]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
ea83828bfea94b41eae6947cfbbbaa8dfbc15b5a
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
71
72 #include "libata.h"
73 #include "libata-transport.h"
74
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
79
80 const struct ata_port_operations ata_base_port_ops = {
81 .prereset = ata_std_prereset,
82 .postreset = ata_std_postreset,
83 .error_handler = ata_std_error_handler,
84 .sched_eh = ata_std_sched_eh,
85 .end_eh = ata_std_end_eh,
86 };
87
88 const struct ata_port_operations sata_port_ops = {
89 .inherits = &ata_base_port_ops,
90
91 .qc_defer = ata_std_qc_defer,
92 .hardreset = sata_std_hardreset,
93 };
94
95 static unsigned int ata_dev_init_params(struct ata_device *dev,
96 u16 heads, u16 sectors);
97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98 static void ata_dev_xfermask(struct ata_device *dev);
99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
100
101 atomic_t ata_print_id = ATOMIC_INIT(0);
102
103 struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
110 unsigned int lflags;
111 };
112
113 struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117 };
118
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
121
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162
163 static int atapi_an;
164 module_param(atapi_an, int, 0444);
165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
171
172
173 static bool ata_sstatus_online(u32 sstatus)
174 {
175 return (sstatus & 0xf) == 0x3;
176 }
177
178 /**
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
183 *
184 * LOCKING:
185 * Host lock or EH context.
186 *
187 * RETURNS:
188 * Pointer to the next link.
189 */
190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
192 {
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195
196 /* NULL link indicates start of iteration */
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
206 }
207
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
217 return ap->slave_link;
218 /* fall through */
219 case ATA_LITER_EDGE:
220 return NULL;
221 }
222
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
226
227 /* we were over a PMP link */
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
230
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
233
234 return NULL;
235 }
236
237 /**
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
242 *
243 * LOCKING:
244 * Host lock or EH context.
245 *
246 * RETURNS:
247 * Pointer to the next device.
248 */
249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
251 {
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
266 }
267
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
281 }
282
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
288 }
289
290 /**
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
293 *
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
297 *
298 * LOCKING:
299 * Don't care.
300 *
301 * RETURNS:
302 * Pointer to the found physical link.
303 */
304 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305 {
306 struct ata_port *ap = dev->link->ap;
307
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
313 }
314
315 /**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345 }
346
347 /**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags) {
391 link->flags |= fe->param.lflags;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags, link->flags);
395 }
396 }
397 }
398
399 /**
400 * ata_force_xfermask - force xfermask according to libata.force
401 * @dev: ATA device of interest
402 *
403 * Force xfer_mask according to libata.force and whine about it.
404 * For consistency with link selection, device number 15 selects
405 * the first device connected to the host link.
406 *
407 * LOCKING:
408 * EH context.
409 */
410 static void ata_force_xfermask(struct ata_device *dev)
411 {
412 int devno = dev->link->pmp + dev->devno;
413 int alt_devno = devno;
414 int i;
415
416 /* allow n.15/16 for devices attached to host port */
417 if (ata_is_host_link(dev->link))
418 alt_devno += 15;
419
420 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 const struct ata_force_ent *fe = &ata_force_tbl[i];
422 unsigned long pio_mask, mwdma_mask, udma_mask;
423
424 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 continue;
426
427 if (fe->device != -1 && fe->device != devno &&
428 fe->device != alt_devno)
429 continue;
430
431 if (!fe->param.xfer_mask)
432 continue;
433
434 ata_unpack_xfermask(fe->param.xfer_mask,
435 &pio_mask, &mwdma_mask, &udma_mask);
436 if (udma_mask)
437 dev->udma_mask = udma_mask;
438 else if (mwdma_mask) {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = mwdma_mask;
441 } else {
442 dev->udma_mask = 0;
443 dev->mwdma_mask = 0;
444 dev->pio_mask = pio_mask;
445 }
446
447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 fe->param.name);
449 return;
450 }
451 }
452
453 /**
454 * ata_force_horkage - force horkage according to libata.force
455 * @dev: ATA device of interest
456 *
457 * Force horkage according to libata.force and whine about it.
458 * For consistency with link selection, device number 15 selects
459 * the first device connected to the host link.
460 *
461 * LOCKING:
462 * EH context.
463 */
464 static void ata_force_horkage(struct ata_device *dev)
465 {
466 int devno = dev->link->pmp + dev->devno;
467 int alt_devno = devno;
468 int i;
469
470 /* allow n.15/16 for devices attached to host port */
471 if (ata_is_host_link(dev->link))
472 alt_devno += 15;
473
474 for (i = 0; i < ata_force_tbl_size; i++) {
475 const struct ata_force_ent *fe = &ata_force_tbl[i];
476
477 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 continue;
479
480 if (fe->device != -1 && fe->device != devno &&
481 fe->device != alt_devno)
482 continue;
483
484 if (!(~dev->horkage & fe->param.horkage_on) &&
485 !(dev->horkage & fe->param.horkage_off))
486 continue;
487
488 dev->horkage |= fe->param.horkage_on;
489 dev->horkage &= ~fe->param.horkage_off;
490
491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 fe->param.name);
493 }
494 }
495
496 /**
497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498 * @opcode: SCSI opcode
499 *
500 * Determine ATAPI command type from @opcode.
501 *
502 * LOCKING:
503 * None.
504 *
505 * RETURNS:
506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507 */
508 int atapi_cmd_type(u8 opcode)
509 {
510 switch (opcode) {
511 case GPCMD_READ_10:
512 case GPCMD_READ_12:
513 return ATAPI_READ;
514
515 case GPCMD_WRITE_10:
516 case GPCMD_WRITE_12:
517 case GPCMD_WRITE_AND_VERIFY_10:
518 return ATAPI_WRITE;
519
520 case GPCMD_READ_CD:
521 case GPCMD_READ_CD_MSF:
522 return ATAPI_READ_CD;
523
524 case ATA_16:
525 case ATA_12:
526 if (atapi_passthru16)
527 return ATAPI_PASS_THRU;
528 /* fall thru */
529 default:
530 return ATAPI_MISC;
531 }
532 }
533
534 /**
535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536 * @tf: Taskfile to convert
537 * @pmp: Port multiplier port
538 * @is_cmd: This FIS is for command
539 * @fis: Buffer into which data will output
540 *
541 * Converts a standard ATA taskfile to a Serial ATA
542 * FIS structure (Register - Host to Device).
543 *
544 * LOCKING:
545 * Inherited from caller.
546 */
547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
548 {
549 fis[0] = 0x27; /* Register - Host to Device FIS */
550 fis[1] = pmp & 0xf; /* Port multiplier number*/
551 if (is_cmd)
552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
553
554 fis[2] = tf->command;
555 fis[3] = tf->feature;
556
557 fis[4] = tf->lbal;
558 fis[5] = tf->lbam;
559 fis[6] = tf->lbah;
560 fis[7] = tf->device;
561
562 fis[8] = tf->hob_lbal;
563 fis[9] = tf->hob_lbam;
564 fis[10] = tf->hob_lbah;
565 fis[11] = tf->hob_feature;
566
567 fis[12] = tf->nsect;
568 fis[13] = tf->hob_nsect;
569 fis[14] = 0;
570 fis[15] = tf->ctl;
571
572 fis[16] = tf->auxiliary & 0xff;
573 fis[17] = (tf->auxiliary >> 8) & 0xff;
574 fis[18] = (tf->auxiliary >> 16) & 0xff;
575 fis[19] = (tf->auxiliary >> 24) & 0xff;
576 }
577
578 /**
579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580 * @fis: Buffer from which data will be input
581 * @tf: Taskfile to output
582 *
583 * Converts a serial ATA FIS structure to a standard ATA taskfile.
584 *
585 * LOCKING:
586 * Inherited from caller.
587 */
588
589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
590 {
591 tf->command = fis[2]; /* status */
592 tf->feature = fis[3]; /* error */
593
594 tf->lbal = fis[4];
595 tf->lbam = fis[5];
596 tf->lbah = fis[6];
597 tf->device = fis[7];
598
599 tf->hob_lbal = fis[8];
600 tf->hob_lbam = fis[9];
601 tf->hob_lbah = fis[10];
602
603 tf->nsect = fis[12];
604 tf->hob_nsect = fis[13];
605 }
606
607 static const u8 ata_rw_cmds[] = {
608 /* pio multi */
609 ATA_CMD_READ_MULTI,
610 ATA_CMD_WRITE_MULTI,
611 ATA_CMD_READ_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_EXT,
613 0,
614 0,
615 0,
616 ATA_CMD_WRITE_MULTI_FUA_EXT,
617 /* pio */
618 ATA_CMD_PIO_READ,
619 ATA_CMD_PIO_WRITE,
620 ATA_CMD_PIO_READ_EXT,
621 ATA_CMD_PIO_WRITE_EXT,
622 0,
623 0,
624 0,
625 0,
626 /* dma */
627 ATA_CMD_READ,
628 ATA_CMD_WRITE,
629 ATA_CMD_READ_EXT,
630 ATA_CMD_WRITE_EXT,
631 0,
632 0,
633 0,
634 ATA_CMD_WRITE_FUA_EXT
635 };
636
637 /**
638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
639 * @tf: command to examine and configure
640 * @dev: device tf belongs to
641 *
642 * Examine the device configuration and tf->flags to calculate
643 * the proper read/write commands and protocol to use.
644 *
645 * LOCKING:
646 * caller.
647 */
648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
649 {
650 u8 cmd;
651
652 int index, fua, lba48, write;
653
654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
657
658 if (dev->flags & ATA_DFLAG_PIO) {
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
662 /* Unable to use DMA due to host limitation */
663 tf->protocol = ATA_PROT_PIO;
664 index = dev->multi_count ? 0 : 8;
665 } else {
666 tf->protocol = ATA_PROT_DMA;
667 index = 16;
668 }
669
670 cmd = ata_rw_cmds[index + fua + lba48 + write];
671 if (cmd) {
672 tf->command = cmd;
673 return 0;
674 }
675 return -1;
676 }
677
678 /**
679 * ata_tf_read_block - Read block address from ATA taskfile
680 * @tf: ATA taskfile of interest
681 * @dev: ATA device @tf belongs to
682 *
683 * LOCKING:
684 * None.
685 *
686 * Read block address from @tf. This function can handle all
687 * three address formats - LBA, LBA48 and CHS. tf->protocol and
688 * flags select the address format to use.
689 *
690 * RETURNS:
691 * Block address read from @tf.
692 */
693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694 {
695 u64 block = 0;
696
697 if (tf->flags & ATA_TFLAG_LBA) {
698 if (tf->flags & ATA_TFLAG_LBA48) {
699 block |= (u64)tf->hob_lbah << 40;
700 block |= (u64)tf->hob_lbam << 32;
701 block |= (u64)tf->hob_lbal << 24;
702 } else
703 block |= (tf->device & 0xf) << 24;
704
705 block |= tf->lbah << 16;
706 block |= tf->lbam << 8;
707 block |= tf->lbal;
708 } else {
709 u32 cyl, head, sect;
710
711 cyl = tf->lbam | (tf->lbah << 8);
712 head = tf->device & 0xf;
713 sect = tf->lbal;
714
715 if (!sect) {
716 ata_dev_warn(dev,
717 "device reported invalid CHS sector 0\n");
718 sect = 1; /* oh well */
719 }
720
721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 }
723
724 return block;
725 }
726
727 /**
728 * ata_build_rw_tf - Build ATA taskfile for given read/write request
729 * @tf: Target ATA taskfile
730 * @dev: ATA device @tf belongs to
731 * @block: Block address
732 * @n_block: Number of blocks
733 * @tf_flags: RW/FUA etc...
734 * @tag: tag
735 *
736 * LOCKING:
737 * None.
738 *
739 * Build ATA taskfile @tf for read/write request described by
740 * @block, @n_block, @tf_flags and @tag on @dev.
741 *
742 * RETURNS:
743 *
744 * 0 on success, -ERANGE if the request is too large for @dev,
745 * -EINVAL if the request is invalid.
746 */
747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 u64 block, u32 n_block, unsigned int tf_flags,
749 unsigned int tag)
750 {
751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 tf->flags |= tf_flags;
753
754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
755 /* yay, NCQ */
756 if (!lba_48_ok(block, n_block))
757 return -ERANGE;
758
759 tf->protocol = ATA_PROT_NCQ;
760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761
762 if (tf->flags & ATA_TFLAG_WRITE)
763 tf->command = ATA_CMD_FPDMA_WRITE;
764 else
765 tf->command = ATA_CMD_FPDMA_READ;
766
767 tf->nsect = tag << 3;
768 tf->hob_feature = (n_block >> 8) & 0xff;
769 tf->feature = n_block & 0xff;
770
771 tf->hob_lbah = (block >> 40) & 0xff;
772 tf->hob_lbam = (block >> 32) & 0xff;
773 tf->hob_lbal = (block >> 24) & 0xff;
774 tf->lbah = (block >> 16) & 0xff;
775 tf->lbam = (block >> 8) & 0xff;
776 tf->lbal = block & 0xff;
777
778 tf->device = ATA_LBA;
779 if (tf->flags & ATA_TFLAG_FUA)
780 tf->device |= 1 << 7;
781 } else if (dev->flags & ATA_DFLAG_LBA) {
782 tf->flags |= ATA_TFLAG_LBA;
783
784 if (lba_28_ok(block, n_block)) {
785 /* use LBA28 */
786 tf->device |= (block >> 24) & 0xf;
787 } else if (lba_48_ok(block, n_block)) {
788 if (!(dev->flags & ATA_DFLAG_LBA48))
789 return -ERANGE;
790
791 /* use LBA48 */
792 tf->flags |= ATA_TFLAG_LBA48;
793
794 tf->hob_nsect = (n_block >> 8) & 0xff;
795
796 tf->hob_lbah = (block >> 40) & 0xff;
797 tf->hob_lbam = (block >> 32) & 0xff;
798 tf->hob_lbal = (block >> 24) & 0xff;
799 } else
800 /* request too large even for LBA48 */
801 return -ERANGE;
802
803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 return -EINVAL;
805
806 tf->nsect = n_block & 0xff;
807
808 tf->lbah = (block >> 16) & 0xff;
809 tf->lbam = (block >> 8) & 0xff;
810 tf->lbal = block & 0xff;
811
812 tf->device |= ATA_LBA;
813 } else {
814 /* CHS */
815 u32 sect, head, cyl, track;
816
817 /* The request -may- be too large for CHS addressing. */
818 if (!lba_28_ok(block, n_block))
819 return -ERANGE;
820
821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 return -EINVAL;
823
824 /* Convert LBA to CHS */
825 track = (u32)block / dev->sectors;
826 cyl = track / dev->heads;
827 head = track % dev->heads;
828 sect = (u32)block % dev->sectors + 1;
829
830 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 (u32)block, track, cyl, head, sect);
832
833 /* Check whether the converted CHS can fit.
834 Cylinder: 0-65535
835 Head: 0-15
836 Sector: 1-255*/
837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 return -ERANGE;
839
840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 tf->lbal = sect;
842 tf->lbam = cyl;
843 tf->lbah = cyl >> 8;
844 tf->device |= head;
845 }
846
847 return 0;
848 }
849
850 /**
851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852 * @pio_mask: pio_mask
853 * @mwdma_mask: mwdma_mask
854 * @udma_mask: udma_mask
855 *
856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857 * unsigned int xfer_mask.
858 *
859 * LOCKING:
860 * None.
861 *
862 * RETURNS:
863 * Packed xfer_mask.
864 */
865 unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 unsigned long mwdma_mask,
867 unsigned long udma_mask)
868 {
869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872 }
873
874 /**
875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876 * @xfer_mask: xfer_mask to unpack
877 * @pio_mask: resulting pio_mask
878 * @mwdma_mask: resulting mwdma_mask
879 * @udma_mask: resulting udma_mask
880 *
881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882 * Any NULL distination masks will be ignored.
883 */
884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 unsigned long *mwdma_mask, unsigned long *udma_mask)
886 {
887 if (pio_mask)
888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 if (mwdma_mask)
890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 if (udma_mask)
892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 }
894
895 static const struct ata_xfer_ent {
896 int shift, bits;
897 u8 base;
898 } ata_xfer_tbl[] = {
899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
902 { -1, },
903 };
904
905 /**
906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907 * @xfer_mask: xfer_mask of interest
908 *
909 * Return matching XFER_* value for @xfer_mask. Only the highest
910 * bit of @xfer_mask is considered.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
916 * Matching XFER_* value, 0xff if no match found.
917 */
918 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
919 {
920 int highbit = fls(xfer_mask) - 1;
921 const struct ata_xfer_ent *ent;
922
923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 return ent->base + highbit - ent->shift;
926 return 0xff;
927 }
928
929 /**
930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931 * @xfer_mode: XFER_* of interest
932 *
933 * Return matching xfer_mask for @xfer_mode.
934 *
935 * LOCKING:
936 * None.
937 *
938 * RETURNS:
939 * Matching xfer_mask, 0 if no match found.
940 */
941 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
942 {
943 const struct ata_xfer_ent *ent;
944
945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 & ~((1 << ent->shift) - 1);
949 return 0;
950 }
951
952 /**
953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954 * @xfer_mode: XFER_* of interest
955 *
956 * Return matching xfer_shift for @xfer_mode.
957 *
958 * LOCKING:
959 * None.
960 *
961 * RETURNS:
962 * Matching xfer_shift, -1 if no match found.
963 */
964 int ata_xfer_mode2shift(unsigned long xfer_mode)
965 {
966 const struct ata_xfer_ent *ent;
967
968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 return ent->shift;
971 return -1;
972 }
973
974 /**
975 * ata_mode_string - convert xfer_mask to string
976 * @xfer_mask: mask of bits supported; only highest bit counts.
977 *
978 * Determine string which represents the highest speed
979 * (highest bit in @modemask).
980 *
981 * LOCKING:
982 * None.
983 *
984 * RETURNS:
985 * Constant C string representing highest speed listed in
986 * @mode_mask, or the constant C string "<n/a>".
987 */
988 const char *ata_mode_string(unsigned long xfer_mask)
989 {
990 static const char * const xfer_mode_str[] = {
991 "PIO0",
992 "PIO1",
993 "PIO2",
994 "PIO3",
995 "PIO4",
996 "PIO5",
997 "PIO6",
998 "MWDMA0",
999 "MWDMA1",
1000 "MWDMA2",
1001 "MWDMA3",
1002 "MWDMA4",
1003 "UDMA/16",
1004 "UDMA/25",
1005 "UDMA/33",
1006 "UDMA/44",
1007 "UDMA/66",
1008 "UDMA/100",
1009 "UDMA/133",
1010 "UDMA7",
1011 };
1012 int highbit;
1013
1014 highbit = fls(xfer_mask) - 1;
1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 return xfer_mode_str[highbit];
1017 return "<n/a>";
1018 }
1019
1020 const char *sata_spd_string(unsigned int spd)
1021 {
1022 static const char * const spd_str[] = {
1023 "1.5 Gbps",
1024 "3.0 Gbps",
1025 "6.0 Gbps",
1026 };
1027
1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 return "<unknown>";
1030 return spd_str[spd - 1];
1031 }
1032
1033 /**
1034 * ata_dev_classify - determine device type based on ATA-spec signature
1035 * @tf: ATA taskfile register set for device to be identified
1036 *
1037 * Determine from taskfile register contents whether a device is
1038 * ATA or ATAPI, as per "Signature and persistence" section
1039 * of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 * LOCKING:
1042 * None.
1043 *
1044 * RETURNS:
1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 * %ATA_DEV_UNKNOWN the event of failure.
1047 */
1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049 {
1050 /* Apple's open source Darwin code hints that some devices only
1051 * put a proper signature into the LBA mid/high registers,
1052 * So, we only check those. It's sufficient for uniqueness.
1053 *
1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1057 * spec has never mentioned about using different signatures
1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1059 * Multiplier specification began to use 0x69/0x96 to identify
1060 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 * 0x69/0x96 shortly and described them as reserved for
1063 * SerialATA.
1064 *
1065 * We follow the current spec and consider that 0x69/0x96
1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 * SEMB signature. This is worked around in
1069 * ata_dev_read_id().
1070 */
1071 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072 DPRINTK("found ATA device by sig\n");
1073 return ATA_DEV_ATA;
1074 }
1075
1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077 DPRINTK("found ATAPI device by sig\n");
1078 return ATA_DEV_ATAPI;
1079 }
1080
1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 DPRINTK("found PMP device by sig\n");
1083 return ATA_DEV_PMP;
1084 }
1085
1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 return ATA_DEV_SEMB;
1089 }
1090
1091 DPRINTK("unknown device\n");
1092 return ATA_DEV_UNKNOWN;
1093 }
1094
1095 /**
1096 * ata_id_string - Convert IDENTIFY DEVICE page into string
1097 * @id: IDENTIFY DEVICE results we will examine
1098 * @s: string into which data is output
1099 * @ofs: offset into identify device page
1100 * @len: length of string to return. must be an even number.
1101 *
1102 * The strings in the IDENTIFY DEVICE page are broken up into
1103 * 16-bit chunks. Run through the string, and output each
1104 * 8-bit chunk linearly, regardless of platform.
1105 *
1106 * LOCKING:
1107 * caller.
1108 */
1109
1110 void ata_id_string(const u16 *id, unsigned char *s,
1111 unsigned int ofs, unsigned int len)
1112 {
1113 unsigned int c;
1114
1115 BUG_ON(len & 1);
1116
1117 while (len > 0) {
1118 c = id[ofs] >> 8;
1119 *s = c;
1120 s++;
1121
1122 c = id[ofs] & 0xff;
1123 *s = c;
1124 s++;
1125
1126 ofs++;
1127 len -= 2;
1128 }
1129 }
1130
1131 /**
1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 * @id: IDENTIFY DEVICE results we will examine
1134 * @s: string into which data is output
1135 * @ofs: offset into identify device page
1136 * @len: length of string to return. must be an odd number.
1137 *
1138 * This function is identical to ata_id_string except that it
1139 * trims trailing spaces and terminates the resulting string with
1140 * null. @len must be actual maximum length (even number) + 1.
1141 *
1142 * LOCKING:
1143 * caller.
1144 */
1145 void ata_id_c_string(const u16 *id, unsigned char *s,
1146 unsigned int ofs, unsigned int len)
1147 {
1148 unsigned char *p;
1149
1150 ata_id_string(id, s, ofs, len - 1);
1151
1152 p = s + strnlen(s, len - 1);
1153 while (p > s && p[-1] == ' ')
1154 p--;
1155 *p = '\0';
1156 }
1157
1158 static u64 ata_id_n_sectors(const u16 *id)
1159 {
1160 if (ata_id_has_lba(id)) {
1161 if (ata_id_has_lba48(id))
1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163 else
1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165 } else {
1166 if (ata_id_current_chs_valid(id))
1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 id[ATA_ID_CUR_SECTORS];
1169 else
1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 id[ATA_ID_SECTORS];
1172 }
1173 }
1174
1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176 {
1177 u64 sectors = 0;
1178
1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182 sectors |= (tf->lbah & 0xff) << 16;
1183 sectors |= (tf->lbam & 0xff) << 8;
1184 sectors |= (tf->lbal & 0xff);
1185
1186 return sectors;
1187 }
1188
1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190 {
1191 u64 sectors = 0;
1192
1193 sectors |= (tf->device & 0x0f) << 24;
1194 sectors |= (tf->lbah & 0xff) << 16;
1195 sectors |= (tf->lbam & 0xff) << 8;
1196 sectors |= (tf->lbal & 0xff);
1197
1198 return sectors;
1199 }
1200
1201 /**
1202 * ata_read_native_max_address - Read native max address
1203 * @dev: target device
1204 * @max_sectors: out parameter for the result native max address
1205 *
1206 * Perform an LBA48 or LBA28 native size query upon the device in
1207 * question.
1208 *
1209 * RETURNS:
1210 * 0 on success, -EACCES if command is aborted by the drive.
1211 * -EIO on other errors.
