]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/ata/libata-core.c
Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-zesty-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <linux/io.h>
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
78
79 struct workqueue_struct *ata_aux_wq;
80
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
89 int atapi_passthru16 = 1;
90 module_param(atapi_passthru16, int, 0444);
91 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92
93 int libata_fua = 0;
94 module_param_named(fua, libata_fua, int, 0444);
95 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96
97 static int ata_ignore_hpa;
98 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100
101 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102 module_param_named(dma, libata_dma_mask, int, 0444);
103 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
104
105 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106 module_param(ata_probe_timeout, int, 0444);
107 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
108
109 int libata_noacpi = 0;
110 module_param_named(noacpi, libata_noacpi, int, 0444);
111 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
112
113 MODULE_AUTHOR("Jeff Garzik");
114 MODULE_DESCRIPTION("Library module for ATA devices");
115 MODULE_LICENSE("GPL");
116 MODULE_VERSION(DRV_VERSION);
117
118
119 /**
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
122 * @pmp: Port multiplier port
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
125 *
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
128 *
129 * LOCKING:
130 * Inherited from caller.
131 */
132 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
133 {
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
138
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
141
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
146
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
151
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
156
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
161 }
162
163 /**
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
167 *
168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
169 *
170 * LOCKING:
171 * Inherited from caller.
172 */
173
174 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
175 {
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
178
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
183
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
187
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
190 }
191
192 static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
198 0,
199 0,
200 0,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
207 0,
208 0,
209 0,
210 0,
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
215 ATA_CMD_WRITE_EXT,
216 0,
217 0,
218 0,
219 ATA_CMD_WRITE_FUA_EXT
220 };
221
222 /**
223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
226 *
227 * Examine the device configuration and tf->flags to calculate
228 * the proper read/write commands and protocol to use.
229 *
230 * LOCKING:
231 * caller.
232 */
233 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
234 {
235 u8 cmd;
236
237 int index, fua, lba48, write;
238
239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
242
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
245 index = dev->multi_count ? 0 : 8;
246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
249 index = dev->multi_count ? 0 : 8;
250 } else {
251 tf->protocol = ATA_PROT_DMA;
252 index = 16;
253 }
254
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
259 }
260 return -1;
261 }
262
263 /**
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
267 *
268 * LOCKING:
269 * None.
270 *
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
274 *
275 * RETURNS:
276 * Block address read from @tf.
277 */
278 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
279 {
280 u64 block = 0;
281
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
289
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
295
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
299
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
301 }
302
303 return block;
304 }
305
306 /**
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
314 *
315 * LOCKING:
316 * None.
317 *
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
320 *
321 * RETURNS:
322 *
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
325 */
326 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
329 {
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
332
333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
337
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
340
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
345
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
349
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
356
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
362
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
369
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
372
373 tf->hob_nsect = (n_block >> 8) & 0xff;
374
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
381
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
384
385 tf->nsect = n_block & 0xff;
386
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
390
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
395
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
399
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
402
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
408
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
411
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
418
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
424 }
425
426 return 0;
427 }
428
429 /**
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
434 *
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
437 *
438 * LOCKING:
439 * None.
440 *
441 * RETURNS:
442 * Packed xfer_mask.
443 */
444 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
447 {
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
451 }
452
453 /**
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
459 *
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
462 */
463 static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
467 {
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
474 }
475
476 static const struct ata_xfer_ent {
477 int shift, bits;
478 u8 base;
479 } ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
484 };
485
486 /**
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
489 *
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
498 */
499 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
500 {
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
503
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
508 }
509
510 /**
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
513 *
514 * Return matching xfer_mask for @xfer_mode.
515 *
516 * LOCKING:
517 * None.
518 *
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
521 */
522 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
523 {
524 const struct ata_xfer_ent *ent;
525
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
530 }
531
532 /**
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
535 *
536 * Return matching xfer_shift for @xfer_mode.
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
543 */
544 static int ata_xfer_mode2shift(unsigned int xfer_mode)
545 {
546 const struct ata_xfer_ent *ent;
547
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
552 }
553
554 /**
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
557 *
558 * Determine string which represents the highest speed
559 * (highest bit in @modemask).
560 *
561 * LOCKING:
562 * None.
563 *
564 * RETURNS:
565 * Constant C string representing highest speed listed in
566 * @mode_mask, or the constant C string "<n/a>".
567 */
568 static const char *ata_mode_string(unsigned int xfer_mask)
569 {
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
576 "PIO5",
577 "PIO6",
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
581 "MWDMA3",
582 "MWDMA4",
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
591 };
592 int highbit;
593
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
597 return "<n/a>";
598 }
599
600 static const char *sata_spd_string(unsigned int spd)
601 {
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
605 };
606
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
610 }
611
612 void ata_dev_disable(struct ata_device *dev)
613 {
614 if (ata_dev_enabled(dev)) {
615 if (ata_msg_drv(dev->link->ap))
616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
619 dev->class++;
620 }
621 }
622
623 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
624 {
625 struct ata_link *link = dev->link;
626 struct ata_port *ap = link->ap;
627 u32 scontrol;
628 unsigned int err_mask;
629 int rc;
630
631 /*
632 * disallow DIPM for drivers which haven't set
633 * ATA_FLAG_IPM. This is because when DIPM is enabled,
634 * phy ready will be set in the interrupt status on
635 * state changes, which will cause some drivers to
636 * think there are errors - additionally drivers will
637 * need to disable hot plug.
638 */
639 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
640 ap->pm_policy = NOT_AVAILABLE;
641 return -EINVAL;
642 }
643
644 /*
645 * For DIPM, we will only enable it for the
646 * min_power setting.
647 *
648 * Why? Because Disks are too stupid to know that
649 * If the host rejects a request to go to SLUMBER
650 * they should retry at PARTIAL, and instead it
651 * just would give up. So, for medium_power to
652 * work at all, we need to only allow HIPM.
653 */
654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
655 if (rc)
656 return rc;
657
658 switch (policy) {
659 case MIN_POWER:
660 /* no restrictions on IPM transitions */
661 scontrol &= ~(0x3 << 8);
662 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
663 if (rc)
664 return rc;
665
666 /* enable DIPM */
667 if (dev->flags & ATA_DFLAG_DIPM)
668 err_mask = ata_dev_set_feature(dev,
669 SETFEATURES_SATA_ENABLE, SATA_DIPM);
670 break;
671 case MEDIUM_POWER:
672 /* allow IPM to PARTIAL */
673 scontrol &= ~(0x1 << 8);
674 scontrol |= (0x2 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
678
679 /*
680 * we don't have to disable DIPM since IPM flags
681 * disallow transitions to SLUMBER, which effectively
682 * disable DIPM if it does not support PARTIAL
683 */
684 break;
685 case NOT_AVAILABLE:
686 case MAX_PERFORMANCE:
687 /* disable all IPM transitions */
688 scontrol |= (0x3 << 8);
689 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
690 if (rc)
691 return rc;
692
693 /*
694 * we don't have to disable DIPM since IPM flags
695 * disallow all transitions which effectively
696 * disable DIPM anyway.
697 */
698 break;
699 }
700
701 /* FIXME: handle SET FEATURES failure */
702 (void) err_mask;
703
704 return 0;
705 }
706
707 /**
708 * ata_dev_enable_pm - enable SATA interface power management
709 * @dev: device to enable power management
710 * @policy: the link power management policy
711 *
712 * Enable SATA Interface power management. This will enable
713 * Device Interface Power Management (DIPM) for min_power
714 * policy, and then call driver specific callbacks for
715 * enabling Host Initiated Power management.
716 *
717 * Locking: Caller.
718 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
719 */
720 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
721 {
722 int rc = 0;
723 struct ata_port *ap = dev->link->ap;
724
725 /* set HIPM first, then DIPM */
726 if (ap->ops->enable_pm)
727 rc = ap->ops->enable_pm(ap, policy);
728 if (rc)
729 goto enable_pm_out;
730 rc = ata_dev_set_dipm(dev, policy);
731
732 enable_pm_out:
733 if (rc)
734 ap->pm_policy = MAX_PERFORMANCE;
735 else
736 ap->pm_policy = policy;
737 return /* rc */; /* hopefully we can use 'rc' eventually */
738 }
739
740 #ifdef CONFIG_PM
741 /**
742 * ata_dev_disable_pm - disable SATA interface power management
743 * @dev: device to disable power management
744 *
745 * Disable SATA Interface power management. This will disable
746 * Device Interface Power Management (DIPM) without changing
747 * policy, call driver specific callbacks for disabling Host
748 * Initiated Power management.
749 *
750 * Locking: Caller.
751 * Returns: void
752 */
753 static void ata_dev_disable_pm(struct ata_device *dev)
754 {
755 struct ata_port *ap = dev->link->ap;
756
757 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
758 if (ap->ops->disable_pm)
759 ap->ops->disable_pm(ap);
760 }
761 #endif /* CONFIG_PM */
762
763 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
764 {
765 ap->pm_policy = policy;
766 ap->link.eh_info.action |= ATA_EHI_LPM;
767 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
768 ata_port_schedule_eh(ap);
769 }
770
771 #ifdef CONFIG_PM
772 static void ata_lpm_enable(struct ata_host *host)
773 {
774 struct ata_link *link;
775 struct ata_port *ap;
776 struct ata_device *dev;
777 int i;
778
779 for (i = 0; i < host->n_ports; i++) {
780 ap = host->ports[i];
781 ata_port_for_each_link(link, ap) {
782 ata_link_for_each_dev(dev, link)
783 ata_dev_disable_pm(dev);
784 }
785 }
786 }
787
788 static void ata_lpm_disable(struct ata_host *host)
789 {
790 int i;
791
792 for (i = 0; i < host->n_ports; i++) {
793 struct ata_port *ap = host->ports[i];
794 ata_lpm_schedule(ap, ap->pm_policy);
795 }
796 }
797 #endif /* CONFIG_PM */
798
799
800 /**
801 * ata_devchk - PATA device presence detection
802 * @ap: ATA channel to examine
803 * @device: Device to examine (starting at zero)
804 *
805 * This technique was originally described in
806 * Hale Landis's ATADRVR (www.ata-atapi.com), and
807 * later found its way into the ATA/ATAPI spec.
808 *
809 * Write a pattern to the ATA shadow registers,
810 * and if a device is present, it will respond by
811 * correctly storing and echoing back the
812 * ATA shadow register contents.
813 *
814 * LOCKING:
815 * caller.
816 */
817
818 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
819 {
820 struct ata_ioports *ioaddr = &ap->ioaddr;
821 u8 nsect, lbal;
822
823 ap->ops->dev_select(ap, device);
824
825 iowrite8(0x55, ioaddr->nsect_addr);
826 iowrite8(0xaa, ioaddr->lbal_addr);
827
828 iowrite8(0xaa, ioaddr->nsect_addr);
829 iowrite8(0x55, ioaddr->lbal_addr);
830
831 iowrite8(0x55, ioaddr->nsect_addr);
832 iowrite8(0xaa, ioaddr->lbal_addr);
833
834 nsect = ioread8(ioaddr->nsect_addr);
835 lbal = ioread8(ioaddr->lbal_addr);
836
837 if ((nsect == 0x55) && (lbal == 0xaa))
838 return 1; /* we found a device */
839
840 return 0; /* nothing found */
841 }
842
843 /**
844 * ata_dev_classify - determine device type based on ATA-spec signature
845 * @tf: ATA taskfile register set for device to be identified
846 *
847 * Determine from taskfile register contents whether a device is
848 * ATA or ATAPI, as per "Signature and persistence" section
849 * of ATA/PI spec (volume 1, sect 5.14).
850 *
851 * LOCKING:
852 * None.
853 *
854 * RETURNS:
855 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
856 * %ATA_DEV_UNKNOWN the event of failure.
857 */
858 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
859 {
860 /* Apple's open source Darwin code hints that some devices only
861 * put a proper signature into the LBA mid/high registers,
862 * So, we only check those. It's sufficient for uniqueness.
863 *
864 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
865 * signatures for ATA and ATAPI devices attached on SerialATA,
866 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
867 * spec has never mentioned about using different signatures
868 * for ATA/ATAPI devices. Then, Serial ATA II: Port
869 * Multiplier specification began to use 0x69/0x96 to identify
870 * port multpliers and 0x3c/0xc3 to identify SEMB device.
871 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
872 * 0x69/0x96 shortly and described them as reserved for
873 * SerialATA.
874 *
875 * We follow the current spec and consider that 0x69/0x96
876 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
877 */
878 if ((tf->lbam == 0) && (tf->lbah == 0)) {
879 DPRINTK("found ATA device by sig\n");
880 return ATA_DEV_ATA;
881 }
882
883 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
884 DPRINTK("found ATAPI device by sig\n");
885 return ATA_DEV_ATAPI;
886 }
887
888 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
889 DPRINTK("found PMP device by sig\n");
890 return ATA_DEV_PMP;
891 }
892
893 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
894 printk(KERN_INFO "ata: SEMB device ignored\n");
895 return ATA_DEV_SEMB_UNSUP; /* not yet */
896 }
897
898 DPRINTK("unknown device\n");
899 return ATA_DEV_UNKNOWN;
900 }
901
902 /**
903 * ata_dev_try_classify - Parse returned ATA device signature
904 * @dev: ATA device to classify (starting at zero)
905 * @present: device seems present
906 * @r_err: Value of error register on completion
907 *
908 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
909 * an ATA/ATAPI-defined set of values is placed in the ATA
910 * shadow registers, indicating the results of device detection
911 * and diagnostics.
912 *
913 * Select the ATA device, and read the values from the ATA shadow
914 * registers. Then parse according to the Error register value,
915 * and the spec-defined values examined by ata_dev_classify().
916 *
917 * LOCKING:
918 * caller.
919 *
920 * RETURNS:
921 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
922 */
923 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
924 u8 *r_err)
925 {
926 struct ata_port *ap = dev->link->ap;
927 struct ata_taskfile tf;
928 unsigned int class;
929 u8 err;
930
931 ap->ops->dev_select(ap, dev->devno);
932
933 memset(&tf, 0, sizeof(tf));
934
935 ap->ops->tf_read(ap, &tf);
936 err = tf.feature;
937 if (r_err)
938 *r_err = err;
939
940 /* see if device passed diags: if master then continue and warn later */
941 if (err == 0 && dev->devno == 0)
942 /* diagnostic fail : do nothing _YET_ */
943 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
944 else if (err == 1)
945 /* do nothing */ ;
946 else if ((dev->devno == 0) && (err == 0x81))
947 /* do nothing */ ;
948 else
949 return ATA_DEV_NONE;
950
951 /* determine if device is ATA or ATAPI */
952 class = ata_dev_classify(&tf);
953
954 if (class == ATA_DEV_UNKNOWN) {
955 /* If the device failed diagnostic, it's likely to
956 * have reported incorrect device signature too.
957 * Assume ATA device if the device seems present but
958 * device signature is invalid with diagnostic
959 * failure.
960 */
961 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
962 class = ATA_DEV_ATA;
963 else
964 class = ATA_DEV_NONE;
965 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
966 class = ATA_DEV_NONE;
967
968 return class;
969 }
970
971 /**
972 * ata_id_string - Convert IDENTIFY DEVICE page into string
973 * @id: IDENTIFY DEVICE results we will examine
974 * @s: string into which data is output
975 * @ofs: offset into identify device page
976 * @len: length of string to return. must be an even number.
977 *
978 * The strings in the IDENTIFY DEVICE page are broken up into
979 * 16-bit chunks. Run through the string, and output each
980 * 8-bit chunk linearly, regardless of platform.
981 *
982 * LOCKING:
983 * caller.
984 */
985
986 void ata_id_string(const u16 *id, unsigned char *s,
987 unsigned int ofs, unsigned int len)
988 {
989 unsigned int c;
990
991 while (len > 0) {
992 c = id[ofs] >> 8;
993 *s = c;
994 s++;
995
996 c = id[ofs] & 0xff;
997 *s = c;
998 s++;
999
1000 ofs++;
1001 len -= 2;
1002 }
1003 }
1004
1005 /**
1006 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1007 * @id: IDENTIFY DEVICE results we will examine
1008 * @s: string into which data is output
1009 * @ofs: offset into identify device page
1010 * @len: length of string to return. must be an odd number.
1011 *
1012 * This function is identical to ata_id_string except that it
1013 * trims trailing spaces and terminates the resulting string with
1014 * null. @len must be actual maximum length (even number) + 1.
1015 *
1016 * LOCKING:
1017 * caller.
1018 */
1019 void ata_id_c_string(const u16 *id, unsigned char *s,
1020 unsigned int ofs, unsigned int len)
1021 {
1022 unsigned char *p;
1023
1024 WARN_ON(!(len & 1));
1025
1026 ata_id_string(id, s, ofs, len - 1);
1027
1028 p = s + strnlen(s, len - 1);
1029 while (p > s && p[-1] == ' ')
1030 p--;
1031 *p = '\0';
1032 }
1033
1034 static u64 ata_id_n_sectors(const u16 *id)
1035 {
1036 if (ata_id_has_lba(id)) {
1037 if (ata_id_has_lba48(id))
1038 return ata_id_u64(id, 100);
1039 else
1040 return ata_id_u32(id, 60);
1041 } else {
1042 if (ata_id_current_chs_valid(id))
1043 return ata_id_u32(id, 57);
1044 else
1045 return id[1] * id[3] * id[6];
1046 }
1047 }
1048
1049 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1050 {
1051 u64 sectors = 0;
1052
1053 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1054 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1055 sectors |= (tf->hob_lbal & 0xff) << 24;
1056 sectors |= (tf->lbah & 0xff) << 16;
1057 sectors |= (tf->lbam & 0xff) << 8;
1058 sectors |= (tf->lbal & 0xff);
1059
1060 return ++sectors;
1061 }
1062
1063 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1064 {
1065 u64 sectors = 0;
1066
1067 sectors |= (tf->device & 0x0f) << 24;
1068 sectors |= (tf->lbah & 0xff) << 16;
1069 sectors |= (tf->lbam & 0xff) << 8;
1070 sectors |= (tf->lbal & 0xff);
1071
1072 return ++sectors;
1073 }
1074
1075 /**
1076 * ata_read_native_max_address - Read native max address
1077 * @dev: target device
1078 * @max_sectors: out parameter for the result native max address
1079 *
1080 * Perform an LBA48 or LBA28 native size query upon the device in
1081 * question.
1082 *
1083 * RETURNS:
1084 * 0 on success, -EACCES if command is aborted by the drive.
1085 * -EIO on other errors.
1086 */
1087 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1088 {
1089 unsigned int err_mask;
1090 struct ata_taskfile tf;
1091 int lba48 = ata_id_has_lba48(dev->id);
1092
1093 ata_tf_init(dev, &tf);
1094
1095 /* always clear all address registers */
1096 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1097
1098 if (lba48) {
1099 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1100 tf.flags |= ATA_TFLAG_LBA48;
1101 } else
1102 tf.command = ATA_CMD_READ_NATIVE_MAX;
1103
1104 tf.protocol |= ATA_PROT_NODATA;
1105 tf.device |= ATA_LBA;
1106
1107 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1108 if (err_mask) {
1109 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1110 "max address (err_mask=0x%x)\n", err_mask);
1111 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1112 return -EACCES;
1113 return -EIO;
1114 }
1115
1116 if (lba48)
1117 *max_sectors = ata_tf_to_lba48(&tf);
1118 else
1119 *max_sectors = ata_tf_to_lba(&tf);
1120 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1121 (*max_sectors)--;
1122 return 0;
1123 }
1124
1125 /**
1126 * ata_set_max_sectors - Set max sectors
1127 * @dev: target device
1128 * @new_sectors: new max sectors value to set for the device
1129 *
1130 * Set max sectors of @dev to @new_sectors.
1131 *
1132 * RETURNS:
1133 * 0 on success, -EACCES if command is aborted or denied (due to
1134 * previous non-volatile SET_MAX) by the drive. -EIO on other
1135 * errors.
1136 */
1137 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1138 {
1139 unsigned int err_mask;
1140 struct ata_taskfile tf;
1141 int lba48 = ata_id_has_lba48(dev->id);
1142
1143 new_sectors--;
1144
1145 ata_tf_init(dev, &tf);
1146
1147 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1148
1149 if (lba48) {
1150 tf.command = ATA_CMD_SET_MAX_EXT;
1151 tf.flags |= ATA_TFLAG_LBA48;
1152
1153 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1154 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1155 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1156 } else {
1157 tf.command = ATA_CMD_SET_MAX;
1158
1159 tf.device |= (new_sectors >> 24) & 0xf;
1160 }
1161
1162 tf.protocol |= ATA_PROT_NODATA;
1163 tf.device |= ATA_LBA;
1164
1165 tf.lbal = (new_sectors >> 0) & 0xff;
1166 tf.lbam = (new_sectors >> 8) & 0xff;
1167 tf.lbah = (new_sectors >> 16) & 0xff;
1168
1169 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1170 if (err_mask) {
1171 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1172 "max address (err_mask=0x%x)\n", err_mask);
1173 if (err_mask == AC_ERR_DEV &&
1174 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1175 return -EACCES;
1176 return -EIO;
1177 }
1178
1179 return 0;
1180 }
1181
1182 /**
1183 * ata_hpa_resize - Resize a device with an HPA set
1184 * @dev: Device to resize
1185 *
1186 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1187 * it if required to the full size of the media. The caller must check
1188 * the drive has the HPA feature set enabled.
1189 *
1190 * RETURNS:
1191 * 0 on success, -errno on failure.
1192 */
1193 static int ata_hpa_resize(struct ata_device *dev)
1194 {
1195 struct ata_eh_context *ehc = &dev->link->eh_context;
1196 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1197 u64 sectors = ata_id_n_sectors(dev->id);
1198 u64 native_sectors;
1199 int rc;
1200
1201 /* do we need to do it? */
1202 if (dev->class != ATA_DEV_ATA ||
1203 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1204 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1205 return 0;
1206
1207 /* read native max address */
1208 rc = ata_read_native_max_address(dev, &native_sectors);
1209 if (rc) {
1210 /* If HPA isn't going to be unlocked, skip HPA
1211 * resizing from the next try.
1212 */
1213 if (!ata_ignore_hpa) {
1214 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1215 "broken, will skip HPA handling\n");
1216 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1217
1218 /* we can continue if device aborted the command */
1219 if (rc == -EACCES)
1220 rc = 0;
1221 }
1222
1223 return rc;
1224 }
1225
1226 /* nothing to do? */
1227 if (native_sectors <= sectors || !ata_ignore_hpa) {
1228 if (!print_info || native_sectors == sectors)
1229 return 0;
1230
1231 if (native_sectors > sectors)
1232 ata_dev_printk(dev, KERN_INFO,
1233 "HPA detected: current %llu, native %llu\n",
1234 (unsigned long long)sectors,
1235 (unsigned long long)native_sectors);
1236 else if (native_sectors < sectors)
1237 ata_dev_printk(dev, KERN_WARNING,
1238 "native sectors (%llu) is smaller than "
1239 "sectors (%llu)\n",
1240 (unsigned long long)native_sectors,
1241 (unsigned long long)sectors);
1242 return 0;
1243 }
1244
1245 /* let's unlock HPA */
1246 rc = ata_set_max_sectors(dev, native_sectors);
1247 if (rc == -EACCES) {
1248 /* if device aborted the command, skip HPA resizing */
1249 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1250 "(%llu -> %llu), skipping HPA handling\n",
1251 (unsigned long long)sectors,
1252 (unsigned long long)native_sectors);
1253 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1254 return 0;
1255 } else if (rc)
1256 return rc;
1257
1258 /* re-read IDENTIFY data */
1259 rc = ata_dev_reread_id(dev, 0);
1260 if (rc) {
1261 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1262 "data after HPA resizing\n");
1263 return rc;
1264 }
1265
1266 if (print_info) {
1267 u64 new_sectors = ata_id_n_sectors(dev->id);
1268 ata_dev_printk(dev, KERN_INFO,
1269 "HPA unlocked: %llu -> %llu, native %llu\n",
1270 (unsigned long long)sectors,
1271 (unsigned long long)new_sectors,
1272 (unsigned long long)native_sectors);
1273 }
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * ata_id_to_dma_mode - Identify DMA mode from id block
1280 * @dev: device to identify
1281 * @unknown: mode to assume if we cannot tell
1282 *
1283 * Set up the timing values for the device based upon the identify
1284 * reported values for the DMA mode. This function is used by drivers
1285 * which rely upon firmware configured modes, but wish to report the
1286 * mode correctly when possible.
1287 *
1288 * In addition we emit similarly formatted messages to the default
1289 * ata_dev_set_mode handler, in order to provide consistency of
1290 * presentation.
