]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
unify flush_work/flush_work_keventd and rename it to cancel_work_sync
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108
109
110 /**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150 }
151
152 /**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179 }
180
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
196 0,
197 0,
198 0,
199 0,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
209 };
210
211 /**
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
215 *
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
218 *
219 * LOCKING:
220 * caller.
221 */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 u8 cmd;
225
226 int index, fua, lba48, write;
227
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
242 }
243
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
250 }
251
252 /**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293 }
294
295 /**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318 {
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416 }
417
418 /**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436 {
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441
442 /**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456 {
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473 };
474
475 /**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497 }
498
499 /**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519 }
520
521 /**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541 }
542
543 /**
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
546 *
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
556 */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
581 int highbit;
582
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
587 }
588
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599 }
600
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
607 dev->class++;
608 }
609 }
610
611 /**
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
630 {
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
638
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
641
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
644
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652 }
653
654 /**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
671 {
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691 }
692
693 /**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
713 */
714
715 unsigned int
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
717 {
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
726 ap->ops->tf_read(ap, &tf);
727 err = tf.feature;
728 if (r_err)
729 *r_err = err;
730
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
740 return ATA_DEV_NONE;
741
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf);
744
745 if (class == ATA_DEV_UNKNOWN)
746 return ATA_DEV_NONE;
747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
748 return ATA_DEV_NONE;
749 return class;
750 }
751
752 /**
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
767 void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
769 {
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784 }
785
786 /**
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
802 {
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
807 ata_id_string(id, s, ofs, len - 1);
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813 }
814
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816 {
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827 }
828
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830 {
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839 }
840
841 /**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850 {
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866 }
867
868 /**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876 static u64 ata_read_native_max_address(struct ata_device *dev)
877 {
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893 }
894
895 /**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 *
899 * Perform an LBA48 size set max upon the device in question. Return the
900 * actual LBA48 size or zero if the command fails.
901 */
902
903 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
904 {
905 unsigned int err;
906 struct ata_taskfile tf;
907
908 new_sectors--;
909
910 ata_tf_init(dev, &tf);
911
912 tf.command = ATA_CMD_SET_MAX_EXT;
913 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
914 tf.protocol |= ATA_PROT_NODATA;
915 tf.device |= 0x40;
916
917 tf.lbal = (new_sectors >> 0) & 0xff;
918 tf.lbam = (new_sectors >> 8) & 0xff;
919 tf.lbah = (new_sectors >> 16) & 0xff;
920
921 tf.hob_lbal = (new_sectors >> 24) & 0xff;
922 tf.hob_lbam = (new_sectors >> 32) & 0xff;
923 tf.hob_lbah = (new_sectors >> 40) & 0xff;
924
925 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
926 if (err)
927 return 0;
928
929 return ata_tf_to_lba48(&tf);
930 }
931
932 /**
933 * ata_set_native_max_address - LBA28 native max set
934 * @dev: Device to query
935 *
936 * Perform an LBA28 size set max upon the device in question. Return the
937 * actual LBA28 size or zero if the command fails.
938 */
939
940 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
941 {
942 unsigned int err;
943 struct ata_taskfile tf;
944
945 new_sectors--;
946
947 ata_tf_init(dev, &tf);
948
949 tf.command = ATA_CMD_SET_MAX;
950 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
951 tf.protocol |= ATA_PROT_NODATA;
952
953 tf.lbal = (new_sectors >> 0) & 0xff;
954 tf.lbam = (new_sectors >> 8) & 0xff;
955 tf.lbah = (new_sectors >> 16) & 0xff;
956 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
957
958 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
959 if (err)
960 return 0;
961
962 return ata_tf_to_lba(&tf);
963 }
964
965 /**
966 * ata_hpa_resize - Resize a device with an HPA set
967 * @dev: Device to resize
968 *
969 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
970 * it if required to the full size of the media. The caller must check
971 * the drive has the HPA feature set enabled.
972 */
973
974 static u64 ata_hpa_resize(struct ata_device *dev)
975 {
976 u64 sectors = dev->n_sectors;
977 u64 hpa_sectors;
978
979 if (ata_id_has_lba48(dev->id))
980 hpa_sectors = ata_read_native_max_address_ext(dev);
981 else
982 hpa_sectors = ata_read_native_max_address(dev);
983
984 /* if no hpa, both should be equal */
985 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
986 "hpa_sectors = %lld\n",
987 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
988
989 if (hpa_sectors > sectors) {
990 ata_dev_printk(dev, KERN_INFO,
991 "Host Protected Area detected:\n"
992 "\tcurrent size: %lld sectors\n"
993 "\tnative size: %lld sectors\n",
994 (long long)sectors, (long long)hpa_sectors);
995
996 if (ata_ignore_hpa) {
997 if (ata_id_has_lba48(dev->id))
998 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
999 else
1000 hpa_sectors = ata_set_native_max_address(dev,
1001 hpa_sectors);
1002
1003 if (hpa_sectors) {
1004 ata_dev_printk(dev, KERN_INFO, "native size "
1005 "increased to %lld sectors\n",
1006 (long long)hpa_sectors);
1007 return hpa_sectors;
1008 }
1009 }
1010 }
1011 return sectors;
1012 }
1013
1014 static u64 ata_id_n_sectors(const u16 *id)
1015 {
1016 if (ata_id_has_lba(id)) {
1017 if (ata_id_has_lba48(id))
1018 return ata_id_u64(id, 100);
1019 else
1020 return ata_id_u32(id, 60);
1021 } else {
1022 if (ata_id_current_chs_valid(id))
1023 return ata_id_u32(id, 57);
1024 else
1025 return id[1] * id[3] * id[6];
1026 }
1027 }
1028
1029 /**
1030 * ata_id_to_dma_mode - Identify DMA mode from id block
1031 * @dev: device to identify
1032 * @unknown: mode to assume if we cannot tell
1033 *
1034 * Set up the timing values for the device based upon the identify
1035 * reported values for the DMA mode. This function is used by drivers
1036 * which rely upon firmware configured modes, but wish to report the
1037 * mode correctly when possible.
1038 *
1039 * In addition we emit similarly formatted messages to the default
1040 * ata_dev_set_mode handler, in order to provide consistency of
1041 * presentation.
1042 */
1043
1044 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1045 {
1046 unsigned int mask;
1047 u8 mode;
1048
1049 /* Pack the DMA modes */
1050 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1051 if (dev->id[53] & 0x04)
1052 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1053
1054 /* Select the mode in use */
1055 mode = ata_xfer_mask2mode(mask);
1056
1057 if (mode != 0) {
1058 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1059 ata_mode_string(mask));
1060 } else {
1061 /* SWDMA perhaps ? */
1062 mode = unknown;
1063 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1064 }
1065
1066 /* Configure the device reporting */
1067 dev->xfer_mode = mode;
1068 dev->xfer_shift = ata_xfer_mode2shift(mode);
1069 }
1070
1071 /**
1072 * ata_noop_dev_select - Select device 0/1 on ATA bus
1073 * @ap: ATA channel to manipulate
1074 * @device: ATA device (numbered from zero) to select
1075 *
1076 * This function performs no actual function.
1077 *
1078 * May be used as the dev_select() entry in ata_port_operations.
1079 *
1080 * LOCKING:
1081 * caller.
1082 */
1083 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1084 {
1085 }
1086
1087
1088 /**
1089 * ata_std_dev_select - Select device 0/1 on ATA bus
1090 * @ap: ATA channel to manipulate
1091 * @device: ATA device (numbered from zero) to select
1092 *
1093 * Use the method defined in the ATA specification to
1094 * make either device 0, or device 1, active on the
1095 * ATA channel. Works with both PIO and MMIO.
1096 *
1097 * May be used as the dev_select() entry in ata_port_operations.
1098 *
1099 * LOCKING:
1100 * caller.
1101 */
1102
1103 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1104 {
1105 u8 tmp;
1106
1107 if (device == 0)
1108 tmp = ATA_DEVICE_OBS;
1109 else
1110 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1111
1112 iowrite8(tmp, ap->ioaddr.device_addr);
1113 ata_pause(ap); /* needed; also flushes, for mmio */
1114 }
1115
1116 /**
1117 * ata_dev_select - Select device 0/1 on ATA bus
1118 * @ap: ATA channel to manipulate
1119 * @device: ATA device (numbered from zero) to select
1120 * @wait: non-zero to wait for Status register BSY bit to clear
1121 * @can_sleep: non-zero if context allows sleeping
1122 *
1123 * Use the method defined in the ATA specification to
1124 * make either device 0, or device 1, active on the
1125 * ATA channel.
1126 *
1127 * This is a high-level version of ata_std_dev_select(),
1128 * which additionally provides the services of inserting
1129 * the proper pauses and status polling, where needed.
1130 *
1131 * LOCKING:
1132 * caller.
1133 */
1134
1135 void ata_dev_select(struct ata_port *ap, unsigned int device,
1136 unsigned int wait, unsigned int can_sleep)
1137 {
1138 if (ata_msg_probe(ap))
1139 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1140 "device %u, wait %u\n", device, wait);
1141
1142 if (wait)
1143 ata_wait_idle(ap);
1144
1145 ap->ops->dev_select(ap, device);
1146
1147 if (wait) {
1148 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1149 msleep(150);
1150 ata_wait_idle(ap);
1151 }
1152 }
1153
1154 /**
1155 * ata_dump_id - IDENTIFY DEVICE info debugging output
1156 * @id: IDENTIFY DEVICE page to dump
1157 *
1158 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1159 * page.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164
1165 static inline void ata_dump_id(const u16 *id)
1166 {
1167 DPRINTK("49==0x%04x "
1168 "53==0x%04x "
1169 "63==0x%04x "
1170 "64==0x%04x "
1171 "75==0x%04x \n",
1172 id[49],
1173 id[53],
1174 id[63],
1175 id[64],
1176 id[75]);
1177 DPRINTK("80==0x%04x "
1178 "81==0x%04x "
1179 "82==0x%04x "
1180 "83==0x%04x "
1181 "84==0x%04x \n",
1182 id[80],
1183 id[81],
1184 id[82],
1185 id[83],
1186 id[84]);
1187 DPRINTK("88==0x%04x "
1188 "93==0x%04x\n",
1189 id[88],
1190 id[93]);
1191 }
1192
1193 /**
1194 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1195 * @id: IDENTIFY data to compute xfer mask from
1196 *
1197 * Compute the xfermask for this device. This is not as trivial
1198 * as it seems if we must consider early devices correctly.
1199 *
1200 * FIXME: pre IDE drive timing (do we care ?).
1201 *
1202 * LOCKING:
1203 * None.
1204 *
1205 * RETURNS:
1206 * Computed xfermask
1207 */
1208 static unsigned int ata_id_xfermask(const u16 *id)
1209 {
1210 unsigned int pio_mask, mwdma_mask, udma_mask;
1211
1212 /* Usual case. Word 53 indicates word 64 is valid */
1213 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1214 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1215 pio_mask <<= 3;
1216 pio_mask |= 0x7;
1217 } else {
1218 /* If word 64 isn't valid then Word 51 high byte holds
1219 * the PIO timing number for the maximum. Turn it into
1220 * a mask.
1221 */
1222 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1223 if (mode < 5) /* Valid PIO range */
1224 pio_mask = (2 << mode) - 1;
1225 else
1226 pio_mask = 1;
1227
1228 /* But wait.. there's more. Design your standards by
1229 * committee and you too can get a free iordy field to
1230 * process. However its the speeds not the modes that
1231 * are supported... Note drivers using the timing API
1232 * will get this right anyway
1233 */
1234 }
1235
1236 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1237
1238 if (ata_id_is_cfa(id)) {
1239 /*
1240 * Process compact flash extended modes
1241 */
1242 int pio = id[163] & 0x7;
1243 int dma = (id[163] >> 3) & 7;
1244
1245 if (pio)
1246 pio_mask |= (1 << 5);
1247 if (pio > 1)
1248 pio_mask |= (1 << 6);
1249 if (dma)
1250 mwdma_mask |= (1 << 3);
1251 if (dma > 1)
1252 mwdma_mask |= (1 << 4);
1253 }
1254
1255 udma_mask = 0;
1256 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1257 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1258
1259 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1260 }
1261
1262 /**
1263 * ata_port_queue_task - Queue port_task
1264 * @ap: The ata_port to queue port_task for
1265 * @fn: workqueue function to be scheduled
1266 * @data: data for @fn to use
1267 * @delay: delay time for workqueue function
1268 *
1269 * Schedule @fn(@data) for execution after @delay jiffies using
1270 * port_task. There is one port_task per port and it's the
1271 * user(low level driver)'s responsibility to make sure that only
1272 * one task is active at any given time.
1273 *
1274 * libata core layer takes care of synchronization between
1275 * port_task and EH. ata_port_queue_task() may be ignored for EH
1276 * synchronization.
1277 *
1278 * LOCKING:
1279 * Inherited from caller.
1280 */
1281 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1282 unsigned long delay)
1283 {
1284 int rc;
1285
1286 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1287 return;
1288
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
1291
1292 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1293
1294 /* rc == 0 means that another user is using port task */
1295 WARN_ON(rc == 0);
1296 }
1297
1298 /**
1299 * ata_port_flush_task - Flush port_task
1300 * @ap: The ata_port to flush port_task for
1301 *
1302 * After this function completes, port_task is guranteed not to
1303 * be running or scheduled.
1304 *
1305 * LOCKING:
1306 * Kernel thread context (may sleep)
1307 */
1308 void ata_port_flush_task(struct ata_port *ap)
1309 {
1310 unsigned long flags;
1311
1312 DPRINTK("ENTER\n");
1313
1314 spin_lock_irqsave(ap->lock, flags);
1315 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1316 spin_unlock_irqrestore(ap->lock, flags);
1317
1318 DPRINTK("flush #1\n");
1319 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1320
1321 /*
1322 * At this point, if a task is running, it's guaranteed to see
1323 * the FLUSH flag; thus, it will never queue pio tasks again.
1324 * Cancel and flush.
1325 */
1326 if (!cancel_delayed_work(&ap->port_task)) {
1327 if (ata_msg_ctl(ap))
1328 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1329 __FUNCTION__);
1330 cancel_work_sync(&ap->port_task.work);
1331 }
1332
1333 spin_lock_irqsave(ap->lock, flags);
1334 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1335 spin_unlock_irqrestore(ap->lock, flags);
1336
1337 if (ata_msg_ctl(ap))
1338 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1339 }
1340
1341 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1342 {
1343 struct completion *waiting = qc->private_data;
1344
1345 complete(waiting);
1346 }
1347
1348 /**
1349 * ata_exec_internal_sg - execute libata internal command
1350 * @dev: Device to which the command is sent
1351 * @tf: Taskfile registers for the command and the result
1352 * @cdb: CDB for packet command
1353 * @dma_dir: Data tranfer direction of the command
1354 * @sg: sg list for the data buffer of the command
1355 * @n_elem: Number of sg entries
1356 *
1357 * Executes libata internal command with timeout. @tf contains
1358 * command on entry and result on return. Timeout and error
1359 * conditions are reported via return value. No recovery action
1360 * is taken after a command times out. It's caller's duty to
1361 * clean up after timeout.
1362 *
1363 * LOCKING:
1364 * None. Should be called with kernel context, might sleep.
1365 *
1366 * RETURNS:
1367 * Zero on success, AC_ERR_* mask on failure
1368 */
1369 unsigned ata_exec_internal_sg(struct ata_device *dev,
1370 struct ata_taskfile *tf, const u8 *cdb,
1371 int dma_dir, struct scatterlist *sg,
1372 unsigned int n_elem)
1373 {
1374 struct ata_port *ap = dev->ap;
1375 u8 command = tf->command;
1376 struct ata_queued_cmd *qc;
1377 unsigned int tag, preempted_tag;
1378 u32 preempted_sactive, preempted_qc_active;
1379 DECLARE_COMPLETION_ONSTACK(wait);
1380 unsigned long flags;
1381 unsigned int err_mask;
1382 int rc;
1383
1384 spin_lock_irqsave(ap->lock, flags);
1385
1386 /* no internal command while frozen */
1387 if (ap->pflags & ATA_PFLAG_FROZEN) {
1388 spin_unlock_irqrestore(ap->lock, flags);
1389 return AC_ERR_SYSTEM;
1390 }
1391
1392 /* initialize internal qc */
1393
1394 /* XXX: Tag 0 is used for drivers with legacy EH as some
1395 * drivers choke if any other tag is given. This breaks
1396 * ata_tag_internal() test for those drivers. Don't use new
1397 * EH stuff without converting to it.
1398 */
1399 if (ap->ops->error_handler)
1400 tag = ATA_TAG_INTERNAL;
1401 else
1402 tag = 0;
1403
1404 if (test_and_set_bit(tag, &ap->qc_allocated))
1405 BUG();
1406 qc = __ata_qc_from_tag(ap, tag);
1407
1408 qc->tag = tag;
1409 qc->scsicmd = NULL;
1410 qc->ap = ap;
1411 qc->dev = dev;
1412 ata_qc_reinit(qc);
1413
1414 preempted_tag = ap->active_tag;
1415 preempted_sactive = ap->sactive;
1416 preempted_qc_active = ap->qc_active;
1417 ap->active_tag = ATA_TAG_POISON;
1418 ap->sactive = 0;
1419 ap->qc_active = 0;
1420
1421 /* prepare & issue qc */
1422 qc->tf = *tf;
1423 if (cdb)
1424 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1425 qc->flags |= ATA_QCFLAG_RESULT_TF;
1426 qc->dma_dir = dma_dir;
1427 if (dma_dir != DMA_NONE) {
1428 unsigned int i, buflen = 0;
1429
1430 for (i = 0; i < n_elem; i++)
1431 buflen += sg[i].length;
1432
1433 ata_sg_init(qc, sg, n_elem);
1434 qc->nbytes = buflen;
1435 }
1436
1437 qc->private_data = &wait;
1438 qc->complete_fn = ata_qc_complete_internal;
1439
1440 ata_qc_issue(qc);
1441
1442 spin_unlock_irqrestore(ap->lock, flags);
1443
1444 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1445
1446 ata_port_flush_task(ap);
1447
1448 if (!rc) {
1449 spin_lock_irqsave(ap->lock, flags);
1450
1451 /* We're racing with irq here. If we lose, the
1452 * following test prevents us from completing the qc
1453 * twice. If we win, the port is frozen and will be
1454 * cleaned up by ->post_internal_cmd().
1455 */
1456 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1457 qc->err_mask |= AC_ERR_TIMEOUT;
1458
1459 if (ap->ops->error_handler)
1460 ata_port_freeze(ap);
1461 else
1462 ata_qc_complete(qc);
1463
1464 if (ata_msg_warn(ap))
1465 ata_dev_printk(dev, KERN_WARNING,
1466 "qc timeout (cmd 0x%x)\n", command);
1467 }
1468
1469 spin_unlock_irqrestore(ap->lock, flags);
1470 }
1471
1472 /* do post_internal_cmd */
1473 if (ap->ops->post_internal_cmd)
1474 ap->ops->post_internal_cmd(qc);
1475
1476 /* perform minimal error analysis */
1477 if (qc->flags & ATA_QCFLAG_FAILED) {
1478 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1479 qc->err_mask |= AC_ERR_DEV;
1480
1481 if (!qc->err_mask)
1482 qc->err_mask |= AC_ERR_OTHER;
1483
1484 if (qc->err_mask & ~AC_ERR_OTHER)
1485 qc->err_mask &= ~AC_ERR_OTHER;
1486 }
1487
1488 /* finish up */
1489 spin_lock_irqsave(ap->lock, flags);
1490
1491 *tf = qc->result_tf;
1492 err_mask = qc->err_mask;
1493
1494 ata_qc_free(qc);
1495 ap->active_tag = preempted_tag;
1496 ap->sactive = preempted_sactive;
1497 ap->qc_active = preempted_qc_active;
1498
1499 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1500 * Until those drivers are fixed, we detect the condition
1501 * here, fail the command with AC_ERR_SYSTEM and reenable the
1502 * port.
1503 *
1504 * Note that this doesn't change any behavior as internal
1505 * command failure results in disabling the device in the
1506 * higher layer for LLDDs without new reset/EH callbacks.
1507 *
1508 * Kill the following code as soon as those drivers are fixed.
1509 */
1510 if (ap->flags & ATA_FLAG_DISABLED) {
1511 err_mask |= AC_ERR_SYSTEM;
1512 ata_port_probe(ap);
1513 }
1514
1515 spin_unlock_irqrestore(ap->lock, flags);
1516
1517 return err_mask;
1518 }
1519
1520 /**
1521 * ata_exec_internal - execute libata internal command
1522 * @dev: Device to which the command is sent
1523 * @tf: Taskfile registers for the command and the result
1524 * @cdb: CDB for packet command
1525 * @dma_dir: Data tranfer direction of the command
1526 * @buf: Data buffer of the command
1527 * @buflen: Length of data buffer
1528 *
1529 * Wrapper around ata_exec_internal_sg() which takes simple
1530 * buffer instead of sg list.
1531 *
1532 * LOCKING:
1533 * None. Should be called with kernel context, might sleep.
1534 *
1535 * RETURNS:
1536 * Zero on success, AC_ERR_* mask on failure
1537 */
1538 unsigned ata_exec_internal(struct ata_device *dev,
1539 struct ata_taskfile *tf, const u8 *cdb,
1540 int dma_dir, void *buf, unsigned int buflen)
1541 {
1542 struct scatterlist *psg = NULL, sg;
1543 unsigned int n_elem = 0;
1544
1545 if (dma_dir != DMA_NONE) {
1546 WARN_ON(!buf);
1547 sg_init_one(&sg, buf, buflen);
1548 psg = &sg;
1549 n_elem++;
1550 }
1551
1552 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1553 }
1554
1555 /**
1556 * ata_do_simple_cmd - execute simple internal command
1557 * @dev: Device to which the command is sent
1558 * @cmd: Opcode to execute
1559 *
1560 * Execute a 'simple' command, that only consists of the opcode
1561 * 'cmd' itself, without filling any other registers
1562 *
1563 * LOCKING:
1564 * Kernel thread context (may sleep).
