byte order, or
4731 * vice-versa.
4732 *
4733 * LOCKING:
4734 * Inherited from caller.
4735 */
4736 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4737 {
4738 #ifdef __BIG_ENDIAN
4739 unsigned int i;
4740
4741 for (i = 0; i < buf_words; i++)
4742 buf[i] = le16_to_cpu(buf[i]);
4743 #endif /* __BIG_ENDIAN */
4744 }
4745
4746 /**
4747 * ata_data_xfer - Transfer data by PIO
4748 * @adev: device to target
4749 * @buf: data buffer
4750 * @buflen: buffer length
4751 * @write_data: read/write
4752 *
4753 * Transfer data from/to the device data register by PIO.
4754 *
4755 * LOCKING:
4756 * Inherited from caller.
4757 */
4758 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4759 unsigned int buflen, int write_data)
4760 {
4761 struct ata_port *ap = adev->link->ap;
4762 unsigned int words = buflen >> 1;
4763
4764 /* Transfer multiple of 2 bytes */
4765 if (write_data)
4766 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4767 else
4768 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4769
4770 /* Transfer trailing 1 byte, if any. */
4771 if (unlikely(buflen & 0x01)) {
4772 u16 align_buf[1] = { 0 };
4773 unsigned char *trailing_buf = buf + buflen - 1;
4774
4775 if (write_data) {
4776 memcpy(align_buf, trailing_buf, 1);
4777 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4778 } else {
4779 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4780 memcpy(trailing_buf, align_buf, 1);
4781 }
4782 }
4783 }
4784
4785 /**
4786 * ata_data_xfer_noirq - Transfer data by PIO
4787 * @adev: device to target
4788 * @buf: data buffer
4789 * @buflen: buffer length
4790 * @write_data: read/write
4791 *
4792 * Transfer data from/to the device data register by PIO. Do the
4793 * transfer with interrupts disabled.
4794 *
4795 * LOCKING:
4796 * Inherited from caller.
4797 */
4798 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4799 unsigned int buflen, int write_data)
4800 {
4801 unsigned long flags;
4802 local_irq_save(flags);
4803 ata_data_xfer(adev, buf, buflen, write_data);
4804 local_irq_restore(flags);
4805 }
4806
4807
4808 /**
4809 * ata_pio_sector - Transfer a sector of data.
4810 * @qc: Command on going
4811 *
4812 * Transfer qc->sect_size bytes of data from/to the ATA device.
4813 *
4814 * LOCKING:
4815 * Inherited from caller.
4816 */
4817
4818 static void ata_pio_sector(struct ata_queued_cmd *qc)
4819 {
4820 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4821 struct scatterlist *sg = qc->__sg;
4822 struct ata_port *ap = qc->ap;
4823 struct page *page;
4824 unsigned int offset;
4825 unsigned char *buf;
4826
4827 if (qc->curbytes == qc->nbytes - qc->sect_size)
4828 ap->hsm_task_state = HSM_ST_LAST;
4829
4830 page = sg[qc->cursg].page;
4831 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4832
4833 /* get the current page and offset */
4834 page = nth_page(page, (offset >> PAGE_SHIFT));
4835 offset %= PAGE_SIZE;
4836
4837 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4838
4839 if (PageHighMem(page)) {
4840 unsigned long flags;
4841
4842 /* FIXME: use a bounce buffer */
4843 local_irq_save(flags);
4844 buf = kmap_atomic(page, KM_IRQ0);
4845
4846 /* do the actual data transfer */
4847 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4848
4849 kunmap_atomic(buf, KM_IRQ0);
4850 local_irq_restore(flags);
4851 } else {
4852 buf = page_address(page);
4853 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4854 }
4855
4856 qc->curbytes += qc->sect_size;
4857 qc->cursg_ofs += qc->sect_size;
4858
4859 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4860 qc->cursg++;
4861 qc->cursg_ofs = 0;
4862 }
4863 }
4864
4865 /**
4866 * ata_pio_sectors - Transfer one or many sectors.
4867 * @qc: Command on going
4868 *
4869 * Transfer one or many sectors of data from/to the
4870 * ATA device for the DRQ request.
4871 *
4872 * LOCKING:
4873 * Inherited from caller.
4874 */
4875
4876 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4877 {
4878 if (is_multi_taskfile(&qc->tf)) {
4879 /* READ/WRITE MULTIPLE */
4880 unsigned int nsect;
4881
4882 WARN_ON(qc->dev->multi_count == 0);
4883
4884 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4885 qc->dev->multi_count);
4886 while (nsect--)
4887 ata_pio_sector(qc);
4888 } else
4889 ata_pio_sector(qc);
4890
4891 ata_altstatus(qc->ap); /* flush */
4892 }
4893
4894 /**
4895 * atapi_send_cdb - Write CDB bytes to hardware
4896 * @ap: Port to which ATAPI device is attached.
4897 * @qc: Taskfile currently active
4898 *
4899 * When device has indicated its readiness to accept
4900 * a CDB, this function is called. Send the CDB.
4901 *
4902 * LOCKING:
4903 * caller.
4904 */
4905
4906 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4907 {
4908 /* send SCSI cdb */
4909 DPRINTK("send cdb\n");
4910 WARN_ON(qc->dev->cdb_len < 12);
4911
4912 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4913 ata_altstatus(ap); /* flush */
4914
4915 switch (qc->tf.protocol) {
4916 case ATA_PROT_ATAPI:
4917 ap->hsm_task_state = HSM_ST;
4918 break;
4919 case ATA_PROT_ATAPI_NODATA:
4920 ap->hsm_task_state = HSM_ST_LAST;
4921 break;
4922 case ATA_PROT_ATAPI_DMA:
4923 ap->hsm_task_state = HSM_ST_LAST;
4924 /* initiate bmdma */
4925 ap->ops->bmdma_start(qc);
4926 break;
4927 }
4928 }
4929
4930 /**
4931 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4932 * @qc: Command on going
4933 * @bytes: number of bytes
4934 *
4935 * Transfer Transfer data from/to the ATAPI device.
4936 *
4937 * LOCKING:
4938 * Inherited from caller.
4939 *
4940 */
4941
4942 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4943 {
4944 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4945 struct scatterlist *sg = qc->__sg;
4946 struct ata_port *ap = qc->ap;
4947 struct page *page;
4948 unsigned char *buf;
4949 unsigned int offset, count;
4950
4951 if (qc->curbytes + bytes >= qc->nbytes)
4952 ap->hsm_task_state = HSM_ST_LAST;
4953
4954 next_sg:
4955 if (unlikely(qc->cursg >= qc->n_elem)) {
4956 /*
4957 * The end of qc->sg is reached and the device expects
4958 * more data to transfer. In order not to overrun qc->sg
4959 * and fulfill length specified in the byte count register,
4960 * - for read case, discard trailing data from the device
4961 * - for write case, padding zero data to the device
4962 */
4963 u16 pad_buf[1] = { 0 };
4964 unsigned int words = bytes >> 1;
4965 unsigned int i;
4966
4967 if (words) /* warning if bytes > 1 */
4968 ata_dev_printk(qc->dev, KERN_WARNING,
4969 "%u bytes trailing data\n", bytes);
4970
4971 for (i = 0; i < words; i++)
4972 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4973
4974 ap->hsm_task_state = HSM_ST_LAST;
4975 return;
4976 }
4977
4978 sg = &qc->__sg[qc->cursg];
4979
4980 page = sg->page;
4981 offset = sg->offset + qc->cursg_ofs;
4982
4983 /* get the current page and offset */
4984 page = nth_page(page, (offset >> PAGE_SHIFT));
4985 offset %= PAGE_SIZE;
4986
4987 /* don't overrun current sg */
4988 count = min(sg->length - qc->cursg_ofs, bytes);
4989
4990 /* don't cross page boundaries */
4991 count = min(count, (unsigned int)PAGE_SIZE - offset);
4992
4993 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4994
4995 if (PageHighMem(page)) {
4996 unsigned long flags;
4997
4998 /* FIXME: use bounce buffer */
4999 local_irq_save(flags);
5000 buf = kmap_atomic(page, KM_IRQ0);
5001
5002 /* do the actual data transfer */
5003 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5004
5005 kunmap_atomic(buf, KM_IRQ0);
5006 local_irq_restore(flags);
5007 } else {
5008 buf = page_address(page);
5009 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5010 }
5011
5012 bytes -= count;
5013 qc->curbytes += count;
5014 qc->cursg_ofs += count;
5015
5016 if (qc->cursg_ofs == sg->length) {
5017 qc->cursg++;
5018 qc->cursg_ofs = 0;
5019 }
5020
5021 if (bytes)
5022 goto next_sg;
5023 }
5024
5025 /**
5026 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5027 * @qc: Command on going
5028 *
5029 * Transfer Transfer data from/to the ATAPI device.
5030 *
5031 * LOCKING:
5032 * Inherited from caller.
5033 */
5034
5035 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5036 {
5037 struct ata_port *ap = qc->ap;
5038 struct ata_device *dev = qc->dev;
5039 unsigned int ireason, bc_lo, bc_hi, bytes;
5040 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5041
5042 /* Abuse qc->result_tf for temp storage of intermediate TF
5043 * here to save some kernel stack usage.
5044 * For normal completion, qc->result_tf is not relevant. For
5045 * error, qc->result_tf is later overwritten by ata_qc_complete().
5046 * So, the correctness of qc->result_tf is not affected.
5047 */
5048 ap->ops->tf_read(ap, &qc->result_tf);
5049 ireason = qc->result_tf.nsect;
5050 bc_lo = qc->result_tf.lbam;
5051 bc_hi = qc->result_tf.lbah;
5052 bytes = (bc_hi << 8) | bc_lo;
5053
5054 /* shall be cleared to zero, indicating xfer of data */
5055 if (ireason & (1 << 0))
5056 goto err_out;
5057
5058 /* make sure transfer direction matches expected */
5059 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5060 if (do_write != i_write)
5061 goto err_out;
5062
5063 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5064
5065 __atapi_pio_bytes(qc, bytes);
5066 ata_altstatus(ap); /* flush */
5067
5068 return;
5069
5070 err_out:
5071 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5072 qc->err_mask |= AC_ERR_HSM;
5073 ap->hsm_task_state = HSM_ST_ERR;
5074 }
5075
5076 /**
5077 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5078 * @ap: the target ata_port
5079 * @qc: qc on going
5080 *
5081 * RETURNS:
5082 * 1 if ok in workqueue, 0 otherwise.