1291 */
1292
1293 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1294 {
1295 unsigned int mask;
1296 u8 mode;
1297
1298 /* Pack the DMA modes */
1299 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1300 if (dev->id[53] & 0x04)
1301 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1302
1303 /* Select the mode in use */
1304 mode = ata_xfer_mask2mode(mask);
1305
1306 if (mode != 0) {
1307 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1308 ata_mode_string(mask));
1309 } else {
1310 /* SWDMA perhaps ? */
1311 mode = unknown;
1312 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1313 }
1314
1315 /* Configure the device reporting */
1316 dev->xfer_mode = mode;
1317 dev->xfer_shift = ata_xfer_mode2shift(mode);
1318 }
1319
1320 /**
1321 * ata_noop_dev_select - Select device 0/1 on ATA bus
1322 * @ap: ATA channel to manipulate
1323 * @device: ATA device (numbered from zero) to select
1324 *
1325 * This function performs no actual function.
1326 *
1327 * May be used as the dev_select() entry in ata_port_operations.
1328 *
1329 * LOCKING:
1330 * caller.
1331 */
1332 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1333 {
1334 }
1335
1336
1337 /**
1338 * ata_std_dev_select - Select device 0/1 on ATA bus
1339 * @ap: ATA channel to manipulate
1340 * @device: ATA device (numbered from zero) to select
1341 *
1342 * Use the method defined in the ATA specification to
1343 * make either device 0, or device 1, active on the
1344 * ATA channel. Works with both PIO and MMIO.
1345 *
1346 * May be used as the dev_select() entry in ata_port_operations.
1347 *
1348 * LOCKING:
1349 * caller.
1350 */
1351
1352 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1353 {
1354 u8 tmp;
1355
1356 if (device == 0)
1357 tmp = ATA_DEVICE_OBS;
1358 else
1359 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1360
1361 iowrite8(tmp, ap->ioaddr.device_addr);
1362 ata_pause(ap); /* needed; also flushes, for mmio */
1363 }
1364
1365 /**
1366 * ata_dev_select - Select device 0/1 on ATA bus
1367 * @ap: ATA channel to manipulate
1368 * @device: ATA device (numbered from zero) to select
1369 * @wait: non-zero to wait for Status register BSY bit to clear
1370 * @can_sleep: non-zero if context allows sleeping
1371 *
1372 * Use the method defined in the ATA specification to
1373 * make either device 0, or device 1, active on the
1374 * ATA channel.
1375 *
1376 * This is a high-level version of ata_std_dev_select(),
1377 * which additionally provides the services of inserting
1378 * the proper pauses and status polling, where needed.
1379 *
1380 * LOCKING:
1381 * caller.
1382 */
1383
1384 void ata_dev_select(struct ata_port *ap, unsigned int device,
1385 unsigned int wait, unsigned int can_sleep)
1386 {
1387 if (ata_msg_probe(ap))
1388 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1389 "device %u, wait %u\n", device, wait);
1390
1391 if (wait)
1392 ata_wait_idle(ap);
1393
1394 ap->ops->dev_select(ap, device);
1395
1396 if (wait) {
1397 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1398 msleep(150);
1399 ata_wait_idle(ap);
1400 }
1401 }
1402
1403 /**
1404 * ata_dump_id - IDENTIFY DEVICE info debugging output
1405 * @id: IDENTIFY DEVICE page to dump
1406 *
1407 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1408 * page.
1409 *
1410 * LOCKING:
1411 * caller.
1412 */
1413
1414 static inline void ata_dump_id(const u16 *id)
1415 {
1416 DPRINTK("49==0x%04x "
1417 "53==0x%04x "
1418 "63==0x%04x "
1419 "64==0x%04x "
1420 "75==0x%04x \n",
1421 id[49],
1422 id[53],
1423 id[63],
1424 id[64],
1425 id[75]);
1426 DPRINTK("80==0x%04x "
1427 "81==0x%04x "
1428 "82==0x%04x "
1429 "83==0x%04x "
1430 "84==0x%04x \n",
1431 id[80],
1432 id[81],
1433 id[82],
1434 id[83],
1435 id[84]);
1436 DPRINTK("88==0x%04x "
1437 "93==0x%04x\n",
1438 id[88],
1439 id[93]);
1440 }
1441
1442 /**
1443 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1444 * @id: IDENTIFY data to compute xfer mask from
1445 *
1446 * Compute the xfermask for this device. This is not as trivial
1447 * as it seems if we must consider early devices correctly.
1448 *
1449 * FIXME: pre IDE drive timing (do we care ?).
1450 *
1451 * LOCKING:
1452 * None.
1453 *
1454 * RETURNS:
1455 * Computed xfermask
1456 */
1457 static unsigned int ata_id_xfermask(const u16 *id)
1458 {
1459 unsigned int pio_mask, mwdma_mask, udma_mask;
1460
1461 /* Usual case. Word 53 indicates word 64 is valid */
1462 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1463 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1464 pio_mask <<= 3;
1465 pio_mask |= 0x7;
1466 } else {
1467 /* If word 64 isn't valid then Word 51 high byte holds
1468 * the PIO timing number for the maximum. Turn it into
1469 * a mask.
1470 */
1471 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1472 if (mode < 5) /* Valid PIO range */
1473 pio_mask = (2 << mode) - 1;
1474 else
1475 pio_mask = 1;
1476
1477 /* But wait.. there's more. Design your standards by
1478 * committee and you too can get a free iordy field to
1479 * process. However its the speeds not the modes that
1480 * are supported... Note drivers using the timing API
1481 * will get this right anyway
1482 */
1483 }
1484
1485 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1486
1487 if (ata_id_is_cfa(id)) {
1488 /*
1489 * Process compact flash extended modes
1490 */
1491 int pio = id[163] & 0x7;
1492 int dma = (id[163] >> 3) & 7;
1493
1494 if (pio)
1495 pio_mask |= (1 << 5);
1496 if (pio > 1)
1497 pio_mask |= (1 << 6);
1498 if (dma)
1499 mwdma_mask |= (1 << 3);
1500 if (dma > 1)
1501 mwdma_mask |= (1 << 4);
1502 }
1503
1504 udma_mask = 0;
1505 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1506 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1507
1508 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1509 }
1510
1511 /**
1512 * ata_port_queue_task - Queue port_task
1513 * @ap: The ata_port to queue port_task for
1514 * @fn: workqueue function to be scheduled
1515 * @data: data for @fn to use
1516 * @delay: delay time for workqueue function
1517 *
1518 * Schedule @fn(@data) for execution after @delay jiffies using
1519 * port_task. There is one port_task per port and it's the
1520 * user(low level driver)'s responsibility to make sure that only
1521 * one task is active at any given time.
1522 *
1523 * libata core layer takes care of synchronization between
1524 * port_task and EH. ata_port_queue_task() may be ignored for EH
1525 * synchronization.
1526 *
1527 * LOCKING:
1528 * Inherited from caller.
1529 */
1530 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1531 unsigned long delay)
1532 {
1533 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1534 ap->port_task_data = data;
1535
1536 /* may fail if ata_port_flush_task() in progress */
1537 queue_delayed_work(ata_wq, &ap->port_task, delay);
1538 }
1539
1540 /**
1541 * ata_port_flush_task - Flush port_task
1542 * @ap: The ata_port to flush port_task for
1543 *
1544 * After this function completes, port_task is guranteed not to
1545 * be running or scheduled.
1546 *
1547 * LOCKING:
1548 * Kernel thread context (may sleep)
1549 */
1550 void ata_port_flush_task(struct ata_port *ap)
1551 {
1552 DPRINTK("ENTER\n");
1553
1554 cancel_rearming_delayed_work(&ap->port_task);
1555
1556 if (ata_msg_ctl(ap))
1557 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1558 }
1559
1560 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1561 {
1562 struct completion *waiting = qc->private_data;
1563
1564 complete(waiting);
1565 }
1566
1567 /**
1568 * ata_exec_internal_sg - execute libata internal command
1569 * @dev: Device to which the command is sent
1570 * @tf: Taskfile registers for the command and the result
1571 * @cdb: CDB for packet command
1572 * @dma_dir: Data tranfer direction of the command
1573 * @sgl: sg list for the data buffer of the command
1574 * @n_elem: Number of sg entries
1575 * @timeout: Timeout in msecs (0 for default)
1576 *
1577 * Executes libata internal command with timeout. @tf contains
1578 * command on entry and result on return. Timeout and error
1579 * conditions are reported via return value. No recovery action
1580 * is taken after a command times out. It's caller's duty to
1581 * clean up after timeout.
1582 *
1583 * LOCKING:
1584 * None. Should be called with kernel context, might sleep.
1585 *
1586 * RETURNS:
1587 * Zero on success, AC_ERR_* mask on failure
1588 */
1589 unsigned ata_exec_internal_sg(struct ata_device *dev,
1590 struct ata_taskfile *tf, const u8 *cdb,
1591 int dma_dir, struct scatterlist *sgl,
1592 unsigned int n_elem, unsigned long timeout)
1593 {
1594 struct ata_link *link = dev->link;
1595 struct ata_port *ap = link->ap;
1596 u8 command = tf->command;
1597 struct ata_queued_cmd *qc;
1598 unsigned int tag, preempted_tag;
1599 u32 preempted_sactive, preempted_qc_active;
1600 int preempted_nr_active_links;
1601 DECLARE_COMPLETION_ONSTACK(wait);
1602 unsigned long flags;
1603 unsigned int err_mask;
1604 int rc;
1605
1606 spin_lock_irqsave(ap->lock, flags);
1607
1608 /* no internal command while frozen */
1609 if (ap->pflags & ATA_PFLAG_FROZEN) {
1610 spin_unlock_irqrestore(ap->lock, flags);
1611 return AC_ERR_SYSTEM;
1612 }
1613
1614 /* initialize internal qc */
1615
1616 /* XXX: Tag 0 is used for drivers with legacy EH as some
1617 * drivers choke if any other tag is given. This breaks
1618 * ata_tag_internal() test for those drivers. Don't use new
1619 * EH stuff without converting to it.
1620 */
1621 if (ap->ops->error_handler)
1622 tag = ATA_TAG_INTERNAL;
1623 else
1624 tag = 0;
1625
1626 if (test_and_set_bit(tag, &ap->qc_allocated))
1627 BUG();
1628 qc = __ata_qc_from_tag(ap, tag);
1629
1630 qc->tag = tag;
1631 qc->scsicmd = NULL;
1632 qc->ap = ap;
1633 qc->dev = dev;
1634 ata_qc_reinit(qc);
1635
1636 preempted_tag = link->active_tag;
1637 preempted_sactive = link->sactive;
1638 preempted_qc_active = ap->qc_active;
1639 preempted_nr_active_links = ap->nr_active_links;
1640 link->active_tag = ATA_TAG_POISON;
1641 link->sactive = 0;
1642 ap->qc_active = 0;
1643 ap->nr_active_links = 0;
1644
1645 /* prepare & issue qc */
1646 qc->tf = *tf;
1647 if (cdb)
1648 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1649 qc->flags |= ATA_QCFLAG_RESULT_TF;
1650 qc->dma_dir = dma_dir;
1651 if (dma_dir != DMA_NONE) {
1652 unsigned int i, buflen = 0;
1653 struct scatterlist *sg;
1654
1655 for_each_sg(sgl, sg, n_elem, i)
1656 buflen += sg->length;
1657
1658 ata_sg_init(qc, sgl, n_elem);
1659 qc->nbytes = buflen;
1660 }
1661
1662 qc->private_data = &wait;
1663 qc->complete_fn = ata_qc_complete_internal;
1664
1665 ata_qc_issue(qc);
1666
1667 spin_unlock_irqrestore(ap->lock, flags);
1668
1669 if (!timeout)
1670 timeout = ata_probe_timeout * 1000 / HZ;
1671
1672 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1673
1674 ata_port_flush_task(ap);
1675
1676 if (!rc) {
1677 spin_lock_irqsave(ap->lock, flags);
1678
1679 /* We're racing with irq here. If we lose, the
1680 * following test prevents us from completing the qc
1681 * twice. If we win, the port is frozen and will be
1682 * cleaned up by ->post_internal_cmd().
1683 */
1684 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1685 qc->err_mask |= AC_ERR_TIMEOUT;
1686
1687 if (ap->ops->error_handler)
1688 ata_port_freeze(ap);
1689 else
1690 ata_qc_complete(qc);
1691
1692 if (ata_msg_warn(ap))
1693 ata_dev_printk(dev, KERN_WARNING,
1694 "qc timeout (cmd 0x%x)\n", command);
1695 }
1696
1697 spin_unlock_irqrestore(ap->lock, flags);
1698 }
1699
1700 /* do post_internal_cmd */
1701 if (ap->ops->post_internal_cmd)
1702 ap->ops->post_internal_cmd(qc);
1703
1704 /* perform minimal error analysis */
1705 if (qc->flags & ATA_QCFLAG_FAILED) {
1706 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1707 qc->err_mask |= AC_ERR_DEV;
1708
1709 if (!qc->err_mask)
1710 qc->err_mask |= AC_ERR_OTHER;
1711
1712 if (qc->err_mask & ~AC_ERR_OTHER)
1713 qc->err_mask &= ~AC_ERR_OTHER;
1714 }
1715
1716 /* finish up */
1717 spin_lock_irqsave(ap->lock, flags);
1718
1719 *tf = qc->result_tf;
1720 err_mask = qc->err_mask;
1721
1722 ata_qc_free(qc);
1723 link->active_tag = preempted_tag;
1724 link->sactive = preempted_sactive;
1725 ap->qc_active = preempted_qc_active;
1726 ap->nr_active_links = preempted_nr_active_links;
1727
1728 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1729 * Until those drivers are fixed, we detect the condition
1730 * here, fail the command with AC_ERR_SYSTEM and reenable the
1731 * port.
1732 *
1733 * Note that this doesn't change any behavior as internal
1734 * command failure results in disabling the device in the
1735 * higher layer for LLDDs without new reset/EH callbacks.
1736 *
1737 * Kill the following code as soon as those drivers are fixed.
1738 */
1739 if (ap->flags & ATA_FLAG_DISABLED) {
1740 err_mask |= AC_ERR_SYSTEM;
1741 ata_port_probe(ap);
1742 }
1743
1744 spin_unlock_irqrestore(ap->lock, flags);
1745
1746 return err_mask;
1747 }
1748
1749 /**
1750 * ata_exec_internal - execute libata internal command
1751 * @dev: Device to which the command is sent
1752 * @tf: Taskfile registers for the command and the result
1753 * @cdb: CDB for packet command
1754 * @dma_dir: Data tranfer direction of the command
1755 * @buf: Data buffer of the command
1756 * @buflen: Length of data buffer
1757 * @timeout: Timeout in msecs (0 for default)
1758 *
1759 * Wrapper around ata_exec_internal_sg() which takes simple
1760 * buffer instead of sg list.
1761 *
1762 * LOCKING:
1763 * None. Should be called with kernel context, might sleep.
1764 *
1765 * RETURNS:
1766 * Zero on success, AC_ERR_* mask on failure
1767 */
1768 unsigned ata_exec_internal(struct ata_device *dev,
1769 struct ata_taskfile *tf, const u8 *cdb,
1770 int dma_dir, void *buf, unsigned int buflen,
1771 unsigned long timeout)
1772 {
1773 struct scatterlist *psg = NULL, sg;
1774 unsigned int n_elem = 0;
1775
1776 if (dma_dir != DMA_NONE) {
1777 WARN_ON(!buf);
1778 sg_init_one(&sg, buf, buflen);
1779 psg = &sg;
1780 n_elem++;
1781 }
1782
1783 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1784 timeout);
1785 }
1786
1787 /**
1788 * ata_do_simple_cmd - execute simple internal command
1789 * @dev: Device to which the command is sent
1790 * @cmd: Opcode to execute
1791 *
1792 * Execute a 'simple' command, that only consists of the opcode
1793 * 'cmd' itself, without filling any other registers
1794 *
1795 * LOCKING:
1796 * Kernel thread context (may sleep).
1797 *
1798 * RETURNS:
1799 * Zero on success, AC_ERR_* mask on failure
1800 */
1801 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1802 {
1803 struct ata_taskfile tf;
1804
1805 ata_tf_init(dev, &tf);
1806
1807 tf.command = cmd;
1808 tf.flags |= ATA_TFLAG_DEVICE;
1809 tf.protocol = ATA_PROT_NODATA;
1810
1811 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1812 }
1813
1814 /**
1815 * ata_pio_need_iordy - check if iordy needed
1816 * @adev: ATA device
1817 *
1818 * Check if the current speed of the device requires IORDY. Used
1819 * by various controllers for chip configuration.
1820 */
1821
1822 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1823 {
1824 /* Controller doesn't support IORDY. Probably a pointless check
1825 as the caller should know this */
1826 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1827 return 0;
1828 /* PIO3 and higher it is mandatory */
1829 if (adev->pio_mode > XFER_PIO_2)
1830 return 1;
1831 /* We turn it on when possible */
1832 if (ata_id_has_iordy(adev->id))
1833 return 1;
1834 return 0;
1835 }
1836
1837 /**
1838 * ata_pio_mask_no_iordy - Return the non IORDY mask
1839 * @adev: ATA device
1840 *
1841 * Compute the highest mode possible if we are not using iordy. Return
1842 * -1 if no iordy mode is available.
1843 */
1844
1845 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1846 {
1847 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1848 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1849 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1850 /* Is the speed faster than the drive allows non IORDY ? */
1851 if (pio) {
1852 /* This is cycle times not frequency - watch the logic! */
1853 if (pio > 240) /* PIO2 is 240nS per cycle */
1854 return 3 << ATA_SHIFT_PIO;
1855 return 7 << ATA_SHIFT_PIO;
1856 }
1857 }
1858 return 3 << ATA_SHIFT_PIO;
1859 }
1860
1861 /**
1862 * ata_dev_read_id - Read ID data from the specified device
1863 * @dev: target device
1864 * @p_class: pointer to class of the target device (may be changed)
1865 * @flags: ATA_READID_* flags
1866 * @id: buffer to read IDENTIFY data into
1867 *
1868 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1869 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1870 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1871 * for pre-ATA4 drives.
1872 *
1873 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1874 * now we abort if we hit that case.
1875 *
1876 * LOCKING:
1877 * Kernel thread context (may sleep)
1878 *
1879 * RETURNS:
1880 * 0 on success, -errno otherwise.
1881 */
1882 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1883 unsigned int flags, u16 *id)
1884 {
1885 struct ata_port *ap = dev->link->ap;
1886 unsigned int class = *p_class;
1887 struct ata_taskfile tf;
1888 unsigned int err_mask = 0;
1889 const char *reason;
1890 int may_fallback = 1, tried_spinup = 0;
1891 int rc;
1892
1893 if (ata_msg_ctl(ap))
1894 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1895
1896 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1897 retry:
1898 ata_tf_init(dev, &tf);
1899
1900 switch (class) {
1901 case ATA_DEV_ATA:
1902 tf.command = ATA_CMD_ID_ATA;
1903 break;
1904 case ATA_DEV_ATAPI:
1905 tf.command = ATA_CMD_ID_ATAPI;
1906 break;
1907 default:
1908 rc = -ENODEV;
1909 reason = "unsupported class";
1910 goto err_out;
1911 }
1912
1913 tf.protocol = ATA_PROT_PIO;
1914
1915 /* Some devices choke if TF registers contain garbage. Make
1916 * sure those are properly initialized.
1917 */
1918 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1919
1920 /* Device presence detection is unreliable on some
1921 * controllers. Always poll IDENTIFY if available.
1922 */
1923 tf.flags |= ATA_TFLAG_POLLING;
1924
1925 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1926 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1927 if (err_mask) {
1928 if (err_mask & AC_ERR_NODEV_HINT) {
1929 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1930 ap->print_id, dev->devno);
1931 return -ENOENT;
1932 }
1933
1934 /* Device or controller might have reported the wrong
1935 * device class. Give a shot at the other IDENTIFY if
1936 * the current one is aborted by the device.
1937 */
1938 if (may_fallback &&
1939 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1940 may_fallback = 0;
1941
1942 if (class == ATA_DEV_ATA)
1943 class = ATA_DEV_ATAPI;
1944 else
1945 class = ATA_DEV_ATA;
1946 goto retry;
1947 }
1948
1949 rc = -EIO;
1950 reason = "I/O error";
1951 goto err_out;
1952 }
1953
1954 /* Falling back doesn't make sense if ID data was read
1955 * successfully at least once.
1956 */
1957 may_fallback = 0;
1958
1959 swap_buf_le16(id, ATA_ID_WORDS);
1960
1961 /* sanity check */
1962 rc = -EINVAL;
1963 reason = "device reports invalid type";
1964
1965 if (class == ATA_DEV_ATA) {
1966 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1967 goto err_out;
1968 } else {
1969 if (ata_id_is_ata(id))
1970 goto err_out;
1971 }
1972
1973 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1974 tried_spinup = 1;
1975 /*
1976 * Drive powered-up in standby mode, and requires a specific
1977 * SET_FEATURES spin-up subcommand before it will accept
1978 * anything other than the original IDENTIFY command.
1979 */
1980 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1981 if (err_mask && id[2] != 0x738c) {
1982 rc = -EIO;
1983 reason = "SPINUP failed";
1984 goto err_out;
1985 }
1986 /*
1987 * If the drive initially returned incomplete IDENTIFY info,
1988 * we now must reissue the IDENTIFY command.
1989 */
1990 if (id[2] == 0x37c8)
1991 goto retry;
1992 }
1993
1994 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1995 /*
1996 * The exact sequence expected by certain pre-ATA4 drives is:
1997 * SRST RESET
1998 * IDENTIFY (optional in early ATA)
1999 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2000 * anything else..
2001 * Some drives were very specific about that exact sequence.
2002 *
2003 * Note that ATA4 says lba is mandatory so the second check
2004 * shoud never trigger.
2005 */
2006 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2007 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2008 if (err_mask) {
2009 rc = -EIO;
2010 reason = "INIT_DEV_PARAMS failed";
2011 goto err_out;
2012 }
2013
2014 /* current CHS translation info (id[53-58]) might be
2015 * changed. reread the identify device info.
2016 */
2017 flags &= ~ATA_READID_POSTRESET;
2018 goto retry;
2019 }
2020 }
2021
2022 *p_class = class;
2023
2024 return 0;
2025
2026 err_out:
2027 if (ata_msg_warn(ap))
2028 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2029 "(%s, err_mask=0x%x)\n", reason, err_mask);
2030 return rc;
2031 }
2032
2033 static inline u8 ata_dev_knobble(struct ata_device *dev)
2034 {
2035 struct ata_port *ap = dev->link->ap;
2036 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2037 }
2038
2039 static void ata_dev_config_ncq(struct ata_device *dev,
2040 char *desc, size_t desc_sz)
2041 {
2042 struct ata_port *ap = dev->link->ap;
2043 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2044
2045 if (!ata_id_has_ncq(dev->id)) {
2046 desc[0] = '\0';
2047 return;
2048 }
2049 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2050 snprintf(desc, desc_sz, "NCQ (not used)");
2051 return;
2052 }
2053 if (ap->flags & ATA_FLAG_NCQ) {
2054 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2055 dev->flags |= ATA_DFLAG_NCQ;
2056 }
2057
2058 if (hdepth >= ddepth)
2059 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2060 else
2061 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2062 }
2063
2064 /**
2065 * ata_dev_configure - Configure the specified ATA/ATAPI device
2066 * @dev: Target device to configure
2067 *
2068 * Configure @dev according to @dev->id. Generic and low-level
2069 * driver specific fixups are also applied.