1565 *
1566 * RETURNS:
1567 * Zero on success, AC_ERR_* mask on failure
1568 */
1569 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1570 {
1571 struct ata_taskfile tf;
1572
1573 ata_tf_init(dev, &tf);
1574
1575 tf.command = cmd;
1576 tf.flags |= ATA_TFLAG_DEVICE;
1577 tf.protocol = ATA_PROT_NODATA;
1578
1579 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1580 }
1581
1582 /**
1583 * ata_pio_need_iordy - check if iordy needed
1584 * @adev: ATA device
1585 *
1586 * Check if the current speed of the device requires IORDY. Used
1587 * by various controllers for chip configuration.
1588 */
1589
1590 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1591 {
1592 /* Controller doesn't support IORDY. Probably a pointless check
1593 as the caller should know this */
1594 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1595 return 0;
1596 /* PIO3 and higher it is mandatory */
1597 if (adev->pio_mode > XFER_PIO_2)
1598 return 1;
1599 /* We turn it on when possible */
1600 if (ata_id_has_iordy(adev->id))
1601 return 1;
1602 return 0;
1603 }
1604
1605 /**
1606 * ata_pio_mask_no_iordy - Return the non IORDY mask
1607 * @adev: ATA device
1608 *
1609 * Compute the highest mode possible if we are not using iordy. Return
1610 * -1 if no iordy mode is available.
1611 */
1612
1613 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1614 {
1615 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1616 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1617 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1618 /* Is the speed faster than the drive allows non IORDY ? */
1619 if (pio) {
1620 /* This is cycle times not frequency - watch the logic! */
1621 if (pio > 240) /* PIO2 is 240nS per cycle */
1622 return 3 << ATA_SHIFT_PIO;
1623 return 7 << ATA_SHIFT_PIO;
1624 }
1625 }
1626 return 3 << ATA_SHIFT_PIO;
1627 }
1628
1629 /**
1630 * ata_dev_read_id - Read ID data from the specified device
1631 * @dev: target device
1632 * @p_class: pointer to class of the target device (may be changed)
1633 * @flags: ATA_READID_* flags
1634 * @id: buffer to read IDENTIFY data into
1635 *
1636 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1637 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1638 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1639 * for pre-ATA4 drives.
1640 *
1641 * LOCKING:
1642 * Kernel thread context (may sleep)
1643 *
1644 * RETURNS:
1645 * 0 on success, -errno otherwise.
1646 */
1647 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1648 unsigned int flags, u16 *id)
1649 {
1650 struct ata_port *ap = dev->ap;
1651 unsigned int class = *p_class;
1652 struct ata_taskfile tf;
1653 unsigned int err_mask = 0;
1654 const char *reason;
1655 int tried_spinup = 0;
1656 int rc;
1657
1658 if (ata_msg_ctl(ap))
1659 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1660
1661 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1662 retry:
1663 ata_tf_init(dev, &tf);
1664
1665 switch (class) {
1666 case ATA_DEV_ATA:
1667 tf.command = ATA_CMD_ID_ATA;
1668 break;
1669 case ATA_DEV_ATAPI:
1670 tf.command = ATA_CMD_ID_ATAPI;
1671 break;
1672 default:
1673 rc = -ENODEV;
1674 reason = "unsupported class";
1675 goto err_out;
1676 }
1677
1678 tf.protocol = ATA_PROT_PIO;
1679
1680 /* Some devices choke if TF registers contain garbage. Make
1681 * sure those are properly initialized.
1682 */
1683 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1684
1685 /* Device presence detection is unreliable on some
1686 * controllers. Always poll IDENTIFY if available.
1687 */
1688 tf.flags |= ATA_TFLAG_POLLING;
1689
1690 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1691 id, sizeof(id[0]) * ATA_ID_WORDS);
1692 if (err_mask) {
1693 if (err_mask & AC_ERR_NODEV_HINT) {
1694 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1695 ap->print_id, dev->devno);
1696 return -ENOENT;
1697 }
1698
1699 rc = -EIO;
1700 reason = "I/O error";
1701 goto err_out;
1702 }
1703
1704 swap_buf_le16(id, ATA_ID_WORDS);
1705
1706 /* sanity check */
1707 rc = -EINVAL;
1708 reason = "device reports illegal type";
1709
1710 if (class == ATA_DEV_ATA) {
1711 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1712 goto err_out;
1713 } else {
1714 if (ata_id_is_ata(id))
1715 goto err_out;
1716 }
1717
1718 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1719 tried_spinup = 1;
1720 /*
1721 * Drive powered-up in standby mode, and requires a specific
1722 * SET_FEATURES spin-up subcommand before it will accept
1723 * anything other than the original IDENTIFY command.
1724 */
1725 ata_tf_init(dev, &tf);
1726 tf.command = ATA_CMD_SET_FEATURES;
1727 tf.feature = SETFEATURES_SPINUP;
1728 tf.protocol = ATA_PROT_NODATA;
1729 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1730 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1731 if (err_mask) {
1732 rc = -EIO;
1733 reason = "SPINUP failed";
1734 goto err_out;
1735 }
1736 /*
1737 * If the drive initially returned incomplete IDENTIFY info,
1738 * we now must reissue the IDENTIFY command.
1739 */
1740 if (id[2] == 0x37c8)
1741 goto retry;
1742 }
1743
1744 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1745 /*
1746 * The exact sequence expected by certain pre-ATA4 drives is:
1747 * SRST RESET
1748 * IDENTIFY
1749 * INITIALIZE DEVICE PARAMETERS
1750 * anything else..
1751 * Some drives were very specific about that exact sequence.
1752 */
1753 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1754 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1755 if (err_mask) {
1756 rc = -EIO;
1757 reason = "INIT_DEV_PARAMS failed";
1758 goto err_out;
1759 }
1760
1761 /* current CHS translation info (id[53-58]) might be
1762 * changed. reread the identify device info.
1763 */
1764 flags &= ~ATA_READID_POSTRESET;
1765 goto retry;
1766 }
1767 }
1768
1769 *p_class = class;
1770
1771 return 0;
1772
1773 err_out:
1774 if (ata_msg_warn(ap))
1775 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1776 "(%s, err_mask=0x%x)\n", reason, err_mask);
1777 return rc;
1778 }
1779
1780 static inline u8 ata_dev_knobble(struct ata_device *dev)
1781 {
1782 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1783 }
1784
1785 static void ata_dev_config_ncq(struct ata_device *dev,
1786 char *desc, size_t desc_sz)
1787 {
1788 struct ata_port *ap = dev->ap;
1789 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1790
1791 if (!ata_id_has_ncq(dev->id)) {
1792 desc[0] = '\0';
1793 return;
1794 }
1795 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1796 snprintf(desc, desc_sz, "NCQ (not used)");
1797 return;
1798 }
1799 if (ap->flags & ATA_FLAG_NCQ) {
1800 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1801 dev->flags |= ATA_DFLAG_NCQ;
1802 }
1803
1804 if (hdepth >= ddepth)
1805 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1806 else
1807 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1808 }
1809
1810 /**
1811 * ata_dev_configure - Configure the specified ATA/ATAPI device
1812 * @dev: Target device to configure
1813 *
1814 * Configure @dev according to @dev->id. Generic and low-level
1815 * driver specific fixups are also applied.
1816 *
1817 * LOCKING:
1818 * Kernel thread context (may sleep)
1819 *
1820 * RETURNS:
1821 * 0 on success, -errno otherwise
1822 */
1823 int ata_dev_configure(struct ata_device *dev)
1824 {
1825 struct ata_port *ap = dev->ap;
1826 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1827 const u16 *id = dev->id;
1828 unsigned int xfer_mask;
1829 char revbuf[7]; /* XYZ-99\0 */
1830 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1831 char modelbuf[ATA_ID_PROD_LEN+1];
1832 int rc;
1833
1834 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1835 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1836 __FUNCTION__);
1837 return 0;
1838 }
1839
1840 if (ata_msg_probe(ap))
1841 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1842
1843 /* set _SDD */
1844 rc = ata_acpi_push_id(ap, dev->devno);
1845 if (rc) {
1846 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1847 rc);
1848 }
1849
1850 /* retrieve and execute the ATA task file of _GTF */
1851 ata_acpi_exec_tfs(ap);
1852
1853 /* print device capabilities */
1854 if (ata_msg_probe(ap))
1855 ata_dev_printk(dev, KERN_DEBUG,
1856 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1857 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1858 __FUNCTION__,
1859 id[49], id[82], id[83], id[84],
1860 id[85], id[86], id[87], id[88]);
1861
1862 /* initialize to-be-configured parameters */
1863 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1864 dev->max_sectors = 0;
1865 dev->cdb_len = 0;
1866 dev->n_sectors = 0;
1867 dev->cylinders = 0;
1868 dev->heads = 0;
1869 dev->sectors = 0;
1870
1871 /*
1872 * common ATA, ATAPI feature tests
1873 */
1874
1875 /* find max transfer mode; for printk only */
1876 xfer_mask = ata_id_xfermask(id);
1877
1878 if (ata_msg_probe(ap))
1879 ata_dump_id(id);
1880
1881 /* ATA-specific feature tests */
1882 if (dev->class == ATA_DEV_ATA) {
1883 if (ata_id_is_cfa(id)) {
1884 if (id[162] & 1) /* CPRM may make this media unusable */
1885 ata_dev_printk(dev, KERN_WARNING,
1886 "supports DRM functions and may "
1887 "not be fully accessable.\n");
1888 snprintf(revbuf, 7, "CFA");
1889 }
1890 else
1891 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1892
1893 dev->n_sectors = ata_id_n_sectors(id);
1894 dev->n_sectors_boot = dev->n_sectors;
1895
1896 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1897 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1898 sizeof(fwrevbuf));
1899
1900 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1901 sizeof(modelbuf));
1902
1903 if (dev->id[59] & 0x100)
1904 dev->multi_count = dev->id[59] & 0xff;
1905
1906 if (ata_id_has_lba(id)) {
1907 const char *lba_desc;
1908 char ncq_desc[20];
1909
1910 lba_desc = "LBA";
1911 dev->flags |= ATA_DFLAG_LBA;
1912 if (ata_id_has_lba48(id)) {
1913 dev->flags |= ATA_DFLAG_LBA48;
1914 lba_desc = "LBA48";
1915
1916 if (dev->n_sectors >= (1UL << 28) &&
1917 ata_id_has_flush_ext(id))
1918 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1919 }
1920
1921 if (ata_id_hpa_enabled(dev->id))
1922 dev->n_sectors = ata_hpa_resize(dev);
1923
1924 /* config NCQ */
1925 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1926
1927 /* print device info to dmesg */
1928 if (ata_msg_drv(ap) && print_info) {
1929 ata_dev_printk(dev, KERN_INFO,
1930 "%s: %s, %s, max %s\n",
1931 revbuf, modelbuf, fwrevbuf,
1932 ata_mode_string(xfer_mask));
1933 ata_dev_printk(dev, KERN_INFO,
1934 "%Lu sectors, multi %u: %s %s\n",
1935 (unsigned long long)dev->n_sectors,
1936 dev->multi_count, lba_desc, ncq_desc);
1937 }
1938 } else {
1939 /* CHS */
1940
1941 /* Default translation */
1942 dev->cylinders = id[1];
1943 dev->heads = id[3];
1944 dev->sectors = id[6];
1945
1946 if (ata_id_current_chs_valid(id)) {
1947 /* Current CHS translation is valid. */
1948 dev->cylinders = id[54];
1949 dev->heads = id[55];
1950 dev->sectors = id[56];
1951 }
1952
1953 /* print device info to dmesg */
1954 if (ata_msg_drv(ap) && print_info) {
1955 ata_dev_printk(dev, KERN_INFO,
1956 "%s: %s, %s, max %s\n",
1957 revbuf, modelbuf, fwrevbuf,
1958 ata_mode_string(xfer_mask));
1959 ata_dev_printk(dev, KERN_INFO,
1960 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1961 (unsigned long long)dev->n_sectors,
1962 dev->multi_count, dev->cylinders,
1963 dev->heads, dev->sectors);
1964 }
1965 }
1966
1967 dev->cdb_len = 16;
1968 }
1969
1970 /* ATAPI-specific feature tests */
1971 else if (dev->class == ATA_DEV_ATAPI) {
1972 char *cdb_intr_string = "";
1973
1974 rc = atapi_cdb_len(id);
1975 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1976 if (ata_msg_warn(ap))
1977 ata_dev_printk(dev, KERN_WARNING,
1978 "unsupported CDB len\n");
1979 rc = -EINVAL;
1980 goto err_out_nosup;
1981 }
1982 dev->cdb_len = (unsigned int) rc;
1983
1984 if (ata_id_cdb_intr(dev->id)) {
1985 dev->flags |= ATA_DFLAG_CDB_INTR;
1986 cdb_intr_string = ", CDB intr";
1987 }
1988
1989 /* print device info to dmesg */
1990 if (ata_msg_drv(ap) && print_info)
1991 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1992 ata_mode_string(xfer_mask),
1993 cdb_intr_string);
1994 }
1995
1996 /* determine max_sectors */
1997 dev->max_sectors = ATA_MAX_SECTORS;
1998 if (dev->flags & ATA_DFLAG_LBA48)
1999 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2000
2001 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2002 /* Let the user know. We don't want to disallow opens for
2003 rescue purposes, or in case the vendor is just a blithering
2004 idiot */
2005 if (print_info) {
2006 ata_dev_printk(dev, KERN_WARNING,
2007 "Drive reports diagnostics failure. This may indicate a drive\n");
2008 ata_dev_printk(dev, KERN_WARNING,
2009 "fault or invalid emulation. Contact drive vendor for information.\n");
2010 }
2011 }
2012
2013 /* limit bridge transfers to udma5, 200 sectors */
2014 if (ata_dev_knobble(dev)) {
2015 if (ata_msg_drv(ap) && print_info)
2016 ata_dev_printk(dev, KERN_INFO,
2017 "applying bridge limits\n");
2018 dev->udma_mask &= ATA_UDMA5;
2019 dev->max_sectors = ATA_MAX_SECTORS;
2020 }
2021
2022 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2023 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2024 dev->max_sectors);
2025
2026 /* limit ATAPI DMA to R/W commands only */
2027 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2028 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2029
2030 if (ap->ops->dev_config)
2031 ap->ops->dev_config(dev);
2032
2033 if (ata_msg_probe(ap))
2034 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2035 __FUNCTION__, ata_chk_status(ap));
2036 return 0;
2037
2038 err_out_nosup:
2039 if (ata_msg_probe(ap))
2040 ata_dev_printk(dev, KERN_DEBUG,
2041 "%s: EXIT, err\n", __FUNCTION__);
2042 return rc;
2043 }
2044
2045 /**
2046 * ata_cable_40wire - return 40 wire cable type
2047 * @ap: port
2048 *
2049 * Helper method for drivers which want to hardwire 40 wire cable
2050 * detection.
2051 */
2052
2053 int ata_cable_40wire(struct ata_port *ap)
2054 {
2055 return ATA_CBL_PATA40;
2056 }
2057
2058 /**
2059 * ata_cable_80wire - return 80 wire cable type
2060 * @ap: port
2061 *
2062 * Helper method for drivers which want to hardwire 80 wire cable
2063 * detection.
2064 */
2065
2066 int ata_cable_80wire(struct ata_port *ap)
2067 {
2068 return ATA_CBL_PATA80;
2069 }
2070
2071 /**
2072 * ata_cable_unknown - return unknown PATA cable.
2073 * @ap: port
2074 *
2075 * Helper method for drivers which have no PATA cable detection.
2076 */
2077
2078 int ata_cable_unknown(struct ata_port *ap)
2079 {
2080 return ATA_CBL_PATA_UNK;
2081 }
2082
2083 /**
2084 * ata_cable_sata - return SATA cable type
2085 * @ap: port
2086 *
2087 * Helper method for drivers which have SATA cables
2088 */
2089
2090 int ata_cable_sata(struct ata_port *ap)
2091 {
2092 return ATA_CBL_SATA;
2093 }
2094
2095 /**
2096 * ata_bus_probe - Reset and probe ATA bus
2097 * @ap: Bus to probe
2098 *
2099 * Master ATA bus probing function. Initiates a hardware-dependent
2100 * bus reset, then attempts to identify any devices found on
2101 * the bus.
2102 *
2103 * LOCKING:
2104 * PCI/etc. bus probe sem.
2105 *
2106 * RETURNS:
2107 * Zero on success, negative errno otherwise.
2108 */
2109
2110 int ata_bus_probe(struct ata_port *ap)
2111 {
2112 unsigned int classes[ATA_MAX_DEVICES];
2113 int tries[ATA_MAX_DEVICES];
2114 int i, rc;
2115 struct ata_device *dev;
2116
2117 ata_port_probe(ap);
2118
2119 for (i = 0; i < ATA_MAX_DEVICES; i++)
2120 tries[i] = ATA_PROBE_MAX_TRIES;
2121
2122 retry:
2123 /* reset and determine device classes */
2124 ap->ops->phy_reset(ap);
2125
2126 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2127 dev = &ap->device[i];
2128
2129 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2130 dev->class != ATA_DEV_UNKNOWN)
2131 classes[dev->devno] = dev->class;
2132 else
2133 classes[dev->devno] = ATA_DEV_NONE;
2134
2135 dev->class = ATA_DEV_UNKNOWN;
2136 }
2137
2138 ata_port_probe(ap);
2139
2140 /* after the reset the device state is PIO 0 and the controller
2141 state is undefined. Record the mode */
2142
2143 for (i = 0; i < ATA_MAX_DEVICES; i++)
2144 ap->device[i].pio_mode = XFER_PIO_0;
2145
2146 /* read IDENTIFY page and configure devices. We have to do the identify
2147 specific sequence bass-ackwards so that PDIAG- is released by
2148 the slave device */
2149
2150 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2151 dev = &ap->device[i];
2152
2153 if (tries[i])
2154 dev->class = classes[i];
2155
2156 if (!ata_dev_enabled(dev))
2157 continue;
2158
2159 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2160 dev->id);
2161 if (rc)
2162 goto fail;
2163 }
2164
2165 /* Now ask for the cable type as PDIAG- should have been released */
2166 if (ap->ops->cable_detect)
2167 ap->cbl = ap->ops->cable_detect(ap);
2168
2169 /* After the identify sequence we can now set up the devices. We do
2170 this in the normal order so that the user doesn't get confused */
2171
2172 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2173 dev = &ap->device[i];
2174 if (!ata_dev_enabled(dev))
2175 continue;
2176
2177 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2178 rc = ata_dev_configure(dev);
2179 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2180 if (rc)
2181 goto fail;
2182 }
2183
2184 /* configure transfer mode */
2185 rc = ata_set_mode(ap, &dev);
2186 if (rc)
2187 goto fail;
2188
2189 for (i = 0; i < ATA_MAX_DEVICES; i++)
2190 if (ata_dev_enabled(&ap->device[i]))
2191 return 0;
2192
2193 /* no device present, disable port */
2194 ata_port_disable(ap);
2195 ap->ops->port_disable(ap);
2196 return -ENODEV;
2197
2198 fail:
2199 tries[dev->devno]--;
2200
2201 switch (rc) {
2202 case -EINVAL:
2203 /* eeek, something went very wrong, give up */
2204 tries[dev->devno] = 0;
2205 break;
2206
2207 case -ENODEV:
2208 /* give it just one more chance */
2209 tries[dev->devno] = min(tries[dev->devno], 1);
2210 case -EIO:
2211 if (tries[dev->devno] == 1) {
2212 /* This is the last chance, better to slow
2213 * down than lose it.
2214 */
2215 sata_down_spd_limit(ap);
2216 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2217 }
2218 }
2219
2220 if (!tries[dev->devno])
2221 ata_dev_disable(dev);
2222
2223 goto retry;
2224 }
2225
2226 /**
2227 * ata_port_probe - Mark port as enabled
2228 * @ap: Port for which we indicate enablement
2229 *
2230 * Modify @ap data structure such that the system
2231 * thinks that the entire port is enabled.
2232 *
2233 * LOCKING: host lock, or some other form of
2234 * serialization.
2235 */
2236
2237 void ata_port_probe(struct ata_port *ap)
2238 {
2239 ap->flags &= ~ATA_FLAG_DISABLED;
2240 }
2241
2242 /**
2243 * sata_print_link_status - Print SATA link status
2244 * @ap: SATA port to printk link status about
2245 *
2246 * This function prints link speed and status of a SATA link.
2247 *
2248 * LOCKING:
2249 * None.
2250 */
2251 void sata_print_link_status(struct ata_port *ap)
2252 {
2253 u32 sstatus, scontrol, tmp;
2254
2255 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2256 return;
2257 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2258
2259 if (ata_port_online(ap)) {
2260 tmp = (sstatus >> 4) & 0xf;
2261 ata_port_printk(ap, KERN_INFO,
2262 "SATA link up %s (SStatus %X SControl %X)\n",
2263 sata_spd_string(tmp), sstatus, scontrol);
2264 } else {
2265 ata_port_printk(ap, KERN_INFO,
2266 "SATA link down (SStatus %X SControl %X)\n",
2267 sstatus, scontrol);
2268 }
2269 }
2270
2271 /**
2272 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2273 * @ap: SATA port associated with target SATA PHY.
2274 *
2275 * This function issues commands to standard SATA Sxxx
2276 * PHY registers, to wake up the phy (and device), and
2277 * clear any reset condition.
2278 *
2279 * LOCKING:
2280 * PCI/etc. bus probe sem.
2281 *
2282 */
2283 void __sata_phy_reset(struct ata_port *ap)
2284 {
2285 u32 sstatus;
2286 unsigned long timeout = jiffies + (HZ * 5);
2287
2288 if (ap->flags & ATA_FLAG_SATA_RESET) {
2289 /* issue phy wake/reset */
2290 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2291 /* Couldn't find anything in SATA I/II specs, but
2292 * AHCI-1.1 10.4.2 says at least 1 ms. */
2293 mdelay(1);
2294 }
2295 /* phy wake/clear reset */
2296 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2297
2298 /* wait for phy to become ready, if necessary */
2299 do {
2300 msleep(200);
2301 sata_scr_read(ap, SCR_STATUS, &sstatus);
2302 if ((sstatus & 0xf) != 1)
2303 break;
2304 } while (time_before(jiffies, timeout));
2305
2306 /* print link status */
2307 sata_print_link_status(ap);
2308
2309 /* TODO: phy layer with polling, timeouts, etc. */
2310 if (!ata_port_offline(ap))
2311 ata_port_probe(ap);
2312 else
2313 ata_port_disable(ap);
2314
2315 if (ap->flags & ATA_FLAG_DISABLED)
2316 return;
2317
2318 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2319 ata_port_disable(ap);
2320 return;
2321 }
2322
2323 ap->cbl = ATA_CBL_SATA;
2324 }
2325
2326 /**
2327 * sata_phy_reset - Reset SATA bus.