5083 */
5084
5085 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5086 {
5087 if (qc->tf.flags & ATA_TFLAG_POLLING)
5088 return 1;
5089
5090 if (ap->hsm_task_state == HSM_ST_FIRST) {
5091 if (qc->tf.protocol == ATA_PROT_PIO &&
5092 (qc->tf.flags & ATA_TFLAG_WRITE))
5093 return 1;
5094
5095 if (is_atapi_taskfile(&qc->tf) &&
5096 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5097 return 1;
5098 }
5099
5100 return 0;
5101 }
5102
5103 /**
5104 * ata_hsm_qc_complete - finish a qc running on standard HSM
5105 * @qc: Command to complete
5106 * @in_wq: 1 if called from workqueue, 0 otherwise
5107 *
5108 * Finish @qc which is running on standard HSM.
5109 *
5110 * LOCKING:
5111 * If @in_wq is zero, spin_lock_irqsave(host lock).
5112 * Otherwise, none on entry and grabs host lock.
5113 */
5114 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5115 {
5116 struct ata_port *ap = qc->ap;
5117 unsigned long flags;
5118
5119 if (ap->ops->error_handler) {
5120 if (in_wq) {
5121 spin_lock_irqsave(ap->lock, flags);
5122
5123 /* EH might have kicked in while host lock is
5124 * released.
5125 */
5126 qc = ata_qc_from_tag(ap, qc->tag);
5127 if (qc) {
5128 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5129 ap->ops->irq_on(ap);
5130 ata_qc_complete(qc);
5131 } else
5132 ata_port_freeze(ap);
5133 }
5134
5135 spin_unlock_irqrestore(ap->lock, flags);
5136 } else {
5137 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5138 ata_qc_complete(qc);
5139 else
5140 ata_port_freeze(ap);
5141 }
5142 } else {
5143 if (in_wq) {
5144 spin_lock_irqsave(ap->lock, flags);
5145 ap->ops->irq_on(ap);
5146 ata_qc_complete(qc);
5147 spin_unlock_irqrestore(ap->lock, flags);
5148 } else
5149 ata_qc_complete(qc);
5150 }
5151 }
5152
5153 /**
5154 * ata_hsm_move - move the HSM to the next state.
5155 * @ap: the target ata_port
5156 * @qc: qc on going
5157 * @status: current device status
5158 * @in_wq: 1 if called from workqueue, 0 otherwise
5159 *
5160 * RETURNS:
5161 * 1 when poll next status needed, 0 otherwise.
5162 */
5163 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5164 u8 status, int in_wq)
5165 {
5166 unsigned long flags = 0;
5167 int poll_next;
5168
5169 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5170
5171 /* Make sure ata_qc_issue_prot() does not throw things
5172 * like DMA polling into the workqueue. Notice that
5173 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5174 */
5175 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5176
5177 fsm_start:
5178 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5179 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5180
5181 switch (ap->hsm_task_state) {
5182 case HSM_ST_FIRST:
5183 /* Send first data block or PACKET CDB */
5184
5185 /* If polling, we will stay in the work queue after
5186 * sending the data. Otherwise, interrupt handler
5187 * takes over after sending the data.
5188 */
5189 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5190
5191 /* check device status */
5192 if (unlikely((status & ATA_DRQ) == 0)) {
5193 /* handle BSY=0, DRQ=0 as error */
5194 if (likely(status & (ATA_ERR | ATA_DF)))
5195 /* device stops HSM for abort/error */
5196 qc->err_mask |= AC_ERR_DEV;
5197 else
5198 /* HSM violation. Let EH handle this */
5199 qc->err_mask |= AC_ERR_HSM;
5200
5201 ap->hsm_task_state = HSM_ST_ERR;
5202 goto fsm_start;
5203 }
5204
5205 /* Device should not ask for data transfer (DRQ=1)
5206 * when it finds something wrong.
5207 * We ignore DRQ here and stop the HSM by
5208 * changing hsm_task_state to HSM_ST_ERR and
5209 * let the EH abort the command or reset the device.
5210 */
5211 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5212 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5213 "error, dev_stat 0x%X\n", status);
5214 qc->err_mask |= AC_ERR_HSM;
5215 ap->hsm_task_state = HSM_ST_ERR;
5216 goto fsm_start;
5217 }
5218
5219 /* Send the CDB (atapi) or the first data block (ata pio out).
5220 * During the state transition, interrupt handler shouldn't
5221 * be invoked before the data transfer is complete and
5222 * hsm_task_state is changed. Hence, the following locking.
5223 */
5224 if (in_wq)
5225 spin_lock_irqsave(ap->lock, flags);
5226
5227 if (qc->tf.protocol == ATA_PROT_PIO) {
5228 /* PIO data out protocol.
5229 * send first data block.
5230 */
5231
5232 /* ata_pio_sectors() might change the state
5233 * to HSM_ST_LAST. so, the state is changed here
5234 * before ata_pio_sectors().
5235 */
5236 ap->hsm_task_state = HSM_ST;
5237 ata_pio_sectors(qc);
5238 } else
5239 /* send CDB */
5240 atapi_send_cdb(ap, qc);
5241
5242 if (in_wq)
5243 spin_unlock_irqrestore(ap->lock, flags);
5244
5245 /* if polling, ata_pio_task() handles the rest.
5246 * otherwise, interrupt handler takes over from here.
5247 */
5248 break;
5249
5250 case HSM_ST:
5251 /* complete command or read/write the data register */
5252 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5253 /* ATAPI PIO protocol */
5254 if ((status & ATA_DRQ) == 0) {
5255 /* No more data to transfer or device error.
5256 * Device error will be tagged in HSM_ST_LAST.
5257 */
5258 ap->hsm_task_state = HSM_ST_LAST;
5259 goto fsm_start;
5260 }
5261
5262 /* Device should not ask for data transfer (DRQ=1)
5263 * when it finds something wrong.
5264 * We ignore DRQ here and stop the HSM by
5265 * changing hsm_task_state to HSM_ST_ERR and
5266 * let the EH abort the command or reset the device.
5267 */
5268 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5269 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5270 "device error, dev_stat 0x%X\n",
5271 status);
5272 qc->err_mask |= AC_ERR_HSM;
5273 ap->hsm_task_state = HSM_ST_ERR;
5274 goto fsm_start;
5275 }
5276
5277 atapi_pio_bytes(qc);
5278
5279 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5280 /* bad ireason reported by device */
5281 goto fsm_start;
5282
5283 } else {
5284 /* ATA PIO protocol */
5285 if (unlikely((status & ATA_DRQ) == 0)) {
5286 /* handle BSY=0, DRQ=0 as error */
5287 if (likely(status & (ATA_ERR | ATA_DF)))
5288 /* device stops HSM for abort/error */
5289 qc->err_mask |= AC_ERR_DEV;
5290 else
5291 /* HSM violation. Let EH handle this.
5292 * Phantom devices also trigger this
5293 * condition. Mark hint.
5294 */
5295 qc->err_mask |= AC_ERR_HSM |
5296 AC_ERR_NODEV_HINT;
5297
5298 ap->hsm_task_state = HSM_ST_ERR;
5299 goto fsm_start;
5300 }
5301
5302 /* For PIO reads, some devices may ask for
5303 * data transfer (DRQ=1) alone with ERR=1.
5304 * We respect DRQ here and transfer one
5305 * block of junk data before changing the
5306 * hsm_task_state to HSM_ST_ERR.
5307 *
5308 * For PIO writes, ERR=1 DRQ=1 doesn't make
5309 * sense since the data block has been
5310 * transferred to the device.
5311 */
5312 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5313 /* data might be corrputed */
5314 qc->err_mask |= AC_ERR_DEV;
5315
5316 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5317 ata_pio_sectors(qc);
5318 status = ata_wait_idle(ap);
5319 }
5320
5321 if (status & (ATA_BUSY | ATA_DRQ))
5322 qc->err_mask |= AC_ERR_HSM;
5323
5324 /* ata_pio_sectors() might change the
5325 * state to HSM_ST_LAST. so, the state
5326 * is changed after ata_pio_sectors().
5327 */
5328 ap->hsm_task_state = HSM_ST_ERR;
5329 goto fsm_start;
5330 }
5331
5332 ata_pio_sectors(qc);
5333
5334 if (ap->hsm_task_state == HSM_ST_LAST &&
5335 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5336 /* all data read */
5337 status = ata_wait_idle(ap);
5338 goto fsm_start;
5339 }
5340 }
5341
5342 poll_next = 1;
5343 break;
5344
5345 case HSM_ST_LAST:
5346 if (unlikely(!ata_ok(status))) {
5347 qc->err_mask |= __ac_err_mask(status);
5348 ap->hsm_task_state = HSM_ST_ERR;
5349 goto fsm_start;
5350 }
5351
5352 /* no more data to transfer */
5353 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5354 ap->print_id, qc->dev->devno, status);
5355
5356 WARN_ON(qc->err_mask);
5357
5358 ap->hsm_task_state = HSM_ST_IDLE;
5359
5360 /* complete taskfile transaction */
5361 ata_hsm_qc_complete(qc, in_wq);
5362
5363 poll_next = 0;
5364 break;
5365
5366 case HSM_ST_ERR:
5367 /* make sure qc->err_mask is available to
5368 * know what's wrong and recover
5369 */
5370 WARN_ON(qc->err_mask == 0);
5371
5372 ap->hsm_task_state = HSM_ST_IDLE;
5373
5374 /* complete taskfile transaction */
5375 ata_hsm_qc_complete(qc, in_wq);
5376
5377 poll_next = 0;
5378 break;
5379 default:
5380 poll_next = 0;
5381 BUG();
5382 }
5383
5384 return poll_next;
5385 }
5386
5387 static void ata_pio_task(struct work_struct *work)
5388 {
5389 struct ata_port *ap =
5390 container_of(work, struct ata_port, port_task.work);
5391 struct ata_queued_cmd *qc = ap->port_task_data;
5392 u8 status;
5393 int poll_next;
5394
5395 fsm_start:
5396 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5397
5398 /*
5399 * This is purely heuristic. This is a fast path.