2070 *
2071 * LOCKING:
2072 * Kernel thread context (may sleep)
2073 *
2074 * RETURNS:
2075 * 0 on success, -errno otherwise
2076 */
2077 int ata_dev_configure(struct ata_device *dev)
2078 {
2079 struct ata_port *ap = dev->link->ap;
2080 struct ata_eh_context *ehc = &dev->link->eh_context;
2081 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2082 const u16 *id = dev->id;
2083 unsigned int xfer_mask;
2084 char revbuf[7]; /* XYZ-99\0 */
2085 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2086 char modelbuf[ATA_ID_PROD_LEN+1];
2087 int rc;
2088
2089 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2090 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2091 __FUNCTION__);
2092 return 0;
2093 }
2094
2095 if (ata_msg_probe(ap))
2096 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2097
2098 /* set horkage */
2099 dev->horkage |= ata_dev_blacklisted(dev);
2100
2101 /* let ACPI work its magic */
2102 rc = ata_acpi_on_devcfg(dev);
2103 if (rc)
2104 return rc;
2105
2106 /* massage HPA, do it early as it might change IDENTIFY data */
2107 rc = ata_hpa_resize(dev);
2108 if (rc)
2109 return rc;
2110
2111 /* print device capabilities */
2112 if (ata_msg_probe(ap))
2113 ata_dev_printk(dev, KERN_DEBUG,
2114 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2115 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2116 __FUNCTION__,
2117 id[49], id[82], id[83], id[84],
2118 id[85], id[86], id[87], id[88]);
2119
2120 /* initialize to-be-configured parameters */
2121 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2122 dev->max_sectors = 0;
2123 dev->cdb_len = 0;
2124 dev->n_sectors = 0;
2125 dev->cylinders = 0;
2126 dev->heads = 0;
2127 dev->sectors = 0;
2128
2129 /*
2130 * common ATA, ATAPI feature tests
2131 */
2132
2133 /* find max transfer mode; for printk only */
2134 xfer_mask = ata_id_xfermask(id);
2135
2136 if (ata_msg_probe(ap))
2137 ata_dump_id(id);
2138
2139 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2140 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2141 sizeof(fwrevbuf));
2142
2143 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2144 sizeof(modelbuf));
2145
2146 /* ATA-specific feature tests */
2147 if (dev->class == ATA_DEV_ATA) {
2148 if (ata_id_is_cfa(id)) {
2149 if (id[162] & 1) /* CPRM may make this media unusable */
2150 ata_dev_printk(dev, KERN_WARNING,
2151 "supports DRM functions and may "
2152 "not be fully accessable.\n");
2153 snprintf(revbuf, 7, "CFA");
2154 } else
2155 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2156
2157 dev->n_sectors = ata_id_n_sectors(id);
2158
2159 if (dev->id[59] & 0x100)
2160 dev->multi_count = dev->id[59] & 0xff;
2161
2162 if (ata_id_has_lba(id)) {
2163 const char *lba_desc;
2164 char ncq_desc[20];
2165
2166 lba_desc = "LBA";
2167 dev->flags |= ATA_DFLAG_LBA;
2168 if (ata_id_has_lba48(id)) {
2169 dev->flags |= ATA_DFLAG_LBA48;
2170 lba_desc = "LBA48";
2171
2172 if (dev->n_sectors >= (1UL << 28) &&
2173 ata_id_has_flush_ext(id))
2174 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2175 }
2176
2177 /* config NCQ */
2178 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2179
2180 /* print device info to dmesg */
2181 if (ata_msg_drv(ap) && print_info) {
2182 ata_dev_printk(dev, KERN_INFO,
2183 "%s: %s, %s, max %s\n",
2184 revbuf, modelbuf, fwrevbuf,
2185 ata_mode_string(xfer_mask));
2186 ata_dev_printk(dev, KERN_INFO,
2187 "%Lu sectors, multi %u: %s %s\n",
2188 (unsigned long long)dev->n_sectors,
2189 dev->multi_count, lba_desc, ncq_desc);
2190 }
2191 } else {
2192 /* CHS */
2193
2194 /* Default translation */
2195 dev->cylinders = id[1];
2196 dev->heads = id[3];
2197 dev->sectors = id[6];
2198
2199 if (ata_id_current_chs_valid(id)) {
2200 /* Current CHS translation is valid. */
2201 dev->cylinders = id[54];
2202 dev->heads = id[55];
2203 dev->sectors = id[56];
2204 }
2205
2206 /* print device info to dmesg */
2207 if (ata_msg_drv(ap) && print_info) {
2208 ata_dev_printk(dev, KERN_INFO,
2209 "%s: %s, %s, max %s\n",
2210 revbuf, modelbuf, fwrevbuf,
2211 ata_mode_string(xfer_mask));
2212 ata_dev_printk(dev, KERN_INFO,
2213 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2214 (unsigned long long)dev->n_sectors,
2215 dev->multi_count, dev->cylinders,
2216 dev->heads, dev->sectors);
2217 }
2218 }
2219
2220 dev->cdb_len = 16;
2221 }
2222
2223 /* ATAPI-specific feature tests */
2224 else if (dev->class == ATA_DEV_ATAPI) {
2225 const char *cdb_intr_string = "";
2226 const char *atapi_an_string = "";
2227 u32 sntf;
2228
2229 rc = atapi_cdb_len(id);
2230 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2231 if (ata_msg_warn(ap))
2232 ata_dev_printk(dev, KERN_WARNING,
2233 "unsupported CDB len\n");
2234 rc = -EINVAL;
2235 goto err_out_nosup;
2236 }
2237 dev->cdb_len = (unsigned int) rc;
2238
2239 /* Enable ATAPI AN if both the host and device have
2240 * the support. If PMP is attached, SNTF is required
2241 * to enable ATAPI AN to discern between PHY status
2242 * changed notifications and ATAPI ANs.
2243 */
2244 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2245 (!ap->nr_pmp_links ||
2246 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2247 unsigned int err_mask;
2248
2249 /* issue SET feature command to turn this on */
2250 err_mask = ata_dev_set_feature(dev,
2251 SETFEATURES_SATA_ENABLE, SATA_AN);
2252 if (err_mask)
2253 ata_dev_printk(dev, KERN_ERR,
2254 "failed to enable ATAPI AN "
2255 "(err_mask=0x%x)\n", err_mask);
2256 else {
2257 dev->flags |= ATA_DFLAG_AN;
2258 atapi_an_string = ", ATAPI AN";
2259 }
2260 }
2261
2262 if (ata_id_cdb_intr(dev->id)) {
2263 dev->flags |= ATA_DFLAG_CDB_INTR;
2264 cdb_intr_string = ", CDB intr";
2265 }
2266
2267 /* print device info to dmesg */
2268 if (ata_msg_drv(ap) && print_info)
2269 ata_dev_printk(dev, KERN_INFO,
2270 "ATAPI: %s, %s, max %s%s%s\n",
2271 modelbuf, fwrevbuf,
2272 ata_mode_string(xfer_mask),
2273 cdb_intr_string, atapi_an_string);
2274 }
2275
2276 /* determine max_sectors */
2277 dev->max_sectors = ATA_MAX_SECTORS;
2278 if (dev->flags & ATA_DFLAG_LBA48)
2279 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2280
2281 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2282 if (ata_id_has_hipm(dev->id))
2283 dev->flags |= ATA_DFLAG_HIPM;
2284 if (ata_id_has_dipm(dev->id))
2285 dev->flags |= ATA_DFLAG_DIPM;
2286 }
2287
2288 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2289 /* Let the user know. We don't want to disallow opens for
2290 rescue purposes, or in case the vendor is just a blithering
2291 idiot */
2292 if (print_info) {
2293 ata_dev_printk(dev, KERN_WARNING,
2294 "Drive reports diagnostics failure. This may indicate a drive\n");
2295 ata_dev_printk(dev, KERN_WARNING,
2296 "fault or invalid emulation. Contact drive vendor for information.\n");
2297 }
2298 }
2299
2300 /* limit bridge transfers to udma5, 200 sectors */
2301 if (ata_dev_knobble(dev)) {
2302 if (ata_msg_drv(ap) && print_info)
2303 ata_dev_printk(dev, KERN_INFO,
2304 "applying bridge limits\n");
2305 dev->udma_mask &= ATA_UDMA5;
2306 dev->max_sectors = ATA_MAX_SECTORS;
2307 }
2308
2309 if ((dev->class == ATA_DEV_ATAPI) &&
2310 (atapi_command_packet_set(id) == TYPE_TAPE))
2311 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2312
2313 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2314 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2315 dev->max_sectors);
2316
2317 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2318 dev->horkage |= ATA_HORKAGE_IPM;
2319
2320 /* reset link pm_policy for this port to no pm */
2321 ap->pm_policy = MAX_PERFORMANCE;
2322 }
2323
2324 if (ap->ops->dev_config)
2325 ap->ops->dev_config(dev);
2326
2327 if (ata_msg_probe(ap))
2328 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2329 __FUNCTION__, ata_chk_status(ap));
2330 return 0;
2331
2332 err_out_nosup:
2333 if (ata_msg_probe(ap))
2334 ata_dev_printk(dev, KERN_DEBUG,
2335 "%s: EXIT, err\n", __FUNCTION__);
2336 return rc;
2337 }
2338
2339 /**
2340 * ata_cable_40wire - return 40 wire cable type
2341 * @ap: port
2342 *
2343 * Helper method for drivers which want to hardwire 40 wire cable
2344 * detection.
2345 */
2346
2347 int ata_cable_40wire(struct ata_port *ap)
2348 {
2349 return ATA_CBL_PATA40;
2350 }
2351
2352 /**
2353 * ata_cable_80wire - return 80 wire cable type
2354 * @ap: port
2355 *
2356 * Helper method for drivers which want to hardwire 80 wire cable
2357 * detection.
2358 */
2359
2360 int ata_cable_80wire(struct ata_port *ap)
2361 {
2362 return ATA_CBL_PATA80;
2363 }
2364
2365 /**
2366 * ata_cable_unknown - return unknown PATA cable.
2367 * @ap: port
2368 *
2369 * Helper method for drivers which have no PATA cable detection.
2370 */
2371
2372 int ata_cable_unknown(struct ata_port *ap)
2373 {
2374 return ATA_CBL_PATA_UNK;
2375 }
2376
2377 /**
2378 * ata_cable_sata - return SATA cable type
2379 * @ap: port
2380 *
2381 * Helper method for drivers which have SATA cables
2382 */
2383
2384 int ata_cable_sata(struct ata_port *ap)
2385 {
2386 return ATA_CBL_SATA;
2387 }
2388
2389 /**
2390 * ata_bus_probe - Reset and probe ATA bus
2391 * @ap: Bus to probe
2392 *
2393 * Master ATA bus probing function. Initiates a hardware-dependent
2394 * bus reset, then attempts to identify any devices found on
2395 * the bus.
2396 *
2397 * LOCKING:
2398 * PCI/etc. bus probe sem.
2399 *
2400 * RETURNS:
2401 * Zero on success, negative errno otherwise.
2402 */
2403
2404 int ata_bus_probe(struct ata_port *ap)
2405 {
2406 unsigned int classes[ATA_MAX_DEVICES];
2407 int tries[ATA_MAX_DEVICES];
2408 int rc;
2409 struct ata_device *dev;
2410
2411 ata_port_probe(ap);
2412
2413 ata_link_for_each_dev(dev, &ap->link)
2414 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2415
2416 retry:
2417 ata_link_for_each_dev(dev, &ap->link) {
2418 /* If we issue an SRST then an ATA drive (not ATAPI)
2419 * may change configuration and be in PIO0 timing. If
2420 * we do a hard reset (or are coming from power on)
2421 * this is true for ATA or ATAPI. Until we've set a
2422 * suitable controller mode we should not touch the
2423 * bus as we may be talking too fast.
2424 */
2425 dev->pio_mode = XFER_PIO_0;
2426
2427 /* If the controller has a pio mode setup function
2428 * then use it to set the chipset to rights. Don't
2429 * touch the DMA setup as that will be dealt with when
2430 * configuring devices.
2431 */
2432 if (ap->ops->set_piomode)
2433 ap->ops->set_piomode(ap, dev);
2434 }
2435
2436 /* reset and determine device classes */
2437 ap->ops->phy_reset(ap);
2438
2439 ata_link_for_each_dev(dev, &ap->link) {
2440 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2441 dev->class != ATA_DEV_UNKNOWN)
2442 classes[dev->devno] = dev->class;
2443 else
2444 classes[dev->devno] = ATA_DEV_NONE;
2445
2446 dev->class = ATA_DEV_UNKNOWN;
2447 }
2448
2449 ata_port_probe(ap);
2450
2451 /* read IDENTIFY page and configure devices. We have to do the identify
2452 specific sequence bass-ackwards so that PDIAG- is released by
2453 the slave device */
2454
2455 ata_link_for_each_dev(dev, &ap->link) {
2456 if (tries[dev->devno])
2457 dev->class = classes[dev->devno];
2458
2459 if (!ata_dev_enabled(dev))
2460 continue;
2461
2462 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2463 dev->id);
2464 if (rc)
2465 goto fail;
2466 }
2467
2468 /* Now ask for the cable type as PDIAG- should have been released */
2469 if (ap->ops->cable_detect)
2470 ap->cbl = ap->ops->cable_detect(ap);
2471
2472 /* We may have SATA bridge glue hiding here irrespective of the
2473 reported cable types and sensed types */
2474 ata_link_for_each_dev(dev, &ap->link) {
2475 if (!ata_dev_enabled(dev))
2476 continue;
2477 /* SATA drives indicate we have a bridge. We don't know which
2478 end of the link the bridge is which is a problem */
2479 if (ata_id_is_sata(dev->id))
2480 ap->cbl = ATA_CBL_SATA;
2481 }
2482
2483 /* After the identify sequence we can now set up the devices. We do
2484 this in the normal order so that the user doesn't get confused */
2485
2486 ata_link_for_each_dev(dev, &ap->link) {
2487 if (!ata_dev_enabled(dev))
2488 continue;
2489
2490 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2491 rc = ata_dev_configure(dev);
2492 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2493 if (rc)
2494 goto fail;
2495 }
2496
2497 /* configure transfer mode */
2498 rc = ata_set_mode(&ap->link, &dev);
2499 if (rc)
2500 goto fail;
2501
2502 ata_link_for_each_dev(dev, &ap->link)
2503 if (ata_dev_enabled(dev))
2504 return 0;
2505
2506 /* no device present, disable port */
2507 ata_port_disable(ap);
2508 return -ENODEV;
2509
2510 fail:
2511 tries[dev->devno]--;
2512
2513 switch (rc) {
2514 case -EINVAL:
2515 /* eeek, something went very wrong, give up */
2516 tries[dev->devno] = 0;
2517 break;
2518
2519 case -ENODEV:
2520 /* give it just one more chance */
2521 tries[dev->devno] = min(tries[dev->devno], 1);
2522 case -EIO:
2523 if (tries[dev->devno] == 1) {
2524 /* This is the last chance, better to slow
2525 * down than lose it.
2526 */
2527 sata_down_spd_limit(&ap->link);
2528 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2529 }
2530 }
2531
2532 if (!tries[dev->devno])
2533 ata_dev_disable(dev);
2534
2535 goto retry;
2536 }
2537
2538 /**
2539 * ata_port_probe - Mark port as enabled
2540 * @ap: Port for which we indicate enablement
2541 *
2542 * Modify @ap data structure such that the system
2543 * thinks that the entire port is enabled.
2544 *
2545 * LOCKING: host lock, or some other form of
2546 * serialization.
2547 */
2548
2549 void ata_port_probe(struct ata_port *ap)
2550 {
2551 ap->flags &= ~ATA_FLAG_DISABLED;
2552 }
2553
2554 /**
2555 * sata_print_link_status - Print SATA link status
2556 * @link: SATA link to printk link status about
2557 *
2558 * This function prints link speed and status of a SATA link.
2559 *
2560 * LOCKING:
2561 * None.
2562 */
2563 void sata_print_link_status(struct ata_link *link)
2564 {
2565 u32 sstatus, scontrol, tmp;
2566
2567 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2568 return;
2569 sata_scr_read(link, SCR_CONTROL, &scontrol);
2570
2571 if (ata_link_online(link)) {
2572 tmp = (sstatus >> 4) & 0xf;
2573 ata_link_printk(link, KERN_INFO,
2574 "SATA link up %s (SStatus %X SControl %X)\n",
2575 sata_spd_string(tmp), sstatus, scontrol);
2576 } else {
2577 ata_link_printk(link, KERN_INFO,
2578 "SATA link down (SStatus %X SControl %X)\n",
2579 sstatus, scontrol);
2580 }
2581 }
2582
2583 /**
2584 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2585 * @ap: SATA port associated with target SATA PHY.
2586 *
2587 * This function issues commands to standard SATA Sxxx
2588 * PHY registers, to wake up the phy (and device), and
2589 * clear any reset condition.
2590 *
2591 * LOCKING:
2592 * PCI/etc. bus probe sem.
2593 *
2594 */
2595 void __sata_phy_reset(struct ata_port *ap)
2596 {
2597 struct ata_link *link = &ap->link;
2598 unsigned long timeout = jiffies + (HZ * 5);
2599 u32 sstatus;
2600
2601 if (ap->flags & ATA_FLAG_SATA_RESET) {
2602 /* issue phy wake/reset */
2603 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2604 /* Couldn't find anything in SATA I/II specs, but
2605 * AHCI-1.1 10.4.2 says at least 1 ms. */
2606 mdelay(1);
2607 }
2608 /* phy wake/clear reset */
2609 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2610
2611 /* wait for phy to become ready, if necessary */
2612 do {
2613 msleep(200);
2614 sata_scr_read(link, SCR_STATUS, &sstatus);
2615 if ((sstatus & 0xf) != 1)
2616 break;
2617 } while (time_before(jiffies, timeout));
2618
2619 /* print link status */
2620 sata_print_link_status(link);
2621
2622 /* TODO: phy layer with polling, timeouts, etc. */
2623 if (!ata_link_offline(link))
2624 ata_port_probe(ap);
2625 else
2626 ata_port_disable(ap);
2627
2628 if (ap->flags & ATA_FLAG_DISABLED)
2629 return;
2630
2631 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2632 ata_port_disable(ap);
2633 return;
2634 }
2635
2636 ap->cbl = ATA_CBL_SATA;
2637 }
2638
2639 /**
2640 * sata_phy_reset - Reset SATA bus.
2641 * @ap: SATA port associated with target SATA PHY.
2642 *
2643 * This function resets the SATA bus, and then probes
2644 * the bus for devices.
2645 *
2646 * LOCKING:
2647 * PCI/etc. bus probe sem.
2648 *
2649 */
2650 void sata_phy_reset(struct ata_port *ap)
2651 {
2652 __sata_phy_reset(ap);
2653 if (ap->flags & ATA_FLAG_DISABLED)
2654 return;
2655 ata_bus_reset(ap);
2656 }
2657
2658 /**
2659 * ata_dev_pair - return other device on cable
2660 * @adev: device
2661 *
2662 * Obtain the other device on the same cable, or if none is
2663 * present NULL is returned
2664 */
2665
2666 struct ata_device *ata_dev_pair(struct ata_device *adev)
2667 {
2668 struct ata_link *link = adev->link;
2669 struct ata_device *pair = &link->device[1 - adev->devno];
2670 if (!ata_dev_enabled(pair))
2671 return NULL;
2672 return pair;
2673 }
2674
2675 /**
2676 * ata_port_disable - Disable port.
2677 * @ap: Port to be disabled.
2678 *
2679 * Modify @ap data structure such that the system
2680 * thinks that the entire port is disabled, and should
2681 * never attempt to probe or communicate with devices
2682 * on this port.
2683 *
2684 * LOCKING: host lock, or some other form of
2685 * serialization.
2686 */
2687
2688 void ata_port_disable(struct ata_port *ap)
2689 {
2690 ap->link.device[0].class = ATA_DEV_NONE;
2691 ap->link.device[1].class = ATA_DEV_NONE;
2692 ap->flags |= ATA_FLAG_DISABLED;
2693 }
2694
2695 /**
2696 * sata_down_spd_limit - adjust SATA spd limit downward
2697 * @link: Link to adjust SATA spd limit for
2698 *
2699 * Adjust SATA spd limit of @link downward. Note that this
2700 * function only adjusts the limit. The change must be applied
2701 * using sata_set_spd().
2702 *
2703 * LOCKING:
2704 * Inherited from caller.
2705 *
2706 * RETURNS:
2707 * 0 on success, negative errno on failure
2708 */
2709 int sata_down_spd_limit(struct ata_link *link)
2710 {
2711 u32 sstatus, spd, mask;
2712 int rc, highbit;
2713
2714 if (!sata_scr_valid(link))
2715 return -EOPNOTSUPP;
2716
2717 /* If SCR can be read, use it to determine the current SPD.
2718 * If not, use cached value in link->sata_spd.
2719 */
2720 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2721 if (rc == 0)
2722 spd = (sstatus >> 4) & 0xf;
2723 else
2724 spd = link->sata_spd;
2725
2726 mask = link->sata_spd_limit;
2727 if (mask <= 1)
2728 return -EINVAL;
2729
2730 /* unconditionally mask off the highest bit */
2731 highbit = fls(mask) - 1;
2732 mask &= ~(1 << highbit);
2733
2734 /* Mask off all speeds higher than or equal to the current
2735 * one. Force 1.5Gbps if current SPD is not available.
2736 */
2737 if (spd > 1)
2738 mask &= (1 << (spd - 1)) - 1;
2739 else
2740 mask &= 1;
2741
2742 /* were we already at the bottom? */
2743 if (!mask)
2744 return -EINVAL;
2745
2746 link->sata_spd_limit = mask;
2747
2748 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2749 sata_spd_string(fls(mask)));
2750
2751 return 0;
2752 }
2753
2754 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2755 {
2756 struct ata_link *host_link = &link->ap->link;
2757 u32 limit, target, spd;
2758
2759 limit = link->sata_spd_limit;
2760
2761 /* Don't configure downstream link faster than upstream link.
2762 * It doesn't speed up anything and some PMPs choke on such
2763 * configuration.
2764 */
2765 if (!ata_is_host_link(link) && host_link->sata_spd)
2766 limit &= (1 << host_link->sata_spd) - 1;
2767
2768 if (limit == UINT_MAX)
2769 target = 0;
2770 else
2771 target = fls(limit);
2772
2773 spd = (*scontrol >> 4) & 0xf;
2774 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2775
2776 return spd != target;
2777 }
2778
2779 /**
2780 * sata_set_spd_needed - is SATA spd configuration needed
2781 * @link: Link in question
2782 *
2783 * Test whether the spd limit in SControl matches
2784 * @link->sata_spd_limit. This function is used to determine
2785 * whether hardreset is necessary to apply SATA spd
2786 * configuration.
2787 *
2788 * LOCKING:
2789 * Inherited from caller.
2790 *
2791 * RETURNS:
2792 * 1 if SATA spd configuration is needed, 0 otherwise.
2793 */
2794 int sata_set_spd_needed(struct ata_link *link)
2795 {
2796 u32 scontrol;
2797
2798 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2799 return 1;
2800
2801 return __sata_set_spd_needed(link, &scontrol);
2802 }
2803
2804 /**
2805 * sata_set_spd - set SATA spd according to spd limit
2806 * @link: Link to set SATA spd for
2807 *
2808 * Set SATA spd of @link according to sata_spd_limit.
2809 *
2810 * LOCKING:
2811 * Inherited from caller.
2812 *
2813 * RETURNS:
2814 * 0 if spd doesn't need to be changed, 1 if spd has been
2815 * changed. Negative errno if SCR registers are inaccessible.
2816 */
2817 int sata_set_spd(struct ata_link *link)
2818 {
2819 u32 scontrol;
2820 int rc;
2821
2822 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2823 return rc;
2824
2825 if (!__sata_set_spd_needed(link, &scontrol))
2826 return 0;
2827
2828 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2829 return rc;
2830
2831 return 1;
2832 }
2833
2834 /*
2835 * This mode timing computation functionality is ported over from
2836 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2837 */
2838 /*
2839 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2840 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2841 * for UDMA6, which is currently supported only by Maxtor drives.
2842 *
2843 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2844 */
2845
2846 static const struct ata_timing ata_timing[] = {
2847
2848 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2849 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2850 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2851 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2852
2853 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2854 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2855 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2856 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2857 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2858
2859 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2860
2861 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2862 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2863 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2864
2865 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2866 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2867 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2868
2869 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2870 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2871 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2872 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2873
2874 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2875 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2876 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2877
2878 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2879
2880 { 0xFF }
2881 };
2882
2883 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2884 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2885
2886 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2887 {
2888 q->setup = EZ(t->setup * 1000, T);
2889 q->act8b = EZ(t->act8b * 1000, T);
2890 q->rec8b = EZ(t->rec8b * 1000, T);
2891 q->cyc8b = EZ(t->cyc8b * 1000, T);
2892 q->active = EZ(t->active * 1000, T);
2893 q->recover = EZ(t->recover * 1000, T);
2894 q->cycle = EZ(t->cycle * 1000, T);
2895 q->udma = EZ(t->udma * 1000, UT);
2896 }
2897
2898 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2899 struct ata_timing *m, unsigned int what)
2900 {
2901 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2902 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2903 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2904 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2905 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2906 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2907 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2908 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2909 }
2910
2911 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2912 {
2913 const struct ata_timing *t;
2914
2915 for (t = ata_timing; t->mode != speed; t++)
2916 if (t->mode == 0xFF)
2917 return NULL;
2918 return t;
2919 }
2920
2921 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2922 struct ata_timing *t, int T, int UT)
2923 {
2924 const struct ata_timing *s;
2925 struct ata_timing p;
2926
2927 /*
2928 * Find the mode.
2929 */
2930
2931 if (!(s = ata_timing_find_mode(speed)))
2932 return -EINVAL;
2933
2934 memcpy(t, s, sizeof(*s));
2935
2936 /*
2937 * If the drive is an EIDE drive, it can tell us it needs extended
2938 * PIO/MW_DMA cycle timing.