2328 * @ap: SATA port associated with target SATA PHY.
2329 *
2330 * This function resets the SATA bus, and then probes
2331 * the bus for devices.
2332 *
2333 * LOCKING:
2334 * PCI/etc. bus probe sem.
2335 *
2336 */
2337 void sata_phy_reset(struct ata_port *ap)
2338 {
2339 __sata_phy_reset(ap);
2340 if (ap->flags & ATA_FLAG_DISABLED)
2341 return;
2342 ata_bus_reset(ap);
2343 }
2344
2345 /**
2346 * ata_dev_pair - return other device on cable
2347 * @adev: device
2348 *
2349 * Obtain the other device on the same cable, or if none is
2350 * present NULL is returned
2351 */
2352
2353 struct ata_device *ata_dev_pair(struct ata_device *adev)
2354 {
2355 struct ata_port *ap = adev->ap;
2356 struct ata_device *pair = &ap->device[1 - adev->devno];
2357 if (!ata_dev_enabled(pair))
2358 return NULL;
2359 return pair;
2360 }
2361
2362 /**
2363 * ata_port_disable - Disable port.
2364 * @ap: Port to be disabled.
2365 *
2366 * Modify @ap data structure such that the system
2367 * thinks that the entire port is disabled, and should
2368 * never attempt to probe or communicate with devices
2369 * on this port.
2370 *
2371 * LOCKING: host lock, or some other form of
2372 * serialization.
2373 */
2374
2375 void ata_port_disable(struct ata_port *ap)
2376 {
2377 ap->device[0].class = ATA_DEV_NONE;
2378 ap->device[1].class = ATA_DEV_NONE;
2379 ap->flags |= ATA_FLAG_DISABLED;
2380 }
2381
2382 /**
2383 * sata_down_spd_limit - adjust SATA spd limit downward
2384 * @ap: Port to adjust SATA spd limit for
2385 *
2386 * Adjust SATA spd limit of @ap downward. Note that this
2387 * function only adjusts the limit. The change must be applied
2388 * using sata_set_spd().
2389 *
2390 * LOCKING:
2391 * Inherited from caller.
2392 *
2393 * RETURNS:
2394 * 0 on success, negative errno on failure
2395 */
2396 int sata_down_spd_limit(struct ata_port *ap)
2397 {
2398 u32 sstatus, spd, mask;
2399 int rc, highbit;
2400
2401 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2402 if (rc)
2403 return rc;
2404
2405 mask = ap->sata_spd_limit;
2406 if (mask <= 1)
2407 return -EINVAL;
2408 highbit = fls(mask) - 1;
2409 mask &= ~(1 << highbit);
2410
2411 spd = (sstatus >> 4) & 0xf;
2412 if (spd <= 1)
2413 return -EINVAL;
2414 spd--;
2415 mask &= (1 << spd) - 1;
2416 if (!mask)
2417 return -EINVAL;
2418
2419 ap->sata_spd_limit = mask;
2420
2421 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2422 sata_spd_string(fls(mask)));
2423
2424 return 0;
2425 }
2426
2427 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2428 {
2429 u32 spd, limit;
2430
2431 if (ap->sata_spd_limit == UINT_MAX)
2432 limit = 0;
2433 else
2434 limit = fls(ap->sata_spd_limit);
2435
2436 spd = (*scontrol >> 4) & 0xf;
2437 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2438
2439 return spd != limit;
2440 }
2441
2442 /**
2443 * sata_set_spd_needed - is SATA spd configuration needed
2444 * @ap: Port in question
2445 *
2446 * Test whether the spd limit in SControl matches
2447 * @ap->sata_spd_limit. This function is used to determine
2448 * whether hardreset is necessary to apply SATA spd
2449 * configuration.
2450 *
2451 * LOCKING:
2452 * Inherited from caller.
2453 *
2454 * RETURNS:
2455 * 1 if SATA spd configuration is needed, 0 otherwise.
2456 */
2457 int sata_set_spd_needed(struct ata_port *ap)
2458 {
2459 u32 scontrol;
2460
2461 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2462 return 0;
2463
2464 return __sata_set_spd_needed(ap, &scontrol);
2465 }
2466
2467 /**
2468 * sata_set_spd - set SATA spd according to spd limit
2469 * @ap: Port to set SATA spd for
2470 *
2471 * Set SATA spd of @ap according to sata_spd_limit.
2472 *
2473 * LOCKING:
2474 * Inherited from caller.
2475 *
2476 * RETURNS:
2477 * 0 if spd doesn't need to be changed, 1 if spd has been
2478 * changed. Negative errno if SCR registers are inaccessible.
2479 */
2480 int sata_set_spd(struct ata_port *ap)
2481 {
2482 u32 scontrol;
2483 int rc;
2484
2485 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2486 return rc;
2487
2488 if (!__sata_set_spd_needed(ap, &scontrol))
2489 return 0;
2490
2491 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2492 return rc;
2493
2494 return 1;
2495 }
2496
2497 /*
2498 * This mode timing computation functionality is ported over from
2499 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2500 */
2501 /*
2502 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2503 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2504 * for UDMA6, which is currently supported only by Maxtor drives.
2505 *
2506 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2507 */
2508
2509 static const struct ata_timing ata_timing[] = {
2510
2511 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2512 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2513 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2514 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2515
2516 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2517 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2518 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2519 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2520 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2521
2522 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2523
2524 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2525 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2526 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2527
2528 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2529 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2530 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2531
2532 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2533 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2534 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2535 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2536
2537 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2538 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2539 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2540
2541 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2542
2543 { 0xFF }
2544 };
2545
2546 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2547 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2548
2549 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2550 {
2551 q->setup = EZ(t->setup * 1000, T);
2552 q->act8b = EZ(t->act8b * 1000, T);
2553 q->rec8b = EZ(t->rec8b * 1000, T);
2554 q->cyc8b = EZ(t->cyc8b * 1000, T);
2555 q->active = EZ(t->active * 1000, T);
2556 q->recover = EZ(t->recover * 1000, T);
2557 q->cycle = EZ(t->cycle * 1000, T);
2558 q->udma = EZ(t->udma * 1000, UT);
2559 }
2560
2561 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2562 struct ata_timing *m, unsigned int what)
2563 {
2564 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2565 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2566 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2567 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2568 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2569 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2570 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2571 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2572 }
2573
2574 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2575 {
2576 const struct ata_timing *t;
2577
2578 for (t = ata_timing; t->mode != speed; t++)
2579 if (t->mode == 0xFF)
2580 return NULL;
2581 return t;
2582 }
2583
2584 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2585 struct ata_timing *t, int T, int UT)
2586 {
2587 const struct ata_timing *s;
2588 struct ata_timing p;
2589
2590 /*
2591 * Find the mode.
2592 */
2593
2594 if (!(s = ata_timing_find_mode(speed)))
2595 return -EINVAL;
2596
2597 memcpy(t, s, sizeof(*s));
2598
2599 /*
2600 * If the drive is an EIDE drive, it can tell us it needs extended
2601 * PIO/MW_DMA cycle timing.
2602 */
2603
2604 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2605 memset(&p, 0, sizeof(p));
2606 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2607 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2608 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2609 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2610 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2611 }
2612 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2613 }
2614
2615 /*
2616 * Convert the timing to bus clock counts.
2617 */
2618
2619 ata_timing_quantize(t, t, T, UT);
2620
2621 /*
2622 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2623 * S.M.A.R.T * and some other commands. We have to ensure that the
2624 * DMA cycle timing is slower/equal than the fastest PIO timing.
2625 */
2626
2627 if (speed > XFER_PIO_6) {
2628 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2629 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2630 }
2631
2632 /*
2633 * Lengthen active & recovery time so that cycle time is correct.
2634 */
2635
2636 if (t->act8b + t->rec8b < t->cyc8b) {
2637 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2638 t->rec8b = t->cyc8b - t->act8b;
2639 }
2640
2641 if (t->active + t->recover < t->cycle) {
2642 t->active += (t->cycle - (t->active + t->recover)) / 2;
2643 t->recover = t->cycle - t->active;
2644 }
2645
2646 /* In a few cases quantisation may produce enough errors to
2647 leave t->cycle too low for the sum of active and recovery
2648 if so we must correct this */
2649 if (t->active + t->recover > t->cycle)
2650 t->cycle = t->active + t->recover;
2651
2652 return 0;
2653 }
2654
2655 /**
2656 * ata_down_xfermask_limit - adjust dev xfer masks downward
2657 * @dev: Device to adjust xfer masks
2658 * @sel: ATA_DNXFER_* selector
2659 *
2660 * Adjust xfer masks of @dev downward. Note that this function
2661 * does not apply the change. Invoking ata_set_mode() afterwards
2662 * will apply the limit.
2663 *
2664 * LOCKING:
2665 * Inherited from caller.
2666 *
2667 * RETURNS:
2668 * 0 on success, negative errno on failure
2669 */
2670 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2671 {
2672 char buf[32];
2673 unsigned int orig_mask, xfer_mask;
2674 unsigned int pio_mask, mwdma_mask, udma_mask;
2675 int quiet, highbit;
2676
2677 quiet = !!(sel & ATA_DNXFER_QUIET);
2678 sel &= ~ATA_DNXFER_QUIET;
2679
2680 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2681 dev->mwdma_mask,
2682 dev->udma_mask);
2683 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2684
2685 switch (sel) {
2686 case ATA_DNXFER_PIO:
2687 highbit = fls(pio_mask) - 1;
2688 pio_mask &= ~(1 << highbit);
2689 break;
2690
2691 case ATA_DNXFER_DMA:
2692 if (udma_mask) {
2693 highbit = fls(udma_mask) - 1;
2694 udma_mask &= ~(1 << highbit);
2695 if (!udma_mask)
2696 return -ENOENT;
2697 } else if (mwdma_mask) {
2698 highbit = fls(mwdma_mask) - 1;
2699 mwdma_mask &= ~(1 << highbit);
2700 if (!mwdma_mask)
2701 return -ENOENT;
2702 }
2703 break;
2704
2705 case ATA_DNXFER_40C:
2706 udma_mask &= ATA_UDMA_MASK_40C;
2707 break;
2708
2709 case ATA_DNXFER_FORCE_PIO0:
2710 pio_mask &= 1;
2711 case ATA_DNXFER_FORCE_PIO:
2712 mwdma_mask = 0;
2713 udma_mask = 0;
2714 break;
2715
2716 default:
2717 BUG();
2718 }
2719
2720 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2721
2722 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2723 return -ENOENT;
2724
2725 if (!quiet) {
2726 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2727 snprintf(buf, sizeof(buf), "%s:%s",
2728 ata_mode_string(xfer_mask),
2729 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2730 else
2731 snprintf(buf, sizeof(buf), "%s",
2732 ata_mode_string(xfer_mask));
2733
2734 ata_dev_printk(dev, KERN_WARNING,
2735 "limiting speed to %s\n", buf);
2736 }
2737
2738 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2739 &dev->udma_mask);
2740
2741 return 0;
2742 }
2743
2744 static int ata_dev_set_mode(struct ata_device *dev)
2745 {
2746 struct ata_eh_context *ehc = &dev->ap->eh_context;
2747 unsigned int err_mask;
2748 int rc;
2749
2750 dev->flags &= ~ATA_DFLAG_PIO;
2751 if (dev->xfer_shift == ATA_SHIFT_PIO)
2752 dev->flags |= ATA_DFLAG_PIO;
2753
2754 err_mask = ata_dev_set_xfermode(dev);
2755 /* Old CFA may refuse this command, which is just fine */
2756 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2757 err_mask &= ~AC_ERR_DEV;
2758
2759 if (err_mask) {
2760 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2761 "(err_mask=0x%x)\n", err_mask);
2762 return -EIO;
2763 }
2764
2765 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2766 rc = ata_dev_revalidate(dev, 0);
2767 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2768 if (rc)
2769 return rc;
2770
2771 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2772 dev->xfer_shift, (int)dev->xfer_mode);
2773
2774 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2775 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2776 return 0;
2777 }
2778
2779 /**
2780 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2781 * @ap: port on which timings will be programmed
2782 * @r_failed_dev: out paramter for failed device
2783 *
2784 * Standard implementation of the function used to tune and set
2785 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2786 * ata_dev_set_mode() fails, pointer to the failing device is
2787 * returned in @r_failed_dev.
2788 *
2789 * LOCKING:
2790 * PCI/etc. bus probe sem.
2791 *
2792 * RETURNS:
2793 * 0 on success, negative errno otherwise
2794 */
2795
2796 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2797 {
2798 struct ata_device *dev;
2799 int i, rc = 0, used_dma = 0, found = 0;
2800
2801
2802 /* step 1: calculate xfer_mask */
2803 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2804 unsigned int pio_mask, dma_mask;
2805
2806 dev = &ap->device[i];
2807
2808 if (!ata_dev_enabled(dev))
2809 continue;
2810
2811 ata_dev_xfermask(dev);
2812
2813 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2814 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2815 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2816 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2817
2818 found = 1;
2819 if (dev->dma_mode)
2820 used_dma = 1;
2821 }
2822 if (!found)
2823 goto out;
2824
2825 /* step 2: always set host PIO timings */
2826 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2827 dev = &ap->device[i];
2828 if (!ata_dev_enabled(dev))
2829 continue;
2830
2831 if (!dev->pio_mode) {
2832 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2833 rc = -EINVAL;
2834 goto out;
2835 }
2836
2837 dev->xfer_mode = dev->pio_mode;
2838 dev->xfer_shift = ATA_SHIFT_PIO;
2839 if (ap->ops->set_piomode)
2840 ap->ops->set_piomode(ap, dev);
2841 }
2842
2843 /* step 3: set host DMA timings */
2844 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2845 dev = &ap->device[i];
2846
2847 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2848 continue;
2849
2850 dev->xfer_mode = dev->dma_mode;
2851 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2852 if (ap->ops->set_dmamode)
2853 ap->ops->set_dmamode(ap, dev);
2854 }
2855
2856 /* step 4: update devices' xfer mode */
2857 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2858 dev = &ap->device[i];
2859
2860 /* don't update suspended devices' xfer mode */
2861 if (!ata_dev_ready(dev))
2862 continue;
2863
2864 rc = ata_dev_set_mode(dev);
2865 if (rc)
2866 goto out;
2867 }
2868
2869 /* Record simplex status. If we selected DMA then the other
2870 * host channels are not permitted to do so.
2871 */
2872 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2873 ap->host->simplex_claimed = ap;
2874
2875 /* step5: chip specific finalisation */
2876 if (ap->ops->post_set_mode)
2877 ap->ops->post_set_mode(ap);
2878 out:
2879 if (rc)
2880 *r_failed_dev = dev;
2881 return rc;
2882 }
2883
2884 /**
2885 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2886 * @ap: port on which timings will be programmed
2887 * @r_failed_dev: out paramter for failed device
2888 *
2889 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2890 * ata_set_mode() fails, pointer to the failing device is
2891 * returned in @r_failed_dev.
2892 *
2893 * LOCKING:
2894 * PCI/etc. bus probe sem.
2895 *
2896 * RETURNS:
2897 * 0 on success, negative errno otherwise
2898 */
2899 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2900 {
2901 /* has private set_mode? */
2902 if (ap->ops->set_mode)
2903 return ap->ops->set_mode(ap, r_failed_dev);
2904 return ata_do_set_mode(ap, r_failed_dev);
2905 }
2906
2907 /**
2908 * ata_tf_to_host - issue ATA taskfile to host controller
2909 * @ap: port to which command is being issued
2910 * @tf: ATA taskfile register set
2911 *
2912 * Issues ATA taskfile register set to ATA host controller,
2913 * with proper synchronization with interrupt handler and
2914 * other threads.
2915 *
2916 * LOCKING:
2917 * spin_lock_irqsave(host lock)
2918 */
2919
2920 static inline void ata_tf_to_host(struct ata_port *ap,
2921 const struct ata_taskfile *tf)
2922 {
2923 ap->ops->tf_load(ap, tf);
2924 ap->ops->exec_command(ap, tf);
2925 }
2926
2927 /**
2928 * ata_busy_sleep - sleep until BSY clears, or timeout
2929 * @ap: port containing status register to be polled
2930 * @tmout_pat: impatience timeout
2931 * @tmout: overall timeout
2932 *
2933 * Sleep until ATA Status register bit BSY clears,
2934 * or a timeout occurs.
2935 *
2936 * LOCKING:
2937 * Kernel thread context (may sleep).
2938 *
2939 * RETURNS:
2940 * 0 on success, -errno otherwise.
2941 */
2942 int ata_busy_sleep(struct ata_port *ap,
2943 unsigned long tmout_pat, unsigned long tmout)
2944 {
2945 unsigned long timer_start, timeout;
2946 u8 status;
2947
2948 status = ata_busy_wait(ap, ATA_BUSY, 300);
2949 timer_start = jiffies;
2950 timeout = timer_start + tmout_pat;
2951 while (status != 0xff && (status & ATA_BUSY) &&
2952 time_before(jiffies, timeout)) {
2953 msleep(50);
2954 status = ata_busy_wait(ap, ATA_BUSY, 3);
2955 }
2956
2957 if (status != 0xff && (status & ATA_BUSY))
2958 ata_port_printk(ap, KERN_WARNING,
2959 "port is slow to respond, please be patient "
2960 "(Status 0x%x)\n", status);
2961
2962 timeout = timer_start + tmout;
2963 while (status != 0xff && (status & ATA_BUSY) &&
2964 time_before(jiffies, timeout)) {
2965 msleep(50);
2966 status = ata_chk_status(ap);
2967 }
2968
2969 if (status == 0xff)
2970 return -ENODEV;
2971
2972 if (status & ATA_BUSY) {
2973 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2974 "(%lu secs, Status 0x%x)\n",
2975 tmout / HZ, status);
2976 return -EBUSY;
2977 }
2978
2979 return 0;
2980 }
2981
2982 /**
2983 * ata_wait_ready - sleep until BSY clears, or timeout
2984 * @ap: port containing status register to be polled
2985 * @deadline: deadline jiffies for the operation
2986 *
2987 * Sleep until ATA Status register bit BSY clears, or timeout
2988 * occurs.
2989 *
2990 * LOCKING:
2991 * Kernel thread context (may sleep).
2992 *
2993 * RETURNS:
2994 * 0 on success, -errno otherwise.
2995 */
2996 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2997 {
2998 unsigned long start = jiffies;
2999 int warned = 0;
3000
3001 while (1) {
3002 u8 status = ata_chk_status(ap);
3003 unsigned long now = jiffies;
3004
3005 if (!(status & ATA_BUSY))
3006 return 0;
3007 if (status == 0xff)
3008 return -ENODEV;
3009 if (time_after(now, deadline))
3010 return -EBUSY;
3011
3012 if (!warned && time_after(now, start + 5 * HZ) &&
3013 (deadline - now > 3 * HZ)) {
3014 ata_port_printk(ap, KERN_WARNING,
3015 "port is slow to respond, please be patient "
3016 "(Status 0x%x)\n", status);
3017 warned = 1;
3018 }
3019
3020 msleep(50);
3021 }
3022 }
3023
3024 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3025 unsigned long deadline)
3026 {
3027 struct ata_ioports *ioaddr = &ap->ioaddr;
3028 unsigned int dev0 = devmask & (1 << 0);
3029 unsigned int dev1 = devmask & (1 << 1);
3030 int rc, ret = 0;
3031
3032 /* if device 0 was found in ata_devchk, wait for its
3033 * BSY bit to clear
3034 */
3035 if (dev0) {
3036 rc = ata_wait_ready(ap, deadline);
3037 if (rc) {
3038 if (rc != -ENODEV)
3039 return rc;
3040 ret = rc;
3041 }
3042 }
3043
3044 /* if device 1 was found in ata_devchk, wait for
3045 * register access, then wait for BSY to clear
3046 */
3047 while (dev1) {
3048 u8 nsect, lbal;
3049
3050 ap->ops->dev_select(ap, 1);
3051 nsect = ioread8(ioaddr->nsect_addr);
3052 lbal = ioread8(ioaddr->lbal_addr);
3053 if ((nsect == 1) && (lbal == 1))
3054 break;
3055 if (time_after(jiffies, deadline))
3056 return -EBUSY;
3057 msleep(50); /* give drive a breather */
3058 }
3059 if (dev1) {
3060 rc = ata_wait_ready(ap, deadline);
3061 if (rc) {
3062 if (rc != -ENODEV)
3063 return rc;
3064 ret = rc;
3065 }
3066 }
3067
3068 /* is all this really necessary? */
3069 ap->ops->dev_select(ap, 0);
3070 if (dev1)
3071 ap->ops->dev_select(ap, 1);
3072 if (dev0)
3073 ap->ops->dev_select(ap, 0);
3074
3075 return ret;
3076 }
3077
3078 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3079 unsigned long deadline)
3080 {
3081 struct ata_ioports *ioaddr = &ap->ioaddr;
3082
3083 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3084
3085 /* software reset. causes dev0 to be selected */
3086 iowrite8(ap->ctl, ioaddr->ctl_addr);
3087 udelay(20); /* FIXME: flush */
3088 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3089 udelay(20); /* FIXME: flush */
3090 iowrite8(ap->ctl, ioaddr->ctl_addr);
3091
3092 /* spec mandates ">= 2ms" before checking status.
3093 * We wait 150ms, because that was the magic delay used for
3094 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3095 * between when the ATA command register is written, and then
3096 * status is checked. Because waiting for "a while" before
3097 * checking status is fine, post SRST, we perform this magic
3098 * delay here as well.
3099 *
3100 * Old drivers/ide uses the 2mS rule and then waits for ready
3101 */
3102 msleep(150);
3103
3104 /* Before we perform post reset processing we want to see if
3105 * the bus shows 0xFF because the odd clown forgets the D7
3106 * pulldown resistor.
3107 */
3108 if (ata_check_status(ap) == 0xFF)
3109 return -ENODEV;
3110
3111 return ata_bus_post_reset(ap, devmask, deadline);
3112 }
3113
3114 /**
3115 * ata_bus_reset - reset host port and associated ATA channel
3116 * @ap: port to reset
3117 *
3118 * This is typically the first time we actually start issuing
3119 * commands to the ATA channel. We wait for BSY to clear, then
3120 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3121 * result. Determine what devices, if any, are on the channel
3122 * by looking at the device 0/1 error register. Look at the signature
3123 * stored in each device's taskfile registers, to determine if
3124 * the device is ATA or ATAPI.