5400 * Sometimes when we enter, BSY will be cleared in
5401 * a chk-status or two. If not, the drive is probably seeking
5402 * or something. Snooze for a couple msecs, then
5403 * chk-status again. If still busy, queue delayed work.
5404 */
5405 status = ata_busy_wait(ap, ATA_BUSY, 5);
5406 if (status & ATA_BUSY) {
5407 msleep(2);
5408 status = ata_busy_wait(ap, ATA_BUSY, 10);
5409 if (status & ATA_BUSY) {
5410 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5411 return;
5412 }
5413 }
5414
5415 /* move the HSM */
5416 poll_next = ata_hsm_move(ap, qc, status, 1);
5417
5418 /* another command or interrupt handler
5419 * may be running at this point.
5420 */
5421 if (poll_next)
5422 goto fsm_start;
5423 }
5424
5425 /**
5426 * ata_qc_new - Request an available ATA command, for queueing
5427 * @ap: Port associated with device @dev
5428 * @dev: Device from whom we request an available command structure
5429 *
5430 * LOCKING:
5431 * None.
5432 */
5433
5434 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5435 {
5436 struct ata_queued_cmd *qc = NULL;
5437 unsigned int i;
5438
5439 /* no command while frozen */
5440 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5441 return NULL;
5442
5443 /* the last tag is reserved for internal command. */
5444 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5445 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5446 qc = __ata_qc_from_tag(ap, i);
5447 break;
5448 }
5449
5450 if (qc)
5451 qc->tag = i;
5452
5453 return qc;
5454 }
5455
5456 /**
5457 * ata_qc_new_init - Request an available ATA command, and initialize it
5458 * @dev: Device from whom we request an available command structure
5459 *
5460 * LOCKING:
5461 * None.
5462 */
5463
5464 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5465 {
5466 struct ata_port *ap = dev->link->ap;
5467 struct ata_queued_cmd *qc;
5468
5469 qc = ata_qc_new(ap);
5470 if (qc) {
5471 qc->scsicmd = NULL;
5472 qc->ap = ap;
5473 qc->dev = dev;
5474
5475 ata_qc_reinit(qc);
5476 }
5477
5478 return qc;
5479 }
5480
5481 /**
5482 * ata_qc_free - free unused ata_queued_cmd
5483 * @qc: Command to complete
5484 *
5485 * Designed to free unused ata_queued_cmd object
5486 * in case something prevents using it.
5487 *
5488 * LOCKING:
5489 * spin_lock_irqsave(host lock)
5490 */
5491 void ata_qc_free(struct ata_queued_cmd *qc)
5492 {
5493 struct ata_port *ap = qc->ap;
5494 unsigned int tag;
5495
5496 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5497
5498 qc->flags = 0;
5499 tag = qc->tag;
5500 if (likely(ata_tag_valid(tag))) {
5501 qc->tag = ATA_TAG_POISON;
5502 clear_bit(tag, &ap->qc_allocated);
5503 }
5504 }
5505
5506 void __ata_qc_complete(struct ata_queued_cmd *qc)
5507 {
5508 struct ata_port *ap = qc->ap;
5509 struct ata_link *link = qc->dev->link;
5510
5511 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5512 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5513
5514 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5515 ata_sg_clean(qc);
5516
5517 /* command should be marked inactive atomically with qc completion */
5518 if (qc->tf.protocol == ATA_PROT_NCQ) {
5519 link->sactive &= ~(1 << qc->tag);
5520 if (!link->sactive)
5521 ap->nr_active_links--;
5522 } else {
5523 link->active_tag = ATA_TAG_POISON;
5524 ap->nr_active_links--;
5525 }
5526
5527 /* clear exclusive status */
5528 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5529 ap->excl_link == link))
5530 ap->excl_link = NULL;
5531
5532 /* atapi: mark qc as inactive to prevent the interrupt handler
5533 * from completing the command twice later, before the error handler
5534 * is called. (when rc != 0 and atapi request sense is needed)
5535 */
5536 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5537 ap->qc_active &= ~(1 << qc->tag);
5538
5539 /* call completion callback */
5540 qc->complete_fn(qc);
5541 }
5542
5543 static void fill_result_tf(struct ata_queued_cmd *qc)
5544 {
5545 struct ata_port *ap = qc->ap;
5546
5547 qc->result_tf.flags = qc->tf.flags;
5548 ap->ops->tf_read(ap, &qc->result_tf);
5549 }
5550
5551 /**
5552 * ata_qc_complete - Complete an active ATA command
5553 * @qc: Command to complete
5554 * @err_mask: ATA Status register contents
5555 *
5556 * Indicate to the mid and upper layers that an ATA
5557 * command has completed, with either an ok or not-ok status.
5558 *
5559 * LOCKING:
5560 * spin_lock_irqsave(host lock)
5561 */
5562 void ata_qc_complete(struct ata_queued_cmd *qc)
5563 {
5564 struct ata_port *ap = qc->ap;
5565
5566 /* XXX: New EH and old EH use different mechanisms to
5567 * synchronize EH with regular execution path.
5568 *
5569 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5570 * Normal execution path is responsible for not accessing a
5571 * failed qc. libata core enforces the rule by returning NULL
5572 * from ata_qc_from_tag() for failed qcs.
5573 *
5574 * Old EH depends on ata_qc_complete() nullifying completion
5575 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5576 * not synchronize with interrupt handler. Only PIO task is
5577 * taken care of.
5578 */
5579 if (ap->ops->error_handler) {
5580 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5581
5582 if (unlikely(qc->err_mask))
5583 qc->flags |= ATA_QCFLAG_FAILED;
5584
5585 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5586 if (!ata_tag_internal(qc->tag)) {
5587 /* always fill result TF for failed qc */
5588 fill_result_tf(qc);
5589 ata_qc_schedule_eh(qc);
5590 return;
5591 }
5592 }
5593
5594 /* read result TF if requested */
5595 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5596 fill_result_tf(qc);
5597
5598 __ata_qc_complete(qc);
5599 } else {
5600 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5601 return;
5602
5603 /* read result TF if failed or requested */
5604 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5605 fill_result_tf(qc);
5606
5607 __ata_qc_complete(qc);
5608 }
5609 }
5610
5611 /**
5612 * ata_qc_complete_multiple - Complete multiple qcs successfully
5613 * @ap: port in question
5614 * @qc_active: new qc_active mask
5615 * @finish_qc: LLDD callback invoked before completing a qc
5616 *
5617 * Complete in-flight commands. This functions is meant to be
5618 * called from low-level driver's interrupt routine to complete
5619 * requests normally. ap->qc_active and @qc_active is compared
5620 * and commands are completed accordingly.
5621 *
5622 * LOCKING:
5623 * spin_lock_irqsave(host lock)
5624 *
5625 * RETURNS:
5626 * Number of completed commands on success, -errno otherwise.
5627 */
5628 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5629 void (*finish_qc)(struct ata_queued_cmd *))
5630 {
5631 int nr_done = 0;
5632 u32 done_mask;
5633 int i;
5634
5635 done_mask = ap->qc_active ^ qc_active;
5636
5637 if (unlikely(done_mask & qc_active)) {
5638 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5639 "(%08x->%08x)\n", ap->qc_active, qc_active);
5640 return -EINVAL;
5641 }
5642
5643 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5644 struct ata_queued_cmd *qc;
5645
5646 if (!(done_mask & (1 << i)))
5647 continue;
5648
5649 if ((qc = ata_qc_from_tag(ap, i))) {
5650 if (finish_qc)
5651 finish_qc(qc);
5652 ata_qc_complete(qc);
5653 nr_done++;
5654 }
5655 }
5656
5657 return nr_done;
5658 }
5659
5660 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5661 {
5662 struct ata_port *ap = qc->ap;
5663
5664 switch (qc->tf.protocol) {
5665 case ATA_PROT_NCQ:
5666 case ATA_PROT_DMA:
5667 case ATA_PROT_ATAPI_DMA:
5668 return 1;
5669
5670 case ATA_PROT_ATAPI:
5671 case ATA_PROT_PIO:
5672 if (ap->flags & ATA_FLAG_PIO_DMA)
5673 return 1;
5674
5675 /* fall through */
5676
5677 default:
5678 return 0;
5679 }
5680
5681 /* never reached */
5682 }
5683
5684 /**
5685 * ata_qc_issue - issue taskfile to device
5686 * @qc: command to issue to device
5687 *
5688 * Prepare an ATA command to submission to device.
5689 * This includes mapping the data into a DMA-able
5690 * area, filling in the S/G table, and finally
5691 * writing the taskfile to hardware, starting the command.
5692 *
5693 * LOCKING:
5694 * spin_lock_irqsave(host lock)
5695 */
5696 void ata_qc_issue(struct ata_queued_cmd *qc)
5697 {
5698 struct ata_port *ap = qc->ap;
5699 struct ata_link *link = qc->dev->link;
5700
5701 /* Make sure only one non-NCQ command is outstanding. The
5702 * check is skipped for old EH because it reuses active qc to
5703 * request ATAPI sense.
5704 */
5705 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5706
5707 if (qc->tf.protocol == ATA_PROT_NCQ) {
5708 WARN_ON(link->sactive & (1 << qc->tag));
5709
5710 if (!link->sactive)
5711 ap->nr_active_links++;
5712 link->sactive |= 1 << qc->tag;
5713 } else {
5714 WARN_ON(link->sactive);
5715
5716 ap->nr_active_links++;
5717 link->active_tag = qc->tag;
5718 }
5719
5720 qc->flags |= ATA_QCFLAG_ACTIVE;
5721 ap->qc_active |= 1 << qc->tag;
5722
5723 if (ata_should_dma_map(qc)) {
5724 if (qc->flags & ATA_QCFLAG_SG) {
5725 if (ata_sg_setup(qc))
5726 goto sg_err;
5727 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5728 if (ata_sg_setup_one(qc))
5729 goto sg_err;
5730 }
5731 } else {
5732 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5733 }
5734
5735 ap->ops->qc_prep(qc);
5736
5737 qc->err_mask |= ap->ops->qc_issue(qc);
5738 if (unlikely(qc->err_mask))
5739 goto err;
5740 return;
5741
5742 sg_err:
5743 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5744 qc->err_mask |= AC_ERR_SYSTEM;
5745 err:
5746 ata_qc_complete(qc);
5747 }
5748
5749 /**
5750 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5751 * @qc: command to issue to device
5752 *
5753 * Using various libata functions and hooks, this function
5754 * starts an ATA command. ATA commands are grouped into
5755 * classes called "protocols", and issuing each type of protocol
5756 * is slightly different.
