]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/ata/libata-core.c
ef150ebb4c304efa1cbf5fb6e23a2a9da036ae91
[mirror_ubuntu-zesty-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <linux/glob.h>
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_host.h>
66 #include <linux/libata.h>
67 #include <asm/byteorder.h>
68 #include <linux/cdrom.h>
69 #include <linux/ratelimit.h>
70 #include <linux/pm_runtime.h>
71 #include <linux/platform_device.h>
72
73 #include "libata.h"
74 #include "libata-transport.h"
75
76 /* debounce timing parameters in msecs { interval, duration, timeout } */
77 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
78 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
79 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
80
81 const struct ata_port_operations ata_base_port_ops = {
82 .prereset = ata_std_prereset,
83 .postreset = ata_std_postreset,
84 .error_handler = ata_std_error_handler,
85 .sched_eh = ata_std_sched_eh,
86 .end_eh = ata_std_end_eh,
87 };
88
89 const struct ata_port_operations sata_port_ops = {
90 .inherits = &ata_base_port_ops,
91
92 .qc_defer = ata_std_qc_defer,
93 .hardreset = sata_std_hardreset,
94 };
95
96 static unsigned int ata_dev_init_params(struct ata_device *dev,
97 u16 heads, u16 sectors);
98 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
99 static void ata_dev_xfermask(struct ata_device *dev);
100 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
101
102 atomic_t ata_print_id = ATOMIC_INIT(0);
103
104 struct ata_force_param {
105 const char *name;
106 unsigned int cbl;
107 int spd_limit;
108 unsigned long xfer_mask;
109 unsigned int horkage_on;
110 unsigned int horkage_off;
111 unsigned int lflags;
112 };
113
114 struct ata_force_ent {
115 int port;
116 int device;
117 struct ata_force_param param;
118 };
119
120 static struct ata_force_ent *ata_force_tbl;
121 static int ata_force_tbl_size;
122
123 static char ata_force_param_buf[PAGE_SIZE] __initdata;
124 /* param_buf is thrown away after initialization, disallow read */
125 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
126 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127
128 static int atapi_enabled = 1;
129 module_param(atapi_enabled, int, 0444);
130 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131
132 static int atapi_dmadir = 0;
133 module_param(atapi_dmadir, int, 0444);
134 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135
136 int atapi_passthru16 = 1;
137 module_param(atapi_passthru16, int, 0444);
138 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139
140 int libata_fua = 0;
141 module_param_named(fua, libata_fua, int, 0444);
142 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143
144 static int ata_ignore_hpa;
145 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
146 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147
148 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
149 module_param_named(dma, libata_dma_mask, int, 0444);
150 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151
152 static int ata_probe_timeout;
153 module_param(ata_probe_timeout, int, 0444);
154 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155
156 int libata_noacpi = 0;
157 module_param_named(noacpi, libata_noacpi, int, 0444);
158 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159
160 int libata_allow_tpm = 0;
161 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
162 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163
164 static int atapi_an;
165 module_param(atapi_an, int, 0444);
166 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167
168 MODULE_AUTHOR("Jeff Garzik");
169 MODULE_DESCRIPTION("Library module for ATA devices");
170 MODULE_LICENSE("GPL");
171 MODULE_VERSION(DRV_VERSION);
172
173
174 static bool ata_sstatus_online(u32 sstatus)
175 {
176 return (sstatus & 0xf) == 0x3;
177 }
178
179 /**
180 * ata_link_next - link iteration helper
181 * @link: the previous link, NULL to start
182 * @ap: ATA port containing links to iterate
183 * @mode: iteration mode, one of ATA_LITER_*
184 *
185 * LOCKING:
186 * Host lock or EH context.
187 *
188 * RETURNS:
189 * Pointer to the next link.
190 */
191 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
192 enum ata_link_iter_mode mode)
193 {
194 BUG_ON(mode != ATA_LITER_EDGE &&
195 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
196
197 /* NULL link indicates start of iteration */
198 if (!link)
199 switch (mode) {
200 case ATA_LITER_EDGE:
201 case ATA_LITER_PMP_FIRST:
202 if (sata_pmp_attached(ap))
203 return ap->pmp_link;
204 /* fall through */
205 case ATA_LITER_HOST_FIRST:
206 return &ap->link;
207 }
208
209 /* we just iterated over the host link, what's next? */
210 if (link == &ap->link)
211 switch (mode) {
212 case ATA_LITER_HOST_FIRST:
213 if (sata_pmp_attached(ap))
214 return ap->pmp_link;
215 /* fall through */
216 case ATA_LITER_PMP_FIRST:
217 if (unlikely(ap->slave_link))
218 return ap->slave_link;
219 /* fall through */
220 case ATA_LITER_EDGE:
221 return NULL;
222 }
223
224 /* slave_link excludes PMP */
225 if (unlikely(link == ap->slave_link))
226 return NULL;
227
228 /* we were over a PMP link */
229 if (++link < ap->pmp_link + ap->nr_pmp_links)
230 return link;
231
232 if (mode == ATA_LITER_PMP_FIRST)
233 return &ap->link;
234
235 return NULL;
236 }
237
238 /**
239 * ata_dev_next - device iteration helper
240 * @dev: the previous device, NULL to start
241 * @link: ATA link containing devices to iterate
242 * @mode: iteration mode, one of ATA_DITER_*
243 *
244 * LOCKING:
245 * Host lock or EH context.
246 *
247 * RETURNS:
248 * Pointer to the next device.
249 */
250 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
251 enum ata_dev_iter_mode mode)
252 {
253 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
254 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
255
256 /* NULL dev indicates start of iteration */
257 if (!dev)
258 switch (mode) {
259 case ATA_DITER_ENABLED:
260 case ATA_DITER_ALL:
261 dev = link->device;
262 goto check;
263 case ATA_DITER_ENABLED_REVERSE:
264 case ATA_DITER_ALL_REVERSE:
265 dev = link->device + ata_link_max_devices(link) - 1;
266 goto check;
267 }
268
269 next:
270 /* move to the next one */
271 switch (mode) {
272 case ATA_DITER_ENABLED:
273 case ATA_DITER_ALL:
274 if (++dev < link->device + ata_link_max_devices(link))
275 goto check;
276 return NULL;
277 case ATA_DITER_ENABLED_REVERSE:
278 case ATA_DITER_ALL_REVERSE:
279 if (--dev >= link->device)
280 goto check;
281 return NULL;
282 }
283
284 check:
285 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
286 !ata_dev_enabled(dev))
287 goto next;
288 return dev;
289 }
290
291 /**
292 * ata_dev_phys_link - find physical link for a device
293 * @dev: ATA device to look up physical link for
294 *
295 * Look up physical link which @dev is attached to. Note that
296 * this is different from @dev->link only when @dev is on slave
297 * link. For all other cases, it's the same as @dev->link.
298 *
299 * LOCKING:
300 * Don't care.
301 *
302 * RETURNS:
303 * Pointer to the found physical link.
304 */
305 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
306 {
307 struct ata_port *ap = dev->link->ap;
308
309 if (!ap->slave_link)
310 return dev->link;
311 if (!dev->devno)
312 return &ap->link;
313 return ap->slave_link;
314 }
315
316 /**
317 * ata_force_cbl - force cable type according to libata.force
318 * @ap: ATA port of interest
319 *
320 * Force cable type according to libata.force and whine about it.
321 * The last entry which has matching port number is used, so it
322 * can be specified as part of device force parameters. For
323 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
324 * same effect.
325 *
326 * LOCKING:
327 * EH context.
328 */
329 void ata_force_cbl(struct ata_port *ap)
330 {
331 int i;
332
333 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
334 const struct ata_force_ent *fe = &ata_force_tbl[i];
335
336 if (fe->port != -1 && fe->port != ap->print_id)
337 continue;
338
339 if (fe->param.cbl == ATA_CBL_NONE)
340 continue;
341
342 ap->cbl = fe->param.cbl;
343 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
344 return;
345 }
346 }
347
348 /**
349 * ata_force_link_limits - force link limits according to libata.force
350 * @link: ATA link of interest
351 *
352 * Force link flags and SATA spd limit according to libata.force
353 * and whine about it. When only the port part is specified
354 * (e.g. 1:), the limit applies to all links connected to both
355 * the host link and all fan-out ports connected via PMP. If the
356 * device part is specified as 0 (e.g. 1.00:), it specifies the
357 * first fan-out link not the host link. Device number 15 always
358 * points to the host link whether PMP is attached or not. If the
359 * controller has slave link, device number 16 points to it.
360 *
361 * LOCKING:
362 * EH context.
363 */
364 static void ata_force_link_limits(struct ata_link *link)
365 {
366 bool did_spd = false;
367 int linkno = link->pmp;
368 int i;
369
370 if (ata_is_host_link(link))
371 linkno += 15;
372
373 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 const struct ata_force_ent *fe = &ata_force_tbl[i];
375
376 if (fe->port != -1 && fe->port != link->ap->print_id)
377 continue;
378
379 if (fe->device != -1 && fe->device != linkno)
380 continue;
381
382 /* only honor the first spd limit */
383 if (!did_spd && fe->param.spd_limit) {
384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
386 fe->param.name);
387 did_spd = true;
388 }
389
390 /* let lflags stack */
391 if (fe->param.lflags) {
392 link->flags |= fe->param.lflags;
393 ata_link_notice(link,
394 "FORCE: link flag 0x%x forced -> 0x%x\n",
395 fe->param.lflags, link->flags);
396 }
397 }
398 }
399
400 /**
401 * ata_force_xfermask - force xfermask according to libata.force
402 * @dev: ATA device of interest
403 *
404 * Force xfer_mask according to libata.force and whine about it.
405 * For consistency with link selection, device number 15 selects
406 * the first device connected to the host link.
407 *
408 * LOCKING:
409 * EH context.
410 */
411 static void ata_force_xfermask(struct ata_device *dev)
412 {
413 int devno = dev->link->pmp + dev->devno;
414 int alt_devno = devno;
415 int i;
416
417 /* allow n.15/16 for devices attached to host port */
418 if (ata_is_host_link(dev->link))
419 alt_devno += 15;
420
421 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
422 const struct ata_force_ent *fe = &ata_force_tbl[i];
423 unsigned long pio_mask, mwdma_mask, udma_mask;
424
425 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
426 continue;
427
428 if (fe->device != -1 && fe->device != devno &&
429 fe->device != alt_devno)
430 continue;
431
432 if (!fe->param.xfer_mask)
433 continue;
434
435 ata_unpack_xfermask(fe->param.xfer_mask,
436 &pio_mask, &mwdma_mask, &udma_mask);
437 if (udma_mask)
438 dev->udma_mask = udma_mask;
439 else if (mwdma_mask) {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = mwdma_mask;
442 } else {
443 dev->udma_mask = 0;
444 dev->mwdma_mask = 0;
445 dev->pio_mask = pio_mask;
446 }
447
448 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
449 fe->param.name);
450 return;
451 }
452 }
453
454 /**
455 * ata_force_horkage - force horkage according to libata.force
456 * @dev: ATA device of interest
457 *
458 * Force horkage according to libata.force and whine about it.
459 * For consistency with link selection, device number 15 selects
460 * the first device connected to the host link.
461 *
462 * LOCKING:
463 * EH context.
464 */
465 static void ata_force_horkage(struct ata_device *dev)
466 {
467 int devno = dev->link->pmp + dev->devno;
468 int alt_devno = devno;
469 int i;
470
471 /* allow n.15/16 for devices attached to host port */
472 if (ata_is_host_link(dev->link))
473 alt_devno += 15;
474
475 for (i = 0; i < ata_force_tbl_size; i++) {
476 const struct ata_force_ent *fe = &ata_force_tbl[i];
477
478 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
479 continue;
480
481 if (fe->device != -1 && fe->device != devno &&
482 fe->device != alt_devno)
483 continue;
484
485 if (!(~dev->horkage & fe->param.horkage_on) &&
486 !(dev->horkage & fe->param.horkage_off))
487 continue;
488
489 dev->horkage |= fe->param.horkage_on;
490 dev->horkage &= ~fe->param.horkage_off;
491
492 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
493 fe->param.name);
494 }
495 }
496
497 /**
498 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
499 * @opcode: SCSI opcode
500 *
501 * Determine ATAPI command type from @opcode.
502 *
503 * LOCKING:
504 * None.
505 *
506 * RETURNS:
507 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
508 */
509 int atapi_cmd_type(u8 opcode)
510 {
511 switch (opcode) {
512 case GPCMD_READ_10:
513 case GPCMD_READ_12:
514 return ATAPI_READ;
515
516 case GPCMD_WRITE_10:
517 case GPCMD_WRITE_12:
518 case GPCMD_WRITE_AND_VERIFY_10:
519 return ATAPI_WRITE;
520
521 case GPCMD_READ_CD:
522 case GPCMD_READ_CD_MSF:
523 return ATAPI_READ_CD;
524
525 case ATA_16:
526 case ATA_12:
527 if (atapi_passthru16)
528 return ATAPI_PASS_THRU;
529 /* fall thru */
530 default:
531 return ATAPI_MISC;
532 }
533 }
534
535 /**
536 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
537 * @tf: Taskfile to convert
538 * @pmp: Port multiplier port
539 * @is_cmd: This FIS is for command
540 * @fis: Buffer into which data will output
541 *
542 * Converts a standard ATA taskfile to a Serial ATA
543 * FIS structure (Register - Host to Device).
544 *
545 * LOCKING:
546 * Inherited from caller.
547 */
548 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
549 {
550 fis[0] = 0x27; /* Register - Host to Device FIS */
551 fis[1] = pmp & 0xf; /* Port multiplier number*/
552 if (is_cmd)
553 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
554
555 fis[2] = tf->command;
556 fis[3] = tf->feature;
557
558 fis[4] = tf->lbal;
559 fis[5] = tf->lbam;
560 fis[6] = tf->lbah;
561 fis[7] = tf->device;
562
563 fis[8] = tf->hob_lbal;
564 fis[9] = tf->hob_lbam;
565 fis[10] = tf->hob_lbah;
566 fis[11] = tf->hob_feature;
567
568 fis[12] = tf->nsect;
569 fis[13] = tf->hob_nsect;
570 fis[14] = 0;
571 fis[15] = tf->ctl;
572
573 fis[16] = tf->auxiliary & 0xff;
574 fis[17] = (tf->auxiliary >> 8) & 0xff;
575 fis[18] = (tf->auxiliary >> 16) & 0xff;
576 fis[19] = (tf->auxiliary >> 24) & 0xff;
577 }
578
579 /**
580 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
581 * @fis: Buffer from which data will be input
582 * @tf: Taskfile to output
583 *
584 * Converts a serial ATA FIS structure to a standard ATA taskfile.
585 *
586 * LOCKING:
587 * Inherited from caller.
588 */
589
590 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
591 {
592 tf->command = fis[2]; /* status */
593 tf->feature = fis[3]; /* error */
594
595 tf->lbal = fis[4];
596 tf->lbam = fis[5];
597 tf->lbah = fis[6];
598 tf->device = fis[7];
599
600 tf->hob_lbal = fis[8];
601 tf->hob_lbam = fis[9];
602 tf->hob_lbah = fis[10];
603
604 tf->nsect = fis[12];
605 tf->hob_nsect = fis[13];
606 }
607
608 static const u8 ata_rw_cmds[] = {
609 /* pio multi */
610 ATA_CMD_READ_MULTI,
611 ATA_CMD_WRITE_MULTI,
612 ATA_CMD_READ_MULTI_EXT,
613 ATA_CMD_WRITE_MULTI_EXT,
614 0,
615 0,
616 0,
617 ATA_CMD_WRITE_MULTI_FUA_EXT,
618 /* pio */
619 ATA_CMD_PIO_READ,
620 ATA_CMD_PIO_WRITE,
621 ATA_CMD_PIO_READ_EXT,
622 ATA_CMD_PIO_WRITE_EXT,
623 0,
624 0,
625 0,
626 0,
627 /* dma */
628 ATA_CMD_READ,
629 ATA_CMD_WRITE,
630 ATA_CMD_READ_EXT,
631 ATA_CMD_WRITE_EXT,
632 0,
633 0,
634 0,
635 ATA_CMD_WRITE_FUA_EXT
636 };
637
638 /**
639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
640 * @tf: command to examine and configure
641 * @dev: device tf belongs to
642 *
643 * Examine the device configuration and tf->flags to calculate
644 * the proper read/write commands and protocol to use.
645 *
646 * LOCKING:
647 * caller.
648 */
649 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
650 {
651 u8 cmd;
652
653 int index, fua, lba48, write;
654
655 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
656 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
657 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
658
659 if (dev->flags & ATA_DFLAG_PIO) {
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
663 /* Unable to use DMA due to host limitation */
664 tf->protocol = ATA_PROT_PIO;
665 index = dev->multi_count ? 0 : 8;
666 } else {
667 tf->protocol = ATA_PROT_DMA;
668 index = 16;
669 }
670
671 cmd = ata_rw_cmds[index + fua + lba48 + write];
672 if (cmd) {
673 tf->command = cmd;
674 return 0;
675 }
676 return -1;
677 }
678
679 /**
680 * ata_tf_read_block - Read block address from ATA taskfile
681 * @tf: ATA taskfile of interest
682 * @dev: ATA device @tf belongs to
683 *
684 * LOCKING:
685 * None.
686 *
687 * Read block address from @tf. This function can handle all
688 * three address formats - LBA, LBA48 and CHS. tf->protocol and
689 * flags select the address format to use.
690 *
691 * RETURNS:
692 * Block address read from @tf.
693 */
694 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
695 {
696 u64 block = 0;
697
698 if (tf->flags & ATA_TFLAG_LBA) {
699 if (tf->flags & ATA_TFLAG_LBA48) {
700 block |= (u64)tf->hob_lbah << 40;
701 block |= (u64)tf->hob_lbam << 32;
702 block |= (u64)tf->hob_lbal << 24;
703 } else
704 block |= (tf->device & 0xf) << 24;
705
706 block |= tf->lbah << 16;
707 block |= tf->lbam << 8;
708 block |= tf->lbal;
709 } else {
710 u32 cyl, head, sect;
711
712 cyl = tf->lbam | (tf->lbah << 8);
713 head = tf->device & 0xf;
714 sect = tf->lbal;
715
716 if (!sect) {
717 ata_dev_warn(dev,
718 "device reported invalid CHS sector 0\n");
719 sect = 1; /* oh well */
720 }
721
722 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
723 }
724
725 return block;
726 }
727
728 /**
729 * ata_build_rw_tf - Build ATA taskfile for given read/write request
730 * @tf: Target ATA taskfile
731 * @dev: ATA device @tf belongs to
732 * @block: Block address
733 * @n_block: Number of blocks
734 * @tf_flags: RW/FUA etc...
735 * @tag: tag
736 *
737 * LOCKING:
738 * None.
739 *
740 * Build ATA taskfile @tf for read/write request described by
741 * @block, @n_block, @tf_flags and @tag on @dev.
742 *
743 * RETURNS:
744 *
745 * 0 on success, -ERANGE if the request is too large for @dev,
746 * -EINVAL if the request is invalid.
747 */
748 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
749 u64 block, u32 n_block, unsigned int tf_flags,
750 unsigned int tag)
751 {
752 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
753 tf->flags |= tf_flags;
754
755 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
756 /* yay, NCQ */
757 if (!lba_48_ok(block, n_block))
758 return -ERANGE;
759
760 tf->protocol = ATA_PROT_NCQ;
761 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
762
763 if (tf->flags & ATA_TFLAG_WRITE)
764 tf->command = ATA_CMD_FPDMA_WRITE;
765 else
766 tf->command = ATA_CMD_FPDMA_READ;
767
768 tf->nsect = tag << 3;
769 tf->hob_feature = (n_block >> 8) & 0xff;
770 tf->feature = n_block & 0xff;
771
772 tf->hob_lbah = (block >> 40) & 0xff;
773 tf->hob_lbam = (block >> 32) & 0xff;
774 tf->hob_lbal = (block >> 24) & 0xff;
775 tf->lbah = (block >> 16) & 0xff;
776 tf->lbam = (block >> 8) & 0xff;
777 tf->lbal = block & 0xff;
778
779 tf->device = ATA_LBA;
780 if (tf->flags & ATA_TFLAG_FUA)
781 tf->device |= 1 << 7;
782 } else if (dev->flags & ATA_DFLAG_LBA) {
783 tf->flags |= ATA_TFLAG_LBA;
784
785 if (lba_28_ok(block, n_block)) {
786 /* use LBA28 */
787 tf->device |= (block >> 24) & 0xf;
788 } else if (lba_48_ok(block, n_block)) {
789 if (!(dev->flags & ATA_DFLAG_LBA48))
790 return -ERANGE;
791
792 /* use LBA48 */
793 tf->flags |= ATA_TFLAG_LBA48;
794
795 tf->hob_nsect = (n_block >> 8) & 0xff;
796
797 tf->hob_lbah = (block >> 40) & 0xff;
798 tf->hob_lbam = (block >> 32) & 0xff;
799 tf->hob_lbal = (block >> 24) & 0xff;
800 } else
801 /* request too large even for LBA48 */
802 return -ERANGE;
803
804 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
805 return -EINVAL;
806
807 tf->nsect = n_block & 0xff;
808
809 tf->lbah = (block >> 16) & 0xff;
810 tf->lbam = (block >> 8) & 0xff;
811 tf->lbal = block & 0xff;
812
813 tf->device |= ATA_LBA;
814 } else {
815 /* CHS */
816 u32 sect, head, cyl, track;
817
818 /* The request -may- be too large for CHS addressing. */
819 if (!lba_28_ok(block, n_block))
820 return -ERANGE;
821
822 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
823 return -EINVAL;
824
825 /* Convert LBA to CHS */
826 track = (u32)block / dev->sectors;
827 cyl = track / dev->heads;
828 head = track % dev->heads;
829 sect = (u32)block % dev->sectors + 1;
830
831 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
832 (u32)block, track, cyl, head, sect);
833
834 /* Check whether the converted CHS can fit.
835 Cylinder: 0-65535
836 Head: 0-15
837 Sector: 1-255*/
838 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
839 return -ERANGE;
840
841 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
842 tf->lbal = sect;
843 tf->lbam = cyl;
844 tf->lbah = cyl >> 8;
845 tf->device |= head;
846 }
847
848 return 0;
849 }
850
851 /**
852 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
853 * @pio_mask: pio_mask
854 * @mwdma_mask: mwdma_mask
855 * @udma_mask: udma_mask
856 *
857 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
858 * unsigned int xfer_mask.
859 *
860 * LOCKING:
861 * None.
862 *
863 * RETURNS:
864 * Packed xfer_mask.
865 */
866 unsigned long ata_pack_xfermask(unsigned long pio_mask,
867 unsigned long mwdma_mask,
868 unsigned long udma_mask)
869 {
870 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
871 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
872 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
873 }
874
875 /**
876 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
877 * @xfer_mask: xfer_mask to unpack
878 * @pio_mask: resulting pio_mask
879 * @mwdma_mask: resulting mwdma_mask
880 * @udma_mask: resulting udma_mask
881 *
882 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
883 * Any NULL distination masks will be ignored.
884 */
885 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
886 unsigned long *mwdma_mask, unsigned long *udma_mask)
887 {
888 if (pio_mask)
889 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
890 if (mwdma_mask)
891 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
892 if (udma_mask)
893 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
894 }
895
896 static const struct ata_xfer_ent {
897 int shift, bits;
898 u8 base;
899 } ata_xfer_tbl[] = {
900 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
901 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
902 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
903 { -1, },
904 };
905
906 /**
907 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
908 * @xfer_mask: xfer_mask of interest
909 *
910 * Return matching XFER_* value for @xfer_mask. Only the highest
911 * bit of @xfer_mask is considered.
912 *
913 * LOCKING:
914 * None.
915 *
916 * RETURNS:
917 * Matching XFER_* value, 0xff if no match found.
918 */
919 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
920 {
921 int highbit = fls(xfer_mask) - 1;
922 const struct ata_xfer_ent *ent;
923
924 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
925 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
926 return ent->base + highbit - ent->shift;
927 return 0xff;
928 }
929
930 /**
931 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
932 * @xfer_mode: XFER_* of interest
933 *
934 * Return matching xfer_mask for @xfer_mode.
935 *
936 * LOCKING:
937 * None.
938 *
939 * RETURNS:
940 * Matching xfer_mask, 0 if no match found.
941 */
942 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
943 {
944 const struct ata_xfer_ent *ent;
945
946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
949 & ~((1 << ent->shift) - 1);
950 return 0;
951 }
952
953 /**
954 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
955 * @xfer_mode: XFER_* of interest
956 *
957 * Return matching xfer_shift for @xfer_mode.
958 *
959 * LOCKING:
960 * None.
961 *
962 * RETURNS:
963 * Matching xfer_shift, -1 if no match found.