2939 */
2940
2941 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2942 memset(&p, 0, sizeof(p));
2943 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2944 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2945 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2946 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2947 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2948 }
2949 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2950 }
2951
2952 /*
2953 * Convert the timing to bus clock counts.
2954 */
2955
2956 ata_timing_quantize(t, t, T, UT);
2957
2958 /*
2959 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2960 * S.M.A.R.T * and some other commands. We have to ensure that the
2961 * DMA cycle timing is slower/equal than the fastest PIO timing.
2962 */
2963
2964 if (speed > XFER_PIO_6) {
2965 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2966 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2967 }
2968
2969 /*
2970 * Lengthen active & recovery time so that cycle time is correct.
2971 */
2972
2973 if (t->act8b + t->rec8b < t->cyc8b) {
2974 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2975 t->rec8b = t->cyc8b - t->act8b;
2976 }
2977
2978 if (t->active + t->recover < t->cycle) {
2979 t->active += (t->cycle - (t->active + t->recover)) / 2;
2980 t->recover = t->cycle - t->active;
2981 }
2982
2983 /* In a few cases quantisation may produce enough errors to
2984 leave t->cycle too low for the sum of active and recovery
2985 if so we must correct this */
2986 if (t->active + t->recover > t->cycle)
2987 t->cycle = t->active + t->recover;
2988
2989 return 0;
2990 }
2991
2992 /**
2993 * ata_down_xfermask_limit - adjust dev xfer masks downward
2994 * @dev: Device to adjust xfer masks
2995 * @sel: ATA_DNXFER_* selector
2996 *
2997 * Adjust xfer masks of @dev downward. Note that this function
2998 * does not apply the change. Invoking ata_set_mode() afterwards
2999 * will apply the limit.
3000 *
3001 * LOCKING:
3002 * Inherited from caller.
3003 *
3004 * RETURNS:
3005 * 0 on success, negative errno on failure
3006 */
3007 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3008 {
3009 char buf[32];
3010 unsigned int orig_mask, xfer_mask;
3011 unsigned int pio_mask, mwdma_mask, udma_mask;
3012 int quiet, highbit;
3013
3014 quiet = !!(sel & ATA_DNXFER_QUIET);
3015 sel &= ~ATA_DNXFER_QUIET;
3016
3017 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3018 dev->mwdma_mask,
3019 dev->udma_mask);
3020 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3021
3022 switch (sel) {
3023 case ATA_DNXFER_PIO:
3024 highbit = fls(pio_mask) - 1;
3025 pio_mask &= ~(1 << highbit);
3026 break;
3027
3028 case ATA_DNXFER_DMA:
3029 if (udma_mask) {
3030 highbit = fls(udma_mask) - 1;
3031 udma_mask &= ~(1 << highbit);
3032 if (!udma_mask)
3033 return -ENOENT;
3034 } else if (mwdma_mask) {
3035 highbit = fls(mwdma_mask) - 1;
3036 mwdma_mask &= ~(1 << highbit);
3037 if (!mwdma_mask)
3038 return -ENOENT;
3039 }
3040 break;
3041
3042 case ATA_DNXFER_40C:
3043 udma_mask &= ATA_UDMA_MASK_40C;
3044 break;
3045
3046 case ATA_DNXFER_FORCE_PIO0:
3047 pio_mask &= 1;
3048 case ATA_DNXFER_FORCE_PIO:
3049 mwdma_mask = 0;
3050 udma_mask = 0;
3051 break;
3052
3053 default:
3054 BUG();
3055 }
3056
3057 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3058
3059 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3060 return -ENOENT;
3061
3062 if (!quiet) {
3063 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3064 snprintf(buf, sizeof(buf), "%s:%s",
3065 ata_mode_string(xfer_mask),
3066 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3067 else
3068 snprintf(buf, sizeof(buf), "%s",
3069 ata_mode_string(xfer_mask));
3070
3071 ata_dev_printk(dev, KERN_WARNING,
3072 "limiting speed to %s\n", buf);
3073 }
3074
3075 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3076 &dev->udma_mask);
3077
3078 return 0;
3079 }
3080
3081 static int ata_dev_set_mode(struct ata_device *dev)
3082 {
3083 struct ata_eh_context *ehc = &dev->link->eh_context;
3084 unsigned int err_mask;
3085 int rc;
3086
3087 dev->flags &= ~ATA_DFLAG_PIO;
3088 if (dev->xfer_shift == ATA_SHIFT_PIO)
3089 dev->flags |= ATA_DFLAG_PIO;
3090
3091 err_mask = ata_dev_set_xfermode(dev);
3092
3093 /* Old CFA may refuse this command, which is just fine */
3094 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3095 err_mask &= ~AC_ERR_DEV;
3096
3097 /* Some very old devices and some bad newer ones fail any kind of
3098 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3099 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3100 dev->pio_mode <= XFER_PIO_2)
3101 err_mask &= ~AC_ERR_DEV;
3102
3103 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3104 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3105 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3106 dev->dma_mode == XFER_MW_DMA_0 &&
3107 (dev->id[63] >> 8) & 1)
3108 err_mask &= ~AC_ERR_DEV;
3109
3110 if (err_mask) {
3111 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3112 "(err_mask=0x%x)\n", err_mask);
3113 return -EIO;
3114 }
3115
3116 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3117 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3118 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3119 if (rc)
3120 return rc;
3121
3122 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3123 dev->xfer_shift, (int)dev->xfer_mode);
3124
3125 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3126 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3127 return 0;
3128 }
3129
3130 /**
3131 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3132 * @link: link on which timings will be programmed
3133 * @r_failed_dev: out paramter for failed device
3134 *
3135 * Standard implementation of the function used to tune and set
3136 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3137 * ata_dev_set_mode() fails, pointer to the failing device is
3138 * returned in @r_failed_dev.
3139 *
3140 * LOCKING:
3141 * PCI/etc. bus probe sem.
3142 *
3143 * RETURNS:
3144 * 0 on success, negative errno otherwise
3145 */
3146
3147 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3148 {
3149 struct ata_port *ap = link->ap;
3150 struct ata_device *dev;
3151 int rc = 0, used_dma = 0, found = 0;
3152
3153 /* step 1: calculate xfer_mask */
3154 ata_link_for_each_dev(dev, link) {
3155 unsigned int pio_mask, dma_mask;
3156 unsigned int mode_mask;
3157
3158 if (!ata_dev_enabled(dev))
3159 continue;
3160
3161 mode_mask = ATA_DMA_MASK_ATA;
3162 if (dev->class == ATA_DEV_ATAPI)
3163 mode_mask = ATA_DMA_MASK_ATAPI;
3164 else if (ata_id_is_cfa(dev->id))
3165 mode_mask = ATA_DMA_MASK_CFA;
3166
3167 ata_dev_xfermask(dev);
3168
3169 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3170 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3171
3172 if (libata_dma_mask & mode_mask)
3173 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3174 else
3175 dma_mask = 0;
3176
3177 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3178 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3179
3180 found = 1;
3181 if (dev->dma_mode)
3182 used_dma = 1;
3183 }
3184 if (!found)
3185 goto out;
3186
3187 /* step 2: always set host PIO timings */
3188 ata_link_for_each_dev(dev, link) {
3189 if (!ata_dev_enabled(dev))
3190 continue;
3191
3192 if (!dev->pio_mode) {
3193 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3194 rc = -EINVAL;
3195 goto out;
3196 }
3197
3198 dev->xfer_mode = dev->pio_mode;
3199 dev->xfer_shift = ATA_SHIFT_PIO;
3200 if (ap->ops->set_piomode)
3201 ap->ops->set_piomode(ap, dev);
3202 }
3203
3204 /* step 3: set host DMA timings */
3205 ata_link_for_each_dev(dev, link) {
3206 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3207 continue;
3208
3209 dev->xfer_mode = dev->dma_mode;
3210 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3211 if (ap->ops->set_dmamode)
3212 ap->ops->set_dmamode(ap, dev);
3213 }
3214
3215 /* step 4: update devices' xfer mode */
3216 ata_link_for_each_dev(dev, link) {
3217 /* don't update suspended devices' xfer mode */
3218 if (!ata_dev_enabled(dev))
3219 continue;
3220
3221 rc = ata_dev_set_mode(dev);
3222 if (rc)
3223 goto out;
3224 }
3225
3226 /* Record simplex status. If we selected DMA then the other
3227 * host channels are not permitted to do so.
3228 */
3229 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3230 ap->host->simplex_claimed = ap;
3231
3232 out:
3233 if (rc)
3234 *r_failed_dev = dev;
3235 return rc;
3236 }
3237
3238 /**
3239 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3240 * @link: link on which timings will be programmed
3241 * @r_failed_dev: out paramter for failed device
3242 *
3243 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3244 * ata_set_mode() fails, pointer to the failing device is
3245 * returned in @r_failed_dev.
3246 *
3247 * LOCKING:
3248 * PCI/etc. bus probe sem.
3249 *
3250 * RETURNS:
3251 * 0 on success, negative errno otherwise
3252 */
3253 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3254 {
3255 struct ata_port *ap = link->ap;
3256
3257 /* has private set_mode? */
3258 if (ap->ops->set_mode)
3259 return ap->ops->set_mode(link, r_failed_dev);
3260 return ata_do_set_mode(link, r_failed_dev);
3261 }
3262
3263 /**
3264 * ata_tf_to_host - issue ATA taskfile to host controller
3265 * @ap: port to which command is being issued
3266 * @tf: ATA taskfile register set
3267 *
3268 * Issues ATA taskfile register set to ATA host controller,
3269 * with proper synchronization with interrupt handler and
3270 * other threads.
3271 *
3272 * LOCKING:
3273 * spin_lock_irqsave(host lock)
3274 */
3275
3276 static inline void ata_tf_to_host(struct ata_port *ap,
3277 const struct ata_taskfile *tf)
3278 {
3279 ap->ops->tf_load(ap, tf);
3280 ap->ops->exec_command(ap, tf);
3281 }
3282
3283 /**
3284 * ata_busy_sleep - sleep until BSY clears, or timeout
3285 * @ap: port containing status register to be polled
3286 * @tmout_pat: impatience timeout
3287 * @tmout: overall timeout
3288 *
3289 * Sleep until ATA Status register bit BSY clears,
3290 * or a timeout occurs.
3291 *
3292 * LOCKING:
3293 * Kernel thread context (may sleep).
3294 *
3295 * RETURNS:
3296 * 0 on success, -errno otherwise.
3297 */
3298 int ata_busy_sleep(struct ata_port *ap,
3299 unsigned long tmout_pat, unsigned long tmout)
3300 {
3301 unsigned long timer_start, timeout;
3302 u8 status;
3303
3304 status = ata_busy_wait(ap, ATA_BUSY, 300);
3305 timer_start = jiffies;
3306 timeout = timer_start + tmout_pat;
3307 while (status != 0xff && (status & ATA_BUSY) &&
3308 time_before(jiffies, timeout)) {
3309 msleep(50);
3310 status = ata_busy_wait(ap, ATA_BUSY, 3);
3311 }
3312
3313 if (status != 0xff && (status & ATA_BUSY))
3314 ata_port_printk(ap, KERN_WARNING,
3315 "port is slow to respond, please be patient "
3316 "(Status 0x%x)\n", status);
3317
3318 timeout = timer_start + tmout;
3319 while (status != 0xff && (status & ATA_BUSY) &&
3320 time_before(jiffies, timeout)) {
3321 msleep(50);
3322 status = ata_chk_status(ap);
3323 }
3324
3325 if (status == 0xff)
3326 return -ENODEV;
3327
3328 if (status & ATA_BUSY) {
3329 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3330 "(%lu secs, Status 0x%x)\n",
3331 tmout / HZ, status);
3332 return -EBUSY;
3333 }
3334
3335 return 0;
3336 }
3337
3338 /**
3339 * ata_wait_after_reset - wait before checking status after reset
3340 * @ap: port containing status register to be polled
3341 * @deadline: deadline jiffies for the operation
3342 *
3343 * After reset, we need to pause a while before reading status.
3344 * Also, certain combination of controller and device report 0xff
3345 * for some duration (e.g. until SATA PHY is up and running)
3346 * which is interpreted as empty port in ATA world. This
3347 * function also waits for such devices to get out of 0xff
3348 * status.
3349 *
3350 * LOCKING:
3351 * Kernel thread context (may sleep).
3352 */
3353 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3354 {
3355 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3356
3357 if (time_before(until, deadline))
3358 deadline = until;
3359
3360 /* Spec mandates ">= 2ms" before checking status. We wait
3361 * 150ms, because that was the magic delay used for ATAPI
3362 * devices in Hale Landis's ATADRVR, for the period of time
3363 * between when the ATA command register is written, and then
3364 * status is checked. Because waiting for "a while" before
3365 * checking status is fine, post SRST, we perform this magic
3366 * delay here as well.
3367 *
3368 * Old drivers/ide uses the 2mS rule and then waits for ready.
3369 */
3370 msleep(150);
3371
3372 /* Wait for 0xff to clear. Some SATA devices take a long time
3373 * to clear 0xff after reset. For example, HHD424020F7SV00
3374 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3375 * than that.
3376 *
3377 * Note that some PATA controllers (pata_ali) explode if
3378 * status register is read more than once when there's no
3379 * device attached.
3380 */
3381 if (ap->flags & ATA_FLAG_SATA) {
3382 while (1) {
3383 u8 status = ata_chk_status(ap);
3384
3385 if (status != 0xff || time_after(jiffies, deadline))
3386 return;
3387
3388 msleep(50);
3389 }
3390 }
3391 }
3392
3393 /**
3394 * ata_wait_ready - sleep until BSY clears, or timeout
3395 * @ap: port containing status register to be polled
3396 * @deadline: deadline jiffies for the operation
3397 *
3398 * Sleep until ATA Status register bit BSY clears, or timeout
3399 * occurs.
3400 *
3401 * LOCKING:
3402 * Kernel thread context (may sleep).
3403 *
3404 * RETURNS:
3405 * 0 on success, -errno otherwise.
3406 */
3407 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3408 {
3409 unsigned long start = jiffies;
3410 int warned = 0;
3411
3412 while (1) {
3413 u8 status = ata_chk_status(ap);
3414 unsigned long now = jiffies;
3415
3416 if (!(status & ATA_BUSY))
3417 return 0;
3418 if (!ata_link_online(&ap->link) && status == 0xff)
3419 return -ENODEV;
3420 if (time_after(now, deadline))
3421 return -EBUSY;
3422
3423 if (!warned && time_after(now, start + 5 * HZ) &&
3424 (deadline - now > 3 * HZ)) {
3425 ata_port_printk(ap, KERN_WARNING,
3426 "port is slow to respond, please be patient "
3427 "(Status 0x%x)\n", status);
3428 warned = 1;
3429 }
3430
3431 msleep(50);
3432 }
3433 }
3434
3435 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3436 unsigned long deadline)
3437 {
3438 struct ata_ioports *ioaddr = &ap->ioaddr;
3439 unsigned int dev0 = devmask & (1 << 0);
3440 unsigned int dev1 = devmask & (1 << 1);
3441 int rc, ret = 0;
3442
3443 /* if device 0 was found in ata_devchk, wait for its
3444 * BSY bit to clear
3445 */
3446 if (dev0) {
3447 rc = ata_wait_ready(ap, deadline);
3448 if (rc) {
3449 if (rc != -ENODEV)
3450 return rc;
3451 ret = rc;
3452 }
3453 }
3454
3455 /* if device 1 was found in ata_devchk, wait for register
3456 * access briefly, then wait for BSY to clear.
3457 */
3458 if (dev1) {
3459 int i;
3460
3461 ap->ops->dev_select(ap, 1);
3462
3463 /* Wait for register access. Some ATAPI devices fail
3464 * to set nsect/lbal after reset, so don't waste too
3465 * much time on it. We're gonna wait for !BSY anyway.
3466 */
3467 for (i = 0; i < 2; i++) {
3468 u8 nsect, lbal;
3469
3470 nsect = ioread8(ioaddr->nsect_addr);
3471 lbal = ioread8(ioaddr->lbal_addr);
3472 if ((nsect == 1) && (lbal == 1))
3473 break;
3474 msleep(50); /* give drive a breather */
3475 }
3476
3477 rc = ata_wait_ready(ap, deadline);
3478 if (rc) {
3479 if (rc != -ENODEV)
3480 return rc;
3481 ret = rc;
3482 }
3483 }
3484
3485 /* is all this really necessary? */
3486 ap->ops->dev_select(ap, 0);
3487 if (dev1)
3488 ap->ops->dev_select(ap, 1);
3489 if (dev0)
3490 ap->ops->dev_select(ap, 0);
3491
3492 return ret;
3493 }
3494
3495 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3496 unsigned long deadline)
3497 {
3498 struct ata_ioports *ioaddr = &ap->ioaddr;
3499
3500 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3501
3502 /* software reset. causes dev0 to be selected */
3503 iowrite8(ap->ctl, ioaddr->ctl_addr);
3504 udelay(20); /* FIXME: flush */
3505 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3506 udelay(20); /* FIXME: flush */
3507 iowrite8(ap->ctl, ioaddr->ctl_addr);
3508
3509 /* wait a while before checking status */
3510 ata_wait_after_reset(ap, deadline);
3511
3512 /* Before we perform post reset processing we want to see if
3513 * the bus shows 0xFF because the odd clown forgets the D7
3514 * pulldown resistor.
3515 */
3516 if (ata_chk_status(ap) == 0xFF)
3517 return -ENODEV;
3518
3519 return ata_bus_post_reset(ap, devmask, deadline);
3520 }
3521
3522 /**
3523 * ata_bus_reset - reset host port and associated ATA channel
3524 * @ap: port to reset
3525 *
3526 * This is typically the first time we actually start issuing
3527 * commands to the ATA channel. We wait for BSY to clear, then
3528 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3529 * result. Determine what devices, if any, are on the channel
3530 * by looking at the device 0/1 error register. Look at the signature
3531 * stored in each device's taskfile registers, to determine if
3532 * the device is ATA or ATAPI.
3533 *
3534 * LOCKING:
3535 * PCI/etc. bus probe sem.
3536 * Obtains host lock.
3537 *
3538 * SIDE EFFECTS:
3539 * Sets ATA_FLAG_DISABLED if bus reset fails.
3540 */
3541
3542 void ata_bus_reset(struct ata_port *ap)
3543 {
3544 struct ata_device *device = ap->link.device;
3545 struct ata_ioports *ioaddr = &ap->ioaddr;
3546 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3547 u8 err;
3548 unsigned int dev0, dev1 = 0, devmask = 0;
3549 int rc;
3550
3551 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3552
3553 /* determine if device 0/1 are present */
3554 if (ap->flags & ATA_FLAG_SATA_RESET)
3555 dev0 = 1;
3556 else {
3557 dev0 = ata_devchk(ap, 0);
3558 if (slave_possible)
3559 dev1 = ata_devchk(ap, 1);
3560 }
3561
3562 if (dev0)
3563 devmask |= (1 << 0);
3564 if (dev1)
3565 devmask |= (1 << 1);
3566
3567 /* select device 0 again */
3568 ap->ops->dev_select(ap, 0);
3569
3570 /* issue bus reset */
3571 if (ap->flags & ATA_FLAG_SRST) {
3572 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3573 if (rc && rc != -ENODEV)
3574 goto err_out;
3575 }
3576
3577 /*
3578 * determine by signature whether we have ATA or ATAPI devices
3579 */
3580 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3581 if ((slave_possible) && (err != 0x81))
3582 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3583
3584 /* is double-select really necessary? */
3585 if (device[1].class != ATA_DEV_NONE)
3586 ap->ops->dev_select(ap, 1);
3587 if (device[0].class != ATA_DEV_NONE)
3588 ap->ops->dev_select(ap, 0);
3589
3590 /* if no devices were detected, disable this port */
3591 if ((device[0].class == ATA_DEV_NONE) &&
3592 (device[1].class == ATA_DEV_NONE))
3593 goto err_out;
3594
3595 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3596 /* set up device control for ATA_FLAG_SATA_RESET */
3597 iowrite8(ap->ctl, ioaddr->ctl_addr);
3598 }
3599
3600 DPRINTK("EXIT\n");
3601 return;
3602
3603 err_out:
3604 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3605 ata_port_disable(ap);
3606
3607 DPRINTK("EXIT\n");
3608 }
3609
3610 /**
3611 * sata_link_debounce - debounce SATA phy status
3612 * @link: ATA link to debounce SATA phy status for
3613 * @params: timing parameters { interval, duratinon, timeout } in msec
3614 * @deadline: deadline jiffies for the operation
3615 *
3616 * Make sure SStatus of @link reaches stable state, determined by
3617 * holding the same value where DET is not 1 for @duration polled
3618 * every @interval, before @timeout. Timeout constraints the
3619 * beginning of the stable state. Because DET gets stuck at 1 on
3620 * some controllers after hot unplugging, this functions waits
3621 * until timeout then returns 0 if DET is stable at 1.
3622 *
3623 * @timeout is further limited by @deadline. The sooner of the
3624 * two is used.
3625 *
3626 * LOCKING:
3627 * Kernel thread context (may sleep)
3628 *
3629 * RETURNS:
3630 * 0 on success, -errno on failure.
3631 */
3632 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3633 unsigned long deadline)
3634 {
3635 unsigned long interval_msec = params[0];
3636 unsigned long duration = msecs_to_jiffies(params[1]);
3637 unsigned long last_jiffies, t;
3638 u32 last, cur;
3639 int rc;
3640
3641 t = jiffies + msecs_to_jiffies(params[2]);
3642 if (time_before(t, deadline))
3643 deadline = t;
3644
3645 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3646 return rc;
3647 cur &= 0xf;
3648
3649 last = cur;
3650 last_jiffies = jiffies;
3651
3652 while (1) {
3653 msleep(interval_msec);
3654 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3655 return rc;
3656 cur &= 0xf;
3657
3658 /* DET stable? */
3659 if (cur == last) {
3660 if (cur == 1 && time_before(jiffies, deadline))
3661 continue;
3662 if (time_after(jiffies, last_jiffies + duration))
3663 return 0;
3664 continue;
3665 }
3666
3667 /* unstable, start over */
3668 last = cur;
3669 last_jiffies = jiffies;
3670
3671 /* Check deadline. If debouncing failed, return
3672 * -EPIPE to tell upper layer to lower link speed.
3673 */
3674 if (time_after(jiffies, deadline))
3675 return -EPIPE;
3676 }
3677 }
3678
3679 /**
3680 * sata_link_resume - resume SATA link
3681 * @link: ATA link to resume SATA
3682 * @params: timing parameters { interval, duratinon, timeout } in msec
3683 * @deadline: deadline jiffies for the operation
3684 *
3685 * Resume SATA phy @link and debounce it.
3686 *
3687 * LOCKING:
3688 * Kernel thread context (may sleep)
3689 *
3690 * RETURNS:
3691 * 0 on success, -errno on failure.
3692 */
3693 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3694 unsigned long deadline)
3695 {
3696 u32 scontrol;
3697 int rc;
3698
3699 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3700 return rc;
3701
3702 scontrol = (scontrol & 0x0f0) | 0x300;
3703
3704 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3705 return rc;
3706
3707 /* Some PHYs react badly if SStatus is pounded immediately
3708 * after resuming. Delay 200ms before debouncing.
3709 */
3710 msleep(200);
3711
3712 return sata_link_debounce(link, params, deadline);
3713 }
3714
3715 /**
3716 * ata_std_prereset - prepare for reset
3717 * @link: ATA link to be reset
3718 * @deadline: deadline jiffies for the operation
3719 *
3720 * @link is about to be reset. Initialize it. Failure from
3721 * prereset makes libata abort whole reset sequence and give up
3722 * that port, so prereset should be best-effort. It does its
3723 * best to prepare for reset sequence but if things go wrong, it
3724 * should just whine, not fail.
3725 *
3726 * LOCKING:
3727 * Kernel thread context (may sleep)
3728 *
3729 * RETURNS:
3730 * 0 on success, -errno otherwise.
3731 */
3732 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3733 {
3734 struct ata_port *ap = link->ap;
3735 struct ata_eh_context *ehc = &link->eh_context;
3736 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3737 int rc;
3738
3739 /* handle link resume */
3740 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3741 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3742 ehc->i.action |= ATA_EH_HARDRESET;
3743
3744 /* Some PMPs don't work with only SRST, force hardreset if PMP
3745 * is supported.
3746 */
3747 if (ap->flags & ATA_FLAG_PMP)
3748 ehc->i.action |= ATA_EH_HARDRESET;
3749
3750 /* if we're about to do hardreset, nothing more to do */
3751 if (ehc->i.action & ATA_EH_HARDRESET)
3752 return 0;
3753
3754 /* if SATA, resume link */
3755 if (ap->flags & ATA_FLAG_SATA) {
3756 rc = sata_link_resume(link, timing, deadline);
3757 /* whine about phy resume failure but proceed */
3758 if (rc && rc != -EOPNOTSUPP)
3759 ata_link_printk(link, KERN_WARNING, "failed to resume "
3760 "link for reset (errno=%d)\n", rc);
3761 }
3762
3763 /* Wait for !BSY if the controller can wait for the first D2H
3764 * Reg FIS and we don't know that no device is attached.