3125 *
3126 * LOCKING:
3127 * PCI/etc. bus probe sem.
3128 * Obtains host lock.
3129 *
3130 * SIDE EFFECTS:
3131 * Sets ATA_FLAG_DISABLED if bus reset fails.
3132 */
3133
3134 void ata_bus_reset(struct ata_port *ap)
3135 {
3136 struct ata_ioports *ioaddr = &ap->ioaddr;
3137 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3138 u8 err;
3139 unsigned int dev0, dev1 = 0, devmask = 0;
3140 int rc;
3141
3142 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3143
3144 /* determine if device 0/1 are present */
3145 if (ap->flags & ATA_FLAG_SATA_RESET)
3146 dev0 = 1;
3147 else {
3148 dev0 = ata_devchk(ap, 0);
3149 if (slave_possible)
3150 dev1 = ata_devchk(ap, 1);
3151 }
3152
3153 if (dev0)
3154 devmask |= (1 << 0);
3155 if (dev1)
3156 devmask |= (1 << 1);
3157
3158 /* select device 0 again */
3159 ap->ops->dev_select(ap, 0);
3160
3161 /* issue bus reset */
3162 if (ap->flags & ATA_FLAG_SRST) {
3163 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3164 if (rc && rc != -ENODEV)
3165 goto err_out;
3166 }
3167
3168 /*
3169 * determine by signature whether we have ATA or ATAPI devices
3170 */
3171 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3172 if ((slave_possible) && (err != 0x81))
3173 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3174
3175 /* re-enable interrupts */
3176 ap->ops->irq_on(ap);
3177
3178 /* is double-select really necessary? */
3179 if (ap->device[1].class != ATA_DEV_NONE)
3180 ap->ops->dev_select(ap, 1);
3181 if (ap->device[0].class != ATA_DEV_NONE)
3182 ap->ops->dev_select(ap, 0);
3183
3184 /* if no devices were detected, disable this port */
3185 if ((ap->device[0].class == ATA_DEV_NONE) &&
3186 (ap->device[1].class == ATA_DEV_NONE))
3187 goto err_out;
3188
3189 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3190 /* set up device control for ATA_FLAG_SATA_RESET */
3191 iowrite8(ap->ctl, ioaddr->ctl_addr);
3192 }
3193
3194 DPRINTK("EXIT\n");
3195 return;
3196
3197 err_out:
3198 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3199 ap->ops->port_disable(ap);
3200
3201 DPRINTK("EXIT\n");
3202 }
3203
3204 /**
3205 * sata_phy_debounce - debounce SATA phy status
3206 * @ap: ATA port to debounce SATA phy status for
3207 * @params: timing parameters { interval, duratinon, timeout } in msec
3208 * @deadline: deadline jiffies for the operation
3209 *
3210 * Make sure SStatus of @ap reaches stable state, determined by
3211 * holding the same value where DET is not 1 for @duration polled
3212 * every @interval, before @timeout. Timeout constraints the
3213 * beginning of the stable state. Because DET gets stuck at 1 on
3214 * some controllers after hot unplugging, this functions waits
3215 * until timeout then returns 0 if DET is stable at 1.
3216 *
3217 * @timeout is further limited by @deadline. The sooner of the
3218 * two is used.
3219 *
3220 * LOCKING:
3221 * Kernel thread context (may sleep)
3222 *
3223 * RETURNS:
3224 * 0 on success, -errno on failure.
3225 */
3226 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3227 unsigned long deadline)
3228 {
3229 unsigned long interval_msec = params[0];
3230 unsigned long duration = msecs_to_jiffies(params[1]);
3231 unsigned long last_jiffies, t;
3232 u32 last, cur;
3233 int rc;
3234
3235 t = jiffies + msecs_to_jiffies(params[2]);
3236 if (time_before(t, deadline))
3237 deadline = t;
3238
3239 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3240 return rc;
3241 cur &= 0xf;
3242
3243 last = cur;
3244 last_jiffies = jiffies;
3245
3246 while (1) {
3247 msleep(interval_msec);
3248 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3249 return rc;
3250 cur &= 0xf;
3251
3252 /* DET stable? */
3253 if (cur == last) {
3254 if (cur == 1 && time_before(jiffies, deadline))
3255 continue;
3256 if (time_after(jiffies, last_jiffies + duration))
3257 return 0;
3258 continue;
3259 }
3260
3261 /* unstable, start over */
3262 last = cur;
3263 last_jiffies = jiffies;
3264
3265 /* check deadline */
3266 if (time_after(jiffies, deadline))
3267 return -EBUSY;
3268 }
3269 }
3270
3271 /**
3272 * sata_phy_resume - resume SATA phy
3273 * @ap: ATA port to resume SATA phy for
3274 * @params: timing parameters { interval, duratinon, timeout } in msec
3275 * @deadline: deadline jiffies for the operation
3276 *
3277 * Resume SATA phy of @ap and debounce it.
3278 *
3279 * LOCKING:
3280 * Kernel thread context (may sleep)
3281 *
3282 * RETURNS:
3283 * 0 on success, -errno on failure.
3284 */
3285 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3286 unsigned long deadline)
3287 {
3288 u32 scontrol;
3289 int rc;
3290
3291 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3292 return rc;
3293
3294 scontrol = (scontrol & 0x0f0) | 0x300;
3295
3296 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3297 return rc;
3298
3299 /* Some PHYs react badly if SStatus is pounded immediately
3300 * after resuming. Delay 200ms before debouncing.
3301 */
3302 msleep(200);
3303
3304 return sata_phy_debounce(ap, params, deadline);
3305 }
3306
3307 /**
3308 * ata_std_prereset - prepare for reset
3309 * @ap: ATA port to be reset
3310 * @deadline: deadline jiffies for the operation
3311 *
3312 * @ap is about to be reset. Initialize it. Failure from
3313 * prereset makes libata abort whole reset sequence and give up
3314 * that port, so prereset should be best-effort. It does its
3315 * best to prepare for reset sequence but if things go wrong, it
3316 * should just whine, not fail.
3317 *
3318 * LOCKING:
3319 * Kernel thread context (may sleep)
3320 *
3321 * RETURNS:
3322 * 0 on success, -errno otherwise.
3323 */
3324 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3325 {
3326 struct ata_eh_context *ehc = &ap->eh_context;
3327 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3328 int rc;
3329
3330 /* handle link resume */
3331 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3332 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3333 ehc->i.action |= ATA_EH_HARDRESET;
3334
3335 /* if we're about to do hardreset, nothing more to do */
3336 if (ehc->i.action & ATA_EH_HARDRESET)
3337 return 0;
3338
3339 /* if SATA, resume phy */
3340 if (ap->cbl == ATA_CBL_SATA) {
3341 rc = sata_phy_resume(ap, timing, deadline);
3342 /* whine about phy resume failure but proceed */
3343 if (rc && rc != -EOPNOTSUPP)
3344 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3345 "link for reset (errno=%d)\n", rc);
3346 }
3347
3348 /* Wait for !BSY if the controller can wait for the first D2H
3349 * Reg FIS and we don't know that no device is attached.
3350 */
3351 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3352 rc = ata_wait_ready(ap, deadline);
3353 if (rc) {
3354 ata_port_printk(ap, KERN_WARNING, "device not ready "
3355 "(errno=%d), forcing hardreset\n", rc);
3356 ehc->i.action |= ATA_EH_HARDRESET;
3357 }
3358 }
3359
3360 return 0;
3361 }
3362
3363 /**
3364 * ata_std_softreset - reset host port via ATA SRST
3365 * @ap: port to reset
3366 * @classes: resulting classes of attached devices
3367 * @deadline: deadline jiffies for the operation
3368 *
3369 * Reset host port using ATA SRST.
3370 *
3371 * LOCKING:
3372 * Kernel thread context (may sleep)
3373 *
3374 * RETURNS:
3375 * 0 on success, -errno otherwise.
3376 */
3377 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3378 unsigned long deadline)
3379 {
3380 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3381 unsigned int devmask = 0;
3382 int rc;
3383 u8 err;
3384
3385 DPRINTK("ENTER\n");
3386
3387 if (ata_port_offline(ap)) {
3388 classes[0] = ATA_DEV_NONE;
3389 goto out;
3390 }
3391
3392 /* determine if device 0/1 are present */
3393 if (ata_devchk(ap, 0))
3394 devmask |= (1 << 0);
3395 if (slave_possible && ata_devchk(ap, 1))
3396 devmask |= (1 << 1);
3397
3398 /* select device 0 again */
3399 ap->ops->dev_select(ap, 0);
3400
3401 /* issue bus reset */
3402 DPRINTK("about to softreset, devmask=%x\n", devmask);
3403 rc = ata_bus_softreset(ap, devmask, deadline);
3404 /* if link is occupied, -ENODEV too is an error */
3405 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3406 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3407 return rc;
3408 }
3409
3410 /* determine by signature whether we have ATA or ATAPI devices */
3411 classes[0] = ata_dev_try_classify(ap, 0, &err);
3412 if (slave_possible && err != 0x81)
3413 classes[1] = ata_dev_try_classify(ap, 1, &err);
3414
3415 out:
3416 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3417 return 0;
3418 }
3419
3420 /**
3421 * sata_port_hardreset - reset port via SATA phy reset
3422 * @ap: port to reset
3423 * @timing: timing parameters { interval, duratinon, timeout } in msec
3424 * @deadline: deadline jiffies for the operation
3425 *
3426 * SATA phy-reset host port using DET bits of SControl register.
3427 *
3428 * LOCKING:
3429 * Kernel thread context (may sleep)
3430 *
3431 * RETURNS:
3432 * 0 on success, -errno otherwise.
3433 */
3434 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3435 unsigned long deadline)
3436 {
3437 u32 scontrol;
3438 int rc;
3439
3440 DPRINTK("ENTER\n");
3441
3442 if (sata_set_spd_needed(ap)) {
3443 /* SATA spec says nothing about how to reconfigure
3444 * spd. To be on the safe side, turn off phy during
3445 * reconfiguration. This works for at least ICH7 AHCI
3446 * and Sil3124.
3447 */
3448 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3449 goto out;
3450
3451 scontrol = (scontrol & 0x0f0) | 0x304;
3452
3453 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3454 goto out;
3455
3456 sata_set_spd(ap);
3457 }
3458
3459 /* issue phy wake/reset */
3460 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3461 goto out;
3462
3463 scontrol = (scontrol & 0x0f0) | 0x301;
3464
3465 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3466 goto out;
3467
3468 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3469 * 10.4.2 says at least 1 ms.
3470 */
3471 msleep(1);
3472
3473 /* bring phy back */
3474 rc = sata_phy_resume(ap, timing, deadline);
3475 out:
3476 DPRINTK("EXIT, rc=%d\n", rc);
3477 return rc;
3478 }
3479
3480 /**
3481 * sata_std_hardreset - reset host port via SATA phy reset
3482 * @ap: port to reset
3483 * @class: resulting class of attached device
3484 * @deadline: deadline jiffies for the operation
3485 *
3486 * SATA phy-reset host port using DET bits of SControl register,
3487 * wait for !BSY and classify the attached device.
3488 *
3489 * LOCKING:
3490 * Kernel thread context (may sleep)
3491 *
3492 * RETURNS:
3493 * 0 on success, -errno otherwise.
3494 */
3495 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3496 unsigned long deadline)
3497 {
3498 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3499 int rc;
3500
3501 DPRINTK("ENTER\n");
3502
3503 /* do hardreset */
3504 rc = sata_port_hardreset(ap, timing, deadline);
3505 if (rc) {
3506 ata_port_printk(ap, KERN_ERR,
3507 "COMRESET failed (errno=%d)\n", rc);
3508 return rc;
3509 }
3510
3511 /* TODO: phy layer with polling, timeouts, etc. */
3512 if (ata_port_offline(ap)) {
3513 *class = ATA_DEV_NONE;
3514 DPRINTK("EXIT, link offline\n");
3515 return 0;
3516 }
3517
3518 /* wait a while before checking status, see SRST for more info */
3519 msleep(150);
3520
3521 rc = ata_wait_ready(ap, deadline);
3522 /* link occupied, -ENODEV too is an error */
3523 if (rc) {
3524 ata_port_printk(ap, KERN_ERR,
3525 "COMRESET failed (errno=%d)\n", rc);
3526 return rc;
3527 }
3528
3529 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3530
3531 *class = ata_dev_try_classify(ap, 0, NULL);
3532
3533 DPRINTK("EXIT, class=%u\n", *class);
3534 return 0;
3535 }
3536
3537 /**
3538 * ata_std_postreset - standard postreset callback
3539 * @ap: the target ata_port
3540 * @classes: classes of attached devices
3541 *
3542 * This function is invoked after a successful reset. Note that
3543 * the device might have been reset more than once using
3544 * different reset methods before postreset is invoked.
3545 *
3546 * LOCKING:
3547 * Kernel thread context (may sleep)
3548 */
3549 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3550 {
3551 u32 serror;
3552
3553 DPRINTK("ENTER\n");
3554
3555 /* print link status */
3556 sata_print_link_status(ap);
3557
3558 /* clear SError */
3559 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3560 sata_scr_write(ap, SCR_ERROR, serror);
3561
3562 /* re-enable interrupts */
3563 if (!ap->ops->error_handler)
3564 ap->ops->irq_on(ap);
3565
3566 /* is double-select really necessary? */
3567 if (classes[0] != ATA_DEV_NONE)
3568 ap->ops->dev_select(ap, 1);
3569 if (classes[1] != ATA_DEV_NONE)
3570 ap->ops->dev_select(ap, 0);
3571
3572 /* bail out if no device is present */
3573 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3574 DPRINTK("EXIT, no device\n");
3575 return;
3576 }
3577
3578 /* set up device control */
3579 if (ap->ioaddr.ctl_addr)
3580 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3581
3582 DPRINTK("EXIT\n");
3583 }
3584
3585 /**
3586 * ata_dev_same_device - Determine whether new ID matches configured device
3587 * @dev: device to compare against
3588 * @new_class: class of the new device
3589 * @new_id: IDENTIFY page of the new device
3590 *
3591 * Compare @new_class and @new_id against @dev and determine
3592 * whether @dev is the device indicated by @new_class and
3593 * @new_id.
3594 *
3595 * LOCKING:
3596 * None.
3597 *
3598 * RETURNS:
3599 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3600 */
3601 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3602 const u16 *new_id)
3603 {
3604 const u16 *old_id = dev->id;
3605 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3606 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3607 u64 new_n_sectors;
3608
3609 if (dev->class != new_class) {
3610 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3611 dev->class, new_class);
3612 return 0;
3613 }
3614
3615 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3616 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3617 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3618 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3619 new_n_sectors = ata_id_n_sectors(new_id);
3620
3621 if (strcmp(model[0], model[1])) {
3622 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3623 "'%s' != '%s'\n", model[0], model[1]);
3624 return 0;
3625 }
3626
3627 if (strcmp(serial[0], serial[1])) {
3628 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3629 "'%s' != '%s'\n", serial[0], serial[1]);
3630 return 0;
3631 }
3632
3633 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3634 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3635 "%llu != %llu\n",
3636 (unsigned long long)dev->n_sectors,
3637 (unsigned long long)new_n_sectors);
3638 /* Are we the boot time size - if so we appear to be the
3639 same disk at this point and our HPA got reapplied */
3640 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3641 && ata_id_hpa_enabled(new_id))
3642 return 1;
3643 return 0;
3644 }
3645
3646 return 1;
3647 }
3648
3649 /**
3650 * ata_dev_revalidate - Revalidate ATA device
3651 * @dev: device to revalidate
3652 * @readid_flags: read ID flags
3653 *
3654 * Re-read IDENTIFY page and make sure @dev is still attached to
3655 * the port.
3656 *
3657 * LOCKING:
3658 * Kernel thread context (may sleep)
3659 *
3660 * RETURNS:
3661 * 0 on success, negative errno otherwise
3662 */
3663 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3664 {
3665 unsigned int class = dev->class;
3666 u16 *id = (void *)dev->ap->sector_buf;
3667 int rc;
3668
3669 if (!ata_dev_enabled(dev)) {
3670 rc = -ENODEV;
3671 goto fail;
3672 }
3673
3674 /* read ID data */
3675 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3676 if (rc)
3677 goto fail;
3678
3679 /* is the device still there? */
3680 if (!ata_dev_same_device(dev, class, id)) {
3681 rc = -ENODEV;
3682 goto fail;
3683 }
3684
3685 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3686
3687 /* configure device according to the new ID */
3688 rc = ata_dev_configure(dev);
3689 if (rc == 0)
3690 return 0;
3691
3692 fail:
3693 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3694 return rc;
3695 }
3696
3697 struct ata_blacklist_entry {
3698 const char *model_num;
3699 const char *model_rev;
3700 unsigned long horkage;
3701 };
3702
3703 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3704 /* Devices with DMA related problems under Linux */
3705 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3706 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3707 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3708 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3709 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3710 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3711 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3712 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3713 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3714 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3715 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3716 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3717 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3718 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3719 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3720 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3721 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3722 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3723 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3724 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3725 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3726 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3727 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3728 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3729 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3730 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3731 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3732 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3733 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3734
3735 /* Weird ATAPI devices */
3736 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3737 ATA_HORKAGE_DMA_RW_ONLY },
3738
3739 /* Devices we expect to fail diagnostics */
3740
3741 /* Devices where NCQ should be avoided */
3742 /* NCQ is slow */
3743 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3744 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3745 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3746 /* NCQ is broken */
3747 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3748 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3749 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3750 /* Blacklist entries taken from Silicon Image 3124/3132
3751 Windows driver .inf file - also several Linux problem reports */
3752 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3753 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3754 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3755
3756 /* Devices with NCQ limits */
3757
3758 /* End Marker */
3759 { }
3760 };
3761
3762 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3763 {
3764 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3765 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3766 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3767
3768 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3769 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3770
3771 while (ad->model_num) {
3772 if (!strcmp(ad->model_num, model_num)) {
3773 if (ad->model_rev == NULL)
3774 return ad->horkage;
3775 if (!strcmp(ad->model_rev, model_rev))
3776 return ad->horkage;
3777 }
3778 ad++;
3779 }
3780 return 0;
3781 }
3782
3783 static int ata_dma_blacklisted(const struct ata_device *dev)
3784 {
3785 /* We don't support polling DMA.
3786 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3787 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3788 */
3789 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3790 (dev->flags & ATA_DFLAG_CDB_INTR))
3791 return 1;
3792 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3793 }
3794
3795 /**
3796 * ata_dev_xfermask - Compute supported xfermask of the given device
3797 * @dev: Device to compute xfermask for
3798 *
3799 * Compute supported xfermask of @dev and store it in
3800 * dev->*_mask. This function is responsible for applying all
3801 * known limits including host controller limits, device
3802 * blacklist, etc...
3803 *
3804 * LOCKING:
3805 * None.
3806 */
3807 static void ata_dev_xfermask(struct ata_device *dev)
3808 {
3809 struct ata_port *ap = dev->ap;
3810 struct ata_host *host = ap->host;
3811 unsigned long xfer_mask;
3812
3813 /* controller modes available */
3814 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3815 ap->mwdma_mask, ap->udma_mask);
3816
3817 /* drive modes available */
3818 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3819 dev->mwdma_mask, dev->udma_mask);
3820 xfer_mask &= ata_id_xfermask(dev->id);
3821
3822 /*
3823 * CFA Advanced TrueIDE timings are not allowed on a shared
3824 * cable
3825 */
3826 if (ata_dev_pair(dev)) {
3827 /* No PIO5 or PIO6 */
3828 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3829 /* No MWDMA3 or MWDMA 4 */
3830 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3831 }
3832
3833 if (ata_dma_blacklisted(dev)) {
3834 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3835 ata_dev_printk(dev, KERN_WARNING,
3836 "device is on DMA blacklist, disabling DMA\n");
3837 }
3838
3839 if ((host->flags & ATA_HOST_SIMPLEX) &&
3840 host->simplex_claimed && host->simplex_claimed != ap) {
3841 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3842 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3843 "other device, disabling DMA\n");
3844 }
3845
3846 if (ap->flags & ATA_FLAG_NO_IORDY)
3847 xfer_mask &= ata_pio_mask_no_iordy(dev);
3848
3849 if (ap->ops->mode_filter)
3850 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3851
3852 /* Apply cable rule here. Don't apply it early because when
3853 * we handle hot plug the cable type can itself change.
3854 * Check this last so that we know if the transfer rate was
3855 * solely limited by the cable.
3856 * Unknown or 80 wire cables reported host side are checked
3857 * drive side as well. Cases where we know a 40wire cable
3858 * is used safely for 80 are not checked here.
3859 */
3860 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3861 /* UDMA/44 or higher would be available */
3862 if((ap->cbl == ATA_CBL_PATA40) ||
3863 (ata_drive_40wire(dev->id) &&
3864 (ap->cbl == ATA_CBL_PATA_UNK ||
3865 ap->cbl == ATA_CBL_PATA80))) {
3866 ata_dev_printk(dev, KERN_WARNING,
3867 "limited to UDMA/33 due to 40-wire cable\n");
3868 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3869 }
3870
3871 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3872 &dev->mwdma_mask, &dev->udma_mask);
3873 }
3874
3875 /**
3876 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3877 * @dev: Device to which command will be sent
3878 *
3879 * Issue SET FEATURES - XFER MODE command to device @dev
3880 * on port @ap.
3881 *
3882 * LOCKING:
3883 * PCI/etc. bus probe sem.
3884 *
3885 * RETURNS:
3886 * 0 on success, AC_ERR_* mask otherwise.
3887 */
3888
3889 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3890 {
3891 struct ata_taskfile tf;
3892 unsigned int err_mask;
3893
3894 /* set up set-features taskfile */
3895 DPRINTK("set features - xfer mode\n");
3896
3897 ata_tf_init(dev, &tf);
3898 tf.command = ATA_CMD_SET_FEATURES;
3899 tf.feature = SETFEATURES_XFER;
3900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3901 tf.protocol = ATA_PROT_NODATA;
3902 tf.nsect = dev->xfer_mode;
3903
3904 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3905
3906 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3907 return err_mask;
3908 }
3909
3910 /**
3911 * ata_dev_init_params - Issue INIT DEV PARAMS command
3912 * @dev: Device to which command will be sent
3913 * @heads: Number of heads (taskfile parameter)
3914 * @sectors: Number of sectors (taskfile parameter)
3915 *
3916 * LOCKING:
3917 * Kernel thread context (may sleep)
3918 *
3919 * RETURNS:
3920 * 0 on success, AC_ERR_* mask otherwise.