964 */
965 int ata_xfer_mode2shift(unsigned long xfer_mode)
966 {
967 const struct ata_xfer_ent *ent;
968
969 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
970 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
971 return ent->shift;
972 return -1;
973 }
974
975 /**
976 * ata_mode_string - convert xfer_mask to string
977 * @xfer_mask: mask of bits supported; only highest bit counts.
978 *
979 * Determine string which represents the highest speed
980 * (highest bit in @modemask).
981 *
982 * LOCKING:
983 * None.
984 *
985 * RETURNS:
986 * Constant C string representing highest speed listed in
987 * @mode_mask, or the constant C string "<n/a>".
988 */
989 const char *ata_mode_string(unsigned long xfer_mask)
990 {
991 static const char * const xfer_mode_str[] = {
992 "PIO0",
993 "PIO1",
994 "PIO2",
995 "PIO3",
996 "PIO4",
997 "PIO5",
998 "PIO6",
999 "MWDMA0",
1000 "MWDMA1",
1001 "MWDMA2",
1002 "MWDMA3",
1003 "MWDMA4",
1004 "UDMA/16",
1005 "UDMA/25",
1006 "UDMA/33",
1007 "UDMA/44",
1008 "UDMA/66",
1009 "UDMA/100",
1010 "UDMA/133",
1011 "UDMA7",
1012 };
1013 int highbit;
1014
1015 highbit = fls(xfer_mask) - 1;
1016 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1017 return xfer_mode_str[highbit];
1018 return "<n/a>";
1019 }
1020
1021 const char *sata_spd_string(unsigned int spd)
1022 {
1023 static const char * const spd_str[] = {
1024 "1.5 Gbps",
1025 "3.0 Gbps",
1026 "6.0 Gbps",
1027 };
1028
1029 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1030 return "<unknown>";
1031 return spd_str[spd - 1];
1032 }
1033
1034 /**
1035 * ata_dev_classify - determine device type based on ATA-spec signature
1036 * @tf: ATA taskfile register set for device to be identified
1037 *
1038 * Determine from taskfile register contents whether a device is
1039 * ATA or ATAPI, as per "Signature and persistence" section
1040 * of ATA/PI spec (volume 1, sect 5.14).
1041 *
1042 * LOCKING:
1043 * None.
1044 *
1045 * RETURNS:
1046 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1047 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1048 */
1049 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1050 {
1051 /* Apple's open source Darwin code hints that some devices only
1052 * put a proper signature into the LBA mid/high registers,
1053 * So, we only check those. It's sufficient for uniqueness.
1054 *
1055 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1056 * signatures for ATA and ATAPI devices attached on SerialATA,
1057 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1058 * spec has never mentioned about using different signatures
1059 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1060 * Multiplier specification began to use 0x69/0x96 to identify
1061 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1062 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1063 * 0x69/0x96 shortly and described them as reserved for
1064 * SerialATA.
1065 *
1066 * We follow the current spec and consider that 0x69/0x96
1067 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1068 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1069 * SEMB signature. This is worked around in
1070 * ata_dev_read_id().
1071 */
1072 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1073 DPRINTK("found ATA device by sig\n");
1074 return ATA_DEV_ATA;
1075 }
1076
1077 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1078 DPRINTK("found ATAPI device by sig\n");
1079 return ATA_DEV_ATAPI;
1080 }
1081
1082 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1083 DPRINTK("found PMP device by sig\n");
1084 return ATA_DEV_PMP;
1085 }
1086
1087 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1088 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1089 return ATA_DEV_SEMB;
1090 }
1091
1092 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1093 DPRINTK("found ZAC device by sig\n");
1094 return ATA_DEV_ZAC;
1095 }
1096
1097 DPRINTK("unknown device\n");
1098 return ATA_DEV_UNKNOWN;
1099 }
1100
1101 /**
1102 * ata_id_string - Convert IDENTIFY DEVICE page into string
1103 * @id: IDENTIFY DEVICE results we will examine
1104 * @s: string into which data is output
1105 * @ofs: offset into identify device page
1106 * @len: length of string to return. must be an even number.
1107 *
1108 * The strings in the IDENTIFY DEVICE page are broken up into
1109 * 16-bit chunks. Run through the string, and output each
1110 * 8-bit chunk linearly, regardless of platform.
1111 *
1112 * LOCKING:
1113 * caller.
1114 */
1115
1116 void ata_id_string(const u16 *id, unsigned char *s,
1117 unsigned int ofs, unsigned int len)
1118 {
1119 unsigned int c;
1120
1121 BUG_ON(len & 1);
1122
1123 while (len > 0) {
1124 c = id[ofs] >> 8;
1125 *s = c;
1126 s++;
1127
1128 c = id[ofs] & 0xff;
1129 *s = c;
1130 s++;
1131
1132 ofs++;
1133 len -= 2;
1134 }
1135 }
1136
1137 /**
1138 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1139 * @id: IDENTIFY DEVICE results we will examine
1140 * @s: string into which data is output
1141 * @ofs: offset into identify device page
1142 * @len: length of string to return. must be an odd number.
1143 *
1144 * This function is identical to ata_id_string except that it
1145 * trims trailing spaces and terminates the resulting string with
1146 * null. @len must be actual maximum length (even number) + 1.
1147 *
1148 * LOCKING:
1149 * caller.
1150 */
1151 void ata_id_c_string(const u16 *id, unsigned char *s,
1152 unsigned int ofs, unsigned int len)
1153 {
1154 unsigned char *p;
1155
1156 ata_id_string(id, s, ofs, len - 1);
1157
1158 p = s + strnlen(s, len - 1);
1159 while (p > s && p[-1] == ' ')
1160 p--;
1161 *p = '\0';
1162 }
1163
1164 static u64 ata_id_n_sectors(const u16 *id)
1165 {
1166 if (ata_id_has_lba(id)) {
1167 if (ata_id_has_lba48(id))
1168 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1169 else
1170 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1171 } else {
1172 if (ata_id_current_chs_valid(id))
1173 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1174 id[ATA_ID_CUR_SECTORS];
1175 else
1176 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1177 id[ATA_ID_SECTORS];
1178 }
1179 }
1180
1181 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1182 {
1183 u64 sectors = 0;
1184
1185 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1186 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1187 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1188 sectors |= (tf->lbah & 0xff) << 16;
1189 sectors |= (tf->lbam & 0xff) << 8;
1190 sectors |= (tf->lbal & 0xff);
1191
1192 return sectors;
1193 }
1194
1195 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1196 {
1197 u64 sectors = 0;
1198
1199 sectors |= (tf->device & 0x0f) << 24;
1200 sectors |= (tf->lbah & 0xff) << 16;
1201 sectors |= (tf->lbam & 0xff) << 8;
1202 sectors |= (tf->lbal & 0xff);
1203
1204 return sectors;
1205 }
1206
1207 /**
1208 * ata_read_native_max_address - Read native max address
1209 * @dev: target device
1210 * @max_sectors: out parameter for the result native max address
1211 *
1212 * Perform an LBA48 or LBA28 native size query upon the device in
1213 * question.
1214 *
1215 * RETURNS:
1216 * 0 on success, -EACCES if command is aborted by the drive.
1217 * -EIO on other errors.
1218 */
1219 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1220 {
1221 unsigned int err_mask;
1222 struct ata_taskfile tf;
1223 int lba48 = ata_id_has_lba48(dev->id);
1224
1225 ata_tf_init(dev, &tf);
1226
1227 /* always clear all address registers */
1228 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1229
1230 if (lba48) {
1231 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1232 tf.flags |= ATA_TFLAG_LBA48;
1233 } else
1234 tf.command = ATA_CMD_READ_NATIVE_MAX;
1235
1236 tf.protocol |= ATA_PROT_NODATA;
1237 tf.device |= ATA_LBA;
1238
1239 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1240 if (err_mask) {
1241 ata_dev_warn(dev,
1242 "failed to read native max address (err_mask=0x%x)\n",
1243 err_mask);
1244 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1245 return -EACCES;
1246 return -EIO;
1247 }
1248
1249 if (lba48)
1250 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1251 else
1252 *max_sectors = ata_tf_to_lba(&tf) + 1;
1253 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1254 (*max_sectors)--;
1255 return 0;
1256 }
1257
1258 /**
1259 * ata_set_max_sectors - Set max sectors
1260 * @dev: target device
1261 * @new_sectors: new max sectors value to set for the device
1262 *
1263 * Set max sectors of @dev to @new_sectors.
1264 *
1265 * RETURNS:
1266 * 0 on success, -EACCES if command is aborted or denied (due to
1267 * previous non-volatile SET_MAX) by the drive. -EIO on other
1268 * errors.
1269 */
1270 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1271 {
1272 unsigned int err_mask;
1273 struct ata_taskfile tf;
1274 int lba48 = ata_id_has_lba48(dev->id);
1275
1276 new_sectors--;
1277
1278 ata_tf_init(dev, &tf);
1279
1280 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1281
1282 if (lba48) {
1283 tf.command = ATA_CMD_SET_MAX_EXT;
1284 tf.flags |= ATA_TFLAG_LBA48;
1285
1286 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1287 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1288 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1289 } else {
1290 tf.command = ATA_CMD_SET_MAX;
1291
1292 tf.device |= (new_sectors >> 24) & 0xf;
1293 }
1294
1295 tf.protocol |= ATA_PROT_NODATA;
1296 tf.device |= ATA_LBA;
1297
1298 tf.lbal = (new_sectors >> 0) & 0xff;
1299 tf.lbam = (new_sectors >> 8) & 0xff;
1300 tf.lbah = (new_sectors >> 16) & 0xff;
1301
1302 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1303 if (err_mask) {
1304 ata_dev_warn(dev,
1305 "failed to set max address (err_mask=0x%x)\n",
1306 err_mask);
1307 if (err_mask == AC_ERR_DEV &&
1308 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1309 return -EACCES;
1310 return -EIO;
1311 }
1312
1313 return 0;
1314 }
1315
1316 /**
1317 * ata_hpa_resize - Resize a device with an HPA set
1318 * @dev: Device to resize
1319 *
1320 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1321 * it if required to the full size of the media. The caller must check
1322 * the drive has the HPA feature set enabled.
1323 *
1324 * RETURNS:
1325 * 0 on success, -errno on failure.
1326 */
1327 static int ata_hpa_resize(struct ata_device *dev)
1328 {
1329 struct ata_eh_context *ehc = &dev->link->eh_context;
1330 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1331 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1332 u64 sectors = ata_id_n_sectors(dev->id);
1333 u64 native_sectors;
1334 int rc;
1335
1336 /* do we need to do it? */
1337 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1338 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1339 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1340 return 0;
1341
1342 /* read native max address */
1343 rc = ata_read_native_max_address(dev, &native_sectors);
1344 if (rc) {
1345 /* If device aborted the command or HPA isn't going to
1346 * be unlocked, skip HPA resizing.
1347 */
1348 if (rc == -EACCES || !unlock_hpa) {
1349 ata_dev_warn(dev,
1350 "HPA support seems broken, skipping HPA handling\n");
1351 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1352
1353 /* we can continue if device aborted the command */
1354 if (rc == -EACCES)
1355 rc = 0;
1356 }
1357
1358 return rc;
1359 }
1360 dev->n_native_sectors = native_sectors;
1361
1362 /* nothing to do? */
1363 if (native_sectors <= sectors || !unlock_hpa) {
1364 if (!print_info || native_sectors == sectors)
1365 return 0;
1366
1367 if (native_sectors > sectors)
1368 ata_dev_info(dev,
1369 "HPA detected: current %llu, native %llu\n",
1370 (unsigned long long)sectors,
1371 (unsigned long long)native_sectors);
1372 else if (native_sectors < sectors)
1373 ata_dev_warn(dev,
1374 "native sectors (%llu) is smaller than sectors (%llu)\n",
1375 (unsigned long long)native_sectors,
1376 (unsigned long long)sectors);
1377 return 0;
1378 }
1379
1380 /* let's unlock HPA */
1381 rc = ata_set_max_sectors(dev, native_sectors);
1382 if (rc == -EACCES) {
1383 /* if device aborted the command, skip HPA resizing */
1384 ata_dev_warn(dev,
1385 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1386 (unsigned long long)sectors,
1387 (unsigned long long)native_sectors);
1388 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1389 return 0;
1390 } else if (rc)
1391 return rc;
1392
1393 /* re-read IDENTIFY data */
1394 rc = ata_dev_reread_id(dev, 0);
1395 if (rc) {
1396 ata_dev_err(dev,
1397 "failed to re-read IDENTIFY data after HPA resizing\n");
1398 return rc;
1399 }
1400
1401 if (print_info) {
1402 u64 new_sectors = ata_id_n_sectors(dev->id);
1403 ata_dev_info(dev,
1404 "HPA unlocked: %llu -> %llu, native %llu\n",
1405 (unsigned long long)sectors,
1406 (unsigned long long)new_sectors,
1407 (unsigned long long)native_sectors);
1408 }
1409
1410 return 0;
1411 }
1412
1413 /**
1414 * ata_dump_id - IDENTIFY DEVICE info debugging output
1415 * @id: IDENTIFY DEVICE page to dump
1416 *
1417 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1418 * page.
1419 *
1420 * LOCKING:
1421 * caller.
1422 */
1423
1424 static inline void ata_dump_id(const u16 *id)
1425 {
1426 DPRINTK("49==0x%04x "
1427 "53==0x%04x "
1428 "63==0x%04x "
1429 "64==0x%04x "
1430 "75==0x%04x \n",
1431 id[49],
1432 id[53],
1433 id[63],
1434 id[64],
1435 id[75]);
1436 DPRINTK("80==0x%04x "
1437 "81==0x%04x "
1438 "82==0x%04x "
1439 "83==0x%04x "
1440 "84==0x%04x \n",
1441 id[80],
1442 id[81],
1443 id[82],
1444 id[83],
1445 id[84]);
1446 DPRINTK("88==0x%04x "
1447 "93==0x%04x\n",
1448 id[88],
1449 id[93]);
1450 }
1451
1452 /**
1453 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1454 * @id: IDENTIFY data to compute xfer mask from
1455 *
1456 * Compute the xfermask for this device. This is not as trivial
1457 * as it seems if we must consider early devices correctly.
1458 *
1459 * FIXME: pre IDE drive timing (do we care ?).
1460 *
1461 * LOCKING:
1462 * None.
1463 *
1464 * RETURNS:
1465 * Computed xfermask
1466 */
1467 unsigned long ata_id_xfermask(const u16 *id)
1468 {
1469 unsigned long pio_mask, mwdma_mask, udma_mask;
1470
1471 /* Usual case. Word 53 indicates word 64 is valid */
1472 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1473 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1474 pio_mask <<= 3;
1475 pio_mask |= 0x7;
1476 } else {
1477 /* If word 64 isn't valid then Word 51 high byte holds
1478 * the PIO timing number for the maximum. Turn it into
1479 * a mask.
1480 */
1481 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1482 if (mode < 5) /* Valid PIO range */
1483 pio_mask = (2 << mode) - 1;
1484 else
1485 pio_mask = 1;
1486
1487 /* But wait.. there's more. Design your standards by
1488 * committee and you too can get a free iordy field to
1489 * process. However its the speeds not the modes that
1490 * are supported... Note drivers using the timing API
1491 * will get this right anyway
1492 */
1493 }
1494
1495 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1496
1497 if (ata_id_is_cfa(id)) {
1498 /*
1499 * Process compact flash extended modes
1500 */
1501 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1502 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1503
1504 if (pio)
1505 pio_mask |= (1 << 5);
1506 if (pio > 1)
1507 pio_mask |= (1 << 6);
1508 if (dma)
1509 mwdma_mask |= (1 << 3);
1510 if (dma > 1)
1511 mwdma_mask |= (1 << 4);
1512 }
1513
1514 udma_mask = 0;
1515 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1516 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1517
1518 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1519 }
1520
1521 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1522 {
1523 struct completion *waiting = qc->private_data;
1524
1525 complete(waiting);
1526 }
1527
1528 /**
1529 * ata_exec_internal_sg - execute libata internal command
1530 * @dev: Device to which the command is sent
1531 * @tf: Taskfile registers for the command and the result
1532 * @cdb: CDB for packet command
1533 * @dma_dir: Data transfer direction of the command
1534 * @sgl: sg list for the data buffer of the command
1535 * @n_elem: Number of sg entries
1536 * @timeout: Timeout in msecs (0 for default)
1537 *
1538 * Executes libata internal command with timeout. @tf contains
1539 * command on entry and result on return. Timeout and error
1540 * conditions are reported via return value. No recovery action
1541 * is taken after a command times out. It's caller's duty to
1542 * clean up after timeout.
1543 *
1544 * LOCKING:
1545 * None. Should be called with kernel context, might sleep.
1546 *
1547 * RETURNS:
1548 * Zero on success, AC_ERR_* mask on failure
1549 */
1550 unsigned ata_exec_internal_sg(struct ata_device *dev,
1551 struct ata_taskfile *tf, const u8 *cdb,
1552 int dma_dir, struct scatterlist *sgl,
1553 unsigned int n_elem, unsigned long timeout)
1554 {
1555 struct ata_link *link = dev->link;
1556 struct ata_port *ap = link->ap;
1557 u8 command = tf->command;
1558 int auto_timeout = 0;
1559 struct ata_queued_cmd *qc;
1560 unsigned int tag, preempted_tag;
1561 u32 preempted_sactive, preempted_qc_active;
1562 int preempted_nr_active_links;
1563 DECLARE_COMPLETION_ONSTACK(wait);
1564 unsigned long flags;
1565 unsigned int err_mask;
1566 int rc;
1567
1568 spin_lock_irqsave(ap->lock, flags);
1569
1570 /* no internal command while frozen */
1571 if (ap->pflags & ATA_PFLAG_FROZEN) {
1572 spin_unlock_irqrestore(ap->lock, flags);
1573 return AC_ERR_SYSTEM;
1574 }
1575
1576 /* initialize internal qc */
1577
1578 /* XXX: Tag 0 is used for drivers with legacy EH as some
1579 * drivers choke if any other tag is given. This breaks
1580 * ata_tag_internal() test for those drivers. Don't use new
1581 * EH stuff without converting to it.
1582 */
1583 if (ap->ops->error_handler)
1584 tag = ATA_TAG_INTERNAL;
1585 else
1586 tag = 0;
1587
1588 qc = __ata_qc_from_tag(ap, tag);
1589
1590 qc->tag = tag;
1591 qc->scsicmd = NULL;
1592 qc->ap = ap;
1593 qc->dev = dev;
1594 ata_qc_reinit(qc);
1595
1596 preempted_tag = link->active_tag;
1597 preempted_sactive = link->sactive;
1598 preempted_qc_active = ap->qc_active;
1599 preempted_nr_active_links = ap->nr_active_links;
1600 link->active_tag = ATA_TAG_POISON;
1601 link->sactive = 0;
1602 ap->qc_active = 0;
1603 ap->nr_active_links = 0;
1604
1605 /* prepare & issue qc */
1606 qc->tf = *tf;
1607 if (cdb)
1608 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1609
1610 /* some SATA bridges need us to indicate data xfer direction */
1611 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1612 dma_dir == DMA_FROM_DEVICE)
1613 qc->tf.feature |= ATAPI_DMADIR;
1614
1615 qc->flags |= ATA_QCFLAG_RESULT_TF;
1616 qc->dma_dir = dma_dir;
1617 if (dma_dir != DMA_NONE) {
1618 unsigned int i, buflen = 0;
1619 struct scatterlist *sg;
1620
1621 for_each_sg(sgl, sg, n_elem, i)
1622 buflen += sg->length;
1623
1624 ata_sg_init(qc, sgl, n_elem);
1625 qc->nbytes = buflen;
1626 }
1627
1628 qc->private_data = &wait;
1629 qc->complete_fn = ata_qc_complete_internal;
1630
1631 ata_qc_issue(qc);
1632
1633 spin_unlock_irqrestore(ap->lock, flags);
1634
1635 if (!timeout) {
1636 if (ata_probe_timeout)
1637 timeout = ata_probe_timeout * 1000;
1638 else {
1639 timeout = ata_internal_cmd_timeout(dev, command);
1640 auto_timeout = 1;
1641 }
1642 }
1643
1644 if (ap->ops->error_handler)
1645 ata_eh_release(ap);
1646
1647 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1648
1649 if (ap->ops->error_handler)
1650 ata_eh_acquire(ap);
1651
1652 ata_sff_flush_pio_task(ap);
1653
1654 if (!rc) {
1655 spin_lock_irqsave(ap->lock, flags);
1656
1657 /* We're racing with irq here. If we lose, the
1658 * following test prevents us from completing the qc
1659 * twice. If we win, the port is frozen and will be
1660 * cleaned up by ->post_internal_cmd().
1661 */
1662 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1663 qc->err_mask |= AC_ERR_TIMEOUT;
1664
1665 if (ap->ops->error_handler)
1666 ata_port_freeze(ap);
1667 else
1668 ata_qc_complete(qc);
1669
1670 if (ata_msg_warn(ap))
1671 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1672 command);
1673 }
1674
1675 spin_unlock_irqrestore(ap->lock, flags);
1676 }
1677
1678 /* do post_internal_cmd */
1679 if (ap->ops->post_internal_cmd)
1680 ap->ops->post_internal_cmd(qc);
1681
1682 /* perform minimal error analysis */
1683 if (qc->flags & ATA_QCFLAG_FAILED) {
1684 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1685 qc->err_mask |= AC_ERR_DEV;
1686
1687 if (!qc->err_mask)
1688 qc->err_mask |= AC_ERR_OTHER;
1689
1690 if (qc->err_mask & ~AC_ERR_OTHER)
1691 qc->err_mask &= ~AC_ERR_OTHER;
1692 }
1693
1694 /* finish up */
1695 spin_lock_irqsave(ap->lock, flags);
1696
1697 *tf = qc->result_tf;
1698 err_mask = qc->err_mask;
1699
1700 ata_qc_free(qc);
1701 link->active_tag = preempted_tag;
1702 link->sactive = preempted_sactive;
1703 ap->qc_active = preempted_qc_active;
1704 ap->nr_active_links = preempted_nr_active_links;
1705
1706 spin_unlock_irqrestore(ap->lock, flags);
1707
1708 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1709 ata_internal_cmd_timed_out(dev, command);
1710
1711 return err_mask;
1712 }
1713
1714 /**
1715 * ata_exec_internal - execute libata internal command
1716 * @dev: Device to which the command is sent
1717 * @tf: Taskfile registers for the command and the result
1718 * @cdb: CDB for packet command
1719 * @dma_dir: Data transfer direction of the command
1720 * @buf: Data buffer of the command
1721 * @buflen: Length of data buffer
1722 * @timeout: Timeout in msecs (0 for default)
1723 *
1724 * Wrapper around ata_exec_internal_sg() which takes simple
1725 * buffer instead of sg list.
1726 *
1727 * LOCKING:
1728 * None. Should be called with kernel context, might sleep.
1729 *
1730 * RETURNS:
1731 * Zero on success, AC_ERR_* mask on failure
1732 */
1733 unsigned ata_exec_internal(struct ata_device *dev,
1734 struct ata_taskfile *tf, const u8 *cdb,
1735 int dma_dir, void *buf, unsigned int buflen,
1736 unsigned long timeout)
1737 {
1738 struct scatterlist *psg = NULL, sg;
1739 unsigned int n_elem = 0;
1740
1741 if (dma_dir != DMA_NONE) {
1742 WARN_ON(!buf);
1743 sg_init_one(&sg, buf, buflen);
1744 psg = &sg;
1745 n_elem++;
1746 }
1747
1748 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1749 timeout);
1750 }
1751
1752 /**
1753 * ata_pio_need_iordy - check if iordy needed
1754 * @adev: ATA device
1755 *
1756 * Check if the current speed of the device requires IORDY. Used
1757 * by various controllers for chip configuration.
1758 */
1759 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1760 {
1761 /* Don't set IORDY if we're preparing for reset. IORDY may
1762 * lead to controller lock up on certain controllers if the
1763 * port is not occupied. See bko#11703 for details.
1764 */
1765 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1766 return 0;
1767 /* Controller doesn't support IORDY. Probably a pointless
1768 * check as the caller should know this.
1769 */
1770 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1771 return 0;
1772 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1773 if (ata_id_is_cfa(adev->id)
1774 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1775 return 0;
1776 /* PIO3 and higher it is mandatory */
1777 if (adev->pio_mode > XFER_PIO_2)
1778 return 1;
1779 /* We turn it on when possible */
1780 if (ata_id_has_iordy(adev->id))
1781 return 1;
1782 return 0;
1783 }
1784
1785 /**
1786 * ata_pio_mask_no_iordy - Return the non IORDY mask
1787 * @adev: ATA device
1788 *
1789 * Compute the highest mode possible if we are not using iordy. Return
1790 * -1 if no iordy mode is available.