3765 */
3766 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3767 rc = ata_wait_ready(ap, deadline);
3768 if (rc && rc != -ENODEV) {
3769 ata_link_printk(link, KERN_WARNING, "device not ready "
3770 "(errno=%d), forcing hardreset\n", rc);
3771 ehc->i.action |= ATA_EH_HARDRESET;
3772 }
3773 }
3774
3775 return 0;
3776 }
3777
3778 /**
3779 * ata_std_softreset - reset host port via ATA SRST
3780 * @link: ATA link to reset
3781 * @classes: resulting classes of attached devices
3782 * @deadline: deadline jiffies for the operation
3783 *
3784 * Reset host port using ATA SRST.
3785 *
3786 * LOCKING:
3787 * Kernel thread context (may sleep)
3788 *
3789 * RETURNS:
3790 * 0 on success, -errno otherwise.
3791 */
3792 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3793 unsigned long deadline)
3794 {
3795 struct ata_port *ap = link->ap;
3796 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3797 unsigned int devmask = 0;
3798 int rc;
3799 u8 err;
3800
3801 DPRINTK("ENTER\n");
3802
3803 if (ata_link_offline(link)) {
3804 classes[0] = ATA_DEV_NONE;
3805 goto out;
3806 }
3807
3808 /* determine if device 0/1 are present */
3809 if (ata_devchk(ap, 0))
3810 devmask |= (1 << 0);
3811 if (slave_possible && ata_devchk(ap, 1))
3812 devmask |= (1 << 1);
3813
3814 /* select device 0 again */
3815 ap->ops->dev_select(ap, 0);
3816
3817 /* issue bus reset */
3818 DPRINTK("about to softreset, devmask=%x\n", devmask);
3819 rc = ata_bus_softreset(ap, devmask, deadline);
3820 /* if link is occupied, -ENODEV too is an error */
3821 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3822 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3823 return rc;
3824 }
3825
3826 /* determine by signature whether we have ATA or ATAPI devices */
3827 classes[0] = ata_dev_try_classify(&link->device[0],
3828 devmask & (1 << 0), &err);
3829 if (slave_possible && err != 0x81)
3830 classes[1] = ata_dev_try_classify(&link->device[1],
3831 devmask & (1 << 1), &err);
3832
3833 out:
3834 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3835 return 0;
3836 }
3837
3838 /**
3839 * sata_link_hardreset - reset link via SATA phy reset
3840 * @link: link to reset
3841 * @timing: timing parameters { interval, duratinon, timeout } in msec
3842 * @deadline: deadline jiffies for the operation
3843 *
3844 * SATA phy-reset @link using DET bits of SControl register.
3845 *
3846 * LOCKING:
3847 * Kernel thread context (may sleep)
3848 *
3849 * RETURNS:
3850 * 0 on success, -errno otherwise.
3851 */
3852 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3853 unsigned long deadline)
3854 {
3855 u32 scontrol;
3856 int rc;
3857
3858 DPRINTK("ENTER\n");
3859
3860 if (sata_set_spd_needed(link)) {
3861 /* SATA spec says nothing about how to reconfigure
3862 * spd. To be on the safe side, turn off phy during
3863 * reconfiguration. This works for at least ICH7 AHCI
3864 * and Sil3124.
3865 */
3866 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3867 goto out;
3868
3869 scontrol = (scontrol & 0x0f0) | 0x304;
3870
3871 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3872 goto out;
3873
3874 sata_set_spd(link);
3875 }
3876
3877 /* issue phy wake/reset */
3878 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3879 goto out;
3880
3881 scontrol = (scontrol & 0x0f0) | 0x301;
3882
3883 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3884 goto out;
3885
3886 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3887 * 10.4.2 says at least 1 ms.
3888 */
3889 msleep(1);
3890
3891 /* bring link back */
3892 rc = sata_link_resume(link, timing, deadline);
3893 out:
3894 DPRINTK("EXIT, rc=%d\n", rc);
3895 return rc;
3896 }
3897
3898 /**
3899 * sata_std_hardreset - reset host port via SATA phy reset
3900 * @link: link to reset
3901 * @class: resulting class of attached device
3902 * @deadline: deadline jiffies for the operation
3903 *
3904 * SATA phy-reset host port using DET bits of SControl register,
3905 * wait for !BSY and classify the attached device.
3906 *
3907 * LOCKING:
3908 * Kernel thread context (may sleep)
3909 *
3910 * RETURNS:
3911 * 0 on success, -errno otherwise.
3912 */
3913 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3914 unsigned long deadline)
3915 {
3916 struct ata_port *ap = link->ap;
3917 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3918 int rc;
3919
3920 DPRINTK("ENTER\n");
3921
3922 /* do hardreset */
3923 rc = sata_link_hardreset(link, timing, deadline);
3924 if (rc) {
3925 ata_link_printk(link, KERN_ERR,
3926 "COMRESET failed (errno=%d)\n", rc);
3927 return rc;
3928 }
3929
3930 /* TODO: phy layer with polling, timeouts, etc. */
3931 if (ata_link_offline(link)) {
3932 *class = ATA_DEV_NONE;
3933 DPRINTK("EXIT, link offline\n");
3934 return 0;
3935 }
3936
3937 /* wait a while before checking status */
3938 ata_wait_after_reset(ap, deadline);
3939
3940 /* If PMP is supported, we have to do follow-up SRST. Note
3941 * that some PMPs don't send D2H Reg FIS after hardreset at
3942 * all if the first port is empty. Wait for it just for a
3943 * second and request follow-up SRST.
3944 */
3945 if (ap->flags & ATA_FLAG_PMP) {
3946 ata_wait_ready(ap, jiffies + HZ);
3947 return -EAGAIN;
3948 }
3949
3950 rc = ata_wait_ready(ap, deadline);
3951 /* link occupied, -ENODEV too is an error */
3952 if (rc) {
3953 ata_link_printk(link, KERN_ERR,
3954 "COMRESET failed (errno=%d)\n", rc);
3955 return rc;
3956 }
3957
3958 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3959
3960 *class = ata_dev_try_classify(link->device, 1, NULL);
3961
3962 DPRINTK("EXIT, class=%u\n", *class);
3963 return 0;
3964 }
3965
3966 /**
3967 * ata_std_postreset - standard postreset callback
3968 * @link: the target ata_link
3969 * @classes: classes of attached devices
3970 *
3971 * This function is invoked after a successful reset. Note that
3972 * the device might have been reset more than once using
3973 * different reset methods before postreset is invoked.
3974 *
3975 * LOCKING:
3976 * Kernel thread context (may sleep)
3977 */
3978 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3979 {
3980 struct ata_port *ap = link->ap;
3981 u32 serror;
3982
3983 DPRINTK("ENTER\n");
3984
3985 /* print link status */
3986 sata_print_link_status(link);
3987
3988 /* clear SError */
3989 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3990 sata_scr_write(link, SCR_ERROR, serror);
3991
3992 /* is double-select really necessary? */
3993 if (classes[0] != ATA_DEV_NONE)
3994 ap->ops->dev_select(ap, 1);
3995 if (classes[1] != ATA_DEV_NONE)
3996 ap->ops->dev_select(ap, 0);
3997
3998 /* bail out if no device is present */
3999 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
4000 DPRINTK("EXIT, no device\n");
4001 return;
4002 }
4003
4004 /* set up device control */
4005 if (ap->ioaddr.ctl_addr)
4006 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
4007
4008 DPRINTK("EXIT\n");
4009 }
4010
4011 /**
4012 * ata_dev_same_device - Determine whether new ID matches configured device
4013 * @dev: device to compare against
4014 * @new_class: class of the new device
4015 * @new_id: IDENTIFY page of the new device
4016 *
4017 * Compare @new_class and @new_id against @dev and determine
4018 * whether @dev is the device indicated by @new_class and
4019 * @new_id.
4020 *
4021 * LOCKING:
4022 * None.
4023 *
4024 * RETURNS:
4025 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4026 */
4027 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4028 const u16 *new_id)
4029 {
4030 const u16 *old_id = dev->id;
4031 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4032 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4033
4034 if (dev->class != new_class) {
4035 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4036 dev->class, new_class);
4037 return 0;
4038 }
4039
4040 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4041 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4042 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4043 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4044
4045 if (strcmp(model[0], model[1])) {
4046 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4047 "'%s' != '%s'\n", model[0], model[1]);
4048 return 0;
4049 }
4050
4051 if (strcmp(serial[0], serial[1])) {
4052 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4053 "'%s' != '%s'\n", serial[0], serial[1]);
4054 return 0;
4055 }
4056
4057 return 1;
4058 }
4059
4060 /**
4061 * ata_dev_reread_id - Re-read IDENTIFY data
4062 * @dev: target ATA device
4063 * @readid_flags: read ID flags
4064 *
4065 * Re-read IDENTIFY page and make sure @dev is still attached to
4066 * the port.
4067 *
4068 * LOCKING:
4069 * Kernel thread context (may sleep)
4070 *
4071 * RETURNS:
4072 * 0 on success, negative errno otherwise
4073 */
4074 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4075 {
4076 unsigned int class = dev->class;
4077 u16 *id = (void *)dev->link->ap->sector_buf;
4078 int rc;
4079
4080 /* read ID data */
4081 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4082 if (rc)
4083 return rc;
4084
4085 /* is the device still there? */
4086 if (!ata_dev_same_device(dev, class, id))
4087 return -ENODEV;
4088
4089 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4090 return 0;
4091 }
4092
4093 /**
4094 * ata_dev_revalidate - Revalidate ATA device
4095 * @dev: device to revalidate
4096 * @new_class: new class code
4097 * @readid_flags: read ID flags
4098 *
4099 * Re-read IDENTIFY page, make sure @dev is still attached to the
4100 * port and reconfigure it according to the new IDENTIFY page.
4101 *
4102 * LOCKING:
4103 * Kernel thread context (may sleep)
4104 *
4105 * RETURNS:
4106 * 0 on success, negative errno otherwise
4107 */
4108 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4109 unsigned int readid_flags)
4110 {
4111 u64 n_sectors = dev->n_sectors;
4112 int rc;
4113
4114 if (!ata_dev_enabled(dev))
4115 return -ENODEV;
4116
4117 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4118 if (ata_class_enabled(new_class) &&
4119 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4120 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4121 dev->class, new_class);
4122 rc = -ENODEV;
4123 goto fail;
4124 }
4125
4126 /* re-read ID */
4127 rc = ata_dev_reread_id(dev, readid_flags);
4128 if (rc)
4129 goto fail;
4130
4131 /* configure device according to the new ID */
4132 rc = ata_dev_configure(dev);
4133 if (rc)
4134 goto fail;
4135
4136 /* verify n_sectors hasn't changed */
4137 if (dev->class == ATA_DEV_ATA && n_sectors &&
4138 dev->n_sectors != n_sectors) {
4139 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4140 "%llu != %llu\n",
4141 (unsigned long long)n_sectors,
4142 (unsigned long long)dev->n_sectors);
4143
4144 /* restore original n_sectors */
4145 dev->n_sectors = n_sectors;
4146
4147 rc = -ENODEV;
4148 goto fail;
4149 }
4150
4151 return 0;
4152
4153 fail:
4154 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4155 return rc;
4156 }
4157
4158 struct ata_blacklist_entry {
4159 const char *model_num;
4160 const char *model_rev;
4161 unsigned long horkage;
4162 };
4163
4164 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4165 /* Devices with DMA related problems under Linux */
4166 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4167 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4168 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4169 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4170 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4171 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4172 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4173 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4174 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4175 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4176 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4177 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4178 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4179 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4180 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4181 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4182 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4183 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4184 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4185 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4186 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4187 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4188 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4189 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4190 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4191 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4192 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4193 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4194 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4195 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4196 /* Odd clown on sil3726/4726 PMPs */
4197 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4198 ATA_HORKAGE_SKIP_PM },
4199
4200 /* Weird ATAPI devices */
4201 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4202
4203 /* Devices we expect to fail diagnostics */
4204
4205 /* Devices where NCQ should be avoided */
4206 /* NCQ is slow */
4207 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4208 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4209 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4210 /* NCQ is broken */
4211 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4212 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4213 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4214 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4215 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4216
4217 /* Blacklist entries taken from Silicon Image 3124/3132
4218 Windows driver .inf file - also several Linux problem reports */
4219 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4220 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4221 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4222 /* Drives which do spurious command completion */
4223 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
4224 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
4225 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
4226 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
4227 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
4228 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4229 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
4230 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
4231 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4232 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4233 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
4234 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
4235 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4236 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
4237 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
4238 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
4239
4240 /* devices which puke on READ_NATIVE_MAX */
4241 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4242 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4243 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4244 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4245
4246 /* Devices which report 1 sector over size HPA */
4247 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4248 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4249
4250 /* Devices which get the IVB wrong */
4251 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4252 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4253
4254 /* End Marker */
4255 { }
4256 };
4257
4258 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4259 {
4260 const char *p;
4261 int len;
4262
4263 /*
4264 * check for trailing wildcard: *\0
4265 */
4266 p = strchr(patt, wildchar);
4267 if (p && ((*(p + 1)) == 0))
4268 len = p - patt;
4269 else {
4270 len = strlen(name);
4271 if (!len) {
4272 if (!*patt)
4273 return 0;
4274 return -1;
4275 }
4276 }
4277
4278 return strncmp(patt, name, len);
4279 }
4280
4281 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4282 {
4283 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4284 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4285 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4286
4287 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4288 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4289
4290 while (ad->model_num) {
4291 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4292 if (ad->model_rev == NULL)
4293 return ad->horkage;
4294 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4295 return ad->horkage;
4296 }
4297 ad++;
4298 }
4299 return 0;
4300 }
4301
4302 static int ata_dma_blacklisted(const struct ata_device *dev)
4303 {
4304 /* We don't support polling DMA.
4305 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4306 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4307 */
4308 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4309 (dev->flags & ATA_DFLAG_CDB_INTR))
4310 return 1;
4311 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4312 }
4313
4314 /**
4315 * ata_is_40wire - check drive side detection
4316 * @dev: device
4317 *
4318 * Perform drive side detection decoding, allowing for device vendors
4319 * who can't follow the documentation.
4320 */
4321
4322 static int ata_is_40wire(struct ata_device *dev)
4323 {
4324 if (dev->horkage & ATA_HORKAGE_IVB)
4325 return ata_drive_40wire_relaxed(dev->id);
4326 return ata_drive_40wire(dev->id);
4327 }
4328
4329 /**
4330 * ata_dev_xfermask - Compute supported xfermask of the given device
4331 * @dev: Device to compute xfermask for
4332 *
4333 * Compute supported xfermask of @dev and store it in
4334 * dev->*_mask. This function is responsible for applying all
4335 * known limits including host controller limits, device
4336 * blacklist, etc...
4337 *
4338 * LOCKING:
4339 * None.
4340 */
4341 static void ata_dev_xfermask(struct ata_device *dev)
4342 {
4343 struct ata_link *link = dev->link;
4344 struct ata_port *ap = link->ap;
4345 struct ata_host *host = ap->host;
4346 unsigned long xfer_mask;
4347
4348 /* controller modes available */
4349 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4350 ap->mwdma_mask, ap->udma_mask);
4351
4352 /* drive modes available */
4353 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4354 dev->mwdma_mask, dev->udma_mask);
4355 xfer_mask &= ata_id_xfermask(dev->id);
4356
4357 /*
4358 * CFA Advanced TrueIDE timings are not allowed on a shared
4359 * cable
4360 */
4361 if (ata_dev_pair(dev)) {
4362 /* No PIO5 or PIO6 */
4363 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4364 /* No MWDMA3 or MWDMA 4 */
4365 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4366 }
4367
4368 if (ata_dma_blacklisted(dev)) {
4369 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4370 ata_dev_printk(dev, KERN_WARNING,
4371 "device is on DMA blacklist, disabling DMA\n");
4372 }
4373
4374 if ((host->flags & ATA_HOST_SIMPLEX) &&
4375 host->simplex_claimed && host->simplex_claimed != ap) {
4376 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4377 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4378 "other device, disabling DMA\n");
4379 }
4380
4381 if (ap->flags & ATA_FLAG_NO_IORDY)
4382 xfer_mask &= ata_pio_mask_no_iordy(dev);
4383
4384 if (ap->ops->mode_filter)
4385 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4386
4387 /* Apply cable rule here. Don't apply it early because when
4388 * we handle hot plug the cable type can itself change.
4389 * Check this last so that we know if the transfer rate was
4390 * solely limited by the cable.
4391 * Unknown or 80 wire cables reported host side are checked
4392 * drive side as well. Cases where we know a 40wire cable
4393 * is used safely for 80 are not checked here.
4394 */
4395 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4396 /* UDMA/44 or higher would be available */
4397 if ((ap->cbl == ATA_CBL_PATA40) ||
4398 (ata_is_40wire(dev) &&
4399 (ap->cbl == ATA_CBL_PATA_UNK ||
4400 ap->cbl == ATA_CBL_PATA80))) {
4401 ata_dev_printk(dev, KERN_WARNING,
4402 "limited to UDMA/33 due to 40-wire cable\n");
4403 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4404 }
4405
4406 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4407 &dev->mwdma_mask, &dev->udma_mask);
4408 }
4409
4410 /**
4411 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4412 * @dev: Device to which command will be sent
4413 *
4414 * Issue SET FEATURES - XFER MODE command to device @dev
4415 * on port @ap.
4416 *
4417 * LOCKING:
4418 * PCI/etc. bus probe sem.
4419 *
4420 * RETURNS:
4421 * 0 on success, AC_ERR_* mask otherwise.
4422 */
4423
4424 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4425 {
4426 struct ata_taskfile tf;
4427 unsigned int err_mask;
4428
4429 /* set up set-features taskfile */
4430 DPRINTK("set features - xfer mode\n");
4431
4432 /* Some controllers and ATAPI devices show flaky interrupt
4433 * behavior after setting xfer mode. Use polling instead.
4434 */
4435 ata_tf_init(dev, &tf);
4436 tf.command = ATA_CMD_SET_FEATURES;
4437 tf.feature = SETFEATURES_XFER;
4438 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4439 tf.protocol = ATA_PROT_NODATA;
4440 tf.nsect = dev->xfer_mode;
4441
4442 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4443
4444 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4445 return err_mask;
4446 }
4447 /**
4448 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4449 * @dev: Device to which command will be sent
4450 * @enable: Whether to enable or disable the feature
4451 * @feature: The sector count represents the feature to set
4452 *
4453 * Issue SET FEATURES - SATA FEATURES command to device @dev
4454 * on port @ap with sector count
4455 *
4456 * LOCKING:
4457 * PCI/etc. bus probe sem.
4458 *
4459 * RETURNS:
4460 * 0 on success, AC_ERR_* mask otherwise.
4461 */
4462 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4463 u8 feature)
4464 {
4465 struct ata_taskfile tf;
4466 unsigned int err_mask;
4467
4468 /* set up set-features taskfile */
4469 DPRINTK("set features - SATA features\n");
4470
4471 ata_tf_init(dev, &tf);
4472 tf.command = ATA_CMD_SET_FEATURES;
4473 tf.feature = enable;
4474 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4475 tf.protocol = ATA_PROT_NODATA;
4476 tf.nsect = feature;
4477
4478 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4479
4480 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4481 return err_mask;
4482 }
4483
4484 /**
4485 * ata_dev_init_params - Issue INIT DEV PARAMS command
4486 * @dev: Device to which command will be sent
4487 * @heads: Number of heads (taskfile parameter)
4488 * @sectors: Number of sectors (taskfile parameter)
4489 *
4490 * LOCKING:
4491 * Kernel thread context (may sleep)
4492 *
4493 * RETURNS:
4494 * 0 on success, AC_ERR_* mask otherwise.
4495 */
4496 static unsigned int ata_dev_init_params(struct ata_device *dev,
4497 u16 heads, u16 sectors)
4498 {
4499 struct ata_taskfile tf;
4500 unsigned int err_mask;
4501
4502 /* Number of sectors per track 1-255. Number of heads 1-16 */
4503 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4504 return AC_ERR_INVALID;
4505
4506 /* set up init dev params taskfile */
4507 DPRINTK("init dev params \n");
4508
4509 ata_tf_init(dev, &tf);
4510 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4511 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4512 tf.protocol = ATA_PROT_NODATA;
4513 tf.nsect = sectors;
4514 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4515
4516 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4517 /* A clean abort indicates an original or just out of spec drive
4518 and we should continue as we issue the setup based on the
4519 drive reported working geometry */
4520 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4521 err_mask = 0;
4522
4523 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4524 return err_mask;
4525 }
4526
4527 /**
4528 * ata_sg_clean - Unmap DMA memory associated with command
4529 * @qc: Command containing DMA memory to be released
4530 *
4531 * Unmap all mapped DMA memory associated with this command.
4532 *
4533 * LOCKING:
4534 * spin_lock_irqsave(host lock)
4535 */
4536 void ata_sg_clean(struct ata_queued_cmd *qc)
4537 {
4538 struct ata_port *ap = qc->ap;
4539 struct scatterlist *sg = qc->__sg;
4540 int dir = qc->dma_dir;
4541 void *pad_buf = NULL;
4542
4543 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4544 WARN_ON(sg == NULL);
4545
4546 if (qc->flags & ATA_QCFLAG_SINGLE)
4547 WARN_ON(qc->n_elem > 1);
4548
4549 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4550
4551 /* if we padded the buffer out to 32-bit bound, and data
4552 * xfer direction is from-device, we must copy from the
4553 * pad buffer back into the supplied buffer
4554 */
4555 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4556 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4557
4558 if (qc->flags & ATA_QCFLAG_SG) {
4559 if (qc->n_elem)
4560 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4561 /* restore last sg */
4562 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4563 if (pad_buf) {
4564 struct scatterlist *psg = &qc->pad_sgent;
4565 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4566 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4567 kunmap_atomic(addr, KM_IRQ0);
4568 }
4569 } else {
4570 if (qc->n_elem)
4571 dma_unmap_single(ap->dev,
4572 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4573 dir);
4574 /* restore sg */
4575 sg->length += qc->pad_len;
4576 if (pad_buf)
4577 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4578 pad_buf, qc->pad_len);
4579 }
4580
4581 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4582 qc->__sg = NULL;
4583 }
4584
4585 /**
4586 * ata_fill_sg - Fill PCI IDE PRD table
4587 * @qc: Metadata associated with taskfile to be transferred
4588 *
4589 * Fill PCI IDE PRD (scatter-gather) table with segments
4590 * associated with the current disk command.
4591 *
4592 * LOCKING:
4593 * spin_lock_irqsave(host lock)
4594 *
4595 */
4596 static void ata_fill_sg(struct ata_queued_cmd *qc)
4597 {
4598 struct ata_port *ap = qc->ap;
4599 struct scatterlist *sg;
4600 unsigned int idx;
4601
4602 WARN_ON(qc->__sg == NULL);
4603 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4604
4605 idx = 0;
4606 ata_for_each_sg(sg, qc) {
4607 u32 addr, offset;
4608 u32 sg_len, len;
4609
4610 /* determine if physical DMA addr spans 64K boundary.
4611 * Note h/w doesn't support 64-bit, so we unconditionally
4612 * truncate dma_addr_t to u32.
4613 */
4614 addr = (u32) sg_dma_address(sg);
4615 sg_len = sg_dma_len(sg);
4616
4617 while (sg_len) {
4618 offset = addr & 0xffff;
4619 len = sg_len;
4620 if ((offset + sg_len) > 0x10000)
4621 len = 0x10000 - offset;
4622
4623 ap->prd[idx].addr = cpu_to_le32(addr);
4624 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4625 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4626
4627 idx++;
4628 sg_len -= len;
4629 addr += len;
4630 }
4631 }
4632
4633 if (idx)
4634 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4635 }
4636
4637 /**
4638 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4639 * @qc: Metadata associated with taskfile to be transferred
4640 *
4641 * Fill PCI IDE PRD (scatter-gather) table with segments
4642 * associated with the current disk command. Perform the fill
4643 * so that we avoid writing any length 64K records for
4644 * controllers that don't follow the spec.
4645 *
4646 * LOCKING:
4647 * spin_lock_irqsave(host lock)
4648 *
4649 */
4650 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4651 {
4652 struct ata_port *ap = qc->ap;
4653 struct scatterlist *sg;
4654 unsigned int idx;
4655
4656 WARN_ON(qc->__sg == NULL);
4657 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4658
4659 idx = 0;
4660 ata_for_each_sg(sg, qc) {
4661 u32 addr, offset;
4662 u32 sg_len, len, blen;
4663
4664 /* determine if physical DMA addr spans 64K boundary.