3921 */
3922 static unsigned int ata_dev_init_params(struct ata_device *dev,
3923 u16 heads, u16 sectors)
3924 {
3925 struct ata_taskfile tf;
3926 unsigned int err_mask;
3927
3928 /* Number of sectors per track 1-255. Number of heads 1-16 */
3929 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3930 return AC_ERR_INVALID;
3931
3932 /* set up init dev params taskfile */
3933 DPRINTK("init dev params \n");
3934
3935 ata_tf_init(dev, &tf);
3936 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3937 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3938 tf.protocol = ATA_PROT_NODATA;
3939 tf.nsect = sectors;
3940 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3941
3942 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3943
3944 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3945 return err_mask;
3946 }
3947
3948 /**
3949 * ata_sg_clean - Unmap DMA memory associated with command
3950 * @qc: Command containing DMA memory to be released
3951 *
3952 * Unmap all mapped DMA memory associated with this command.
3953 *
3954 * LOCKING:
3955 * spin_lock_irqsave(host lock)
3956 */
3957 void ata_sg_clean(struct ata_queued_cmd *qc)
3958 {
3959 struct ata_port *ap = qc->ap;
3960 struct scatterlist *sg = qc->__sg;
3961 int dir = qc->dma_dir;
3962 void *pad_buf = NULL;
3963
3964 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3965 WARN_ON(sg == NULL);
3966
3967 if (qc->flags & ATA_QCFLAG_SINGLE)
3968 WARN_ON(qc->n_elem > 1);
3969
3970 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3971
3972 /* if we padded the buffer out to 32-bit bound, and data
3973 * xfer direction is from-device, we must copy from the
3974 * pad buffer back into the supplied buffer
3975 */
3976 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3977 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3978
3979 if (qc->flags & ATA_QCFLAG_SG) {
3980 if (qc->n_elem)
3981 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3982 /* restore last sg */
3983 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3984 if (pad_buf) {
3985 struct scatterlist *psg = &qc->pad_sgent;
3986 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3987 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3988 kunmap_atomic(addr, KM_IRQ0);
3989 }
3990 } else {
3991 if (qc->n_elem)
3992 dma_unmap_single(ap->dev,
3993 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3994 dir);
3995 /* restore sg */
3996 sg->length += qc->pad_len;
3997 if (pad_buf)
3998 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3999 pad_buf, qc->pad_len);
4000 }
4001
4002 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4003 qc->__sg = NULL;
4004 }
4005
4006 /**
4007 * ata_fill_sg - Fill PCI IDE PRD table
4008 * @qc: Metadata associated with taskfile to be transferred
4009 *
4010 * Fill PCI IDE PRD (scatter-gather) table with segments
4011 * associated with the current disk command.
4012 *
4013 * LOCKING:
4014 * spin_lock_irqsave(host lock)
4015 *
4016 */
4017 static void ata_fill_sg(struct ata_queued_cmd *qc)
4018 {
4019 struct ata_port *ap = qc->ap;
4020 struct scatterlist *sg;
4021 unsigned int idx;
4022
4023 WARN_ON(qc->__sg == NULL);
4024 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4025
4026 idx = 0;
4027 ata_for_each_sg(sg, qc) {
4028 u32 addr, offset;
4029 u32 sg_len, len;
4030
4031 /* determine if physical DMA addr spans 64K boundary.
4032 * Note h/w doesn't support 64-bit, so we unconditionally
4033 * truncate dma_addr_t to u32.
4034 */
4035 addr = (u32) sg_dma_address(sg);
4036 sg_len = sg_dma_len(sg);
4037
4038 while (sg_len) {
4039 offset = addr & 0xffff;
4040 len = sg_len;
4041 if ((offset + sg_len) > 0x10000)
4042 len = 0x10000 - offset;
4043
4044 ap->prd[idx].addr = cpu_to_le32(addr);
4045 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4046 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4047
4048 idx++;
4049 sg_len -= len;
4050 addr += len;
4051 }
4052 }
4053
4054 if (idx)
4055 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4056 }
4057 /**
4058 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4059 * @qc: Metadata associated with taskfile to check
4060 *
4061 * Allow low-level driver to filter ATA PACKET commands, returning
4062 * a status indicating whether or not it is OK to use DMA for the
4063 * supplied PACKET command.
4064 *
4065 * LOCKING:
4066 * spin_lock_irqsave(host lock)
4067 *
4068 * RETURNS: 0 when ATAPI DMA can be used
4069 * nonzero otherwise
4070 */
4071 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4072 {
4073 struct ata_port *ap = qc->ap;
4074 int rc = 0; /* Assume ATAPI DMA is OK by default */
4075
4076 /* some drives can only do ATAPI DMA on read/write */
4077 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4078 struct scsi_cmnd *cmd = qc->scsicmd;
4079 u8 *scsicmd = cmd->cmnd;
4080
4081 switch (scsicmd[0]) {
4082 case READ_10:
4083 case WRITE_10:
4084 case READ_12:
4085 case WRITE_12:
4086 case READ_6:
4087 case WRITE_6:
4088 /* atapi dma maybe ok */
4089 break;
4090 default:
4091 /* turn off atapi dma */
4092 return 1;
4093 }
4094 }
4095
4096 if (ap->ops->check_atapi_dma)
4097 rc = ap->ops->check_atapi_dma(qc);
4098
4099 return rc;
4100 }
4101 /**
4102 * ata_qc_prep - Prepare taskfile for submission
4103 * @qc: Metadata associated with taskfile to be prepared
4104 *
4105 * Prepare ATA taskfile for submission.
4106 *
4107 * LOCKING:
4108 * spin_lock_irqsave(host lock)
4109 */
4110 void ata_qc_prep(struct ata_queued_cmd *qc)
4111 {
4112 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4113 return;
4114
4115 ata_fill_sg(qc);
4116 }
4117
4118 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4119
4120 /**
4121 * ata_sg_init_one - Associate command with memory buffer
4122 * @qc: Command to be associated
4123 * @buf: Memory buffer
4124 * @buflen: Length of memory buffer, in bytes.
4125 *
4126 * Initialize the data-related elements of queued_cmd @qc
4127 * to point to a single memory buffer, @buf of byte length @buflen.
4128 *
4129 * LOCKING:
4130 * spin_lock_irqsave(host lock)
4131 */
4132
4133 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4134 {
4135 qc->flags |= ATA_QCFLAG_SINGLE;
4136
4137 qc->__sg = &qc->sgent;
4138 qc->n_elem = 1;
4139 qc->orig_n_elem = 1;
4140 qc->buf_virt = buf;
4141 qc->nbytes = buflen;
4142
4143 sg_init_one(&qc->sgent, buf, buflen);
4144 }
4145
4146 /**
4147 * ata_sg_init - Associate command with scatter-gather table.
4148 * @qc: Command to be associated
4149 * @sg: Scatter-gather table.
4150 * @n_elem: Number of elements in s/g table.
4151 *
4152 * Initialize the data-related elements of queued_cmd @qc
4153 * to point to a scatter-gather table @sg, containing @n_elem
4154 * elements.
4155 *
4156 * LOCKING:
4157 * spin_lock_irqsave(host lock)
4158 */
4159
4160 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4161 unsigned int n_elem)
4162 {
4163 qc->flags |= ATA_QCFLAG_SG;
4164 qc->__sg = sg;
4165 qc->n_elem = n_elem;
4166 qc->orig_n_elem = n_elem;
4167 }
4168
4169 /**
4170 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4171 * @qc: Command with memory buffer to be mapped.
4172 *
4173 * DMA-map the memory buffer associated with queued_cmd @qc.
4174 *
4175 * LOCKING:
4176 * spin_lock_irqsave(host lock)
4177 *
4178 * RETURNS:
4179 * Zero on success, negative on error.
4180 */
4181
4182 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4183 {
4184 struct ata_port *ap = qc->ap;
4185 int dir = qc->dma_dir;
4186 struct scatterlist *sg = qc->__sg;
4187 dma_addr_t dma_address;
4188 int trim_sg = 0;
4189
4190 /* we must lengthen transfers to end on a 32-bit boundary */
4191 qc->pad_len = sg->length & 3;
4192 if (qc->pad_len) {
4193 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4194 struct scatterlist *psg = &qc->pad_sgent;
4195
4196 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4197
4198 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4199
4200 if (qc->tf.flags & ATA_TFLAG_WRITE)
4201 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4202 qc->pad_len);
4203
4204 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4205 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4206 /* trim sg */
4207 sg->length -= qc->pad_len;
4208 if (sg->length == 0)
4209 trim_sg = 1;
4210
4211 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4212 sg->length, qc->pad_len);
4213 }
4214
4215 if (trim_sg) {
4216 qc->n_elem--;
4217 goto skip_map;
4218 }
4219
4220 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4221 sg->length, dir);
4222 if (dma_mapping_error(dma_address)) {
4223 /* restore sg */
4224 sg->length += qc->pad_len;
4225 return -1;
4226 }
4227
4228 sg_dma_address(sg) = dma_address;
4229 sg_dma_len(sg) = sg->length;
4230
4231 skip_map:
4232 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4233 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4234
4235 return 0;
4236 }
4237
4238 /**
4239 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4240 * @qc: Command with scatter-gather table to be mapped.
4241 *
4242 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4243 *
4244 * LOCKING:
4245 * spin_lock_irqsave(host lock)
4246 *
4247 * RETURNS:
4248 * Zero on success, negative on error.
4249 *
4250 */
4251
4252 static int ata_sg_setup(struct ata_queued_cmd *qc)
4253 {
4254 struct ata_port *ap = qc->ap;
4255 struct scatterlist *sg = qc->__sg;
4256 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4257 int n_elem, pre_n_elem, dir, trim_sg = 0;
4258
4259 VPRINTK("ENTER, ata%u\n", ap->print_id);
4260 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4261
4262 /* we must lengthen transfers to end on a 32-bit boundary */
4263 qc->pad_len = lsg->length & 3;
4264 if (qc->pad_len) {
4265 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4266 struct scatterlist *psg = &qc->pad_sgent;
4267 unsigned int offset;
4268
4269 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4270
4271 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4272
4273 /*
4274 * psg->page/offset are used to copy to-be-written
4275 * data in this function or read data in ata_sg_clean.
4276 */
4277 offset = lsg->offset + lsg->length - qc->pad_len;
4278 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4279 psg->offset = offset_in_page(offset);
4280
4281 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4282 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4283 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4284 kunmap_atomic(addr, KM_IRQ0);
4285 }
4286
4287 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4288 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4289 /* trim last sg */
4290 lsg->length -= qc->pad_len;
4291 if (lsg->length == 0)
4292 trim_sg = 1;
4293
4294 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4295 qc->n_elem - 1, lsg->length, qc->pad_len);
4296 }
4297
4298 pre_n_elem = qc->n_elem;
4299 if (trim_sg && pre_n_elem)
4300 pre_n_elem--;
4301
4302 if (!pre_n_elem) {
4303 n_elem = 0;
4304 goto skip_map;
4305 }
4306
4307 dir = qc->dma_dir;
4308 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4309 if (n_elem < 1) {
4310 /* restore last sg */
4311 lsg->length += qc->pad_len;
4312 return -1;
4313 }
4314
4315 DPRINTK("%d sg elements mapped\n", n_elem);
4316
4317 skip_map:
4318 qc->n_elem = n_elem;
4319
4320 return 0;
4321 }
4322
4323 /**
4324 * swap_buf_le16 - swap halves of 16-bit words in place
4325 * @buf: Buffer to swap
4326 * @buf_words: Number of 16-bit words in buffer.
4327 *
4328 * Swap halves of 16-bit words if needed to convert from
4329 * little-endian byte order to native cpu byte order, or
4330 * vice-versa.
4331 *
4332 * LOCKING:
4333 * Inherited from caller.
4334 */
4335 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4336 {
4337 #ifdef __BIG_ENDIAN
4338 unsigned int i;
4339
4340 for (i = 0; i < buf_words; i++)
4341 buf[i] = le16_to_cpu(buf[i]);
4342 #endif /* __BIG_ENDIAN */
4343 }
4344
4345 /**
4346 * ata_data_xfer - Transfer data by PIO
4347 * @adev: device to target
4348 * @buf: data buffer
4349 * @buflen: buffer length
4350 * @write_data: read/write
4351 *
4352 * Transfer data from/to the device data register by PIO.
4353 *
4354 * LOCKING:
4355 * Inherited from caller.
4356 */
4357 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4358 unsigned int buflen, int write_data)
4359 {
4360 struct ata_port *ap = adev->ap;
4361 unsigned int words = buflen >> 1;
4362
4363 /* Transfer multiple of 2 bytes */
4364 if (write_data)
4365 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4366 else
4367 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4368
4369 /* Transfer trailing 1 byte, if any. */
4370 if (unlikely(buflen & 0x01)) {
4371 u16 align_buf[1] = { 0 };
4372 unsigned char *trailing_buf = buf + buflen - 1;
4373
4374 if (write_data) {
4375 memcpy(align_buf, trailing_buf, 1);
4376 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4377 } else {
4378 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4379 memcpy(trailing_buf, align_buf, 1);
4380 }
4381 }
4382 }
4383
4384 /**
4385 * ata_data_xfer_noirq - Transfer data by PIO
4386 * @adev: device to target
4387 * @buf: data buffer
4388 * @buflen: buffer length
4389 * @write_data: read/write
4390 *
4391 * Transfer data from/to the device data register by PIO. Do the
4392 * transfer with interrupts disabled.
4393 *
4394 * LOCKING:
4395 * Inherited from caller.
4396 */
4397 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4398 unsigned int buflen, int write_data)
4399 {
4400 unsigned long flags;
4401 local_irq_save(flags);
4402 ata_data_xfer(adev, buf, buflen, write_data);
4403 local_irq_restore(flags);
4404 }
4405
4406
4407 /**
4408 * ata_pio_sector - Transfer a sector of data.
4409 * @qc: Command on going
4410 *
4411 * Transfer qc->sect_size bytes of data from/to the ATA device.
4412 *
4413 * LOCKING:
4414 * Inherited from caller.
4415 */
4416
4417 static void ata_pio_sector(struct ata_queued_cmd *qc)
4418 {
4419 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4420 struct scatterlist *sg = qc->__sg;
4421 struct ata_port *ap = qc->ap;
4422 struct page *page;
4423 unsigned int offset;
4424 unsigned char *buf;
4425
4426 if (qc->curbytes == qc->nbytes - qc->sect_size)
4427 ap->hsm_task_state = HSM_ST_LAST;
4428
4429 page = sg[qc->cursg].page;
4430 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4431
4432 /* get the current page and offset */
4433 page = nth_page(page, (offset >> PAGE_SHIFT));
4434 offset %= PAGE_SIZE;
4435
4436 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4437
4438 if (PageHighMem(page)) {
4439 unsigned long flags;
4440
4441 /* FIXME: use a bounce buffer */
4442 local_irq_save(flags);
4443 buf = kmap_atomic(page, KM_IRQ0);
4444
4445 /* do the actual data transfer */
4446 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4447
4448 kunmap_atomic(buf, KM_IRQ0);
4449 local_irq_restore(flags);
4450 } else {
4451 buf = page_address(page);
4452 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4453 }
4454
4455 qc->curbytes += qc->sect_size;
4456 qc->cursg_ofs += qc->sect_size;
4457
4458 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4459 qc->cursg++;
4460 qc->cursg_ofs = 0;
4461 }
4462 }
4463
4464 /**
4465 * ata_pio_sectors - Transfer one or many sectors.
4466 * @qc: Command on going
4467 *
4468 * Transfer one or many sectors of data from/to the
4469 * ATA device for the DRQ request.
4470 *
4471 * LOCKING:
4472 * Inherited from caller.
4473 */
4474
4475 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4476 {
4477 if (is_multi_taskfile(&qc->tf)) {
4478 /* READ/WRITE MULTIPLE */
4479 unsigned int nsect;
4480
4481 WARN_ON(qc->dev->multi_count == 0);
4482
4483 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4484 qc->dev->multi_count);
4485 while (nsect--)
4486 ata_pio_sector(qc);
4487 } else
4488 ata_pio_sector(qc);
4489 }
4490
4491 /**
4492 * atapi_send_cdb - Write CDB bytes to hardware
4493 * @ap: Port to which ATAPI device is attached.
4494 * @qc: Taskfile currently active
4495 *
4496 * When device has indicated its readiness to accept
4497 * a CDB, this function is called. Send the CDB.
4498 *
4499 * LOCKING:
4500 * caller.
4501 */
4502
4503 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4504 {
4505 /* send SCSI cdb */
4506 DPRINTK("send cdb\n");
4507 WARN_ON(qc->dev->cdb_len < 12);
4508
4509 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4510 ata_altstatus(ap); /* flush */
4511
4512 switch (qc->tf.protocol) {
4513 case ATA_PROT_ATAPI:
4514 ap->hsm_task_state = HSM_ST;
4515 break;
4516 case ATA_PROT_ATAPI_NODATA:
4517 ap->hsm_task_state = HSM_ST_LAST;
4518 break;
4519 case ATA_PROT_ATAPI_DMA:
4520 ap->hsm_task_state = HSM_ST_LAST;
4521 /* initiate bmdma */
4522 ap->ops->bmdma_start(qc);
4523 break;
4524 }
4525 }
4526
4527 /**
4528 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4529 * @qc: Command on going
4530 * @bytes: number of bytes
4531 *
4532 * Transfer Transfer data from/to the ATAPI device.
4533 *
4534 * LOCKING:
4535 * Inherited from caller.
4536 *
4537 */
4538
4539 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4540 {
4541 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4542 struct scatterlist *sg = qc->__sg;
4543 struct ata_port *ap = qc->ap;
4544 struct page *page;
4545 unsigned char *buf;
4546 unsigned int offset, count;
4547
4548 if (qc->curbytes + bytes >= qc->nbytes)
4549 ap->hsm_task_state = HSM_ST_LAST;
4550
4551 next_sg:
4552 if (unlikely(qc->cursg >= qc->n_elem)) {
4553 /*
4554 * The end of qc->sg is reached and the device expects
4555 * more data to transfer. In order not to overrun qc->sg
4556 * and fulfill length specified in the byte count register,
4557 * - for read case, discard trailing data from the device
4558 * - for write case, padding zero data to the device
4559 */
4560 u16 pad_buf[1] = { 0 };
4561 unsigned int words = bytes >> 1;
4562 unsigned int i;
4563
4564 if (words) /* warning if bytes > 1 */
4565 ata_dev_printk(qc->dev, KERN_WARNING,
4566 "%u bytes trailing data\n", bytes);
4567
4568 for (i = 0; i < words; i++)
4569 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4570
4571 ap->hsm_task_state = HSM_ST_LAST;
4572 return;
4573 }
4574
4575 sg = &qc->__sg[qc->cursg];
4576
4577 page = sg->page;
4578 offset = sg->offset + qc->cursg_ofs;
4579
4580 /* get the current page and offset */
4581 page = nth_page(page, (offset >> PAGE_SHIFT));
4582 offset %= PAGE_SIZE;
4583
4584 /* don't overrun current sg */
4585 count = min(sg->length - qc->cursg_ofs, bytes);
4586
4587 /* don't cross page boundaries */
4588 count = min(count, (unsigned int)PAGE_SIZE - offset);
4589
4590 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4591
4592 if (PageHighMem(page)) {
4593 unsigned long flags;
4594
4595 /* FIXME: use bounce buffer */
4596 local_irq_save(flags);
4597 buf = kmap_atomic(page, KM_IRQ0);
4598
4599 /* do the actual data transfer */
4600 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4601
4602 kunmap_atomic(buf, KM_IRQ0);
4603 local_irq_restore(flags);
4604 } else {
4605 buf = page_address(page);
4606 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4607 }
4608
4609 bytes -= count;
4610 qc->curbytes += count;
4611 qc->cursg_ofs += count;
4612
4613 if (qc->cursg_ofs == sg->length) {
4614 qc->cursg++;
4615 qc->cursg_ofs = 0;
4616 }
4617
4618 if (bytes)
4619 goto next_sg;
4620 }
4621
4622 /**
4623 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4624 * @qc: Command on going
4625 *
4626 * Transfer Transfer data from/to the ATAPI device.
4627 *
4628 * LOCKING:
4629 * Inherited from caller.
4630 */
4631
4632 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4633 {
4634 struct ata_port *ap = qc->ap;
4635 struct ata_device *dev = qc->dev;
4636 unsigned int ireason, bc_lo, bc_hi, bytes;
4637 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4638
4639 /* Abuse qc->result_tf for temp storage of intermediate TF
4640 * here to save some kernel stack usage.
4641 * For normal completion, qc->result_tf is not relevant. For
4642 * error, qc->result_tf is later overwritten by ata_qc_complete().
4643 * So, the correctness of qc->result_tf is not affected.
4644 */
4645 ap->ops->tf_read(ap, &qc->result_tf);
4646 ireason = qc->result_tf.nsect;
4647 bc_lo = qc->result_tf.lbam;
4648 bc_hi = qc->result_tf.lbah;
4649 bytes = (bc_hi << 8) | bc_lo;
4650
4651 /* shall be cleared to zero, indicating xfer of data */
4652 if (ireason & (1 << 0))
4653 goto err_out;
4654
4655 /* make sure transfer direction matches expected */
4656 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4657 if (do_write != i_write)
4658 goto err_out;
4659
4660 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4661
4662 __atapi_pio_bytes(qc, bytes);
4663
4664 return;
4665
4666 err_out:
4667 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4668 qc->err_mask |= AC_ERR_HSM;
4669 ap->hsm_task_state = HSM_ST_ERR;
4670 }
4671
4672 /**
4673 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4674 * @ap: the target ata_port
4675 * @qc: qc on going
4676 *
4677 * RETURNS:
4678 * 1 if ok in workqueue, 0 otherwise.