1791 */
1792 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1793 {
1794 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1795 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1796 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1797 /* Is the speed faster than the drive allows non IORDY ? */
1798 if (pio) {
1799 /* This is cycle times not frequency - watch the logic! */
1800 if (pio > 240) /* PIO2 is 240nS per cycle */
1801 return 3 << ATA_SHIFT_PIO;
1802 return 7 << ATA_SHIFT_PIO;
1803 }
1804 }
1805 return 3 << ATA_SHIFT_PIO;
1806 }
1807
1808 /**
1809 * ata_do_dev_read_id - default ID read method
1810 * @dev: device
1811 * @tf: proposed taskfile
1812 * @id: data buffer
1813 *
1814 * Issue the identify taskfile and hand back the buffer containing
1815 * identify data. For some RAID controllers and for pre ATA devices
1816 * this function is wrapped or replaced by the driver
1817 */
1818 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1819 struct ata_taskfile *tf, u16 *id)
1820 {
1821 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1822 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1823 }
1824
1825 /**
1826 * ata_dev_read_id - Read ID data from the specified device
1827 * @dev: target device
1828 * @p_class: pointer to class of the target device (may be changed)
1829 * @flags: ATA_READID_* flags
1830 * @id: buffer to read IDENTIFY data into
1831 *
1832 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1833 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1834 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1835 * for pre-ATA4 drives.
1836 *
1837 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1838 * now we abort if we hit that case.
1839 *
1840 * LOCKING:
1841 * Kernel thread context (may sleep)
1842 *
1843 * RETURNS:
1844 * 0 on success, -errno otherwise.
1845 */
1846 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1847 unsigned int flags, u16 *id)
1848 {
1849 struct ata_port *ap = dev->link->ap;
1850 unsigned int class = *p_class;
1851 struct ata_taskfile tf;
1852 unsigned int err_mask = 0;
1853 const char *reason;
1854 bool is_semb = class == ATA_DEV_SEMB;
1855 int may_fallback = 1, tried_spinup = 0;
1856 int rc;
1857
1858 if (ata_msg_ctl(ap))
1859 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1860
1861 retry:
1862 ata_tf_init(dev, &tf);
1863
1864 switch (class) {
1865 case ATA_DEV_SEMB:
1866 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1867 case ATA_DEV_ATA:
1868 case ATA_DEV_ZAC:
1869 tf.command = ATA_CMD_ID_ATA;
1870 break;
1871 case ATA_DEV_ATAPI:
1872 tf.command = ATA_CMD_ID_ATAPI;
1873 break;
1874 default:
1875 rc = -ENODEV;
1876 reason = "unsupported class";
1877 goto err_out;
1878 }
1879
1880 tf.protocol = ATA_PROT_PIO;
1881
1882 /* Some devices choke if TF registers contain garbage. Make
1883 * sure those are properly initialized.
1884 */
1885 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1886
1887 /* Device presence detection is unreliable on some
1888 * controllers. Always poll IDENTIFY if available.
1889 */
1890 tf.flags |= ATA_TFLAG_POLLING;
1891
1892 if (ap->ops->read_id)
1893 err_mask = ap->ops->read_id(dev, &tf, id);
1894 else
1895 err_mask = ata_do_dev_read_id(dev, &tf, id);
1896
1897 if (err_mask) {
1898 if (err_mask & AC_ERR_NODEV_HINT) {
1899 ata_dev_dbg(dev, "NODEV after polling detection\n");
1900 return -ENOENT;
1901 }
1902
1903 if (is_semb) {
1904 ata_dev_info(dev,
1905 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1906 /* SEMB is not supported yet */
1907 *p_class = ATA_DEV_SEMB_UNSUP;
1908 return 0;
1909 }
1910
1911 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1912 /* Device or controller might have reported
1913 * the wrong device class. Give a shot at the
1914 * other IDENTIFY if the current one is
1915 * aborted by the device.
1916 */
1917 if (may_fallback) {
1918 may_fallback = 0;
1919
1920 if (class == ATA_DEV_ATA)
1921 class = ATA_DEV_ATAPI;
1922 else
1923 class = ATA_DEV_ATA;
1924 goto retry;
1925 }
1926
1927 /* Control reaches here iff the device aborted
1928 * both flavors of IDENTIFYs which happens
1929 * sometimes with phantom devices.
1930 */
1931 ata_dev_dbg(dev,
1932 "both IDENTIFYs aborted, assuming NODEV\n");
1933 return -ENOENT;
1934 }
1935
1936 rc = -EIO;
1937 reason = "I/O error";
1938 goto err_out;
1939 }
1940
1941 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1942 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1943 "class=%d may_fallback=%d tried_spinup=%d\n",
1944 class, may_fallback, tried_spinup);
1945 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1946 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1947 }
1948
1949 /* Falling back doesn't make sense if ID data was read
1950 * successfully at least once.
1951 */
1952 may_fallback = 0;
1953
1954 swap_buf_le16(id, ATA_ID_WORDS);
1955
1956 /* sanity check */
1957 rc = -EINVAL;
1958 reason = "device reports invalid type";
1959
1960 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1961 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1962 goto err_out;
1963 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1964 ata_id_is_ata(id)) {
1965 ata_dev_dbg(dev,
1966 "host indicates ignore ATA devices, ignored\n");
1967 return -ENOENT;
1968 }
1969 } else {
1970 if (ata_id_is_ata(id))
1971 goto err_out;
1972 }
1973
1974 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1975 tried_spinup = 1;
1976 /*
1977 * Drive powered-up in standby mode, and requires a specific
1978 * SET_FEATURES spin-up subcommand before it will accept
1979 * anything other than the original IDENTIFY command.
1980 */
1981 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1982 if (err_mask && id[2] != 0x738c) {
1983 rc = -EIO;
1984 reason = "SPINUP failed";
1985 goto err_out;
1986 }
1987 /*
1988 * If the drive initially returned incomplete IDENTIFY info,
1989 * we now must reissue the IDENTIFY command.
1990 */
1991 if (id[2] == 0x37c8)
1992 goto retry;
1993 }
1994
1995 if ((flags & ATA_READID_POSTRESET) &&
1996 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1997 /*
1998 * The exact sequence expected by certain pre-ATA4 drives is:
1999 * SRST RESET
2000 * IDENTIFY (optional in early ATA)
2001 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2002 * anything else..
2003 * Some drives were very specific about that exact sequence.
2004 *
2005 * Note that ATA4 says lba is mandatory so the second check
2006 * should never trigger.
2007 */
2008 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2009 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2010 if (err_mask) {
2011 rc = -EIO;
2012 reason = "INIT_DEV_PARAMS failed";
2013 goto err_out;
2014 }
2015
2016 /* current CHS translation info (id[53-58]) might be
2017 * changed. reread the identify device info.
2018 */
2019 flags &= ~ATA_READID_POSTRESET;
2020 goto retry;
2021 }
2022 }
2023
2024 *p_class = class;
2025
2026 return 0;
2027
2028 err_out:
2029 if (ata_msg_warn(ap))
2030 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2031 reason, err_mask);
2032 return rc;
2033 }
2034
2035 static int ata_do_link_spd_horkage(struct ata_device *dev)
2036 {
2037 struct ata_link *plink = ata_dev_phys_link(dev);
2038 u32 target, target_limit;
2039
2040 if (!sata_scr_valid(plink))
2041 return 0;
2042
2043 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2044 target = 1;
2045 else
2046 return 0;
2047
2048 target_limit = (1 << target) - 1;
2049
2050 /* if already on stricter limit, no need to push further */
2051 if (plink->sata_spd_limit <= target_limit)
2052 return 0;
2053
2054 plink->sata_spd_limit = target_limit;
2055
2056 /* Request another EH round by returning -EAGAIN if link is
2057 * going faster than the target speed. Forward progress is
2058 * guaranteed by setting sata_spd_limit to target_limit above.
2059 */
2060 if (plink->sata_spd > target) {
2061 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2062 sata_spd_string(target));
2063 return -EAGAIN;
2064 }
2065 return 0;
2066 }
2067
2068 static inline u8 ata_dev_knobble(struct ata_device *dev)
2069 {
2070 struct ata_port *ap = dev->link->ap;
2071
2072 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2073 return 0;
2074
2075 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2076 }
2077
2078 static int ata_dev_config_ncq(struct ata_device *dev,
2079 char *desc, size_t desc_sz)
2080 {
2081 struct ata_port *ap = dev->link->ap;
2082 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2083 unsigned int err_mask;
2084 char *aa_desc = "";
2085
2086 if (!ata_id_has_ncq(dev->id)) {
2087 desc[0] = '\0';
2088 return 0;
2089 }
2090 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2091 snprintf(desc, desc_sz, "NCQ (not used)");
2092 return 0;
2093 }
2094 if (ap->flags & ATA_FLAG_NCQ) {
2095 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2096 dev->flags |= ATA_DFLAG_NCQ;
2097 }
2098
2099 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2100 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2101 ata_id_has_fpdma_aa(dev->id)) {
2102 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2103 SATA_FPDMA_AA);
2104 if (err_mask) {
2105 ata_dev_err(dev,
2106 "failed to enable AA (error_mask=0x%x)\n",
2107 err_mask);
2108 if (err_mask != AC_ERR_DEV) {
2109 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2110 return -EIO;
2111 }
2112 } else
2113 aa_desc = ", AA";
2114 }
2115
2116 if (hdepth >= ddepth)
2117 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2118 else
2119 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2120 ddepth, aa_desc);
2121
2122 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2123 ata_id_has_ncq_send_and_recv(dev->id)) {
2124 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2125 0, ap->sector_buf, 1);
2126 if (err_mask) {
2127 ata_dev_dbg(dev,
2128 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2129 err_mask);
2130 } else {
2131 u8 *cmds = dev->ncq_send_recv_cmds;
2132
2133 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2134 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2135
2136 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2137 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2138 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2139 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2140 }
2141 }
2142 }
2143
2144 return 0;
2145 }
2146
2147 /**
2148 * ata_dev_configure - Configure the specified ATA/ATAPI device
2149 * @dev: Target device to configure
2150 *
2151 * Configure @dev according to @dev->id. Generic and low-level
2152 * driver specific fixups are also applied.
2153 *
2154 * LOCKING:
2155 * Kernel thread context (may sleep)
2156 *
2157 * RETURNS:
2158 * 0 on success, -errno otherwise
2159 */
2160 int ata_dev_configure(struct ata_device *dev)
2161 {
2162 struct ata_port *ap = dev->link->ap;
2163 struct ata_eh_context *ehc = &dev->link->eh_context;
2164 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2165 const u16 *id = dev->id;
2166 unsigned long xfer_mask;
2167 unsigned int err_mask;
2168 char revbuf[7]; /* XYZ-99\0 */
2169 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2170 char modelbuf[ATA_ID_PROD_LEN+1];
2171 int rc;
2172
2173 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2174 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2175 return 0;
2176 }
2177
2178 if (ata_msg_probe(ap))
2179 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2180
2181 /* set horkage */
2182 dev->horkage |= ata_dev_blacklisted(dev);
2183 ata_force_horkage(dev);
2184
2185 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2186 ata_dev_info(dev, "unsupported device, disabling\n");
2187 ata_dev_disable(dev);
2188 return 0;
2189 }
2190
2191 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2192 dev->class == ATA_DEV_ATAPI) {
2193 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2194 atapi_enabled ? "not supported with this driver"
2195 : "disabled");
2196 ata_dev_disable(dev);
2197 return 0;
2198 }
2199
2200 rc = ata_do_link_spd_horkage(dev);
2201 if (rc)
2202 return rc;
2203
2204 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2205 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2206 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2207 dev->horkage |= ATA_HORKAGE_NOLPM;
2208
2209 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2210 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2211 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2212 }
2213
2214 /* let ACPI work its magic */
2215 rc = ata_acpi_on_devcfg(dev);
2216 if (rc)
2217 return rc;
2218
2219 /* massage HPA, do it early as it might change IDENTIFY data */
2220 rc = ata_hpa_resize(dev);
2221 if (rc)
2222 return rc;
2223
2224 /* print device capabilities */
2225 if (ata_msg_probe(ap))
2226 ata_dev_dbg(dev,
2227 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2228 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2229 __func__,
2230 id[49], id[82], id[83], id[84],
2231 id[85], id[86], id[87], id[88]);
2232
2233 /* initialize to-be-configured parameters */
2234 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2235 dev->max_sectors = 0;
2236 dev->cdb_len = 0;
2237 dev->n_sectors = 0;
2238 dev->cylinders = 0;
2239 dev->heads = 0;
2240 dev->sectors = 0;
2241 dev->multi_count = 0;
2242
2243 /*
2244 * common ATA, ATAPI feature tests
2245 */
2246
2247 /* find max transfer mode; for printk only */
2248 xfer_mask = ata_id_xfermask(id);
2249
2250 if (ata_msg_probe(ap))
2251 ata_dump_id(id);
2252
2253 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2254 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2255 sizeof(fwrevbuf));
2256
2257 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2258 sizeof(modelbuf));
2259
2260 /* ATA-specific feature tests */
2261 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2262 if (ata_id_is_cfa(id)) {
2263 /* CPRM may make this media unusable */
2264 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2265 ata_dev_warn(dev,
2266 "supports DRM functions and may not be fully accessible\n");
2267 snprintf(revbuf, 7, "CFA");
2268 } else {
2269 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2270 /* Warn the user if the device has TPM extensions */
2271 if (ata_id_has_tpm(id))
2272 ata_dev_warn(dev,
2273 "supports DRM functions and may not be fully accessible\n");
2274 }
2275
2276 dev->n_sectors = ata_id_n_sectors(id);
2277
2278 /* get current R/W Multiple count setting */
2279 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2280 unsigned int max = dev->id[47] & 0xff;
2281 unsigned int cnt = dev->id[59] & 0xff;
2282 /* only recognize/allow powers of two here */
2283 if (is_power_of_2(max) && is_power_of_2(cnt))
2284 if (cnt <= max)
2285 dev->multi_count = cnt;
2286 }
2287
2288 if (ata_id_has_lba(id)) {
2289 const char *lba_desc;
2290 char ncq_desc[24];
2291
2292 lba_desc = "LBA";
2293 dev->flags |= ATA_DFLAG_LBA;
2294 if (ata_id_has_lba48(id)) {
2295 dev->flags |= ATA_DFLAG_LBA48;
2296 lba_desc = "LBA48";
2297
2298 if (dev->n_sectors >= (1UL << 28) &&
2299 ata_id_has_flush_ext(id))
2300 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2301 }
2302
2303 /* config NCQ */
2304 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2305 if (rc)
2306 return rc;
2307
2308 /* print device info to dmesg */
2309 if (ata_msg_drv(ap) && print_info) {
2310 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2311 revbuf, modelbuf, fwrevbuf,
2312 ata_mode_string(xfer_mask));
2313 ata_dev_info(dev,
2314 "%llu sectors, multi %u: %s %s\n",
2315 (unsigned long long)dev->n_sectors,
2316 dev->multi_count, lba_desc, ncq_desc);
2317 }
2318 } else {
2319 /* CHS */
2320
2321 /* Default translation */
2322 dev->cylinders = id[1];
2323 dev->heads = id[3];
2324 dev->sectors = id[6];
2325
2326 if (ata_id_current_chs_valid(id)) {
2327 /* Current CHS translation is valid. */
2328 dev->cylinders = id[54];
2329 dev->heads = id[55];
2330 dev->sectors = id[56];
2331 }
2332
2333 /* print device info to dmesg */
2334 if (ata_msg_drv(ap) && print_info) {
2335 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2336 revbuf, modelbuf, fwrevbuf,
2337 ata_mode_string(xfer_mask));
2338 ata_dev_info(dev,
2339 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2340 (unsigned long long)dev->n_sectors,
2341 dev->multi_count, dev->cylinders,
2342 dev->heads, dev->sectors);
2343 }
2344 }
2345
2346 /* Check and mark DevSlp capability. Get DevSlp timing variables
2347 * from SATA Settings page of Identify Device Data Log.
2348 */
2349 if (ata_id_has_devslp(dev->id)) {
2350 u8 *sata_setting = ap->sector_buf;
2351 int i, j;
2352
2353 dev->flags |= ATA_DFLAG_DEVSLP;
2354 err_mask = ata_read_log_page(dev,
2355 ATA_LOG_SATA_ID_DEV_DATA,
2356 ATA_LOG_SATA_SETTINGS,
2357 sata_setting,
2358 1);
2359 if (err_mask)
2360 ata_dev_dbg(dev,
2361 "failed to get Identify Device Data, Emask 0x%x\n",
2362 err_mask);
2363 else
2364 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2365 j = ATA_LOG_DEVSLP_OFFSET + i;
2366 dev->devslp_timing[i] = sata_setting[j];
2367 }
2368 }
2369
2370 dev->cdb_len = 16;
2371 }
2372
2373 /* ATAPI-specific feature tests */
2374 else if (dev->class == ATA_DEV_ATAPI) {
2375 const char *cdb_intr_string = "";
2376 const char *atapi_an_string = "";
2377 const char *dma_dir_string = "";
2378 u32 sntf;
2379
2380 rc = atapi_cdb_len(id);
2381 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2382 if (ata_msg_warn(ap))
2383 ata_dev_warn(dev, "unsupported CDB len\n");
2384 rc = -EINVAL;
2385 goto err_out_nosup;
2386 }
2387 dev->cdb_len = (unsigned int) rc;
2388
2389 /* Enable ATAPI AN if both the host and device have
2390 * the support. If PMP is attached, SNTF is required
2391 * to enable ATAPI AN to discern between PHY status
2392 * changed notifications and ATAPI ANs.
2393 */
2394 if (atapi_an &&
2395 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2396 (!sata_pmp_attached(ap) ||
2397 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2398 /* issue SET feature command to turn this on */
2399 err_mask = ata_dev_set_feature(dev,
2400 SETFEATURES_SATA_ENABLE, SATA_AN);
2401 if (err_mask)
2402 ata_dev_err(dev,
2403 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2404 err_mask);
2405 else {
2406 dev->flags |= ATA_DFLAG_AN;
2407 atapi_an_string = ", ATAPI AN";
2408 }
2409 }
2410
2411 if (ata_id_cdb_intr(dev->id)) {
2412 dev->flags |= ATA_DFLAG_CDB_INTR;
2413 cdb_intr_string = ", CDB intr";
2414 }
2415
2416 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2417 dev->flags |= ATA_DFLAG_DMADIR;
2418 dma_dir_string = ", DMADIR";
2419 }
2420
2421 if (ata_id_has_da(dev->id)) {
2422 dev->flags |= ATA_DFLAG_DA;
2423 zpodd_init(dev);
2424 }
2425
2426 /* print device info to dmesg */
2427 if (ata_msg_drv(ap) && print_info)
2428 ata_dev_info(dev,
2429 "ATAPI: %s, %s, max %s%s%s%s\n",
2430 modelbuf, fwrevbuf,
2431 ata_mode_string(xfer_mask),
2432 cdb_intr_string, atapi_an_string,
2433 dma_dir_string);
2434 }
2435
2436 /* determine max_sectors */
2437 dev->max_sectors = ATA_MAX_SECTORS;
2438 if (dev->flags & ATA_DFLAG_LBA48)
2439 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2440
2441 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2442 200 sectors */
2443 if (ata_dev_knobble(dev)) {
2444 if (ata_msg_drv(ap) && print_info)
2445 ata_dev_info(dev, "applying bridge limits\n");
2446 dev->udma_mask &= ATA_UDMA5;
2447 dev->max_sectors = ATA_MAX_SECTORS;
2448 }
2449
2450 if ((dev->class == ATA_DEV_ATAPI) &&
2451 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2452 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2453 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2454 }
2455
2456 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2457 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2458 dev->max_sectors);
2459
2460 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2461 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2462
2463 if (ap->ops->dev_config)
2464 ap->ops->dev_config(dev);
2465
2466 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2467 /* Let the user know. We don't want to disallow opens for
2468 rescue purposes, or in case the vendor is just a blithering
2469 idiot. Do this after the dev_config call as some controllers
2470 with buggy firmware may want to avoid reporting false device
2471 bugs */
2472
2473 if (print_info) {
2474 ata_dev_warn(dev,
2475 "Drive reports diagnostics failure. This may indicate a drive\n");
2476 ata_dev_warn(dev,
2477 "fault or invalid emulation. Contact drive vendor for information.\n");
2478 }
2479 }
2480
2481 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2482 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2483 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2484 }
2485
2486 return 0;
2487
2488 err_out_nosup:
2489 if (ata_msg_probe(ap))
2490 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2491 return rc;
2492 }
2493
2494 /**
2495 * ata_cable_40wire - return 40 wire cable type
2496 * @ap: port
2497 *
2498 * Helper method for drivers which want to hardwire 40 wire cable
2499 * detection.
2500 */
2501
2502 int ata_cable_40wire(struct ata_port *ap)
2503 {
2504 return ATA_CBL_PATA40;
2505 }
2506
2507 /**
2508 * ata_cable_80wire - return 80 wire cable type
2509 * @ap: port
2510 *
2511 * Helper method for drivers which want to hardwire 80 wire cable
2512 * detection.
2513 */
2514
2515 int ata_cable_80wire(struct ata_port *ap)
2516 {
2517 return ATA_CBL_PATA80;
2518 }
2519
2520 /**
2521 * ata_cable_unknown - return unknown PATA cable.
2522 * @ap: port
2523 *
2524 * Helper method for drivers which have no PATA cable detection.
2525 */
2526
2527 int ata_cable_unknown(struct ata_port *ap)
2528 {
2529 return ATA_CBL_PATA_UNK;
2530 }
2531
2532 /**
2533 * ata_cable_ignore - return ignored PATA cable.
2534 * @ap: port
2535 *
2536 * Helper method for drivers which don't use cable type to limit
2537 * transfer mode.
2538 */
2539 int ata_cable_ignore(struct ata_port *ap)
2540 {
2541 return ATA_CBL_PATA_IGN;
2542 }
2543
2544 /**
2545 * ata_cable_sata - return SATA cable type
2546 * @ap: port
2547 *
2548 * Helper method for drivers which have SATA cables
2549 */
2550
2551 int ata_cable_sata(struct ata_port *ap)
2552 {
2553 return ATA_CBL_SATA;
2554 }
2555
2556 /**
2557 * ata_bus_probe - Reset and probe ATA bus
2558 * @ap: Bus to probe
2559 *
2560 * Master ATA bus probing function. Initiates a hardware-dependent
2561 * bus reset, then attempts to identify any devices found on
2562 * the bus.
2563 *
2564 * LOCKING:
2565 * PCI/etc. bus probe sem.
2566 *
2567 * RETURNS:
2568 * Zero on success, negative errno otherwise.
2569 */
2570
2571 int ata_bus_probe(struct ata_port *ap)
2572 {
2573 unsigned int classes[ATA_MAX_DEVICES];
2574 int tries[ATA_MAX_DEVICES];
2575 int rc;
2576 struct ata_device *dev;
2577
2578 ata_for_each_dev(dev, &ap->link, ALL)
2579 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2580
2581 retry:
2582 ata_for_each_dev(dev, &ap->link, ALL) {
2583 /* If we issue an SRST then an ATA drive (not ATAPI)
2584 * may change configuration and be in PIO0 timing. If
2585 * we do a hard reset (or are coming from power on)
2586 * this is true for ATA or ATAPI. Until we've set a
2587 * suitable controller mode we should not touch the
2588 * bus as we may be talking too fast.
2589 */
2590 dev->pio_mode = XFER_PIO_0;
2591 dev->dma_mode = 0xff;
2592
2593 /* If the controller has a pio mode setup function
2594 * then use it to set the chipset to rights. Don't
2595 * touch the DMA setup as that will be dealt with when
2596 * configuring devices.
2597 */
2598 if (ap->ops->set_piomode)
2599 ap->ops->set_piomode(ap, dev);
2600 }
2601
2602 /* reset and determine device classes */
2603 ap->ops->phy_reset(ap);
2604
2605 ata_for_each_dev(dev, &ap->link, ALL) {
2606 if (dev->class != ATA_DEV_UNKNOWN)
2607 classes[dev->devno] = dev->class;
2608 else
2609 classes[dev->devno] = ATA_DEV_NONE;
2610
2611 dev->class = ATA_DEV_UNKNOWN;
2612 }
2613
2614 /* read IDENTIFY page and configure devices. We have to do the identify
2615 specific sequence bass-ackwards so that PDIAG- is released by
2616 the slave device */
2617
2618 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2619 if (tries[dev->devno])
2620 dev->class = classes[dev->devno];
2621
2622 if (!ata_dev_enabled(dev))
2623 continue;
2624
2625 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2626 dev->id);
2627 if (rc)
2628 goto fail;
2629 }
2630
2631 /* Now ask for the cable type as PDIAG- should have been released */
2632 if (ap->ops->cable_detect)
2633 ap->cbl = ap->ops->cable_detect(ap);
2634
2635 /* We may have SATA bridge glue hiding here irrespective of
2636 * the reported cable types and sensed types. When SATA
2637 * drives indicate we have a bridge, we don't know which end
2638 * of the link the bridge is which is a problem.