1212 */
1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214 {
1215 unsigned int err_mask;
1216 struct ata_taskfile tf;
1217 int lba48 = ata_id_has_lba48(dev->id);
1218
1219 ata_tf_init(dev, &tf);
1220
1221 /* always clear all address registers */
1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224 if (lba48) {
1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 tf.flags |= ATA_TFLAG_LBA48;
1227 } else
1228 tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230 tf.protocol |= ATA_PROT_NODATA;
1231 tf.device |= ATA_LBA;
1232
1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234 if (err_mask) {
1235 ata_dev_warn(dev,
1236 "failed to read native max address (err_mask=0x%x)\n",
1237 err_mask);
1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 return -EACCES;
1240 return -EIO;
1241 }
1242
1243 if (lba48)
1244 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1245 else
1246 *max_sectors = ata_tf_to_lba(&tf) + 1;
1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248 (*max_sectors)--;
1249 return 0;
1250 }
1251
1252 /**
1253 * ata_set_max_sectors - Set max sectors
1254 * @dev: target device
1255 * @new_sectors: new max sectors value to set for the device
1256 *
1257 * Set max sectors of @dev to @new_sectors.
1258 *
1259 * RETURNS:
1260 * 0 on success, -EACCES if command is aborted or denied (due to
1261 * previous non-volatile SET_MAX) by the drive. -EIO on other
1262 * errors.
1263 */
1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265 {
1266 unsigned int err_mask;
1267 struct ata_taskfile tf;
1268 int lba48 = ata_id_has_lba48(dev->id);
1269
1270 new_sectors--;
1271
1272 ata_tf_init(dev, &tf);
1273
1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276 if (lba48) {
1277 tf.command = ATA_CMD_SET_MAX_EXT;
1278 tf.flags |= ATA_TFLAG_LBA48;
1279
1280 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283 } else {
1284 tf.command = ATA_CMD_SET_MAX;
1285
1286 tf.device |= (new_sectors >> 24) & 0xf;
1287 }
1288
1289 tf.protocol |= ATA_PROT_NODATA;
1290 tf.device |= ATA_LBA;
1291
1292 tf.lbal = (new_sectors >> 0) & 0xff;
1293 tf.lbam = (new_sectors >> 8) & 0xff;
1294 tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297 if (err_mask) {
1298 ata_dev_warn(dev,
1299 "failed to set max address (err_mask=0x%x)\n",
1300 err_mask);
1301 if (err_mask == AC_ERR_DEV &&
1302 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 return -EACCES;
1304 return -EIO;
1305 }
1306
1307 return 0;
1308 }
1309
1310 /**
1311 * ata_hpa_resize - Resize a device with an HPA set
1312 * @dev: Device to resize
1313 *
1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 * it if required to the full size of the media. The caller must check
1316 * the drive has the HPA feature set enabled.
1317 *
1318 * RETURNS:
1319 * 0 on success, -errno on failure.
1320 */
1321 static int ata_hpa_resize(struct ata_device *dev)
1322 {
1323 struct ata_eh_context *ehc = &dev->link->eh_context;
1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326 u64 sectors = ata_id_n_sectors(dev->id);
1327 u64 native_sectors;
1328 int rc;
1329
1330 /* do we need to do it? */
1331 if (dev->class != ATA_DEV_ATA ||
1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334 return 0;
1335
1336 /* read native max address */
1337 rc = ata_read_native_max_address(dev, &native_sectors);
1338 if (rc) {
1339 /* If device aborted the command or HPA isn't going to
1340 * be unlocked, skip HPA resizing.
1341 */
1342 if (rc == -EACCES || !unlock_hpa) {
1343 ata_dev_warn(dev,
1344 "HPA support seems broken, skipping HPA handling\n");
1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347 /* we can continue if device aborted the command */
1348 if (rc == -EACCES)
1349 rc = 0;
1350 }
1351
1352 return rc;
1353 }
1354 dev->n_native_sectors = native_sectors;
1355
1356 /* nothing to do? */
1357 if (native_sectors <= sectors || !unlock_hpa) {
1358 if (!print_info || native_sectors == sectors)
1359 return 0;
1360
1361 if (native_sectors > sectors)
1362 ata_dev_info(dev,
1363 "HPA detected: current %llu, native %llu\n",
1364 (unsigned long long)sectors,
1365 (unsigned long long)native_sectors);
1366 else if (native_sectors < sectors)
1367 ata_dev_warn(dev,
1368 "native sectors (%llu) is smaller than sectors (%llu)\n",
1369 (unsigned long long)native_sectors,
1370 (unsigned long long)sectors);
1371 return 0;
1372 }
1373
1374 /* let's unlock HPA */
1375 rc = ata_set_max_sectors(dev, native_sectors);
1376 if (rc == -EACCES) {
1377 /* if device aborted the command, skip HPA resizing */
1378 ata_dev_warn(dev,
1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 (unsigned long long)sectors,
1381 (unsigned long long)native_sectors);
1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 return 0;
1384 } else if (rc)
1385 return rc;
1386
1387 /* re-read IDENTIFY data */
1388 rc = ata_dev_reread_id(dev, 0);
1389 if (rc) {
1390 ata_dev_err(dev,
1391 "failed to re-read IDENTIFY data after HPA resizing\n");
1392 return rc;
1393 }
1394
1395 if (print_info) {
1396 u64 new_sectors = ata_id_n_sectors(dev->id);
1397 ata_dev_info(dev,
1398 "HPA unlocked: %llu -> %llu, native %llu\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)new_sectors,
1401 (unsigned long long)native_sectors);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * ata_dump_id - IDENTIFY DEVICE info debugging output
1409 * @id: IDENTIFY DEVICE page to dump
1410 *
1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 * page.
1413 *
1414 * LOCKING:
1415 * caller.
1416 */
1417
1418 static inline void ata_dump_id(const u16 *id)
1419 {
1420 DPRINTK("49==0x%04x "
1421 "53==0x%04x "
1422 "63==0x%04x "
1423 "64==0x%04x "
1424 "75==0x%04x \n",
1425 id[49],
1426 id[53],
1427 id[63],
1428 id[64],
1429 id[75]);
1430 DPRINTK("80==0x%04x "
1431 "81==0x%04x "
1432 "82==0x%04x "
1433 "83==0x%04x "
1434 "84==0x%04x \n",
1435 id[80],
1436 id[81],
1437 id[82],
1438 id[83],
1439 id[84]);
1440 DPRINTK("88==0x%04x "
1441 "93==0x%04x\n",
1442 id[88],
1443 id[93]);
1444 }
1445
1446 /**
1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 * @id: IDENTIFY data to compute xfer mask from
1449 *
1450 * Compute the xfermask for this device. This is not as trivial
1451 * as it seems if we must consider early devices correctly.
1452 *
1453 * FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 * LOCKING:
1456 * None.
1457 *
1458 * RETURNS:
1459 * Computed xfermask
1460 */
1461 unsigned long ata_id_xfermask(const u16 *id)
1462 {
1463 unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465 /* Usual case. Word 53 indicates word 64 is valid */
1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 pio_mask <<= 3;
1469 pio_mask |= 0x7;
1470 } else {
1471 /* If word 64 isn't valid then Word 51 high byte holds
1472 * the PIO timing number for the maximum. Turn it into
1473 * a mask.
1474 */
1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476 if (mode < 5) /* Valid PIO range */
1477 pio_mask = (2 << mode) - 1;
1478 else
1479 pio_mask = 1;
1480
1481 /* But wait.. there's more. Design your standards by
1482 * committee and you too can get a free iordy field to
1483 * process. However its the speeds not the modes that
1484 * are supported... Note drivers using the timing API
1485 * will get this right anyway
1486 */
1487 }
1488
1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491 if (ata_id_is_cfa(id)) {
1492 /*
1493 * Process compact flash extended modes
1494 */
1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498 if (pio)
1499 pio_mask |= (1 << 5);
1500 if (pio > 1)
1501 pio_mask |= (1 << 6);
1502 if (dma)
1503 mwdma_mask |= (1 << 3);
1504 if (dma > 1)
1505 mwdma_mask |= (1 << 4);
1506 }
1507
1508 udma_mask = 0;
1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513 }
1514
1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516 {
1517 struct completion *waiting = qc->private_data;
1518
1519 complete(waiting);
1520 }
1521
1522 /**
1523 * ata_exec_internal_sg - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data transfer direction of the command
1528 * @sgl: sg list for the data buffer of the command
1529 * @n_elem: Number of sg entries
1530 * @timeout: Timeout in msecs (0 for default)
1531 *
1532 * Executes libata internal command with timeout. @tf contains
1533 * command on entry and result on return. Timeout and error
1534 * conditions are reported via return value. No recovery action
1535 * is taken after a command times out. It's caller's duty to
1536 * clean up after timeout.
1537 *
1538 * LOCKING:
1539 * None. Should be called with kernel context, might sleep.
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1543 */
1544 unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 struct ata_taskfile *tf, const u8 *cdb,
1546 int dma_dir, struct scatterlist *sgl,
1547 unsigned int n_elem, unsigned long timeout)
1548 {
1549 struct ata_link *link = dev->link;
1550 struct ata_port *ap = link->ap;
1551 u8 command = tf->command;
1552 int auto_timeout = 0;
1553 struct ata_queued_cmd *qc;
1554 unsigned int tag, preempted_tag;
1555 u32 preempted_sactive, preempted_qc_active;
1556 int preempted_nr_active_links;
1557 DECLARE_COMPLETION_ONSTACK(wait);
1558 unsigned long flags;
1559 unsigned int err_mask;
1560 int rc;
1561
1562 spin_lock_irqsave(ap->lock, flags);
1563
1564 /* no internal command while frozen */
1565 if (ap->pflags & ATA_PFLAG_FROZEN) {
1566 spin_unlock_irqrestore(ap->lock, flags);
1567 return AC_ERR_SYSTEM;
1568 }
1569
1570 /* initialize internal qc */
1571
1572 /* XXX: Tag 0 is used for drivers with legacy EH as some
1573 * drivers choke if any other tag is given. This breaks
1574 * ata_tag_internal() test for those drivers. Don't use new
1575 * EH stuff without converting to it.
1576 */
1577 if (ap->ops->error_handler)
1578 tag = ATA_TAG_INTERNAL;
1579 else
1580 tag = 0;
1581
1582 if (test_and_set_bit(tag, &ap->qc_allocated))
1583 BUG();
1584 qc = __ata_qc_from_tag(ap, tag);
1585
1586 qc->tag = tag;
1587 qc->scsicmd = NULL;
1588 qc->ap = ap;
1589 qc->dev = dev;
1590 ata_qc_reinit(qc);
1591
1592 preempted_tag = link->active_tag;
1593 preempted_sactive = link->sactive;
1594 preempted_qc_active = ap->qc_active;
1595 preempted_nr_active_links = ap->nr_active_links;
1596 link->active_tag = ATA_TAG_POISON;
1597 link->sactive = 0;
1598 ap->qc_active = 0;
1599 ap->nr_active_links = 0;
1600
1601 /* prepare & issue qc */
1602 qc->tf = *tf;
1603 if (cdb)
1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605
1606 /* some SATA bridges need us to indicate data xfer direction */
1607 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608 dma_dir == DMA_FROM_DEVICE)
1609 qc->tf.feature |= ATAPI_DMADIR;
1610
1611 qc->flags |= ATA_QCFLAG_RESULT_TF;
1612 qc->dma_dir = dma_dir;
1613 if (dma_dir != DMA_NONE) {
1614 unsigned int i, buflen = 0;
1615 struct scatterlist *sg;
1616
1617 for_each_sg(sgl, sg, n_elem, i)
1618 buflen += sg->length;
1619
1620 ata_sg_init(qc, sgl, n_elem);
1621 qc->nbytes = buflen;
1622 }
1623
1624 qc->private_data = &wait;
1625 qc->complete_fn = ata_qc_complete_internal;
1626
1627 ata_qc_issue(qc);
1628
1629 spin_unlock_irqrestore(ap->lock, flags);
1630
1631 if (!timeout) {
1632 if (ata_probe_timeout)
1633 timeout = ata_probe_timeout * 1000;
1634 else {
1635 timeout = ata_internal_cmd_timeout(dev, command);
1636 auto_timeout = 1;
1637 }
1638 }
1639
1640 if (ap->ops->error_handler)
1641 ata_eh_release(ap);
1642
1643 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1644
1645 if (ap->ops->error_handler)
1646 ata_eh_acquire(ap);
1647
1648 ata_sff_flush_pio_task(ap);
1649
1650 if (!rc) {
1651 spin_lock_irqsave(ap->lock, flags);
1652
1653 /* We're racing with irq here. If we lose, the
1654 * following test prevents us from completing the qc
1655 * twice. If we win, the port is frozen and will be
1656 * cleaned up by ->post_internal_cmd().
1657 */
1658 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659 qc->err_mask |= AC_ERR_TIMEOUT;
1660
1661 if (ap->ops->error_handler)
1662 ata_port_freeze(ap);
1663 else
1664 ata_qc_complete(qc);
1665
1666 if (ata_msg_warn(ap))
1667 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668 command);
1669 }
1670
1671 spin_unlock_irqrestore(ap->lock, flags);
1672 }
1673
1674 /* do post_internal_cmd */
1675 if (ap->ops->post_internal_cmd)
1676 ap->ops->post_internal_cmd(qc);
1677
1678 /* perform minimal error analysis */
1679 if (qc->flags & ATA_QCFLAG_FAILED) {
1680 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681 qc->err_mask |= AC_ERR_DEV;
1682
1683 if (!qc->err_mask)
1684 qc->err_mask |= AC_ERR_OTHER;
1685
1686 if (qc->err_mask & ~AC_ERR_OTHER)
1687 qc->err_mask &= ~AC_ERR_OTHER;
1688 }
1689
1690 /* finish up */
1691 spin_lock_irqsave(ap->lock, flags);
1692
1693 *tf = qc->result_tf;
1694 err_mask = qc->err_mask;
1695
1696 ata_qc_free(qc);
1697 link->active_tag = preempted_tag;
1698 link->sactive = preempted_sactive;
1699 ap->qc_active = preempted_qc_active;
1700 ap->nr_active_links = preempted_nr_active_links;
1701
1702 spin_unlock_irqrestore(ap->lock, flags);
1703
1704 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705 ata_internal_cmd_timed_out(dev, command);
1706
1707 return err_mask;
1708 }
1709
1710 /**
1711 * ata_exec_internal - execute libata internal command
1712 * @dev: Device to which the command is sent
1713 * @tf: Taskfile registers for the command and the result
1714 * @cdb: CDB for packet command
1715 * @dma_dir: Data transfer direction of the command
1716 * @buf: Data buffer of the command
1717 * @buflen: Length of data buffer
1718 * @timeout: Timeout in msecs (0 for default)
1719 *
1720 * Wrapper around ata_exec_internal_sg() which takes simple
1721 * buffer instead of sg list.
1722 *
1723 * LOCKING:
1724 * None. Should be called with kernel context, might sleep.
1725 *
1726 * RETURNS:
1727 * Zero on success, AC_ERR_* mask on failure
1728 */
1729 unsigned ata_exec_internal(struct ata_device *dev,
1730 struct ata_taskfile *tf, const u8 *cdb,
1731 int dma_dir, void *buf, unsigned int buflen,
1732 unsigned long timeout)
1733 {
1734 struct scatterlist *psg = NULL, sg;
1735 unsigned int n_elem = 0;
1736
1737 if (dma_dir != DMA_NONE) {
1738 WARN_ON(!buf);
1739 sg_init_one(&sg, buf, buflen);
1740 psg = &sg;
1741 n_elem++;
1742 }
1743
1744 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745 timeout);
1746 }
1747
1748 /**
1749 * ata_do_simple_cmd - execute simple internal command
1750 * @dev: Device to which the command is sent
1751 * @cmd: Opcode to execute
1752 *
1753 * Execute a 'simple' command, that only consists of the opcode
1754 * 'cmd' itself, without filling any other registers
1755 *
1756 * LOCKING:
1757 * Kernel thread context (may sleep).
1758 *
1759 * RETURNS:
1760 * Zero on success, AC_ERR_* mask on failure
1761 */
1762 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1763 {
1764 struct ata_taskfile tf;
1765
1766 ata_tf_init(dev, &tf);
1767
1768 tf.command = cmd;
1769 tf.flags |= ATA_TFLAG_DEVICE;
1770 tf.protocol = ATA_PROT_NODATA;
1771
1772 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1773 }
1774
1775 /**
1776 * ata_pio_need_iordy - check if iordy needed
1777 * @adev: ATA device
1778 *
1779 * Check if the current speed of the device requires IORDY. Used
1780 * by various controllers for chip configuration.
1781 */
1782 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1783 {
1784 /* Don't set IORDY if we're preparing for reset. IORDY may
1785 * lead to controller lock up on certain controllers if the
1786 * port is not occupied. See bko#11703 for details.
1787 */
1788 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789 return 0;
1790 /* Controller doesn't support IORDY. Probably a pointless
1791 * check as the caller should know this.
1792 */
1793 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794 return 0;
1795 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1796 if (ata_id_is_cfa(adev->id)
1797 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798 return 0;
1799 /* PIO3 and higher it is mandatory */
1800 if (adev->pio_mode > XFER_PIO_2)
1801 return 1;
1802 /* We turn it on when possible */
1803 if (ata_id_has_iordy(adev->id))
1804 return 1;
1805 return 0;
1806 }
1807
1808 /**
1809 * ata_pio_mask_no_iordy - Return the non IORDY mask
1810 * @adev: ATA device
1811 *
1812 * Compute the highest mode possible if we are not using iordy. Return
1813 * -1 if no iordy mode is available.
1814 */
1815 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816 {
1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1819 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820 /* Is the speed faster than the drive allows non IORDY ? */
1821 if (pio) {
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio > 240) /* PIO2 is 240nS per cycle */
1824 return 3 << ATA_SHIFT_PIO;
1825 return 7 << ATA_SHIFT_PIO;
1826 }
1827 }
1828 return 3 << ATA_SHIFT_PIO;
1829 }
1830
1831 /**
1832 * ata_do_dev_read_id - default ID read method
1833 * @dev: device
1834 * @tf: proposed taskfile
1835 * @id: data buffer
1836 *
1837 * Issue the identify taskfile and hand back the buffer containing
1838 * identify data. For some RAID controllers and for pre ATA devices
1839 * this function is wrapped or replaced by the driver
1840 */
1841 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842 struct ata_taskfile *tf, u16 *id)
1843 {
1844 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1846 }
1847
1848 /**
1849 * ata_dev_read_id - Read ID data from the specified device
1850 * @dev: target device
1851 * @p_class: pointer to class of the target device (may be changed)
1852 * @flags: ATA_READID_* flags
1853 * @id: buffer to read IDENTIFY data into
1854 *
1855 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1856 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1858 * for pre-ATA4 drives.
1859 *
1860 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861 * now we abort if we hit that case.
1862 *
1863 * LOCKING:
1864 * Kernel thread context (may sleep)
1865 *
1866 * RETURNS:
1867 * 0 on success, -errno otherwise.
1868 */
1869 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870 unsigned int flags, u16 *id)
1871 {
1872 struct ata_port *ap = dev->link->ap;
1873 unsigned int class = *p_class;
1874 struct ata_taskfile tf;
1875 unsigned int err_mask = 0;
1876 const char *reason;
1877 bool is_semb = class == ATA_DEV_SEMB;
1878 int may_fallback = 1, tried_spinup = 0;
1879 int rc;
1880
1881 if (ata_msg_ctl(ap))
1882 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1883
1884 retry:
1885 ata_tf_init(dev, &tf);
1886
1887 switch (class) {
1888 case ATA_DEV_SEMB:
1889 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1890 case ATA_DEV_ATA:
1891 tf.command = ATA_CMD_ID_ATA;
1892 break;
1893 case ATA_DEV_ATAPI:
1894 tf.command = ATA_CMD_ID_ATAPI;
1895 break;
1896 default:
1897 rc = -ENODEV;
1898 reason = "unsupported class";
1899 goto err_out;
1900 }
1901
1902 tf.protocol = ATA_PROT_PIO;
1903
1904 /* Some devices choke if TF registers contain garbage. Make
1905 * sure those are properly initialized.
1906 */
1907 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1908
1909 /* Device presence detection is unreliable on some
1910 * controllers. Always poll IDENTIFY if available.
1911 */
1912 tf.flags |= ATA_TFLAG_POLLING;
1913
1914 if (ap->ops->read_id)
1915 err_mask = ap->ops->read_id(dev, &tf, id);
1916 else
1917 err_mask = ata_do_dev_read_id(dev, &tf, id);
1918
1919 if (err_mask) {
1920 if (err_mask & AC_ERR_NODEV_HINT) {
1921 ata_dev_dbg(dev, "NODEV after polling detection\n");
1922 return -ENOENT;
1923 }
1924
1925 if (is_semb) {
1926 ata_dev_info(dev,
1927 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928 /* SEMB is not supported yet */
1929 *p_class = ATA_DEV_SEMB_UNSUP;
1930 return 0;
1931 }
1932
1933 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934 /* Device or controller might have reported
1935 * the wrong device class. Give a shot at the
1936 * other IDENTIFY if the current one is
1937 * aborted by the device.
1938 */
1939 if (may_fallback) {
1940 may_fallback = 0;
1941
1942 if (class == ATA_DEV_ATA)
1943 class = ATA_DEV_ATAPI;
1944 else
1945 class = ATA_DEV_ATA;
1946 goto retry;
1947 }
1948
1949 /* Control reaches here iff the device aborted
1950 * both flavors of IDENTIFYs which happens
1951 * sometimes with phantom devices.
1952 */
1953 ata_dev_dbg(dev,
1954 "both IDENTIFYs aborted, assuming NODEV\n");
1955 return -ENOENT;
1956 }
1957
1958 rc = -EIO;
1959 reason = "I/O error";
1960 goto err_out;
1961 }
1962
1963 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965 "class=%d may_fallback=%d tried_spinup=%d\n",
1966 class, may_fallback, tried_spinup);
1967 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1969 }
1970
1971 /* Falling back doesn't make sense if ID data was read
1972 * successfully at least once.
1973 */
1974 may_fallback = 0;
1975
1976 swap_buf_le16(id, ATA_ID_WORDS);
1977
1978 /* sanity check */
1979 rc = -EINVAL;
1980 reason = "device reports invalid type";
1981
1982 if (class == ATA_DEV_ATA) {
1983 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984 goto err_out;
1985 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986 ata_id_is_ata(id)) {
1987 ata_dev_dbg(dev,
1988 "host indicates ignore ATA devices, ignored\n");
1989 return -ENOENT;
1990 }
1991 } else {
1992 if (ata_id_is_ata(id))
1993 goto err_out;
1994 }
1995
1996 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997 tried_spinup = 1;
1998 /*
1999 * Drive powered-up in standby mode, and requires a specific
2000 * SET_FEATURES spin-up subcommand before it will accept
2001 * anything other than the original IDENTIFY command.
2002 */
2003 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004 if (err_mask && id[2] != 0x738c) {
2005 rc = -EIO;
2006 reason = "SPINUP failed";
2007 goto err_out;
2008 }
2009 /*
2010 * If the drive initially returned incomplete IDENTIFY info,
2011 * we now must reissue the IDENTIFY command.
2012 */
2013 if (id[2] == 0x37c8)
2014 goto retry;
2015 }
2016
2017 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2018 /*
2019 * The exact sequence expected by certain pre-ATA4 drives is:
2020 * SRST RESET
2021 * IDENTIFY (optional in early ATA)
2022 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023 * anything else..
2024 * Some drives were very specific about that exact sequence.
2025 *
2026 * Note that ATA4 says lba is mandatory so the second check
2027 * should never trigger.
2028 */
2029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031 if (err_mask) {
2032 rc = -EIO;
2033 reason = "INIT_DEV_PARAMS failed";
2034 goto err_out;
2035 }
2036
2037 /* current CHS translation info (id[53-58]) might be
2038 * changed. reread the identify device info.