4679 */
4680
4681 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4682 {
4683 if (qc->tf.flags & ATA_TFLAG_POLLING)
4684 return 1;
4685
4686 if (ap->hsm_task_state == HSM_ST_FIRST) {
4687 if (qc->tf.protocol == ATA_PROT_PIO &&
4688 (qc->tf.flags & ATA_TFLAG_WRITE))
4689 return 1;
4690
4691 if (is_atapi_taskfile(&qc->tf) &&
4692 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4693 return 1;
4694 }
4695
4696 return 0;
4697 }
4698
4699 /**
4700 * ata_hsm_qc_complete - finish a qc running on standard HSM
4701 * @qc: Command to complete
4702 * @in_wq: 1 if called from workqueue, 0 otherwise
4703 *
4704 * Finish @qc which is running on standard HSM.
4705 *
4706 * LOCKING:
4707 * If @in_wq is zero, spin_lock_irqsave(host lock).
4708 * Otherwise, none on entry and grabs host lock.
4709 */
4710 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4711 {
4712 struct ata_port *ap = qc->ap;
4713 unsigned long flags;
4714
4715 if (ap->ops->error_handler) {
4716 if (in_wq) {
4717 spin_lock_irqsave(ap->lock, flags);
4718
4719 /* EH might have kicked in while host lock is
4720 * released.
4721 */
4722 qc = ata_qc_from_tag(ap, qc->tag);
4723 if (qc) {
4724 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4725 ap->ops->irq_on(ap);
4726 ata_qc_complete(qc);
4727 } else
4728 ata_port_freeze(ap);
4729 }
4730
4731 spin_unlock_irqrestore(ap->lock, flags);
4732 } else {
4733 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4734 ata_qc_complete(qc);
4735 else
4736 ata_port_freeze(ap);
4737 }
4738 } else {
4739 if (in_wq) {
4740 spin_lock_irqsave(ap->lock, flags);
4741 ap->ops->irq_on(ap);
4742 ata_qc_complete(qc);
4743 spin_unlock_irqrestore(ap->lock, flags);
4744 } else
4745 ata_qc_complete(qc);
4746 }
4747
4748 ata_altstatus(ap); /* flush */
4749 }
4750
4751 /**
4752 * ata_hsm_move - move the HSM to the next state.
4753 * @ap: the target ata_port
4754 * @qc: qc on going
4755 * @status: current device status
4756 * @in_wq: 1 if called from workqueue, 0 otherwise
4757 *
4758 * RETURNS:
4759 * 1 when poll next status needed, 0 otherwise.
4760 */
4761 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4762 u8 status, int in_wq)
4763 {
4764 unsigned long flags = 0;
4765 int poll_next;
4766
4767 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4768
4769 /* Make sure ata_qc_issue_prot() does not throw things
4770 * like DMA polling into the workqueue. Notice that
4771 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4772 */
4773 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4774
4775 fsm_start:
4776 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4777 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4778
4779 switch (ap->hsm_task_state) {
4780 case HSM_ST_FIRST:
4781 /* Send first data block or PACKET CDB */
4782
4783 /* If polling, we will stay in the work queue after
4784 * sending the data. Otherwise, interrupt handler
4785 * takes over after sending the data.
4786 */
4787 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4788
4789 /* check device status */
4790 if (unlikely((status & ATA_DRQ) == 0)) {
4791 /* handle BSY=0, DRQ=0 as error */
4792 if (likely(status & (ATA_ERR | ATA_DF)))
4793 /* device stops HSM for abort/error */
4794 qc->err_mask |= AC_ERR_DEV;
4795 else
4796 /* HSM violation. Let EH handle this */
4797 qc->err_mask |= AC_ERR_HSM;
4798
4799 ap->hsm_task_state = HSM_ST_ERR;
4800 goto fsm_start;
4801 }
4802
4803 /* Device should not ask for data transfer (DRQ=1)
4804 * when it finds something wrong.
4805 * We ignore DRQ here and stop the HSM by
4806 * changing hsm_task_state to HSM_ST_ERR and
4807 * let the EH abort the command or reset the device.
4808 */
4809 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4810 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4811 "error, dev_stat 0x%X\n", status);
4812 qc->err_mask |= AC_ERR_HSM;
4813 ap->hsm_task_state = HSM_ST_ERR;
4814 goto fsm_start;
4815 }
4816
4817 /* Send the CDB (atapi) or the first data block (ata pio out).
4818 * During the state transition, interrupt handler shouldn't
4819 * be invoked before the data transfer is complete and
4820 * hsm_task_state is changed. Hence, the following locking.
4821 */
4822 if (in_wq)
4823 spin_lock_irqsave(ap->lock, flags);
4824
4825 if (qc->tf.protocol == ATA_PROT_PIO) {
4826 /* PIO data out protocol.
4827 * send first data block.
4828 */
4829
4830 /* ata_pio_sectors() might change the state
4831 * to HSM_ST_LAST. so, the state is changed here
4832 * before ata_pio_sectors().
4833 */
4834 ap->hsm_task_state = HSM_ST;
4835 ata_pio_sectors(qc);
4836 ata_altstatus(ap); /* flush */
4837 } else
4838 /* send CDB */
4839 atapi_send_cdb(ap, qc);
4840
4841 if (in_wq)
4842 spin_unlock_irqrestore(ap->lock, flags);
4843
4844 /* if polling, ata_pio_task() handles the rest.
4845 * otherwise, interrupt handler takes over from here.
4846 */
4847 break;
4848
4849 case HSM_ST:
4850 /* complete command or read/write the data register */
4851 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4852 /* ATAPI PIO protocol */
4853 if ((status & ATA_DRQ) == 0) {
4854 /* No more data to transfer or device error.
4855 * Device error will be tagged in HSM_ST_LAST.
4856 */
4857 ap->hsm_task_state = HSM_ST_LAST;
4858 goto fsm_start;
4859 }
4860
4861 /* Device should not ask for data transfer (DRQ=1)
4862 * when it finds something wrong.
4863 * We ignore DRQ here and stop the HSM by
4864 * changing hsm_task_state to HSM_ST_ERR and
4865 * let the EH abort the command or reset the device.
4866 */
4867 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4868 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4869 "device error, dev_stat 0x%X\n",
4870 status);
4871 qc->err_mask |= AC_ERR_HSM;
4872 ap->hsm_task_state = HSM_ST_ERR;
4873 goto fsm_start;
4874 }
4875
4876 atapi_pio_bytes(qc);
4877
4878 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4879 /* bad ireason reported by device */
4880 goto fsm_start;
4881
4882 } else {
4883 /* ATA PIO protocol */
4884 if (unlikely((status & ATA_DRQ) == 0)) {
4885 /* handle BSY=0, DRQ=0 as error */
4886 if (likely(status & (ATA_ERR | ATA_DF)))
4887 /* device stops HSM for abort/error */
4888 qc->err_mask |= AC_ERR_DEV;
4889 else
4890 /* HSM violation. Let EH handle this.
4891 * Phantom devices also trigger this
4892 * condition. Mark hint.
4893 */
4894 qc->err_mask |= AC_ERR_HSM |
4895 AC_ERR_NODEV_HINT;
4896
4897 ap->hsm_task_state = HSM_ST_ERR;
4898 goto fsm_start;
4899 }
4900
4901 /* For PIO reads, some devices may ask for
4902 * data transfer (DRQ=1) alone with ERR=1.
4903 * We respect DRQ here and transfer one
4904 * block of junk data before changing the
4905 * hsm_task_state to HSM_ST_ERR.
4906 *
4907 * For PIO writes, ERR=1 DRQ=1 doesn't make
4908 * sense since the data block has been
4909 * transferred to the device.
4910 */
4911 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4912 /* data might be corrputed */
4913 qc->err_mask |= AC_ERR_DEV;
4914
4915 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4916 ata_pio_sectors(qc);
4917 ata_altstatus(ap);
4918 status = ata_wait_idle(ap);
4919 }
4920
4921 if (status & (ATA_BUSY | ATA_DRQ))
4922 qc->err_mask |= AC_ERR_HSM;
4923
4924 /* ata_pio_sectors() might change the
4925 * state to HSM_ST_LAST. so, the state
4926 * is changed after ata_pio_sectors().
4927 */
4928 ap->hsm_task_state = HSM_ST_ERR;
4929 goto fsm_start;
4930 }
4931
4932 ata_pio_sectors(qc);
4933
4934 if (ap->hsm_task_state == HSM_ST_LAST &&
4935 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4936 /* all data read */
4937 ata_altstatus(ap);
4938 status = ata_wait_idle(ap);
4939 goto fsm_start;
4940 }
4941 }
4942
4943 ata_altstatus(ap); /* flush */
4944 poll_next = 1;
4945 break;
4946
4947 case HSM_ST_LAST:
4948 if (unlikely(!ata_ok(status))) {
4949 qc->err_mask |= __ac_err_mask(status);
4950 ap->hsm_task_state = HSM_ST_ERR;
4951 goto fsm_start;
4952 }
4953
4954 /* no more data to transfer */
4955 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4956 ap->print_id, qc->dev->devno, status);
4957
4958 WARN_ON(qc->err_mask);
4959
4960 ap->hsm_task_state = HSM_ST_IDLE;
4961
4962 /* complete taskfile transaction */
4963 ata_hsm_qc_complete(qc, in_wq);
4964
4965 poll_next = 0;
4966 break;
4967
4968 case HSM_ST_ERR:
4969 /* make sure qc->err_mask is available to
4970 * know what's wrong and recover
4971 */
4972 WARN_ON(qc->err_mask == 0);
4973
4974 ap->hsm_task_state = HSM_ST_IDLE;
4975
4976 /* complete taskfile transaction */
4977 ata_hsm_qc_complete(qc, in_wq);
4978
4979 poll_next = 0;
4980 break;
4981 default:
4982 poll_next = 0;
4983 BUG();
4984 }
4985
4986 return poll_next;
4987 }
4988
4989 static void ata_pio_task(struct work_struct *work)
4990 {
4991 struct ata_port *ap =
4992 container_of(work, struct ata_port, port_task.work);
4993 struct ata_queued_cmd *qc = ap->port_task_data;
4994 u8 status;
4995 int poll_next;
4996
4997 fsm_start:
4998 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4999
5000 /*
5001 * This is purely heuristic. This is a fast path.
5002 * Sometimes when we enter, BSY will be cleared in
5003 * a chk-status or two. If not, the drive is probably seeking
5004 * or something. Snooze for a couple msecs, then
5005 * chk-status again. If still busy, queue delayed work.
5006 */
5007 status = ata_busy_wait(ap, ATA_BUSY, 5);
5008 if (status & ATA_BUSY) {
5009 msleep(2);
5010 status = ata_busy_wait(ap, ATA_BUSY, 10);
5011 if (status & ATA_BUSY) {
5012 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5013 return;
5014 }
5015 }
5016
5017 /* move the HSM */
5018 poll_next = ata_hsm_move(ap, qc, status, 1);
5019
5020 /* another command or interrupt handler
5021 * may be running at this point.
5022 */
5023 if (poll_next)
5024 goto fsm_start;
5025 }
5026
5027 /**
5028 * ata_qc_new - Request an available ATA command, for queueing
5029 * @ap: Port associated with device @dev
5030 * @dev: Device from whom we request an available command structure
5031 *
5032 * LOCKING:
5033 * None.
5034 */
5035
5036 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5037 {
5038 struct ata_queued_cmd *qc = NULL;
5039 unsigned int i;
5040
5041 /* no command while frozen */
5042 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5043 return NULL;
5044
5045 /* the last tag is reserved for internal command. */
5046 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5047 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5048 qc = __ata_qc_from_tag(ap, i);
5049 break;
5050 }
5051
5052 if (qc)
5053 qc->tag = i;
5054
5055 return qc;
5056 }
5057
5058 /**
5059 * ata_qc_new_init - Request an available ATA command, and initialize it
5060 * @dev: Device from whom we request an available command structure
5061 *
5062 * LOCKING:
5063 * None.
5064 */
5065
5066 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5067 {
5068 struct ata_port *ap = dev->ap;
5069 struct ata_queued_cmd *qc;
5070
5071 qc = ata_qc_new(ap);
5072 if (qc) {
5073 qc->scsicmd = NULL;
5074 qc->ap = ap;
5075 qc->dev = dev;
5076
5077 ata_qc_reinit(qc);
5078 }
5079
5080 return qc;
5081 }
5082
5083 /**
5084 * ata_qc_free - free unused ata_queued_cmd
5085 * @qc: Command to complete
5086 *
5087 * Designed to free unused ata_queued_cmd object
5088 * in case something prevents using it.
5089 *
5090 * LOCKING:
5091 * spin_lock_irqsave(host lock)
5092 */
5093 void ata_qc_free(struct ata_queued_cmd *qc)
5094 {
5095 struct ata_port *ap = qc->ap;
5096 unsigned int tag;
5097
5098 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5099
5100 qc->flags = 0;
5101 tag = qc->tag;
5102 if (likely(ata_tag_valid(tag))) {
5103 qc->tag = ATA_TAG_POISON;
5104 clear_bit(tag, &ap->qc_allocated);
5105 }
5106 }
5107
5108 void __ata_qc_complete(struct ata_queued_cmd *qc)
5109 {
5110 struct ata_port *ap = qc->ap;
5111
5112 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5113 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5114
5115 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5116 ata_sg_clean(qc);
5117
5118 /* command should be marked inactive atomically with qc completion */
5119 if (qc->tf.protocol == ATA_PROT_NCQ)
5120 ap->sactive &= ~(1 << qc->tag);
5121 else
5122 ap->active_tag = ATA_TAG_POISON;
5123
5124 /* atapi: mark qc as inactive to prevent the interrupt handler
5125 * from completing the command twice later, before the error handler
5126 * is called. (when rc != 0 and atapi request sense is needed)
5127 */
5128 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5129 ap->qc_active &= ~(1 << qc->tag);
5130
5131 /* call completion callback */
5132 qc->complete_fn(qc);
5133 }
5134
5135 static void fill_result_tf(struct ata_queued_cmd *qc)
5136 {
5137 struct ata_port *ap = qc->ap;
5138
5139 qc->result_tf.flags = qc->tf.flags;
5140 ap->ops->tf_read(ap, &qc->result_tf);
5141 }
5142
5143 /**
5144 * ata_qc_complete - Complete an active ATA command
5145 * @qc: Command to complete
5146 * @err_mask: ATA Status register contents
5147 *
5148 * Indicate to the mid and upper layers that an ATA
5149 * command has completed, with either an ok or not-ok status.
5150 *
5151 * LOCKING:
5152 * spin_lock_irqsave(host lock)
5153 */
5154 void ata_qc_complete(struct ata_queued_cmd *qc)
5155 {
5156 struct ata_port *ap = qc->ap;
5157
5158 /* XXX: New EH and old EH use different mechanisms to
5159 * synchronize EH with regular execution path.
5160 *
5161 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5162 * Normal execution path is responsible for not accessing a
5163 * failed qc. libata core enforces the rule by returning NULL
5164 * from ata_qc_from_tag() for failed qcs.
5165 *
5166 * Old EH depends on ata_qc_complete() nullifying completion
5167 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5168 * not synchronize with interrupt handler. Only PIO task is
5169 * taken care of.
5170 */
5171 if (ap->ops->error_handler) {
5172 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5173
5174 if (unlikely(qc->err_mask))
5175 qc->flags |= ATA_QCFLAG_FAILED;
5176
5177 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5178 if (!ata_tag_internal(qc->tag)) {
5179 /* always fill result TF for failed qc */
5180 fill_result_tf(qc);
5181 ata_qc_schedule_eh(qc);
5182 return;
5183 }
5184 }
5185
5186 /* read result TF if requested */
5187 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5188 fill_result_tf(qc);
5189
5190 __ata_qc_complete(qc);
5191 } else {
5192 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5193 return;
5194
5195 /* read result TF if failed or requested */
5196 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5197 fill_result_tf(qc);
5198
5199 __ata_qc_complete(qc);
5200 }
5201 }
5202
5203 /**
5204 * ata_qc_complete_multiple - Complete multiple qcs successfully
5205 * @ap: port in question
5206 * @qc_active: new qc_active mask
5207 * @finish_qc: LLDD callback invoked before completing a qc
5208 *
5209 * Complete in-flight commands. This functions is meant to be
5210 * called from low-level driver's interrupt routine to complete
5211 * requests normally. ap->qc_active and @qc_active is compared
5212 * and commands are completed accordingly.
5213 *
5214 * LOCKING:
5215 * spin_lock_irqsave(host lock)
5216 *
5217 * RETURNS:
5218 * Number of completed commands on success, -errno otherwise.
5219 */
5220 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5221 void (*finish_qc)(struct ata_queued_cmd *))
5222 {
5223 int nr_done = 0;
5224 u32 done_mask;
5225 int i;
5226
5227 done_mask = ap->qc_active ^ qc_active;
5228
5229 if (unlikely(done_mask & qc_active)) {
5230 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5231 "(%08x->%08x)\n", ap->qc_active, qc_active);
5232 return -EINVAL;
5233 }
5234
5235 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5236 struct ata_queued_cmd *qc;
5237
5238 if (!(done_mask & (1 << i)))
5239 continue;
5240
5241 if ((qc = ata_qc_from_tag(ap, i))) {
5242 if (finish_qc)
5243 finish_qc(qc);
5244 ata_qc_complete(qc);
5245 nr_done++;
5246 }
5247 }
5248
5249 return nr_done;
5250 }
5251
5252 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5253 {
5254 struct ata_port *ap = qc->ap;
5255
5256 switch (qc->tf.protocol) {
5257 case ATA_PROT_NCQ:
5258 case ATA_PROT_DMA:
5259 case ATA_PROT_ATAPI_DMA:
5260 return 1;
5261
5262 case ATA_PROT_ATAPI:
5263 case ATA_PROT_PIO:
5264 if (ap->flags & ATA_FLAG_PIO_DMA)
5265 return 1;
5266
5267 /* fall through */
5268
5269 default:
5270 return 0;
5271 }
5272
5273 /* never reached */
5274 }
5275
5276 /**
5277 * ata_qc_issue - issue taskfile to device
5278 * @qc: command to issue to device
5279 *
5280 * Prepare an ATA command to submission to device.
5281 * This includes mapping the data into a DMA-able
5282 * area, filling in the S/G table, and finally
5283 * writing the taskfile to hardware, starting the command.
5284 *
5285 * LOCKING:
5286 * spin_lock_irqsave(host lock)
5287 */
5288 void ata_qc_issue(struct ata_queued_cmd *qc)
5289 {
5290 struct ata_port *ap = qc->ap;
5291
5292 /* Make sure only one non-NCQ command is outstanding. The
5293 * check is skipped for old EH because it reuses active qc to
5294 * request ATAPI sense.
5295 */
5296 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5297
5298 if (qc->tf.protocol == ATA_PROT_NCQ) {
5299 WARN_ON(ap->sactive & (1 << qc->tag));
5300 ap->sactive |= 1 << qc->tag;
5301 } else {
5302 WARN_ON(ap->sactive);
5303 ap->active_tag = qc->tag;
5304 }
5305
5306 qc->flags |= ATA_QCFLAG_ACTIVE;
5307 ap->qc_active |= 1 << qc->tag;
5308
5309 if (ata_should_dma_map(qc)) {
5310 if (qc->flags & ATA_QCFLAG_SG) {
5311 if (ata_sg_setup(qc))
5312 goto sg_err;
5313 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5314 if (ata_sg_setup_one(qc))
5315 goto sg_err;
5316 }
5317 } else {
5318 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5319 }
5320
5321 ap->ops->qc_prep(qc);
5322
5323 qc->err_mask |= ap->ops->qc_issue(qc);
5324 if (unlikely(qc->err_mask))
5325 goto err;
5326 return;
5327
5328 sg_err:
5329 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5330 qc->err_mask |= AC_ERR_SYSTEM;
5331 err:
5332 ata_qc_complete(qc);
5333 }
5334
5335 /**
5336 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5337 * @qc: command to issue to device
5338 *
5339 * Using various libata functions and hooks, this function
5340 * starts an ATA command. ATA commands are grouped into
5341 * classes called "protocols", and issuing each type of protocol
5342 * is slightly different.
5343 *
5344 * May be used as the qc_issue() entry in ata_port_operations.
5345 *
5346 * LOCKING:
5347 * spin_lock_irqsave(host lock)
5348 *
5349 * RETURNS:
5350 * Zero on success, AC_ERR_* mask on failure
5351 */
5352
5353 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5354 {
5355 struct ata_port *ap = qc->ap;
5356
5357 /* Use polling pio if the LLD doesn't handle
5358 * interrupt driven pio and atapi CDB interrupt.
5359 */
5360 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5361 switch (qc->tf.protocol) {
5362 case ATA_PROT_PIO:
5363 case ATA_PROT_NODATA:
5364 case ATA_PROT_ATAPI:
5365 case ATA_PROT_ATAPI_NODATA:
5366 qc->tf.flags |= ATA_TFLAG_POLLING;
5367 break;
5368 case ATA_PROT_ATAPI_DMA:
5369 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5370 /* see ata_dma_blacklisted() */
5371 BUG();
5372 break;
5373 default:
5374 break;
5375 }
5376 }
5377
5378 /* Some controllers show flaky interrupt behavior after
5379 * setting xfer mode. Use polling instead.
5380 */
5381 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5382 qc->tf.feature == SETFEATURES_XFER) &&
5383 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5384 qc->tf.flags |= ATA_TFLAG_POLLING;
5385
5386 /* select the device */
5387 ata_dev_select(ap, qc->dev->devno, 1, 0);
5388
5389 /* start the command */
5390 switch (qc->tf.protocol) {
5391 case ATA_PROT_NODATA:
5392 if (qc->tf.flags & ATA_TFLAG_POLLING)
5393 ata_qc_set_polling(qc);
5394
5395 ata_tf_to_host(ap, &qc->tf);
5396 ap->hsm_task_state = HSM_ST_LAST;
5397
5398 if (qc->tf.flags & ATA_TFLAG_POLLING)
5399 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5400
5401 break;
5402
5403 case ATA_PROT_DMA:
5404 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5405
5406 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5407 ap->ops->bmdma_setup(qc); /* set up bmdma */
5408 ap->ops->bmdma_start(qc); /* initiate bmdma */
5409 ap->hsm_task_state = HSM_ST_LAST;
5410 break;
5411
5412 case ATA_PROT_PIO:
5413 if (qc->tf.flags & ATA_TFLAG_POLLING)
5414 ata_qc_set_polling(qc);
5415
5416 ata_tf_to_host(ap, &qc->tf);
5417
5418 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5419 /* PIO data out protocol */
5420 ap->hsm_task_state = HSM_ST_FIRST;
5421 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5422
5423 /* always send first data block using
5424 * the ata_pio_task() codepath.