2639 */
2640 ata_for_each_dev(dev, &ap->link, ENABLED)
2641 if (ata_id_is_sata(dev->id))
2642 ap->cbl = ATA_CBL_SATA;
2643
2644 /* After the identify sequence we can now set up the devices. We do
2645 this in the normal order so that the user doesn't get confused */
2646
2647 ata_for_each_dev(dev, &ap->link, ENABLED) {
2648 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2649 rc = ata_dev_configure(dev);
2650 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2651 if (rc)
2652 goto fail;
2653 }
2654
2655 /* configure transfer mode */
2656 rc = ata_set_mode(&ap->link, &dev);
2657 if (rc)
2658 goto fail;
2659
2660 ata_for_each_dev(dev, &ap->link, ENABLED)
2661 return 0;
2662
2663 return -ENODEV;
2664
2665 fail:
2666 tries[dev->devno]--;
2667
2668 switch (rc) {
2669 case -EINVAL:
2670 /* eeek, something went very wrong, give up */
2671 tries[dev->devno] = 0;
2672 break;
2673
2674 case -ENODEV:
2675 /* give it just one more chance */
2676 tries[dev->devno] = min(tries[dev->devno], 1);
2677 case -EIO:
2678 if (tries[dev->devno] == 1) {
2679 /* This is the last chance, better to slow
2680 * down than lose it.
2681 */
2682 sata_down_spd_limit(&ap->link, 0);
2683 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2684 }
2685 }
2686
2687 if (!tries[dev->devno])
2688 ata_dev_disable(dev);
2689
2690 goto retry;
2691 }
2692
2693 /**
2694 * sata_print_link_status - Print SATA link status
2695 * @link: SATA link to printk link status about
2696 *
2697 * This function prints link speed and status of a SATA link.
2698 *
2699 * LOCKING:
2700 * None.
2701 */
2702 static void sata_print_link_status(struct ata_link *link)
2703 {
2704 u32 sstatus, scontrol, tmp;
2705
2706 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2707 return;
2708 sata_scr_read(link, SCR_CONTROL, &scontrol);
2709
2710 if (ata_phys_link_online(link)) {
2711 tmp = (sstatus >> 4) & 0xf;
2712 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2713 sata_spd_string(tmp), sstatus, scontrol);
2714 } else {
2715 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2716 sstatus, scontrol);
2717 }
2718 }
2719
2720 /**
2721 * ata_dev_pair - return other device on cable
2722 * @adev: device
2723 *
2724 * Obtain the other device on the same cable, or if none is
2725 * present NULL is returned
2726 */
2727
2728 struct ata_device *ata_dev_pair(struct ata_device *adev)
2729 {
2730 struct ata_link *link = adev->link;
2731 struct ata_device *pair = &link->device[1 - adev->devno];
2732 if (!ata_dev_enabled(pair))
2733 return NULL;
2734 return pair;
2735 }
2736
2737 /**
2738 * sata_down_spd_limit - adjust SATA spd limit downward
2739 * @link: Link to adjust SATA spd limit for
2740 * @spd_limit: Additional limit
2741 *
2742 * Adjust SATA spd limit of @link downward. Note that this
2743 * function only adjusts the limit. The change must be applied
2744 * using sata_set_spd().
2745 *
2746 * If @spd_limit is non-zero, the speed is limited to equal to or
2747 * lower than @spd_limit if such speed is supported. If
2748 * @spd_limit is slower than any supported speed, only the lowest
2749 * supported speed is allowed.
2750 *
2751 * LOCKING:
2752 * Inherited from caller.
2753 *
2754 * RETURNS:
2755 * 0 on success, negative errno on failure
2756 */
2757 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2758 {
2759 u32 sstatus, spd, mask;
2760 int rc, bit;
2761
2762 if (!sata_scr_valid(link))
2763 return -EOPNOTSUPP;
2764
2765 /* If SCR can be read, use it to determine the current SPD.
2766 * If not, use cached value in link->sata_spd.
2767 */
2768 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2769 if (rc == 0 && ata_sstatus_online(sstatus))
2770 spd = (sstatus >> 4) & 0xf;
2771 else
2772 spd = link->sata_spd;
2773
2774 mask = link->sata_spd_limit;
2775 if (mask <= 1)
2776 return -EINVAL;
2777
2778 /* unconditionally mask off the highest bit */
2779 bit = fls(mask) - 1;
2780 mask &= ~(1 << bit);
2781
2782 /* Mask off all speeds higher than or equal to the current
2783 * one. Force 1.5Gbps if current SPD is not available.
2784 */
2785 if (spd > 1)
2786 mask &= (1 << (spd - 1)) - 1;
2787 else
2788 mask &= 1;
2789
2790 /* were we already at the bottom? */
2791 if (!mask)
2792 return -EINVAL;
2793
2794 if (spd_limit) {
2795 if (mask & ((1 << spd_limit) - 1))
2796 mask &= (1 << spd_limit) - 1;
2797 else {
2798 bit = ffs(mask) - 1;
2799 mask = 1 << bit;
2800 }
2801 }
2802
2803 link->sata_spd_limit = mask;
2804
2805 ata_link_warn(link, "limiting SATA link speed to %s\n",
2806 sata_spd_string(fls(mask)));
2807
2808 return 0;
2809 }
2810
2811 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2812 {
2813 struct ata_link *host_link = &link->ap->link;
2814 u32 limit, target, spd;
2815
2816 limit = link->sata_spd_limit;
2817
2818 /* Don't configure downstream link faster than upstream link.
2819 * It doesn't speed up anything and some PMPs choke on such
2820 * configuration.
2821 */
2822 if (!ata_is_host_link(link) && host_link->sata_spd)
2823 limit &= (1 << host_link->sata_spd) - 1;
2824
2825 if (limit == UINT_MAX)
2826 target = 0;
2827 else
2828 target = fls(limit);
2829
2830 spd = (*scontrol >> 4) & 0xf;
2831 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2832
2833 return spd != target;
2834 }
2835
2836 /**
2837 * sata_set_spd_needed - is SATA spd configuration needed
2838 * @link: Link in question
2839 *
2840 * Test whether the spd limit in SControl matches
2841 * @link->sata_spd_limit. This function is used to determine
2842 * whether hardreset is necessary to apply SATA spd
2843 * configuration.
2844 *
2845 * LOCKING:
2846 * Inherited from caller.
2847 *
2848 * RETURNS:
2849 * 1 if SATA spd configuration is needed, 0 otherwise.
2850 */
2851 static int sata_set_spd_needed(struct ata_link *link)
2852 {
2853 u32 scontrol;
2854
2855 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2856 return 1;
2857
2858 return __sata_set_spd_needed(link, &scontrol);
2859 }
2860
2861 /**
2862 * sata_set_spd - set SATA spd according to spd limit
2863 * @link: Link to set SATA spd for
2864 *
2865 * Set SATA spd of @link according to sata_spd_limit.
2866 *
2867 * LOCKING:
2868 * Inherited from caller.
2869 *
2870 * RETURNS:
2871 * 0 if spd doesn't need to be changed, 1 if spd has been
2872 * changed. Negative errno if SCR registers are inaccessible.
2873 */
2874 int sata_set_spd(struct ata_link *link)
2875 {
2876 u32 scontrol;
2877 int rc;
2878
2879 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2880 return rc;
2881
2882 if (!__sata_set_spd_needed(link, &scontrol))
2883 return 0;
2884
2885 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2886 return rc;
2887
2888 return 1;
2889 }
2890
2891 /*
2892 * This mode timing computation functionality is ported over from
2893 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2894 */
2895 /*
2896 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2897 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2898 * for UDMA6, which is currently supported only by Maxtor drives.
2899 *
2900 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2901 */
2902
2903 static const struct ata_timing ata_timing[] = {
2904 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2905 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2906 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2907 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2908 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2909 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2910 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2911 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2912
2913 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2914 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2915 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2916
2917 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2918 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2919 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2920 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2921 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2922
2923 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2924 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2925 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2926 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2927 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2928 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2929 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2930 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2931
2932 { 0xFF }
2933 };
2934
2935 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2936 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2937
2938 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2939 {
2940 q->setup = EZ(t->setup * 1000, T);
2941 q->act8b = EZ(t->act8b * 1000, T);
2942 q->rec8b = EZ(t->rec8b * 1000, T);
2943 q->cyc8b = EZ(t->cyc8b * 1000, T);
2944 q->active = EZ(t->active * 1000, T);
2945 q->recover = EZ(t->recover * 1000, T);
2946 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2947 q->cycle = EZ(t->cycle * 1000, T);
2948 q->udma = EZ(t->udma * 1000, UT);
2949 }
2950
2951 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2952 struct ata_timing *m, unsigned int what)
2953 {
2954 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2955 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2956 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2957 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2958 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2959 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2960 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2961 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2962 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2963 }
2964
2965 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2966 {
2967 const struct ata_timing *t = ata_timing;
2968
2969 while (xfer_mode > t->mode)
2970 t++;
2971
2972 if (xfer_mode == t->mode)
2973 return t;
2974
2975 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2976 __func__, xfer_mode);
2977
2978 return NULL;
2979 }
2980
2981 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2982 struct ata_timing *t, int T, int UT)
2983 {
2984 const u16 *id = adev->id;
2985 const struct ata_timing *s;
2986 struct ata_timing p;
2987
2988 /*
2989 * Find the mode.
2990 */
2991
2992 if (!(s = ata_timing_find_mode(speed)))
2993 return -EINVAL;
2994
2995 memcpy(t, s, sizeof(*s));
2996
2997 /*
2998 * If the drive is an EIDE drive, it can tell us it needs extended
2999 * PIO/MW_DMA cycle timing.
3000 */
3001
3002 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3003 memset(&p, 0, sizeof(p));
3004
3005 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3006 if (speed <= XFER_PIO_2)
3007 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3008 else if ((speed <= XFER_PIO_4) ||
3009 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3010 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3011 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3012 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3013
3014 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3015 }
3016
3017 /*
3018 * Convert the timing to bus clock counts.
3019 */
3020
3021 ata_timing_quantize(t, t, T, UT);
3022
3023 /*
3024 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3025 * S.M.A.R.T * and some other commands. We have to ensure that the
3026 * DMA cycle timing is slower/equal than the fastest PIO timing.
3027 */
3028
3029 if (speed > XFER_PIO_6) {
3030 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3031 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3032 }
3033
3034 /*
3035 * Lengthen active & recovery time so that cycle time is correct.
3036 */
3037
3038 if (t->act8b + t->rec8b < t->cyc8b) {
3039 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3040 t->rec8b = t->cyc8b - t->act8b;
3041 }
3042
3043 if (t->active + t->recover < t->cycle) {
3044 t->active += (t->cycle - (t->active + t->recover)) / 2;
3045 t->recover = t->cycle - t->active;
3046 }
3047
3048 /* In a few cases quantisation may produce enough errors to
3049 leave t->cycle too low for the sum of active and recovery
3050 if so we must correct this */
3051 if (t->active + t->recover > t->cycle)
3052 t->cycle = t->active + t->recover;
3053
3054 return 0;
3055 }
3056
3057 /**
3058 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3059 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3060 * @cycle: cycle duration in ns
3061 *
3062 * Return matching xfer mode for @cycle. The returned mode is of
3063 * the transfer type specified by @xfer_shift. If @cycle is too
3064 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3065 * than the fastest known mode, the fasted mode is returned.
3066 *
3067 * LOCKING:
3068 * None.
3069 *
3070 * RETURNS:
3071 * Matching xfer_mode, 0xff if no match found.
3072 */
3073 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3074 {
3075 u8 base_mode = 0xff, last_mode = 0xff;
3076 const struct ata_xfer_ent *ent;
3077 const struct ata_timing *t;
3078
3079 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3080 if (ent->shift == xfer_shift)
3081 base_mode = ent->base;
3082
3083 for (t = ata_timing_find_mode(base_mode);
3084 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3085 unsigned short this_cycle;
3086
3087 switch (xfer_shift) {
3088 case ATA_SHIFT_PIO:
3089 case ATA_SHIFT_MWDMA:
3090 this_cycle = t->cycle;
3091 break;
3092 case ATA_SHIFT_UDMA:
3093 this_cycle = t->udma;
3094 break;
3095 default:
3096 return 0xff;
3097 }
3098
3099 if (cycle > this_cycle)
3100 break;
3101
3102 last_mode = t->mode;
3103 }
3104
3105 return last_mode;
3106 }
3107
3108 /**
3109 * ata_down_xfermask_limit - adjust dev xfer masks downward
3110 * @dev: Device to adjust xfer masks
3111 * @sel: ATA_DNXFER_* selector
3112 *
3113 * Adjust xfer masks of @dev downward. Note that this function
3114 * does not apply the change. Invoking ata_set_mode() afterwards
3115 * will apply the limit.
3116 *
3117 * LOCKING:
3118 * Inherited from caller.
3119 *
3120 * RETURNS:
3121 * 0 on success, negative errno on failure
3122 */
3123 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3124 {
3125 char buf[32];
3126 unsigned long orig_mask, xfer_mask;
3127 unsigned long pio_mask, mwdma_mask, udma_mask;
3128 int quiet, highbit;
3129
3130 quiet = !!(sel & ATA_DNXFER_QUIET);
3131 sel &= ~ATA_DNXFER_QUIET;
3132
3133 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3134 dev->mwdma_mask,
3135 dev->udma_mask);
3136 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3137
3138 switch (sel) {
3139 case ATA_DNXFER_PIO:
3140 highbit = fls(pio_mask) - 1;
3141 pio_mask &= ~(1 << highbit);
3142 break;
3143
3144 case ATA_DNXFER_DMA:
3145 if (udma_mask) {
3146 highbit = fls(udma_mask) - 1;
3147 udma_mask &= ~(1 << highbit);
3148 if (!udma_mask)
3149 return -ENOENT;
3150 } else if (mwdma_mask) {
3151 highbit = fls(mwdma_mask) - 1;
3152 mwdma_mask &= ~(1 << highbit);
3153 if (!mwdma_mask)
3154 return -ENOENT;
3155 }
3156 break;
3157
3158 case ATA_DNXFER_40C:
3159 udma_mask &= ATA_UDMA_MASK_40C;
3160 break;
3161
3162 case ATA_DNXFER_FORCE_PIO0:
3163 pio_mask &= 1;
3164 case ATA_DNXFER_FORCE_PIO:
3165 mwdma_mask = 0;
3166 udma_mask = 0;
3167 break;
3168
3169 default:
3170 BUG();
3171 }
3172
3173 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3174
3175 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3176 return -ENOENT;
3177
3178 if (!quiet) {
3179 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3180 snprintf(buf, sizeof(buf), "%s:%s",
3181 ata_mode_string(xfer_mask),
3182 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3183 else
3184 snprintf(buf, sizeof(buf), "%s",
3185 ata_mode_string(xfer_mask));
3186
3187 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3188 }
3189
3190 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3191 &dev->udma_mask);
3192
3193 return 0;
3194 }
3195
3196 static int ata_dev_set_mode(struct ata_device *dev)
3197 {
3198 struct ata_port *ap = dev->link->ap;
3199 struct ata_eh_context *ehc = &dev->link->eh_context;
3200 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3201 const char *dev_err_whine = "";
3202 int ign_dev_err = 0;
3203 unsigned int err_mask = 0;
3204 int rc;
3205
3206 dev->flags &= ~ATA_DFLAG_PIO;
3207 if (dev->xfer_shift == ATA_SHIFT_PIO)
3208 dev->flags |= ATA_DFLAG_PIO;
3209
3210 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3211 dev_err_whine = " (SET_XFERMODE skipped)";
3212 else {
3213 if (nosetxfer)
3214 ata_dev_warn(dev,
3215 "NOSETXFER but PATA detected - can't "
3216 "skip SETXFER, might malfunction\n");
3217 err_mask = ata_dev_set_xfermode(dev);
3218 }
3219
3220 if (err_mask & ~AC_ERR_DEV)
3221 goto fail;
3222
3223 /* revalidate */
3224 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3225 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3226 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3227 if (rc)
3228 return rc;
3229
3230 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3231 /* Old CFA may refuse this command, which is just fine */
3232 if (ata_id_is_cfa(dev->id))
3233 ign_dev_err = 1;
3234 /* Catch several broken garbage emulations plus some pre
3235 ATA devices */
3236 if (ata_id_major_version(dev->id) == 0 &&
3237 dev->pio_mode <= XFER_PIO_2)
3238 ign_dev_err = 1;
3239 /* Some very old devices and some bad newer ones fail
3240 any kind of SET_XFERMODE request but support PIO0-2
3241 timings and no IORDY */
3242 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3243 ign_dev_err = 1;
3244 }
3245 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3246 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3247 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3248 dev->dma_mode == XFER_MW_DMA_0 &&
3249 (dev->id[63] >> 8) & 1)
3250 ign_dev_err = 1;
3251
3252 /* if the device is actually configured correctly, ignore dev err */
3253 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3254 ign_dev_err = 1;
3255
3256 if (err_mask & AC_ERR_DEV) {
3257 if (!ign_dev_err)
3258 goto fail;
3259 else
3260 dev_err_whine = " (device error ignored)";
3261 }
3262
3263 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3264 dev->xfer_shift, (int)dev->xfer_mode);
3265
3266 ata_dev_info(dev, "configured for %s%s\n",
3267 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3268 dev_err_whine);
3269
3270 return 0;
3271
3272 fail:
3273 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3274 return -EIO;
3275 }
3276
3277 /**
3278 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3279 * @link: link on which timings will be programmed
3280 * @r_failed_dev: out parameter for failed device
3281 *
3282 * Standard implementation of the function used to tune and set
3283 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3284 * ata_dev_set_mode() fails, pointer to the failing device is
3285 * returned in @r_failed_dev.
3286 *
3287 * LOCKING:
3288 * PCI/etc. bus probe sem.
3289 *
3290 * RETURNS:
3291 * 0 on success, negative errno otherwise
3292 */
3293
3294 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3295 {
3296 struct ata_port *ap = link->ap;
3297 struct ata_device *dev;
3298 int rc = 0, used_dma = 0, found = 0;
3299
3300 /* step 1: calculate xfer_mask */
3301 ata_for_each_dev(dev, link, ENABLED) {
3302 unsigned long pio_mask, dma_mask;
3303 unsigned int mode_mask;
3304
3305 mode_mask = ATA_DMA_MASK_ATA;
3306 if (dev->class == ATA_DEV_ATAPI)
3307 mode_mask = ATA_DMA_MASK_ATAPI;
3308 else if (ata_id_is_cfa(dev->id))
3309 mode_mask = ATA_DMA_MASK_CFA;
3310
3311 ata_dev_xfermask(dev);
3312 ata_force_xfermask(dev);
3313
3314 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3315
3316 if (libata_dma_mask & mode_mask)
3317 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3318 dev->udma_mask);
3319 else
3320 dma_mask = 0;
3321
3322 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3323 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3324
3325 found = 1;
3326 if (ata_dma_enabled(dev))
3327 used_dma = 1;
3328 }
3329 if (!found)
3330 goto out;
3331
3332 /* step 2: always set host PIO timings */
3333 ata_for_each_dev(dev, link, ENABLED) {
3334 if (dev->pio_mode == 0xff) {
3335 ata_dev_warn(dev, "no PIO support\n");
3336 rc = -EINVAL;
3337 goto out;
3338 }
3339
3340 dev->xfer_mode = dev->pio_mode;
3341 dev->xfer_shift = ATA_SHIFT_PIO;
3342 if (ap->ops->set_piomode)
3343 ap->ops->set_piomode(ap, dev);
3344 }
3345
3346 /* step 3: set host DMA timings */
3347 ata_for_each_dev(dev, link, ENABLED) {
3348 if (!ata_dma_enabled(dev))
3349 continue;
3350
3351 dev->xfer_mode = dev->dma_mode;
3352 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3353 if (ap->ops->set_dmamode)
3354 ap->ops->set_dmamode(ap, dev);
3355 }
3356
3357 /* step 4: update devices' xfer mode */
3358 ata_for_each_dev(dev, link, ENABLED) {
3359 rc = ata_dev_set_mode(dev);
3360 if (rc)
3361 goto out;
3362 }
3363
3364 /* Record simplex status. If we selected DMA then the other
3365 * host channels are not permitted to do so.
3366 */
3367 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3368 ap->host->simplex_claimed = ap;
3369
3370 out:
3371 if (rc)
3372 *r_failed_dev = dev;
3373 return rc;
3374 }
3375
3376 /**
3377 * ata_wait_ready - wait for link to become ready
3378 * @link: link to be waited on
3379 * @deadline: deadline jiffies for the operation
3380 * @check_ready: callback to check link readiness
3381 *
3382 * Wait for @link to become ready. @check_ready should return
3383 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3384 * link doesn't seem to be occupied, other errno for other error
3385 * conditions.
3386 *
3387 * Transient -ENODEV conditions are allowed for
3388 * ATA_TMOUT_FF_WAIT.
3389 *
3390 * LOCKING:
3391 * EH context.
3392 *
3393 * RETURNS:
3394 * 0 if @linke is ready before @deadline; otherwise, -errno.
3395 */
3396 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3397 int (*check_ready)(struct ata_link *link))
3398 {
3399 unsigned long start = jiffies;
3400 unsigned long nodev_deadline;
3401 int warned = 0;
3402
3403 /* choose which 0xff timeout to use, read comment in libata.h */
3404 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3405 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3406 else
3407 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3408
3409 /* Slave readiness can't be tested separately from master. On
3410 * M/S emulation configuration, this function should be called
3411 * only on the master and it will handle both master and slave.
3412 */
3413 WARN_ON(link == link->ap->slave_link);
3414
3415 if (time_after(nodev_deadline, deadline))
3416 nodev_deadline = deadline;
3417
3418 while (1) {
3419 unsigned long now = jiffies;
3420 int ready, tmp;
3421
3422 ready = tmp = check_ready(link);
3423 if (ready > 0)
3424 return 0;
3425
3426 /*
3427 * -ENODEV could be transient. Ignore -ENODEV if link
3428 * is online. Also, some SATA devices take a long
3429 * time to clear 0xff after reset. Wait for
3430 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3431 * offline.
3432 *
3433 * Note that some PATA controllers (pata_ali) explode
3434 * if status register is read more than once when
3435 * there's no device attached.
3436 */
3437 if (ready == -ENODEV) {
3438 if (ata_link_online(link))
3439 ready = 0;
3440 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3441 !ata_link_offline(link) &&
3442 time_before(now, nodev_deadline))
3443 ready = 0;
3444 }
3445
3446 if (ready)
3447 return ready;
3448 if (time_after(now, deadline))
3449 return -EBUSY;
3450
3451 if (!warned && time_after(now, start + 5 * HZ) &&
3452 (deadline - now > 3 * HZ)) {
3453 ata_link_warn(link,
3454 "link is slow to respond, please be patient "
3455 "(ready=%d)\n", tmp);
3456 warned = 1;
3457 }
3458
3459 ata_msleep(link->ap, 50);
3460 }
3461 }
3462
3463 /**
3464 * ata_wait_after_reset - wait for link to become ready after reset
3465 * @link: link to be waited on
3466 * @deadline: deadline jiffies for the operation
3467 * @check_ready: callback to check link readiness
3468 *
3469 * Wait for @link to become ready after reset.
3470 *
3471 * LOCKING:
3472 * EH context.
3473 *
3474 * RETURNS:
3475 * 0 if @linke is ready before @deadline; otherwise, -errno.
3476 */
3477 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3478 int (*check_ready)(struct ata_link *link))
3479 {
3480 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3481
3482 return ata_wait_ready(link, deadline, check_ready);
3483 }
3484
3485 /**
3486 * sata_link_debounce - debounce SATA phy status
3487 * @link: ATA link to debounce SATA phy status for
3488 * @params: timing parameters { interval, duratinon, timeout } in msec
3489 * @deadline: deadline jiffies for the operation
3490 *
3491 * Make sure SStatus of @link reaches stable state, determined by
3492 * holding the same value where DET is not 1 for @duration polled
3493 * every @interval, before @timeout. Timeout constraints the
3494 * beginning of the stable state. Because DET gets stuck at 1 on
3495 * some controllers after hot unplugging, this functions waits
3496 * until timeout then returns 0 if DET is stable at 1.
3497 *
3498 * @timeout is further limited by @deadline. The sooner of the
3499 * two is used.
3500 *
3501 * LOCKING:
3502 * Kernel thread context (may sleep)
3503 *
3504 * RETURNS:
3505 * 0 on success, -errno on failure.