4665 * Note h/w doesn't support 64-bit, so we unconditionally
4666 * truncate dma_addr_t to u32.
4667 */
4668 addr = (u32) sg_dma_address(sg);
4669 sg_len = sg_dma_len(sg);
4670
4671 while (sg_len) {
4672 offset = addr & 0xffff;
4673 len = sg_len;
4674 if ((offset + sg_len) > 0x10000)
4675 len = 0x10000 - offset;
4676
4677 blen = len & 0xffff;
4678 ap->prd[idx].addr = cpu_to_le32(addr);
4679 if (blen == 0) {
4680 /* Some PATA chipsets like the CS5530 can't
4681 cope with 0x0000 meaning 64K as the spec says */
4682 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4683 blen = 0x8000;
4684 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4685 }
4686 ap->prd[idx].flags_len = cpu_to_le32(blen);
4687 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4688
4689 idx++;
4690 sg_len -= len;
4691 addr += len;
4692 }
4693 }
4694
4695 if (idx)
4696 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4697 }
4698
4699 /**
4700 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4701 * @qc: Metadata associated with taskfile to check
4702 *
4703 * Allow low-level driver to filter ATA PACKET commands, returning
4704 * a status indicating whether or not it is OK to use DMA for the
4705 * supplied PACKET command.
4706 *
4707 * LOCKING:
4708 * spin_lock_irqsave(host lock)
4709 *
4710 * RETURNS: 0 when ATAPI DMA can be used
4711 * nonzero otherwise
4712 */
4713 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4714 {
4715 struct ata_port *ap = qc->ap;
4716
4717 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4718 * few ATAPI devices choke on such DMA requests.
4719 */
4720 if (unlikely(qc->nbytes & 15))
4721 return 1;
4722
4723 if (ap->ops->check_atapi_dma)
4724 return ap->ops->check_atapi_dma(qc);
4725
4726 return 0;
4727 }
4728
4729 /**
4730 * ata_std_qc_defer - Check whether a qc needs to be deferred
4731 * @qc: ATA command in question
4732 *
4733 * Non-NCQ commands cannot run with any other command, NCQ or
4734 * not. As upper layer only knows the queue depth, we are
4735 * responsible for maintaining exclusion. This function checks
4736 * whether a new command @qc can be issued.
4737 *
4738 * LOCKING:
4739 * spin_lock_irqsave(host lock)
4740 *
4741 * RETURNS:
4742 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4743 */
4744 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4745 {
4746 struct ata_link *link = qc->dev->link;
4747
4748 if (qc->tf.protocol == ATA_PROT_NCQ) {
4749 if (!ata_tag_valid(link->active_tag))
4750 return 0;
4751 } else {
4752 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4753 return 0;
4754 }
4755
4756 return ATA_DEFER_LINK;
4757 }
4758
4759 /**
4760 * ata_qc_prep - Prepare taskfile for submission
4761 * @qc: Metadata associated with taskfile to be prepared
4762 *
4763 * Prepare ATA taskfile for submission.
4764 *
4765 * LOCKING:
4766 * spin_lock_irqsave(host lock)
4767 */
4768 void ata_qc_prep(struct ata_queued_cmd *qc)
4769 {
4770 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4771 return;
4772
4773 ata_fill_sg(qc);
4774 }
4775
4776 /**
4777 * ata_dumb_qc_prep - Prepare taskfile for submission
4778 * @qc: Metadata associated with taskfile to be prepared
4779 *
4780 * Prepare ATA taskfile for submission.
4781 *
4782 * LOCKING:
4783 * spin_lock_irqsave(host lock)
4784 */
4785 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4786 {
4787 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4788 return;
4789
4790 ata_fill_sg_dumb(qc);
4791 }
4792
4793 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4794
4795 /**
4796 * ata_sg_init_one - Associate command with memory buffer
4797 * @qc: Command to be associated
4798 * @buf: Memory buffer
4799 * @buflen: Length of memory buffer, in bytes.
4800 *
4801 * Initialize the data-related elements of queued_cmd @qc
4802 * to point to a single memory buffer, @buf of byte length @buflen.
4803 *
4804 * LOCKING:
4805 * spin_lock_irqsave(host lock)
4806 */
4807
4808 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4809 {
4810 qc->flags |= ATA_QCFLAG_SINGLE;
4811
4812 qc->__sg = &qc->sgent;
4813 qc->n_elem = 1;
4814 qc->orig_n_elem = 1;
4815 qc->buf_virt = buf;
4816 qc->nbytes = buflen;
4817 qc->cursg = qc->__sg;
4818
4819 sg_init_one(&qc->sgent, buf, buflen);
4820 }
4821
4822 /**
4823 * ata_sg_init - Associate command with scatter-gather table.
4824 * @qc: Command to be associated
4825 * @sg: Scatter-gather table.
4826 * @n_elem: Number of elements in s/g table.
4827 *
4828 * Initialize the data-related elements of queued_cmd @qc
4829 * to point to a scatter-gather table @sg, containing @n_elem
4830 * elements.
4831 *
4832 * LOCKING:
4833 * spin_lock_irqsave(host lock)
4834 */
4835
4836 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4837 unsigned int n_elem)
4838 {
4839 qc->flags |= ATA_QCFLAG_SG;
4840 qc->__sg = sg;
4841 qc->n_elem = n_elem;
4842 qc->orig_n_elem = n_elem;
4843 qc->cursg = qc->__sg;
4844 }
4845
4846 /**
4847 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4848 * @qc: Command with memory buffer to be mapped.
4849 *
4850 * DMA-map the memory buffer associated with queued_cmd @qc.
4851 *
4852 * LOCKING:
4853 * spin_lock_irqsave(host lock)
4854 *
4855 * RETURNS:
4856 * Zero on success, negative on error.
4857 */
4858
4859 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4860 {
4861 struct ata_port *ap = qc->ap;
4862 int dir = qc->dma_dir;
4863 struct scatterlist *sg = qc->__sg;
4864 dma_addr_t dma_address;
4865 int trim_sg = 0;
4866
4867 /* we must lengthen transfers to end on a 32-bit boundary */
4868 qc->pad_len = sg->length & 3;
4869 if (qc->pad_len) {
4870 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4871 struct scatterlist *psg = &qc->pad_sgent;
4872
4873 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4874
4875 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4876
4877 if (qc->tf.flags & ATA_TFLAG_WRITE)
4878 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4879 qc->pad_len);
4880
4881 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4882 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4883 /* trim sg */
4884 sg->length -= qc->pad_len;
4885 if (sg->length == 0)
4886 trim_sg = 1;
4887
4888 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4889 sg->length, qc->pad_len);
4890 }
4891
4892 if (trim_sg) {
4893 qc->n_elem--;
4894 goto skip_map;
4895 }
4896
4897 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4898 sg->length, dir);
4899 if (dma_mapping_error(dma_address)) {
4900 /* restore sg */
4901 sg->length += qc->pad_len;
4902 return -1;
4903 }
4904
4905 sg_dma_address(sg) = dma_address;
4906 sg_dma_len(sg) = sg->length;
4907
4908 skip_map:
4909 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4910 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4911
4912 return 0;
4913 }
4914
4915 /**
4916 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4917 * @qc: Command with scatter-gather table to be mapped.
4918 *
4919 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4920 *
4921 * LOCKING:
4922 * spin_lock_irqsave(host lock)
4923 *
4924 * RETURNS:
4925 * Zero on success, negative on error.
4926 *
4927 */
4928
4929 static int ata_sg_setup(struct ata_queued_cmd *qc)
4930 {
4931 struct ata_port *ap = qc->ap;
4932 struct scatterlist *sg = qc->__sg;
4933 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4934 int n_elem, pre_n_elem, dir, trim_sg = 0;
4935
4936 VPRINTK("ENTER, ata%u\n", ap->print_id);
4937 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4938
4939 /* we must lengthen transfers to end on a 32-bit boundary */
4940 qc->pad_len = lsg->length & 3;
4941 if (qc->pad_len) {
4942 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4943 struct scatterlist *psg = &qc->pad_sgent;
4944 unsigned int offset;
4945
4946 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4947
4948 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4949
4950 /*
4951 * psg->page/offset are used to copy to-be-written
4952 * data in this function or read data in ata_sg_clean.
4953 */
4954 offset = lsg->offset + lsg->length - qc->pad_len;
4955 sg_init_table(psg, 1);
4956 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4957 qc->pad_len, offset_in_page(offset));
4958
4959 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4960 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4961 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4962 kunmap_atomic(addr, KM_IRQ0);
4963 }
4964
4965 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4966 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4967 /* trim last sg */
4968 lsg->length -= qc->pad_len;
4969 if (lsg->length == 0)
4970 trim_sg = 1;
4971
4972 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4973 qc->n_elem - 1, lsg->length, qc->pad_len);
4974 }
4975
4976 pre_n_elem = qc->n_elem;
4977 if (trim_sg && pre_n_elem)
4978 pre_n_elem--;
4979
4980 if (!pre_n_elem) {
4981 n_elem = 0;
4982 goto skip_map;
4983 }
4984
4985 dir = qc->dma_dir;
4986 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4987 if (n_elem < 1) {
4988 /* restore last sg */
4989 lsg->length += qc->pad_len;
4990 return -1;
4991 }
4992
4993 DPRINTK("%d sg elements mapped\n", n_elem);
4994
4995 skip_map:
4996 qc->n_elem = n_elem;
4997
4998 return 0;
4999 }
5000
5001 /**
5002 * swap_buf_le16 - swap halves of 16-bit words in place
5003 * @buf: Buffer to swap
5004 * @buf_words: Number of 16-bit words in buffer.
5005 *
5006 * Swap halves of 16-bit words if needed to convert from
5007 * little-endian byte order to native cpu byte order, or
5008 * vice-versa.
5009 *
5010 * LOCKING:
5011 * Inherited from caller.
5012 */
5013 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5014 {
5015 #ifdef __BIG_ENDIAN
5016 unsigned int i;
5017
5018 for (i = 0; i < buf_words; i++)
5019 buf[i] = le16_to_cpu(buf[i]);
5020 #endif /* __BIG_ENDIAN */
5021 }
5022
5023 /**
5024 * ata_data_xfer - Transfer data by PIO
5025 * @adev: device to target
5026 * @buf: data buffer
5027 * @buflen: buffer length
5028 * @write_data: read/write
5029 *
5030 * Transfer data from/to the device data register by PIO.
5031 *
5032 * LOCKING:
5033 * Inherited from caller.
5034 */
5035 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
5036 unsigned int buflen, int write_data)
5037 {
5038 struct ata_port *ap = adev->link->ap;
5039 unsigned int words = buflen >> 1;
5040
5041 /* Transfer multiple of 2 bytes */
5042 if (write_data)
5043 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
5044 else
5045 ioread16_rep(ap->ioaddr.data_addr, buf, words);
5046
5047 /* Transfer trailing 1 byte, if any. */
5048 if (unlikely(buflen & 0x01)) {
5049 u16 align_buf[1] = { 0 };
5050 unsigned char *trailing_buf = buf + buflen - 1;
5051
5052 if (write_data) {
5053 memcpy(align_buf, trailing_buf, 1);
5054 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
5055 } else {
5056 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
5057 memcpy(trailing_buf, align_buf, 1);
5058 }
5059 }
5060 }
5061
5062 /**
5063 * ata_data_xfer_noirq - Transfer data by PIO
5064 * @adev: device to target
5065 * @buf: data buffer
5066 * @buflen: buffer length
5067 * @write_data: read/write
5068 *
5069 * Transfer data from/to the device data register by PIO. Do the
5070 * transfer with interrupts disabled.
5071 *
5072 * LOCKING:
5073 * Inherited from caller.
5074 */
5075 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5076 unsigned int buflen, int write_data)
5077 {
5078 unsigned long flags;
5079 local_irq_save(flags);
5080 ata_data_xfer(adev, buf, buflen, write_data);
5081 local_irq_restore(flags);
5082 }
5083
5084
5085 /**
5086 * ata_pio_sector - Transfer a sector of data.
5087 * @qc: Command on going
5088 *
5089 * Transfer qc->sect_size bytes of data from/to the ATA device.
5090 *
5091 * LOCKING:
5092 * Inherited from caller.
5093 */
5094
5095 static void ata_pio_sector(struct ata_queued_cmd *qc)
5096 {
5097 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5098 struct ata_port *ap = qc->ap;
5099 struct page *page;
5100 unsigned int offset;
5101 unsigned char *buf;
5102
5103 if (qc->curbytes == qc->nbytes - qc->sect_size)
5104 ap->hsm_task_state = HSM_ST_LAST;
5105
5106 page = sg_page(qc->cursg);
5107 offset = qc->cursg->offset + qc->cursg_ofs;
5108
5109 /* get the current page and offset */
5110 page = nth_page(page, (offset >> PAGE_SHIFT));
5111 offset %= PAGE_SIZE;
5112
5113 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5114
5115 if (PageHighMem(page)) {
5116 unsigned long flags;
5117
5118 /* FIXME: use a bounce buffer */
5119 local_irq_save(flags);
5120 buf = kmap_atomic(page, KM_IRQ0);
5121
5122 /* do the actual data transfer */
5123 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5124
5125 kunmap_atomic(buf, KM_IRQ0);
5126 local_irq_restore(flags);
5127 } else {
5128 buf = page_address(page);
5129 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5130 }
5131
5132 qc->curbytes += qc->sect_size;
5133 qc->cursg_ofs += qc->sect_size;
5134
5135 if (qc->cursg_ofs == qc->cursg->length) {
5136 qc->cursg = sg_next(qc->cursg);
5137 qc->cursg_ofs = 0;
5138 }
5139 }
5140
5141 /**
5142 * ata_pio_sectors - Transfer one or many sectors.
5143 * @qc: Command on going
5144 *
5145 * Transfer one or many sectors of data from/to the
5146 * ATA device for the DRQ request.
5147 *
5148 * LOCKING:
5149 * Inherited from caller.
5150 */
5151
5152 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5153 {
5154 if (is_multi_taskfile(&qc->tf)) {
5155 /* READ/WRITE MULTIPLE */
5156 unsigned int nsect;
5157
5158 WARN_ON(qc->dev->multi_count == 0);
5159
5160 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5161 qc->dev->multi_count);
5162 while (nsect--)
5163 ata_pio_sector(qc);
5164 } else
5165 ata_pio_sector(qc);
5166
5167 ata_altstatus(qc->ap); /* flush */
5168 }
5169
5170 /**
5171 * atapi_send_cdb - Write CDB bytes to hardware
5172 * @ap: Port to which ATAPI device is attached.
5173 * @qc: Taskfile currently active
5174 *
5175 * When device has indicated its readiness to accept
5176 * a CDB, this function is called. Send the CDB.
5177 *
5178 * LOCKING:
5179 * caller.
5180 */
5181
5182 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5183 {
5184 /* send SCSI cdb */
5185 DPRINTK("send cdb\n");
5186 WARN_ON(qc->dev->cdb_len < 12);
5187
5188 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5189 ata_altstatus(ap); /* flush */
5190
5191 switch (qc->tf.protocol) {
5192 case ATA_PROT_ATAPI:
5193 ap->hsm_task_state = HSM_ST;
5194 break;
5195 case ATA_PROT_ATAPI_NODATA:
5196 ap->hsm_task_state = HSM_ST_LAST;
5197 break;
5198 case ATA_PROT_ATAPI_DMA:
5199 ap->hsm_task_state = HSM_ST_LAST;
5200 /* initiate bmdma */
5201 ap->ops->bmdma_start(qc);
5202 break;
5203 }
5204 }
5205
5206 /**
5207 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5208 * @qc: Command on going
5209 * @bytes: number of bytes
5210 *
5211 * Transfer Transfer data from/to the ATAPI device.
5212 *
5213 * LOCKING:
5214 * Inherited from caller.
5215 *
5216 */
5217
5218 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5219 {
5220 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5221 struct scatterlist *sg = qc->__sg;
5222 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
5223 struct ata_port *ap = qc->ap;
5224 struct page *page;
5225 unsigned char *buf;
5226 unsigned int offset, count;
5227 int no_more_sg = 0;
5228
5229 if (qc->curbytes + bytes >= qc->nbytes)
5230 ap->hsm_task_state = HSM_ST_LAST;
5231
5232 next_sg:
5233 if (unlikely(no_more_sg)) {
5234 /*
5235 * The end of qc->sg is reached and the device expects
5236 * more data to transfer. In order not to overrun qc->sg
5237 * and fulfill length specified in the byte count register,
5238 * - for read case, discard trailing data from the device
5239 * - for write case, padding zero data to the device
5240 */
5241 u16 pad_buf[1] = { 0 };
5242 unsigned int words = bytes >> 1;
5243 unsigned int i;
5244
5245 if (words) /* warning if bytes > 1 */
5246 ata_dev_printk(qc->dev, KERN_WARNING,
5247 "%u bytes trailing data\n", bytes);
5248
5249 for (i = 0; i < words; i++)
5250 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5251
5252 ap->hsm_task_state = HSM_ST_LAST;
5253 return;
5254 }
5255
5256 sg = qc->cursg;
5257
5258 page = sg_page(sg);
5259 offset = sg->offset + qc->cursg_ofs;
5260
5261 /* get the current page and offset */
5262 page = nth_page(page, (offset >> PAGE_SHIFT));
5263 offset %= PAGE_SIZE;
5264
5265 /* don't overrun current sg */
5266 count = min(sg->length - qc->cursg_ofs, bytes);
5267
5268 /* don't cross page boundaries */
5269 count = min(count, (unsigned int)PAGE_SIZE - offset);
5270
5271 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5272
5273 if (PageHighMem(page)) {
5274 unsigned long flags;
5275
5276 /* FIXME: use bounce buffer */
5277 local_irq_save(flags);
5278 buf = kmap_atomic(page, KM_IRQ0);
5279
5280 /* do the actual data transfer */
5281 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5282
5283 kunmap_atomic(buf, KM_IRQ0);
5284 local_irq_restore(flags);
5285 } else {
5286 buf = page_address(page);
5287 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5288 }
5289
5290 bytes -= count;
5291 qc->curbytes += count;
5292 qc->cursg_ofs += count;
5293
5294 if (qc->cursg_ofs == sg->length) {
5295 if (qc->cursg == lsg)
5296 no_more_sg = 1;
5297
5298 qc->cursg = sg_next(qc->cursg);
5299 qc->cursg_ofs = 0;
5300 }
5301
5302 if (bytes)
5303 goto next_sg;
5304 }
5305
5306 /**
5307 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5308 * @qc: Command on going
5309 *
5310 * Transfer Transfer data from/to the ATAPI device.
5311 *
5312 * LOCKING:
5313 * Inherited from caller.
5314 */
5315
5316 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5317 {
5318 struct ata_port *ap = qc->ap;
5319 struct ata_device *dev = qc->dev;
5320 unsigned int ireason, bc_lo, bc_hi, bytes;
5321 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5322
5323 /* Abuse qc->result_tf for temp storage of intermediate TF
5324 * here to save some kernel stack usage.
5325 * For normal completion, qc->result_tf is not relevant. For
5326 * error, qc->result_tf is later overwritten by ata_qc_complete().
5327 * So, the correctness of qc->result_tf is not affected.
5328 */
5329 ap->ops->tf_read(ap, &qc->result_tf);
5330 ireason = qc->result_tf.nsect;
5331 bc_lo = qc->result_tf.lbam;
5332 bc_hi = qc->result_tf.lbah;
5333 bytes = (bc_hi << 8) | bc_lo;
5334
5335 /* shall be cleared to zero, indicating xfer of data */
5336 if (ireason & (1 << 0))
5337 goto err_out;
5338
5339 /* make sure transfer direction matches expected */
5340 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5341 if (do_write != i_write)
5342 goto err_out;
5343
5344 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5345
5346 __atapi_pio_bytes(qc, bytes);
5347 ata_altstatus(ap); /* flush */
5348
5349 return;
5350
5351 err_out:
5352 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5353 qc->err_mask |= AC_ERR_HSM;
5354 ap->hsm_task_state = HSM_ST_ERR;
5355 }
5356
5357 /**
5358 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5359 * @ap: the target ata_port
5360 * @qc: qc on going
5361 *
5362 * RETURNS:
5363 * 1 if ok in workqueue, 0 otherwise.
5364 */
5365
5366 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5367 {
5368 if (qc->tf.flags & ATA_TFLAG_POLLING)
5369 return 1;
5370
5371 if (ap->hsm_task_state == HSM_ST_FIRST) {
5372 if (qc->tf.protocol == ATA_PROT_PIO &&
5373 (qc->tf.flags & ATA_TFLAG_WRITE))
5374 return 1;
5375
5376 if (is_atapi_taskfile(&qc->tf) &&
5377 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5378 return 1;
5379 }
5380
5381 return 0;
5382 }
5383
5384 /**
5385 * ata_hsm_qc_complete - finish a qc running on standard HSM
5386 * @qc: Command to complete
5387 * @in_wq: 1 if called from workqueue, 0 otherwise
5388 *
5389 * Finish @qc which is running on standard HSM.
5390 *
5391 * LOCKING:
5392 * If @in_wq is zero, spin_lock_irqsave(host lock).
5393 * Otherwise, none on entry and grabs host lock.
5394 */
5395 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5396 {
5397 struct ata_port *ap = qc->ap;
5398 unsigned long flags;
5399
5400 if (ap->ops->error_handler) {
5401 if (in_wq) {
5402 spin_lock_irqsave(ap->lock, flags);
5403
5404 /* EH might have kicked in while host lock is
5405 * released.
5406 */
5407 qc = ata_qc_from_tag(ap, qc->tag);
5408 if (qc) {
5409 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5410 ap->ops->irq_on(ap);
5411 ata_qc_complete(qc);
5412 } else
5413 ata_port_freeze(ap);
5414 }
5415
5416 spin_unlock_irqrestore(ap->lock, flags);
5417 } else {
5418 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5419 ata_qc_complete(qc);
5420 else
5421 ata_port_freeze(ap);
5422 }
5423 } else {
5424 if (in_wq) {
5425 spin_lock_irqsave(ap->lock, flags);
5426 ap->ops->irq_on(ap);
5427 ata_qc_complete(qc);
5428 spin_unlock_irqrestore(ap->lock, flags);
5429 } else
5430 ata_qc_complete(qc);
5431 }
5432 }
5433
5434 /**
5435 * ata_hsm_move - move the HSM to the next state.
5436 * @ap: the target ata_port
5437 * @qc: qc on going
5438 * @status: current device status
5439 * @in_wq: 1 if called from workqueue, 0 otherwise
5440 *
5441 * RETURNS:
5442 * 1 when poll next status needed, 0 otherwise.
5443 */
5444 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5445 u8 status, int in_wq)
5446 {
5447 unsigned long flags = 0;
5448 int poll_next;
5449
5450 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5451
5452 /* Make sure ata_qc_issue_prot() does not throw things
5453 * like DMA polling into the workqueue. Notice that
5454 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5455 */
5456 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5457
5458 fsm_start:
5459 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5460 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5461
5462 switch (ap->hsm_task_state) {
5463 case HSM_ST_FIRST:
5464 /* Send first data block or PACKET CDB */
5465
5466 /* If polling, we will stay in the work queue after
5467 * sending the data. Otherwise, interrupt handler
5468 * takes over after sending the data.
5469 */
5470 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5471
5472 /* check device status */
5473 if (unlikely((status & ATA_DRQ) == 0)) {
5474 /* handle BSY=0, DRQ=0 as error */
5475 if (likely(status & (ATA_ERR | ATA_DF)))
5476 /* device stops HSM for abort/error */
5477 qc->err_mask |= AC_ERR_DEV;
5478 else
5479 /* HSM violation. Let EH handle this */
5480 qc->err_mask |= AC_ERR_HSM;
5481
5482 ap->hsm_task_state = HSM_ST_ERR;
5483 goto fsm_start;
5484 }
5485
5486 /* Device should not ask for data transfer (DRQ=1)
5487 * when it finds something wrong.
5488 * We ignore DRQ here and stop the HSM by
5489 * changing hsm_task_state to HSM_ST_ERR and
5490 * let the EH abort the command or reset the device.
5491 */
5492 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5493 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5494 "error, dev_stat 0x%X\n", status);
5495 qc->err_mask |= AC_ERR_HSM;
5496 ap->hsm_task_state = HSM_ST_ERR;
5497 goto fsm_start;
5498 }
5499
5500 /* Send the CDB (atapi) or the first data block (ata pio out).
5501 * During the state transition, interrupt handler shouldn't
5502 * be invoked before the data transfer is complete and
5503 * hsm_task_state is changed. Hence, the following locking.