5757 *
5758 * May be used as the qc_issue() entry in ata_port_operations.
5759 *
5760 * LOCKING:
5761 * spin_lock_irqsave(host lock)
5762 *
5763 * RETURNS:
5764 * Zero on success, AC_ERR_* mask on failure
5765 */
5766
5767 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5768 {
5769 struct ata_port *ap = qc->ap;
5770
5771 /* Use polling pio if the LLD doesn't handle
5772 * interrupt driven pio and atapi CDB interrupt.
5773 */
5774 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5775 switch (qc->tf.protocol) {
5776 case ATA_PROT_PIO:
5777 case ATA_PROT_NODATA:
5778 case ATA_PROT_ATAPI:
5779 case ATA_PROT_ATAPI_NODATA:
5780 qc->tf.flags |= ATA_TFLAG_POLLING;
5781 break;
5782 case ATA_PROT_ATAPI_DMA:
5783 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5784 /* see ata_dma_blacklisted() */
5785 BUG();
5786 break;
5787 default:
5788 break;
5789 }
5790 }
5791
5792 /* select the device */
5793 ata_dev_select(ap, qc->dev->devno, 1, 0);
5794
5795 /* start the command */
5796 switch (qc->tf.protocol) {
5797 case ATA_PROT_NODATA:
5798 if (qc->tf.flags & ATA_TFLAG_POLLING)
5799 ata_qc_set_polling(qc);
5800
5801 ata_tf_to_host(ap, &qc->tf);
5802 ap->hsm_task_state = HSM_ST_LAST;
5803
5804 if (qc->tf.flags & ATA_TFLAG_POLLING)
5805 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5806
5807 break;
5808
5809 case ATA_PROT_DMA:
5810 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5811
5812 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5813 ap->ops->bmdma_setup(qc); /* set up bmdma */
5814 ap->ops->bmdma_start(qc); /* initiate bmdma */
5815 ap->hsm_task_state = HSM_ST_LAST;
5816 break;
5817
5818 case ATA_PROT_PIO:
5819 if (qc->tf.flags & ATA_TFLAG_POLLING)
5820 ata_qc_set_polling(qc);
5821
5822 ata_tf_to_host(ap, &qc->tf);
5823
5824 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5825 /* PIO data out protocol */
5826 ap->hsm_task_state = HSM_ST_FIRST;
5827 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5828
5829 /* always send first data block using
5830 * the ata_pio_task() codepath.
5831 */
5832 } else {
5833 /* PIO data in protocol */
5834 ap->hsm_task_state = HSM_ST;
5835
5836 if (qc->tf.flags & ATA_TFLAG_POLLING)
5837 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5838
5839 /* if polling, ata_pio_task() handles the rest.
5840 * otherwise, interrupt handler takes over from here.
5841 */
5842 }
5843
5844 break;
5845
5846 case ATA_PROT_ATAPI:
5847 case ATA_PROT_ATAPI_NODATA:
5848 if (qc->tf.flags & ATA_TFLAG_POLLING)
5849 ata_qc_set_polling(qc);
5850
5851 ata_tf_to_host(ap, &qc->tf);
5852
5853 ap->hsm_task_state = HSM_ST_FIRST;
5854
5855 /* send cdb by polling if no cdb interrupt */
5856 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5857 (qc->tf.flags & ATA_TFLAG_POLLING))
5858 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5859 break;
5860
5861 case ATA_PROT_ATAPI_DMA:
5862 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5863
5864 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5865 ap->ops->bmdma_setup(qc); /* set up bmdma */
5866 ap->hsm_task_state = HSM_ST_FIRST;
5867
5868 /* send cdb by polling if no cdb interrupt */
5869 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5870 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5871 break;
5872
5873 default:
5874 WARN_ON(1);
5875 return AC_ERR_SYSTEM;
5876 }
5877
5878 return 0;
5879 }
5880
5881 /**
5882 * ata_host_intr - Handle host interrupt for given (port, task)
5883 * @ap: Port on which interrupt arrived (possibly...)
5884 * @qc: Taskfile currently active in engine
5885 *
5886 * Handle host interrupt for given queued command. Currently,
5887 * only DMA interrupts are handled. All other commands are
5888 * handled via polling with interrupts disabled (nIEN bit).
5889 *
5890 * LOCKING:
5891 * spin_lock_irqsave(host lock)
5892 *
5893 * RETURNS:
5894 * One if interrupt was handled, zero if not (shared irq).
5895 */
5896
5897 inline unsigned int ata_host_intr (struct ata_port *ap,
5898 struct ata_queued_cmd *qc)
5899 {
5900 struct ata_eh_info *ehi = &ap->link.eh_info;
5901 u8 status, host_stat = 0;
5902
5903 VPRINTK("ata%u: protocol %d task_state %d\n",
5904 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5905
5906 /* Check whether we are expecting interrupt in this state */
5907 switch (ap->hsm_task_state) {
5908 case HSM_ST_FIRST:
5909 /* Some pre-ATAPI-4 devices assert INTRQ
5910 * at this state when ready to receive CDB.
5911 */
5912
5913 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5914 * The flag was turned on only for atapi devices.
5915 * No need to check is_atapi_taskfile(&qc->tf) again.
5916 */
5917 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5918 goto idle_irq;
5919 break;
5920 case HSM_ST_LAST:
5921 if (qc->tf.protocol == ATA_PROT_DMA ||
5922 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5923 /* check status of DMA engine */
5924 host_stat = ap->ops->bmdma_status(ap);
5925 VPRINTK("ata%u: host_stat 0x%X\n",
5926 ap->print_id, host_stat);
5927
5928 /* if it's not our irq... */
5929 if (!(host_stat & ATA_DMA_INTR))
5930 goto idle_irq;
5931
5932 /* before we do anything else, clear DMA-Start bit */
5933 ap->ops->bmdma_stop(qc);
5934
5935 if (unlikely(host_stat & ATA_DMA_ERR)) {
5936 /* error when transfering data to/from memory */
5937 qc->err_mask |= AC_ERR_HOST_BUS;
5938 ap->hsm_task_state = HSM_ST_ERR;
5939 }
5940 }
5941 break;
5942 case HSM_ST:
5943 break;
5944 default:
5945 goto idle_irq;
5946 }
5947
5948 /* check altstatus */
5949 status = ata_altstatus(ap);
5950 if (status & ATA_BUSY)
5951 goto idle_irq;
5952
5953 /* check main status, clearing INTRQ */
5954 status = ata_chk_status(ap);
5955 if (unlikely(status & ATA_BUSY))
5956 goto idle_irq;
5957
5958 /* ack bmdma irq events */
5959 ap->ops->irq_clear(ap);
5960
5961 ata_hsm_move(ap, qc, status, 0);
5962
5963 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5964 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5965 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5966
5967 return 1; /* irq handled */
5968
5969 idle_irq:
5970 ap->stats.idle_irq++;
5971
5972 #ifdef ATA_IRQ_TRAP
5973 if ((ap->stats.idle_irq % 1000) == 0) {
5974 ata_chk_status(ap);
5975 ap->ops->irq_clear(ap);
5976 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5977 return 1;
5978 }
5979 #endif
5980 return 0; /* irq not handled */
5981 }
5982
5983 /**
5984 * ata_interrupt - Default ATA host interrupt handler
5985 * @irq: irq line (unused)
5986 * @dev_instance: pointer to our ata_host information structure
5987 *
5988 * Default interrupt handler for PCI IDE devices. Calls
5989 * ata_host_intr() for each port that is not disabled.
5990 *
5991 * LOCKING:
5992 * Obtains host lock during operation.
5993 *
5994 * RETURNS:
5995 * IRQ_NONE or IRQ_HANDLED.
5996 */
5997
5998 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5999 {
6000 struct ata_host *host = dev_instance;
6001 unsigned int i;
6002 unsigned int handled = 0;
6003 unsigned long flags;
6004
6005 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6006 spin_lock_irqsave(&host->lock, flags);
6007
6008 for (i = 0; i < host->n_ports; i++) {
6009 struct ata_port *ap;
6010
6011 ap = host->ports[i];
6012 if (ap &&
6013 !(ap->flags & ATA_FLAG_DISABLED)) {
6014 struct ata_queued_cmd *qc;
6015
6016 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6017 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6018 (qc->flags & ATA_QCFLAG_ACTIVE))
6019 handled |= ata_host_intr(ap, qc);
6020 }
6021 }
6022
6023 spin_unlock_irqrestore(&host->lock, flags);
6024
6025 return IRQ_RETVAL(handled);
6026 }
6027
6028 /**
6029 * sata_scr_valid - test whether SCRs are accessible
6030 * @link: ATA link to test SCR accessibility for
6031 *
6032 * Test whether SCRs are accessible for @link.
6033 *
6034 * LOCKING:
6035 * None.
6036 *
6037 * RETURNS:
6038 * 1 if SCRs are accessible, 0 otherwise.
6039 */
6040 int sata_scr_valid(struct ata_link *link)
6041 {
6042 struct ata_port *ap = link->ap;
6043
6044 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6045 }
6046
6047 /**
6048 * sata_scr_read - read SCR register of the specified port
6049 * @link: ATA link to read SCR for
6050 * @reg: SCR to read
6051 * @val: Place to store read value
6052 *
6053 * Read SCR register @reg of @link into *@val. This function is
6054 * guaranteed to succeed if @link is ap->link, the cable type of
6055 * the port is SATA and the port implements ->scr_read.
6056 *
6057 * LOCKING:
6058 * None if @link is ap->link. Kernel thread context otherwise.