3506 */
3507 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3508 unsigned long deadline)
3509 {
3510 unsigned long interval = params[0];
3511 unsigned long duration = params[1];
3512 unsigned long last_jiffies, t;
3513 u32 last, cur;
3514 int rc;
3515
3516 t = ata_deadline(jiffies, params[2]);
3517 if (time_before(t, deadline))
3518 deadline = t;
3519
3520 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3521 return rc;
3522 cur &= 0xf;
3523
3524 last = cur;
3525 last_jiffies = jiffies;
3526
3527 while (1) {
3528 ata_msleep(link->ap, interval);
3529 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3530 return rc;
3531 cur &= 0xf;
3532
3533 /* DET stable? */
3534 if (cur == last) {
3535 if (cur == 1 && time_before(jiffies, deadline))
3536 continue;
3537 if (time_after(jiffies,
3538 ata_deadline(last_jiffies, duration)))
3539 return 0;
3540 continue;
3541 }
3542
3543 /* unstable, start over */
3544 last = cur;
3545 last_jiffies = jiffies;
3546
3547 /* Check deadline. If debouncing failed, return
3548 * -EPIPE to tell upper layer to lower link speed.
3549 */
3550 if (time_after(jiffies, deadline))
3551 return -EPIPE;
3552 }
3553 }
3554
3555 /**
3556 * sata_link_resume - resume SATA link
3557 * @link: ATA link to resume SATA
3558 * @params: timing parameters { interval, duratinon, timeout } in msec
3559 * @deadline: deadline jiffies for the operation
3560 *
3561 * Resume SATA phy @link and debounce it.
3562 *
3563 * LOCKING:
3564 * Kernel thread context (may sleep)
3565 *
3566 * RETURNS:
3567 * 0 on success, -errno on failure.
3568 */
3569 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3570 unsigned long deadline)
3571 {
3572 int tries = ATA_LINK_RESUME_TRIES;
3573 u32 scontrol, serror;
3574 int rc;
3575
3576 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3577 return rc;
3578
3579 /*
3580 * Writes to SControl sometimes get ignored under certain
3581 * controllers (ata_piix SIDPR). Make sure DET actually is
3582 * cleared.
3583 */
3584 do {
3585 scontrol = (scontrol & 0x0f0) | 0x300;
3586 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3587 return rc;
3588 /*
3589 * Some PHYs react badly if SStatus is pounded
3590 * immediately after resuming. Delay 200ms before
3591 * debouncing.
3592 */
3593 ata_msleep(link->ap, 200);
3594
3595 /* is SControl restored correctly? */
3596 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3597 return rc;
3598 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3599
3600 if ((scontrol & 0xf0f) != 0x300) {
3601 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3602 scontrol);
3603 return 0;
3604 }
3605
3606 if (tries < ATA_LINK_RESUME_TRIES)
3607 ata_link_warn(link, "link resume succeeded after %d retries\n",
3608 ATA_LINK_RESUME_TRIES - tries);
3609
3610 if ((rc = sata_link_debounce(link, params, deadline)))
3611 return rc;
3612
3613 /* clear SError, some PHYs require this even for SRST to work */
3614 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3615 rc = sata_scr_write(link, SCR_ERROR, serror);
3616
3617 return rc != -EINVAL ? rc : 0;
3618 }
3619
3620 /**
3621 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3622 * @link: ATA link to manipulate SControl for
3623 * @policy: LPM policy to configure
3624 * @spm_wakeup: initiate LPM transition to active state
3625 *
3626 * Manipulate the IPM field of the SControl register of @link
3627 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3628 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3629 * the link. This function also clears PHYRDY_CHG before
3630 * returning.
3631 *
3632 * LOCKING:
3633 * EH context.
3634 *
3635 * RETURNS:
3636 * 0 on succes, -errno otherwise.
3637 */
3638 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3639 bool spm_wakeup)
3640 {
3641 struct ata_eh_context *ehc = &link->eh_context;
3642 bool woken_up = false;
3643 u32 scontrol;
3644 int rc;
3645
3646 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3647 if (rc)
3648 return rc;
3649
3650 switch (policy) {
3651 case ATA_LPM_MAX_POWER:
3652 /* disable all LPM transitions */
3653 scontrol |= (0x7 << 8);
3654 /* initiate transition to active state */
3655 if (spm_wakeup) {
3656 scontrol |= (0x4 << 12);
3657 woken_up = true;
3658 }
3659 break;
3660 case ATA_LPM_MED_POWER:
3661 /* allow LPM to PARTIAL */
3662 scontrol &= ~(0x1 << 8);
3663 scontrol |= (0x6 << 8);
3664 break;
3665 case ATA_LPM_MIN_POWER:
3666 if (ata_link_nr_enabled(link) > 0)
3667 /* no restrictions on LPM transitions */
3668 scontrol &= ~(0x7 << 8);
3669 else {
3670 /* empty port, power off */
3671 scontrol &= ~0xf;
3672 scontrol |= (0x1 << 2);
3673 }
3674 break;
3675 default:
3676 WARN_ON(1);
3677 }
3678
3679 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3680 if (rc)
3681 return rc;
3682
3683 /* give the link time to transit out of LPM state */
3684 if (woken_up)
3685 msleep(10);
3686
3687 /* clear PHYRDY_CHG from SError */
3688 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3689 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3690 }
3691
3692 /**
3693 * ata_std_prereset - prepare for reset
3694 * @link: ATA link to be reset
3695 * @deadline: deadline jiffies for the operation
3696 *
3697 * @link is about to be reset. Initialize it. Failure from
3698 * prereset makes libata abort whole reset sequence and give up
3699 * that port, so prereset should be best-effort. It does its
3700 * best to prepare for reset sequence but if things go wrong, it
3701 * should just whine, not fail.
3702 *
3703 * LOCKING:
3704 * Kernel thread context (may sleep)
3705 *
3706 * RETURNS:
3707 * 0 on success, -errno otherwise.
3708 */
3709 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3710 {
3711 struct ata_port *ap = link->ap;
3712 struct ata_eh_context *ehc = &link->eh_context;
3713 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3714 int rc;
3715
3716 /* if we're about to do hardreset, nothing more to do */
3717 if (ehc->i.action & ATA_EH_HARDRESET)
3718 return 0;
3719
3720 /* if SATA, resume link */
3721 if (ap->flags & ATA_FLAG_SATA) {
3722 rc = sata_link_resume(link, timing, deadline);
3723 /* whine about phy resume failure but proceed */
3724 if (rc && rc != -EOPNOTSUPP)
3725 ata_link_warn(link,
3726 "failed to resume link for reset (errno=%d)\n",
3727 rc);
3728 }
3729
3730 /* no point in trying softreset on offline link */
3731 if (ata_phys_link_offline(link))
3732 ehc->i.action &= ~ATA_EH_SOFTRESET;
3733
3734 return 0;
3735 }
3736
3737 /**
3738 * sata_link_hardreset - reset link via SATA phy reset
3739 * @link: link to reset
3740 * @timing: timing parameters { interval, duratinon, timeout } in msec
3741 * @deadline: deadline jiffies for the operation
3742 * @online: optional out parameter indicating link onlineness
3743 * @check_ready: optional callback to check link readiness
3744 *
3745 * SATA phy-reset @link using DET bits of SControl register.
3746 * After hardreset, link readiness is waited upon using
3747 * ata_wait_ready() if @check_ready is specified. LLDs are
3748 * allowed to not specify @check_ready and wait itself after this
3749 * function returns. Device classification is LLD's
3750 * responsibility.
3751 *
3752 * *@online is set to one iff reset succeeded and @link is online
3753 * after reset.
3754 *
3755 * LOCKING:
3756 * Kernel thread context (may sleep)
3757 *
3758 * RETURNS:
3759 * 0 on success, -errno otherwise.
3760 */
3761 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3762 unsigned long deadline,
3763 bool *online, int (*check_ready)(struct ata_link *))
3764 {
3765 u32 scontrol;
3766 int rc;
3767
3768 DPRINTK("ENTER\n");
3769
3770 if (online)
3771 *online = false;
3772
3773 if (sata_set_spd_needed(link)) {
3774 /* SATA spec says nothing about how to reconfigure
3775 * spd. To be on the safe side, turn off phy during
3776 * reconfiguration. This works for at least ICH7 AHCI
3777 * and Sil3124.
3778 */
3779 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3780 goto out;
3781
3782 scontrol = (scontrol & 0x0f0) | 0x304;
3783
3784 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3785 goto out;
3786
3787 sata_set_spd(link);
3788 }
3789
3790 /* issue phy wake/reset */
3791 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3792 goto out;
3793
3794 scontrol = (scontrol & 0x0f0) | 0x301;
3795
3796 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3797 goto out;
3798
3799 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3800 * 10.4.2 says at least 1 ms.
3801 */
3802 ata_msleep(link->ap, 1);
3803
3804 /* bring link back */
3805 rc = sata_link_resume(link, timing, deadline);
3806 if (rc)
3807 goto out;
3808 /* if link is offline nothing more to do */
3809 if (ata_phys_link_offline(link))
3810 goto out;
3811
3812 /* Link is online. From this point, -ENODEV too is an error. */
3813 if (online)
3814 *online = true;
3815
3816 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3817 /* If PMP is supported, we have to do follow-up SRST.
3818 * Some PMPs don't send D2H Reg FIS after hardreset if
3819 * the first port is empty. Wait only for
3820 * ATA_TMOUT_PMP_SRST_WAIT.
3821 */
3822 if (check_ready) {
3823 unsigned long pmp_deadline;
3824
3825 pmp_deadline = ata_deadline(jiffies,
3826 ATA_TMOUT_PMP_SRST_WAIT);
3827 if (time_after(pmp_deadline, deadline))
3828 pmp_deadline = deadline;
3829 ata_wait_ready(link, pmp_deadline, check_ready);
3830 }
3831 rc = -EAGAIN;
3832 goto out;
3833 }
3834
3835 rc = 0;
3836 if (check_ready)
3837 rc = ata_wait_ready(link, deadline, check_ready);
3838 out:
3839 if (rc && rc != -EAGAIN) {
3840 /* online is set iff link is online && reset succeeded */
3841 if (online)
3842 *online = false;
3843 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3844 }
3845 DPRINTK("EXIT, rc=%d\n", rc);
3846 return rc;
3847 }
3848
3849 /**
3850 * sata_std_hardreset - COMRESET w/o waiting or classification
3851 * @link: link to reset
3852 * @class: resulting class of attached device
3853 * @deadline: deadline jiffies for the operation
3854 *
3855 * Standard SATA COMRESET w/o waiting or classification.
3856 *
3857 * LOCKING:
3858 * Kernel thread context (may sleep)
3859 *
3860 * RETURNS:
3861 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3862 */
3863 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3864 unsigned long deadline)
3865 {
3866 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3867 bool online;
3868 int rc;
3869
3870 /* do hardreset */
3871 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3872 return online ? -EAGAIN : rc;
3873 }
3874
3875 /**
3876 * ata_std_postreset - standard postreset callback
3877 * @link: the target ata_link
3878 * @classes: classes of attached devices
3879 *
3880 * This function is invoked after a successful reset. Note that
3881 * the device might have been reset more than once using
3882 * different reset methods before postreset is invoked.
3883 *
3884 * LOCKING:
3885 * Kernel thread context (may sleep)
3886 */
3887 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3888 {
3889 u32 serror;
3890
3891 DPRINTK("ENTER\n");
3892
3893 /* reset complete, clear SError */
3894 if (!sata_scr_read(link, SCR_ERROR, &serror))
3895 sata_scr_write(link, SCR_ERROR, serror);
3896
3897 /* print link status */
3898 sata_print_link_status(link);
3899
3900 DPRINTK("EXIT\n");
3901 }
3902
3903 /**
3904 * ata_dev_same_device - Determine whether new ID matches configured device
3905 * @dev: device to compare against
3906 * @new_class: class of the new device
3907 * @new_id: IDENTIFY page of the new device
3908 *
3909 * Compare @new_class and @new_id against @dev and determine
3910 * whether @dev is the device indicated by @new_class and
3911 * @new_id.
3912 *
3913 * LOCKING:
3914 * None.
3915 *
3916 * RETURNS:
3917 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3918 */
3919 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3920 const u16 *new_id)
3921 {
3922 const u16 *old_id = dev->id;
3923 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3924 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3925
3926 if (dev->class != new_class) {
3927 ata_dev_info(dev, "class mismatch %d != %d\n",
3928 dev->class, new_class);
3929 return 0;
3930 }
3931
3932 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3933 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3934 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3935 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3936
3937 if (strcmp(model[0], model[1])) {
3938 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3939 model[0], model[1]);
3940 return 0;
3941 }
3942
3943 if (strcmp(serial[0], serial[1])) {
3944 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3945 serial[0], serial[1]);
3946 return 0;
3947 }
3948
3949 return 1;
3950 }
3951
3952 /**
3953 * ata_dev_reread_id - Re-read IDENTIFY data
3954 * @dev: target ATA device
3955 * @readid_flags: read ID flags
3956 *
3957 * Re-read IDENTIFY page and make sure @dev is still attached to
3958 * the port.
3959 *
3960 * LOCKING:
3961 * Kernel thread context (may sleep)
3962 *
3963 * RETURNS:
3964 * 0 on success, negative errno otherwise
3965 */
3966 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3967 {
3968 unsigned int class = dev->class;
3969 u16 *id = (void *)dev->link->ap->sector_buf;
3970 int rc;
3971
3972 /* read ID data */
3973 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3974 if (rc)
3975 return rc;
3976
3977 /* is the device still there? */
3978 if (!ata_dev_same_device(dev, class, id))
3979 return -ENODEV;
3980
3981 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3982 return 0;
3983 }
3984
3985 /**
3986 * ata_dev_revalidate - Revalidate ATA device
3987 * @dev: device to revalidate
3988 * @new_class: new class code
3989 * @readid_flags: read ID flags
3990 *
3991 * Re-read IDENTIFY page, make sure @dev is still attached to the
3992 * port and reconfigure it according to the new IDENTIFY page.
3993 *
3994 * LOCKING:
3995 * Kernel thread context (may sleep)
3996 *
3997 * RETURNS:
3998 * 0 on success, negative errno otherwise
3999 */
4000 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4001 unsigned int readid_flags)
4002 {
4003 u64 n_sectors = dev->n_sectors;
4004 u64 n_native_sectors = dev->n_native_sectors;
4005 int rc;
4006
4007 if (!ata_dev_enabled(dev))
4008 return -ENODEV;
4009
4010 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4011 if (ata_class_enabled(new_class) &&
4012 new_class != ATA_DEV_ATA &&
4013 new_class != ATA_DEV_ATAPI &&
4014 new_class != ATA_DEV_ZAC &&
4015 new_class != ATA_DEV_SEMB) {
4016 ata_dev_info(dev, "class mismatch %u != %u\n",
4017 dev->class, new_class);
4018 rc = -ENODEV;
4019 goto fail;
4020 }
4021
4022 /* re-read ID */
4023 rc = ata_dev_reread_id(dev, readid_flags);
4024 if (rc)
4025 goto fail;
4026
4027 /* configure device according to the new ID */
4028 rc = ata_dev_configure(dev);
4029 if (rc)
4030 goto fail;
4031
4032 /* verify n_sectors hasn't changed */
4033 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4034 dev->n_sectors == n_sectors)
4035 return 0;
4036
4037 /* n_sectors has changed */
4038 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4039 (unsigned long long)n_sectors,
4040 (unsigned long long)dev->n_sectors);
4041
4042 /*
4043 * Something could have caused HPA to be unlocked
4044 * involuntarily. If n_native_sectors hasn't changed and the
4045 * new size matches it, keep the device.
4046 */
4047 if (dev->n_native_sectors == n_native_sectors &&
4048 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4049 ata_dev_warn(dev,
4050 "new n_sectors matches native, probably "
4051 "late HPA unlock, n_sectors updated\n");
4052 /* use the larger n_sectors */
4053 return 0;
4054 }
4055
4056 /*
4057 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4058 * unlocking HPA in those cases.
4059 *
4060 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4061 */
4062 if (dev->n_native_sectors == n_native_sectors &&
4063 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4064 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4065 ata_dev_warn(dev,
4066 "old n_sectors matches native, probably "
4067 "late HPA lock, will try to unlock HPA\n");
4068 /* try unlocking HPA */
4069 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4070 rc = -EIO;
4071 } else
4072 rc = -ENODEV;
4073
4074 /* restore original n_[native_]sectors and fail */
4075 dev->n_native_sectors = n_native_sectors;
4076 dev->n_sectors = n_sectors;
4077 fail:
4078 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4079 return rc;
4080 }
4081
4082 struct ata_blacklist_entry {
4083 const char *model_num;
4084 const char *model_rev;
4085 unsigned long horkage;
4086 };
4087
4088 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4089 /* Devices with DMA related problems under Linux */
4090 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4091 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4092 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4093 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4094 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4095 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4096 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4097 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4098 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4099 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4100 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4101 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4102 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4103 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4104 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4105 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4106 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4107 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4108 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4109 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4110 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4111 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4112 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4113 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4114 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4115 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4116 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4117 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4118 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4119 /* Odd clown on sil3726/4726 PMPs */
4120 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4121
4122 /* Weird ATAPI devices */
4123 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4124 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4125 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4126 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4127
4128 /* Devices we expect to fail diagnostics */
4129
4130 /* Devices where NCQ should be avoided */
4131 /* NCQ is slow */
4132 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4133 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4134 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4135 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4136 /* NCQ is broken */
4137 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4138 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4139 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4140 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4141 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4142
4143 /* Seagate NCQ + FLUSH CACHE firmware bug */
4144 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4145 ATA_HORKAGE_FIRMWARE_WARN },
4146
4147 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4148 ATA_HORKAGE_FIRMWARE_WARN },
4149
4150 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4151 ATA_HORKAGE_FIRMWARE_WARN },
4152
4153 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4154 ATA_HORKAGE_FIRMWARE_WARN },
4155
4156 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4157 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4158 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4159
4160 /* Blacklist entries taken from Silicon Image 3124/3132
4161 Windows driver .inf file - also several Linux problem reports */
4162 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4163 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4164 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4165
4166 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4167 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4168
4169 /* devices which puke on READ_NATIVE_MAX */
4170 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4171 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4172 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4173 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4174
4175 /* this one allows HPA unlocking but fails IOs on the area */
4176 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4177
4178 /* Devices which report 1 sector over size HPA */
4179 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4180 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4181 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4182
4183 /* Devices which get the IVB wrong */
4184 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4185 /* Maybe we should just blacklist TSSTcorp... */
4186 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4187
4188 /* Devices that do not need bridging limits applied */
4189 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4190 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4191
4192 /* Devices which aren't very happy with higher link speeds */
4193 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4194 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4195
4196 /*
4197 * Devices which choke on SETXFER. Applies only if both the
4198 * device and controller are SATA.
4199 */
4200 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4201 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4202 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4203 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4204 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4205
4206 /* devices that don't properly handle queued TRIM commands */
4207 { "Micron_M[56]*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4208 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4209 { "Crucial_CT*SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4210
4211 /*
4212 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4213 * (Return Zero After Trim) flags in the ATA Command Set are
4214 * unreliable in the sense that they only define what happens if
4215 * the device successfully executed the DSM TRIM command. TRIM
4216 * is only advisory, however, and the device is free to silently
4217 * ignore all or parts of the request.
4218 *
4219 * Whitelist drives that are known to reliably return zeroes
4220 * after TRIM.
4221 */
4222
4223 /*
4224 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4225 * that model before whitelisting all other intel SSDs.
4226 */
4227 { "INTEL*SSDSC2MH*", NULL, 0, },
4228
4229 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4230 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4231 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4232 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4233 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4234
4235 /*
4236 * Some WD SATA-I drives spin up and down erratically when the link
4237 * is put into the slumber mode. We don't have full list of the
4238 * affected devices. Disable LPM if the device matches one of the
4239 * known prefixes and is SATA-1. As a side effect LPM partial is
4240 * lost too.
4241 *
4242 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4243 */
4244 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4245 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4246 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4247 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4248 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4249 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4250 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4251
4252 /* End Marker */
4253 { }
4254 };
4255
4256 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4257 {
4258 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4259 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4260 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4261
4262 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4263 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4264
4265 while (ad->model_num) {
4266 if (glob_match(ad->model_num, model_num)) {
4267 if (ad->model_rev == NULL)
4268 return ad->horkage;
4269 if (glob_match(ad->model_rev, model_rev))
4270 return ad->horkage;
4271 }
4272 ad++;
4273 }
4274 return 0;
4275 }
4276
4277 static int ata_dma_blacklisted(const struct ata_device *dev)
4278 {
4279 /* We don't support polling DMA.
4280 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4281 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4282 */
4283 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4284 (dev->flags & ATA_DFLAG_CDB_INTR))
4285 return 1;
4286 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4287 }
4288
4289 /**
4290 * ata_is_40wire - check drive side detection
4291 * @dev: device
4292 *
4293 * Perform drive side detection decoding, allowing for device vendors
4294 * who can't follow the documentation.
4295 */
4296
4297 static int ata_is_40wire(struct ata_device *dev)
4298 {
4299 if (dev->horkage & ATA_HORKAGE_IVB)
4300 return ata_drive_40wire_relaxed(dev->id);
4301 return ata_drive_40wire(dev->id);
4302 }
4303
4304 /**
4305 * cable_is_40wire - 40/80/SATA decider
4306 * @ap: port to consider
4307 *
4308 * This function encapsulates the policy for speed management
4309 * in one place. At the moment we don't cache the result but
4310 * there is a good case for setting ap->cbl to the result when
4311 * we are called with unknown cables (and figuring out if it
4312 * impacts hotplug at all).
4313 *
4314 * Return 1 if the cable appears to be 40 wire.
4315 */
4316
4317 static int cable_is_40wire(struct ata_port *ap)
4318 {
4319 struct ata_link *link;
4320 struct ata_device *dev;
4321
4322 /* If the controller thinks we are 40 wire, we are. */
4323 if (ap->cbl == ATA_CBL_PATA40)
4324 return 1;
4325
4326 /* If the controller thinks we are 80 wire, we are. */
4327 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4328 return 0;
4329
4330 /* If the system is known to be 40 wire short cable (eg
4331 * laptop), then we allow 80 wire modes even if the drive
4332 * isn't sure.
4333 */
4334 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4335 return 0;
4336
4337 /* If the controller doesn't know, we scan.
4338 *
4339 * Note: We look for all 40 wire detects at this point. Any
4340 * 80 wire detect is taken to be 80 wire cable because
4341 * - in many setups only the one drive (slave if present) will
4342 * give a valid detect
4343 * - if you have a non detect capable drive you don't want it
4344 * to colour the choice
4345 */
4346 ata_for_each_link(link, ap, EDGE) {
4347 ata_for_each_dev(dev, link, ENABLED) {
4348 if (!ata_is_40wire(dev))
4349 return 0;
4350 }
4351 }
4352 return 1;
4353 }
4354
4355 /**
4356 * ata_dev_xfermask - Compute supported xfermask of the given device
4357 * @dev: Device to compute xfermask for
4358 *
4359 * Compute supported xfermask of @dev and store it in
4360 * dev->*_mask. This function is responsible for applying all
4361 * known limits including host controller limits, device
4362 * blacklist, etc...
4363 *
4364 * LOCKING:
4365 * None.
4366 */
4367 static void ata_dev_xfermask(struct ata_device *dev)
4368 {
4369 struct ata_link *link = dev->link;
4370 struct ata_port *ap = link->ap;
4371 struct ata_host *host = ap->host;
4372 unsigned long xfer_mask;
4373
4374 /* controller modes available */
4375 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4376 ap->mwdma_mask, ap->udma_mask);
4377
4378 /* drive modes available */
4379 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4380 dev->mwdma_mask, dev->udma_mask);
4381 xfer_mask &= ata_id_xfermask(dev->id);
4382
4383 /*
4384 * CFA Advanced TrueIDE timings are not allowed on a shared
4385 * cable
4386 */
4387 if (ata_dev_pair(dev)) {
4388 /* No PIO5 or PIO6 */
4389 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4390 /* No MWDMA3 or MWDMA 4 */
4391 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4392 }
4393
4394 if (ata_dma_blacklisted(dev)) {
4395 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4396 ata_dev_warn(dev,
4397 "device is on DMA blacklist, disabling DMA\n");
4398 }
4399
4400 if ((host->flags & ATA_HOST_SIMPLEX) &&
4401 host->simplex_claimed && host->simplex_claimed != ap) {
4402 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4403 ata_dev_warn(dev,
4404 "simplex DMA is claimed by other device, disabling DMA\n");
4405 }
4406
4407 if (ap->flags & ATA_FLAG_NO_IORDY)
4408 xfer_mask &= ata_pio_mask_no_iordy(dev);
4409
4410 if (ap->ops->mode_filter)
4411 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4412
4413 /* Apply cable rule here. Don't apply it early because when
4414 * we handle hot plug the cable type can itself change.
4415 * Check this last so that we know if the transfer rate was
4416 * solely limited by the cable.
4417 * Unknown or 80 wire cables reported host side are checked
4418 * drive side as well. Cases where we know a 40wire cable
4419 * is used safely for 80 are not checked here.