2039 */
2040 flags &= ~ATA_READID_POSTRESET;
2041 goto retry;
2042 }
2043 }
2044
2045 *p_class = class;
2046
2047 return 0;
2048
2049 err_out:
2050 if (ata_msg_warn(ap))
2051 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052 reason, err_mask);
2053 return rc;
2054 }
2055
2056 static int ata_do_link_spd_horkage(struct ata_device *dev)
2057 {
2058 struct ata_link *plink = ata_dev_phys_link(dev);
2059 u32 target, target_limit;
2060
2061 if (!sata_scr_valid(plink))
2062 return 0;
2063
2064 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065 target = 1;
2066 else
2067 return 0;
2068
2069 target_limit = (1 << target) - 1;
2070
2071 /* if already on stricter limit, no need to push further */
2072 if (plink->sata_spd_limit <= target_limit)
2073 return 0;
2074
2075 plink->sata_spd_limit = target_limit;
2076
2077 /* Request another EH round by returning -EAGAIN if link is
2078 * going faster than the target speed. Forward progress is
2079 * guaranteed by setting sata_spd_limit to target_limit above.
2080 */
2081 if (plink->sata_spd > target) {
2082 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083 sata_spd_string(target));
2084 return -EAGAIN;
2085 }
2086 return 0;
2087 }
2088
2089 static inline u8 ata_dev_knobble(struct ata_device *dev)
2090 {
2091 struct ata_port *ap = dev->link->ap;
2092
2093 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094 return 0;
2095
2096 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097 }
2098
2099 static int ata_dev_config_ncq(struct ata_device *dev,
2100 char *desc, size_t desc_sz)
2101 {
2102 struct ata_port *ap = dev->link->ap;
2103 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104 unsigned int err_mask;
2105 char *aa_desc = "";
2106
2107 if (!ata_id_has_ncq(dev->id)) {
2108 desc[0] = '\0';
2109 return 0;
2110 }
2111 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112 snprintf(desc, desc_sz, "NCQ (not used)");
2113 return 0;
2114 }
2115 if (ap->flags & ATA_FLAG_NCQ) {
2116 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117 dev->flags |= ATA_DFLAG_NCQ;
2118 }
2119
2120 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2122 ata_id_has_fpdma_aa(dev->id)) {
2123 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124 SATA_FPDMA_AA);
2125 if (err_mask) {
2126 ata_dev_err(dev,
2127 "failed to enable AA (error_mask=0x%x)\n",
2128 err_mask);
2129 if (err_mask != AC_ERR_DEV) {
2130 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131 return -EIO;
2132 }
2133 } else
2134 aa_desc = ", AA";
2135 }
2136
2137 if (hdepth >= ddepth)
2138 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139 else
2140 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141 ddepth, aa_desc);
2142
2143 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2144 ata_id_has_ncq_send_and_recv(dev->id)) {
2145 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2146 0, ap->sector_buf, 1);
2147 if (err_mask) {
2148 ata_dev_dbg(dev,
2149 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2150 err_mask);
2151 } else {
2152 u8 *cmds = dev->ncq_send_recv_cmds;
2153
2154 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2155 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2156
2157 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2158 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2159 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2160 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2161 }
2162 }
2163 }
2164
2165 return 0;
2166 }
2167
2168 /**
2169 * ata_dev_configure - Configure the specified ATA/ATAPI device
2170 * @dev: Target device to configure
2171 *
2172 * Configure @dev according to @dev->id. Generic and low-level
2173 * driver specific fixups are also applied.
2174 *
2175 * LOCKING:
2176 * Kernel thread context (may sleep)
2177 *
2178 * RETURNS:
2179 * 0 on success, -errno otherwise
2180 */
2181 int ata_dev_configure(struct ata_device *dev)
2182 {
2183 struct ata_port *ap = dev->link->ap;
2184 struct ata_eh_context *ehc = &dev->link->eh_context;
2185 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2186 const u16 *id = dev->id;
2187 unsigned long xfer_mask;
2188 unsigned int err_mask;
2189 char revbuf[7]; /* XYZ-99\0 */
2190 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2191 char modelbuf[ATA_ID_PROD_LEN+1];
2192 int rc;
2193
2194 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2195 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2196 return 0;
2197 }
2198
2199 if (ata_msg_probe(ap))
2200 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2201
2202 /* set horkage */
2203 dev->horkage |= ata_dev_blacklisted(dev);
2204 ata_force_horkage(dev);
2205
2206 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2207 ata_dev_info(dev, "unsupported device, disabling\n");
2208 ata_dev_disable(dev);
2209 return 0;
2210 }
2211
2212 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2213 dev->class == ATA_DEV_ATAPI) {
2214 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2215 atapi_enabled ? "not supported with this driver"
2216 : "disabled");
2217 ata_dev_disable(dev);
2218 return 0;
2219 }
2220
2221 rc = ata_do_link_spd_horkage(dev);
2222 if (rc)
2223 return rc;
2224
2225 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2226 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2227 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2228 dev->horkage |= ATA_HORKAGE_NOLPM;
2229
2230 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2231 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2232 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2233 }
2234
2235 /* let ACPI work its magic */
2236 rc = ata_acpi_on_devcfg(dev);
2237 if (rc)
2238 return rc;
2239
2240 /* massage HPA, do it early as it might change IDENTIFY data */
2241 rc = ata_hpa_resize(dev);
2242 if (rc)
2243 return rc;
2244
2245 /* print device capabilities */
2246 if (ata_msg_probe(ap))
2247 ata_dev_dbg(dev,
2248 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2249 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2250 __func__,
2251 id[49], id[82], id[83], id[84],
2252 id[85], id[86], id[87], id[88]);
2253
2254 /* initialize to-be-configured parameters */
2255 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2256 dev->max_sectors = 0;
2257 dev->cdb_len = 0;
2258 dev->n_sectors = 0;
2259 dev->cylinders = 0;
2260 dev->heads = 0;
2261 dev->sectors = 0;
2262 dev->multi_count = 0;
2263
2264 /*
2265 * common ATA, ATAPI feature tests
2266 */
2267
2268 /* find max transfer mode; for printk only */
2269 xfer_mask = ata_id_xfermask(id);
2270
2271 if (ata_msg_probe(ap))
2272 ata_dump_id(id);
2273
2274 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2275 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2276 sizeof(fwrevbuf));
2277
2278 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2279 sizeof(modelbuf));
2280
2281 /* ATA-specific feature tests */
2282 if (dev->class == ATA_DEV_ATA) {
2283 if (ata_id_is_cfa(id)) {
2284 /* CPRM may make this media unusable */
2285 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2286 ata_dev_warn(dev,
2287 "supports DRM functions and may not be fully accessible\n");
2288 snprintf(revbuf, 7, "CFA");
2289 } else {
2290 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2291 /* Warn the user if the device has TPM extensions */
2292 if (ata_id_has_tpm(id))
2293 ata_dev_warn(dev,
2294 "supports DRM functions and may not be fully accessible\n");
2295 }
2296
2297 dev->n_sectors = ata_id_n_sectors(id);
2298
2299 /* get current R/W Multiple count setting */
2300 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2301 unsigned int max = dev->id[47] & 0xff;
2302 unsigned int cnt = dev->id[59] & 0xff;
2303 /* only recognize/allow powers of two here */
2304 if (is_power_of_2(max) && is_power_of_2(cnt))
2305 if (cnt <= max)
2306 dev->multi_count = cnt;
2307 }
2308
2309 if (ata_id_has_lba(id)) {
2310 const char *lba_desc;
2311 char ncq_desc[24];
2312
2313 lba_desc = "LBA";
2314 dev->flags |= ATA_DFLAG_LBA;
2315 if (ata_id_has_lba48(id)) {
2316 dev->flags |= ATA_DFLAG_LBA48;
2317 lba_desc = "LBA48";
2318
2319 if (dev->n_sectors >= (1UL << 28) &&
2320 ata_id_has_flush_ext(id))
2321 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2322 }
2323
2324 /* config NCQ */
2325 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2326 if (rc)
2327 return rc;
2328
2329 /* print device info to dmesg */
2330 if (ata_msg_drv(ap) && print_info) {
2331 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2332 revbuf, modelbuf, fwrevbuf,
2333 ata_mode_string(xfer_mask));
2334 ata_dev_info(dev,
2335 "%llu sectors, multi %u: %s %s\n",
2336 (unsigned long long)dev->n_sectors,
2337 dev->multi_count, lba_desc, ncq_desc);
2338 }
2339 } else {
2340 /* CHS */
2341
2342 /* Default translation */
2343 dev->cylinders = id[1];
2344 dev->heads = id[3];
2345 dev->sectors = id[6];
2346
2347 if (ata_id_current_chs_valid(id)) {
2348 /* Current CHS translation is valid. */
2349 dev->cylinders = id[54];
2350 dev->heads = id[55];
2351 dev->sectors = id[56];
2352 }
2353
2354 /* print device info to dmesg */
2355 if (ata_msg_drv(ap) && print_info) {
2356 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2357 revbuf, modelbuf, fwrevbuf,
2358 ata_mode_string(xfer_mask));
2359 ata_dev_info(dev,
2360 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2361 (unsigned long long)dev->n_sectors,
2362 dev->multi_count, dev->cylinders,
2363 dev->heads, dev->sectors);
2364 }
2365 }
2366
2367 /* Check and mark DevSlp capability. Get DevSlp timing variables
2368 * from SATA Settings page of Identify Device Data Log.
2369 */
2370 if (ata_id_has_devslp(dev->id)) {
2371 u8 *sata_setting = ap->sector_buf;
2372 int i, j;
2373
2374 dev->flags |= ATA_DFLAG_DEVSLP;
2375 err_mask = ata_read_log_page(dev,
2376 ATA_LOG_SATA_ID_DEV_DATA,
2377 ATA_LOG_SATA_SETTINGS,
2378 sata_setting,
2379 1);
2380 if (err_mask)
2381 ata_dev_dbg(dev,
2382 "failed to get Identify Device Data, Emask 0x%x\n",
2383 err_mask);
2384 else
2385 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2386 j = ATA_LOG_DEVSLP_OFFSET + i;
2387 dev->devslp_timing[i] = sata_setting[j];
2388 }
2389 }
2390
2391 dev->cdb_len = 16;
2392 }
2393
2394 /* ATAPI-specific feature tests */
2395 else if (dev->class == ATA_DEV_ATAPI) {
2396 const char *cdb_intr_string = "";
2397 const char *atapi_an_string = "";
2398 const char *dma_dir_string = "";
2399 u32 sntf;
2400
2401 rc = atapi_cdb_len(id);
2402 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2403 if (ata_msg_warn(ap))
2404 ata_dev_warn(dev, "unsupported CDB len\n");
2405 rc = -EINVAL;
2406 goto err_out_nosup;
2407 }
2408 dev->cdb_len = (unsigned int) rc;
2409
2410 /* Enable ATAPI AN if both the host and device have
2411 * the support. If PMP is attached, SNTF is required
2412 * to enable ATAPI AN to discern between PHY status
2413 * changed notifications and ATAPI ANs.
2414 */
2415 if (atapi_an &&
2416 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2417 (!sata_pmp_attached(ap) ||
2418 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2419 /* issue SET feature command to turn this on */
2420 err_mask = ata_dev_set_feature(dev,
2421 SETFEATURES_SATA_ENABLE, SATA_AN);
2422 if (err_mask)
2423 ata_dev_err(dev,
2424 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2425 err_mask);
2426 else {
2427 dev->flags |= ATA_DFLAG_AN;
2428 atapi_an_string = ", ATAPI AN";
2429 }
2430 }
2431
2432 if (ata_id_cdb_intr(dev->id)) {
2433 dev->flags |= ATA_DFLAG_CDB_INTR;
2434 cdb_intr_string = ", CDB intr";
2435 }
2436
2437 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2438 dev->flags |= ATA_DFLAG_DMADIR;
2439 dma_dir_string = ", DMADIR";
2440 }
2441
2442 if (ata_id_has_da(dev->id)) {
2443 dev->flags |= ATA_DFLAG_DA;
2444 zpodd_init(dev);
2445 }
2446
2447 /* print device info to dmesg */
2448 if (ata_msg_drv(ap) && print_info)
2449 ata_dev_info(dev,
2450 "ATAPI: %s, %s, max %s%s%s%s\n",
2451 modelbuf, fwrevbuf,
2452 ata_mode_string(xfer_mask),
2453 cdb_intr_string, atapi_an_string,
2454 dma_dir_string);
2455 }
2456
2457 /* determine max_sectors */
2458 dev->max_sectors = ATA_MAX_SECTORS;
2459 if (dev->flags & ATA_DFLAG_LBA48)
2460 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2461
2462 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2463 200 sectors */
2464 if (ata_dev_knobble(dev)) {
2465 if (ata_msg_drv(ap) && print_info)
2466 ata_dev_info(dev, "applying bridge limits\n");
2467 dev->udma_mask &= ATA_UDMA5;
2468 dev->max_sectors = ATA_MAX_SECTORS;
2469 }
2470
2471 if ((dev->class == ATA_DEV_ATAPI) &&
2472 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2473 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2474 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2475 }
2476
2477 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2478 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2479 dev->max_sectors);
2480
2481 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2482 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2483
2484 if (ap->ops->dev_config)
2485 ap->ops->dev_config(dev);
2486
2487 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2488 /* Let the user know. We don't want to disallow opens for
2489 rescue purposes, or in case the vendor is just a blithering
2490 idiot. Do this after the dev_config call as some controllers
2491 with buggy firmware may want to avoid reporting false device
2492 bugs */
2493
2494 if (print_info) {
2495 ata_dev_warn(dev,
2496 "Drive reports diagnostics failure. This may indicate a drive\n");
2497 ata_dev_warn(dev,
2498 "fault or invalid emulation. Contact drive vendor for information.\n");
2499 }
2500 }
2501
2502 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2503 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2504 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2505 }
2506
2507 return 0;
2508
2509 err_out_nosup:
2510 if (ata_msg_probe(ap))
2511 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2512 return rc;
2513 }
2514
2515 /**
2516 * ata_cable_40wire - return 40 wire cable type
2517 * @ap: port
2518 *
2519 * Helper method for drivers which want to hardwire 40 wire cable
2520 * detection.
2521 */
2522
2523 int ata_cable_40wire(struct ata_port *ap)
2524 {
2525 return ATA_CBL_PATA40;
2526 }
2527
2528 /**
2529 * ata_cable_80wire - return 80 wire cable type
2530 * @ap: port
2531 *
2532 * Helper method for drivers which want to hardwire 80 wire cable
2533 * detection.
2534 */
2535
2536 int ata_cable_80wire(struct ata_port *ap)
2537 {
2538 return ATA_CBL_PATA80;
2539 }
2540
2541 /**
2542 * ata_cable_unknown - return unknown PATA cable.
2543 * @ap: port
2544 *
2545 * Helper method for drivers which have no PATA cable detection.
2546 */
2547
2548 int ata_cable_unknown(struct ata_port *ap)
2549 {
2550 return ATA_CBL_PATA_UNK;
2551 }
2552
2553 /**
2554 * ata_cable_ignore - return ignored PATA cable.
2555 * @ap: port
2556 *
2557 * Helper method for drivers which don't use cable type to limit
2558 * transfer mode.
2559 */
2560 int ata_cable_ignore(struct ata_port *ap)
2561 {
2562 return ATA_CBL_PATA_IGN;
2563 }
2564
2565 /**
2566 * ata_cable_sata - return SATA cable type
2567 * @ap: port
2568 *
2569 * Helper method for drivers which have SATA cables
2570 */
2571
2572 int ata_cable_sata(struct ata_port *ap)
2573 {
2574 return ATA_CBL_SATA;
2575 }
2576
2577 /**
2578 * ata_bus_probe - Reset and probe ATA bus
2579 * @ap: Bus to probe
2580 *
2581 * Master ATA bus probing function. Initiates a hardware-dependent
2582 * bus reset, then attempts to identify any devices found on
2583 * the bus.
2584 *
2585 * LOCKING:
2586 * PCI/etc. bus probe sem.
2587 *
2588 * RETURNS:
2589 * Zero on success, negative errno otherwise.
2590 */
2591
2592 int ata_bus_probe(struct ata_port *ap)
2593 {
2594 unsigned int classes[ATA_MAX_DEVICES];
2595 int tries[ATA_MAX_DEVICES];
2596 int rc;
2597 struct ata_device *dev;
2598
2599 ata_for_each_dev(dev, &ap->link, ALL)
2600 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2601
2602 retry:
2603 ata_for_each_dev(dev, &ap->link, ALL) {
2604 /* If we issue an SRST then an ATA drive (not ATAPI)
2605 * may change configuration and be in PIO0 timing. If
2606 * we do a hard reset (or are coming from power on)
2607 * this is true for ATA or ATAPI. Until we've set a
2608 * suitable controller mode we should not touch the
2609 * bus as we may be talking too fast.
2610 */
2611 dev->pio_mode = XFER_PIO_0;
2612 dev->dma_mode = 0xff;
2613
2614 /* If the controller has a pio mode setup function
2615 * then use it to set the chipset to rights. Don't
2616 * touch the DMA setup as that will be dealt with when
2617 * configuring devices.
2618 */
2619 if (ap->ops->set_piomode)
2620 ap->ops->set_piomode(ap, dev);
2621 }
2622
2623 /* reset and determine device classes */
2624 ap->ops->phy_reset(ap);
2625
2626 ata_for_each_dev(dev, &ap->link, ALL) {
2627 if (dev->class != ATA_DEV_UNKNOWN)
2628 classes[dev->devno] = dev->class;
2629 else
2630 classes[dev->devno] = ATA_DEV_NONE;
2631
2632 dev->class = ATA_DEV_UNKNOWN;
2633 }
2634
2635 /* read IDENTIFY page and configure devices. We have to do the identify
2636 specific sequence bass-ackwards so that PDIAG- is released by
2637 the slave device */
2638
2639 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2640 if (tries[dev->devno])
2641 dev->class = classes[dev->devno];
2642
2643 if (!ata_dev_enabled(dev))
2644 continue;
2645
2646 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2647 dev->id);
2648 if (rc)
2649 goto fail;
2650 }
2651
2652 /* Now ask for the cable type as PDIAG- should have been released */
2653 if (ap->ops->cable_detect)
2654 ap->cbl = ap->ops->cable_detect(ap);
2655
2656 /* We may have SATA bridge glue hiding here irrespective of
2657 * the reported cable types and sensed types. When SATA
2658 * drives indicate we have a bridge, we don't know which end
2659 * of the link the bridge is which is a problem.
2660 */
2661 ata_for_each_dev(dev, &ap->link, ENABLED)
2662 if (ata_id_is_sata(dev->id))
2663 ap->cbl = ATA_CBL_SATA;
2664
2665 /* After the identify sequence we can now set up the devices. We do
2666 this in the normal order so that the user doesn't get confused */
2667
2668 ata_for_each_dev(dev, &ap->link, ENABLED) {
2669 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2670 rc = ata_dev_configure(dev);
2671 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2672 if (rc)
2673 goto fail;
2674 }
2675
2676 /* configure transfer mode */
2677 rc = ata_set_mode(&ap->link, &dev);
2678 if (rc)
2679 goto fail;
2680
2681 ata_for_each_dev(dev, &ap->link, ENABLED)
2682 return 0;
2683
2684 return -ENODEV;
2685
2686 fail:
2687 tries[dev->devno]--;
2688
2689 switch (rc) {
2690 case -EINVAL:
2691 /* eeek, something went very wrong, give up */
2692 tries[dev->devno] = 0;
2693 break;
2694
2695 case -ENODEV:
2696 /* give it just one more chance */
2697 tries[dev->devno] = min(tries[dev->devno], 1);
2698 case -EIO:
2699 if (tries[dev->devno] == 1) {
2700 /* This is the last chance, better to slow
2701 * down than lose it.
2702 */
2703 sata_down_spd_limit(&ap->link, 0);
2704 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2705 }
2706 }
2707
2708 if (!tries[dev->devno])
2709 ata_dev_disable(dev);
2710
2711 goto retry;
2712 }
2713
2714 /**
2715 * sata_print_link_status - Print SATA link status
2716 * @link: SATA link to printk link status about
2717 *
2718 * This function prints link speed and status of a SATA link.
2719 *
2720 * LOCKING:
2721 * None.
2722 */
2723 static void sata_print_link_status(struct ata_link *link)
2724 {
2725 u32 sstatus, scontrol, tmp;
2726
2727 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2728 return;
2729 sata_scr_read(link, SCR_CONTROL, &scontrol);
2730
2731 if (ata_phys_link_online(link)) {
2732 tmp = (sstatus >> 4) & 0xf;
2733 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2734 sata_spd_string(tmp), sstatus, scontrol);
2735 } else {
2736 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2737 sstatus, scontrol);
2738 }
2739 }
2740
2741 /**
2742 * ata_dev_pair - return other device on cable
2743 * @adev: device
2744 *
2745 * Obtain the other device on the same cable, or if none is
2746 * present NULL is returned
2747 */
2748
2749 struct ata_device *ata_dev_pair(struct ata_device *adev)
2750 {
2751 struct ata_link *link = adev->link;
2752 struct ata_device *pair = &link->device[1 - adev->devno];
2753 if (!ata_dev_enabled(pair))
2754 return NULL;
2755 return pair;
2756 }
2757
2758 /**
2759 * sata_down_spd_limit - adjust SATA spd limit downward
2760 * @link: Link to adjust SATA spd limit for
2761 * @spd_limit: Additional limit
2762 *
2763 * Adjust SATA spd limit of @link downward. Note that this
2764 * function only adjusts the limit. The change must be applied
2765 * using sata_set_spd().
2766 *
2767 * If @spd_limit is non-zero, the speed is limited to equal to or
2768 * lower than @spd_limit if such speed is supported. If
2769 * @spd_limit is slower than any supported speed, only the lowest
2770 * supported speed is allowed.
2771 *
2772 * LOCKING:
2773 * Inherited from caller.
2774 *
2775 * RETURNS:
2776 * 0 on success, negative errno on failure
2777 */
2778 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2779 {
2780 u32 sstatus, spd, mask;
2781 int rc, bit;
2782
2783 if (!sata_scr_valid(link))
2784 return -EOPNOTSUPP;
2785
2786 /* If SCR can be read, use it to determine the current SPD.
2787 * If not, use cached value in link->sata_spd.
2788 */
2789 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2790 if (rc == 0 && ata_sstatus_online(sstatus))
2791 spd = (sstatus >> 4) & 0xf;
2792 else
2793 spd = link->sata_spd;
2794
2795 mask = link->sata_spd_limit;
2796 if (mask <= 1)
2797 return -EINVAL;
2798
2799 /* unconditionally mask off the highest bit */
2800 bit = fls(mask) - 1;
2801 mask &= ~(1 << bit);
2802
2803 /* Mask off all speeds higher than or equal to the current
2804 * one. Force 1.5Gbps if current SPD is not available.
2805 */
2806 if (spd > 1)
2807 mask &= (1 << (spd - 1)) - 1;
2808 else
2809 mask &= 1;
2810
2811 /* were we already at the bottom? */
2812 if (!mask)
2813 return -EINVAL;
2814
2815 if (spd_limit) {
2816 if (mask & ((1 << spd_limit) - 1))
2817 mask &= (1 << spd_limit) - 1;
2818 else {
2819 bit = ffs(mask) - 1;
2820 mask = 1 << bit;
2821 }
2822 }
2823
2824 link->sata_spd_limit = mask;
2825
2826 ata_link_warn(link, "limiting SATA link speed to %s\n",
2827 sata_spd_string(fls(mask)));
2828
2829 return 0;
2830 }
2831
2832 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2833 {
2834 struct ata_link *host_link = &link->ap->link;
2835 u32 limit, target, spd;
2836
2837 limit = link->sata_spd_limit;
2838
2839 /* Don't configure downstream link faster than upstream link.
2840 * It doesn't speed up anything and some PMPs choke on such
2841 * configuration.
2842 */
2843 if (!ata_is_host_link(link) && host_link->sata_spd)
2844 limit &= (1 << host_link->sata_spd) - 1;
2845
2846 if (limit == UINT_MAX)
2847 target = 0;
2848 else
2849 target = fls(limit);
2850
2851 spd = (*scontrol >> 4) & 0xf;
2852 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2853
2854 return spd != target;
2855 }
2856
2857 /**
2858 * sata_set_spd_needed - is SATA spd configuration needed
2859 * @link: Link in question
2860 *
2861 * Test whether the spd limit in SControl matches
2862 * @link->sata_spd_limit. This function is used to determine
2863 * whether hardreset is necessary to apply SATA spd
2864 * configuration.