6059 *
6060 * RETURNS:
6061 * 0 on success, negative errno on failure.
6062 */
6063 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6064 {
6065 if (ata_is_host_link(link)) {
6066 struct ata_port *ap = link->ap;
6067
6068 if (sata_scr_valid(link))
6069 return ap->ops->scr_read(ap, reg, val);
6070 return -EOPNOTSUPP;
6071 }
6072
6073 return sata_pmp_scr_read(link, reg, val);
6074 }
6075
6076 /**
6077 * sata_scr_write - write SCR register of the specified port
6078 * @link: ATA link to write SCR for
6079 * @reg: SCR to write
6080 * @val: value to write
6081 *
6082 * Write @val to SCR register @reg of @link. This function is
6083 * guaranteed to succeed if @link is ap->link, the cable type of
6084 * the port is SATA and the port implements ->scr_read.
6085 *
6086 * LOCKING:
6087 * None if @link is ap->link. Kernel thread context otherwise.
6088 *
6089 * RETURNS:
6090 * 0 on success, negative errno on failure.
6091 */
6092 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6093 {
6094 if (ata_is_host_link(link)) {
6095 struct ata_port *ap = link->ap;
6096
6097 if (sata_scr_valid(link))
6098 return ap->ops->scr_write(ap, reg, val);
6099 return -EOPNOTSUPP;
6100 }
6101
6102 return sata_pmp_scr_write(link, reg, val);
6103 }
6104
6105 /**
6106 * sata_scr_write_flush - write SCR register of the specified port and flush
6107 * @link: ATA link to write SCR for
6108 * @reg: SCR to write
6109 * @val: value to write
6110 *
6111 * This function is identical to sata_scr_write() except that this
6112 * function performs flush after writing to the register.
6113 *
6114 * LOCKING:
6115 * None if @link is ap->link. Kernel thread context otherwise.
6116 *
6117 * RETURNS:
6118 * 0 on success, negative errno on failure.
6119 */
6120 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6121 {
6122 if (ata_is_host_link(link)) {
6123 struct ata_port *ap = link->ap;
6124 int rc;
6125
6126 if (sata_scr_valid(link)) {
6127 rc = ap->ops->scr_write(ap, reg, val);
6128 if (rc == 0)
6129 rc = ap->ops->scr_read(ap, reg, &val);
6130 return rc;
6131 }
6132 return -EOPNOTSUPP;
6133 }
6134
6135 return sata_pmp_scr_write(link, reg, val);
6136 }
6137
6138 /**
6139 * ata_link_online - test whether the given link is online
6140 * @link: ATA link to test
6141 *
6142 * Test whether @link is online. Note that this function returns
6143 * 0 if online status of @link cannot be obtained, so
6144 * ata_link_online(link) != !ata_link_offline(link).
6145 *
6146 * LOCKING:
6147 * None.
6148 *
6149 * RETURNS:
6150 * 1 if the port online status is available and online.
6151 */
6152 int ata_link_online(struct ata_link *link)
6153 {
6154 u32 sstatus;
6155
6156 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6157 (sstatus & 0xf) == 0x3)
6158 return 1;
6159 return 0;
6160 }
6161
6162 /**
6163 * ata_link_offline - test whether the given link is offline
6164 * @link: ATA link to test
6165 *
6166 * Test whether @link is offline. Note that this function
6167 * returns 0 if offline status of @link cannot be obtained, so
6168 * ata_link_online(link) != !ata_link_offline(link).
6169 *
6170 * LOCKING:
6171 * None.
6172 *
6173 * RETURNS:
6174 * 1 if the port offline status is available and offline.
6175 */
6176 int ata_link_offline(struct ata_link *link)
6177 {
6178 u32 sstatus;
6179
6180 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6181 (sstatus & 0xf) != 0x3)
6182 return 1;
6183 return 0;
6184 }
6185
6186 int ata_flush_cache(struct ata_device *dev)
6187 {
6188 unsigned int err_mask;
6189 u8 cmd;
6190
6191 if (!ata_try_flush_cache(dev))
6192 return 0;
6193
6194 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6195 cmd = ATA_CMD_FLUSH_EXT;
6196 else
6197 cmd = ATA_CMD_FLUSH;
6198
6199 /* This is wrong. On a failed flush we get back the LBA of the lost
6200 sector and we should (assuming it wasn't aborted as unknown) issue
6201 a further flush command to continue the writeback until it
6202 does not error */
6203 err_mask = ata_do_simple_cmd(dev, cmd);
6204 if (err_mask) {
6205 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6206 return -EIO;
6207 }
6208
6209 return 0;
6210 }
6211
6212 #ifdef CONFIG_PM
6213 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6214 unsigned int action, unsigned int ehi_flags,
6215 int wait)
6216 {
6217 unsigned long flags;
6218 int i, rc;
6219
6220 for (i = 0; i < host->n_ports; i++) {
6221 struct ata_port *ap = host->ports[i];
6222 struct ata_link *link;
6223
6224 /* Previous resume operation might still be in
6225 * progress. Wait for PM_PENDING to clear.
6226 */
6227 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6228 ata_port_wait_eh(ap);
6229 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6230 }
6231
6232 /* request PM ops to EH */
6233 spin_lock_irqsave(ap->lock, flags);
6234
6235 ap->pm_mesg = mesg;
6236 if (wait) {
6237 rc = 0;
6238 ap->pm_result = &rc;
6239 }
6240
6241 ap->pflags |= ATA_PFLAG_PM_PENDING;
6242 __ata_port_for_each_link(link, ap) {
6243 link->eh_info.action |= action;
6244 link->eh_info.flags |= ehi_flags;
6245 }
6246
6247 ata_port_schedule_eh(ap);
6248
6249 spin_unlock_irqrestore(ap->lock, flags);
6250
6251 /* wait and check result */
6252 if (wait) {
6253 ata_port_wait_eh(ap);
6254 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6255 if (rc)
6256 return rc;
6257 }
6258 }
6259
6260 return 0;
6261 }
6262
6263 /**
6264 * ata_host_suspend - suspend host
6265 * @host: host to suspend
6266 * @mesg: PM message
6267 *
6268 * Suspend @host. Actual operation is performed by EH. This
6269 * function requests EH to perform PM operations and waits for EH
6270 * to finish.
6271 *
6272 * LOCKING:
6273 * Kernel thread context (may sleep).
6274 *
6275 * RETURNS:
6276 * 0 on success, -errno on failure.
6277 */
6278 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6279 {
6280 int rc;
6281
6282 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6283 if (rc == 0)
6284 host->dev->power.power_state = mesg;
6285 return rc;
6286 }
6287
6288 /**
6289 * ata_host_resume - resume host
6290 * @host: host to resume
6291 *
6292 * Resume @host. Actual operation is performed by EH. This
6293 * function requests EH to perform PM operations and returns.
6294 * Note that all resume operations are performed parallely.
6295 *
6296 * LOCKING:
6297 * Kernel thread context (may sleep).
6298 */
6299 void ata_host_resume(struct ata_host *host)
6300 {
6301 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6302 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6303 host->dev->power.power_state = PMSG_ON;
6304 }
6305 #endif
6306
6307 /**
6308 * ata_port_start - Set port up for dma.
6309 * @ap: Port to initialize
6310 *
6311 * Called just after data structures for each port are
6312 * initialized. Allocates space for PRD table.
6313 *
6314 * May be used as the port_start() entry in ata_port_operations.
6315 *
6316 * LOCKING:
6317 * Inherited from caller.
6318 */
6319 int ata_port_start(struct ata_port *ap)
6320 {
6321 struct device *dev = ap->dev;
6322 int rc;
6323
6324 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6325 GFP_KERNEL);
6326 if (!ap->prd)
6327 return -ENOMEM;
6328
6329 rc = ata_pad_alloc(ap, dev);
6330 if (rc)
6331 return rc;
6332
6333 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6334 (unsigned long long)ap->prd_dma);
6335 return 0;
6336 }
6337
6338 /**
6339 * ata_dev_init - Initialize an ata_device structure
6340 * @dev: Device structure to initialize
6341 *
6342 * Initialize @dev in preparation for probing.
6343 *
6344 * LOCKING:
6345 * Inherited from caller.
6346 */
6347 void ata_dev_init(struct ata_device *dev)
6348 {
6349 struct ata_link *link = dev->link;
6350 struct ata_port *ap = link->ap;
6351 unsigned long flags;
6352
6353 /* SATA spd limit is bound to the first device */
6354 link->sata_spd_limit = link->hw_sata_spd_limit;
6355 link->sata_spd = 0;
6356
6357 /* High bits of dev->flags are used to record warm plug
6358 * requests which occur asynchronously. Synchronize using
6359 * host lock.
6360 */
6361 spin_lock_irqsave(ap->lock, flags);
6362 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6363 dev->horkage = 0;
6364 spin_unlock_irqrestore(ap->lock, flags);
6365
6366 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6367 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6368 dev->pio_mask = UINT_MAX;
6369 dev->mwdma_mask = UINT_MAX;
6370 dev->udma_mask = UINT_MAX;
6371 }
6372
6373 /**
6374 * ata_link_init - Initialize an ata_link structure
6375 * @ap: ATA port link is attached to
6376 * @link: Link structure to initialize
6377 * @pmp: Port multiplier port number
6378 *
6379 * Initialize @link.
6380 *
6381 * LOCKING:
6382 * Kernel thread context (may sleep)
6383 */
6384 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6385 {
6386 int i;
6387
6388 /* clear everything except for devices */
6389 memset(link, 0, offsetof(struct ata_link, device[0]));
6390
6391 link->ap = ap;
6392 link->pmp = pmp;
6393 link->active_tag = ATA_TAG_POISON;
6394 link->hw_sata_spd_limit = UINT_MAX;
6395
6396 /* can't use iterator, ap isn't initialized yet */
6397 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6398 struct ata_device *dev = &link->device[i];
6399
6400 dev->link = link;
6401 dev->devno = dev - link->device;
6402 ata_dev_init(dev);
6403 }
6404 }
6405
6406 /**
6407 * sata_link_init_spd - Initialize link->sata_spd_limit
6408 * @link: Link to configure sata_spd_limit for
6409 *
6410 * Initialize @link->[hw_]sata_spd_limit to the currently
6411 * configured value.