5425 */
5426 } else {
5427 /* PIO data in protocol */
5428 ap->hsm_task_state = HSM_ST;
5429
5430 if (qc->tf.flags & ATA_TFLAG_POLLING)
5431 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5432
5433 /* if polling, ata_pio_task() handles the rest.
5434 * otherwise, interrupt handler takes over from here.
5435 */
5436 }
5437
5438 break;
5439
5440 case ATA_PROT_ATAPI:
5441 case ATA_PROT_ATAPI_NODATA:
5442 if (qc->tf.flags & ATA_TFLAG_POLLING)
5443 ata_qc_set_polling(qc);
5444
5445 ata_tf_to_host(ap, &qc->tf);
5446
5447 ap->hsm_task_state = HSM_ST_FIRST;
5448
5449 /* send cdb by polling if no cdb interrupt */
5450 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5451 (qc->tf.flags & ATA_TFLAG_POLLING))
5452 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5453 break;
5454
5455 case ATA_PROT_ATAPI_DMA:
5456 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5457
5458 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5459 ap->ops->bmdma_setup(qc); /* set up bmdma */
5460 ap->hsm_task_state = HSM_ST_FIRST;
5461
5462 /* send cdb by polling if no cdb interrupt */
5463 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5464 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5465 break;
5466
5467 default:
5468 WARN_ON(1);
5469 return AC_ERR_SYSTEM;
5470 }
5471
5472 return 0;
5473 }
5474
5475 /**
5476 * ata_host_intr - Handle host interrupt for given (port, task)
5477 * @ap: Port on which interrupt arrived (possibly...)
5478 * @qc: Taskfile currently active in engine
5479 *
5480 * Handle host interrupt for given queued command. Currently,
5481 * only DMA interrupts are handled. All other commands are
5482 * handled via polling with interrupts disabled (nIEN bit).
5483 *
5484 * LOCKING:
5485 * spin_lock_irqsave(host lock)
5486 *
5487 * RETURNS:
5488 * One if interrupt was handled, zero if not (shared irq).
5489 */
5490
5491 inline unsigned int ata_host_intr (struct ata_port *ap,
5492 struct ata_queued_cmd *qc)
5493 {
5494 struct ata_eh_info *ehi = &ap->eh_info;
5495 u8 status, host_stat = 0;
5496
5497 VPRINTK("ata%u: protocol %d task_state %d\n",
5498 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5499
5500 /* Check whether we are expecting interrupt in this state */
5501 switch (ap->hsm_task_state) {
5502 case HSM_ST_FIRST:
5503 /* Some pre-ATAPI-4 devices assert INTRQ
5504 * at this state when ready to receive CDB.
5505 */
5506
5507 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5508 * The flag was turned on only for atapi devices.
5509 * No need to check is_atapi_taskfile(&qc->tf) again.
5510 */
5511 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5512 goto idle_irq;
5513 break;
5514 case HSM_ST_LAST:
5515 if (qc->tf.protocol == ATA_PROT_DMA ||
5516 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5517 /* check status of DMA engine */
5518 host_stat = ap->ops->bmdma_status(ap);
5519 VPRINTK("ata%u: host_stat 0x%X\n",
5520 ap->print_id, host_stat);
5521
5522 /* if it's not our irq... */
5523 if (!(host_stat & ATA_DMA_INTR))
5524 goto idle_irq;
5525
5526 /* before we do anything else, clear DMA-Start bit */
5527 ap->ops->bmdma_stop(qc);
5528
5529 if (unlikely(host_stat & ATA_DMA_ERR)) {
5530 /* error when transfering data to/from memory */
5531 qc->err_mask |= AC_ERR_HOST_BUS;
5532 ap->hsm_task_state = HSM_ST_ERR;
5533 }
5534 }
5535 break;
5536 case HSM_ST:
5537 break;
5538 default:
5539 goto idle_irq;
5540 }
5541
5542 /* check altstatus */
5543 status = ata_altstatus(ap);
5544 if (status & ATA_BUSY)
5545 goto idle_irq;
5546
5547 /* check main status, clearing INTRQ */
5548 status = ata_chk_status(ap);
5549 if (unlikely(status & ATA_BUSY))
5550 goto idle_irq;
5551
5552 /* ack bmdma irq events */
5553 ap->ops->irq_clear(ap);
5554
5555 ata_hsm_move(ap, qc, status, 0);
5556
5557 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5558 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5559 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5560
5561 return 1; /* irq handled */
5562
5563 idle_irq:
5564 ap->stats.idle_irq++;
5565
5566 #ifdef ATA_IRQ_TRAP
5567 if ((ap->stats.idle_irq % 1000) == 0) {
5568 ap->ops->irq_ack(ap, 0); /* debug trap */
5569 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5570 return 1;
5571 }
5572 #endif
5573 return 0; /* irq not handled */
5574 }
5575
5576 /**
5577 * ata_interrupt - Default ATA host interrupt handler
5578 * @irq: irq line (unused)
5579 * @dev_instance: pointer to our ata_host information structure
5580 *
5581 * Default interrupt handler for PCI IDE devices. Calls
5582 * ata_host_intr() for each port that is not disabled.
5583 *
5584 * LOCKING:
5585 * Obtains host lock during operation.
5586 *
5587 * RETURNS:
5588 * IRQ_NONE or IRQ_HANDLED.
5589 */
5590
5591 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5592 {
5593 struct ata_host *host = dev_instance;
5594 unsigned int i;
5595 unsigned int handled = 0;
5596 unsigned long flags;
5597
5598 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5599 spin_lock_irqsave(&host->lock, flags);
5600
5601 for (i = 0; i < host->n_ports; i++) {
5602 struct ata_port *ap;
5603
5604 ap = host->ports[i];
5605 if (ap &&
5606 !(ap->flags & ATA_FLAG_DISABLED)) {
5607 struct ata_queued_cmd *qc;
5608
5609 qc = ata_qc_from_tag(ap, ap->active_tag);
5610 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5611 (qc->flags & ATA_QCFLAG_ACTIVE))
5612 handled |= ata_host_intr(ap, qc);
5613 }
5614 }
5615
5616 spin_unlock_irqrestore(&host->lock, flags);
5617
5618 return IRQ_RETVAL(handled);
5619 }
5620
5621 /**
5622 * sata_scr_valid - test whether SCRs are accessible
5623 * @ap: ATA port to test SCR accessibility for
5624 *
5625 * Test whether SCRs are accessible for @ap.
5626 *
5627 * LOCKING:
5628 * None.
5629 *
5630 * RETURNS:
5631 * 1 if SCRs are accessible, 0 otherwise.
5632 */
5633 int sata_scr_valid(struct ata_port *ap)
5634 {
5635 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5636 }
5637
5638 /**
5639 * sata_scr_read - read SCR register of the specified port
5640 * @ap: ATA port to read SCR for
5641 * @reg: SCR to read
5642 * @val: Place to store read value
5643 *
5644 * Read SCR register @reg of @ap into *@val. This function is
5645 * guaranteed to succeed if the cable type of the port is SATA
5646 * and the port implements ->scr_read.
5647 *
5648 * LOCKING:
5649 * None.
5650 *
5651 * RETURNS:
5652 * 0 on success, negative errno on failure.
5653 */
5654 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5655 {
5656 if (sata_scr_valid(ap)) {
5657 *val = ap->ops->scr_read(ap, reg);
5658 return 0;
5659 }
5660 return -EOPNOTSUPP;
5661 }
5662
5663 /**
5664 * sata_scr_write - write SCR register of the specified port
5665 * @ap: ATA port to write SCR for
5666 * @reg: SCR to write
5667 * @val: value to write
5668 *
5669 * Write @val to SCR register @reg of @ap. This function is
5670 * guaranteed to succeed if the cable type of the port is SATA
5671 * and the port implements ->scr_read.
5672 *
5673 * LOCKING:
5674 * None.
5675 *
5676 * RETURNS:
5677 * 0 on success, negative errno on failure.
5678 */
5679 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5680 {
5681 if (sata_scr_valid(ap)) {
5682 ap->ops->scr_write(ap, reg, val);
5683 return 0;
5684 }
5685 return -EOPNOTSUPP;
5686 }
5687
5688 /**
5689 * sata_scr_write_flush - write SCR register of the specified port and flush
5690 * @ap: ATA port to write SCR for
5691 * @reg: SCR to write
5692 * @val: value to write
5693 *
5694 * This function is identical to sata_scr_write() except that this
5695 * function performs flush after writing to the register.
5696 *
5697 * LOCKING:
5698 * None.
5699 *
5700 * RETURNS:
5701 * 0 on success, negative errno on failure.
5702 */
5703 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5704 {
5705 if (sata_scr_valid(ap)) {
5706 ap->ops->scr_write(ap, reg, val);
5707 ap->ops->scr_read(ap, reg);
5708 return 0;
5709 }
5710 return -EOPNOTSUPP;
5711 }
5712
5713 /**
5714 * ata_port_online - test whether the given port is online
5715 * @ap: ATA port to test
5716 *
5717 * Test whether @ap is online. Note that this function returns 0
5718 * if online status of @ap cannot be obtained, so
5719 * ata_port_online(ap) != !ata_port_offline(ap).
5720 *
5721 * LOCKING:
5722 * None.
5723 *
5724 * RETURNS:
5725 * 1 if the port online status is available and online.
5726 */
5727 int ata_port_online(struct ata_port *ap)
5728 {
5729 u32 sstatus;
5730
5731 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5732 return 1;
5733 return 0;
5734 }
5735
5736 /**
5737 * ata_port_offline - test whether the given port is offline
5738 * @ap: ATA port to test
5739 *
5740 * Test whether @ap is offline. Note that this function returns
5741 * 0 if offline status of @ap cannot be obtained, so
5742 * ata_port_online(ap) != !ata_port_offline(ap).
5743 *
5744 * LOCKING:
5745 * None.
5746 *
5747 * RETURNS:
5748 * 1 if the port offline status is available and offline.
5749 */
5750 int ata_port_offline(struct ata_port *ap)
5751 {
5752 u32 sstatus;
5753
5754 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5755 return 1;
5756 return 0;
5757 }
5758
5759 int ata_flush_cache(struct ata_device *dev)
5760 {
5761 unsigned int err_mask;
5762 u8 cmd;
5763
5764 if (!ata_try_flush_cache(dev))
5765 return 0;
5766
5767 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5768 cmd = ATA_CMD_FLUSH_EXT;
5769 else
5770 cmd = ATA_CMD_FLUSH;
5771
5772 err_mask = ata_do_simple_cmd(dev, cmd);
5773 if (err_mask) {
5774 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5775 return -EIO;
5776 }
5777
5778 return 0;
5779 }
5780
5781 #ifdef CONFIG_PM
5782 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5783 unsigned int action, unsigned int ehi_flags,
5784 int wait)
5785 {
5786 unsigned long flags;
5787 int i, rc;
5788
5789 for (i = 0; i < host->n_ports; i++) {
5790 struct ata_port *ap = host->ports[i];
5791
5792 /* Previous resume operation might still be in
5793 * progress. Wait for PM_PENDING to clear.
5794 */
5795 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5796 ata_port_wait_eh(ap);
5797 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5798 }
5799
5800 /* request PM ops to EH */
5801 spin_lock_irqsave(ap->lock, flags);
5802
5803 ap->pm_mesg = mesg;
5804 if (wait) {
5805 rc = 0;
5806 ap->pm_result = &rc;
5807 }
5808
5809 ap->pflags |= ATA_PFLAG_PM_PENDING;
5810 ap->eh_info.action |= action;
5811 ap->eh_info.flags |= ehi_flags;
5812
5813 ata_port_schedule_eh(ap);
5814
5815 spin_unlock_irqrestore(ap->lock, flags);
5816
5817 /* wait and check result */
5818 if (wait) {
5819 ata_port_wait_eh(ap);
5820 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5821 if (rc)
5822 return rc;
5823 }
5824 }
5825
5826 return 0;
5827 }
5828
5829 /**
5830 * ata_host_suspend - suspend host
5831 * @host: host to suspend
5832 * @mesg: PM message
5833 *
5834 * Suspend @host. Actual operation is performed by EH. This
5835 * function requests EH to perform PM operations and waits for EH
5836 * to finish.
5837 *
5838 * LOCKING:
5839 * Kernel thread context (may sleep).
5840 *
5841 * RETURNS:
5842 * 0 on success, -errno on failure.
5843 */
5844 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5845 {
5846 int i, j, rc;
5847
5848 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5849 if (rc)
5850 goto fail;
5851
5852 /* EH is quiescent now. Fail if we have any ready device.
5853 * This happens if hotplug occurs between completion of device
5854 * suspension and here.
5855 */
5856 for (i = 0; i < host->n_ports; i++) {
5857 struct ata_port *ap = host->ports[i];
5858
5859 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5860 struct ata_device *dev = &ap->device[j];
5861
5862 if (ata_dev_ready(dev)) {
5863 ata_port_printk(ap, KERN_WARNING,
5864 "suspend failed, device %d "
5865 "still active\n", dev->devno);
5866 rc = -EBUSY;
5867 goto fail;
5868 }
5869 }
5870 }
5871
5872 host->dev->power.power_state = mesg;
5873 return 0;
5874
5875 fail:
5876 ata_host_resume(host);
5877 return rc;
5878 }
5879
5880 /**
5881 * ata_host_resume - resume host
5882 * @host: host to resume
5883 *
5884 * Resume @host. Actual operation is performed by EH. This
5885 * function requests EH to perform PM operations and returns.
5886 * Note that all resume operations are performed parallely.
5887 *
5888 * LOCKING:
5889 * Kernel thread context (may sleep).
5890 */
5891 void ata_host_resume(struct ata_host *host)
5892 {
5893 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5894 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5895 host->dev->power.power_state = PMSG_ON;
5896 }
5897 #endif
5898
5899 /**
5900 * ata_port_start - Set port up for dma.
5901 * @ap: Port to initialize
5902 *
5903 * Called just after data structures for each port are
5904 * initialized. Allocates space for PRD table.
5905 *
5906 * May be used as the port_start() entry in ata_port_operations.
5907 *
5908 * LOCKING:
5909 * Inherited from caller.
5910 */
5911 int ata_port_start(struct ata_port *ap)
5912 {
5913 struct device *dev = ap->dev;
5914 int rc;
5915
5916 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5917 GFP_KERNEL);
5918 if (!ap->prd)
5919 return -ENOMEM;
5920
5921 rc = ata_pad_alloc(ap, dev);
5922 if (rc)
5923 return rc;
5924
5925 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5926 (unsigned long long)ap->prd_dma);
5927 return 0;
5928 }
5929
5930 /**
5931 * ata_dev_init - Initialize an ata_device structure
5932 * @dev: Device structure to initialize
5933 *
5934 * Initialize @dev in preparation for probing.
5935 *
5936 * LOCKING:
5937 * Inherited from caller.
5938 */
5939 void ata_dev_init(struct ata_device *dev)
5940 {
5941 struct ata_port *ap = dev->ap;
5942 unsigned long flags;
5943
5944 /* SATA spd limit is bound to the first device */
5945 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5946
5947 /* High bits of dev->flags are used to record warm plug
5948 * requests which occur asynchronously. Synchronize using
5949 * host lock.
5950 */
5951 spin_lock_irqsave(ap->lock, flags);
5952 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5953 spin_unlock_irqrestore(ap->lock, flags);
5954
5955 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5956 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5957 dev->pio_mask = UINT_MAX;
5958 dev->mwdma_mask = UINT_MAX;
5959 dev->udma_mask = UINT_MAX;
5960 }
5961
5962 /**
5963 * ata_port_alloc - allocate and initialize basic ATA port resources
5964 * @host: ATA host this allocated port belongs to
5965 *
5966 * Allocate and initialize basic ATA port resources.
5967 *
5968 * RETURNS:
5969 * Allocate ATA port on success, NULL on failure.
5970 *
5971 * LOCKING:
5972 * Inherited from calling layer (may sleep).
5973 */
5974 struct ata_port *ata_port_alloc(struct ata_host *host)
5975 {
5976 struct ata_port *ap;
5977 unsigned int i;
5978
5979 DPRINTK("ENTER\n");
5980
5981 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5982 if (!ap)
5983 return NULL;
5984
5985 ap->lock = &host->lock;
5986 ap->flags = ATA_FLAG_DISABLED;
5987 ap->print_id = -1;
5988 ap->ctl = ATA_DEVCTL_OBS;
5989 ap->host = host;
5990 ap->dev = host->dev;
5991
5992 ap->hw_sata_spd_limit = UINT_MAX;
5993 ap->active_tag = ATA_TAG_POISON;
5994 ap->last_ctl = 0xFF;
5995
5996 #if defined(ATA_VERBOSE_DEBUG)
5997 /* turn on all debugging levels */
5998 ap->msg_enable = 0x00FF;
5999 #elif defined(ATA_DEBUG)
6000 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6001 #else
6002 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6003 #endif
6004
6005 INIT_DELAYED_WORK(&ap->port_task, NULL);
6006 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6007 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6008 INIT_LIST_HEAD(&ap->eh_done_q);
6009 init_waitqueue_head(&ap->eh_wait_q);
6010
6011 ap->cbl = ATA_CBL_NONE;
6012
6013 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6014 struct ata_device *dev = &ap->device[i];
6015 dev->ap = ap;
6016 dev->devno = i;
6017 ata_dev_init(dev);
6018 }
6019
6020 #ifdef ATA_IRQ_TRAP
6021 ap->stats.unhandled_irq = 1;
6022 ap->stats.idle_irq = 1;
6023 #endif
6024 return ap;
6025 }
6026
6027 static void ata_host_release(struct device *gendev, void *res)
6028 {
6029 struct ata_host *host = dev_get_drvdata(gendev);
6030 int i;
6031
6032 for (i = 0; i < host->n_ports; i++) {
6033 struct ata_port *ap = host->ports[i];
6034
6035 if (!ap)
6036 continue;
6037
6038 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6039 ap->ops->port_stop(ap);
6040 }
6041
6042 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6043 host->ops->host_stop(host);
6044
6045 for (i = 0; i < host->n_ports; i++) {
6046 struct ata_port *ap = host->ports[i];
6047
6048 if (!ap)
6049 continue;
6050
6051 if (ap->scsi_host)
6052 scsi_host_put(ap->scsi_host);
6053
6054 kfree(ap);
6055 host->ports[i] = NULL;
6056 }
6057
6058 dev_set_drvdata(gendev, NULL);
6059 }
6060
6061 /**
6062 * ata_host_alloc - allocate and init basic ATA host resources
6063 * @dev: generic device this host is associated with
6064 * @max_ports: maximum number of ATA ports associated with this host
6065 *
6066 * Allocate and initialize basic ATA host resources. LLD calls
6067 * this function to allocate a host, initializes it fully and
6068 * attaches it using ata_host_register().
6069 *
6070 * @max_ports ports are allocated and host->n_ports is
6071 * initialized to @max_ports. The caller is allowed to decrease
6072 * host->n_ports before calling ata_host_register(). The unused
6073 * ports will be automatically freed on registration.
6074 *
6075 * RETURNS:
6076 * Allocate ATA host on success, NULL on failure.
6077 *
6078 * LOCKING:
6079 * Inherited from calling layer (may sleep).
6080 */
6081 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6082 {
6083 struct ata_host *host;
6084 size_t sz;
6085 int i;
6086
6087 DPRINTK("ENTER\n");
6088
6089 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6090 return NULL;
6091
6092 /* alloc a container for our list of ATA ports (buses) */
6093 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6094 /* alloc a container for our list of ATA ports (buses) */
6095 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6096 if (!host)
6097 goto err_out;
6098
6099 devres_add(dev, host);
6100 dev_set_drvdata(dev, host);
6101
6102 spin_lock_init(&host->lock);
6103 host->dev = dev;
6104 host->n_ports = max_ports;
6105
6106 /* allocate ports bound to this host */
6107 for (i = 0; i < max_ports; i++) {
6108 struct ata_port *ap;
6109
6110 ap = ata_port_alloc(host);
6111 if (!ap)
6112 goto err_out;
6113
6114 ap->port_no = i;
6115 host->ports[i] = ap;
6116 }
6117
6118 devres_remove_group(dev, NULL);
6119 return host;
6120
6121 err_out:
6122 devres_release_group(dev, NULL);
6123 return NULL;
6124 }
6125
6126 /**
6127 * ata_host_alloc_pinfo - alloc host and init with port_info array
6128 * @dev: generic device this host is associated with
6129 * @ppi: array of ATA port_info to initialize host with
6130 * @n_ports: number of ATA ports attached to this host
6131 *
6132 * Allocate ATA host and initialize with info from @ppi. If NULL
6133 * terminated, @ppi may contain fewer entries than @n_ports. The
6134 * last entry will be used for the remaining ports.
6135 *
6136 * RETURNS:
6137 * Allocate ATA host on success, NULL on failure.
6138 *
6139 * LOCKING:
6140 * Inherited from calling layer (may sleep).
6141 */
6142 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6143 const struct ata_port_info * const * ppi,
6144 int n_ports)
6145 {
6146 const struct ata_port_info *pi;
6147 struct ata_host *host;
6148 int i, j;
6149
6150 host = ata_host_alloc(dev, n_ports);
6151 if (!host)
6152 return NULL;
6153
6154 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6155 struct ata_port *ap = host->ports[i];
6156
6157 if (ppi[j])
6158 pi = ppi[j++];
6159
6160 ap->pio_mask = pi->pio_mask;
6161 ap->mwdma_mask = pi->mwdma_mask;
6162 ap->udma_mask = pi->udma_mask;
6163 ap->flags |= pi->flags;
6164 ap->ops = pi->port_ops;
6165
6166 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6167 host->ops = pi->port_ops;
6168 if (!host->private_data && pi->private_data)
6169 host->private_data = pi->private_data;
6170 }
6171
6172 return host;
6173 }
6174
6175 /**
6176 * ata_host_start - start and freeze ports of an ATA host
6177 * @host: ATA host to start ports for
6178 *
6179 * Start and then freeze ports of @host. Started status is
6180 * recorded in host->flags, so this function can be called
6181 * multiple times. Ports are guaranteed to get started only
6182 * once. If host->ops isn't initialized yet, its set to the
6183 * first non-dummy port ops.
6184 *
6185 * LOCKING:
6186 * Inherited from calling layer (may sleep).