2865 *
2866 * LOCKING:
2867 * Inherited from caller.
2868 *
2869 * RETURNS:
2870 * 1 if SATA spd configuration is needed, 0 otherwise.
2871 */
2872 static int sata_set_spd_needed(struct ata_link *link)
2873 {
2874 u32 scontrol;
2875
2876 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2877 return 1;
2878
2879 return __sata_set_spd_needed(link, &scontrol);
2880 }
2881
2882 /**
2883 * sata_set_spd - set SATA spd according to spd limit
2884 * @link: Link to set SATA spd for
2885 *
2886 * Set SATA spd of @link according to sata_spd_limit.
2887 *
2888 * LOCKING:
2889 * Inherited from caller.
2890 *
2891 * RETURNS:
2892 * 0 if spd doesn't need to be changed, 1 if spd has been
2893 * changed. Negative errno if SCR registers are inaccessible.
2894 */
2895 int sata_set_spd(struct ata_link *link)
2896 {
2897 u32 scontrol;
2898 int rc;
2899
2900 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2901 return rc;
2902
2903 if (!__sata_set_spd_needed(link, &scontrol))
2904 return 0;
2905
2906 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2907 return rc;
2908
2909 return 1;
2910 }
2911
2912 /*
2913 * This mode timing computation functionality is ported over from
2914 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2915 */
2916 /*
2917 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2918 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2919 * for UDMA6, which is currently supported only by Maxtor drives.
2920 *
2921 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2922 */
2923
2924 static const struct ata_timing ata_timing[] = {
2925 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2926 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2927 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2928 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2929 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2930 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2931 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2932 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2933
2934 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2935 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2936 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2937
2938 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2939 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2940 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2941 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2942 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2943
2944 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2945 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2946 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2947 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2948 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2949 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2950 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2951 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2952
2953 { 0xFF }
2954 };
2955
2956 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2957 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2958
2959 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2960 {
2961 q->setup = EZ(t->setup * 1000, T);
2962 q->act8b = EZ(t->act8b * 1000, T);
2963 q->rec8b = EZ(t->rec8b * 1000, T);
2964 q->cyc8b = EZ(t->cyc8b * 1000, T);
2965 q->active = EZ(t->active * 1000, T);
2966 q->recover = EZ(t->recover * 1000, T);
2967 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2968 q->cycle = EZ(t->cycle * 1000, T);
2969 q->udma = EZ(t->udma * 1000, UT);
2970 }
2971
2972 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2973 struct ata_timing *m, unsigned int what)
2974 {
2975 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2976 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2977 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2978 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2979 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2980 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2981 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2982 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2983 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2984 }
2985
2986 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2987 {
2988 const struct ata_timing *t = ata_timing;
2989
2990 while (xfer_mode > t->mode)
2991 t++;
2992
2993 if (xfer_mode == t->mode)
2994 return t;
2995
2996 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2997 __func__, xfer_mode);
2998
2999 return NULL;
3000 }
3001
3002 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3003 struct ata_timing *t, int T, int UT)
3004 {
3005 const u16 *id = adev->id;
3006 const struct ata_timing *s;
3007 struct ata_timing p;
3008
3009 /*
3010 * Find the mode.
3011 */
3012
3013 if (!(s = ata_timing_find_mode(speed)))
3014 return -EINVAL;
3015
3016 memcpy(t, s, sizeof(*s));
3017
3018 /*
3019 * If the drive is an EIDE drive, it can tell us it needs extended
3020 * PIO/MW_DMA cycle timing.
3021 */
3022
3023 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3024 memset(&p, 0, sizeof(p));
3025
3026 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3027 if (speed <= XFER_PIO_2)
3028 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3029 else if ((speed <= XFER_PIO_4) ||
3030 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3031 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3032 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3033 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3034
3035 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3036 }
3037
3038 /*
3039 * Convert the timing to bus clock counts.
3040 */
3041
3042 ata_timing_quantize(t, t, T, UT);
3043
3044 /*
3045 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3046 * S.M.A.R.T * and some other commands. We have to ensure that the
3047 * DMA cycle timing is slower/equal than the fastest PIO timing.
3048 */
3049
3050 if (speed > XFER_PIO_6) {
3051 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3052 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3053 }
3054
3055 /*
3056 * Lengthen active & recovery time so that cycle time is correct.
3057 */
3058
3059 if (t->act8b + t->rec8b < t->cyc8b) {
3060 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3061 t->rec8b = t->cyc8b - t->act8b;
3062 }
3063
3064 if (t->active + t->recover < t->cycle) {
3065 t->active += (t->cycle - (t->active + t->recover)) / 2;
3066 t->recover = t->cycle - t->active;
3067 }
3068
3069 /* In a few cases quantisation may produce enough errors to
3070 leave t->cycle too low for the sum of active and recovery
3071 if so we must correct this */
3072 if (t->active + t->recover > t->cycle)
3073 t->cycle = t->active + t->recover;
3074
3075 return 0;
3076 }
3077
3078 /**
3079 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3080 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3081 * @cycle: cycle duration in ns
3082 *
3083 * Return matching xfer mode for @cycle. The returned mode is of
3084 * the transfer type specified by @xfer_shift. If @cycle is too
3085 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3086 * than the fastest known mode, the fasted mode is returned.
3087 *
3088 * LOCKING:
3089 * None.
3090 *
3091 * RETURNS:
3092 * Matching xfer_mode, 0xff if no match found.
3093 */
3094 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3095 {
3096 u8 base_mode = 0xff, last_mode = 0xff;
3097 const struct ata_xfer_ent *ent;
3098 const struct ata_timing *t;
3099
3100 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3101 if (ent->shift == xfer_shift)
3102 base_mode = ent->base;
3103
3104 for (t = ata_timing_find_mode(base_mode);
3105 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3106 unsigned short this_cycle;
3107
3108 switch (xfer_shift) {
3109 case ATA_SHIFT_PIO:
3110 case ATA_SHIFT_MWDMA:
3111 this_cycle = t->cycle;
3112 break;
3113 case ATA_SHIFT_UDMA:
3114 this_cycle = t->udma;
3115 break;
3116 default:
3117 return 0xff;
3118 }
3119
3120 if (cycle > this_cycle)
3121 break;
3122
3123 last_mode = t->mode;
3124 }
3125
3126 return last_mode;
3127 }
3128
3129 /**
3130 * ata_down_xfermask_limit - adjust dev xfer masks downward
3131 * @dev: Device to adjust xfer masks
3132 * @sel: ATA_DNXFER_* selector
3133 *
3134 * Adjust xfer masks of @dev downward. Note that this function
3135 * does not apply the change. Invoking ata_set_mode() afterwards
3136 * will apply the limit.
3137 *
3138 * LOCKING:
3139 * Inherited from caller.
3140 *
3141 * RETURNS:
3142 * 0 on success, negative errno on failure
3143 */
3144 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3145 {
3146 char buf[32];
3147 unsigned long orig_mask, xfer_mask;
3148 unsigned long pio_mask, mwdma_mask, udma_mask;
3149 int quiet, highbit;
3150
3151 quiet = !!(sel & ATA_DNXFER_QUIET);
3152 sel &= ~ATA_DNXFER_QUIET;
3153
3154 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3155 dev->mwdma_mask,
3156 dev->udma_mask);
3157 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3158
3159 switch (sel) {
3160 case ATA_DNXFER_PIO:
3161 highbit = fls(pio_mask) - 1;
3162 pio_mask &= ~(1 << highbit);
3163 break;
3164
3165 case ATA_DNXFER_DMA:
3166 if (udma_mask) {
3167 highbit = fls(udma_mask) - 1;
3168 udma_mask &= ~(1 << highbit);
3169 if (!udma_mask)
3170 return -ENOENT;
3171 } else if (mwdma_mask) {
3172 highbit = fls(mwdma_mask) - 1;
3173 mwdma_mask &= ~(1 << highbit);
3174 if (!mwdma_mask)
3175 return -ENOENT;
3176 }
3177 break;
3178
3179 case ATA_DNXFER_40C:
3180 udma_mask &= ATA_UDMA_MASK_40C;
3181 break;
3182
3183 case ATA_DNXFER_FORCE_PIO0:
3184 pio_mask &= 1;
3185 case ATA_DNXFER_FORCE_PIO:
3186 mwdma_mask = 0;
3187 udma_mask = 0;
3188 break;
3189
3190 default:
3191 BUG();
3192 }
3193
3194 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3195
3196 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3197 return -ENOENT;
3198
3199 if (!quiet) {
3200 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3201 snprintf(buf, sizeof(buf), "%s:%s",
3202 ata_mode_string(xfer_mask),
3203 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3204 else
3205 snprintf(buf, sizeof(buf), "%s",
3206 ata_mode_string(xfer_mask));
3207
3208 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3209 }
3210
3211 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3212 &dev->udma_mask);
3213
3214 return 0;
3215 }
3216
3217 static int ata_dev_set_mode(struct ata_device *dev)
3218 {
3219 struct ata_port *ap = dev->link->ap;
3220 struct ata_eh_context *ehc = &dev->link->eh_context;
3221 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3222 const char *dev_err_whine = "";
3223 int ign_dev_err = 0;
3224 unsigned int err_mask = 0;
3225 int rc;
3226
3227 dev->flags &= ~ATA_DFLAG_PIO;
3228 if (dev->xfer_shift == ATA_SHIFT_PIO)
3229 dev->flags |= ATA_DFLAG_PIO;
3230
3231 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3232 dev_err_whine = " (SET_XFERMODE skipped)";
3233 else {
3234 if (nosetxfer)
3235 ata_dev_warn(dev,
3236 "NOSETXFER but PATA detected - can't "
3237 "skip SETXFER, might malfunction\n");
3238 err_mask = ata_dev_set_xfermode(dev);
3239 }
3240
3241 if (err_mask & ~AC_ERR_DEV)
3242 goto fail;
3243
3244 /* revalidate */
3245 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3246 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3247 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3248 if (rc)
3249 return rc;
3250
3251 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3252 /* Old CFA may refuse this command, which is just fine */
3253 if (ata_id_is_cfa(dev->id))
3254 ign_dev_err = 1;
3255 /* Catch several broken garbage emulations plus some pre
3256 ATA devices */
3257 if (ata_id_major_version(dev->id) == 0 &&
3258 dev->pio_mode <= XFER_PIO_2)
3259 ign_dev_err = 1;
3260 /* Some very old devices and some bad newer ones fail
3261 any kind of SET_XFERMODE request but support PIO0-2
3262 timings and no IORDY */
3263 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3264 ign_dev_err = 1;
3265 }
3266 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3267 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3268 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3269 dev->dma_mode == XFER_MW_DMA_0 &&
3270 (dev->id[63] >> 8) & 1)
3271 ign_dev_err = 1;
3272
3273 /* if the device is actually configured correctly, ignore dev err */
3274 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3275 ign_dev_err = 1;
3276
3277 if (err_mask & AC_ERR_DEV) {
3278 if (!ign_dev_err)
3279 goto fail;
3280 else
3281 dev_err_whine = " (device error ignored)";
3282 }
3283
3284 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3285 dev->xfer_shift, (int)dev->xfer_mode);
3286
3287 ata_dev_info(dev, "configured for %s%s\n",
3288 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3289 dev_err_whine);
3290
3291 return 0;
3292
3293 fail:
3294 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3295 return -EIO;
3296 }
3297
3298 /**
3299 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3300 * @link: link on which timings will be programmed
3301 * @r_failed_dev: out parameter for failed device
3302 *
3303 * Standard implementation of the function used to tune and set
3304 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3305 * ata_dev_set_mode() fails, pointer to the failing device is
3306 * returned in @r_failed_dev.
3307 *
3308 * LOCKING:
3309 * PCI/etc. bus probe sem.
3310 *
3311 * RETURNS:
3312 * 0 on success, negative errno otherwise
3313 */
3314
3315 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3316 {
3317 struct ata_port *ap = link->ap;
3318 struct ata_device *dev;
3319 int rc = 0, used_dma = 0, found = 0;
3320
3321 /* step 1: calculate xfer_mask */
3322 ata_for_each_dev(dev, link, ENABLED) {
3323 unsigned long pio_mask, dma_mask;
3324 unsigned int mode_mask;
3325
3326 mode_mask = ATA_DMA_MASK_ATA;
3327 if (dev->class == ATA_DEV_ATAPI)
3328 mode_mask = ATA_DMA_MASK_ATAPI;
3329 else if (ata_id_is_cfa(dev->id))
3330 mode_mask = ATA_DMA_MASK_CFA;
3331
3332 ata_dev_xfermask(dev);
3333 ata_force_xfermask(dev);
3334
3335 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3336
3337 if (libata_dma_mask & mode_mask)
3338 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3339 dev->udma_mask);
3340 else
3341 dma_mask = 0;
3342
3343 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3344 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3345
3346 found = 1;
3347 if (ata_dma_enabled(dev))
3348 used_dma = 1;
3349 }
3350 if (!found)
3351 goto out;
3352
3353 /* step 2: always set host PIO timings */
3354 ata_for_each_dev(dev, link, ENABLED) {
3355 if (dev->pio_mode == 0xff) {
3356 ata_dev_warn(dev, "no PIO support\n");
3357 rc = -EINVAL;
3358 goto out;
3359 }
3360
3361 dev->xfer_mode = dev->pio_mode;
3362 dev->xfer_shift = ATA_SHIFT_PIO;
3363 if (ap->ops->set_piomode)
3364 ap->ops->set_piomode(ap, dev);
3365 }
3366
3367 /* step 3: set host DMA timings */
3368 ata_for_each_dev(dev, link, ENABLED) {
3369 if (!ata_dma_enabled(dev))
3370 continue;
3371
3372 dev->xfer_mode = dev->dma_mode;
3373 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3374 if (ap->ops->set_dmamode)
3375 ap->ops->set_dmamode(ap, dev);
3376 }
3377
3378 /* step 4: update devices' xfer mode */
3379 ata_for_each_dev(dev, link, ENABLED) {
3380 rc = ata_dev_set_mode(dev);
3381 if (rc)
3382 goto out;
3383 }
3384
3385 /* Record simplex status. If we selected DMA then the other
3386 * host channels are not permitted to do so.
3387 */
3388 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3389 ap->host->simplex_claimed = ap;
3390
3391 out:
3392 if (rc)
3393 *r_failed_dev = dev;
3394 return rc;
3395 }
3396
3397 /**
3398 * ata_wait_ready - wait for link to become ready
3399 * @link: link to be waited on
3400 * @deadline: deadline jiffies for the operation
3401 * @check_ready: callback to check link readiness
3402 *
3403 * Wait for @link to become ready. @check_ready should return
3404 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3405 * link doesn't seem to be occupied, other errno for other error
3406 * conditions.
3407 *
3408 * Transient -ENODEV conditions are allowed for
3409 * ATA_TMOUT_FF_WAIT.
3410 *
3411 * LOCKING:
3412 * EH context.
3413 *
3414 * RETURNS:
3415 * 0 if @linke is ready before @deadline; otherwise, -errno.
3416 */
3417 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3418 int (*check_ready)(struct ata_link *link))
3419 {
3420 unsigned long start = jiffies;
3421 unsigned long nodev_deadline;
3422 int warned = 0;
3423
3424 /* choose which 0xff timeout to use, read comment in libata.h */
3425 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3426 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3427 else
3428 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3429
3430 /* Slave readiness can't be tested separately from master. On
3431 * M/S emulation configuration, this function should be called
3432 * only on the master and it will handle both master and slave.
3433 */
3434 WARN_ON(link == link->ap->slave_link);
3435
3436 if (time_after(nodev_deadline, deadline))
3437 nodev_deadline = deadline;
3438
3439 while (1) {
3440 unsigned long now = jiffies;
3441 int ready, tmp;
3442
3443 ready = tmp = check_ready(link);
3444 if (ready > 0)
3445 return 0;
3446
3447 /*
3448 * -ENODEV could be transient. Ignore -ENODEV if link
3449 * is online. Also, some SATA devices take a long
3450 * time to clear 0xff after reset. Wait for
3451 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3452 * offline.
3453 *
3454 * Note that some PATA controllers (pata_ali) explode
3455 * if status register is read more than once when
3456 * there's no device attached.
3457 */
3458 if (ready == -ENODEV) {
3459 if (ata_link_online(link))
3460 ready = 0;
3461 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3462 !ata_link_offline(link) &&
3463 time_before(now, nodev_deadline))
3464 ready = 0;
3465 }
3466
3467 if (ready)
3468 return ready;
3469 if (time_after(now, deadline))
3470 return -EBUSY;
3471
3472 if (!warned && time_after(now, start + 5 * HZ) &&
3473 (deadline - now > 3 * HZ)) {
3474 ata_link_warn(link,
3475 "link is slow to respond, please be patient "
3476 "(ready=%d)\n", tmp);
3477 warned = 1;
3478 }
3479
3480 ata_msleep(link->ap, 50);
3481 }
3482 }
3483
3484 /**
3485 * ata_wait_after_reset - wait for link to become ready after reset
3486 * @link: link to be waited on
3487 * @deadline: deadline jiffies for the operation
3488 * @check_ready: callback to check link readiness
3489 *
3490 * Wait for @link to become ready after reset.
3491 *
3492 * LOCKING:
3493 * EH context.
3494 *
3495 * RETURNS:
3496 * 0 if @linke is ready before @deadline; otherwise, -errno.
3497 */
3498 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3499 int (*check_ready)(struct ata_link *link))
3500 {
3501 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3502
3503 return ata_wait_ready(link, deadline, check_ready);
3504 }
3505
3506 /**
3507 * sata_link_debounce - debounce SATA phy status
3508 * @link: ATA link to debounce SATA phy status for
3509 * @params: timing parameters { interval, duratinon, timeout } in msec
3510 * @deadline: deadline jiffies for the operation
3511 *
3512 * Make sure SStatus of @link reaches stable state, determined by
3513 * holding the same value where DET is not 1 for @duration polled
3514 * every @interval, before @timeout. Timeout constraints the
3515 * beginning of the stable state. Because DET gets stuck at 1 on
3516 * some controllers after hot unplugging, this functions waits
3517 * until timeout then returns 0 if DET is stable at 1.
3518 *
3519 * @timeout is further limited by @deadline. The sooner of the
3520 * two is used.
3521 *
3522 * LOCKING:
3523 * Kernel thread context (may sleep)
3524 *
3525 * RETURNS:
3526 * 0 on success, -errno on failure.
3527 */
3528 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3529 unsigned long deadline)
3530 {
3531 unsigned long interval = params[0];
3532 unsigned long duration = params[1];
3533 unsigned long last_jiffies, t;
3534 u32 last, cur;
3535 int rc;
3536
3537 t = ata_deadline(jiffies, params[2]);
3538 if (time_before(t, deadline))
3539 deadline = t;
3540
3541 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3542 return rc;
3543 cur &= 0xf;
3544
3545 last = cur;
3546 last_jiffies = jiffies;
3547
3548 while (1) {
3549 ata_msleep(link->ap, interval);
3550 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3551 return rc;
3552 cur &= 0xf;
3553
3554 /* DET stable? */
3555 if (cur == last) {
3556 if (cur == 1 && time_before(jiffies, deadline))
3557 continue;
3558 if (time_after(jiffies,
3559 ata_deadline(last_jiffies, duration)))
3560 return 0;
3561 continue;
3562 }
3563
3564 /* unstable, start over */
3565 last = cur;
3566 last_jiffies = jiffies;
3567
3568 /* Check deadline. If debouncing failed, return
3569 * -EPIPE to tell upper layer to lower link speed.
3570 */
3571 if (time_after(jiffies, deadline))
3572 return -EPIPE;
3573 }
3574 }
3575
3576 /**
3577 * sata_link_resume - resume SATA link
3578 * @link: ATA link to resume SATA
3579 * @params: timing parameters { interval, duratinon, timeout } in msec
3580 * @deadline: deadline jiffies for the operation
3581 *
3582 * Resume SATA phy @link and debounce it.
3583 *
3584 * LOCKING:
3585 * Kernel thread context (may sleep)
3586 *
3587 * RETURNS:
3588 * 0 on success, -errno on failure.
3589 */
3590 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3591 unsigned long deadline)
3592 {
3593 int tries = ATA_LINK_RESUME_TRIES;
3594 u32 scontrol, serror;
3595 int rc;
3596
3597 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3598 return rc;
3599
3600 /*
3601 * Writes to SControl sometimes get ignored under certain
3602 * controllers (ata_piix SIDPR). Make sure DET actually is
3603 * cleared.
3604 */
3605 do {
3606 scontrol = (scontrol & 0x0f0) | 0x300;
3607 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3608 return rc;
3609 /*
3610 * Some PHYs react badly if SStatus is pounded
3611 * immediately after resuming. Delay 200ms before
3612 * debouncing.
3613 */
3614 ata_msleep(link->ap, 200);
3615
3616 /* is SControl restored correctly? */
3617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3618 return rc;
3619 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3620
3621 if ((scontrol & 0xf0f) != 0x300) {
3622 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3623 scontrol);
3624 return 0;
3625 }
3626
3627 if (tries < ATA_LINK_RESUME_TRIES)
3628 ata_link_warn(link, "link resume succeeded after %d retries\n",
3629 ATA_LINK_RESUME_TRIES - tries);
3630
3631 if ((rc = sata_link_debounce(link, params, deadline)))
3632 return rc;
3633
3634 /* clear SError, some PHYs require this even for SRST to work */
3635 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3636 rc = sata_scr_write(link, SCR_ERROR, serror);
3637
3638 return rc != -EINVAL ? rc : 0;
3639 }
3640
3641 /**
3642 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3643 * @link: ATA link to manipulate SControl for
3644 * @policy: LPM policy to configure
3645 * @spm_wakeup: initiate LPM transition to active state
3646 *
3647 * Manipulate the IPM field of the SControl register of @link
3648 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3649 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3650 * the link. This function also clears PHYRDY_CHG before
3651 * returning.
3652 *
3653 * LOCKING:
3654 * EH context.
3655 *
3656 * RETURNS:
3657 * 0 on succes, -errno otherwise.
3658 */
3659 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3660 bool spm_wakeup)
3661 {
3662 struct ata_eh_context *ehc = &link->eh_context;
3663 bool woken_up = false;
3664 u32 scontrol;
3665 int rc;
3666
3667 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3668 if (rc)
3669 return rc;
3670
3671 switch (policy) {
3672 case ATA_LPM_MAX_POWER:
3673 /* disable all LPM transitions */
3674 scontrol |= (0x7 << 8);
3675 /* initiate transition to active state */
3676 if (spm_wakeup) {
3677 scontrol |= (0x4 << 12);
3678 woken_up = true;
3679 }
3680 break;
3681 case ATA_LPM_MED_POWER:
3682 /* allow LPM to PARTIAL */
3683 scontrol &= ~(0x1 << 8);
3684 scontrol |= (0x6 << 8);
3685 break;
3686 case ATA_LPM_MIN_POWER:
3687 if (ata_link_nr_enabled(link) > 0)
3688 /* no restrictions on LPM transitions */
3689 scontrol &= ~(0x7 << 8);
3690 else {
3691 /* empty port, power off */
3692 scontrol &= ~0xf;
3693 scontrol |= (0x1 << 2);
3694 }
3695 break;
3696 default:
3697 WARN_ON(1);
3698 }
3699
3700 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3701 if (rc)
3702 return rc;
3703
3704 /* give the link time to transit out of LPM state */
3705 if (woken_up)
3706 msleep(10);
3707
3708 /* clear PHYRDY_CHG from SError */
3709 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3710 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3711 }
3712
3713 /**
3714 * ata_std_prereset - prepare for reset
3715 * @link: ATA link to be reset
3716 * @deadline: deadline jiffies for the operation
3717 *
3718 * @link is about to be reset. Initialize it. Failure from
3719 * prereset makes libata abort whole reset sequence and give up
3720 * that port, so prereset should be best-effort. It does its
3721 * best to prepare for reset sequence but if things go wrong, it
3722 * should just whine, not fail.