6412 *
6413 * LOCKING:
6414 * Kernel thread context (may sleep).
6415 *
6416 * RETURNS:
6417 * 0 on success, -errno on failure.
6418 */
6419 int sata_link_init_spd(struct ata_link *link)
6420 {
6421 u32 scontrol, spd;
6422 int rc;
6423
6424 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6425 if (rc)
6426 return rc;
6427
6428 spd = (scontrol >> 4) & 0xf;
6429 if (spd)
6430 link->hw_sata_spd_limit &= (1 << spd) - 1;
6431
6432 link->sata_spd_limit = link->hw_sata_spd_limit;
6433
6434 return 0;
6435 }
6436
6437 /**
6438 * ata_port_alloc - allocate and initialize basic ATA port resources
6439 * @host: ATA host this allocated port belongs to
6440 *
6441 * Allocate and initialize basic ATA port resources.
6442 *
6443 * RETURNS:
6444 * Allocate ATA port on success, NULL on failure.
6445 *
6446 * LOCKING:
6447 * Inherited from calling layer (may sleep).
6448 */
6449 struct ata_port *ata_port_alloc(struct ata_host *host)
6450 {
6451 struct ata_port *ap;
6452
6453 DPRINTK("ENTER\n");
6454
6455 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6456 if (!ap)
6457 return NULL;
6458
6459 ap->pflags |= ATA_PFLAG_INITIALIZING;
6460 ap->lock = &host->lock;
6461 ap->flags = ATA_FLAG_DISABLED;
6462 ap->print_id = -1;
6463 ap->ctl = ATA_DEVCTL_OBS;
6464 ap->host = host;
6465 ap->dev = host->dev;
6466 ap->last_ctl = 0xFF;
6467
6468 #if defined(ATA_VERBOSE_DEBUG)
6469 /* turn on all debugging levels */
6470 ap->msg_enable = 0x00FF;
6471 #elif defined(ATA_DEBUG)
6472 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6473 #else
6474 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6475 #endif
6476
6477 INIT_DELAYED_WORK(&ap->port_task, NULL);
6478 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6479 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6480 INIT_LIST_HEAD(&ap->eh_done_q);
6481 init_waitqueue_head(&ap->eh_wait_q);
6482 init_timer_deferrable(&ap->fastdrain_timer);
6483 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6484 ap->fastdrain_timer.data = (unsigned long)ap;
6485
6486 ap->cbl = ATA_CBL_NONE;
6487
6488 ata_link_init(ap, &ap->link, 0);
6489
6490 #ifdef ATA_IRQ_TRAP
6491 ap->stats.unhandled_irq = 1;
6492 ap->stats.idle_irq = 1;
6493 #endif
6494 return ap;
6495 }
6496
6497 static void ata_host_release(struct device *gendev, void *res)
6498 {
6499 struct ata_host *host = dev_get_drvdata(gendev);
6500 int i;
6501
6502 for (i = 0; i < host->n_ports; i++) {
6503 struct ata_port *ap = host->ports[i];
6504
6505 if (!ap)
6506 continue;
6507
6508 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6509 ap->ops->port_stop(ap);
6510 }
6511
6512 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6513 host->ops->host_stop(host);
6514
6515 for (i = 0; i < host->n_ports; i++) {
6516 struct ata_port *ap = host->ports[i];
6517
6518 if (!ap)
6519 continue;
6520
6521 if (ap->scsi_host)
6522 scsi_host_put(ap->scsi_host);
6523
6524 kfree(ap->pmp_link);
6525 kfree(ap);
6526 host->ports[i] = NULL;
6527 }
6528
6529 dev_set_drvdata(gendev, NULL);
6530 }
6531
6532 /**
6533 * ata_host_alloc - allocate and init basic ATA host resources
6534 * @dev: generic device this host is associated with
6535 * @max_ports: maximum number of ATA ports associated with this host
6536 *
6537 * Allocate and initialize basic ATA host resources. LLD calls
6538 * this function to allocate a host, initializes it fully and
6539 * attaches it using ata_host_register().
6540 *
6541 * @max_ports ports are allocated and host->n_ports is
6542 * initialized to @max_ports. The caller is allowed to decrease
6543 * host->n_ports before calling ata_host_register(). The unused
6544 * ports will be automatically freed on registration.
6545 *
6546 * RETURNS:
6547 * Allocate ATA host on success, NULL on failure.
6548 *
6549 * LOCKING:
6550 * Inherited from calling layer (may sleep).
6551 */
6552 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6553 {
6554 struct ata_host *host;
6555 size_t sz;
6556 int i;
6557
6558 DPRINTK("ENTER\n");
6559
6560 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6561 return NULL;
6562
6563 /* alloc a container for our list of ATA ports (buses) */
6564 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6565 /* alloc a container for our list of ATA ports (buses) */
6566 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6567 if (!host)
6568 goto err_out;
6569
6570 devres_add(dev, host);
6571 dev_set_drvdata(dev, host);
6572
6573 spin_lock_init(&host->lock);
6574 host->dev = dev;
6575 host->n_ports = max_ports;
6576
6577 /* allocate ports bound to this host */
6578 for (i = 0; i < max_ports; i++) {
6579 struct ata_port *ap;
6580
6581 ap = ata_port_alloc(host);
6582 if (!ap)
6583 goto err_out;
6584
6585 ap->port_no = i;
6586 host->ports[i] = ap;
6587 }
6588
6589 devres_remove_group(dev, NULL);
6590 return host;
6591
6592 err_out:
6593 devres_release_group(dev, NULL);
6594 return NULL;
6595 }
6596
6597 /**
6598 * ata_host_alloc_pinfo - alloc host and init with port_info array
6599 * @dev: generic device this host is associated with
6600 * @ppi: array of ATA port_info to initialize host with
6601 * @n_ports: number of ATA ports attached to this host
6602 *
6603 * Allocate ATA host and initialize with info from @ppi. If NULL
6604 * terminated, @ppi may contain fewer entries than @n_ports. The
6605 * last entry will be used for the remaining ports.
6606 *
6607 * RETURNS:
6608 * Allocate ATA host on success, NULL on failure.
6609 *
6610 * LOCKING:
6611 * Inherited from calling layer (may sleep).
6612 */
6613 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6614 const struct ata_port_info * const * ppi,
6615 int n_ports)
6616 {
6617 const struct ata_port_info *pi;
6618 struct ata_host *host;
6619 int i, j;
6620
6621 host = ata_host_alloc(dev, n_ports);
6622 if (!host)
6623 return NULL;
6624
6625 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6626 struct ata_port *ap = host->ports[i];
6627
6628 if (ppi[j])
6629 pi = ppi[j++];
6630
6631 ap->pio_mask = pi->pio_mask;
6632 ap->mwdma_mask = pi->mwdma_mask;
6633 ap->udma_mask = pi->udma_mask;
6634 ap->flags |= pi->flags;
6635 ap->link.flags |= pi->link_flags;
6636 ap->ops = pi->port_ops;
6637
6638 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6639 host->ops = pi->port_ops;
6640 if (!host->private_data && pi->private_data)
6641 host->private_data = pi->private_data;
6642 }
6643
6644 return host;
6645 }
6646
6647 /**
6648 * ata_host_start - start and freeze ports of an ATA host
6649 * @host: ATA host to start ports for
6650 *
6651 * Start and then freeze ports of @host. Started status is
6652 * recorded in host->flags, so this function can be called
6653 * multiple times. Ports are guaranteed to get started only
6654 * once. If host->ops isn't initialized yet, its set to the
6655 * first non-dummy port ops.
6656 *
6657 * LOCKING:
6658 * Inherited from calling layer (may sleep).
6659 *
6660 * RETURNS:
6661 * 0 if all ports are started successfully, -errno otherwise.
6662 */
6663 int ata_host_start(struct ata_host *host)
6664 {
6665 int i, rc;
6666
6667 if (host->flags & ATA_HOST_STARTED)
6668 return 0;
6669
6670 for (i = 0; i < host->n_ports; i++) {
6671 struct ata_port *ap = host->ports[i];
6672
6673 if (!host->ops && !ata_port_is_dummy(ap))
6674 host->ops = ap->ops;
6675
6676 if (ap->ops->port_start) {
6677 rc = ap->ops->port_start(ap);
6678 if (rc) {
6679 ata_port_printk(ap, KERN_ERR, "failed to "
6680 "start port (errno=%d)\n", rc);
6681 goto err_out;
6682 }
6683 }
6684
6685 ata_eh_freeze_port(ap);
6686 }
6687
6688 host->flags |= ATA_HOST_STARTED;
6689 return 0;
6690
6691 err_out:
6692 while (--i >= 0) {
6693 struct ata_port *ap = host->ports[i];
6694
6695 if (ap->ops->port_stop)
6696 ap->ops->port_stop(ap);
6697 }
6698 return rc;
6699 }
6700
6701 /**
6702 * ata_sas_host_init - Initialize a host struct
6703 * @host: host to initialize
6704 * @dev: device host is attached to
6705 * @flags: host flags
6706 * @ops: port_ops
6707 *
6708 * LOCKING:
6709 * PCI/etc. bus probe sem.
6710 *
6711 */
6712 /* KILLME - the only user left is ipr */
6713 void ata_host_init(struct ata_host *host, struct device *dev,
6714 unsigned long flags, const struct ata_port_operations *ops)
6715 {
6716 spin_lock_init(&host->lock);
6717 host->dev = dev;
6718 host->flags = flags;
6719 host->ops = ops;
6720 }
6721
6722 /**
6723 * ata_host_register - register initialized ATA host
6724 * @host: ATA host to register
6725 * @sht: template for SCSI host
6726 *
6727 * Register initialized ATA host. @host is allocated using
6728 * ata_host_alloc() and fully initialized by LLD. This function
6729 * starts ports, registers @host with ATA and SCSI layers and
6730 * probe registered devices.
6731 *
6732 * LOCKING:
6733 * Inherited from calling layer (may sleep).
6734 *
6735 * RETURNS:
6736 * 0 on success, -errno otherwise.