4420 */
4421 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4422 /* UDMA/44 or higher would be available */
4423 if (cable_is_40wire(ap)) {
4424 ata_dev_warn(dev,
4425 "limited to UDMA/33 due to 40-wire cable\n");
4426 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4427 }
4428
4429 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4430 &dev->mwdma_mask, &dev->udma_mask);
4431 }
4432
4433 /**
4434 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4435 * @dev: Device to which command will be sent
4436 *
4437 * Issue SET FEATURES - XFER MODE command to device @dev
4438 * on port @ap.
4439 *
4440 * LOCKING:
4441 * PCI/etc. bus probe sem.
4442 *
4443 * RETURNS:
4444 * 0 on success, AC_ERR_* mask otherwise.
4445 */
4446
4447 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4448 {
4449 struct ata_taskfile tf;
4450 unsigned int err_mask;
4451
4452 /* set up set-features taskfile */
4453 DPRINTK("set features - xfer mode\n");
4454
4455 /* Some controllers and ATAPI devices show flaky interrupt
4456 * behavior after setting xfer mode. Use polling instead.
4457 */
4458 ata_tf_init(dev, &tf);
4459 tf.command = ATA_CMD_SET_FEATURES;
4460 tf.feature = SETFEATURES_XFER;
4461 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4462 tf.protocol = ATA_PROT_NODATA;
4463 /* If we are using IORDY we must send the mode setting command */
4464 if (ata_pio_need_iordy(dev))
4465 tf.nsect = dev->xfer_mode;
4466 /* If the device has IORDY and the controller does not - turn it off */
4467 else if (ata_id_has_iordy(dev->id))
4468 tf.nsect = 0x01;
4469 else /* In the ancient relic department - skip all of this */
4470 return 0;
4471
4472 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4473
4474 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4475 return err_mask;
4476 }
4477
4478 /**
4479 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4480 * @dev: Device to which command will be sent
4481 * @enable: Whether to enable or disable the feature
4482 * @feature: The sector count represents the feature to set
4483 *
4484 * Issue SET FEATURES - SATA FEATURES command to device @dev
4485 * on port @ap with sector count
4486 *
4487 * LOCKING:
4488 * PCI/etc. bus probe sem.
4489 *
4490 * RETURNS:
4491 * 0 on success, AC_ERR_* mask otherwise.
4492 */
4493 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4494 {
4495 struct ata_taskfile tf;
4496 unsigned int err_mask;
4497
4498 /* set up set-features taskfile */
4499 DPRINTK("set features - SATA features\n");
4500
4501 ata_tf_init(dev, &tf);
4502 tf.command = ATA_CMD_SET_FEATURES;
4503 tf.feature = enable;
4504 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4505 tf.protocol = ATA_PROT_NODATA;
4506 tf.nsect = feature;
4507
4508 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4509
4510 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4511 return err_mask;
4512 }
4513 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4514
4515 /**
4516 * ata_dev_init_params - Issue INIT DEV PARAMS command
4517 * @dev: Device to which command will be sent
4518 * @heads: Number of heads (taskfile parameter)
4519 * @sectors: Number of sectors (taskfile parameter)
4520 *
4521 * LOCKING:
4522 * Kernel thread context (may sleep)
4523 *
4524 * RETURNS:
4525 * 0 on success, AC_ERR_* mask otherwise.
4526 */
4527 static unsigned int ata_dev_init_params(struct ata_device *dev,
4528 u16 heads, u16 sectors)
4529 {
4530 struct ata_taskfile tf;
4531 unsigned int err_mask;
4532
4533 /* Number of sectors per track 1-255. Number of heads 1-16 */
4534 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4535 return AC_ERR_INVALID;
4536
4537 /* set up init dev params taskfile */
4538 DPRINTK("init dev params \n");
4539
4540 ata_tf_init(dev, &tf);
4541 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4542 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4543 tf.protocol = ATA_PROT_NODATA;
4544 tf.nsect = sectors;
4545 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4546
4547 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4548 /* A clean abort indicates an original or just out of spec drive
4549 and we should continue as we issue the setup based on the
4550 drive reported working geometry */
4551 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4552 err_mask = 0;
4553
4554 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4555 return err_mask;
4556 }
4557
4558 /**
4559 * ata_sg_clean - Unmap DMA memory associated with command
4560 * @qc: Command containing DMA memory to be released
4561 *
4562 * Unmap all mapped DMA memory associated with this command.
4563 *
4564 * LOCKING:
4565 * spin_lock_irqsave(host lock)
4566 */
4567 void ata_sg_clean(struct ata_queued_cmd *qc)
4568 {
4569 struct ata_port *ap = qc->ap;
4570 struct scatterlist *sg = qc->sg;
4571 int dir = qc->dma_dir;
4572
4573 WARN_ON_ONCE(sg == NULL);
4574
4575 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4576
4577 if (qc->n_elem)
4578 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4579
4580 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4581 qc->sg = NULL;
4582 }
4583
4584 /**
4585 * atapi_check_dma - Check whether ATAPI DMA can be supported
4586 * @qc: Metadata associated with taskfile to check
4587 *
4588 * Allow low-level driver to filter ATA PACKET commands, returning
4589 * a status indicating whether or not it is OK to use DMA for the
4590 * supplied PACKET command.
4591 *
4592 * LOCKING:
4593 * spin_lock_irqsave(host lock)
4594 *
4595 * RETURNS: 0 when ATAPI DMA can be used
4596 * nonzero otherwise
4597 */
4598 int atapi_check_dma(struct ata_queued_cmd *qc)
4599 {
4600 struct ata_port *ap = qc->ap;
4601
4602 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4603 * few ATAPI devices choke on such DMA requests.
4604 */
4605 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4606 unlikely(qc->nbytes & 15))
4607 return 1;
4608
4609 if (ap->ops->check_atapi_dma)
4610 return ap->ops->check_atapi_dma(qc);
4611
4612 return 0;
4613 }
4614
4615 /**
4616 * ata_std_qc_defer - Check whether a qc needs to be deferred
4617 * @qc: ATA command in question
4618 *
4619 * Non-NCQ commands cannot run with any other command, NCQ or
4620 * not. As upper layer only knows the queue depth, we are
4621 * responsible for maintaining exclusion. This function checks
4622 * whether a new command @qc can be issued.
4623 *
4624 * LOCKING:
4625 * spin_lock_irqsave(host lock)
4626 *
4627 * RETURNS:
4628 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4629 */
4630 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4631 {
4632 struct ata_link *link = qc->dev->link;
4633
4634 if (qc->tf.protocol == ATA_PROT_NCQ) {
4635 if (!ata_tag_valid(link->active_tag))
4636 return 0;
4637 } else {
4638 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4639 return 0;
4640 }
4641
4642 return ATA_DEFER_LINK;
4643 }
4644
4645 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4646
4647 /**
4648 * ata_sg_init - Associate command with scatter-gather table.
4649 * @qc: Command to be associated
4650 * @sg: Scatter-gather table.
4651 * @n_elem: Number of elements in s/g table.
4652 *
4653 * Initialize the data-related elements of queued_cmd @qc
4654 * to point to a scatter-gather table @sg, containing @n_elem
4655 * elements.
4656 *
4657 * LOCKING:
4658 * spin_lock_irqsave(host lock)
4659 */
4660 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4661 unsigned int n_elem)
4662 {
4663 qc->sg = sg;
4664 qc->n_elem = n_elem;
4665 qc->cursg = qc->sg;
4666 }
4667
4668 /**
4669 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4670 * @qc: Command with scatter-gather table to be mapped.
4671 *
4672 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4673 *
4674 * LOCKING:
4675 * spin_lock_irqsave(host lock)
4676 *
4677 * RETURNS:
4678 * Zero on success, negative on error.
4679 *
4680 */
4681 static int ata_sg_setup(struct ata_queued_cmd *qc)
4682 {
4683 struct ata_port *ap = qc->ap;
4684 unsigned int n_elem;
4685
4686 VPRINTK("ENTER, ata%u\n", ap->print_id);
4687
4688 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4689 if (n_elem < 1)
4690 return -1;
4691
4692 DPRINTK("%d sg elements mapped\n", n_elem);
4693 qc->orig_n_elem = qc->n_elem;
4694 qc->n_elem = n_elem;
4695 qc->flags |= ATA_QCFLAG_DMAMAP;
4696
4697 return 0;
4698 }
4699
4700 /**
4701 * swap_buf_le16 - swap halves of 16-bit words in place
4702 * @buf: Buffer to swap
4703 * @buf_words: Number of 16-bit words in buffer.
4704 *
4705 * Swap halves of 16-bit words if needed to convert from
4706 * little-endian byte order to native cpu byte order, or
4707 * vice-versa.
4708 *
4709 * LOCKING:
4710 * Inherited from caller.
4711 */
4712 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4713 {
4714 #ifdef __BIG_ENDIAN
4715 unsigned int i;
4716
4717 for (i = 0; i < buf_words; i++)
4718 buf[i] = le16_to_cpu(buf[i]);
4719 #endif /* __BIG_ENDIAN */
4720 }
4721
4722 /**
4723 * ata_qc_new_init - Request an available ATA command, and initialize it
4724 * @dev: Device from whom we request an available command structure
4725 *
4726 * LOCKING:
4727 * None.
4728 */
4729
4730 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4731 {
4732 struct ata_port *ap = dev->link->ap;
4733 struct ata_queued_cmd *qc;
4734
4735 /* no command while frozen */
4736 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4737 return NULL;
4738
4739 /* libsas case */
4740 if (ap->flags & ATA_FLAG_SAS_HOST) {
4741 tag = ata_sas_allocate_tag(ap);
4742 if (tag < 0)
4743 return NULL;
4744 }
4745
4746 qc = __ata_qc_from_tag(ap, tag);
4747 qc->tag = tag;
4748 qc->scsicmd = NULL;
4749 qc->ap = ap;
4750 qc->dev = dev;
4751
4752 ata_qc_reinit(qc);
4753
4754 return qc;
4755 }
4756
4757 /**
4758 * ata_qc_free - free unused ata_queued_cmd
4759 * @qc: Command to complete
4760 *
4761 * Designed to free unused ata_queued_cmd object
4762 * in case something prevents using it.
4763 *
4764 * LOCKING:
4765 * spin_lock_irqsave(host lock)
4766 */
4767 void ata_qc_free(struct ata_queued_cmd *qc)
4768 {
4769 struct ata_port *ap;
4770 unsigned int tag;
4771
4772 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4773 ap = qc->ap;
4774
4775 qc->flags = 0;
4776 tag = qc->tag;
4777 if (likely(ata_tag_valid(tag))) {
4778 qc->tag = ATA_TAG_POISON;
4779 if (ap->flags & ATA_FLAG_SAS_HOST)
4780 ata_sas_free_tag(tag, ap);
4781 }
4782 }
4783
4784 void __ata_qc_complete(struct ata_queued_cmd *qc)
4785 {
4786 struct ata_port *ap;
4787 struct ata_link *link;
4788
4789 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4790 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4791 ap = qc->ap;
4792 link = qc->dev->link;
4793
4794 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4795 ata_sg_clean(qc);
4796
4797 /* command should be marked inactive atomically with qc completion */
4798 if (qc->tf.protocol == ATA_PROT_NCQ) {
4799 link->sactive &= ~(1 << qc->tag);
4800 if (!link->sactive)
4801 ap->nr_active_links--;
4802 } else {
4803 link->active_tag = ATA_TAG_POISON;
4804 ap->nr_active_links--;
4805 }
4806
4807 /* clear exclusive status */
4808 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4809 ap->excl_link == link))
4810 ap->excl_link = NULL;
4811
4812 /* atapi: mark qc as inactive to prevent the interrupt handler
4813 * from completing the command twice later, before the error handler
4814 * is called. (when rc != 0 and atapi request sense is needed)
4815 */
4816 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4817 ap->qc_active &= ~(1 << qc->tag);
4818
4819 /* call completion callback */
4820 qc->complete_fn(qc);
4821 }
4822
4823 static void fill_result_tf(struct ata_queued_cmd *qc)
4824 {
4825 struct ata_port *ap = qc->ap;
4826
4827 qc->result_tf.flags = qc->tf.flags;
4828 ap->ops->qc_fill_rtf(qc);
4829 }
4830
4831 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4832 {
4833 struct ata_device *dev = qc->dev;
4834
4835 if (ata_is_nodata(qc->tf.protocol))
4836 return;
4837
4838 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4839 return;
4840
4841 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4842 }
4843
4844 /**
4845 * ata_qc_complete - Complete an active ATA command
4846 * @qc: Command to complete
4847 *
4848 * Indicate to the mid and upper layers that an ATA command has
4849 * completed, with either an ok or not-ok status.
4850 *
4851 * Refrain from calling this function multiple times when
4852 * successfully completing multiple NCQ commands.
4853 * ata_qc_complete_multiple() should be used instead, which will
4854 * properly update IRQ expect state.
4855 *
4856 * LOCKING:
4857 * spin_lock_irqsave(host lock)
4858 */
4859 void ata_qc_complete(struct ata_queued_cmd *qc)
4860 {
4861 struct ata_port *ap = qc->ap;
4862
4863 /* XXX: New EH and old EH use different mechanisms to
4864 * synchronize EH with regular execution path.
4865 *
4866 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4867 * Normal execution path is responsible for not accessing a
4868 * failed qc. libata core enforces the rule by returning NULL
4869 * from ata_qc_from_tag() for failed qcs.
4870 *
4871 * Old EH depends on ata_qc_complete() nullifying completion
4872 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4873 * not synchronize with interrupt handler. Only PIO task is
4874 * taken care of.
4875 */
4876 if (ap->ops->error_handler) {
4877 struct ata_device *dev = qc->dev;
4878 struct ata_eh_info *ehi = &dev->link->eh_info;
4879
4880 if (unlikely(qc->err_mask))
4881 qc->flags |= ATA_QCFLAG_FAILED;
4882
4883 /*
4884 * Finish internal commands without any further processing
4885 * and always with the result TF filled.
4886 */
4887 if (unlikely(ata_tag_internal(qc->tag))) {
4888 fill_result_tf(qc);
4889 __ata_qc_complete(qc);
4890 return;
4891 }
4892
4893 /*
4894 * Non-internal qc has failed. Fill the result TF and
4895 * summon EH.
4896 */
4897 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4898 fill_result_tf(qc);
4899 ata_qc_schedule_eh(qc);
4900 return;
4901 }
4902
4903 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4904
4905 /* read result TF if requested */
4906 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4907 fill_result_tf(qc);
4908
4909 /* Some commands need post-processing after successful
4910 * completion.
4911 */
4912 switch (qc->tf.command) {
4913 case ATA_CMD_SET_FEATURES:
4914 if (qc->tf.feature != SETFEATURES_WC_ON &&
4915 qc->tf.feature != SETFEATURES_WC_OFF)
4916 break;
4917 /* fall through */
4918 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4919 case ATA_CMD_SET_MULTI: /* multi_count changed */
4920 /* revalidate device */
4921 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4922 ata_port_schedule_eh(ap);
4923 break;
4924
4925 case ATA_CMD_SLEEP:
4926 dev->flags |= ATA_DFLAG_SLEEPING;
4927 break;
4928 }
4929
4930 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4931 ata_verify_xfer(qc);
4932
4933 __ata_qc_complete(qc);
4934 } else {
4935 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4936 return;
4937
4938 /* read result TF if failed or requested */
4939 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4940 fill_result_tf(qc);
4941
4942 __ata_qc_complete(qc);
4943 }
4944 }
4945
4946 /**
4947 * ata_qc_complete_multiple - Complete multiple qcs successfully
4948 * @ap: port in question
4949 * @qc_active: new qc_active mask
4950 *
4951 * Complete in-flight commands. This functions is meant to be
4952 * called from low-level driver's interrupt routine to complete
4953 * requests normally. ap->qc_active and @qc_active is compared
4954 * and commands are completed accordingly.
4955 *
4956 * Always use this function when completing multiple NCQ commands
4957 * from IRQ handlers instead of calling ata_qc_complete()
4958 * multiple times to keep IRQ expect status properly in sync.
4959 *
4960 * LOCKING:
4961 * spin_lock_irqsave(host lock)
4962 *
4963 * RETURNS:
4964 * Number of completed commands on success, -errno otherwise.
4965 */
4966 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4967 {
4968 int nr_done = 0;
4969 u32 done_mask;
4970
4971 done_mask = ap->qc_active ^ qc_active;
4972
4973 if (unlikely(done_mask & qc_active)) {
4974 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4975 ap->qc_active, qc_active);
4976 return -EINVAL;
4977 }
4978
4979 while (done_mask) {
4980 struct ata_queued_cmd *qc;
4981 unsigned int tag = __ffs(done_mask);
4982
4983 qc = ata_qc_from_tag(ap, tag);
4984 if (qc) {
4985 ata_qc_complete(qc);
4986 nr_done++;
4987 }
4988 done_mask &= ~(1 << tag);
4989 }
4990
4991 return nr_done;
4992 }
4993
4994 /**
4995 * ata_qc_issue - issue taskfile to device
4996 * @qc: command to issue to device
4997 *
4998 * Prepare an ATA command to submission to device.
4999 * This includes mapping the data into a DMA-able
5000 * area, filling in the S/G table, and finally
5001 * writing the taskfile to hardware, starting the command.
5002 *
5003 * LOCKING:
5004 * spin_lock_irqsave(host lock)
5005 */
5006 void ata_qc_issue(struct ata_queued_cmd *qc)
5007 {
5008 struct ata_port *ap = qc->ap;
5009 struct ata_link *link = qc->dev->link;
5010 u8 prot = qc->tf.protocol;
5011
5012 /* Make sure only one non-NCQ command is outstanding. The
5013 * check is skipped for old EH because it reuses active qc to
5014 * request ATAPI sense.
5015 */
5016 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5017
5018 if (ata_is_ncq(prot)) {
5019 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5020
5021 if (!link->sactive)
5022 ap->nr_active_links++;
5023 link->sactive |= 1 << qc->tag;
5024 } else {
5025 WARN_ON_ONCE(link->sactive);
5026
5027 ap->nr_active_links++;
5028 link->active_tag = qc->tag;
5029 }
5030
5031 qc->flags |= ATA_QCFLAG_ACTIVE;
5032 ap->qc_active |= 1 << qc->tag;
5033
5034 /*
5035 * We guarantee to LLDs that they will have at least one
5036 * non-zero sg if the command is a data command.
5037 */
5038 if (WARN_ON_ONCE(ata_is_data(prot) &&
5039 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5040 goto sys_err;
5041
5042 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5043 (ap->flags & ATA_FLAG_PIO_DMA)))
5044 if (ata_sg_setup(qc))
5045 goto sys_err;
5046
5047 /* if device is sleeping, schedule reset and abort the link */
5048 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5049 link->eh_info.action |= ATA_EH_RESET;
5050 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5051 ata_link_abort(link);
5052 return;
5053 }
5054
5055 ap->ops->qc_prep(qc);
5056
5057 qc->err_mask |= ap->ops->qc_issue(qc);
5058 if (unlikely(qc->err_mask))
5059 goto err;
5060 return;
5061
5062 sys_err:
5063 qc->err_mask |= AC_ERR_SYSTEM;
5064 err:
5065 ata_qc_complete(qc);
5066 }
5067
5068 /**
5069 * sata_scr_valid - test whether SCRs are accessible
5070 * @link: ATA link to test SCR accessibility for
5071 *
5072 * Test whether SCRs are accessible for @link.
5073 *
5074 * LOCKING:
5075 * None.
5076 *
5077 * RETURNS:
5078 * 1 if SCRs are accessible, 0 otherwise.
5079 */
5080 int sata_scr_valid(struct ata_link *link)
5081 {
5082 struct ata_port *ap = link->ap;
5083
5084 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5085 }
5086
5087 /**
5088 * sata_scr_read - read SCR register of the specified port
5089 * @link: ATA link to read SCR for
5090 * @reg: SCR to read
5091 * @val: Place to store read value
5092 *
5093 * Read SCR register @reg of @link into *@val. This function is
5094 * guaranteed to succeed if @link is ap->link, the cable type of
5095 * the port is SATA and the port implements ->scr_read.
5096 *
5097 * LOCKING:
5098 * None if @link is ap->link. Kernel thread context otherwise.
5099 *
5100 * RETURNS:
5101 * 0 on success, negative errno on failure.
5102 */
5103 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5104 {
5105 if (ata_is_host_link(link)) {
5106 if (sata_scr_valid(link))
5107 return link->ap->ops->scr_read(link, reg, val);
5108 return -EOPNOTSUPP;
5109 }
5110
5111 return sata_pmp_scr_read(link, reg, val);
5112 }
5113
5114 /**
5115 * sata_scr_write - write SCR register of the specified port
5116 * @link: ATA link to write SCR for
5117 * @reg: SCR to write
5118 * @val: value to write
5119 *
5120 * Write @val to SCR register @reg of @link. This function is
5121 * guaranteed to succeed if @link is ap->link, the cable type of
5122 * the port is SATA and the port implements ->scr_read.
5123 *
5124 * LOCKING:
5125 * None if @link is ap->link. Kernel thread context otherwise.
5126 *
5127 * RETURNS:
5128 * 0 on success, negative errno on failure.
5129 */
5130 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5131 {
5132 if (ata_is_host_link(link)) {
5133 if (sata_scr_valid(link))
5134 return link->ap->ops->scr_write(link, reg, val);
5135 return -EOPNOTSUPP;
5136 }
5137
5138 return sata_pmp_scr_write(link, reg, val);
5139 }
5140
5141 /**
5142 * sata_scr_write_flush - write SCR register of the specified port and flush
5143 * @link: ATA link to write SCR for
5144 * @reg: SCR to write
5145 * @val: value to write
5146 *
5147 * This function is identical to sata_scr_write() except that this
5148 * function performs flush after writing to the register.
5149 *
5150 * LOCKING:
5151 * None if @link is ap->link. Kernel thread context otherwise.
5152 *
5153 * RETURNS:
5154 * 0 on success, negative errno on failure.
5155 */
5156 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5157 {
5158 if (ata_is_host_link(link)) {
5159 int rc;
5160
5161 if (sata_scr_valid(link)) {
5162 rc = link->ap->ops->scr_write(link, reg, val);
5163 if (rc == 0)
5164 rc = link->ap->ops->scr_read(link, reg, &val);
5165 return rc;
5166 }
5167 return -EOPNOTSUPP;
5168 }
5169
5170 return sata_pmp_scr_write(link, reg, val);
5171 }
5172
5173 /**
5174 * ata_phys_link_online - test whether the given link is online
5175 * @link: ATA link to test
5176 *
5177 * Test whether @link is online. Note that this function returns
5178 * 0 if online status of @link cannot be obtained, so
5179 * ata_link_online(link) != !ata_link_offline(link).
5180 *
5181 * LOCKING:
5182 * None.
5183 *
5184 * RETURNS:
5185 * True if the port online status is available and online.
5186 */
5187 bool ata_phys_link_online(struct ata_link *link)
5188 {
5189 u32 sstatus;
5190
5191 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5192 ata_sstatus_online(sstatus))
5193 return true;
5194 return false;
5195 }
5196
5197 /**
5198 * ata_phys_link_offline - test whether the given link is offline
5199 * @link: ATA link to test
5200 *
5201 * Test whether @link is offline. Note that this function
5202 * returns 0 if offline status of @link cannot be obtained, so
5203 * ata_link_online(link) != !ata_link_offline(link).
5204 *
5205 * LOCKING:
5206 * None.
5207 *
5208 * RETURNS:
5209 * True if the port offline status is available and offline.
5210 */
5211 bool ata_phys_link_offline(struct ata_link *link)
5212 {
5213 u32 sstatus;
5214
5215 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5216 !ata_sstatus_online(sstatus))
5217 return true;
5218 return false;
5219 }
5220
5221 /**
5222 * ata_link_online - test whether the given link is online
5223 * @link: ATA link to test
5224 *
5225 * Test whether @link is online. This is identical to
5226 * ata_phys_link_online() when there's no slave link. When
5227 * there's a slave link, this function should only be called on
5228 * the master link and will return true if any of M/S links is
5229 * online.
5230 *
5231 * LOCKING:
5232 * None.
5233 *
5234 * RETURNS:
5235 * True if the port online status is available and online.
5236 */
5237 bool ata_link_online(struct ata_link *link)
5238 {
5239 struct ata_link *slave = link->ap->slave_link;
5240
5241 WARN_ON(link == slave); /* shouldn't be called on slave link */
5242
5243 return ata_phys_link_online(link) ||
5244 (slave && ata_phys_link_online(slave));
5245 }
5246
5247 /**
5248 * ata_link_offline - test whether the given link is offline
5249 * @link: ATA link to test
5250 *
5251 * Test whether @link is offline. This is identical to
5252 * ata_phys_link_offline() when there's no slave link. When
5253 * there's a slave link, this function should only be called on
5254 * the master link and will return true if both M/S links are
5255 * offline.