6187 *
6188 * RETURNS:
6189 * 0 if all ports are started successfully, -errno otherwise.
6190 */
6191 int ata_host_start(struct ata_host *host)
6192 {
6193 int i, rc;
6194
6195 if (host->flags & ATA_HOST_STARTED)
6196 return 0;
6197
6198 for (i = 0; i < host->n_ports; i++) {
6199 struct ata_port *ap = host->ports[i];
6200
6201 if (!host->ops && !ata_port_is_dummy(ap))
6202 host->ops = ap->ops;
6203
6204 if (ap->ops->port_start) {
6205 rc = ap->ops->port_start(ap);
6206 if (rc) {
6207 ata_port_printk(ap, KERN_ERR, "failed to "
6208 "start port (errno=%d)\n", rc);
6209 goto err_out;
6210 }
6211 }
6212
6213 ata_eh_freeze_port(ap);
6214 }
6215
6216 host->flags |= ATA_HOST_STARTED;
6217 return 0;
6218
6219 err_out:
6220 while (--i >= 0) {
6221 struct ata_port *ap = host->ports[i];
6222
6223 if (ap->ops->port_stop)
6224 ap->ops->port_stop(ap);
6225 }
6226 return rc;
6227 }
6228
6229 /**
6230 * ata_sas_host_init - Initialize a host struct
6231 * @host: host to initialize
6232 * @dev: device host is attached to
6233 * @flags: host flags
6234 * @ops: port_ops
6235 *
6236 * LOCKING:
6237 * PCI/etc. bus probe sem.
6238 *
6239 */
6240 /* KILLME - the only user left is ipr */
6241 void ata_host_init(struct ata_host *host, struct device *dev,
6242 unsigned long flags, const struct ata_port_operations *ops)
6243 {
6244 spin_lock_init(&host->lock);
6245 host->dev = dev;
6246 host->flags = flags;
6247 host->ops = ops;
6248 }
6249
6250 /**
6251 * ata_host_register - register initialized ATA host
6252 * @host: ATA host to register
6253 * @sht: template for SCSI host
6254 *
6255 * Register initialized ATA host. @host is allocated using
6256 * ata_host_alloc() and fully initialized by LLD. This function
6257 * starts ports, registers @host with ATA and SCSI layers and
6258 * probe registered devices.
6259 *
6260 * LOCKING:
6261 * Inherited from calling layer (may sleep).
6262 *
6263 * RETURNS:
6264 * 0 on success, -errno otherwise.
6265 */
6266 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6267 {
6268 int i, rc;
6269
6270 /* host must have been started */
6271 if (!(host->flags & ATA_HOST_STARTED)) {
6272 dev_printk(KERN_ERR, host->dev,
6273 "BUG: trying to register unstarted host\n");
6274 WARN_ON(1);
6275 return -EINVAL;
6276 }
6277
6278 /* Blow away unused ports. This happens when LLD can't
6279 * determine the exact number of ports to allocate at
6280 * allocation time.
6281 */
6282 for (i = host->n_ports; host->ports[i]; i++)
6283 kfree(host->ports[i]);
6284
6285 /* give ports names and add SCSI hosts */
6286 for (i = 0; i < host->n_ports; i++)
6287 host->ports[i]->print_id = ata_print_id++;
6288
6289 rc = ata_scsi_add_hosts(host, sht);
6290 if (rc)
6291 return rc;
6292
6293 /* set cable, sata_spd_limit and report */
6294 for (i = 0; i < host->n_ports; i++) {
6295 struct ata_port *ap = host->ports[i];
6296 int irq_line;
6297 u32 scontrol;
6298 unsigned long xfer_mask;
6299
6300 /* set SATA cable type if still unset */
6301 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6302 ap->cbl = ATA_CBL_SATA;
6303
6304 /* init sata_spd_limit to the current value */
6305 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6306 int spd = (scontrol >> 4) & 0xf;
6307 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6308 }
6309 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6310
6311 /* report the secondary IRQ for second channel legacy */
6312 irq_line = host->irq;
6313 if (i == 1 && host->irq2)
6314 irq_line = host->irq2;
6315
6316 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6317 ap->udma_mask);
6318
6319 /* print per-port info to dmesg */
6320 if (!ata_port_is_dummy(ap))
6321 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6322 "ctl 0x%p bmdma 0x%p irq %d\n",
6323 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6324 ata_mode_string(xfer_mask),
6325 ap->ioaddr.cmd_addr,
6326 ap->ioaddr.ctl_addr,
6327 ap->ioaddr.bmdma_addr,
6328 irq_line);
6329 else
6330 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6331 }
6332
6333 /* perform each probe synchronously */
6334 DPRINTK("probe begin\n");
6335 for (i = 0; i < host->n_ports; i++) {
6336 struct ata_port *ap = host->ports[i];
6337 int rc;
6338
6339 /* probe */
6340 if (ap->ops->error_handler) {
6341 struct ata_eh_info *ehi = &ap->eh_info;
6342 unsigned long flags;
6343
6344 ata_port_probe(ap);
6345
6346 /* kick EH for boot probing */
6347 spin_lock_irqsave(ap->lock, flags);
6348
6349 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6350 ehi->action |= ATA_EH_SOFTRESET;
6351 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6352
6353 ap->pflags |= ATA_PFLAG_LOADING;
6354 ata_port_schedule_eh(ap);
6355
6356 spin_unlock_irqrestore(ap->lock, flags);
6357
6358 /* wait for EH to finish */
6359 ata_port_wait_eh(ap);
6360 } else {
6361 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6362 rc = ata_bus_probe(ap);
6363 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6364
6365 if (rc) {
6366 /* FIXME: do something useful here?
6367 * Current libata behavior will
6368 * tear down everything when
6369 * the module is removed
6370 * or the h/w is unplugged.
6371 */
6372 }
6373 }
6374 }
6375
6376 /* probes are done, now scan each port's disk(s) */
6377 DPRINTK("host probe begin\n");
6378 for (i = 0; i < host->n_ports; i++) {
6379 struct ata_port *ap = host->ports[i];
6380
6381 ata_scsi_scan_host(ap);
6382 }
6383
6384 return 0;
6385 }
6386
6387 /**
6388 * ata_host_activate - start host, request IRQ and register it
6389 * @host: target ATA host
6390 * @irq: IRQ to request
6391 * @irq_handler: irq_handler used when requesting IRQ
6392 * @irq_flags: irq_flags used when requesting IRQ
6393 * @sht: scsi_host_template to use when registering the host
6394 *
6395 * After allocating an ATA host and initializing it, most libata
6396 * LLDs perform three steps to activate the host - start host,
6397 * request IRQ and register it. This helper takes necessasry
6398 * arguments and performs the three steps in one go.
6399 *
6400 * LOCKING:
6401 * Inherited from calling layer (may sleep).
6402 *
6403 * RETURNS:
6404 * 0 on success, -errno otherwise.
6405 */
6406 int ata_host_activate(struct ata_host *host, int irq,
6407 irq_handler_t irq_handler, unsigned long irq_flags,
6408 struct scsi_host_template *sht)
6409 {
6410 int rc;
6411
6412 rc = ata_host_start(host);
6413 if (rc)
6414 return rc;
6415
6416 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6417 dev_driver_string(host->dev), host);
6418 if (rc)
6419 return rc;
6420
6421 rc = ata_host_register(host, sht);
6422 /* if failed, just free the IRQ and leave ports alone */
6423 if (rc)
6424 devm_free_irq(host->dev, irq, host);
6425
6426 return rc;
6427 }
6428
6429 /**
6430 * ata_port_detach - Detach ATA port in prepration of device removal
6431 * @ap: ATA port to be detached
6432 *
6433 * Detach all ATA devices and the associated SCSI devices of @ap;
6434 * then, remove the associated SCSI host. @ap is guaranteed to
6435 * be quiescent on return from this function.
6436 *
6437 * LOCKING:
6438 * Kernel thread context (may sleep).
6439 */
6440 void ata_port_detach(struct ata_port *ap)
6441 {
6442 unsigned long flags;
6443 int i;
6444
6445 if (!ap->ops->error_handler)
6446 goto skip_eh;
6447
6448 /* tell EH we're leaving & flush EH */
6449 spin_lock_irqsave(ap->lock, flags);
6450 ap->pflags |= ATA_PFLAG_UNLOADING;
6451 spin_unlock_irqrestore(ap->lock, flags);
6452
6453 ata_port_wait_eh(ap);
6454
6455 /* EH is now guaranteed to see UNLOADING, so no new device
6456 * will be attached. Disable all existing devices.
6457 */
6458 spin_lock_irqsave(ap->lock, flags);
6459
6460 for (i = 0; i < ATA_MAX_DEVICES; i++)
6461 ata_dev_disable(&ap->device[i]);
6462
6463 spin_unlock_irqrestore(ap->lock, flags);
6464
6465 /* Final freeze & EH. All in-flight commands are aborted. EH
6466 * will be skipped and retrials will be terminated with bad
6467 * target.
6468 */
6469 spin_lock_irqsave(ap->lock, flags);
6470 ata_port_freeze(ap); /* won't be thawed */
6471 spin_unlock_irqrestore(ap->lock, flags);
6472
6473 ata_port_wait_eh(ap);
6474
6475 /* Flush hotplug task. The sequence is similar to
6476 * ata_port_flush_task().
6477 */
6478 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6479 cancel_delayed_work(&ap->hotplug_task);
6480 cancel_work_sync(&ap->hotplug_task.work);
6481
6482 skip_eh:
6483 /* remove the associated SCSI host */
6484 scsi_remove_host(ap->scsi_host);
6485 }
6486
6487 /**
6488 * ata_host_detach - Detach all ports of an ATA host
6489 * @host: Host to detach
6490 *
6491 * Detach all ports of @host.
6492 *
6493 * LOCKING:
6494 * Kernel thread context (may sleep).
6495 */
6496 void ata_host_detach(struct ata_host *host)
6497 {
6498 int i;
6499
6500 for (i = 0; i < host->n_ports; i++)
6501 ata_port_detach(host->ports[i]);
6502 }
6503
6504 /**
6505 * ata_std_ports - initialize ioaddr with standard port offsets.
6506 * @ioaddr: IO address structure to be initialized
6507 *
6508 * Utility function which initializes data_addr, error_addr,
6509 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6510 * device_addr, status_addr, and command_addr to standard offsets
6511 * relative to cmd_addr.
6512 *
6513 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6514 */
6515
6516 void ata_std_ports(struct ata_ioports *ioaddr)
6517 {
6518 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6519 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6520 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6521 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6522 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6523 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6524 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6525 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6526 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6527 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6528 }
6529
6530
6531 #ifdef CONFIG_PCI
6532
6533 /**
6534 * ata_pci_remove_one - PCI layer callback for device removal
6535 * @pdev: PCI device that was removed
6536 *
6537 * PCI layer indicates to libata via this hook that hot-unplug or
6538 * module unload event has occurred. Detach all ports. Resource
6539 * release is handled via devres.
6540 *
6541 * LOCKING:
6542 * Inherited from PCI layer (may sleep).
6543 */
6544 void ata_pci_remove_one(struct pci_dev *pdev)
6545 {
6546 struct device *dev = pci_dev_to_dev(pdev);
6547 struct ata_host *host = dev_get_drvdata(dev);
6548
6549 ata_host_detach(host);
6550 }
6551
6552 /* move to PCI subsystem */
6553 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6554 {
6555 unsigned long tmp = 0;
6556
6557 switch (bits->width) {
6558 case 1: {
6559 u8 tmp8 = 0;
6560 pci_read_config_byte(pdev, bits->reg, &tmp8);
6561 tmp = tmp8;
6562 break;
6563 }
6564 case 2: {
6565 u16 tmp16 = 0;
6566 pci_read_config_word(pdev, bits->reg, &tmp16);
6567 tmp = tmp16;
6568 break;
6569 }
6570 case 4: {
6571 u32 tmp32 = 0;
6572 pci_read_config_dword(pdev, bits->reg, &tmp32);
6573 tmp = tmp32;
6574 break;
6575 }
6576
6577 default:
6578 return -EINVAL;
6579 }
6580
6581 tmp &= bits->mask;
6582
6583 return (tmp == bits->val) ? 1 : 0;
6584 }
6585
6586 #ifdef CONFIG_PM
6587 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6588 {
6589 pci_save_state(pdev);
6590 pci_disable_device(pdev);
6591
6592 if (mesg.event == PM_EVENT_SUSPEND)
6593 pci_set_power_state(pdev, PCI_D3hot);
6594 }
6595
6596 int ata_pci_device_do_resume(struct pci_dev *pdev)
6597 {
6598 int rc;
6599
6600 pci_set_power_state(pdev, PCI_D0);
6601 pci_restore_state(pdev);
6602
6603 rc = pcim_enable_device(pdev);
6604 if (rc) {
6605 dev_printk(KERN_ERR, &pdev->dev,
6606 "failed to enable device after resume (%d)\n", rc);
6607 return rc;
6608 }
6609
6610 pci_set_master(pdev);
6611 return 0;
6612 }
6613
6614 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6615 {
6616 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6617 int rc = 0;
6618
6619 rc = ata_host_suspend(host, mesg);
6620 if (rc)
6621 return rc;
6622
6623 ata_pci_device_do_suspend(pdev, mesg);
6624
6625 return 0;
6626 }
6627
6628 int ata_pci_device_resume(struct pci_dev *pdev)
6629 {
6630 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6631 int rc;
6632
6633 rc = ata_pci_device_do_resume(pdev);
6634 if (rc == 0)
6635 ata_host_resume(host);
6636 return rc;
6637 }
6638 #endif /* CONFIG_PM */
6639
6640 #endif /* CONFIG_PCI */
6641
6642
6643 static int __init ata_init(void)
6644 {
6645 ata_probe_timeout *= HZ;
6646 ata_wq = create_workqueue("ata");
6647 if (!ata_wq)
6648 return -ENOMEM;
6649
6650 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6651 if (!ata_aux_wq) {
6652 destroy_workqueue(ata_wq);
6653 return -ENOMEM;
6654 }
6655
6656 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6657 return 0;
6658 }
6659
6660 static void __exit ata_exit(void)
6661 {
6662 destroy_workqueue(ata_wq);
6663 destroy_workqueue(ata_aux_wq);
6664 }
6665
6666 subsys_initcall(ata_init);
6667 module_exit(ata_exit);
6668
6669 static unsigned long ratelimit_time;
6670 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6671
6672 int ata_ratelimit(void)
6673 {
6674 int rc;
6675 unsigned long flags;
6676
6677 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6678
6679 if (time_after(jiffies, ratelimit_time)) {
6680 rc = 1;
6681 ratelimit_time = jiffies + (HZ/5);
6682 } else
6683 rc = 0;
6684
6685 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6686
6687 return rc;
6688 }
6689
6690 /**
6691 * ata_wait_register - wait until register value changes
6692 * @reg: IO-mapped register
6693 * @mask: Mask to apply to read register value
6694 * @val: Wait condition
6695 * @interval_msec: polling interval in milliseconds
6696 * @timeout_msec: timeout in milliseconds
6697 *
6698 * Waiting for some bits of register to change is a common
6699 * operation for ATA controllers. This function reads 32bit LE
6700 * IO-mapped register @reg and tests for the following condition.
6701 *
6702 * (*@reg & mask) != val
6703 *
6704 * If the condition is met, it returns; otherwise, the process is
6705 * repeated after @interval_msec until timeout.
6706 *
6707 * LOCKING:
6708 * Kernel thread context (may sleep)
6709 *
6710 * RETURNS:
6711 * The final register value.
6712 */
6713 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6714 unsigned long interval_msec,
6715 unsigned long timeout_msec)
6716 {
6717 unsigned long timeout;
6718 u32 tmp;
6719
6720 tmp = ioread32(reg);
6721
6722 /* Calculate timeout _after_ the first read to make sure
6723 * preceding writes reach the controller before starting to
6724 * eat away the timeout.
6725 */
6726 timeout = jiffies + (timeout_msec * HZ) / 1000;
6727
6728 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6729 msleep(interval_msec);
6730 tmp = ioread32(reg);
6731 }
6732
6733 return tmp;
6734 }
6735
6736 /*
6737 * Dummy port_ops
6738 */
6739 static void ata_dummy_noret(struct ata_port *ap) { }
6740 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6741 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6742
6743 static u8 ata_dummy_check_status(struct ata_port *ap)
6744 {
6745 return ATA_DRDY;
6746 }
6747
6748 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6749 {
6750 return AC_ERR_SYSTEM;
6751 }
6752
6753 const struct ata_port_operations ata_dummy_port_ops = {
6754 .port_disable = ata_port_disable,
6755 .check_status = ata_dummy_check_status,
6756 .check_altstatus = ata_dummy_check_status,
6757 .dev_select = ata_noop_dev_select,
6758 .qc_prep = ata_noop_qc_prep,
6759 .qc_issue = ata_dummy_qc_issue,
6760 .freeze = ata_dummy_noret,
6761 .thaw = ata_dummy_noret,
6762 .error_handler = ata_dummy_noret,
6763 .post_internal_cmd = ata_dummy_qc_noret,
6764 .irq_clear = ata_dummy_noret,
6765 .port_start = ata_dummy_ret0,
6766 .port_stop = ata_dummy_noret,
6767 };
6768
6769 const struct ata_port_info ata_dummy_port_info = {
6770 .port_ops = &ata_dummy_port_ops,
6771 };
6772
6773 /*
6774 * libata is essentially a library of internal helper functions for
6775 * low-level ATA host controller drivers. As such, the API/ABI is
6776 * likely to change as new drivers are added and updated.
6777 * Do not depend on ABI/API stability.
6778 */
6779
6780 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6781 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6782 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6783 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6784 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6785 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6786 EXPORT_SYMBOL_GPL(ata_std_ports);
6787 EXPORT_SYMBOL_GPL(ata_host_init);
6788 EXPORT_SYMBOL_GPL(ata_host_alloc);
6789 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6790 EXPORT_SYMBOL_GPL(ata_host_start);
6791 EXPORT_SYMBOL_GPL(ata_host_register);
6792 EXPORT_SYMBOL_GPL(ata_host_activate);
6793 EXPORT_SYMBOL_GPL(ata_host_detach);
6794 EXPORT_SYMBOL_GPL(ata_sg_init);
6795 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6796 EXPORT_SYMBOL_GPL(ata_hsm_move);
6797 EXPORT_SYMBOL_GPL(ata_qc_complete);
6798 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6799 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6800 EXPORT_SYMBOL_GPL(ata_tf_load);
6801 EXPORT_SYMBOL_GPL(ata_tf_read);
6802 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6803 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6804 EXPORT_SYMBOL_GPL(sata_print_link_status);
6805 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6806 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6807 EXPORT_SYMBOL_GPL(ata_check_status);
6808 EXPORT_SYMBOL_GPL(ata_altstatus);
6809 EXPORT_SYMBOL_GPL(ata_exec_command);
6810 EXPORT_SYMBOL_GPL(ata_port_start);
6811 EXPORT_SYMBOL_GPL(ata_interrupt);
6812 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6813 EXPORT_SYMBOL_GPL(ata_data_xfer);
6814 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6815 EXPORT_SYMBOL_GPL(ata_qc_prep);
6816 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6817 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6818 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6819 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6820 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6821 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6822 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6823 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6824 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6825 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6826 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6827 EXPORT_SYMBOL_GPL(ata_port_probe);
6828 EXPORT_SYMBOL_GPL(ata_dev_disable);
6829 EXPORT_SYMBOL_GPL(sata_set_spd);
6830 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6831 EXPORT_SYMBOL_GPL(sata_phy_resume);
6832 EXPORT_SYMBOL_GPL(sata_phy_reset);
6833 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6834 EXPORT_SYMBOL_GPL(ata_bus_reset);
6835 EXPORT_SYMBOL_GPL(ata_std_prereset);
6836 EXPORT_SYMBOL_GPL(ata_std_softreset);
6837 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6838 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6839 EXPORT_SYMBOL_GPL(ata_std_postreset);
6840 EXPORT_SYMBOL_GPL(ata_dev_classify);
6841 EXPORT_SYMBOL_GPL(ata_dev_pair);
6842 EXPORT_SYMBOL_GPL(ata_port_disable);
6843 EXPORT_SYMBOL_GPL(ata_ratelimit);
6844 EXPORT_SYMBOL_GPL(ata_wait_register);
6845 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6846 EXPORT_SYMBOL_GPL(ata_wait_ready);
6847 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6848 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6849 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6850 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6851 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6852 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6853 EXPORT_SYMBOL_GPL(ata_host_intr);
6854 EXPORT_SYMBOL_GPL(sata_scr_valid);
6855 EXPORT_SYMBOL_GPL(sata_scr_read);
6856 EXPORT_SYMBOL_GPL(sata_scr_write);
6857 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6858 EXPORT_SYMBOL_GPL(ata_port_online);
6859 EXPORT_SYMBOL_GPL(ata_port_offline);
6860 #ifdef CONFIG_PM
6861 EXPORT_SYMBOL_GPL(ata_host_suspend);
6862 EXPORT_SYMBOL_GPL(ata_host_resume);
6863 #endif /* CONFIG_PM */
6864 EXPORT_SYMBOL_GPL(ata_id_string);
6865 EXPORT_SYMBOL_GPL(ata_id_c_string);
6866 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6867 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6868 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6869
6870 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6871 EXPORT_SYMBOL_GPL(ata_timing_compute);
6872 EXPORT_SYMBOL_GPL(ata_timing_merge);
6873
6874 #ifdef CONFIG_PCI
6875 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6876 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6877 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6878 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6879 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6880 #ifdef CONFIG_PM
6881 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6882 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6883 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6884 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6885 #endif /* CONFIG_PM */
6886 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6887 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6888 #endif /* CONFIG_PCI */
6889
6890 #ifdef CONFIG_PM
6891 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6892 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6893 #endif /* CONFIG_PM */
6894
6895 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6896 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6897 EXPORT_SYMBOL_GPL(ata_port_abort);
6898 EXPORT_SYMBOL_GPL(ata_port_freeze);
6899 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6900 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6901 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6902 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6903 EXPORT_SYMBOL_GPL(ata_do_eh);
6904 EXPORT_SYMBOL_GPL(ata_irq_on);
6905 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6906 EXPORT_SYMBOL_GPL(ata_irq_ack);
6907 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6908 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6909
6910 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6911 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6912 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6913 EXPORT_SYMBOL_GPL(ata_cable_sata);