6737 */
6738 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6739 {
6740 int i, rc;
6741
6742 /* host must have been started */
6743 if (!(host->flags & ATA_HOST_STARTED)) {
6744 dev_printk(KERN_ERR, host->dev,
6745 "BUG: trying to register unstarted host\n");
6746 WARN_ON(1);
6747 return -EINVAL;
6748 }
6749
6750 /* Blow away unused ports. This happens when LLD can't
6751 * determine the exact number of ports to allocate at
6752 * allocation time.
6753 */
6754 for (i = host->n_ports; host->ports[i]; i++)
6755 kfree(host->ports[i]);
6756
6757 /* give ports names and add SCSI hosts */
6758 for (i = 0; i < host->n_ports; i++)
6759 host->ports[i]->print_id = ata_print_id++;
6760
6761 rc = ata_scsi_add_hosts(host, sht);
6762 if (rc)
6763 return rc;
6764
6765 /* associate with ACPI nodes */
6766 ata_acpi_associate(host);
6767
6768 /* set cable, sata_spd_limit and report */
6769 for (i = 0; i < host->n_ports; i++) {
6770 struct ata_port *ap = host->ports[i];
6771 unsigned long xfer_mask;
6772
6773 /* set SATA cable type if still unset */
6774 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6775 ap->cbl = ATA_CBL_SATA;
6776
6777 /* init sata_spd_limit to the current value */
6778 sata_link_init_spd(&ap->link);
6779
6780 /* print per-port info to dmesg */
6781 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6782 ap->udma_mask);
6783
6784 if (!ata_port_is_dummy(ap)) {
6785 ata_port_printk(ap, KERN_INFO,
6786 "%cATA max %s %s\n",
6787 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6788 ata_mode_string(xfer_mask),
6789 ap->link.eh_info.desc);
6790 ata_ehi_clear_desc(&ap->link.eh_info);
6791 } else
6792 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6793 }
6794
6795 /* perform each probe synchronously */
6796 DPRINTK("probe begin\n");
6797 for (i = 0; i < host->n_ports; i++) {
6798 struct ata_port *ap = host->ports[i];
6799 int rc;
6800
6801 /* probe */
6802 if (ap->ops->error_handler) {
6803 struct ata_eh_info *ehi = &ap->link.eh_info;
6804 unsigned long flags;
6805
6806 ata_port_probe(ap);
6807
6808 /* kick EH for boot probing */
6809 spin_lock_irqsave(ap->lock, flags);
6810
6811 ehi->probe_mask =
6812 (1 << ata_link_max_devices(&ap->link)) - 1;
6813 ehi->action |= ATA_EH_SOFTRESET;
6814 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6815
6816 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6817 ap->pflags |= ATA_PFLAG_LOADING;
6818 ata_port_schedule_eh(ap);
6819
6820 spin_unlock_irqrestore(ap->lock, flags);
6821
6822 /* wait for EH to finish */
6823 ata_port_wait_eh(ap);
6824 } else {
6825 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6826 rc = ata_bus_probe(ap);
6827 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6828
6829 if (rc) {
6830 /* FIXME: do something useful here?
6831 * Current libata behavior will
6832 * tear down everything when
6833 * the module is removed
6834 * or the h/w is unplugged.
6835 */
6836 }
6837 }
6838 }
6839
6840 /* probes are done, now scan each port's disk(s) */
6841 DPRINTK("host probe begin\n");
6842 for (i = 0; i < host->n_ports; i++) {
6843 struct ata_port *ap = host->ports[i];
6844
6845 ata_scsi_scan_host(ap, 1);
6846 }
6847
6848 return 0;
6849 }
6850
6851 /**
6852 * ata_host_activate - start host, request IRQ and register it
6853 * @host: target ATA host
6854 * @irq: IRQ to request
6855 * @irq_handler: irq_handler used when requesting IRQ
6856 * @irq_flags: irq_flags used when requesting IRQ
6857 * @sht: scsi_host_template to use when registering the host
6858 *
6859 * After allocating an ATA host and initializing it, most libata
6860 * LLDs perform three steps to activate the host - start host,
6861 * request IRQ and register it. This helper takes necessasry
6862 * arguments and performs the three steps in one go.
6863 *
6864 * LOCKING:
6865 * Inherited from calling layer (may sleep).
6866 *
6867 * RETURNS:
6868 * 0 on success, -errno otherwise.
6869 */
6870 int ata_host_activate(struct ata_host *host, int irq,
6871 irq_handler_t irq_handler, unsigned long irq_flags,
6872 struct scsi_host_template *sht)
6873 {
6874 int i, rc;
6875
6876 rc = ata_host_start(host);
6877 if (rc)
6878 return rc;
6879
6880 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6881 dev_driver_string(host->dev), host);
6882 if (rc)
6883 return rc;
6884
6885 for (i = 0; i < host->n_ports; i++)
6886 ata_port_desc(host->ports[i], "irq %d", irq);
6887
6888 rc = ata_host_register(host, sht);
6889 /* if failed, just free the IRQ and leave ports alone */
6890 if (rc)
6891 devm_free_irq(host->dev, irq, host);
6892
6893 return rc;
6894 }
6895
6896 /**
6897 * ata_port_detach - Detach ATA port in prepration of device removal
6898 * @ap: ATA port to be detached
6899 *
6900 * Detach all ATA devices and the associated SCSI devices of @ap;
6901 * then, remove the associated SCSI host. @ap is guaranteed to
6902 * be quiescent on return from this function.
6903 *
6904 * LOCKING:
6905 * Kernel thread context (may sleep).
6906 */
6907 void ata_port_detach(struct ata_port *ap)
6908 {
6909 unsigned long flags;
6910 struct ata_link *link;
6911 struct ata_device *dev;
6912
6913 if (!ap->ops->error_handler)
6914 goto skip_eh;
6915
6916 /* tell EH we're leaving & flush EH */
6917 spin_lock_irqsave(ap->lock, flags);
6918 ap->pflags |= ATA_PFLAG_UNLOADING;
6919 spin_unlock_irqrestore(ap->lock, flags);
6920
6921 ata_port_wait_eh(ap);
6922
6923 /* EH is now guaranteed to see UNLOADING, so no new device
6924 * will be attached. Disable all existing devices.
6925 */
6926 spin_lock_irqsave(ap->lock, flags);
6927
6928 ata_port_for_each_link(link, ap) {
6929 ata_link_for_each_dev(dev, link)
6930 ata_dev_disable(dev);
6931 }
6932
6933 spin_unlock_irqrestore(ap->lock, flags);
6934
6935 /* Final freeze & EH. All in-flight commands are aborted. EH
6936 * will be skipped and retrials will be terminated with bad
6937 * target.
6938 */
6939 spin_lock_irqsave(ap->lock, flags);
6940 ata_port_freeze(ap); /* won't be thawed */
6941 spin_unlock_irqrestore(ap->lock, flags);
6942
6943 ata_port_wait_eh(ap);
6944 cancel_rearming_delayed_work(&ap->hotplug_task);
6945
6946 skip_eh:
6947 /* remove the associated SCSI host */
6948 scsi_remove_host(ap->scsi_host);
6949 }
6950
6951 /**
6952 * ata_host_detach - Detach all ports of an ATA host
6953 * @host: Host to detach
6954 *
6955 * Detach all ports of @host.
6956 *
6957 * LOCKING:
6958 * Kernel thread context (may sleep).
6959 */
6960 void ata_host_detach(struct ata_host *host)
6961 {
6962 int i;
6963
6964 for (i = 0; i < host->n_ports; i++)
6965 ata_port_detach(host->ports[i]);
6966 }
6967
6968 /**
6969 * ata_std_ports - initialize ioaddr with standard port offsets.
6970 * @ioaddr: IO address structure to be initialized
6971 *
6972 * Utility function which initializes data_addr, error_addr,
6973 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6974 * device_addr, status_addr, and command_addr to standard offsets
6975 * relative to cmd_addr.
6976 *
6977 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6978 */
6979
6980 void ata_std_ports(struct ata_ioports *ioaddr)
6981 {
6982 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6983 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6984 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6985 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6986 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6987 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6988 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6989 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6990 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6991 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6992 }
6993
6994
6995 #ifdef CONFIG_PCI
6996
6997 /**
6998 * ata_pci_remove_one - PCI layer callback for device removal
6999 * @pdev: PCI device that was removed
7000 *
7001 * PCI layer indicates to libata via this hook that hot-unplug or
7002 * module unload event has occurred. Detach all ports. Resource
7003 * release is handled via devres.
7004 *
7005 * LOCKING:
7006 * Inherited from PCI layer (may sleep).