3723 *
3724 * LOCKING:
3725 * Kernel thread context (may sleep)
3726 *
3727 * RETURNS:
3728 * 0 on success, -errno otherwise.
3729 */
3730 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3731 {
3732 struct ata_port *ap = link->ap;
3733 struct ata_eh_context *ehc = &link->eh_context;
3734 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3735 int rc;
3736
3737 /* if we're about to do hardreset, nothing more to do */
3738 if (ehc->i.action & ATA_EH_HARDRESET)
3739 return 0;
3740
3741 /* if SATA, resume link */
3742 if (ap->flags & ATA_FLAG_SATA) {
3743 rc = sata_link_resume(link, timing, deadline);
3744 /* whine about phy resume failure but proceed */
3745 if (rc && rc != -EOPNOTSUPP)
3746 ata_link_warn(link,
3747 "failed to resume link for reset (errno=%d)\n",
3748 rc);
3749 }
3750
3751 /* no point in trying softreset on offline link */
3752 if (ata_phys_link_offline(link))
3753 ehc->i.action &= ~ATA_EH_SOFTRESET;
3754
3755 return 0;
3756 }
3757
3758 /**
3759 * sata_link_hardreset - reset link via SATA phy reset
3760 * @link: link to reset
3761 * @timing: timing parameters { interval, duratinon, timeout } in msec
3762 * @deadline: deadline jiffies for the operation
3763 * @online: optional out parameter indicating link onlineness
3764 * @check_ready: optional callback to check link readiness
3765 *
3766 * SATA phy-reset @link using DET bits of SControl register.
3767 * After hardreset, link readiness is waited upon using
3768 * ata_wait_ready() if @check_ready is specified. LLDs are
3769 * allowed to not specify @check_ready and wait itself after this
3770 * function returns. Device classification is LLD's
3771 * responsibility.
3772 *
3773 * *@online is set to one iff reset succeeded and @link is online
3774 * after reset.
3775 *
3776 * LOCKING:
3777 * Kernel thread context (may sleep)
3778 *
3779 * RETURNS:
3780 * 0 on success, -errno otherwise.
3781 */
3782 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3783 unsigned long deadline,
3784 bool *online, int (*check_ready)(struct ata_link *))
3785 {
3786 u32 scontrol;
3787 int rc;
3788
3789 DPRINTK("ENTER\n");
3790
3791 if (online)
3792 *online = false;
3793
3794 if (sata_set_spd_needed(link)) {
3795 /* SATA spec says nothing about how to reconfigure
3796 * spd. To be on the safe side, turn off phy during
3797 * reconfiguration. This works for at least ICH7 AHCI
3798 * and Sil3124.
3799 */
3800 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801 goto out;
3802
3803 scontrol = (scontrol & 0x0f0) | 0x304;
3804
3805 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3806 goto out;
3807
3808 sata_set_spd(link);
3809 }
3810
3811 /* issue phy wake/reset */
3812 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3813 goto out;
3814
3815 scontrol = (scontrol & 0x0f0) | 0x301;
3816
3817 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3818 goto out;
3819
3820 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3821 * 10.4.2 says at least 1 ms.
3822 */
3823 ata_msleep(link->ap, 1);
3824
3825 /* bring link back */
3826 rc = sata_link_resume(link, timing, deadline);
3827 if (rc)
3828 goto out;
3829 /* if link is offline nothing more to do */
3830 if (ata_phys_link_offline(link))
3831 goto out;
3832
3833 /* Link is online. From this point, -ENODEV too is an error. */
3834 if (online)
3835 *online = true;
3836
3837 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3838 /* If PMP is supported, we have to do follow-up SRST.
3839 * Some PMPs don't send D2H Reg FIS after hardreset if
3840 * the first port is empty. Wait only for
3841 * ATA_TMOUT_PMP_SRST_WAIT.
3842 */
3843 if (check_ready) {
3844 unsigned long pmp_deadline;
3845
3846 pmp_deadline = ata_deadline(jiffies,
3847 ATA_TMOUT_PMP_SRST_WAIT);
3848 if (time_after(pmp_deadline, deadline))
3849 pmp_deadline = deadline;
3850 ata_wait_ready(link, pmp_deadline, check_ready);
3851 }
3852 rc = -EAGAIN;
3853 goto out;
3854 }
3855
3856 rc = 0;
3857 if (check_ready)
3858 rc = ata_wait_ready(link, deadline, check_ready);
3859 out:
3860 if (rc && rc != -EAGAIN) {
3861 /* online is set iff link is online && reset succeeded */
3862 if (online)
3863 *online = false;
3864 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3865 }
3866 DPRINTK("EXIT, rc=%d\n", rc);
3867 return rc;
3868 }
3869
3870 /**
3871 * sata_std_hardreset - COMRESET w/o waiting or classification
3872 * @link: link to reset
3873 * @class: resulting class of attached device
3874 * @deadline: deadline jiffies for the operation
3875 *
3876 * Standard SATA COMRESET w/o waiting or classification.
3877 *
3878 * LOCKING:
3879 * Kernel thread context (may sleep)
3880 *
3881 * RETURNS:
3882 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3883 */
3884 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3885 unsigned long deadline)
3886 {
3887 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3888 bool online;
3889 int rc;
3890
3891 /* do hardreset */
3892 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3893 return online ? -EAGAIN : rc;
3894 }
3895
3896 /**
3897 * ata_std_postreset - standard postreset callback
3898 * @link: the target ata_link
3899 * @classes: classes of attached devices
3900 *
3901 * This function is invoked after a successful reset. Note that
3902 * the device might have been reset more than once using
3903 * different reset methods before postreset is invoked.
3904 *
3905 * LOCKING:
3906 * Kernel thread context (may sleep)
3907 */
3908 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3909 {
3910 u32 serror;
3911
3912 DPRINTK("ENTER\n");
3913
3914 /* reset complete, clear SError */
3915 if (!sata_scr_read(link, SCR_ERROR, &serror))
3916 sata_scr_write(link, SCR_ERROR, serror);
3917
3918 /* print link status */
3919 sata_print_link_status(link);
3920
3921 DPRINTK("EXIT\n");
3922 }
3923
3924 /**
3925 * ata_dev_same_device - Determine whether new ID matches configured device
3926 * @dev: device to compare against
3927 * @new_class: class of the new device
3928 * @new_id: IDENTIFY page of the new device
3929 *
3930 * Compare @new_class and @new_id against @dev and determine
3931 * whether @dev is the device indicated by @new_class and
3932 * @new_id.
3933 *
3934 * LOCKING:
3935 * None.
3936 *
3937 * RETURNS:
3938 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3939 */
3940 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3941 const u16 *new_id)
3942 {
3943 const u16 *old_id = dev->id;
3944 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3945 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3946
3947 if (dev->class != new_class) {
3948 ata_dev_info(dev, "class mismatch %d != %d\n",
3949 dev->class, new_class);
3950 return 0;
3951 }
3952
3953 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3954 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3955 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3956 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3957
3958 if (strcmp(model[0], model[1])) {
3959 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3960 model[0], model[1]);
3961 return 0;
3962 }
3963
3964 if (strcmp(serial[0], serial[1])) {
3965 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3966 serial[0], serial[1]);
3967 return 0;
3968 }
3969
3970 return 1;
3971 }
3972
3973 /**
3974 * ata_dev_reread_id - Re-read IDENTIFY data
3975 * @dev: target ATA device
3976 * @readid_flags: read ID flags
3977 *
3978 * Re-read IDENTIFY page and make sure @dev is still attached to
3979 * the port.
3980 *
3981 * LOCKING:
3982 * Kernel thread context (may sleep)
3983 *
3984 * RETURNS:
3985 * 0 on success, negative errno otherwise
3986 */
3987 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3988 {
3989 unsigned int class = dev->class;
3990 u16 *id = (void *)dev->link->ap->sector_buf;
3991 int rc;
3992
3993 /* read ID data */
3994 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3995 if (rc)
3996 return rc;
3997
3998 /* is the device still there? */
3999 if (!ata_dev_same_device(dev, class, id))
4000 return -ENODEV;
4001
4002 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4003 return 0;
4004 }
4005
4006 /**
4007 * ata_dev_revalidate - Revalidate ATA device
4008 * @dev: device to revalidate
4009 * @new_class: new class code
4010 * @readid_flags: read ID flags
4011 *
4012 * Re-read IDENTIFY page, make sure @dev is still attached to the
4013 * port and reconfigure it according to the new IDENTIFY page.
4014 *
4015 * LOCKING:
4016 * Kernel thread context (may sleep)
4017 *
4018 * RETURNS:
4019 * 0 on success, negative errno otherwise
4020 */
4021 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4022 unsigned int readid_flags)
4023 {
4024 u64 n_sectors = dev->n_sectors;
4025 u64 n_native_sectors = dev->n_native_sectors;
4026 int rc;
4027
4028 if (!ata_dev_enabled(dev))
4029 return -ENODEV;
4030
4031 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4032 if (ata_class_enabled(new_class) &&
4033 new_class != ATA_DEV_ATA &&
4034 new_class != ATA_DEV_ATAPI &&
4035 new_class != ATA_DEV_SEMB) {
4036 ata_dev_info(dev, "class mismatch %u != %u\n",
4037 dev->class, new_class);
4038 rc = -ENODEV;
4039 goto fail;
4040 }
4041
4042 /* re-read ID */
4043 rc = ata_dev_reread_id(dev, readid_flags);
4044 if (rc)
4045 goto fail;
4046
4047 /* configure device according to the new ID */
4048 rc = ata_dev_configure(dev);
4049 if (rc)
4050 goto fail;
4051
4052 /* verify n_sectors hasn't changed */
4053 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4054 dev->n_sectors == n_sectors)
4055 return 0;
4056
4057 /* n_sectors has changed */
4058 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4059 (unsigned long long)n_sectors,
4060 (unsigned long long)dev->n_sectors);
4061
4062 /*
4063 * Something could have caused HPA to be unlocked
4064 * involuntarily. If n_native_sectors hasn't changed and the
4065 * new size matches it, keep the device.
4066 */
4067 if (dev->n_native_sectors == n_native_sectors &&
4068 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4069 ata_dev_warn(dev,
4070 "new n_sectors matches native, probably "
4071 "late HPA unlock, n_sectors updated\n");
4072 /* use the larger n_sectors */
4073 return 0;
4074 }
4075
4076 /*
4077 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4078 * unlocking HPA in those cases.
4079 *
4080 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4081 */
4082 if (dev->n_native_sectors == n_native_sectors &&
4083 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4084 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4085 ata_dev_warn(dev,
4086 "old n_sectors matches native, probably "
4087 "late HPA lock, will try to unlock HPA\n");
4088 /* try unlocking HPA */
4089 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4090 rc = -EIO;
4091 } else
4092 rc = -ENODEV;
4093
4094 /* restore original n_[native_]sectors and fail */
4095 dev->n_native_sectors = n_native_sectors;
4096 dev->n_sectors = n_sectors;
4097 fail:
4098 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4099 return rc;
4100 }
4101
4102 struct ata_blacklist_entry {
4103 const char *model_num;
4104 const char *model_rev;
4105 unsigned long horkage;
4106 };
4107
4108 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4109 /* Devices with DMA related problems under Linux */
4110 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4111 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4112 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4113 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4114 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4115 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4116 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4117 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4118 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4119 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4120 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4121 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4122 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4123 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4124 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4125 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4126 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4127 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4128 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4129 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4130 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4131 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4132 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4133 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4134 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4135 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4136 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4137 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4138 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4139 /* Odd clown on sil3726/4726 PMPs */
4140 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4141
4142 /* Weird ATAPI devices */
4143 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4144 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4145 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4146 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4147
4148 /* Devices we expect to fail diagnostics */
4149
4150 /* Devices where NCQ should be avoided */
4151 /* NCQ is slow */
4152 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4153 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4154 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4155 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4156 /* NCQ is broken */
4157 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4158 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4159 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4160 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4161 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4162
4163 /* Seagate NCQ + FLUSH CACHE firmware bug */
4164 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4165 ATA_HORKAGE_FIRMWARE_WARN },
4166
4167 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4168 ATA_HORKAGE_FIRMWARE_WARN },
4169
4170 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4171 ATA_HORKAGE_FIRMWARE_WARN },
4172
4173 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4174 ATA_HORKAGE_FIRMWARE_WARN },
4175
4176 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4177 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4178 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4179
4180 /* Blacklist entries taken from Silicon Image 3124/3132
4181 Windows driver .inf file - also several Linux problem reports */
4182 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4183 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4184 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4185
4186 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4187 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4188
4189 /* devices which puke on READ_NATIVE_MAX */
4190 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4191 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4192 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4193 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4194
4195 /* this one allows HPA unlocking but fails IOs on the area */
4196 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4197
4198 /* Devices which report 1 sector over size HPA */
4199 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4200 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4201 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4202
4203 /* Devices which get the IVB wrong */
4204 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4205 /* Maybe we should just blacklist TSSTcorp... */
4206 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4207
4208 /* Devices that do not need bridging limits applied */
4209 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4210 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4211
4212 /* Devices which aren't very happy with higher link speeds */
4213 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4214 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4215
4216 /*
4217 * Devices which choke on SETXFER. Applies only if both the
4218 * device and controller are SATA.
4219 */
4220 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4221 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4222 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4223 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4224 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4225
4226 /* devices that don't properly handle queued TRIM commands */
4227 { "Micron_M500*", "MU0[1-4]*", ATA_HORKAGE_NO_NCQ_TRIM, },
4228 { "Crucial_CT???M500SSD*", "MU0[1-4]*", ATA_HORKAGE_NO_NCQ_TRIM, },
4229 { "Micron_M550*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4230 { "Crucial_CT???M550SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4231
4232 /*
4233 * Some WD SATA-I drives spin up and down erratically when the link
4234 * is put into the slumber mode. We don't have full list of the
4235 * affected devices. Disable LPM if the device matches one of the
4236 * known prefixes and is SATA-1. As a side effect LPM partial is
4237 * lost too.
4238 *
4239 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4240 */
4241 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4242 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4243 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4244 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4245 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4246 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4247 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4248
4249 /* End Marker */
4250 { }
4251 };
4252
4253 /**
4254 * glob_match - match a text string against a glob-style pattern
4255 * @text: the string to be examined
4256 * @pattern: the glob-style pattern to be matched against
4257 *
4258 * Either/both of text and pattern can be empty strings.
4259 *
4260 * Match text against a glob-style pattern, with wildcards and simple sets:
4261 *
4262 * ? matches any single character.
4263 * * matches any run of characters.
4264 * [xyz] matches a single character from the set: x, y, or z.
4265 * [a-d] matches a single character from the range: a, b, c, or d.
4266 * [a-d0-9] matches a single character from either range.
4267 *
4268 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4269 * Behaviour with malformed patterns is undefined, though generally reasonable.
4270 *
4271 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4272 *
4273 * This function uses one level of recursion per '*' in pattern.
4274 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4275 * this will not cause stack problems for any reasonable use here.
4276 *
4277 * RETURNS:
4278 * 0 on match, 1 otherwise.
4279 */
4280 static int glob_match (const char *text, const char *pattern)
4281 {
4282 do {
4283 /* Match single character or a '?' wildcard */
4284 if (*text == *pattern || *pattern == '?') {
4285 if (!*pattern++)
4286 return 0; /* End of both strings: match */
4287 } else {
4288 /* Match single char against a '[' bracketed ']' pattern set */
4289 if (!*text || *pattern != '[')
4290 break; /* Not a pattern set */
4291 while (*++pattern && *pattern != ']' && *text != *pattern) {
4292 if (*pattern == '-' && *(pattern - 1) != '[')
4293 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4294 ++pattern;
4295 break;
4296 }
4297 }
4298 if (!*pattern || *pattern == ']')
4299 return 1; /* No match */
4300 while (*pattern && *pattern++ != ']');
4301 }
4302 } while (*++text && *pattern);
4303
4304 /* Match any run of chars against a '*' wildcard */
4305 if (*pattern == '*') {
4306 if (!*++pattern)
4307 return 0; /* Match: avoid recursion at end of pattern */
4308 /* Loop to handle additional pattern chars after the wildcard */
4309 while (*text) {
4310 if (glob_match(text, pattern) == 0)
4311 return 0; /* Remainder matched */
4312 ++text; /* Absorb (match) this char and try again */
4313 }
4314 }
4315 if (!*text && !*pattern)
4316 return 0; /* End of both strings: match */
4317 return 1; /* No match */
4318 }
4319
4320 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4321 {
4322 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4323 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4324 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4325
4326 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4327 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4328
4329 while (ad->model_num) {
4330 if (!glob_match(model_num, ad->model_num)) {
4331 if (ad->model_rev == NULL)
4332 return ad->horkage;
4333 if (!glob_match(model_rev, ad->model_rev))
4334 return ad->horkage;
4335 }
4336 ad++;
4337 }
4338 return 0;
4339 }
4340
4341 static int ata_dma_blacklisted(const struct ata_device *dev)
4342 {
4343 /* We don't support polling DMA.
4344 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4345 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4346 */
4347 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4348 (dev->flags & ATA_DFLAG_CDB_INTR))
4349 return 1;
4350 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4351 }
4352
4353 /**
4354 * ata_is_40wire - check drive side detection
4355 * @dev: device
4356 *
4357 * Perform drive side detection decoding, allowing for device vendors
4358 * who can't follow the documentation.
4359 */
4360
4361 static int ata_is_40wire(struct ata_device *dev)
4362 {
4363 if (dev->horkage & ATA_HORKAGE_IVB)
4364 return ata_drive_40wire_relaxed(dev->id);
4365 return ata_drive_40wire(dev->id);
4366 }
4367
4368 /**
4369 * cable_is_40wire - 40/80/SATA decider
4370 * @ap: port to consider
4371 *
4372 * This function encapsulates the policy for speed management
4373 * in one place. At the moment we don't cache the result but
4374 * there is a good case for setting ap->cbl to the result when
4375 * we are called with unknown cables (and figuring out if it
4376 * impacts hotplug at all).
4377 *
4378 * Return 1 if the cable appears to be 40 wire.
4379 */
4380
4381 static int cable_is_40wire(struct ata_port *ap)
4382 {
4383 struct ata_link *link;
4384 struct ata_device *dev;
4385
4386 /* If the controller thinks we are 40 wire, we are. */
4387 if (ap->cbl == ATA_CBL_PATA40)
4388 return 1;
4389
4390 /* If the controller thinks we are 80 wire, we are. */
4391 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4392 return 0;
4393
4394 /* If the system is known to be 40 wire short cable (eg
4395 * laptop), then we allow 80 wire modes even if the drive
4396 * isn't sure.
4397 */
4398 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4399 return 0;
4400
4401 /* If the controller doesn't know, we scan.
4402 *
4403 * Note: We look for all 40 wire detects at this point. Any
4404 * 80 wire detect is taken to be 80 wire cable because
4405 * - in many setups only the one drive (slave if present) will
4406 * give a valid detect
4407 * - if you have a non detect capable drive you don't want it
4408 * to colour the choice
4409 */
4410 ata_for_each_link(link, ap, EDGE) {
4411 ata_for_each_dev(dev, link, ENABLED) {
4412 if (!ata_is_40wire(dev))
4413 return 0;
4414 }
4415 }
4416 return 1;
4417 }
4418
4419 /**
4420 * ata_dev_xfermask - Compute supported xfermask of the given device
4421 * @dev: Device to compute xfermask for
4422 *
4423 * Compute supported xfermask of @dev and store it in
4424 * dev->*_mask. This function is responsible for applying all
4425 * known limits including host controller limits, device
4426 * blacklist, etc...
4427 *
4428 * LOCKING:
4429 * None.
4430 */
4431 static void ata_dev_xfermask(struct ata_device *dev)
4432 {
4433 struct ata_link *link = dev->link;
4434 struct ata_port *ap = link->ap;
4435 struct ata_host *host = ap->host;
4436 unsigned long xfer_mask;
4437
4438 /* controller modes available */
4439 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4440 ap->mwdma_mask, ap->udma_mask);
4441
4442 /* drive modes available */
4443 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4444 dev->mwdma_mask, dev->udma_mask);
4445 xfer_mask &= ata_id_xfermask(dev->id);
4446
4447 /*
4448 * CFA Advanced TrueIDE timings are not allowed on a shared
4449 * cable
4450 */
4451 if (ata_dev_pair(dev)) {
4452 /* No PIO5 or PIO6 */
4453 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4454 /* No MWDMA3 or MWDMA 4 */
4455 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4456 }
4457
4458 if (ata_dma_blacklisted(dev)) {
4459 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4460 ata_dev_warn(dev,
4461 "device is on DMA blacklist, disabling DMA\n");
4462 }
4463
4464 if ((host->flags & ATA_HOST_SIMPLEX) &&
4465 host->simplex_claimed && host->simplex_claimed != ap) {
4466 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4467 ata_dev_warn(dev,
4468 "simplex DMA is claimed by other device, disabling DMA\n");
4469 }
4470
4471 if (ap->flags & ATA_FLAG_NO_IORDY)
4472 xfer_mask &= ata_pio_mask_no_iordy(dev);
4473
4474 if (ap->ops->mode_filter)
4475 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4476
4477 /* Apply cable rule here. Don't apply it early because when
4478 * we handle hot plug the cable type can itself change.
4479 * Check this last so that we know if the transfer rate was
4480 * solely limited by the cable.
4481 * Unknown or 80 wire cables reported host side are checked
4482 * drive side as well. Cases where we know a 40wire cable
4483 * is used safely for 80 are not checked here.
4484 */
4485 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4486 /* UDMA/44 or higher would be available */
4487 if (cable_is_40wire(ap)) {
4488 ata_dev_warn(dev,
4489 "limited to UDMA/33 due to 40-wire cable\n");
4490 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4491 }
4492
4493 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4494 &dev->mwdma_mask, &dev->udma_mask);
4495 }
4496
4497 /**
4498 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4499 * @dev: Device to which command will be sent
4500 *
4501 * Issue SET FEATURES - XFER MODE command to device @dev
4502 * on port @ap.
4503 *
4504 * LOCKING:
4505 * PCI/etc. bus probe sem.
4506 *
4507 * RETURNS:
4508 * 0 on success, AC_ERR_* mask otherwise.
4509 */
4510
4511 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4512 {
4513 struct ata_taskfile tf;
4514 unsigned int err_mask;
4515
4516 /* set up set-features taskfile */
4517 DPRINTK("set features - xfer mode\n");
4518
4519 /* Some controllers and ATAPI devices show flaky interrupt
4520 * behavior after setting xfer mode. Use polling instead.
4521 */
4522 ata_tf_init(dev, &tf);
4523 tf.command = ATA_CMD_SET_FEATURES;
4524 tf.feature = SETFEATURES_XFER;
4525 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4526 tf.protocol = ATA_PROT_NODATA;
4527 /* If we are using IORDY we must send the mode setting command */
4528 if (ata_pio_need_iordy(dev))
4529 tf.nsect = dev->xfer_mode;
4530 /* If the device has IORDY and the controller does not - turn it off */
4531 else if (ata_id_has_iordy(dev->id))
4532 tf.nsect = 0x01;
4533 else /* In the ancient relic department - skip all of this */
4534 return 0;
4535
4536 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4537
4538 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4539 return err_mask;
4540 }
4541
4542 /**
4543 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4544 * @dev: Device to which command will be sent
4545 * @enable: Whether to enable or disable the feature
4546 * @feature: The sector count represents the feature to set
4547 *
4548 * Issue SET FEATURES - SATA FEATURES command to device @dev
4549 * on port @ap with sector count
4550 *
4551 * LOCKING:
4552 * PCI/etc. bus probe sem.
4553 *
4554 * RETURNS:
4555 * 0 on success, AC_ERR_* mask otherwise.