5256 *
5257 * LOCKING:
5258 * None.
5259 *
5260 * RETURNS:
5261 * True if the port offline status is available and offline.
5262 */
5263 bool ata_link_offline(struct ata_link *link)
5264 {
5265 struct ata_link *slave = link->ap->slave_link;
5266
5267 WARN_ON(link == slave); /* shouldn't be called on slave link */
5268
5269 return ata_phys_link_offline(link) &&
5270 (!slave || ata_phys_link_offline(slave));
5271 }
5272
5273 #ifdef CONFIG_PM
5274 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5275 unsigned int action, unsigned int ehi_flags,
5276 bool async)
5277 {
5278 struct ata_link *link;
5279 unsigned long flags;
5280
5281 /* Previous resume operation might still be in
5282 * progress. Wait for PM_PENDING to clear.
5283 */
5284 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5285 ata_port_wait_eh(ap);
5286 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5287 }
5288
5289 /* request PM ops to EH */
5290 spin_lock_irqsave(ap->lock, flags);
5291
5292 ap->pm_mesg = mesg;
5293 ap->pflags |= ATA_PFLAG_PM_PENDING;
5294 ata_for_each_link(link, ap, HOST_FIRST) {
5295 link->eh_info.action |= action;
5296 link->eh_info.flags |= ehi_flags;
5297 }
5298
5299 ata_port_schedule_eh(ap);
5300
5301 spin_unlock_irqrestore(ap->lock, flags);
5302
5303 if (!async) {
5304 ata_port_wait_eh(ap);
5305 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5306 }
5307 }
5308
5309 /*
5310 * On some hardware, device fails to respond after spun down for suspend. As
5311 * the device won't be used before being resumed, we don't need to touch the
5312 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5313 *
5314 * http://thread.gmane.org/gmane.linux.ide/46764
5315 */
5316 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5317 | ATA_EHI_NO_AUTOPSY
5318 | ATA_EHI_NO_RECOVERY;
5319
5320 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5321 {
5322 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5323 }
5324
5325 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5326 {
5327 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5328 }
5329
5330 static int ata_port_pm_suspend(struct device *dev)
5331 {
5332 struct ata_port *ap = to_ata_port(dev);
5333
5334 if (pm_runtime_suspended(dev))
5335 return 0;
5336
5337 ata_port_suspend(ap, PMSG_SUSPEND);
5338 return 0;
5339 }
5340
5341 static int ata_port_pm_freeze(struct device *dev)
5342 {
5343 struct ata_port *ap = to_ata_port(dev);
5344
5345 if (pm_runtime_suspended(dev))
5346 return 0;
5347
5348 ata_port_suspend(ap, PMSG_FREEZE);
5349 return 0;
5350 }
5351
5352 static int ata_port_pm_poweroff(struct device *dev)
5353 {
5354 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5355 return 0;
5356 }
5357
5358 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5359 | ATA_EHI_QUIET;
5360
5361 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5362 {
5363 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5364 }
5365
5366 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5367 {
5368 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5369 }
5370
5371 static int ata_port_pm_resume(struct device *dev)
5372 {
5373 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5374 pm_runtime_disable(dev);
5375 pm_runtime_set_active(dev);
5376 pm_runtime_enable(dev);
5377 return 0;
5378 }
5379
5380 /*
5381 * For ODDs, the upper layer will poll for media change every few seconds,
5382 * which will make it enter and leave suspend state every few seconds. And
5383 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5384 * is very little and the ODD may malfunction after constantly being reset.
5385 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5386 * ODD is attached to the port.
5387 */
5388 static int ata_port_runtime_idle(struct device *dev)
5389 {
5390 struct ata_port *ap = to_ata_port(dev);
5391 struct ata_link *link;
5392 struct ata_device *adev;
5393
5394 ata_for_each_link(link, ap, HOST_FIRST) {
5395 ata_for_each_dev(adev, link, ENABLED)
5396 if (adev->class == ATA_DEV_ATAPI &&
5397 !zpodd_dev_enabled(adev))
5398 return -EBUSY;
5399 }
5400
5401 return 0;
5402 }
5403
5404 static int ata_port_runtime_suspend(struct device *dev)
5405 {
5406 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5407 return 0;
5408 }
5409
5410 static int ata_port_runtime_resume(struct device *dev)
5411 {
5412 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5413 return 0;
5414 }
5415
5416 static const struct dev_pm_ops ata_port_pm_ops = {
5417 .suspend = ata_port_pm_suspend,
5418 .resume = ata_port_pm_resume,
5419 .freeze = ata_port_pm_freeze,
5420 .thaw = ata_port_pm_resume,
5421 .poweroff = ata_port_pm_poweroff,
5422 .restore = ata_port_pm_resume,
5423
5424 .runtime_suspend = ata_port_runtime_suspend,
5425 .runtime_resume = ata_port_runtime_resume,
5426 .runtime_idle = ata_port_runtime_idle,
5427 };
5428
5429 /* sas ports don't participate in pm runtime management of ata_ports,
5430 * and need to resume ata devices at the domain level, not the per-port
5431 * level. sas suspend/resume is async to allow parallel port recovery
5432 * since sas has multiple ata_port instances per Scsi_Host.
5433 */
5434 void ata_sas_port_suspend(struct ata_port *ap)
5435 {
5436 ata_port_suspend_async(ap, PMSG_SUSPEND);
5437 }
5438 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5439
5440 void ata_sas_port_resume(struct ata_port *ap)
5441 {
5442 ata_port_resume_async(ap, PMSG_RESUME);
5443 }
5444 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5445
5446 /**
5447 * ata_host_suspend - suspend host
5448 * @host: host to suspend
5449 * @mesg: PM message
5450 *
5451 * Suspend @host. Actual operation is performed by port suspend.
5452 */
5453 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5454 {
5455 host->dev->power.power_state = mesg;
5456 return 0;
5457 }
5458
5459 /**
5460 * ata_host_resume - resume host
5461 * @host: host to resume
5462 *
5463 * Resume @host. Actual operation is performed by port resume.
5464 */
5465 void ata_host_resume(struct ata_host *host)
5466 {
5467 host->dev->power.power_state = PMSG_ON;
5468 }
5469 #endif
5470
5471 struct device_type ata_port_type = {
5472 .name = "ata_port",
5473 #ifdef CONFIG_PM
5474 .pm = &ata_port_pm_ops,
5475 #endif
5476 };
5477
5478 /**
5479 * ata_dev_init - Initialize an ata_device structure
5480 * @dev: Device structure to initialize
5481 *
5482 * Initialize @dev in preparation for probing.
5483 *
5484 * LOCKING:
5485 * Inherited from caller.
5486 */
5487 void ata_dev_init(struct ata_device *dev)
5488 {
5489 struct ata_link *link = ata_dev_phys_link(dev);
5490 struct ata_port *ap = link->ap;
5491 unsigned long flags;
5492
5493 /* SATA spd limit is bound to the attached device, reset together */
5494 link->sata_spd_limit = link->hw_sata_spd_limit;
5495 link->sata_spd = 0;
5496
5497 /* High bits of dev->flags are used to record warm plug
5498 * requests which occur asynchronously. Synchronize using
5499 * host lock.
5500 */
5501 spin_lock_irqsave(ap->lock, flags);
5502 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5503 dev->horkage = 0;
5504 spin_unlock_irqrestore(ap->lock, flags);
5505
5506 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5507 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5508 dev->pio_mask = UINT_MAX;
5509 dev->mwdma_mask = UINT_MAX;
5510 dev->udma_mask = UINT_MAX;
5511 }
5512
5513 /**
5514 * ata_link_init - Initialize an ata_link structure
5515 * @ap: ATA port link is attached to
5516 * @link: Link structure to initialize
5517 * @pmp: Port multiplier port number
5518 *
5519 * Initialize @link.
5520 *
5521 * LOCKING:
5522 * Kernel thread context (may sleep)
5523 */
5524 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5525 {
5526 int i;
5527
5528 /* clear everything except for devices */
5529 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5530 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5531
5532 link->ap = ap;
5533 link->pmp = pmp;
5534 link->active_tag = ATA_TAG_POISON;
5535 link->hw_sata_spd_limit = UINT_MAX;
5536
5537 /* can't use iterator, ap isn't initialized yet */
5538 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5539 struct ata_device *dev = &link->device[i];
5540
5541 dev->link = link;
5542 dev->devno = dev - link->device;
5543 #ifdef CONFIG_ATA_ACPI
5544 dev->gtf_filter = ata_acpi_gtf_filter;
5545 #endif
5546 ata_dev_init(dev);
5547 }
5548 }
5549
5550 /**
5551 * sata_link_init_spd - Initialize link->sata_spd_limit
5552 * @link: Link to configure sata_spd_limit for
5553 *
5554 * Initialize @link->[hw_]sata_spd_limit to the currently
5555 * configured value.
5556 *
5557 * LOCKING:
5558 * Kernel thread context (may sleep).
5559 *
5560 * RETURNS:
5561 * 0 on success, -errno on failure.
5562 */
5563 int sata_link_init_spd(struct ata_link *link)
5564 {
5565 u8 spd;
5566 int rc;
5567
5568 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5569 if (rc)
5570 return rc;
5571
5572 spd = (link->saved_scontrol >> 4) & 0xf;
5573 if (spd)
5574 link->hw_sata_spd_limit &= (1 << spd) - 1;
5575
5576 ata_force_link_limits(link);
5577
5578 link->sata_spd_limit = link->hw_sata_spd_limit;
5579
5580 return 0;
5581 }
5582
5583 /**
5584 * ata_port_alloc - allocate and initialize basic ATA port resources
5585 * @host: ATA host this allocated port belongs to
5586 *
5587 * Allocate and initialize basic ATA port resources.
5588 *
5589 * RETURNS:
5590 * Allocate ATA port on success, NULL on failure.
5591 *
5592 * LOCKING:
5593 * Inherited from calling layer (may sleep).
5594 */
5595 struct ata_port *ata_port_alloc(struct ata_host *host)
5596 {
5597 struct ata_port *ap;
5598
5599 DPRINTK("ENTER\n");
5600
5601 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5602 if (!ap)
5603 return NULL;
5604
5605 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5606 ap->lock = &host->lock;
5607 ap->print_id = -1;
5608 ap->local_port_no = -1;
5609 ap->host = host;
5610 ap->dev = host->dev;
5611
5612 #if defined(ATA_VERBOSE_DEBUG)
5613 /* turn on all debugging levels */
5614 ap->msg_enable = 0x00FF;
5615 #elif defined(ATA_DEBUG)
5616 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5617 #else
5618 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5619 #endif
5620
5621 mutex_init(&ap->scsi_scan_mutex);
5622 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5623 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5624 INIT_LIST_HEAD(&ap->eh_done_q);
5625 init_waitqueue_head(&ap->eh_wait_q);
5626 init_completion(&ap->park_req_pending);
5627 init_timer_deferrable(&ap->fastdrain_timer);
5628 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5629 ap->fastdrain_timer.data = (unsigned long)ap;
5630
5631 ap->cbl = ATA_CBL_NONE;
5632
5633 ata_link_init(ap, &ap->link, 0);
5634
5635 #ifdef ATA_IRQ_TRAP
5636 ap->stats.unhandled_irq = 1;
5637 ap->stats.idle_irq = 1;
5638 #endif
5639 ata_sff_port_init(ap);
5640
5641 return ap;
5642 }
5643
5644 static void ata_host_release(struct device *gendev, void *res)
5645 {
5646 struct ata_host *host = dev_get_drvdata(gendev);
5647 int i;
5648
5649 for (i = 0; i < host->n_ports; i++) {
5650 struct ata_port *ap = host->ports[i];
5651
5652 if (!ap)
5653 continue;
5654
5655 if (ap->scsi_host)
5656 scsi_host_put(ap->scsi_host);
5657
5658 kfree(ap->pmp_link);
5659 kfree(ap->slave_link);
5660 kfree(ap);
5661 host->ports[i] = NULL;
5662 }
5663
5664 dev_set_drvdata(gendev, NULL);
5665 }
5666
5667 /**
5668 * ata_host_alloc - allocate and init basic ATA host resources
5669 * @dev: generic device this host is associated with
5670 * @max_ports: maximum number of ATA ports associated with this host
5671 *
5672 * Allocate and initialize basic ATA host resources. LLD calls
5673 * this function to allocate a host, initializes it fully and
5674 * attaches it using ata_host_register().
5675 *
5676 * @max_ports ports are allocated and host->n_ports is
5677 * initialized to @max_ports. The caller is allowed to decrease
5678 * host->n_ports before calling ata_host_register(). The unused
5679 * ports will be automatically freed on registration.
5680 *
5681 * RETURNS:
5682 * Allocate ATA host on success, NULL on failure.
5683 *
5684 * LOCKING:
5685 * Inherited from calling layer (may sleep).
5686 */
5687 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5688 {
5689 struct ata_host *host;
5690 size_t sz;
5691 int i;
5692
5693 DPRINTK("ENTER\n");
5694
5695 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5696 return NULL;
5697
5698 /* alloc a container for our list of ATA ports (buses) */
5699 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5700 /* alloc a container for our list of ATA ports (buses) */
5701 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5702 if (!host)
5703 goto err_out;
5704
5705 devres_add(dev, host);
5706 dev_set_drvdata(dev, host);
5707
5708 spin_lock_init(&host->lock);
5709 mutex_init(&host->eh_mutex);
5710 host->dev = dev;
5711 host->n_ports = max_ports;
5712
5713 /* allocate ports bound to this host */
5714 for (i = 0; i < max_ports; i++) {
5715 struct ata_port *ap;
5716
5717 ap = ata_port_alloc(host);
5718 if (!ap)
5719 goto err_out;
5720
5721 ap->port_no = i;
5722 host->ports[i] = ap;
5723 }
5724
5725 devres_remove_group(dev, NULL);
5726 return host;
5727
5728 err_out:
5729 devres_release_group(dev, NULL);
5730 return NULL;
5731 }
5732
5733 /**
5734 * ata_host_alloc_pinfo - alloc host and init with port_info array
5735 * @dev: generic device this host is associated with
5736 * @ppi: array of ATA port_info to initialize host with
5737 * @n_ports: number of ATA ports attached to this host
5738 *
5739 * Allocate ATA host and initialize with info from @ppi. If NULL
5740 * terminated, @ppi may contain fewer entries than @n_ports. The
5741 * last entry will be used for the remaining ports.
5742 *
5743 * RETURNS:
5744 * Allocate ATA host on success, NULL on failure.
5745 *
5746 * LOCKING:
5747 * Inherited from calling layer (may sleep).
5748 */
5749 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5750 const struct ata_port_info * const * ppi,
5751 int n_ports)
5752 {
5753 const struct ata_port_info *pi;
5754 struct ata_host *host;
5755 int i, j;
5756
5757 host = ata_host_alloc(dev, n_ports);
5758 if (!host)
5759 return NULL;
5760
5761 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5762 struct ata_port *ap = host->ports[i];
5763
5764 if (ppi[j])
5765 pi = ppi[j++];
5766
5767 ap->pio_mask = pi->pio_mask;
5768 ap->mwdma_mask = pi->mwdma_mask;
5769 ap->udma_mask = pi->udma_mask;
5770 ap->flags |= pi->flags;
5771 ap->link.flags |= pi->link_flags;
5772 ap->ops = pi->port_ops;
5773
5774 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5775 host->ops = pi->port_ops;
5776 }
5777
5778 return host;
5779 }
5780
5781 /**
5782 * ata_slave_link_init - initialize slave link
5783 * @ap: port to initialize slave link for
5784 *
5785 * Create and initialize slave link for @ap. This enables slave
5786 * link handling on the port.
5787 *
5788 * In libata, a port contains links and a link contains devices.
5789 * There is single host link but if a PMP is attached to it,
5790 * there can be multiple fan-out links. On SATA, there's usually
5791 * a single device connected to a link but PATA and SATA
5792 * controllers emulating TF based interface can have two - master
5793 * and slave.
5794 *
5795 * However, there are a few controllers which don't fit into this
5796 * abstraction too well - SATA controllers which emulate TF
5797 * interface with both master and slave devices but also have
5798 * separate SCR register sets for each device. These controllers
5799 * need separate links for physical link handling
5800 * (e.g. onlineness, link speed) but should be treated like a
5801 * traditional M/S controller for everything else (e.g. command
5802 * issue, softreset).
5803 *
5804 * slave_link is libata's way of handling this class of
5805 * controllers without impacting core layer too much. For
5806 * anything other than physical link handling, the default host
5807 * link is used for both master and slave. For physical link
5808 * handling, separate @ap->slave_link is used. All dirty details
5809 * are implemented inside libata core layer. From LLD's POV, the
5810 * only difference is that prereset, hardreset and postreset are
5811 * called once more for the slave link, so the reset sequence
5812 * looks like the following.
5813 *
5814 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5815 * softreset(M) -> postreset(M) -> postreset(S)
5816 *
5817 * Note that softreset is called only for the master. Softreset
5818 * resets both M/S by definition, so SRST on master should handle
5819 * both (the standard method will work just fine).
5820 *
5821 * LOCKING:
5822 * Should be called before host is registered.
5823 *
5824 * RETURNS:
5825 * 0 on success, -errno on failure.
5826 */
5827 int ata_slave_link_init(struct ata_port *ap)
5828 {
5829 struct ata_link *link;
5830
5831 WARN_ON(ap->slave_link);
5832 WARN_ON(ap->flags & ATA_FLAG_PMP);
5833
5834 link = kzalloc(sizeof(*link), GFP_KERNEL);
5835 if (!link)
5836 return -ENOMEM;
5837
5838 ata_link_init(ap, link, 1);
5839 ap->slave_link = link;
5840 return 0;
5841 }
5842
5843 static void ata_host_stop(struct device *gendev, void *res)
5844 {
5845 struct ata_host *host = dev_get_drvdata(gendev);
5846 int i;
5847
5848 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5849
5850 for (i = 0; i < host->n_ports; i++) {
5851 struct ata_port *ap = host->ports[i];
5852
5853 if (ap->ops->port_stop)
5854 ap->ops->port_stop(ap);
5855 }
5856
5857 if (host->ops->host_stop)
5858 host->ops->host_stop(host);
5859 }
5860
5861 /**
5862 * ata_finalize_port_ops - finalize ata_port_operations
5863 * @ops: ata_port_operations to finalize
5864 *
5865 * An ata_port_operations can inherit from another ops and that
5866 * ops can again inherit from another. This can go on as many
5867 * times as necessary as long as there is no loop in the
5868 * inheritance chain.
5869 *
5870 * Ops tables are finalized when the host is started. NULL or
5871 * unspecified entries are inherited from the closet ancestor
5872 * which has the method and the entry is populated with it.
5873 * After finalization, the ops table directly points to all the
5874 * methods and ->inherits is no longer necessary and cleared.
5875 *
5876 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5877 *
5878 * LOCKING:
5879 * None.
5880 */
5881 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5882 {
5883 static DEFINE_SPINLOCK(lock);
5884 const struct ata_port_operations *cur;
5885 void **begin = (void **)ops;
5886 void **end = (void **)&ops->inherits;
5887 void **pp;
5888
5889 if (!ops || !ops->inherits)
5890 return;
5891
5892 spin_lock(&lock);
5893
5894 for (cur = ops->inherits; cur; cur = cur->inherits) {
5895 void **inherit = (void **)cur;
5896
5897 for (pp = begin; pp < end; pp++, inherit++)
5898 if (!*pp)
5899 *pp = *inherit;
5900 }
5901
5902 for (pp = begin; pp < end; pp++)
5903 if (IS_ERR(*pp))
5904 *pp = NULL;
5905
5906 ops->inherits = NULL;
5907
5908 spin_unlock(&lock);
5909 }
5910
5911 /**
5912 * ata_host_start - start and freeze ports of an ATA host
5913 * @host: ATA host to start ports for
5914 *
5915 * Start and then freeze ports of @host. Started status is
5916 * recorded in host->flags, so this function can be called
5917 * multiple times. Ports are guaranteed to get started only
5918 * once. If host->ops isn't initialized yet, its set to the
5919 * first non-dummy port ops.
5920 *
5921 * LOCKING:
5922 * Inherited from calling layer (may sleep).
5923 *
5924 * RETURNS:
5925 * 0 if all ports are started successfully, -errno otherwise.
5926 */
5927 int ata_host_start(struct ata_host *host)
5928 {
5929 int have_stop = 0;
5930 void *start_dr = NULL;
5931 int i, rc;
5932
5933 if (host->flags & ATA_HOST_STARTED)
5934 return 0;
5935
5936 ata_finalize_port_ops(host->ops);
5937
5938 for (i = 0; i < host->n_ports; i++) {
5939 struct ata_port *ap = host->ports[i];
5940
5941 ata_finalize_port_ops(ap->ops);
5942
5943 if (!host->ops && !ata_port_is_dummy(ap))
5944 host->ops = ap->ops;
5945
5946 if (ap->ops->port_stop)
5947 have_stop = 1;
5948 }
5949
5950 if (host->ops->host_stop)
5951 have_stop = 1;
5952
5953 if (have_stop) {
5954 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5955 if (!start_dr)
5956 return -ENOMEM;
5957 }
5958
5959 for (i = 0; i < host->n_ports; i++) {
5960 struct ata_port *ap = host->ports[i];
5961
5962 if (ap->ops->port_start) {
5963 rc = ap->ops->port_start(ap);
5964 if (rc) {
5965 if (rc != -ENODEV)
5966 dev_err(host->dev,
5967 "failed to start port %d (errno=%d)\n",
5968 i, rc);
5969 goto err_out;
5970 }
5971 }
5972 ata_eh_freeze_port(ap);
5973 }
5974
5975 if (start_dr)
5976 devres_add(host->dev, start_dr);
5977 host->flags |= ATA_HOST_STARTED;
5978 return 0;
5979
5980 err_out:
5981 while (--i >= 0) {
5982 struct ata_port *ap = host->ports[i];
5983
5984 if (ap->ops->port_stop)
5985 ap->ops->port_stop(ap);
5986 }
5987 devres_free(start_dr);
5988 return rc;
5989 }
5990
5991 /**
5992 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
5993 * @host: host to initialize
5994 * @dev: device host is attached to
5995 * @ops: port_ops
5996 *
5997 */
5998 void ata_host_init(struct ata_host *host, struct device *dev,
5999 struct ata_port_operations *ops)
6000 {
6001 spin_lock_init(&host->lock);
6002 mutex_init(&host->eh_mutex);
6003 host->n_tags = ATA_MAX_QUEUE - 1;
6004 host->dev = dev;
6005 host->ops = ops;
6006 }
6007
6008 void __ata_port_probe(struct ata_port *ap)
6009 {
6010 struct ata_eh_info *ehi = &ap->link.eh_info;
6011 unsigned long flags;
6012
6013 /* kick EH for boot probing */
6014 spin_lock_irqsave(ap->lock, flags);
6015
6016 ehi->probe_mask |= ATA_ALL_DEVICES;
6017 ehi->action |= ATA_EH_RESET;
6018 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6019
6020 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6021 ap->pflags |= ATA_PFLAG_LOADING;
6022 ata_port_schedule_eh(ap);
6023
6024 spin_unlock_irqrestore(ap->lock, flags);
6025 }
6026
6027 int ata_port_probe(struct ata_port *ap)
6028 {
6029 int rc = 0;
6030
6031 if (ap->ops->error_handler) {
6032 __ata_port_probe(ap);
6033 ata_port_wait_eh(ap);
6034 } else {
6035 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6036 rc = ata_bus_probe(ap);
6037 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6038 }
6039 return rc;
6040 }
6041
6042
6043 static void async_port_probe(void *data, async_cookie_t cookie)
6044 {
6045 struct ata_port *ap = data;
6046
6047 /*
6048 * If we're not allowed to scan this host in parallel,
6049 * we need to wait until all previous scans have completed
6050 * before going further.
6051 * Jeff Garzik says this is only within a controller, so we
6052 * don't need to wait for port 0, only for later ports.
6053 */
6054 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6055 async_synchronize_cookie(cookie);
6056
6057 (void)ata_port_probe(ap);
6058
6059 /* in order to keep device order, we need to synchronize at this point */
6060 async_synchronize_cookie(cookie);
6061
6062 ata_scsi_scan_host(ap, 1);
6063 }
6064
6065 /**
6066 * ata_host_register - register initialized ATA host
6067 * @host: ATA host to register
6068 * @sht: template for SCSI host
6069 *
6070 * Register initialized ATA host. @host is allocated using
6071 * ata_host_alloc() and fully initialized by LLD. This function
6072 * starts ports, registers @host with ATA and SCSI layers and
6073 * probe registered devices.
6074 *
6075 * LOCKING:
6076 * Inherited from calling layer (may sleep).
6077 *
6078 * RETURNS:
6079 * 0 on success, -errno otherwise.