5504 */
5505 if (in_wq)
5506 spin_lock_irqsave(ap->lock, flags);
5507
5508 if (qc->tf.protocol == ATA_PROT_PIO) {
5509 /* PIO data out protocol.
5510 * send first data block.
5511 */
5512
5513 /* ata_pio_sectors() might change the state
5514 * to HSM_ST_LAST. so, the state is changed here
5515 * before ata_pio_sectors().
5516 */
5517 ap->hsm_task_state = HSM_ST;
5518 ata_pio_sectors(qc);
5519 } else
5520 /* send CDB */
5521 atapi_send_cdb(ap, qc);
5522
5523 if (in_wq)
5524 spin_unlock_irqrestore(ap->lock, flags);
5525
5526 /* if polling, ata_pio_task() handles the rest.
5527 * otherwise, interrupt handler takes over from here.
5528 */
5529 break;
5530
5531 case HSM_ST:
5532 /* complete command or read/write the data register */
5533 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5534 /* ATAPI PIO protocol */
5535 if ((status & ATA_DRQ) == 0) {
5536 /* No more data to transfer or device error.
5537 * Device error will be tagged in HSM_ST_LAST.
5538 */
5539 ap->hsm_task_state = HSM_ST_LAST;
5540 goto fsm_start;
5541 }
5542
5543 /* Device should not ask for data transfer (DRQ=1)
5544 * when it finds something wrong.
5545 * We ignore DRQ here and stop the HSM by
5546 * changing hsm_task_state to HSM_ST_ERR and
5547 * let the EH abort the command or reset the device.
5548 */
5549 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5550 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5551 "device error, dev_stat 0x%X\n",
5552 status);
5553 qc->err_mask |= AC_ERR_HSM;
5554 ap->hsm_task_state = HSM_ST_ERR;
5555 goto fsm_start;
5556 }
5557
5558 atapi_pio_bytes(qc);
5559
5560 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5561 /* bad ireason reported by device */
5562 goto fsm_start;
5563
5564 } else {
5565 /* ATA PIO protocol */
5566 if (unlikely((status & ATA_DRQ) == 0)) {
5567 /* handle BSY=0, DRQ=0 as error */
5568 if (likely(status & (ATA_ERR | ATA_DF)))
5569 /* device stops HSM for abort/error */
5570 qc->err_mask |= AC_ERR_DEV;
5571 else
5572 /* HSM violation. Let EH handle this.
5573 * Phantom devices also trigger this
5574 * condition. Mark hint.
5575 */
5576 qc->err_mask |= AC_ERR_HSM |
5577 AC_ERR_NODEV_HINT;
5578
5579 ap->hsm_task_state = HSM_ST_ERR;
5580 goto fsm_start;
5581 }
5582
5583 /* For PIO reads, some devices may ask for
5584 * data transfer (DRQ=1) alone with ERR=1.
5585 * We respect DRQ here and transfer one
5586 * block of junk data before changing the
5587 * hsm_task_state to HSM_ST_ERR.
5588 *
5589 * For PIO writes, ERR=1 DRQ=1 doesn't make
5590 * sense since the data block has been
5591 * transferred to the device.
5592 */
5593 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5594 /* data might be corrputed */
5595 qc->err_mask |= AC_ERR_DEV;
5596
5597 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5598 ata_pio_sectors(qc);
5599 status = ata_wait_idle(ap);
5600 }
5601
5602 if (status & (ATA_BUSY | ATA_DRQ))
5603 qc->err_mask |= AC_ERR_HSM;
5604
5605 /* ata_pio_sectors() might change the
5606 * state to HSM_ST_LAST. so, the state
5607 * is changed after ata_pio_sectors().
5608 */
5609 ap->hsm_task_state = HSM_ST_ERR;
5610 goto fsm_start;
5611 }
5612
5613 ata_pio_sectors(qc);
5614
5615 if (ap->hsm_task_state == HSM_ST_LAST &&
5616 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5617 /* all data read */
5618 status = ata_wait_idle(ap);
5619 goto fsm_start;
5620 }
5621 }
5622
5623 poll_next = 1;
5624 break;
5625
5626 case HSM_ST_LAST:
5627 if (unlikely(!ata_ok(status))) {
5628 qc->err_mask |= __ac_err_mask(status);
5629 ap->hsm_task_state = HSM_ST_ERR;
5630 goto fsm_start;
5631 }
5632
5633 /* no more data to transfer */
5634 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5635 ap->print_id, qc->dev->devno, status);
5636
5637 WARN_ON(qc->err_mask);
5638
5639 ap->hsm_task_state = HSM_ST_IDLE;
5640
5641 /* complete taskfile transaction */
5642 ata_hsm_qc_complete(qc, in_wq);
5643
5644 poll_next = 0;
5645 break;
5646
5647 case HSM_ST_ERR:
5648 /* make sure qc->err_mask is available to
5649 * know what's wrong and recover
5650 */
5651 WARN_ON(qc->err_mask == 0);
5652
5653 ap->hsm_task_state = HSM_ST_IDLE;
5654
5655 /* complete taskfile transaction */
5656 ata_hsm_qc_complete(qc, in_wq);
5657
5658 poll_next = 0;
5659 break;
5660 default:
5661 poll_next = 0;
5662 BUG();
5663 }
5664
5665 return poll_next;
5666 }
5667
5668 static void ata_pio_task(struct work_struct *work)
5669 {
5670 struct ata_port *ap =
5671 container_of(work, struct ata_port, port_task.work);
5672 struct ata_queued_cmd *qc = ap->port_task_data;
5673 u8 status;
5674 int poll_next;
5675
5676 fsm_start:
5677 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5678
5679 /*
5680 * This is purely heuristic. This is a fast path.
5681 * Sometimes when we enter, BSY will be cleared in
5682 * a chk-status or two. If not, the drive is probably seeking
5683 * or something. Snooze for a couple msecs, then
5684 * chk-status again. If still busy, queue delayed work.
5685 */
5686 status = ata_busy_wait(ap, ATA_BUSY, 5);
5687 if (status & ATA_BUSY) {
5688 msleep(2);
5689 status = ata_busy_wait(ap, ATA_BUSY, 10);
5690 if (status & ATA_BUSY) {
5691 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5692 return;
5693 }
5694 }
5695
5696 /* move the HSM */
5697 poll_next = ata_hsm_move(ap, qc, status, 1);
5698
5699 /* another command or interrupt handler
5700 * may be running at this point.
5701 */
5702 if (poll_next)
5703 goto fsm_start;
5704 }
5705
5706 /**
5707 * ata_qc_new - Request an available ATA command, for queueing
5708 * @ap: Port associated with device @dev
5709 * @dev: Device from whom we request an available command structure
5710 *
5711 * LOCKING:
5712 * None.
5713 */
5714
5715 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5716 {
5717 struct ata_queued_cmd *qc = NULL;
5718 unsigned int i;
5719
5720 /* no command while frozen */
5721 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5722 return NULL;
5723
5724 /* the last tag is reserved for internal command. */
5725 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5726 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5727 qc = __ata_qc_from_tag(ap, i);
5728 break;
5729 }
5730
5731 if (qc)
5732 qc->tag = i;
5733
5734 return qc;
5735 }
5736
5737 /**
5738 * ata_qc_new_init - Request an available ATA command, and initialize it
5739 * @dev: Device from whom we request an available command structure
5740 *
5741 * LOCKING:
5742 * None.
5743 */
5744
5745 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5746 {
5747 struct ata_port *ap = dev->link->ap;
5748 struct ata_queued_cmd *qc;
5749
5750 qc = ata_qc_new(ap);
5751 if (qc) {
5752 qc->scsicmd = NULL;
5753 qc->ap = ap;
5754 qc->dev = dev;
5755
5756 ata_qc_reinit(qc);
5757 }
5758
5759 return qc;
5760 }
5761
5762 /**
5763 * ata_qc_free - free unused ata_queued_cmd
5764 * @qc: Command to complete
5765 *
5766 * Designed to free unused ata_queued_cmd object
5767 * in case something prevents using it.
5768 *
5769 * LOCKING:
5770 * spin_lock_irqsave(host lock)
5771 */
5772 void ata_qc_free(struct ata_queued_cmd *qc)
5773 {
5774 struct ata_port *ap = qc->ap;
5775 unsigned int tag;
5776
5777 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5778
5779 qc->flags = 0;
5780 tag = qc->tag;
5781 if (likely(ata_tag_valid(tag))) {
5782 qc->tag = ATA_TAG_POISON;
5783 clear_bit(tag, &ap->qc_allocated);
5784 }
5785 }
5786
5787 void __ata_qc_complete(struct ata_queued_cmd *qc)
5788 {
5789 struct ata_port *ap = qc->ap;
5790 struct ata_link *link = qc->dev->link;
5791
5792 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5793 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5794
5795 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5796 ata_sg_clean(qc);
5797
5798 /* command should be marked inactive atomically with qc completion */
5799 if (qc->tf.protocol == ATA_PROT_NCQ) {
5800 link->sactive &= ~(1 << qc->tag);
5801 if (!link->sactive)
5802 ap->nr_active_links--;
5803 } else {
5804 link->active_tag = ATA_TAG_POISON;
5805 ap->nr_active_links--;
5806 }
5807
5808 /* clear exclusive status */
5809 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5810 ap->excl_link == link))
5811 ap->excl_link = NULL;
5812
5813 /* atapi: mark qc as inactive to prevent the interrupt handler
5814 * from completing the command twice later, before the error handler
5815 * is called. (when rc != 0 and atapi request sense is needed)
5816 */
5817 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5818 ap->qc_active &= ~(1 << qc->tag);
5819
5820 /* call completion callback */
5821 qc->complete_fn(qc);
5822 }
5823
5824 static void fill_result_tf(struct ata_queued_cmd *qc)
5825 {
5826 struct ata_port *ap = qc->ap;
5827
5828 qc->result_tf.flags = qc->tf.flags;
5829 ap->ops->tf_read(ap, &qc->result_tf);
5830 }
5831
5832 /**
5833 * ata_qc_complete - Complete an active ATA command
5834 * @qc: Command to complete
5835 * @err_mask: ATA Status register contents
5836 *
5837 * Indicate to the mid and upper layers that an ATA
5838 * command has completed, with either an ok or not-ok status.
5839 *
5840 * LOCKING:
5841 * spin_lock_irqsave(host lock)
5842 */
5843 void ata_qc_complete(struct ata_queued_cmd *qc)
5844 {
5845 struct ata_port *ap = qc->ap;
5846
5847 /* XXX: New EH and old EH use different mechanisms to
5848 * synchronize EH with regular execution path.
5849 *
5850 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5851 * Normal execution path is responsible for not accessing a
5852 * failed qc. libata core enforces the rule by returning NULL
5853 * from ata_qc_from_tag() for failed qcs.
5854 *
5855 * Old EH depends on ata_qc_complete() nullifying completion
5856 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5857 * not synchronize with interrupt handler. Only PIO task is
5858 * taken care of.
5859 */
5860 if (ap->ops->error_handler) {
5861 struct ata_device *dev = qc->dev;
5862 struct ata_eh_info *ehi = &dev->link->eh_info;
5863
5864 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5865
5866 if (unlikely(qc->err_mask))
5867 qc->flags |= ATA_QCFLAG_FAILED;
5868
5869 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5870 if (!ata_tag_internal(qc->tag)) {
5871 /* always fill result TF for failed qc */
5872 fill_result_tf(qc);
5873 ata_qc_schedule_eh(qc);
5874 return;
5875 }
5876 }
5877
5878 /* read result TF if requested */
5879 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5880 fill_result_tf(qc);
5881
5882 /* Some commands need post-processing after successful
5883 * completion.
5884 */
5885 switch (qc->tf.command) {
5886 case ATA_CMD_SET_FEATURES:
5887 if (qc->tf.feature != SETFEATURES_WC_ON &&
5888 qc->tf.feature != SETFEATURES_WC_OFF)
5889 break;
5890 /* fall through */
5891 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5892 case ATA_CMD_SET_MULTI: /* multi_count changed */
5893 /* revalidate device */
5894 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5895 ata_port_schedule_eh(ap);
5896 break;
5897
5898 case ATA_CMD_SLEEP:
5899 dev->flags |= ATA_DFLAG_SLEEPING;
5900 break;
5901 }
5902
5903 __ata_qc_complete(qc);
5904 } else {
5905 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5906 return;
5907
5908 /* read result TF if failed or requested */
5909 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5910 fill_result_tf(qc);
5911
5912 __ata_qc_complete(qc);
5913 }
5914 }
5915
5916 /**
5917 * ata_qc_complete_multiple - Complete multiple qcs successfully
5918 * @ap: port in question
5919 * @qc_active: new qc_active mask
5920 * @finish_qc: LLDD callback invoked before completing a qc
5921 *
5922 * Complete in-flight commands. This functions is meant to be
5923 * called from low-level driver's interrupt routine to complete
5924 * requests normally. ap->qc_active and @qc_active is compared
5925 * and commands are completed accordingly.
5926 *
5927 * LOCKING:
5928 * spin_lock_irqsave(host lock)
5929 *
5930 * RETURNS:
5931 * Number of completed commands on success, -errno otherwise.
5932 */
5933 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5934 void (*finish_qc)(struct ata_queued_cmd *))
5935 {
5936 int nr_done = 0;
5937 u32 done_mask;
5938 int i;
5939
5940 done_mask = ap->qc_active ^ qc_active;
5941
5942 if (unlikely(done_mask & qc_active)) {
5943 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5944 "(%08x->%08x)\n", ap->qc_active, qc_active);
5945 return -EINVAL;
5946 }
5947
5948 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5949 struct ata_queued_cmd *qc;
5950
5951 if (!(done_mask & (1 << i)))
5952 continue;
5953
5954 if ((qc = ata_qc_from_tag(ap, i))) {
5955 if (finish_qc)
5956 finish_qc(qc);
5957 ata_qc_complete(qc);
5958 nr_done++;
5959 }
5960 }
5961
5962 return nr_done;
5963 }
5964
5965 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5966 {
5967 struct ata_port *ap = qc->ap;
5968
5969 switch (qc->tf.protocol) {
5970 case ATA_PROT_NCQ:
5971 case ATA_PROT_DMA:
5972 case ATA_PROT_ATAPI_DMA:
5973 return 1;
5974
5975 case ATA_PROT_ATAPI:
5976 case ATA_PROT_PIO:
5977 if (ap->flags & ATA_FLAG_PIO_DMA)
5978 return 1;
5979
5980 /* fall through */
5981
5982 default:
5983 return 0;
5984 }
5985
5986 /* never reached */
5987 }
5988
5989 /**
5990 * ata_qc_issue - issue taskfile to device
5991 * @qc: command to issue to device
5992 *
5993 * Prepare an ATA command to submission to device.
5994 * This includes mapping the data into a DMA-able
5995 * area, filling in the S/G table, and finally
5996 * writing the taskfile to hardware, starting the command.
5997 *
5998 * LOCKING:
5999 * spin_lock_irqsave(host lock)
6000 */
6001 void ata_qc_issue(struct ata_queued_cmd *qc)
6002 {
6003 struct ata_port *ap = qc->ap;
6004 struct ata_link *link = qc->dev->link;
6005
6006 /* Make sure only one non-NCQ command is outstanding. The
6007 * check is skipped for old EH because it reuses active qc to
6008 * request ATAPI sense.
6009 */
6010 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
6011
6012 if (qc->tf.protocol == ATA_PROT_NCQ) {
6013 WARN_ON(link->sactive & (1 << qc->tag));
6014
6015 if (!link->sactive)
6016 ap->nr_active_links++;
6017 link->sactive |= 1 << qc->tag;
6018 } else {
6019 WARN_ON(link->sactive);
6020
6021 ap->nr_active_links++;
6022 link->active_tag = qc->tag;
6023 }
6024
6025 qc->flags |= ATA_QCFLAG_ACTIVE;
6026 ap->qc_active |= 1 << qc->tag;
6027
6028 if (ata_should_dma_map(qc)) {
6029 if (qc->flags & ATA_QCFLAG_SG) {
6030 if (ata_sg_setup(qc))
6031 goto sg_err;
6032 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
6033 if (ata_sg_setup_one(qc))
6034 goto sg_err;
6035 }
6036 } else {
6037 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6038 }
6039
6040 /* if device is sleeping, schedule softreset and abort the link */
6041 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6042 link->eh_info.action |= ATA_EH_SOFTRESET;
6043 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6044 ata_link_abort(link);
6045 return;
6046 }
6047
6048 ap->ops->qc_prep(qc);
6049
6050 qc->err_mask |= ap->ops->qc_issue(qc);
6051 if (unlikely(qc->err_mask))
6052 goto err;
6053 return;
6054
6055 sg_err:
6056 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6057 qc->err_mask |= AC_ERR_SYSTEM;
6058 err:
6059 ata_qc_complete(qc);
6060 }
6061
6062 /**
6063 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6064 * @qc: command to issue to device
6065 *
6066 * Using various libata functions and hooks, this function
6067 * starts an ATA command. ATA commands are grouped into
6068 * classes called "protocols", and issuing each type of protocol
6069 * is slightly different.
6070 *
6071 * May be used as the qc_issue() entry in ata_port_operations.
6072 *
6073 * LOCKING:
6074 * spin_lock_irqsave(host lock)
6075 *
6076 * RETURNS:
6077 * Zero on success, AC_ERR_* mask on failure
6078 */
6079
6080 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6081 {
6082 struct ata_port *ap = qc->ap;
6083
6084 /* Use polling pio if the LLD doesn't handle
6085 * interrupt driven pio and atapi CDB interrupt.
6086 */
6087 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6088 switch (qc->tf.protocol) {
6089 case ATA_PROT_PIO:
6090 case ATA_PROT_NODATA:
6091 case ATA_PROT_ATAPI:
6092 case ATA_PROT_ATAPI_NODATA:
6093 qc->tf.flags |= ATA_TFLAG_POLLING;
6094 break;
6095 case ATA_PROT_ATAPI_DMA:
6096 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6097 /* see ata_dma_blacklisted() */
6098 BUG();
6099 break;
6100 default:
6101 break;
6102 }
6103 }
6104
6105 /* select the device */
6106 ata_dev_select(ap, qc->dev->devno, 1, 0);
6107
6108 /* start the command */
6109 switch (qc->tf.protocol) {
6110 case ATA_PROT_NODATA:
6111 if (qc->tf.flags & ATA_TFLAG_POLLING)
6112 ata_qc_set_polling(qc);
6113
6114 ata_tf_to_host(ap, &qc->tf);
6115 ap->hsm_task_state = HSM_ST_LAST;
6116
6117 if (qc->tf.flags & ATA_TFLAG_POLLING)
6118 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6119
6120 break;
6121
6122 case ATA_PROT_DMA:
6123 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6124
6125 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6126 ap->ops->bmdma_setup(qc); /* set up bmdma */
6127 ap->ops->bmdma_start(qc); /* initiate bmdma */
6128 ap->hsm_task_state = HSM_ST_LAST;
6129 break;
6130
6131 case ATA_PROT_PIO:
6132 if (qc->tf.flags & ATA_TFLAG_POLLING)
6133 ata_qc_set_polling(qc);
6134
6135 ata_tf_to_host(ap, &qc->tf);
6136
6137 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6138 /* PIO data out protocol */
6139 ap->hsm_task_state = HSM_ST_FIRST;
6140 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6141
6142 /* always send first data block using
6143 * the ata_pio_task() codepath.
6144 */
6145 } else {
6146 /* PIO data in protocol */
6147 ap->hsm_task_state = HSM_ST;
6148
6149 if (qc->tf.flags & ATA_TFLAG_POLLING)
6150 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6151
6152 /* if polling, ata_pio_task() handles the rest.
6153 * otherwise, interrupt handler takes over from here.
6154 */
6155 }
6156
6157 break;
6158
6159 case ATA_PROT_ATAPI:
6160 case ATA_PROT_ATAPI_NODATA:
6161 if (qc->tf.flags & ATA_TFLAG_POLLING)
6162 ata_qc_set_polling(qc);
6163
6164 ata_tf_to_host(ap, &qc->tf);
6165
6166 ap->hsm_task_state = HSM_ST_FIRST;
6167
6168 /* send cdb by polling if no cdb interrupt */
6169 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6170 (qc->tf.flags & ATA_TFLAG_POLLING))
6171 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6172 break;
6173
6174 case ATA_PROT_ATAPI_DMA:
6175 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6176
6177 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6178 ap->ops->bmdma_setup(qc); /* set up bmdma */
6179 ap->hsm_task_state = HSM_ST_FIRST;
6180
6181 /* send cdb by polling if no cdb interrupt */
6182 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6183 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6184 break;
6185
6186 default:
6187 WARN_ON(1);
6188 return AC_ERR_SYSTEM;
6189 }
6190
6191 return 0;
6192 }
6193
6194 /**
6195 * ata_host_intr - Handle host interrupt for given (port, task)
6196 * @ap: Port on which interrupt arrived (possibly...)
6197 * @qc: Taskfile currently active in engine
6198 *
6199 * Handle host interrupt for given queued command. Currently,
6200 * only DMA interrupts are handled. All other commands are
6201 * handled via polling with interrupts disabled (nIEN bit).
6202 *
6203 * LOCKING:
6204 * spin_lock_irqsave(host lock)
6205 *
6206 * RETURNS:
6207 * One if interrupt was handled, zero if not (shared irq).
6208 */
6209
6210 inline unsigned int ata_host_intr(struct ata_port *ap,
6211 struct ata_queued_cmd *qc)
6212 {
6213 struct ata_eh_info *ehi = &ap->link.eh_info;
6214 u8 status, host_stat = 0;
6215
6216 VPRINTK("ata%u: protocol %d task_state %d\n",
6217 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6218
6219 /* Check whether we are expecting interrupt in this state */
6220 switch (ap->hsm_task_state) {
6221 case HSM_ST_FIRST:
6222 /* Some pre-ATAPI-4 devices assert INTRQ
6223 * at this state when ready to receive CDB.
6224 */
6225
6226 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6227 * The flag was turned on only for atapi devices.
6228 * No need to check is_atapi_taskfile(&qc->tf) again.
6229 */
6230 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6231 goto idle_irq;
6232 break;
6233 case HSM_ST_LAST:
6234 if (qc->tf.protocol == ATA_PROT_DMA ||
6235 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6236 /* check status of DMA engine */
6237 host_stat = ap->ops->bmdma_status(ap);
6238 VPRINTK("ata%u: host_stat 0x%X\n",
6239 ap->print_id, host_stat);
6240
6241 /* if it's not our irq... */
6242 if (!(host_stat & ATA_DMA_INTR))
6243 goto idle_irq;
6244
6245 /* before we do anything else, clear DMA-Start bit */
6246 ap->ops->bmdma_stop(qc);
6247
6248 if (unlikely(host_stat & ATA_DMA_ERR)) {
6249 /* error when transfering data to/from memory */
6250 qc->err_mask |= AC_ERR_HOST_BUS;
6251 ap->hsm_task_state = HSM_ST_ERR;
6252 }
6253 }
6254 break;
6255 case HSM_ST:
6256 break;
6257 default:
6258 goto idle_irq;
6259 }
6260
6261 /* check altstatus */
6262 status = ata_altstatus(ap);
6263 if (status & ATA_BUSY)
6264 goto idle_irq;
6265
6266 /* check main status, clearing INTRQ */
6267 status = ata_chk_status(ap);
6268 if (unlikely(status & ATA_BUSY))
6269 goto idle_irq;
6270
6271 /* ack bmdma irq events */
6272 ap->ops->irq_clear(ap);
6273
6274 ata_hsm_move(ap, qc, status, 0);
6275
6276 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6277 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6278 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6279
6280 return 1; /* irq handled */
6281
6282 idle_irq:
6283 ap->stats.idle_irq++;
6284
6285 #ifdef ATA_IRQ_TRAP
6286 if ((ap->stats.idle_irq % 1000) == 0) {
6287 ata_chk_status(ap);
6288 ap->ops->irq_clear(ap);
6289 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6290 return 1;
6291 }
6292 #endif
6293 return 0; /* irq not handled */
6294 }
6295
6296 /**
6297 * ata_interrupt - Default ATA host interrupt handler
6298 * @irq: irq line (unused)
6299 * @dev_instance: pointer to our ata_host information structure
6300 *
6301 * Default interrupt handler for PCI IDE devices. Calls
6302 * ata_host_intr() for each port that is not disabled.
6303 *
6304 * LOCKING:
6305 * Obtains host lock during operation.
6306 *
6307 * RETURNS:
6308 * IRQ_NONE or IRQ_HANDLED.