4556 */
4557 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4558 {
4559 struct ata_taskfile tf;
4560 unsigned int err_mask;
4561
4562 /* set up set-features taskfile */
4563 DPRINTK("set features - SATA features\n");
4564
4565 ata_tf_init(dev, &tf);
4566 tf.command = ATA_CMD_SET_FEATURES;
4567 tf.feature = enable;
4568 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4569 tf.protocol = ATA_PROT_NODATA;
4570 tf.nsect = feature;
4571
4572 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4573
4574 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4575 return err_mask;
4576 }
4577 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4578
4579 /**
4580 * ata_dev_init_params - Issue INIT DEV PARAMS command
4581 * @dev: Device to which command will be sent
4582 * @heads: Number of heads (taskfile parameter)
4583 * @sectors: Number of sectors (taskfile parameter)
4584 *
4585 * LOCKING:
4586 * Kernel thread context (may sleep)
4587 *
4588 * RETURNS:
4589 * 0 on success, AC_ERR_* mask otherwise.
4590 */
4591 static unsigned int ata_dev_init_params(struct ata_device *dev,
4592 u16 heads, u16 sectors)
4593 {
4594 struct ata_taskfile tf;
4595 unsigned int err_mask;
4596
4597 /* Number of sectors per track 1-255. Number of heads 1-16 */
4598 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4599 return AC_ERR_INVALID;
4600
4601 /* set up init dev params taskfile */
4602 DPRINTK("init dev params \n");
4603
4604 ata_tf_init(dev, &tf);
4605 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4606 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4607 tf.protocol = ATA_PROT_NODATA;
4608 tf.nsect = sectors;
4609 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4610
4611 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4612 /* A clean abort indicates an original or just out of spec drive
4613 and we should continue as we issue the setup based on the
4614 drive reported working geometry */
4615 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4616 err_mask = 0;
4617
4618 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4619 return err_mask;
4620 }
4621
4622 /**
4623 * ata_sg_clean - Unmap DMA memory associated with command
4624 * @qc: Command containing DMA memory to be released
4625 *
4626 * Unmap all mapped DMA memory associated with this command.
4627 *
4628 * LOCKING:
4629 * spin_lock_irqsave(host lock)
4630 */
4631 void ata_sg_clean(struct ata_queued_cmd *qc)
4632 {
4633 struct ata_port *ap = qc->ap;
4634 struct scatterlist *sg = qc->sg;
4635 int dir = qc->dma_dir;
4636
4637 WARN_ON_ONCE(sg == NULL);
4638
4639 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4640
4641 if (qc->n_elem)
4642 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4643
4644 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4645 qc->sg = NULL;
4646 }
4647
4648 /**
4649 * atapi_check_dma - Check whether ATAPI DMA can be supported
4650 * @qc: Metadata associated with taskfile to check
4651 *
4652 * Allow low-level driver to filter ATA PACKET commands, returning
4653 * a status indicating whether or not it is OK to use DMA for the
4654 * supplied PACKET command.
4655 *
4656 * LOCKING:
4657 * spin_lock_irqsave(host lock)
4658 *
4659 * RETURNS: 0 when ATAPI DMA can be used
4660 * nonzero otherwise
4661 */
4662 int atapi_check_dma(struct ata_queued_cmd *qc)
4663 {
4664 struct ata_port *ap = qc->ap;
4665
4666 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4667 * few ATAPI devices choke on such DMA requests.
4668 */
4669 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4670 unlikely(qc->nbytes & 15))
4671 return 1;
4672
4673 if (ap->ops->check_atapi_dma)
4674 return ap->ops->check_atapi_dma(qc);
4675
4676 return 0;
4677 }
4678
4679 /**
4680 * ata_std_qc_defer - Check whether a qc needs to be deferred
4681 * @qc: ATA command in question
4682 *
4683 * Non-NCQ commands cannot run with any other command, NCQ or
4684 * not. As upper layer only knows the queue depth, we are
4685 * responsible for maintaining exclusion. This function checks
4686 * whether a new command @qc can be issued.
4687 *
4688 * LOCKING:
4689 * spin_lock_irqsave(host lock)
4690 *
4691 * RETURNS:
4692 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4693 */
4694 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4695 {
4696 struct ata_link *link = qc->dev->link;
4697
4698 if (qc->tf.protocol == ATA_PROT_NCQ) {
4699 if (!ata_tag_valid(link->active_tag))
4700 return 0;
4701 } else {
4702 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4703 return 0;
4704 }
4705
4706 return ATA_DEFER_LINK;
4707 }
4708
4709 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4710
4711 /**
4712 * ata_sg_init - Associate command with scatter-gather table.
4713 * @qc: Command to be associated
4714 * @sg: Scatter-gather table.
4715 * @n_elem: Number of elements in s/g table.
4716 *
4717 * Initialize the data-related elements of queued_cmd @qc
4718 * to point to a scatter-gather table @sg, containing @n_elem
4719 * elements.
4720 *
4721 * LOCKING:
4722 * spin_lock_irqsave(host lock)
4723 */
4724 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4725 unsigned int n_elem)
4726 {
4727 qc->sg = sg;
4728 qc->n_elem = n_elem;
4729 qc->cursg = qc->sg;
4730 }
4731
4732 /**
4733 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4734 * @qc: Command with scatter-gather table to be mapped.
4735 *
4736 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4737 *
4738 * LOCKING:
4739 * spin_lock_irqsave(host lock)
4740 *
4741 * RETURNS:
4742 * Zero on success, negative on error.
4743 *
4744 */
4745 static int ata_sg_setup(struct ata_queued_cmd *qc)
4746 {
4747 struct ata_port *ap = qc->ap;
4748 unsigned int n_elem;
4749
4750 VPRINTK("ENTER, ata%u\n", ap->print_id);
4751
4752 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4753 if (n_elem < 1)
4754 return -1;
4755
4756 DPRINTK("%d sg elements mapped\n", n_elem);
4757 qc->orig_n_elem = qc->n_elem;
4758 qc->n_elem = n_elem;
4759 qc->flags |= ATA_QCFLAG_DMAMAP;
4760
4761 return 0;
4762 }
4763
4764 /**
4765 * swap_buf_le16 - swap halves of 16-bit words in place
4766 * @buf: Buffer to swap
4767 * @buf_words: Number of 16-bit words in buffer.
4768 *
4769 * Swap halves of 16-bit words if needed to convert from
4770 * little-endian byte order to native cpu byte order, or
4771 * vice-versa.
4772 *
4773 * LOCKING:
4774 * Inherited from caller.
4775 */
4776 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4777 {
4778 #ifdef __BIG_ENDIAN
4779 unsigned int i;
4780
4781 for (i = 0; i < buf_words; i++)
4782 buf[i] = le16_to_cpu(buf[i]);
4783 #endif /* __BIG_ENDIAN */
4784 }
4785
4786 /**
4787 * ata_qc_new - Request an available ATA command, for queueing
4788 * @ap: target port
4789 *
4790 * LOCKING:
4791 * None.
4792 */
4793
4794 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4795 {
4796 struct ata_queued_cmd *qc = NULL;
4797 unsigned int i, tag;
4798
4799 /* no command while frozen */
4800 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4801 return NULL;
4802
4803 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4804 tag = (i + ap->last_tag + 1) % ATA_MAX_QUEUE;
4805
4806 /* the last tag is reserved for internal command. */
4807 if (tag == ATA_TAG_INTERNAL)
4808 continue;
4809
4810 if (!test_and_set_bit(tag, &ap->qc_allocated)) {
4811 qc = __ata_qc_from_tag(ap, tag);
4812 qc->tag = tag;
4813 ap->last_tag = tag;
4814 break;
4815 }
4816 }
4817
4818 return qc;
4819 }
4820
4821 /**
4822 * ata_qc_new_init - Request an available ATA command, and initialize it
4823 * @dev: Device from whom we request an available command structure
4824 *
4825 * LOCKING:
4826 * None.
4827 */
4828
4829 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4830 {
4831 struct ata_port *ap = dev->link->ap;
4832 struct ata_queued_cmd *qc;
4833
4834 qc = ata_qc_new(ap);
4835 if (qc) {
4836 qc->scsicmd = NULL;
4837 qc->ap = ap;
4838 qc->dev = dev;
4839
4840 ata_qc_reinit(qc);
4841 }
4842
4843 return qc;
4844 }
4845
4846 /**
4847 * ata_qc_free - free unused ata_queued_cmd
4848 * @qc: Command to complete
4849 *
4850 * Designed to free unused ata_queued_cmd object
4851 * in case something prevents using it.
4852 *
4853 * LOCKING:
4854 * spin_lock_irqsave(host lock)
4855 */
4856 void ata_qc_free(struct ata_queued_cmd *qc)
4857 {
4858 struct ata_port *ap;
4859 unsigned int tag;
4860
4861 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4862 ap = qc->ap;
4863
4864 qc->flags = 0;
4865 tag = qc->tag;
4866 if (likely(ata_tag_valid(tag))) {
4867 qc->tag = ATA_TAG_POISON;
4868 clear_bit(tag, &ap->qc_allocated);
4869 }
4870 }
4871
4872 void __ata_qc_complete(struct ata_queued_cmd *qc)
4873 {
4874 struct ata_port *ap;
4875 struct ata_link *link;
4876
4877 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4878 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4879 ap = qc->ap;
4880 link = qc->dev->link;
4881
4882 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4883 ata_sg_clean(qc);
4884
4885 /* command should be marked inactive atomically with qc completion */
4886 if (qc->tf.protocol == ATA_PROT_NCQ) {
4887 link->sactive &= ~(1 << qc->tag);
4888 if (!link->sactive)
4889 ap->nr_active_links--;
4890 } else {
4891 link->active_tag = ATA_TAG_POISON;
4892 ap->nr_active_links--;
4893 }
4894
4895 /* clear exclusive status */
4896 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4897 ap->excl_link == link))
4898 ap->excl_link = NULL;
4899
4900 /* atapi: mark qc as inactive to prevent the interrupt handler
4901 * from completing the command twice later, before the error handler
4902 * is called. (when rc != 0 and atapi request sense is needed)
4903 */
4904 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4905 ap->qc_active &= ~(1 << qc->tag);
4906
4907 /* call completion callback */
4908 qc->complete_fn(qc);
4909 }
4910
4911 static void fill_result_tf(struct ata_queued_cmd *qc)
4912 {
4913 struct ata_port *ap = qc->ap;
4914
4915 qc->result_tf.flags = qc->tf.flags;
4916 ap->ops->qc_fill_rtf(qc);
4917 }
4918
4919 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4920 {
4921 struct ata_device *dev = qc->dev;
4922
4923 if (ata_is_nodata(qc->tf.protocol))
4924 return;
4925
4926 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4927 return;
4928
4929 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4930 }
4931
4932 /**
4933 * ata_qc_complete - Complete an active ATA command
4934 * @qc: Command to complete
4935 *
4936 * Indicate to the mid and upper layers that an ATA command has
4937 * completed, with either an ok or not-ok status.
4938 *
4939 * Refrain from calling this function multiple times when
4940 * successfully completing multiple NCQ commands.
4941 * ata_qc_complete_multiple() should be used instead, which will
4942 * properly update IRQ expect state.
4943 *
4944 * LOCKING:
4945 * spin_lock_irqsave(host lock)
4946 */
4947 void ata_qc_complete(struct ata_queued_cmd *qc)
4948 {
4949 struct ata_port *ap = qc->ap;
4950
4951 /* XXX: New EH and old EH use different mechanisms to
4952 * synchronize EH with regular execution path.
4953 *
4954 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4955 * Normal execution path is responsible for not accessing a
4956 * failed qc. libata core enforces the rule by returning NULL
4957 * from ata_qc_from_tag() for failed qcs.
4958 *
4959 * Old EH depends on ata_qc_complete() nullifying completion
4960 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4961 * not synchronize with interrupt handler. Only PIO task is
4962 * taken care of.
4963 */
4964 if (ap->ops->error_handler) {
4965 struct ata_device *dev = qc->dev;
4966 struct ata_eh_info *ehi = &dev->link->eh_info;
4967
4968 if (unlikely(qc->err_mask))
4969 qc->flags |= ATA_QCFLAG_FAILED;
4970
4971 /*
4972 * Finish internal commands without any further processing
4973 * and always with the result TF filled.
4974 */
4975 if (unlikely(ata_tag_internal(qc->tag))) {
4976 fill_result_tf(qc);
4977 __ata_qc_complete(qc);
4978 return;
4979 }
4980
4981 /*
4982 * Non-internal qc has failed. Fill the result TF and
4983 * summon EH.
4984 */
4985 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4986 fill_result_tf(qc);
4987 ata_qc_schedule_eh(qc);
4988 return;
4989 }
4990
4991 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4992
4993 /* read result TF if requested */
4994 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4995 fill_result_tf(qc);
4996
4997 /* Some commands need post-processing after successful
4998 * completion.
4999 */
5000 switch (qc->tf.command) {
5001 case ATA_CMD_SET_FEATURES:
5002 if (qc->tf.feature != SETFEATURES_WC_ON &&
5003 qc->tf.feature != SETFEATURES_WC_OFF)
5004 break;
5005 /* fall through */
5006 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5007 case ATA_CMD_SET_MULTI: /* multi_count changed */
5008 /* revalidate device */
5009 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5010 ata_port_schedule_eh(ap);
5011 break;
5012
5013 case ATA_CMD_SLEEP:
5014 dev->flags |= ATA_DFLAG_SLEEPING;
5015 break;
5016 }
5017
5018 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5019 ata_verify_xfer(qc);
5020
5021 __ata_qc_complete(qc);
5022 } else {
5023 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5024 return;
5025
5026 /* read result TF if failed or requested */
5027 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5028 fill_result_tf(qc);
5029
5030 __ata_qc_complete(qc);
5031 }
5032 }
5033
5034 /**
5035 * ata_qc_complete_multiple - Complete multiple qcs successfully
5036 * @ap: port in question
5037 * @qc_active: new qc_active mask
5038 *
5039 * Complete in-flight commands. This functions is meant to be
5040 * called from low-level driver's interrupt routine to complete
5041 * requests normally. ap->qc_active and @qc_active is compared
5042 * and commands are completed accordingly.
5043 *
5044 * Always use this function when completing multiple NCQ commands
5045 * from IRQ handlers instead of calling ata_qc_complete()
5046 * multiple times to keep IRQ expect status properly in sync.
5047 *
5048 * LOCKING:
5049 * spin_lock_irqsave(host lock)
5050 *
5051 * RETURNS:
5052 * Number of completed commands on success, -errno otherwise.
5053 */
5054 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5055 {
5056 int nr_done = 0;
5057 u32 done_mask;
5058
5059 done_mask = ap->qc_active ^ qc_active;
5060
5061 if (unlikely(done_mask & qc_active)) {
5062 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5063 ap->qc_active, qc_active);
5064 return -EINVAL;
5065 }
5066
5067 while (done_mask) {
5068 struct ata_queued_cmd *qc;
5069 unsigned int tag = __ffs(done_mask);
5070
5071 qc = ata_qc_from_tag(ap, tag);
5072 if (qc) {
5073 ata_qc_complete(qc);
5074 nr_done++;
5075 }
5076 done_mask &= ~(1 << tag);
5077 }
5078
5079 return nr_done;
5080 }
5081
5082 /**
5083 * ata_qc_issue - issue taskfile to device
5084 * @qc: command to issue to device
5085 *
5086 * Prepare an ATA command to submission to device.
5087 * This includes mapping the data into a DMA-able
5088 * area, filling in the S/G table, and finally
5089 * writing the taskfile to hardware, starting the command.
5090 *
5091 * LOCKING:
5092 * spin_lock_irqsave(host lock)
5093 */
5094 void ata_qc_issue(struct ata_queued_cmd *qc)
5095 {
5096 struct ata_port *ap = qc->ap;
5097 struct ata_link *link = qc->dev->link;
5098 u8 prot = qc->tf.protocol;
5099
5100 /* Make sure only one non-NCQ command is outstanding. The
5101 * check is skipped for old EH because it reuses active qc to
5102 * request ATAPI sense.
5103 */
5104 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5105
5106 if (ata_is_ncq(prot)) {
5107 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5108
5109 if (!link->sactive)
5110 ap->nr_active_links++;
5111 link->sactive |= 1 << qc->tag;
5112 } else {
5113 WARN_ON_ONCE(link->sactive);
5114
5115 ap->nr_active_links++;
5116 link->active_tag = qc->tag;
5117 }
5118
5119 qc->flags |= ATA_QCFLAG_ACTIVE;
5120 ap->qc_active |= 1 << qc->tag;
5121
5122 /*
5123 * We guarantee to LLDs that they will have at least one
5124 * non-zero sg if the command is a data command.
5125 */
5126 if (WARN_ON_ONCE(ata_is_data(prot) &&
5127 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5128 goto sys_err;
5129
5130 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5131 (ap->flags & ATA_FLAG_PIO_DMA)))
5132 if (ata_sg_setup(qc))
5133 goto sys_err;
5134
5135 /* if device is sleeping, schedule reset and abort the link */
5136 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5137 link->eh_info.action |= ATA_EH_RESET;
5138 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5139 ata_link_abort(link);
5140 return;
5141 }
5142
5143 ap->ops->qc_prep(qc);
5144
5145 qc->err_mask |= ap->ops->qc_issue(qc);
5146 if (unlikely(qc->err_mask))
5147 goto err;
5148 return;
5149
5150 sys_err:
5151 qc->err_mask |= AC_ERR_SYSTEM;
5152 err:
5153 ata_qc_complete(qc);
5154 }
5155
5156 /**
5157 * sata_scr_valid - test whether SCRs are accessible
5158 * @link: ATA link to test SCR accessibility for
5159 *
5160 * Test whether SCRs are accessible for @link.
5161 *
5162 * LOCKING:
5163 * None.
5164 *
5165 * RETURNS:
5166 * 1 if SCRs are accessible, 0 otherwise.
5167 */
5168 int sata_scr_valid(struct ata_link *link)
5169 {
5170 struct ata_port *ap = link->ap;
5171
5172 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5173 }
5174
5175 /**
5176 * sata_scr_read - read SCR register of the specified port
5177 * @link: ATA link to read SCR for
5178 * @reg: SCR to read
5179 * @val: Place to store read value
5180 *
5181 * Read SCR register @reg of @link into *@val. This function is
5182 * guaranteed to succeed if @link is ap->link, the cable type of
5183 * the port is SATA and the port implements ->scr_read.
5184 *
5185 * LOCKING:
5186 * None if @link is ap->link. Kernel thread context otherwise.
5187 *
5188 * RETURNS:
5189 * 0 on success, negative errno on failure.
5190 */
5191 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5192 {
5193 if (ata_is_host_link(link)) {
5194 if (sata_scr_valid(link))
5195 return link->ap->ops->scr_read(link, reg, val);
5196 return -EOPNOTSUPP;
5197 }
5198
5199 return sata_pmp_scr_read(link, reg, val);
5200 }
5201
5202 /**
5203 * sata_scr_write - write SCR register of the specified port
5204 * @link: ATA link to write SCR for
5205 * @reg: SCR to write
5206 * @val: value to write
5207 *
5208 * Write @val to SCR register @reg of @link. This function is
5209 * guaranteed to succeed if @link is ap->link, the cable type of
5210 * the port is SATA and the port implements ->scr_read.
5211 *
5212 * LOCKING:
5213 * None if @link is ap->link. Kernel thread context otherwise.
5214 *
5215 * RETURNS:
5216 * 0 on success, negative errno on failure.
5217 */
5218 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5219 {
5220 if (ata_is_host_link(link)) {
5221 if (sata_scr_valid(link))
5222 return link->ap->ops->scr_write(link, reg, val);
5223 return -EOPNOTSUPP;
5224 }
5225
5226 return sata_pmp_scr_write(link, reg, val);
5227 }
5228
5229 /**
5230 * sata_scr_write_flush - write SCR register of the specified port and flush
5231 * @link: ATA link to write SCR for
5232 * @reg: SCR to write
5233 * @val: value to write
5234 *
5235 * This function is identical to sata_scr_write() except that this
5236 * function performs flush after writing to the register.
5237 *
5238 * LOCKING:
5239 * None if @link is ap->link. Kernel thread context otherwise.
5240 *
5241 * RETURNS:
5242 * 0 on success, negative errno on failure.
5243 */
5244 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5245 {
5246 if (ata_is_host_link(link)) {
5247 int rc;
5248
5249 if (sata_scr_valid(link)) {
5250 rc = link->ap->ops->scr_write(link, reg, val);
5251 if (rc == 0)
5252 rc = link->ap->ops->scr_read(link, reg, &val);
5253 return rc;
5254 }
5255 return -EOPNOTSUPP;
5256 }
5257
5258 return sata_pmp_scr_write(link, reg, val);
5259 }
5260
5261 /**
5262 * ata_phys_link_online - test whether the given link is online
5263 * @link: ATA link to test
5264 *
5265 * Test whether @link is online. Note that this function returns
5266 * 0 if online status of @link cannot be obtained, so
5267 * ata_link_online(link) != !ata_link_offline(link).
5268 *
5269 * LOCKING:
5270 * None.
5271 *
5272 * RETURNS:
5273 * True if the port online status is available and online.
5274 */
5275 bool ata_phys_link_online(struct ata_link *link)
5276 {
5277 u32 sstatus;
5278
5279 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5280 ata_sstatus_online(sstatus))
5281 return true;
5282 return false;
5283 }
5284
5285 /**
5286 * ata_phys_link_offline - test whether the given link is offline
5287 * @link: ATA link to test
5288 *
5289 * Test whether @link is offline. Note that this function
5290 * returns 0 if offline status of @link cannot be obtained, so
5291 * ata_link_online(link) != !ata_link_offline(link).
5292 *
5293 * LOCKING:
5294 * None.
5295 *
5296 * RETURNS:
5297 * True if the port offline status is available and offline.
5298 */
5299 bool ata_phys_link_offline(struct ata_link *link)
5300 {
5301 u32 sstatus;
5302
5303 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5304 !ata_sstatus_online(sstatus))
5305 return true;
5306 return false;
5307 }
5308
5309 /**
5310 * ata_link_online - test whether the given link is online
5311 * @link: ATA link to test
5312 *
5313 * Test whether @link is online. This is identical to
5314 * ata_phys_link_online() when there's no slave link. When
5315 * there's a slave link, this function should only be called on
5316 * the master link and will return true if any of M/S links is
5317 * online.
5318 *
5319 * LOCKING:
5320 * None.
5321 *
5322 * RETURNS:
5323 * True if the port online status is available and online.
5324 */
5325 bool ata_link_online(struct ata_link *link)
5326 {
5327 struct ata_link *slave = link->ap->slave_link;
5328
5329 WARN_ON(link == slave); /* shouldn't be called on slave link */
5330
5331 return ata_phys_link_online(link) ||
5332 (slave && ata_phys_link_online(slave));
5333 }
5334
5335 /**
5336 * ata_link_offline - test whether the given link is offline
5337 * @link: ATA link to test
5338 *
5339 * Test whether @link is offline. This is identical to
5340 * ata_phys_link_offline() when there's no slave link. When
5341 * there's a slave link, this function should only be called on
5342 * the master link and will return true if both M/S links are
5343 * offline.
5344 *
5345 * LOCKING:
5346 * None.
5347 *
5348 * RETURNS:
5349 * True if the port offline status is available and offline.
5350 */
5351 bool ata_link_offline(struct ata_link *link)
5352 {
5353 struct ata_link *slave = link->ap->slave_link;
5354
5355 WARN_ON(link == slave); /* shouldn't be called on slave link */
5356
5357 return ata_phys_link_offline(link) &&
5358 (!slave || ata_phys_link_offline(slave));
5359 }
5360
5361 #ifdef CONFIG_PM
5362 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5363 unsigned int action, unsigned int ehi_flags,
5364 bool async)
5365 {
5366 struct ata_link *link;
5367 unsigned long flags;
5368
5369 /* Previous resume operation might still be in
5370 * progress. Wait for PM_PENDING to clear.