6080 */
6081 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6082 {
6083 int i, rc;
6084
6085 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6086
6087 /* host must have been started */
6088 if (!(host->flags & ATA_HOST_STARTED)) {
6089 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6090 WARN_ON(1);
6091 return -EINVAL;
6092 }
6093
6094 /* Blow away unused ports. This happens when LLD can't
6095 * determine the exact number of ports to allocate at
6096 * allocation time.
6097 */
6098 for (i = host->n_ports; host->ports[i]; i++)
6099 kfree(host->ports[i]);
6100
6101 /* give ports names and add SCSI hosts */
6102 for (i = 0; i < host->n_ports; i++) {
6103 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6104 host->ports[i]->local_port_no = i + 1;
6105 }
6106
6107 /* Create associated sysfs transport objects */
6108 for (i = 0; i < host->n_ports; i++) {
6109 rc = ata_tport_add(host->dev,host->ports[i]);
6110 if (rc) {
6111 goto err_tadd;
6112 }
6113 }
6114
6115 rc = ata_scsi_add_hosts(host, sht);
6116 if (rc)
6117 goto err_tadd;
6118
6119 /* set cable, sata_spd_limit and report */
6120 for (i = 0; i < host->n_ports; i++) {
6121 struct ata_port *ap = host->ports[i];
6122 unsigned long xfer_mask;
6123
6124 /* set SATA cable type if still unset */
6125 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6126 ap->cbl = ATA_CBL_SATA;
6127
6128 /* init sata_spd_limit to the current value */
6129 sata_link_init_spd(&ap->link);
6130 if (ap->slave_link)
6131 sata_link_init_spd(ap->slave_link);
6132
6133 /* print per-port info to dmesg */
6134 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6135 ap->udma_mask);
6136
6137 if (!ata_port_is_dummy(ap)) {
6138 ata_port_info(ap, "%cATA max %s %s\n",
6139 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6140 ata_mode_string(xfer_mask),
6141 ap->link.eh_info.desc);
6142 ata_ehi_clear_desc(&ap->link.eh_info);
6143 } else
6144 ata_port_info(ap, "DUMMY\n");
6145 }
6146
6147 /* perform each probe asynchronously */
6148 for (i = 0; i < host->n_ports; i++) {
6149 struct ata_port *ap = host->ports[i];
6150 async_schedule(async_port_probe, ap);
6151 }
6152
6153 return 0;
6154
6155 err_tadd:
6156 while (--i >= 0) {
6157 ata_tport_delete(host->ports[i]);
6158 }
6159 return rc;
6160
6161 }
6162
6163 /**
6164 * ata_host_activate - start host, request IRQ and register it
6165 * @host: target ATA host
6166 * @irq: IRQ to request
6167 * @irq_handler: irq_handler used when requesting IRQ
6168 * @irq_flags: irq_flags used when requesting IRQ
6169 * @sht: scsi_host_template to use when registering the host
6170 *
6171 * After allocating an ATA host and initializing it, most libata
6172 * LLDs perform three steps to activate the host - start host,
6173 * request IRQ and register it. This helper takes necessasry
6174 * arguments and performs the three steps in one go.
6175 *
6176 * An invalid IRQ skips the IRQ registration and expects the host to
6177 * have set polling mode on the port. In this case, @irq_handler
6178 * should be NULL.
6179 *
6180 * LOCKING:
6181 * Inherited from calling layer (may sleep).
6182 *
6183 * RETURNS:
6184 * 0 on success, -errno otherwise.
6185 */
6186 int ata_host_activate(struct ata_host *host, int irq,
6187 irq_handler_t irq_handler, unsigned long irq_flags,
6188 struct scsi_host_template *sht)
6189 {
6190 int i, rc;
6191
6192 rc = ata_host_start(host);
6193 if (rc)
6194 return rc;
6195
6196 /* Special case for polling mode */
6197 if (!irq) {
6198 WARN_ON(irq_handler);
6199 return ata_host_register(host, sht);
6200 }
6201
6202 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6203 dev_name(host->dev), host);
6204 if (rc)
6205 return rc;
6206
6207 for (i = 0; i < host->n_ports; i++)
6208 ata_port_desc(host->ports[i], "irq %d", irq);
6209
6210 rc = ata_host_register(host, sht);
6211 /* if failed, just free the IRQ and leave ports alone */
6212 if (rc)
6213 devm_free_irq(host->dev, irq, host);
6214
6215 return rc;
6216 }
6217
6218 /**
6219 * ata_port_detach - Detach ATA port in prepration of device removal
6220 * @ap: ATA port to be detached
6221 *
6222 * Detach all ATA devices and the associated SCSI devices of @ap;
6223 * then, remove the associated SCSI host. @ap is guaranteed to
6224 * be quiescent on return from this function.
6225 *
6226 * LOCKING:
6227 * Kernel thread context (may sleep).
6228 */
6229 static void ata_port_detach(struct ata_port *ap)
6230 {
6231 unsigned long flags;
6232 struct ata_link *link;
6233 struct ata_device *dev;
6234
6235 if (!ap->ops->error_handler)
6236 goto skip_eh;
6237
6238 /* tell EH we're leaving & flush EH */
6239 spin_lock_irqsave(ap->lock, flags);
6240 ap->pflags |= ATA_PFLAG_UNLOADING;
6241 ata_port_schedule_eh(ap);
6242 spin_unlock_irqrestore(ap->lock, flags);
6243
6244 /* wait till EH commits suicide */
6245 ata_port_wait_eh(ap);
6246
6247 /* it better be dead now */
6248 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6249
6250 cancel_delayed_work_sync(&ap->hotplug_task);
6251
6252 skip_eh:
6253 /* clean up zpodd on port removal */
6254 ata_for_each_link(link, ap, HOST_FIRST) {
6255 ata_for_each_dev(dev, link, ALL) {
6256 if (zpodd_dev_enabled(dev))
6257 zpodd_exit(dev);
6258 }
6259 }
6260 if (ap->pmp_link) {
6261 int i;
6262 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6263 ata_tlink_delete(&ap->pmp_link[i]);
6264 }
6265 /* remove the associated SCSI host */
6266 scsi_remove_host(ap->scsi_host);
6267 ata_tport_delete(ap);
6268 }
6269
6270 /**
6271 * ata_host_detach - Detach all ports of an ATA host
6272 * @host: Host to detach
6273 *
6274 * Detach all ports of @host.
6275 *
6276 * LOCKING:
6277 * Kernel thread context (may sleep).
6278 */
6279 void ata_host_detach(struct ata_host *host)
6280 {
6281 int i;
6282
6283 for (i = 0; i < host->n_ports; i++)
6284 ata_port_detach(host->ports[i]);
6285
6286 /* the host is dead now, dissociate ACPI */
6287 ata_acpi_dissociate(host);
6288 }
6289
6290 #ifdef CONFIG_PCI
6291
6292 /**
6293 * ata_pci_remove_one - PCI layer callback for device removal
6294 * @pdev: PCI device that was removed
6295 *
6296 * PCI layer indicates to libata via this hook that hot-unplug or
6297 * module unload event has occurred. Detach all ports. Resource
6298 * release is handled via devres.
6299 *
6300 * LOCKING:
6301 * Inherited from PCI layer (may sleep).
6302 */
6303 void ata_pci_remove_one(struct pci_dev *pdev)
6304 {
6305 struct ata_host *host = pci_get_drvdata(pdev);
6306
6307 ata_host_detach(host);
6308 }
6309
6310 /* move to PCI subsystem */
6311 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6312 {
6313 unsigned long tmp = 0;
6314
6315 switch (bits->width) {
6316 case 1: {
6317 u8 tmp8 = 0;
6318 pci_read_config_byte(pdev, bits->reg, &tmp8);
6319 tmp = tmp8;
6320 break;
6321 }
6322 case 2: {
6323 u16 tmp16 = 0;
6324 pci_read_config_word(pdev, bits->reg, &tmp16);
6325 tmp = tmp16;
6326 break;
6327 }
6328 case 4: {
6329 u32 tmp32 = 0;
6330 pci_read_config_dword(pdev, bits->reg, &tmp32);
6331 tmp = tmp32;
6332 break;
6333 }
6334
6335 default:
6336 return -EINVAL;
6337 }
6338
6339 tmp &= bits->mask;
6340
6341 return (tmp == bits->val) ? 1 : 0;
6342 }
6343
6344 #ifdef CONFIG_PM
6345 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6346 {
6347 pci_save_state(pdev);
6348 pci_disable_device(pdev);
6349
6350 if (mesg.event & PM_EVENT_SLEEP)
6351 pci_set_power_state(pdev, PCI_D3hot);
6352 }
6353
6354 int ata_pci_device_do_resume(struct pci_dev *pdev)
6355 {
6356 int rc;
6357
6358 pci_set_power_state(pdev, PCI_D0);
6359 pci_restore_state(pdev);
6360
6361 rc = pcim_enable_device(pdev);
6362 if (rc) {
6363 dev_err(&pdev->dev,
6364 "failed to enable device after resume (%d)\n", rc);
6365 return rc;
6366 }
6367
6368 pci_set_master(pdev);
6369 return 0;
6370 }
6371
6372 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6373 {
6374 struct ata_host *host = pci_get_drvdata(pdev);
6375 int rc = 0;
6376
6377 rc = ata_host_suspend(host, mesg);
6378 if (rc)
6379 return rc;
6380
6381 ata_pci_device_do_suspend(pdev, mesg);
6382
6383 return 0;
6384 }
6385
6386 int ata_pci_device_resume(struct pci_dev *pdev)
6387 {
6388 struct ata_host *host = pci_get_drvdata(pdev);
6389 int rc;
6390
6391 rc = ata_pci_device_do_resume(pdev);
6392 if (rc == 0)
6393 ata_host_resume(host);
6394 return rc;
6395 }
6396 #endif /* CONFIG_PM */
6397
6398 #endif /* CONFIG_PCI */
6399
6400 /**
6401 * ata_platform_remove_one - Platform layer callback for device removal
6402 * @pdev: Platform device that was removed
6403 *
6404 * Platform layer indicates to libata via this hook that hot-unplug or
6405 * module unload event has occurred. Detach all ports. Resource
6406 * release is handled via devres.
6407 *
6408 * LOCKING:
6409 * Inherited from platform layer (may sleep).
6410 */
6411 int ata_platform_remove_one(struct platform_device *pdev)
6412 {
6413 struct ata_host *host = platform_get_drvdata(pdev);
6414
6415 ata_host_detach(host);
6416
6417 return 0;
6418 }
6419
6420 static int __init ata_parse_force_one(char **cur,
6421 struct ata_force_ent *force_ent,
6422 const char **reason)
6423 {
6424 /* FIXME: Currently, there's no way to tag init const data and
6425 * using __initdata causes build failure on some versions of
6426 * gcc. Once __initdataconst is implemented, add const to the
6427 * following structure.
6428 */
6429 static struct ata_force_param force_tbl[] __initdata = {
6430 { "40c", .cbl = ATA_CBL_PATA40 },
6431 { "80c", .cbl = ATA_CBL_PATA80 },
6432 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6433 { "unk", .cbl = ATA_CBL_PATA_UNK },
6434 { "ign", .cbl = ATA_CBL_PATA_IGN },
6435 { "sata", .cbl = ATA_CBL_SATA },
6436 { "1.5Gbps", .spd_limit = 1 },
6437 { "3.0Gbps", .spd_limit = 2 },
6438 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6439 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6440 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6441 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6442 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6443 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6444 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6445 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6446 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6447 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6448 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6449 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6450 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6451 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6452 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6453 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6454 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6455 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6456 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6457 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6458 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6459 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6460 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6461 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6462 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6463 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6464 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6465 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6466 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6467 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6468 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6469 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6470 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6471 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6472 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6473 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6474 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6475 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6476 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6477 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6478 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6479 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6480 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6481 };
6482 char *start = *cur, *p = *cur;
6483 char *id, *val, *endp;
6484 const struct ata_force_param *match_fp = NULL;
6485 int nr_matches = 0, i;
6486
6487 /* find where this param ends and update *cur */
6488 while (*p != '\0' && *p != ',')
6489 p++;
6490
6491 if (*p == '\0')
6492 *cur = p;
6493 else
6494 *cur = p + 1;
6495
6496 *p = '\0';
6497
6498 /* parse */
6499 p = strchr(start, ':');
6500 if (!p) {
6501 val = strstrip(start);
6502 goto parse_val;
6503 }
6504 *p = '\0';
6505
6506 id = strstrip(start);
6507 val = strstrip(p + 1);
6508
6509 /* parse id */
6510 p = strchr(id, '.');
6511 if (p) {
6512 *p++ = '\0';
6513 force_ent->device = simple_strtoul(p, &endp, 10);
6514 if (p == endp || *endp != '\0') {
6515 *reason = "invalid device";
6516 return -EINVAL;
6517 }
6518 }
6519
6520 force_ent->port = simple_strtoul(id, &endp, 10);
6521 if (p == endp || *endp != '\0') {
6522 *reason = "invalid port/link";
6523 return -EINVAL;
6524 }
6525
6526 parse_val:
6527 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6528 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6529 const struct ata_force_param *fp = &force_tbl[i];
6530
6531 if (strncasecmp(val, fp->name, strlen(val)))
6532 continue;
6533
6534 nr_matches++;
6535 match_fp = fp;
6536
6537 if (strcasecmp(val, fp->name) == 0) {
6538 nr_matches = 1;
6539 break;
6540 }
6541 }
6542
6543 if (!nr_matches) {
6544 *reason = "unknown value";
6545 return -EINVAL;
6546 }
6547 if (nr_matches > 1) {
6548 *reason = "ambigious value";
6549 return -EINVAL;
6550 }
6551
6552 force_ent->param = *match_fp;
6553
6554 return 0;
6555 }
6556
6557 static void __init ata_parse_force_param(void)
6558 {
6559 int idx = 0, size = 1;
6560 int last_port = -1, last_device = -1;
6561 char *p, *cur, *next;
6562
6563 /* calculate maximum number of params and allocate force_tbl */
6564 for (p = ata_force_param_buf; *p; p++)
6565 if (*p == ',')
6566 size++;
6567
6568 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6569 if (!ata_force_tbl) {
6570 printk(KERN_WARNING "ata: failed to extend force table, "
6571 "libata.force ignored\n");
6572 return;
6573 }
6574
6575 /* parse and populate the table */
6576 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6577 const char *reason = "";
6578 struct ata_force_ent te = { .port = -1, .device = -1 };
6579
6580 next = cur;
6581 if (ata_parse_force_one(&next, &te, &reason)) {
6582 printk(KERN_WARNING "ata: failed to parse force "
6583 "parameter \"%s\" (%s)\n",
6584 cur, reason);
6585 continue;
6586 }
6587
6588 if (te.port == -1) {
6589 te.port = last_port;
6590 te.device = last_device;
6591 }
6592
6593 ata_force_tbl[idx++] = te;
6594
6595 last_port = te.port;
6596 last_device = te.device;
6597 }
6598
6599 ata_force_tbl_size = idx;
6600 }
6601
6602 static int __init ata_init(void)
6603 {
6604 int rc;
6605
6606 ata_parse_force_param();
6607
6608 rc = ata_sff_init();
6609 if (rc) {
6610 kfree(ata_force_tbl);
6611 return rc;
6612 }
6613
6614 libata_transport_init();
6615 ata_scsi_transport_template = ata_attach_transport();
6616 if (!ata_scsi_transport_template) {
6617 ata_sff_exit();
6618 rc = -ENOMEM;
6619 goto err_out;
6620 }
6621
6622 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6623 return 0;
6624
6625 err_out:
6626 return rc;
6627 }
6628
6629 static void __exit ata_exit(void)
6630 {
6631 ata_release_transport(ata_scsi_transport_template);
6632 libata_transport_exit();
6633 ata_sff_exit();
6634 kfree(ata_force_tbl);
6635 }
6636
6637 subsys_initcall(ata_init);
6638 module_exit(ata_exit);
6639
6640 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6641
6642 int ata_ratelimit(void)
6643 {
6644 return __ratelimit(&ratelimit);
6645 }
6646
6647 /**
6648 * ata_msleep - ATA EH owner aware msleep
6649 * @ap: ATA port to attribute the sleep to
6650 * @msecs: duration to sleep in milliseconds
6651 *
6652 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6653 * ownership is released before going to sleep and reacquired
6654 * after the sleep is complete. IOW, other ports sharing the
6655 * @ap->host will be allowed to own the EH while this task is
6656 * sleeping.
6657 *
6658 * LOCKING:
6659 * Might sleep.
6660 */
6661 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6662 {
6663 bool owns_eh = ap && ap->host->eh_owner == current;
6664
6665 if (owns_eh)
6666 ata_eh_release(ap);
6667
6668 msleep(msecs);
6669
6670 if (owns_eh)
6671 ata_eh_acquire(ap);
6672 }
6673
6674 /**
6675 * ata_wait_register - wait until register value changes
6676 * @ap: ATA port to wait register for, can be NULL
6677 * @reg: IO-mapped register
6678 * @mask: Mask to apply to read register value
6679 * @val: Wait condition
6680 * @interval: polling interval in milliseconds
6681 * @timeout: timeout in milliseconds
6682 *
6683 * Waiting for some bits of register to change is a common
6684 * operation for ATA controllers. This function reads 32bit LE
6685 * IO-mapped register @reg and tests for the following condition.
6686 *
6687 * (*@reg & mask) != val
6688 *
6689 * If the condition is met, it returns; otherwise, the process is
6690 * repeated after @interval_msec until timeout.
6691 *
6692 * LOCKING:
6693 * Kernel thread context (may sleep)
6694 *
6695 * RETURNS:
6696 * The final register value.
6697 */
6698 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6699 unsigned long interval, unsigned long timeout)
6700 {
6701 unsigned long deadline;
6702 u32 tmp;
6703
6704 tmp = ioread32(reg);
6705
6706 /* Calculate timeout _after_ the first read to make sure
6707 * preceding writes reach the controller before starting to
6708 * eat away the timeout.
6709 */
6710 deadline = ata_deadline(jiffies, timeout);
6711
6712 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6713 ata_msleep(ap, interval);
6714 tmp = ioread32(reg);
6715 }
6716
6717 return tmp;
6718 }
6719
6720 /*
6721 * Dummy port_ops
6722 */
6723 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6724 {
6725 return AC_ERR_SYSTEM;
6726 }
6727
6728 static void ata_dummy_error_handler(struct ata_port *ap)
6729 {
6730 /* truly dummy */
6731 }
6732
6733 struct ata_port_operations ata_dummy_port_ops = {
6734 .qc_prep = ata_noop_qc_prep,
6735 .qc_issue = ata_dummy_qc_issue,
6736 .error_handler = ata_dummy_error_handler,
6737 .sched_eh = ata_std_sched_eh,
6738 .end_eh = ata_std_end_eh,
6739 };
6740
6741 const struct ata_port_info ata_dummy_port_info = {
6742 .port_ops = &ata_dummy_port_ops,
6743 };
6744
6745 /*
6746 * Utility print functions
6747 */
6748 void ata_port_printk(const struct ata_port *ap, const char *level,
6749 const char *fmt, ...)
6750 {
6751 struct va_format vaf;
6752 va_list args;
6753
6754 va_start(args, fmt);
6755
6756 vaf.fmt = fmt;
6757 vaf.va = &args;
6758
6759 printk("%sata%u: %pV", level, ap->print_id, &vaf);
6760
6761 va_end(args);
6762 }
6763 EXPORT_SYMBOL(ata_port_printk);
6764
6765 void ata_link_printk(const struct ata_link *link, const char *level,
6766 const char *fmt, ...)
6767 {
6768 struct va_format vaf;
6769 va_list args;
6770
6771 va_start(args, fmt);
6772
6773 vaf.fmt = fmt;
6774 vaf.va = &args;
6775
6776 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6777 printk("%sata%u.%02u: %pV",
6778 level, link->ap->print_id, link->pmp, &vaf);
6779 else
6780 printk("%sata%u: %pV",
6781 level, link->ap->print_id, &vaf);
6782
6783 va_end(args);
6784 }
6785 EXPORT_SYMBOL(ata_link_printk);
6786
6787 void ata_dev_printk(const struct ata_device *dev, const char *level,
6788 const char *fmt, ...)
6789 {
6790 struct va_format vaf;
6791 va_list args;
6792
6793 va_start(args, fmt);
6794
6795 vaf.fmt = fmt;
6796 vaf.va = &args;
6797
6798 printk("%sata%u.%02u: %pV",
6799 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6800 &vaf);
6801
6802 va_end(args);
6803 }
6804 EXPORT_SYMBOL(ata_dev_printk);
6805
6806 void ata_print_version(const struct device *dev, const char *version)
6807 {
6808 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6809 }
6810 EXPORT_SYMBOL(ata_print_version);
6811
6812 /*
6813 * libata is essentially a library of internal helper functions for
6814 * low-level ATA host controller drivers. As such, the API/ABI is
6815 * likely to change as new drivers are added and updated.
6816 * Do not depend on ABI/API stability.
6817 */
6818 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6819 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6820 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6821 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6822 EXPORT_SYMBOL_GPL(sata_port_ops);
6823 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6824 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6825 EXPORT_SYMBOL_GPL(ata_link_next);
6826 EXPORT_SYMBOL_GPL(ata_dev_next);
6827 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6828 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6829 EXPORT_SYMBOL_GPL(ata_host_init);
6830 EXPORT_SYMBOL_GPL(ata_host_alloc);
6831 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6832 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6833 EXPORT_SYMBOL_GPL(ata_host_start);
6834 EXPORT_SYMBOL_GPL(ata_host_register);
6835 EXPORT_SYMBOL_GPL(ata_host_activate);
6836 EXPORT_SYMBOL_GPL(ata_host_detach);
6837 EXPORT_SYMBOL_GPL(ata_sg_init);
6838 EXPORT_SYMBOL_GPL(ata_qc_complete);
6839 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6840 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6841 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6842 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6843 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6844 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6845 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6846 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6847 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6848 EXPORT_SYMBOL_GPL(ata_mode_string);
6849 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6850 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6851 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6852 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6853 EXPORT_SYMBOL_GPL(ata_dev_disable);
6854 EXPORT_SYMBOL_GPL(sata_set_spd);
6855 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6856 EXPORT_SYMBOL_GPL(sata_link_debounce);
6857 EXPORT_SYMBOL_GPL(sata_link_resume);
6858 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6859 EXPORT_SYMBOL_GPL(ata_std_prereset);
6860 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6861 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6862 EXPORT_SYMBOL_GPL(ata_std_postreset);
6863 EXPORT_SYMBOL_GPL(ata_dev_classify);
6864 EXPORT_SYMBOL_GPL(ata_dev_pair);
6865 EXPORT_SYMBOL_GPL(ata_ratelimit);
6866 EXPORT_SYMBOL_GPL(ata_msleep);
6867 EXPORT_SYMBOL_GPL(ata_wait_register);
6868 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6869 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6870 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6871 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6872 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6873 EXPORT_SYMBOL_GPL(sata_scr_valid);
6874 EXPORT_SYMBOL_GPL(sata_scr_read);
6875 EXPORT_SYMBOL_GPL(sata_scr_write);
6876 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6877 EXPORT_SYMBOL_GPL(ata_link_online);
6878 EXPORT_SYMBOL_GPL(ata_link_offline);
6879 #ifdef CONFIG_PM
6880 EXPORT_SYMBOL_GPL(ata_host_suspend);
6881 EXPORT_SYMBOL_GPL(ata_host_resume);
6882 #endif /* CONFIG_PM */
6883 EXPORT_SYMBOL_GPL(ata_id_string);
6884 EXPORT_SYMBOL_GPL(ata_id_c_string);
6885 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6886 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6887
6888 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6889 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6890 EXPORT_SYMBOL_GPL(ata_timing_compute);
6891 EXPORT_SYMBOL_GPL(ata_timing_merge);
6892 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6893
6894 #ifdef CONFIG_PCI
6895 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6896 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6897 #ifdef CONFIG_PM
6898 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6899 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6900 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6901 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6902 #endif /* CONFIG_PM */
6903 #endif /* CONFIG_PCI */
6904
6905 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6906
6907 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6908 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6909 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6910 EXPORT_SYMBOL_GPL(ata_port_desc);
6911 #ifdef CONFIG_PCI
6912 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6913 #endif /* CONFIG_PCI */
6914 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6915 EXPORT_SYMBOL_GPL(ata_link_abort);
6916 EXPORT_SYMBOL_GPL(ata_port_abort);
6917 EXPORT_SYMBOL_GPL(ata_port_freeze);
6918 EXPORT_SYMBOL_GPL(sata_async_notification);
6919 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6920 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6921 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6922 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6923 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6924 EXPORT_SYMBOL_GPL(ata_do_eh);
6925 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6926
6927 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6928 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6929 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6930 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6931 EXPORT_SYMBOL_GPL(ata_cable_sata);