7007 */
7008 void ata_pci_remove_one(struct pci_dev *pdev)
7009 {
7010 struct device *dev = pci_dev_to_dev(pdev);
7011 struct ata_host *host = dev_get_drvdata(dev);
7012
7013 ata_host_detach(host);
7014 }
7015
7016 /* move to PCI subsystem */
7017 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7018 {
7019 unsigned long tmp = 0;
7020
7021 switch (bits->width) {
7022 case 1: {
7023 u8 tmp8 = 0;
7024 pci_read_config_byte(pdev, bits->reg, &tmp8);
7025 tmp = tmp8;
7026 break;
7027 }
7028 case 2: {
7029 u16 tmp16 = 0;
7030 pci_read_config_word(pdev, bits->reg, &tmp16);
7031 tmp = tmp16;
7032 break;
7033 }
7034 case 4: {
7035 u32 tmp32 = 0;
7036 pci_read_config_dword(pdev, bits->reg, &tmp32);
7037 tmp = tmp32;
7038 break;
7039 }
7040
7041 default:
7042 return -EINVAL;
7043 }
7044
7045 tmp &= bits->mask;
7046
7047 return (tmp == bits->val) ? 1 : 0;
7048 }
7049
7050 #ifdef CONFIG_PM
7051 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7052 {
7053 pci_save_state(pdev);
7054 pci_disable_device(pdev);
7055
7056 if (mesg.event == PM_EVENT_SUSPEND)
7057 pci_set_power_state(pdev, PCI_D3hot);
7058 }
7059
7060 int ata_pci_device_do_resume(struct pci_dev *pdev)
7061 {
7062 int rc;
7063
7064 pci_set_power_state(pdev, PCI_D0);
7065 pci_restore_state(pdev);
7066
7067 rc = pcim_enable_device(pdev);
7068 if (rc) {
7069 dev_printk(KERN_ERR, &pdev->dev,
7070 "failed to enable device after resume (%d)\n", rc);
7071 return rc;
7072 }
7073
7074 pci_set_master(pdev);
7075 return 0;
7076 }
7077
7078 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7079 {
7080 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7081 int rc = 0;
7082
7083 rc = ata_host_suspend(host, mesg);
7084 if (rc)
7085 return rc;
7086
7087 ata_pci_device_do_suspend(pdev, mesg);
7088
7089 return 0;
7090 }
7091
7092 int ata_pci_device_resume(struct pci_dev *pdev)
7093 {
7094 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7095 int rc;
7096
7097 rc = ata_pci_device_do_resume(pdev);
7098 if (rc == 0)
7099 ata_host_resume(host);
7100 return rc;
7101 }
7102 #endif /* CONFIG_PM */
7103
7104 #endif /* CONFIG_PCI */
7105
7106
7107 static int __init ata_init(void)
7108 {
7109 ata_probe_timeout *= HZ;
7110 ata_wq = create_workqueue("ata");
7111 if (!ata_wq)
7112 return -ENOMEM;
7113
7114 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7115 if (!ata_aux_wq) {
7116 destroy_workqueue(ata_wq);
7117 return -ENOMEM;
7118 }
7119
7120 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7121 return 0;
7122 }
7123
7124 static void __exit ata_exit(void)
7125 {
7126 destroy_workqueue(ata_wq);
7127 destroy_workqueue(ata_aux_wq);
7128 }
7129
7130 subsys_initcall(ata_init);
7131 module_exit(ata_exit);
7132
7133 static unsigned long ratelimit_time;
7134 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7135
7136 int ata_ratelimit(void)
7137 {
7138 int rc;
7139 unsigned long flags;
7140
7141 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7142
7143 if (time_after(jiffies, ratelimit_time)) {
7144 rc = 1;
7145 ratelimit_time = jiffies + (HZ/5);
7146 } else
7147 rc = 0;
7148
7149 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7150
7151 return rc;
7152 }
7153
7154 /**
7155 * ata_wait_register - wait until register value changes
7156 * @reg: IO-mapped register
7157 * @mask: Mask to apply to read register value
7158 * @val: Wait condition
7159 * @interval_msec: polling interval in milliseconds
7160 * @timeout_msec: timeout in milliseconds
7161 *
7162 * Waiting for some bits of register to change is a common
7163 * operation for ATA controllers. This function reads 32bit LE
7164 * IO-mapped register @reg and tests for the following condition.
7165 *
7166 * (*@reg & mask) != val
7167 *
7168 * If the condition is met, it returns; otherwise, the process is
7169 * repeated after @interval_msec until timeout.
7170 *
7171 * LOCKING:
7172 * Kernel thread context (may sleep)
7173 *
7174 * RETURNS:
7175 * The final register value.
7176 */
7177 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7178 unsigned long interval_msec,
7179 unsigned long timeout_msec)
7180 {
7181 unsigned long timeout;
7182 u32 tmp;
7183
7184 tmp = ioread32(reg);
7185
7186 /* Calculate timeout _after_ the first read to make sure
7187 * preceding writes reach the controller before starting to
7188 * eat away the timeout.
7189 */
7190 timeout = jiffies + (timeout_msec * HZ) / 1000;
7191
7192 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7193 msleep(interval_msec);
7194 tmp = ioread32(reg);
7195 }
7196
7197 return tmp;
7198 }
7199
7200 /*
7201 * Dummy port_ops
7202 */
7203 static void ata_dummy_noret(struct ata_port *ap) { }
7204 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7205 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7206
7207 static u8 ata_dummy_check_status(struct ata_port *ap)
7208 {
7209 return ATA_DRDY;
7210 }
7211
7212 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7213 {
7214 return AC_ERR_SYSTEM;
7215 }
7216
7217 const struct ata_port_operations ata_dummy_port_ops = {
7218 .check_status = ata_dummy_check_status,
7219 .check_altstatus = ata_dummy_check_status,
7220 .dev_select = ata_noop_dev_select,
7221 .qc_prep = ata_noop_qc_prep,
7222 .qc_issue = ata_dummy_qc_issue,
7223 .freeze = ata_dummy_noret,
7224 .thaw = ata_dummy_noret,
7225 .error_handler = ata_dummy_noret,
7226 .post_internal_cmd = ata_dummy_qc_noret,
7227 .irq_clear = ata_dummy_noret,
7228 .port_start = ata_dummy_ret0,
7229 .port_stop = ata_dummy_noret,
7230 };
7231
7232 const struct ata_port_info ata_dummy_port_info = {
7233 .port_ops = &ata_dummy_port_ops,
7234 };
7235
7236 /*
7237 * libata is essentially a library of internal helper functions for
7238 * low-level ATA host controller drivers. As such, the API/ABI is
7239 * likely to change as new drivers are added and updated.
7240 * Do not depend on ABI/API stability.
7241 */
7242
7243 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7244 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7245 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7246 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7247 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7248 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7249 EXPORT_SYMBOL_GPL(ata_std_ports);
7250 EXPORT_SYMBOL_GPL(ata_host_init);
7251 EXPORT_SYMBOL_GPL(ata_host_alloc);
7252 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7253 EXPORT_SYMBOL_GPL(ata_host_start);
7254 EXPORT_SYMBOL_GPL(ata_host_register);
7255 EXPORT_SYMBOL_GPL(ata_host_activate);
7256 EXPORT_SYMBOL_GPL(ata_host_detach);
7257 EXPORT_SYMBOL_GPL(ata_sg_init);
7258 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7259 EXPORT_SYMBOL_GPL(ata_hsm_move);
7260 EXPORT_SYMBOL_GPL(ata_qc_complete);
7261 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7262 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7263 EXPORT_SYMBOL_GPL(ata_tf_load);
7264 EXPORT_SYMBOL_GPL(ata_tf_read);
7265 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7266 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7267 EXPORT_SYMBOL_GPL(sata_print_link_status);
7268 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7269 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7270 EXPORT_SYMBOL_GPL(ata_check_status);
7271 EXPORT_SYMBOL_GPL(ata_altstatus);
7272 EXPORT_SYMBOL_GPL(ata_exec_command);
7273 EXPORT_SYMBOL_GPL(ata_port_start);
7274 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7275 EXPORT_SYMBOL_GPL(ata_interrupt);
7276 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7277 EXPORT_SYMBOL_GPL(ata_data_xfer);
7278 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7279 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7280 EXPORT_SYMBOL_GPL(ata_qc_prep);
7281 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7282 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7283 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7284 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7285 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7286 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7287 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7288 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7289 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7290 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7291 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7292 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7293 EXPORT_SYMBOL_GPL(ata_port_probe);
7294 EXPORT_SYMBOL_GPL(ata_dev_disable);
7295 EXPORT_SYMBOL_GPL(sata_set_spd);
7296 EXPORT_SYMBOL_GPL(sata_link_debounce);
7297 EXPORT_SYMBOL_GPL(sata_link_resume);
7298 EXPORT_SYMBOL_GPL(sata_phy_reset);
7299 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7300 EXPORT_SYMBOL_GPL(ata_bus_reset);
7301 EXPORT_SYMBOL_GPL(ata_std_prereset);
7302 EXPORT_SYMBOL_GPL(ata_std_softreset);
7303 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7304 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7305 EXPORT_SYMBOL_GPL(ata_std_postreset);
7306 EXPORT_SYMBOL_GPL(ata_dev_classify);
7307 EXPORT_SYMBOL_GPL(ata_dev_pair);
7308 EXPORT_SYMBOL_GPL(ata_port_disable);
7309 EXPORT_SYMBOL_GPL(ata_ratelimit);
7310 EXPORT_SYMBOL_GPL(ata_wait_register);
7311 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7312 EXPORT_SYMBOL_GPL(ata_wait_ready);
7313 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7314 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7315 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7316 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7317 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7318 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7319 EXPORT_SYMBOL_GPL(ata_host_intr);
7320 EXPORT_SYMBOL_GPL(sata_scr_valid);
7321 EXPORT_SYMBOL_GPL(sata_scr_read);
7322 EXPORT_SYMBOL_GPL(sata_scr_write);
7323 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7324 EXPORT_SYMBOL_GPL(ata_link_online);
7325 EXPORT_SYMBOL_GPL(ata_link_offline);
7326 #ifdef CONFIG_PM
7327 EXPORT_SYMBOL_GPL(ata_host_suspend);
7328 EXPORT_SYMBOL_GPL(ata_host_resume);
7329 #endif /* CONFIG_PM */
7330 EXPORT_SYMBOL_GPL(ata_id_string);
7331 EXPORT_SYMBOL_GPL(ata_id_c_string);
7332 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7333 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7334
7335 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7336 EXPORT_SYMBOL_GPL(ata_timing_compute);
7337 EXPORT_SYMBOL_GPL(ata_timing_merge);
7338
7339 #ifdef CONFIG_PCI
7340 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7341 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7342 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7343 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7344 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7345 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7346 #ifdef CONFIG_PM
7347 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7348 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7349 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7350 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7351 #endif /* CONFIG_PM */
7352 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7353 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7354 #endif /* CONFIG_PCI */
7355
7356 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7357 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7358 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7359 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7360 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7361
7362 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7363 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7364 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7365 EXPORT_SYMBOL_GPL(ata_port_desc);
7366 #ifdef CONFIG_PCI
7367 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7368 #endif /* CONFIG_PCI */
7369 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7370 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7371 EXPORT_SYMBOL_GPL(ata_link_abort);
7372 EXPORT_SYMBOL_GPL(ata_port_abort);
7373 EXPORT_SYMBOL_GPL(ata_port_freeze);
7374 EXPORT_SYMBOL_GPL(sata_async_notification);
7375 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7376 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7377 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7378 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7379 EXPORT_SYMBOL_GPL(ata_do_eh);
7380 EXPORT_SYMBOL_GPL(ata_irq_on);
7381 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7382
7383 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7384 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7385 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7386 EXPORT_SYMBOL_GPL(ata_cable_sata);