5371 */
5372 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5373 ata_port_wait_eh(ap);
5374 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5375 }
5376
5377 /* request PM ops to EH */
5378 spin_lock_irqsave(ap->lock, flags);
5379
5380 ap->pm_mesg = mesg;
5381 ap->pflags |= ATA_PFLAG_PM_PENDING;
5382 ata_for_each_link(link, ap, HOST_FIRST) {
5383 link->eh_info.action |= action;
5384 link->eh_info.flags |= ehi_flags;
5385 }
5386
5387 ata_port_schedule_eh(ap);
5388
5389 spin_unlock_irqrestore(ap->lock, flags);
5390
5391 if (!async) {
5392 ata_port_wait_eh(ap);
5393 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5394 }
5395 }
5396
5397 /*
5398 * On some hardware, device fails to respond after spun down for suspend. As
5399 * the device won't be used before being resumed, we don't need to touch the
5400 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5401 *
5402 * http://thread.gmane.org/gmane.linux.ide/46764
5403 */
5404 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5405 | ATA_EHI_NO_AUTOPSY
5406 | ATA_EHI_NO_RECOVERY;
5407
5408 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5409 {
5410 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5411 }
5412
5413 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5414 {
5415 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5416 }
5417
5418 static int ata_port_pm_suspend(struct device *dev)
5419 {
5420 struct ata_port *ap = to_ata_port(dev);
5421
5422 if (pm_runtime_suspended(dev))
5423 return 0;
5424
5425 ata_port_suspend(ap, PMSG_SUSPEND);
5426 return 0;
5427 }
5428
5429 static int ata_port_pm_freeze(struct device *dev)
5430 {
5431 struct ata_port *ap = to_ata_port(dev);
5432
5433 if (pm_runtime_suspended(dev))
5434 return 0;
5435
5436 ata_port_suspend(ap, PMSG_FREEZE);
5437 return 0;
5438 }
5439
5440 static int ata_port_pm_poweroff(struct device *dev)
5441 {
5442 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5443 return 0;
5444 }
5445
5446 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5447 | ATA_EHI_QUIET;
5448
5449 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5450 {
5451 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5452 }
5453
5454 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5455 {
5456 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5457 }
5458
5459 static int ata_port_pm_resume(struct device *dev)
5460 {
5461 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5462 pm_runtime_disable(dev);
5463 pm_runtime_set_active(dev);
5464 pm_runtime_enable(dev);
5465 return 0;
5466 }
5467
5468 /*
5469 * For ODDs, the upper layer will poll for media change every few seconds,
5470 * which will make it enter and leave suspend state every few seconds. And
5471 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5472 * is very little and the ODD may malfunction after constantly being reset.
5473 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5474 * ODD is attached to the port.
5475 */
5476 static int ata_port_runtime_idle(struct device *dev)
5477 {
5478 struct ata_port *ap = to_ata_port(dev);
5479 struct ata_link *link;
5480 struct ata_device *adev;
5481
5482 ata_for_each_link(link, ap, HOST_FIRST) {
5483 ata_for_each_dev(adev, link, ENABLED)
5484 if (adev->class == ATA_DEV_ATAPI &&
5485 !zpodd_dev_enabled(adev))
5486 return -EBUSY;
5487 }
5488
5489 return 0;
5490 }
5491
5492 static int ata_port_runtime_suspend(struct device *dev)
5493 {
5494 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5495 return 0;
5496 }
5497
5498 static int ata_port_runtime_resume(struct device *dev)
5499 {
5500 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5501 return 0;
5502 }
5503
5504 static const struct dev_pm_ops ata_port_pm_ops = {
5505 .suspend = ata_port_pm_suspend,
5506 .resume = ata_port_pm_resume,
5507 .freeze = ata_port_pm_freeze,
5508 .thaw = ata_port_pm_resume,
5509 .poweroff = ata_port_pm_poweroff,
5510 .restore = ata_port_pm_resume,
5511
5512 .runtime_suspend = ata_port_runtime_suspend,
5513 .runtime_resume = ata_port_runtime_resume,
5514 .runtime_idle = ata_port_runtime_idle,
5515 };
5516
5517 /* sas ports don't participate in pm runtime management of ata_ports,
5518 * and need to resume ata devices at the domain level, not the per-port
5519 * level. sas suspend/resume is async to allow parallel port recovery
5520 * since sas has multiple ata_port instances per Scsi_Host.
5521 */
5522 void ata_sas_port_suspend(struct ata_port *ap)
5523 {
5524 ata_port_suspend_async(ap, PMSG_SUSPEND);
5525 }
5526 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5527
5528 void ata_sas_port_resume(struct ata_port *ap)
5529 {
5530 ata_port_resume_async(ap, PMSG_RESUME);
5531 }
5532 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5533
5534 /**
5535 * ata_host_suspend - suspend host
5536 * @host: host to suspend
5537 * @mesg: PM message
5538 *
5539 * Suspend @host. Actual operation is performed by port suspend.
5540 */
5541 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5542 {
5543 host->dev->power.power_state = mesg;
5544 return 0;
5545 }
5546
5547 /**
5548 * ata_host_resume - resume host
5549 * @host: host to resume
5550 *
5551 * Resume @host. Actual operation is performed by port resume.
5552 */
5553 void ata_host_resume(struct ata_host *host)
5554 {
5555 host->dev->power.power_state = PMSG_ON;
5556 }
5557 #endif
5558
5559 struct device_type ata_port_type = {
5560 .name = "ata_port",
5561 #ifdef CONFIG_PM
5562 .pm = &ata_port_pm_ops,
5563 #endif
5564 };
5565
5566 /**
5567 * ata_dev_init - Initialize an ata_device structure
5568 * @dev: Device structure to initialize
5569 *
5570 * Initialize @dev in preparation for probing.
5571 *
5572 * LOCKING:
5573 * Inherited from caller.
5574 */
5575 void ata_dev_init(struct ata_device *dev)
5576 {
5577 struct ata_link *link = ata_dev_phys_link(dev);
5578 struct ata_port *ap = link->ap;
5579 unsigned long flags;
5580
5581 /* SATA spd limit is bound to the attached device, reset together */
5582 link->sata_spd_limit = link->hw_sata_spd_limit;
5583 link->sata_spd = 0;
5584
5585 /* High bits of dev->flags are used to record warm plug
5586 * requests which occur asynchronously. Synchronize using
5587 * host lock.
5588 */
5589 spin_lock_irqsave(ap->lock, flags);
5590 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5591 dev->horkage = 0;
5592 spin_unlock_irqrestore(ap->lock, flags);
5593
5594 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5595 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5596 dev->pio_mask = UINT_MAX;
5597 dev->mwdma_mask = UINT_MAX;
5598 dev->udma_mask = UINT_MAX;
5599 }
5600
5601 /**
5602 * ata_link_init - Initialize an ata_link structure
5603 * @ap: ATA port link is attached to
5604 * @link: Link structure to initialize
5605 * @pmp: Port multiplier port number
5606 *
5607 * Initialize @link.
5608 *
5609 * LOCKING:
5610 * Kernel thread context (may sleep)
5611 */
5612 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5613 {
5614 int i;
5615
5616 /* clear everything except for devices */
5617 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5618 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5619
5620 link->ap = ap;
5621 link->pmp = pmp;
5622 link->active_tag = ATA_TAG_POISON;
5623 link->hw_sata_spd_limit = UINT_MAX;
5624
5625 /* can't use iterator, ap isn't initialized yet */
5626 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5627 struct ata_device *dev = &link->device[i];
5628
5629 dev->link = link;
5630 dev->devno = dev - link->device;
5631 #ifdef CONFIG_ATA_ACPI
5632 dev->gtf_filter = ata_acpi_gtf_filter;
5633 #endif
5634 ata_dev_init(dev);
5635 }
5636 }
5637
5638 /**
5639 * sata_link_init_spd - Initialize link->sata_spd_limit
5640 * @link: Link to configure sata_spd_limit for
5641 *
5642 * Initialize @link->[hw_]sata_spd_limit to the currently
5643 * configured value.
5644 *
5645 * LOCKING:
5646 * Kernel thread context (may sleep).
5647 *
5648 * RETURNS:
5649 * 0 on success, -errno on failure.
5650 */
5651 int sata_link_init_spd(struct ata_link *link)
5652 {
5653 u8 spd;
5654 int rc;
5655
5656 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5657 if (rc)
5658 return rc;
5659
5660 spd = (link->saved_scontrol >> 4) & 0xf;
5661 if (spd)
5662 link->hw_sata_spd_limit &= (1 << spd) - 1;
5663
5664 ata_force_link_limits(link);
5665
5666 link->sata_spd_limit = link->hw_sata_spd_limit;
5667
5668 return 0;
5669 }
5670
5671 /**
5672 * ata_port_alloc - allocate and initialize basic ATA port resources
5673 * @host: ATA host this allocated port belongs to
5674 *
5675 * Allocate and initialize basic ATA port resources.
5676 *
5677 * RETURNS:
5678 * Allocate ATA port on success, NULL on failure.
5679 *
5680 * LOCKING:
5681 * Inherited from calling layer (may sleep).
5682 */
5683 struct ata_port *ata_port_alloc(struct ata_host *host)
5684 {
5685 struct ata_port *ap;
5686
5687 DPRINTK("ENTER\n");
5688
5689 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5690 if (!ap)
5691 return NULL;
5692
5693 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5694 ap->lock = &host->lock;
5695 ap->print_id = -1;
5696 ap->local_port_no = -1;
5697 ap->host = host;
5698 ap->dev = host->dev;
5699
5700 #if defined(ATA_VERBOSE_DEBUG)
5701 /* turn on all debugging levels */
5702 ap->msg_enable = 0x00FF;
5703 #elif defined(ATA_DEBUG)
5704 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5705 #else
5706 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5707 #endif
5708
5709 mutex_init(&ap->scsi_scan_mutex);
5710 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5711 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5712 INIT_LIST_HEAD(&ap->eh_done_q);
5713 init_waitqueue_head(&ap->eh_wait_q);
5714 init_completion(&ap->park_req_pending);
5715 init_timer_deferrable(&ap->fastdrain_timer);
5716 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5717 ap->fastdrain_timer.data = (unsigned long)ap;
5718
5719 ap->cbl = ATA_CBL_NONE;
5720
5721 ata_link_init(ap, &ap->link, 0);
5722
5723 #ifdef ATA_IRQ_TRAP
5724 ap->stats.unhandled_irq = 1;
5725 ap->stats.idle_irq = 1;
5726 #endif
5727 ata_sff_port_init(ap);
5728
5729 return ap;
5730 }
5731
5732 static void ata_host_release(struct device *gendev, void *res)
5733 {
5734 struct ata_host *host = dev_get_drvdata(gendev);
5735 int i;
5736
5737 for (i = 0; i < host->n_ports; i++) {
5738 struct ata_port *ap = host->ports[i];
5739
5740 if (!ap)
5741 continue;
5742
5743 if (ap->scsi_host)
5744 scsi_host_put(ap->scsi_host);
5745
5746 kfree(ap->pmp_link);
5747 kfree(ap->slave_link);
5748 kfree(ap);
5749 host->ports[i] = NULL;
5750 }
5751
5752 dev_set_drvdata(gendev, NULL);
5753 }
5754
5755 /**
5756 * ata_host_alloc - allocate and init basic ATA host resources
5757 * @dev: generic device this host is associated with
5758 * @max_ports: maximum number of ATA ports associated with this host
5759 *
5760 * Allocate and initialize basic ATA host resources. LLD calls
5761 * this function to allocate a host, initializes it fully and
5762 * attaches it using ata_host_register().
5763 *
5764 * @max_ports ports are allocated and host->n_ports is
5765 * initialized to @max_ports. The caller is allowed to decrease
5766 * host->n_ports before calling ata_host_register(). The unused
5767 * ports will be automatically freed on registration.
5768 *
5769 * RETURNS:
5770 * Allocate ATA host on success, NULL on failure.
5771 *
5772 * LOCKING:
5773 * Inherited from calling layer (may sleep).
5774 */
5775 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5776 {
5777 struct ata_host *host;
5778 size_t sz;
5779 int i;
5780
5781 DPRINTK("ENTER\n");
5782
5783 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5784 return NULL;
5785
5786 /* alloc a container for our list of ATA ports (buses) */
5787 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5788 /* alloc a container for our list of ATA ports (buses) */
5789 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5790 if (!host)
5791 goto err_out;
5792
5793 devres_add(dev, host);
5794 dev_set_drvdata(dev, host);
5795
5796 spin_lock_init(&host->lock);
5797 mutex_init(&host->eh_mutex);
5798 host->dev = dev;
5799 host->n_ports = max_ports;
5800
5801 /* allocate ports bound to this host */
5802 for (i = 0; i < max_ports; i++) {
5803 struct ata_port *ap;
5804
5805 ap = ata_port_alloc(host);
5806 if (!ap)
5807 goto err_out;
5808
5809 ap->port_no = i;
5810 host->ports[i] = ap;
5811 }
5812
5813 devres_remove_group(dev, NULL);
5814 return host;
5815
5816 err_out:
5817 devres_release_group(dev, NULL);
5818 return NULL;
5819 }
5820
5821 /**
5822 * ata_host_alloc_pinfo - alloc host and init with port_info array
5823 * @dev: generic device this host is associated with
5824 * @ppi: array of ATA port_info to initialize host with
5825 * @n_ports: number of ATA ports attached to this host
5826 *
5827 * Allocate ATA host and initialize with info from @ppi. If NULL
5828 * terminated, @ppi may contain fewer entries than @n_ports. The
5829 * last entry will be used for the remaining ports.
5830 *
5831 * RETURNS:
5832 * Allocate ATA host on success, NULL on failure.
5833 *
5834 * LOCKING:
5835 * Inherited from calling layer (may sleep).
5836 */
5837 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5838 const struct ata_port_info * const * ppi,
5839 int n_ports)
5840 {
5841 const struct ata_port_info *pi;
5842 struct ata_host *host;
5843 int i, j;
5844
5845 host = ata_host_alloc(dev, n_ports);
5846 if (!host)
5847 return NULL;
5848
5849 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5850 struct ata_port *ap = host->ports[i];
5851
5852 if (ppi[j])
5853 pi = ppi[j++];
5854
5855 ap->pio_mask = pi->pio_mask;
5856 ap->mwdma_mask = pi->mwdma_mask;
5857 ap->udma_mask = pi->udma_mask;
5858 ap->flags |= pi->flags;
5859 ap->link.flags |= pi->link_flags;
5860 ap->ops = pi->port_ops;
5861
5862 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5863 host->ops = pi->port_ops;
5864 }
5865
5866 return host;
5867 }
5868
5869 /**
5870 * ata_slave_link_init - initialize slave link
5871 * @ap: port to initialize slave link for
5872 *
5873 * Create and initialize slave link for @ap. This enables slave
5874 * link handling on the port.
5875 *
5876 * In libata, a port contains links and a link contains devices.
5877 * There is single host link but if a PMP is attached to it,
5878 * there can be multiple fan-out links. On SATA, there's usually
5879 * a single device connected to a link but PATA and SATA
5880 * controllers emulating TF based interface can have two - master
5881 * and slave.
5882 *
5883 * However, there are a few controllers which don't fit into this
5884 * abstraction too well - SATA controllers which emulate TF
5885 * interface with both master and slave devices but also have
5886 * separate SCR register sets for each device. These controllers
5887 * need separate links for physical link handling
5888 * (e.g. onlineness, link speed) but should be treated like a
5889 * traditional M/S controller for everything else (e.g. command
5890 * issue, softreset).
5891 *
5892 * slave_link is libata's way of handling this class of
5893 * controllers without impacting core layer too much. For
5894 * anything other than physical link handling, the default host
5895 * link is used for both master and slave. For physical link
5896 * handling, separate @ap->slave_link is used. All dirty details
5897 * are implemented inside libata core layer. From LLD's POV, the
5898 * only difference is that prereset, hardreset and postreset are
5899 * called once more for the slave link, so the reset sequence
5900 * looks like the following.
5901 *
5902 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5903 * softreset(M) -> postreset(M) -> postreset(S)
5904 *
5905 * Note that softreset is called only for the master. Softreset
5906 * resets both M/S by definition, so SRST on master should handle
5907 * both (the standard method will work just fine).
5908 *
5909 * LOCKING:
5910 * Should be called before host is registered.
5911 *
5912 * RETURNS:
5913 * 0 on success, -errno on failure.
5914 */
5915 int ata_slave_link_init(struct ata_port *ap)
5916 {
5917 struct ata_link *link;
5918
5919 WARN_ON(ap->slave_link);
5920 WARN_ON(ap->flags & ATA_FLAG_PMP);
5921
5922 link = kzalloc(sizeof(*link), GFP_KERNEL);
5923 if (!link)
5924 return -ENOMEM;
5925
5926 ata_link_init(ap, link, 1);
5927 ap->slave_link = link;
5928 return 0;
5929 }
5930
5931 static void ata_host_stop(struct device *gendev, void *res)
5932 {
5933 struct ata_host *host = dev_get_drvdata(gendev);
5934 int i;
5935
5936 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5937
5938 for (i = 0; i < host->n_ports; i++) {
5939 struct ata_port *ap = host->ports[i];
5940
5941 if (ap->ops->port_stop)
5942 ap->ops->port_stop(ap);
5943 }
5944
5945 if (host->ops->host_stop)
5946 host->ops->host_stop(host);
5947 }
5948
5949 /**
5950 * ata_finalize_port_ops - finalize ata_port_operations
5951 * @ops: ata_port_operations to finalize
5952 *
5953 * An ata_port_operations can inherit from another ops and that
5954 * ops can again inherit from another. This can go on as many
5955 * times as necessary as long as there is no loop in the
5956 * inheritance chain.
5957 *
5958 * Ops tables are finalized when the host is started. NULL or
5959 * unspecified entries are inherited from the closet ancestor
5960 * which has the method and the entry is populated with it.
5961 * After finalization, the ops table directly points to all the
5962 * methods and ->inherits is no longer necessary and cleared.
5963 *
5964 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5965 *
5966 * LOCKING:
5967 * None.
5968 */
5969 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5970 {
5971 static DEFINE_SPINLOCK(lock);
5972 const struct ata_port_operations *cur;
5973 void **begin = (void **)ops;
5974 void **end = (void **)&ops->inherits;
5975 void **pp;
5976
5977 if (!ops || !ops->inherits)
5978 return;
5979
5980 spin_lock(&lock);
5981
5982 for (cur = ops->inherits; cur; cur = cur->inherits) {
5983 void **inherit = (void **)cur;
5984
5985 for (pp = begin; pp < end; pp++, inherit++)
5986 if (!*pp)
5987 *pp = *inherit;
5988 }
5989
5990 for (pp = begin; pp < end; pp++)
5991 if (IS_ERR(*pp))
5992 *pp = NULL;
5993
5994 ops->inherits = NULL;
5995
5996 spin_unlock(&lock);
5997 }
5998
5999 /**
6000 * ata_host_start - start and freeze ports of an ATA host
6001 * @host: ATA host to start ports for
6002 *
6003 * Start and then freeze ports of @host. Started status is
6004 * recorded in host->flags, so this function can be called
6005 * multiple times. Ports are guaranteed to get started only
6006 * once. If host->ops isn't initialized yet, its set to the
6007 * first non-dummy port ops.
6008 *
6009 * LOCKING:
6010 * Inherited from calling layer (may sleep).
6011 *
6012 * RETURNS:
6013 * 0 if all ports are started successfully, -errno otherwise.
6014 */
6015 int ata_host_start(struct ata_host *host)
6016 {
6017 int have_stop = 0;
6018 void *start_dr = NULL;
6019 int i, rc;
6020
6021 if (host->flags & ATA_HOST_STARTED)
6022 return 0;
6023
6024 ata_finalize_port_ops(host->ops);
6025
6026 for (i = 0; i < host->n_ports; i++) {
6027 struct ata_port *ap = host->ports[i];
6028
6029 ata_finalize_port_ops(ap->ops);
6030
6031 if (!host->ops && !ata_port_is_dummy(ap))
6032 host->ops = ap->ops;
6033
6034 if (ap->ops->port_stop)
6035 have_stop = 1;
6036 }
6037
6038 if (host->ops->host_stop)
6039 have_stop = 1;
6040
6041 if (have_stop) {
6042 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6043 if (!start_dr)
6044 return -ENOMEM;
6045 }
6046
6047 for (i = 0; i < host->n_ports; i++) {
6048 struct ata_port *ap = host->ports[i];
6049
6050 if (ap->ops->port_start) {
6051 rc = ap->ops->port_start(ap);
6052 if (rc) {
6053 if (rc != -ENODEV)
6054 dev_err(host->dev,
6055 "failed to start port %d (errno=%d)\n",
6056 i, rc);
6057 goto err_out;
6058 }
6059 }
6060 ata_eh_freeze_port(ap);
6061 }
6062
6063 if (start_dr)
6064 devres_add(host->dev, start_dr);
6065 host->flags |= ATA_HOST_STARTED;
6066 return 0;
6067
6068 err_out:
6069 while (--i >= 0) {
6070 struct ata_port *ap = host->ports[i];
6071
6072 if (ap->ops->port_stop)
6073 ap->ops->port_stop(ap);
6074 }
6075 devres_free(start_dr);
6076 return rc;
6077 }
6078
6079 /**
6080 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6081 * @host: host to initialize
6082 * @dev: device host is attached to
6083 * @ops: port_ops
6084 *
6085 */
6086 void ata_host_init(struct ata_host *host, struct device *dev,
6087 struct ata_port_operations *ops)
6088 {
6089 spin_lock_init(&host->lock);
6090 mutex_init(&host->eh_mutex);
6091 host->dev = dev;
6092 host->ops = ops;
6093 }
6094
6095 void __ata_port_probe(struct ata_port *ap)
6096 {
6097 struct ata_eh_info *ehi = &ap->link.eh_info;
6098 unsigned long flags;
6099
6100 /* kick EH for boot probing */
6101 spin_lock_irqsave(ap->lock, flags);
6102
6103 ehi->probe_mask |= ATA_ALL_DEVICES;
6104 ehi->action |= ATA_EH_RESET;
6105 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6106
6107 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6108 ap->pflags |= ATA_PFLAG_LOADING;
6109 ata_port_schedule_eh(ap);
6110
6111 spin_unlock_irqrestore(ap->lock, flags);
6112 }
6113
6114 int ata_port_probe(struct ata_port *ap)
6115 {
6116 int rc = 0;
6117
6118 if (ap->ops->error_handler) {
6119 __ata_port_probe(ap);
6120 ata_port_wait_eh(ap);
6121 } else {
6122 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6123 rc = ata_bus_probe(ap);
6124 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6125 }
6126 return rc;
6127 }
6128
6129
6130 static void async_port_probe(void *data, async_cookie_t cookie)
6131 {
6132 struct ata_port *ap = data;
6133
6134 /*
6135 * If we're not allowed to scan this host in parallel,
6136 * we need to wait until all previous scans have completed
6137 * before going further.
6138 * Jeff Garzik says this is only within a controller, so we
6139 * don't need to wait for port 0, only for later ports.
6140 */
6141 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6142 async_synchronize_cookie(cookie);
6143
6144 (void)ata_port_probe(ap);
6145
6146 /* in order to keep device order, we need to synchronize at this point */
6147 async_synchronize_cookie(cookie);
6148
6149 ata_scsi_scan_host(ap, 1);
6150 }
6151
6152 /**
6153 * ata_host_register - register initialized ATA host
6154 * @host: ATA host to register
6155 * @sht: template for SCSI host
6156 *
6157 * Register initialized ATA host. @host is allocated using
6158 * ata_host_alloc() and fully initialized by LLD. This function
6159 * starts ports, registers @host with ATA and SCSI layers and
6160 * probe registered devices.
6161 *
6162 * LOCKING:
6163 * Inherited from calling layer (may sleep).
6164 *
6165 * RETURNS:
6166 * 0 on success, -errno otherwise.
6167 */
6168 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6169 {
6170 int i, rc;
6171
6172 /* host must have been started */
6173 if (!(host->flags & ATA_HOST_STARTED)) {
6174 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6175 WARN_ON(1);
6176 return -EINVAL;
6177 }
6178
6179 /* Blow away unused ports. This happens when LLD can't
6180 * determine the exact number of ports to allocate at
6181 * allocation time.
6182 */
6183 for (i = host->n_ports; host->ports[i]; i++)
6184 kfree(host->ports[i]);
6185
6186 /* give ports names and add SCSI hosts */
6187 for (i = 0; i < host->n_ports; i++) {
6188 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6189 host->ports[i]->local_port_no = i + 1;
6190 }
6191
6192 /* Create associated sysfs transport objects */
6193 for (i = 0; i < host->n_ports; i++) {
6194 rc = ata_tport_add(host->dev,host->ports[i]);
6195 if (rc) {
6196 goto err_tadd;
6197 }
6198 }
6199
6200 rc = ata_scsi_add_hosts(host, sht);
6201 if (rc)
6202 goto err_tadd;
6203
6204 /* set cable, sata_spd_limit and report */
6205 for (i = 0; i < host->n_ports; i++) {
6206 struct ata_port *ap = host->ports[i];
6207 unsigned long xfer_mask;
6208
6209 /* set SATA cable type if still unset */
6210 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6211 ap->cbl = ATA_CBL_SATA;
6212
6213 /* init sata_spd_limit to the current value */
6214 sata_link_init_spd(&ap->link);
6215 if (ap->slave_link)
6216 sata_link_init_spd(ap->slave_link);
6217
6218 /* print per-port info to dmesg */
6219 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6220 ap->udma_mask);
6221
6222 if (!ata_port_is_dummy(ap)) {
6223 ata_port_info(ap, "%cATA max %s %s\n",
6224 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6225 ata_mode_string(xfer_mask),
6226 ap->link.eh_info.desc);
6227 ata_ehi_clear_desc(&ap->link.eh_info);
6228 } else
6229 ata_port_info(ap, "DUMMY\n");
6230 }
6231
6232 /* perform each probe asynchronously */
6233 for (i = 0; i < host->n_ports; i++) {
6234 struct ata_port *ap = host->ports[i];
6235 async_schedule(async_port_probe, ap);
6236 }
6237
6238 return 0;
6239
6240 err_tadd:
6241 while (--i >= 0) {
6242 ata_tport_delete(host->ports[i]);
6243 }
6244 return rc;
6245
6246 }
6247
6248 /**
6249 * ata_host_activate - start host, request IRQ and register it
6250 * @host: target ATA host
6251 * @irq: IRQ to request
6252 * @irq_handler: irq_handler used when requesting IRQ
6253 * @irq_flags: irq_flags used when requesting IRQ
6254 * @sht: scsi_host_template to use when registering the host
6255 *
6256 * After allocating an ATA host and initializing it, most libata
6257 * LLDs perform three steps to activate the host - start host,
6258 * request IRQ and register it. This helper takes necessasry
6259 * arguments and performs the three steps in one go.
6260 *
6261 * An invalid IRQ skips the IRQ registration and expects the host to
6262 * have set polling mode on the port. In this case, @irq_handler
6263 * should be NULL.
6264 *
6265 * LOCKING:
6266 * Inherited from calling layer (may sleep).
6267 *
6268 * RETURNS:
6269 * 0 on success, -errno otherwise.
6270 */
6271 int ata_host_activate(struct ata_host *host, int irq,
6272 irq_handler_t irq_handler, unsigned long irq_flags,
6273 struct scsi_host_template *sht)
6274 {
6275 int i, rc;
6276
6277 rc = ata_host_start(host);
6278 if (rc)
6279 return rc;
6280
6281 /* Special case for polling mode */
6282 if (!irq) {
6283 WARN_ON(irq_handler);
6284 return ata_host_register(host, sht);
6285 }
6286
6287 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6288 dev_driver_string(host->dev), host);
6289 if (rc)
6290 return rc;
6291
6292 for (i = 0; i < host->n_ports; i++)
6293 ata_port_desc(host->ports[i], "irq %d", irq);
6294
6295 rc = ata_host_register(host, sht);
6296 /* if failed, just free the IRQ and leave ports alone */
6297 if (rc)
6298 devm_free_irq(host->dev, irq, host);
6299
6300 return rc;
6301 }
6302
6303 /**
6304 * ata_port_detach - Detach ATA port in prepration of device removal
6305 * @ap: ATA port to be detached
6306 *
6307 * Detach all ATA devices and the associated SCSI devices of @ap;
6308 * then, remove the associated SCSI host. @ap is guaranteed to
6309 * be quiescent on return from this function.
6310 *
6311 * LOCKING:
6312 * Kernel thread context (may sleep).
6313 */
6314 static void ata_port_detach(struct ata_port *ap)
6315 {
6316 unsigned long flags;
6317 struct ata_link *link;
6318 struct ata_device *dev;
6319
6320 if (!ap->ops->error_handler)
6321 goto skip_eh;
6322
6323 /* tell EH we're leaving & flush EH */
6324 spin_lock_irqsave(ap->lock, flags);
6325 ap->pflags |= ATA_PFLAG_UNLOADING;
6326 ata_port_schedule_eh(ap);
6327 spin_unlock_irqrestore(ap->lock, flags);
6328
6329 /* wait till EH commits suicide */
6330 ata_port_wait_eh(ap);
6331
6332 /* it better be dead now */
6333 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6334
6335 cancel_delayed_work_sync(&ap->hotplug_task);
6336
6337 skip_eh:
6338 /* clean up zpodd on port removal */
6339 ata_for_each_link(link, ap, HOST_FIRST) {
6340 ata_for_each_dev(dev, link, ALL) {
6341 if (zpodd_dev_enabled(dev))
6342 zpodd_exit(dev);
6343 }
6344 }
6345 if (ap->pmp_link) {
6346 int i;
6347 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6348 ata_tlink_delete(&ap->pmp_link[i]);
6349 }
6350 /* remove the associated SCSI host */
6351 scsi_remove_host(ap->scsi_host);
6352 ata_tport_delete(ap);
6353 }
6354
6355 /**
6356 * ata_host_detach - Detach all ports of an ATA host
6357 * @host: Host to detach
6358 *
6359 * Detach all ports of @host.
6360 *
6361 * LOCKING:
6362 * Kernel thread context (may sleep).
6363 */
6364 void ata_host_detach(struct ata_host *host)
6365 {
6366 int i;
6367
6368 for (i = 0; i < host->n_ports; i++)
6369 ata_port_detach(host->ports[i]);
6370
6371 /* the host is dead now, dissociate ACPI */
6372 ata_acpi_dissociate(host);
6373 }
6374
6375 #ifdef CONFIG_PCI
6376
6377 /**
6378 * ata_pci_remove_one - PCI layer callback for device removal
6379 * @pdev: PCI device that was removed
6380 *
6381 * PCI layer indicates to libata via this hook that hot-unplug or
6382 * module unload event has occurred. Detach all ports. Resource
6383 * release is handled via devres.
6384 *
6385 * LOCKING:
6386 * Inherited from PCI layer (may sleep).
6387 */
6388 void ata_pci_remove_one(struct pci_dev *pdev)
6389 {
6390 struct ata_host *host = pci_get_drvdata(pdev);
6391
6392 ata_host_detach(host);
6393 }
6394
6395 /* move to PCI subsystem */
6396 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6397 {
6398 unsigned long tmp = 0;
6399
6400 switch (bits->width) {
6401 case 1: {
6402 u8 tmp8 = 0;
6403 pci_read_config_byte(pdev, bits->reg, &tmp8);
6404 tmp = tmp8;
6405 break;
6406 }
6407 case 2: {
6408 u16 tmp16 = 0;
6409 pci_read_config_word(pdev, bits->reg, &tmp16);
6410 tmp = tmp16;
6411 break;
6412 }
6413 case 4: {
6414 u32 tmp32 = 0;
6415 pci_read_config_dword(pdev, bits->reg, &tmp32);
6416 tmp = tmp32;
6417 break;
6418 }
6419
6420 default:
6421 return -EINVAL;
6422 }
6423
6424 tmp &= bits->mask;
6425
6426 return (tmp == bits->val) ? 1 : 0;
6427 }
6428
6429 #ifdef CONFIG_PM
6430 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6431 {
6432 pci_save_state(pdev);
6433 pci_disable_device(pdev);
6434
6435 if (mesg.event & PM_EVENT_SLEEP)
6436 pci_set_power_state(pdev, PCI_D3hot);
6437 }
6438
6439 int ata_pci_device_do_resume(struct pci_dev *pdev)
6440 {
6441 int rc;
6442
6443 pci_set_power_state(pdev, PCI_D0);
6444 pci_restore_state(pdev);
6445
6446 rc = pcim_enable_device(pdev);
6447 if (rc) {
6448 dev_err(&pdev->dev,
6449 "failed to enable device after resume (%d)\n", rc);
6450 return rc;
6451 }
6452
6453 pci_set_master(pdev);
6454 return 0;
6455 }
6456
6457 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6458 {
6459 struct ata_host *host = pci_get_drvdata(pdev);
6460 int rc = 0;
6461
6462 rc = ata_host_suspend(host, mesg);
6463 if (rc)
6464 return rc;
6465
6466 ata_pci_device_do_suspend(pdev, mesg);
6467
6468 return 0;
6469 }
6470
6471 int ata_pci_device_resume(struct pci_dev *pdev)
6472 {
6473 struct ata_host *host = pci_get_drvdata(pdev);
6474 int rc;
6475
6476 rc = ata_pci_device_do_resume(pdev);
6477 if (rc == 0)
6478 ata_host_resume(host);
6479 return rc;
6480 }
6481 #endif /* CONFIG_PM */
6482
6483 #endif /* CONFIG_PCI */
6484
6485 /**
6486 * ata_platform_remove_one - Platform layer callback for device removal
6487 * @pdev: Platform device that was removed
6488 *
6489 * Platform layer indicates to libata via this hook that hot-unplug or
6490 * module unload event has occurred. Detach all ports. Resource
6491 * release is handled via devres.
6492 *
6493 * LOCKING:
6494 * Inherited from platform layer (may sleep).
6495 */
6496 int ata_platform_remove_one(struct platform_device *pdev)
6497 {
6498 struct ata_host *host = platform_get_drvdata(pdev);
6499
6500 ata_host_detach(host);
6501
6502 return 0;
6503 }
6504
6505 static int __init ata_parse_force_one(char **cur,
6506 struct ata_force_ent *force_ent,
6507 const char **reason)
6508 {
6509 /* FIXME: Currently, there's no way to tag init const data and
6510 * using __initdata causes build failure on some versions of
6511 * gcc. Once __initdataconst is implemented, add const to the
6512 * following structure.
6513 */
6514 static struct ata_force_param force_tbl[] __initdata = {
6515 { "40c", .cbl = ATA_CBL_PATA40 },
6516 { "80c", .cbl = ATA_CBL_PATA80 },
6517 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6518 { "unk", .cbl = ATA_CBL_PATA_UNK },
6519 { "ign", .cbl = ATA_CBL_PATA_IGN },
6520 { "sata", .cbl = ATA_CBL_SATA },
6521 { "1.5Gbps", .spd_limit = 1 },
6522 { "3.0Gbps", .spd_limit = 2 },
6523 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6524 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6525 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6526 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6527 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6528 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6529 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6530 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6531 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6532 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6533 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6534 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6535 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6536 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6537 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6538 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6539 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6540 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6541 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6542 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6543 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6544 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6545 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6546 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6547 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6548 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6549 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6550 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6551 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6552 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6553 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6554 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6555 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6556 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6557 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6558 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6559 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6560 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6561 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6562 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6563 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6564 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6565 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6566 };
6567 char *start = *cur, *p = *cur;
6568 char *id, *val, *endp;
6569 const struct ata_force_param *match_fp = NULL;
6570 int nr_matches = 0, i;
6571
6572 /* find where this param ends and update *cur */
6573 while (*p != '\0' && *p != ',')
6574 p++;
6575
6576 if (*p == '\0')
6577 *cur = p;
6578 else
6579 *cur = p + 1;
6580
6581 *p = '\0';
6582
6583 /* parse */
6584 p = strchr(start, ':');
6585 if (!p) {
6586 val = strstrip(start);
6587 goto parse_val;
6588 }
6589 *p = '\0';
6590
6591 id = strstrip(start);
6592 val = strstrip(p + 1);
6593
6594 /* parse id */
6595 p = strchr(id, '.');
6596 if (p) {
6597 *p++ = '\0';
6598 force_ent->device = simple_strtoul(p, &endp, 10);
6599 if (p == endp || *endp != '\0') {
6600 *reason = "invalid device";
6601 return -EINVAL;
6602 }
6603 }
6604
6605 force_ent->port = simple_strtoul(id, &endp, 10);
6606 if (p == endp || *endp != '\0') {
6607 *reason = "invalid port/link";
6608 return -EINVAL;
6609 }
6610
6611 parse_val:
6612 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6613 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6614 const struct ata_force_param *fp = &force_tbl[i];
6615
6616 if (strncasecmp(val, fp->name, strlen(val)))
6617 continue;
6618
6619 nr_matches++;
6620 match_fp = fp;
6621
6622 if (strcasecmp(val, fp->name) == 0) {
6623 nr_matches = 1;
6624 break;
6625 }
6626 }
6627
6628 if (!nr_matches) {
6629 *reason = "unknown value";
6630 return -EINVAL;
6631 }
6632 if (nr_matches > 1) {
6633 *reason = "ambigious value";
6634 return -EINVAL;
6635 }
6636
6637 force_ent->param = *match_fp;
6638
6639 return 0;
6640 }
6641
6642 static void __init ata_parse_force_param(void)
6643 {
6644 int idx = 0, size = 1;
6645 int last_port = -1, last_device = -1;
6646 char *p, *cur, *next;
6647
6648 /* calculate maximum number of params and allocate force_tbl */
6649 for (p = ata_force_param_buf; *p; p++)
6650 if (*p == ',')
6651 size++;
6652
6653 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6654 if (!ata_force_tbl) {
6655 printk(KERN_WARNING "ata: failed to extend force table, "
6656 "libata.force ignored\n");
6657 return;
6658 }
6659
6660 /* parse and populate the table */
6661 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6662 const char *reason = "";
6663 struct ata_force_ent te = { .port = -1, .device = -1 };
6664
6665 next = cur;
6666 if (ata_parse_force_one(&next, &te, &reason)) {
6667 printk(KERN_WARNING "ata: failed to parse force "
6668 "parameter \"%s\" (%s)\n",
6669 cur, reason);
6670 continue;
6671 }
6672
6673 if (te.port == -1) {
6674 te.port = last_port;
6675 te.device = last_device;
6676 }
6677
6678 ata_force_tbl[idx++] = te;
6679
6680 last_port = te.port;
6681 last_device = te.device;
6682 }
6683
6684 ata_force_tbl_size = idx;
6685 }
6686
6687 static int __init ata_init(void)
6688 {
6689 int rc;
6690
6691 ata_parse_force_param();
6692
6693 rc = ata_sff_init();
6694 if (rc) {
6695 kfree(ata_force_tbl);
6696 return rc;
6697 }
6698
6699 libata_transport_init();
6700 ata_scsi_transport_template = ata_attach_transport();
6701 if (!ata_scsi_transport_template) {
6702 ata_sff_exit();
6703 rc = -ENOMEM;
6704 goto err_out;
6705 }
6706
6707 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6708 return 0;
6709
6710 err_out:
6711 return rc;
6712 }
6713
6714 static void __exit ata_exit(void)
6715 {
6716 ata_release_transport(ata_scsi_transport_template);
6717 libata_transport_exit();
6718 ata_sff_exit();
6719 kfree(ata_force_tbl);
6720 }
6721
6722 subsys_initcall(ata_init);
6723 module_exit(ata_exit);
6724
6725 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6726
6727 int ata_ratelimit(void)
6728 {
6729 return __ratelimit(&ratelimit);
6730 }
6731
6732 /**
6733 * ata_msleep - ATA EH owner aware msleep
6734 * @ap: ATA port to attribute the sleep to
6735 * @msecs: duration to sleep in milliseconds
6736 *
6737 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6738 * ownership is released before going to sleep and reacquired
6739 * after the sleep is complete. IOW, other ports sharing the
6740 * @ap->host will be allowed to own the EH while this task is
6741 * sleeping.
6742 *
6743 * LOCKING:
6744 * Might sleep.
6745 */
6746 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6747 {
6748 bool owns_eh = ap && ap->host->eh_owner == current;
6749
6750 if (owns_eh)
6751 ata_eh_release(ap);
6752
6753 msleep(msecs);
6754
6755 if (owns_eh)
6756 ata_eh_acquire(ap);
6757 }
6758
6759 /**
6760 * ata_wait_register - wait until register value changes
6761 * @ap: ATA port to wait register for, can be NULL
6762 * @reg: IO-mapped register
6763 * @mask: Mask to apply to read register value
6764 * @val: Wait condition
6765 * @interval: polling interval in milliseconds
6766 * @timeout: timeout in milliseconds
6767 *
6768 * Waiting for some bits of register to change is a common
6769 * operation for ATA controllers. This function reads 32bit LE
6770 * IO-mapped register @reg and tests for the following condition.
6771 *
6772 * (*@reg & mask) != val
6773 *
6774 * If the condition is met, it returns; otherwise, the process is
6775 * repeated after @interval_msec until timeout.
6776 *
6777 * LOCKING:
6778 * Kernel thread context (may sleep)
6779 *
6780 * RETURNS:
6781 * The final register value.
6782 */
6783 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6784 unsigned long interval, unsigned long timeout)
6785 {
6786 unsigned long deadline;
6787 u32 tmp;
6788
6789 tmp = ioread32(reg);
6790
6791 /* Calculate timeout _after_ the first read to make sure
6792 * preceding writes reach the controller before starting to
6793 * eat away the timeout.
6794 */
6795 deadline = ata_deadline(jiffies, timeout);
6796
6797 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6798 ata_msleep(ap, interval);
6799 tmp = ioread32(reg);
6800 }
6801
6802 return tmp;
6803 }
6804
6805 /*
6806 * Dummy port_ops
6807 */
6808 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6809 {
6810 return AC_ERR_SYSTEM;
6811 }
6812
6813 static void ata_dummy_error_handler(struct ata_port *ap)
6814 {
6815 /* truly dummy */
6816 }
6817
6818 struct ata_port_operations ata_dummy_port_ops = {
6819 .qc_prep = ata_noop_qc_prep,
6820 .qc_issue = ata_dummy_qc_issue,
6821 .error_handler = ata_dummy_error_handler,
6822 .sched_eh = ata_std_sched_eh,
6823 .end_eh = ata_std_end_eh,
6824 };
6825
6826 const struct ata_port_info ata_dummy_port_info = {
6827 .port_ops = &ata_dummy_port_ops,
6828 };
6829
6830 /*
6831 * Utility print functions
6832 */
6833 int ata_port_printk(const struct ata_port *ap, const char *level,
6834 const char *fmt, ...)
6835 {
6836 struct va_format vaf;
6837 va_list args;
6838 int r;
6839
6840 va_start(args, fmt);
6841
6842 vaf.fmt = fmt;
6843 vaf.va = &args;
6844
6845 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6846
6847 va_end(args);
6848
6849 return r;
6850 }
6851 EXPORT_SYMBOL(ata_port_printk);
6852
6853 int ata_link_printk(const struct ata_link *link, const char *level,
6854 const char *fmt, ...)
6855 {
6856 struct va_format vaf;
6857 va_list args;
6858 int r;
6859
6860 va_start(args, fmt);
6861
6862 vaf.fmt = fmt;
6863 vaf.va = &args;
6864
6865 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6866 r = printk("%sata%u.%02u: %pV",
6867 level, link->ap->print_id, link->pmp, &vaf);
6868 else
6869 r = printk("%sata%u: %pV",
6870 level, link->ap->print_id, &vaf);
6871
6872 va_end(args);
6873
6874 return r;
6875 }
6876 EXPORT_SYMBOL(ata_link_printk);
6877
6878 int ata_dev_printk(const struct ata_device *dev, const char *level,
6879 const char *fmt, ...)
6880 {
6881 struct va_format vaf;
6882 va_list args;
6883 int r;
6884
6885 va_start(args, fmt);
6886
6887 vaf.fmt = fmt;
6888 vaf.va = &args;
6889
6890 r = printk("%sata%u.%02u: %pV",
6891 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6892 &vaf);
6893
6894 va_end(args);
6895
6896 return r;
6897 }
6898 EXPORT_SYMBOL(ata_dev_printk);
6899
6900 void ata_print_version(const struct device *dev, const char *version)
6901 {
6902 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6903 }
6904 EXPORT_SYMBOL(ata_print_version);
6905
6906 /*
6907 * libata is essentially a library of internal helper functions for
6908 * low-level ATA host controller drivers. As such, the API/ABI is
6909 * likely to change as new drivers are added and updated.
6910 * Do not depend on ABI/API stability.
6911 */
6912 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6913 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6914 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6915 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6916 EXPORT_SYMBOL_GPL(sata_port_ops);
6917 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6918 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6919 EXPORT_SYMBOL_GPL(ata_link_next);
6920 EXPORT_SYMBOL_GPL(ata_dev_next);
6921 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6922 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6923 EXPORT_SYMBOL_GPL(ata_host_init);
6924 EXPORT_SYMBOL_GPL(ata_host_alloc);
6925 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6926 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6927 EXPORT_SYMBOL_GPL(ata_host_start);
6928 EXPORT_SYMBOL_GPL(ata_host_register);
6929 EXPORT_SYMBOL_GPL(ata_host_activate);
6930 EXPORT_SYMBOL_GPL(ata_host_detach);
6931 EXPORT_SYMBOL_GPL(ata_sg_init);
6932 EXPORT_SYMBOL_GPL(ata_qc_complete);
6933 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6934 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6935 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6936 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6937 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6938 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6939 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6940 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6941 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6942 EXPORT_SYMBOL_GPL(ata_mode_string);
6943 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6944 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6945 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6946 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6947 EXPORT_SYMBOL_GPL(ata_dev_disable);
6948 EXPORT_SYMBOL_GPL(sata_set_spd);
6949 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6950 EXPORT_SYMBOL_GPL(sata_link_debounce);
6951 EXPORT_SYMBOL_GPL(sata_link_resume);
6952 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6953 EXPORT_SYMBOL_GPL(ata_std_prereset);
6954 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6955 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6956 EXPORT_SYMBOL_GPL(ata_std_postreset);
6957 EXPORT_SYMBOL_GPL(ata_dev_classify);
6958 EXPORT_SYMBOL_GPL(ata_dev_pair);
6959 EXPORT_SYMBOL_GPL(ata_ratelimit);
6960 EXPORT_SYMBOL_GPL(ata_msleep);
6961 EXPORT_SYMBOL_GPL(ata_wait_register);
6962 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6963 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6964 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6965 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6966 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6967 EXPORT_SYMBOL_GPL(sata_scr_valid);
6968 EXPORT_SYMBOL_GPL(sata_scr_read);
6969 EXPORT_SYMBOL_GPL(sata_scr_write);
6970 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6971 EXPORT_SYMBOL_GPL(ata_link_online);
6972 EXPORT_SYMBOL_GPL(ata_link_offline);
6973 #ifdef CONFIG_PM
6974 EXPORT_SYMBOL_GPL(ata_host_suspend);
6975 EXPORT_SYMBOL_GPL(ata_host_resume);
6976 #endif /* CONFIG_PM */
6977 EXPORT_SYMBOL_GPL(ata_id_string);
6978 EXPORT_SYMBOL_GPL(ata_id_c_string);
6979 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6980 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6981
6982 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6983 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6984 EXPORT_SYMBOL_GPL(ata_timing_compute);
6985 EXPORT_SYMBOL_GPL(ata_timing_merge);
6986 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6987
6988 #ifdef CONFIG_PCI
6989 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6990 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6991 #ifdef CONFIG_PM
6992 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6993 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6994 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6995 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6996 #endif /* CONFIG_PM */
6997 #endif /* CONFIG_PCI */
6998
6999 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7000
7001 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7002 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7003 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7004 EXPORT_SYMBOL_GPL(ata_port_desc);
7005 #ifdef CONFIG_PCI
7006 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7007 #endif /* CONFIG_PCI */
7008 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7009 EXPORT_SYMBOL_GPL(ata_link_abort);
7010 EXPORT_SYMBOL_GPL(ata_port_abort);
7011 EXPORT_SYMBOL_GPL(ata_port_freeze);
7012 EXPORT_SYMBOL_GPL(sata_async_notification);
7013 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7014 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7015 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7016 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7017 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7018 EXPORT_SYMBOL_GPL(ata_do_eh);
7019 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7020
7021 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7022 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7023 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7024 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7025 EXPORT_SYMBOL_GPL(ata_cable_sata);