6309 */
6310
6311 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6312 {
6313 struct ata_host *host = dev_instance;
6314 unsigned int i;
6315 unsigned int handled = 0;
6316 unsigned long flags;
6317
6318 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6319 spin_lock_irqsave(&host->lock, flags);
6320
6321 for (i = 0; i < host->n_ports; i++) {
6322 struct ata_port *ap;
6323
6324 ap = host->ports[i];
6325 if (ap &&
6326 !(ap->flags & ATA_FLAG_DISABLED)) {
6327 struct ata_queued_cmd *qc;
6328
6329 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6330 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6331 (qc->flags & ATA_QCFLAG_ACTIVE))
6332 handled |= ata_host_intr(ap, qc);
6333 }
6334 }
6335
6336 spin_unlock_irqrestore(&host->lock, flags);
6337
6338 return IRQ_RETVAL(handled);
6339 }
6340
6341 /**
6342 * sata_scr_valid - test whether SCRs are accessible
6343 * @link: ATA link to test SCR accessibility for
6344 *
6345 * Test whether SCRs are accessible for @link.
6346 *
6347 * LOCKING:
6348 * None.
6349 *
6350 * RETURNS:
6351 * 1 if SCRs are accessible, 0 otherwise.
6352 */
6353 int sata_scr_valid(struct ata_link *link)
6354 {
6355 struct ata_port *ap = link->ap;
6356
6357 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6358 }
6359
6360 /**
6361 * sata_scr_read - read SCR register of the specified port
6362 * @link: ATA link to read SCR for
6363 * @reg: SCR to read
6364 * @val: Place to store read value
6365 *
6366 * Read SCR register @reg of @link into *@val. This function is
6367 * guaranteed to succeed if @link is ap->link, the cable type of
6368 * the port is SATA and the port implements ->scr_read.
6369 *
6370 * LOCKING:
6371 * None if @link is ap->link. Kernel thread context otherwise.
6372 *
6373 * RETURNS:
6374 * 0 on success, negative errno on failure.
6375 */
6376 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6377 {
6378 if (ata_is_host_link(link)) {
6379 struct ata_port *ap = link->ap;
6380
6381 if (sata_scr_valid(link))
6382 return ap->ops->scr_read(ap, reg, val);
6383 return -EOPNOTSUPP;
6384 }
6385
6386 return sata_pmp_scr_read(link, reg, val);
6387 }
6388
6389 /**
6390 * sata_scr_write - write SCR register of the specified port
6391 * @link: ATA link to write SCR for
6392 * @reg: SCR to write
6393 * @val: value to write
6394 *
6395 * Write @val to SCR register @reg of @link. This function is
6396 * guaranteed to succeed if @link is ap->link, the cable type of
6397 * the port is SATA and the port implements ->scr_read.
6398 *
6399 * LOCKING:
6400 * None if @link is ap->link. Kernel thread context otherwise.
6401 *
6402 * RETURNS:
6403 * 0 on success, negative errno on failure.
6404 */
6405 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6406 {
6407 if (ata_is_host_link(link)) {
6408 struct ata_port *ap = link->ap;
6409
6410 if (sata_scr_valid(link))
6411 return ap->ops->scr_write(ap, reg, val);
6412 return -EOPNOTSUPP;
6413 }
6414
6415 return sata_pmp_scr_write(link, reg, val);
6416 }
6417
6418 /**
6419 * sata_scr_write_flush - write SCR register of the specified port and flush
6420 * @link: ATA link to write SCR for
6421 * @reg: SCR to write
6422 * @val: value to write
6423 *
6424 * This function is identical to sata_scr_write() except that this
6425 * function performs flush after writing to the register.
6426 *
6427 * LOCKING:
6428 * None if @link is ap->link. Kernel thread context otherwise.
6429 *
6430 * RETURNS:
6431 * 0 on success, negative errno on failure.
6432 */
6433 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6434 {
6435 if (ata_is_host_link(link)) {
6436 struct ata_port *ap = link->ap;
6437 int rc;
6438
6439 if (sata_scr_valid(link)) {
6440 rc = ap->ops->scr_write(ap, reg, val);
6441 if (rc == 0)
6442 rc = ap->ops->scr_read(ap, reg, &val);
6443 return rc;
6444 }
6445 return -EOPNOTSUPP;
6446 }
6447
6448 return sata_pmp_scr_write(link, reg, val);
6449 }
6450
6451 /**
6452 * ata_link_online - test whether the given link is online
6453 * @link: ATA link to test
6454 *
6455 * Test whether @link is online. Note that this function returns
6456 * 0 if online status of @link cannot be obtained, so
6457 * ata_link_online(link) != !ata_link_offline(link).
6458 *
6459 * LOCKING:
6460 * None.
6461 *
6462 * RETURNS:
6463 * 1 if the port online status is available and online.
6464 */
6465 int ata_link_online(struct ata_link *link)
6466 {
6467 u32 sstatus;
6468
6469 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6470 (sstatus & 0xf) == 0x3)
6471 return 1;
6472 return 0;
6473 }
6474
6475 /**
6476 * ata_link_offline - test whether the given link is offline
6477 * @link: ATA link to test
6478 *
6479 * Test whether @link is offline. Note that this function
6480 * returns 0 if offline status of @link cannot be obtained, so
6481 * ata_link_online(link) != !ata_link_offline(link).
6482 *
6483 * LOCKING:
6484 * None.
6485 *
6486 * RETURNS:
6487 * 1 if the port offline status is available and offline.
6488 */
6489 int ata_link_offline(struct ata_link *link)
6490 {
6491 u32 sstatus;
6492
6493 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6494 (sstatus & 0xf) != 0x3)
6495 return 1;
6496 return 0;
6497 }
6498
6499 int ata_flush_cache(struct ata_device *dev)
6500 {
6501 unsigned int err_mask;
6502 u8 cmd;
6503
6504 if (!ata_try_flush_cache(dev))
6505 return 0;
6506
6507 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6508 cmd = ATA_CMD_FLUSH_EXT;
6509 else
6510 cmd = ATA_CMD_FLUSH;
6511
6512 /* This is wrong. On a failed flush we get back the LBA of the lost
6513 sector and we should (assuming it wasn't aborted as unknown) issue
6514 a further flush command to continue the writeback until it
6515 does not error */
6516 err_mask = ata_do_simple_cmd(dev, cmd);
6517 if (err_mask) {
6518 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6519 return -EIO;
6520 }
6521
6522 return 0;
6523 }
6524
6525 #ifdef CONFIG_PM
6526 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6527 unsigned int action, unsigned int ehi_flags,
6528 int wait)
6529 {
6530 unsigned long flags;
6531 int i, rc;
6532
6533 for (i = 0; i < host->n_ports; i++) {
6534 struct ata_port *ap = host->ports[i];
6535 struct ata_link *link;
6536
6537 /* Previous resume operation might still be in
6538 * progress. Wait for PM_PENDING to clear.
6539 */
6540 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6541 ata_port_wait_eh(ap);
6542 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6543 }
6544
6545 /* request PM ops to EH */
6546 spin_lock_irqsave(ap->lock, flags);
6547
6548 ap->pm_mesg = mesg;
6549 if (wait) {
6550 rc = 0;
6551 ap->pm_result = &rc;
6552 }
6553
6554 ap->pflags |= ATA_PFLAG_PM_PENDING;
6555 __ata_port_for_each_link(link, ap) {
6556 link->eh_info.action |= action;
6557 link->eh_info.flags |= ehi_flags;
6558 }
6559
6560 ata_port_schedule_eh(ap);
6561
6562 spin_unlock_irqrestore(ap->lock, flags);
6563
6564 /* wait and check result */
6565 if (wait) {
6566 ata_port_wait_eh(ap);
6567 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6568 if (rc)
6569 return rc;
6570 }
6571 }
6572
6573 return 0;
6574 }
6575
6576 /**
6577 * ata_host_suspend - suspend host
6578 * @host: host to suspend
6579 * @mesg: PM message
6580 *
6581 * Suspend @host. Actual operation is performed by EH. This
6582 * function requests EH to perform PM operations and waits for EH
6583 * to finish.
6584 *
6585 * LOCKING:
6586 * Kernel thread context (may sleep).
6587 *
6588 * RETURNS:
6589 * 0 on success, -errno on failure.
6590 */
6591 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6592 {
6593 int rc;
6594
6595 /*
6596 * disable link pm on all ports before requesting
6597 * any pm activity
6598 */
6599 ata_lpm_enable(host);
6600
6601 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6602 if (rc == 0)
6603 host->dev->power.power_state = mesg;
6604 return rc;
6605 }
6606
6607 /**
6608 * ata_host_resume - resume host
6609 * @host: host to resume
6610 *
6611 * Resume @host. Actual operation is performed by EH. This
6612 * function requests EH to perform PM operations and returns.
6613 * Note that all resume operations are performed parallely.
6614 *
6615 * LOCKING:
6616 * Kernel thread context (may sleep).
6617 */
6618 void ata_host_resume(struct ata_host *host)
6619 {
6620 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6621 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6622 host->dev->power.power_state = PMSG_ON;
6623
6624 /* reenable link pm */
6625 ata_lpm_disable(host);
6626 }
6627 #endif
6628
6629 /**
6630 * ata_port_start - Set port up for dma.
6631 * @ap: Port to initialize
6632 *
6633 * Called just after data structures for each port are
6634 * initialized. Allocates space for PRD table.
6635 *
6636 * May be used as the port_start() entry in ata_port_operations.
6637 *
6638 * LOCKING:
6639 * Inherited from caller.
6640 */
6641 int ata_port_start(struct ata_port *ap)
6642 {
6643 struct device *dev = ap->dev;
6644 int rc;
6645
6646 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6647 GFP_KERNEL);
6648 if (!ap->prd)
6649 return -ENOMEM;
6650
6651 rc = ata_pad_alloc(ap, dev);
6652 if (rc)
6653 return rc;
6654
6655 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6656 (unsigned long long)ap->prd_dma);
6657 return 0;
6658 }
6659
6660 /**
6661 * ata_dev_init - Initialize an ata_device structure
6662 * @dev: Device structure to initialize
6663 *
6664 * Initialize @dev in preparation for probing.
6665 *
6666 * LOCKING:
6667 * Inherited from caller.
6668 */
6669 void ata_dev_init(struct ata_device *dev)
6670 {
6671 struct ata_link *link = dev->link;
6672 struct ata_port *ap = link->ap;
6673 unsigned long flags;
6674
6675 /* SATA spd limit is bound to the first device */
6676 link->sata_spd_limit = link->hw_sata_spd_limit;
6677 link->sata_spd = 0;
6678
6679 /* High bits of dev->flags are used to record warm plug
6680 * requests which occur asynchronously. Synchronize using
6681 * host lock.
6682 */
6683 spin_lock_irqsave(ap->lock, flags);
6684 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6685 dev->horkage = 0;
6686 spin_unlock_irqrestore(ap->lock, flags);
6687
6688 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6689 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6690 dev->pio_mask = UINT_MAX;
6691 dev->mwdma_mask = UINT_MAX;
6692 dev->udma_mask = UINT_MAX;
6693 }
6694
6695 /**
6696 * ata_link_init - Initialize an ata_link structure
6697 * @ap: ATA port link is attached to
6698 * @link: Link structure to initialize
6699 * @pmp: Port multiplier port number
6700 *
6701 * Initialize @link.
6702 *
6703 * LOCKING:
6704 * Kernel thread context (may sleep)
6705 */
6706 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6707 {
6708 int i;
6709
6710 /* clear everything except for devices */
6711 memset(link, 0, offsetof(struct ata_link, device[0]));
6712
6713 link->ap = ap;
6714 link->pmp = pmp;
6715 link->active_tag = ATA_TAG_POISON;
6716 link->hw_sata_spd_limit = UINT_MAX;
6717
6718 /* can't use iterator, ap isn't initialized yet */
6719 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6720 struct ata_device *dev = &link->device[i];
6721
6722 dev->link = link;
6723 dev->devno = dev - link->device;
6724 ata_dev_init(dev);
6725 }
6726 }
6727
6728 /**
6729 * sata_link_init_spd - Initialize link->sata_spd_limit
6730 * @link: Link to configure sata_spd_limit for
6731 *
6732 * Initialize @link->[hw_]sata_spd_limit to the currently
6733 * configured value.
6734 *
6735 * LOCKING:
6736 * Kernel thread context (may sleep).
6737 *
6738 * RETURNS:
6739 * 0 on success, -errno on failure.
6740 */
6741 int sata_link_init_spd(struct ata_link *link)
6742 {
6743 u32 scontrol, spd;
6744 int rc;
6745
6746 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6747 if (rc)
6748 return rc;
6749
6750 spd = (scontrol >> 4) & 0xf;
6751 if (spd)
6752 link->hw_sata_spd_limit &= (1 << spd) - 1;
6753
6754 link->sata_spd_limit = link->hw_sata_spd_limit;
6755
6756 return 0;
6757 }
6758
6759 /**
6760 * ata_port_alloc - allocate and initialize basic ATA port resources
6761 * @host: ATA host this allocated port belongs to
6762 *
6763 * Allocate and initialize basic ATA port resources.
6764 *
6765 * RETURNS:
6766 * Allocate ATA port on success, NULL on failure.
6767 *
6768 * LOCKING:
6769 * Inherited from calling layer (may sleep).
6770 */
6771 struct ata_port *ata_port_alloc(struct ata_host *host)
6772 {
6773 struct ata_port *ap;
6774
6775 DPRINTK("ENTER\n");
6776
6777 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6778 if (!ap)
6779 return NULL;
6780
6781 ap->pflags |= ATA_PFLAG_INITIALIZING;
6782 ap->lock = &host->lock;
6783 ap->flags = ATA_FLAG_DISABLED;
6784 ap->print_id = -1;
6785 ap->ctl = ATA_DEVCTL_OBS;
6786 ap->host = host;
6787 ap->dev = host->dev;
6788 ap->last_ctl = 0xFF;
6789
6790 #if defined(ATA_VERBOSE_DEBUG)
6791 /* turn on all debugging levels */
6792 ap->msg_enable = 0x00FF;
6793 #elif defined(ATA_DEBUG)
6794 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6795 #else
6796 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6797 #endif
6798
6799 INIT_DELAYED_WORK(&ap->port_task, NULL);
6800 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6801 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6802 INIT_LIST_HEAD(&ap->eh_done_q);
6803 init_waitqueue_head(&ap->eh_wait_q);
6804 init_timer_deferrable(&ap->fastdrain_timer);
6805 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6806 ap->fastdrain_timer.data = (unsigned long)ap;
6807
6808 ap->cbl = ATA_CBL_NONE;
6809
6810 ata_link_init(ap, &ap->link, 0);
6811
6812 #ifdef ATA_IRQ_TRAP
6813 ap->stats.unhandled_irq = 1;
6814 ap->stats.idle_irq = 1;
6815 #endif
6816 return ap;
6817 }
6818
6819 static void ata_host_release(struct device *gendev, void *res)
6820 {
6821 struct ata_host *host = dev_get_drvdata(gendev);
6822 int i;
6823
6824 for (i = 0; i < host->n_ports; i++) {
6825 struct ata_port *ap = host->ports[i];
6826
6827 if (!ap)
6828 continue;
6829
6830 if (ap->scsi_host)
6831 scsi_host_put(ap->scsi_host);
6832
6833 kfree(ap->pmp_link);
6834 kfree(ap);
6835 host->ports[i] = NULL;
6836 }
6837
6838 dev_set_drvdata(gendev, NULL);
6839 }
6840
6841 /**
6842 * ata_host_alloc - allocate and init basic ATA host resources
6843 * @dev: generic device this host is associated with
6844 * @max_ports: maximum number of ATA ports associated with this host
6845 *
6846 * Allocate and initialize basic ATA host resources. LLD calls
6847 * this function to allocate a host, initializes it fully and
6848 * attaches it using ata_host_register().
6849 *
6850 * @max_ports ports are allocated and host->n_ports is
6851 * initialized to @max_ports. The caller is allowed to decrease
6852 * host->n_ports before calling ata_host_register(). The unused
6853 * ports will be automatically freed on registration.
6854 *
6855 * RETURNS:
6856 * Allocate ATA host on success, NULL on failure.
6857 *
6858 * LOCKING:
6859 * Inherited from calling layer (may sleep).
6860 */
6861 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6862 {
6863 struct ata_host *host;
6864 size_t sz;
6865 int i;
6866
6867 DPRINTK("ENTER\n");
6868
6869 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6870 return NULL;
6871
6872 /* alloc a container for our list of ATA ports (buses) */
6873 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6874 /* alloc a container for our list of ATA ports (buses) */
6875 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6876 if (!host)
6877 goto err_out;
6878
6879 devres_add(dev, host);
6880 dev_set_drvdata(dev, host);
6881
6882 spin_lock_init(&host->lock);
6883 host->dev = dev;
6884 host->n_ports = max_ports;
6885
6886 /* allocate ports bound to this host */
6887 for (i = 0; i < max_ports; i++) {
6888 struct ata_port *ap;
6889
6890 ap = ata_port_alloc(host);
6891 if (!ap)
6892 goto err_out;
6893
6894 ap->port_no = i;
6895 host->ports[i] = ap;
6896 }
6897
6898 devres_remove_group(dev, NULL);
6899 return host;
6900
6901 err_out:
6902 devres_release_group(dev, NULL);
6903 return NULL;
6904 }
6905
6906 /**
6907 * ata_host_alloc_pinfo - alloc host and init with port_info array
6908 * @dev: generic device this host is associated with
6909 * @ppi: array of ATA port_info to initialize host with
6910 * @n_ports: number of ATA ports attached to this host
6911 *
6912 * Allocate ATA host and initialize with info from @ppi. If NULL
6913 * terminated, @ppi may contain fewer entries than @n_ports. The
6914 * last entry will be used for the remaining ports.
6915 *
6916 * RETURNS:
6917 * Allocate ATA host on success, NULL on failure.
6918 *
6919 * LOCKING:
6920 * Inherited from calling layer (may sleep).
6921 */
6922 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6923 const struct ata_port_info * const * ppi,
6924 int n_ports)
6925 {
6926 const struct ata_port_info *pi;
6927 struct ata_host *host;
6928 int i, j;
6929
6930 host = ata_host_alloc(dev, n_ports);
6931 if (!host)
6932 return NULL;
6933
6934 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6935 struct ata_port *ap = host->ports[i];
6936
6937 if (ppi[j])
6938 pi = ppi[j++];
6939
6940 ap->pio_mask = pi->pio_mask;
6941 ap->mwdma_mask = pi->mwdma_mask;
6942 ap->udma_mask = pi->udma_mask;
6943 ap->flags |= pi->flags;
6944 ap->link.flags |= pi->link_flags;
6945 ap->ops = pi->port_ops;
6946
6947 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6948 host->ops = pi->port_ops;
6949 if (!host->private_data && pi->private_data)
6950 host->private_data = pi->private_data;
6951 }
6952
6953 return host;
6954 }
6955
6956 static void ata_host_stop(struct device *gendev, void *res)
6957 {
6958 struct ata_host *host = dev_get_drvdata(gendev);
6959 int i;
6960
6961 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6962
6963 for (i = 0; i < host->n_ports; i++) {
6964 struct ata_port *ap = host->ports[i];
6965
6966 if (ap->ops->port_stop)
6967 ap->ops->port_stop(ap);
6968 }
6969
6970 if (host->ops->host_stop)
6971 host->ops->host_stop(host);
6972 }
6973
6974 /**
6975 * ata_host_start - start and freeze ports of an ATA host
6976 * @host: ATA host to start ports for
6977 *
6978 * Start and then freeze ports of @host. Started status is
6979 * recorded in host->flags, so this function can be called
6980 * multiple times. Ports are guaranteed to get started only
6981 * once. If host->ops isn't initialized yet, its set to the
6982 * first non-dummy port ops.
6983 *
6984 * LOCKING:
6985 * Inherited from calling layer (may sleep).
6986 *
6987 * RETURNS:
6988 * 0 if all ports are started successfully, -errno otherwise.
6989 */
6990 int ata_host_start(struct ata_host *host)
6991 {
6992 int have_stop = 0;
6993 void *start_dr = NULL;
6994 int i, rc;
6995
6996 if (host->flags & ATA_HOST_STARTED)
6997 return 0;
6998
6999 for (i = 0; i < host->n_ports; i++) {
7000 struct ata_port *ap = host->ports[i];
7001
7002 if (!host->ops && !ata_port_is_dummy(ap))
7003 host->ops = ap->ops;
7004
7005 if (ap->ops->port_stop)
7006 have_stop = 1;
7007 }
7008
7009 if (host->ops->host_stop)
7010 have_stop = 1;
7011
7012 if (have_stop) {
7013 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
7014 if (!start_dr)
7015 return -ENOMEM;
7016 }
7017
7018 for (i = 0; i < host->n_ports; i++) {
7019 struct ata_port *ap = host->ports[i];
7020
7021 if (ap->ops->port_start) {
7022 rc = ap->ops->port_start(ap);
7023 if (rc) {
7024 ata_port_printk(ap, KERN_ERR, "failed to "
7025 "start port (errno=%d)\n", rc);
7026 goto err_out;
7027 }
7028 }
7029
7030 ata_eh_freeze_port(ap);
7031 }
7032
7033 if (start_dr)
7034 devres_add(host->dev, start_dr);
7035 host->flags |= ATA_HOST_STARTED;
7036 return 0;
7037
7038 err_out:
7039 while (--i >= 0) {
7040 struct ata_port *ap = host->ports[i];
7041
7042 if (ap->ops->port_stop)
7043 ap->ops->port_stop(ap);
7044 }
7045 devres_free(start_dr);
7046 return rc;
7047 }
7048
7049 /**
7050 * ata_sas_host_init - Initialize a host struct
7051 * @host: host to initialize
7052 * @dev: device host is attached to
7053 * @flags: host flags
7054 * @ops: port_ops
7055 *
7056 * LOCKING:
7057 * PCI/etc. bus probe sem.
7058 *
7059 */
7060 /* KILLME - the only user left is ipr */
7061 void ata_host_init(struct ata_host *host, struct device *dev,
7062 unsigned long flags, const struct ata_port_operations *ops)
7063 {
7064 spin_lock_init(&host->lock);
7065 host->dev = dev;
7066 host->flags = flags;
7067 host->ops = ops;
7068 }
7069
7070 /**
7071 * ata_host_register - register initialized ATA host
7072 * @host: ATA host to register
7073 * @sht: template for SCSI host
7074 *
7075 * Register initialized ATA host. @host is allocated using
7076 * ata_host_alloc() and fully initialized by LLD. This function
7077 * starts ports, registers @host with ATA and SCSI layers and
7078 * probe registered devices.
7079 *
7080 * LOCKING:
7081 * Inherited from calling layer (may sleep).
7082 *
7083 * RETURNS:
7084 * 0 on success, -errno otherwise.
7085 */
7086 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7087 {
7088 int i, rc;
7089
7090 /* host must have been started */
7091 if (!(host->flags & ATA_HOST_STARTED)) {
7092 dev_printk(KERN_ERR, host->dev,
7093 "BUG: trying to register unstarted host\n");
7094 WARN_ON(1);
7095 return -EINVAL;
7096 }
7097
7098 /* Blow away unused ports. This happens when LLD can't
7099 * determine the exact number of ports to allocate at
7100 * allocation time.
7101 */
7102 for (i = host->n_ports; host->ports[i]; i++)
7103 kfree(host->ports[i]);
7104
7105 /* give ports names and add SCSI hosts */
7106 for (i = 0; i < host->n_ports; i++)
7107 host->ports[i]->print_id = ata_print_id++;
7108
7109 rc = ata_scsi_add_hosts(host, sht);
7110 if (rc)
7111 return rc;
7112
7113 /* associate with ACPI nodes */
7114 ata_acpi_associate(host);
7115
7116 /* set cable, sata_spd_limit and report */
7117 for (i = 0; i < host->n_ports; i++) {
7118 struct ata_port *ap = host->ports[i];
7119 unsigned long xfer_mask;
7120
7121 /* set SATA cable type if still unset */
7122 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7123 ap->cbl = ATA_CBL_SATA;
7124
7125 /* init sata_spd_limit to the current value */
7126 sata_link_init_spd(&ap->link);
7127
7128 /* print per-port info to dmesg */
7129 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7130 ap->udma_mask);
7131
7132 if (!ata_port_is_dummy(ap)) {
7133 ata_port_printk(ap, KERN_INFO,
7134 "%cATA max %s %s\n",
7135 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7136 ata_mode_string(xfer_mask),
7137 ap->link.eh_info.desc);
7138 ata_ehi_clear_desc(&ap->link.eh_info);
7139 } else
7140 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7141 }
7142
7143 /* perform each probe synchronously */
7144 DPRINTK("probe begin\n");
7145 for (i = 0; i < host->n_ports; i++) {
7146 struct ata_port *ap = host->ports[i];
7147 int rc;
7148
7149 /* probe */
7150 if (ap->ops->error_handler) {
7151 struct ata_eh_info *ehi = &ap->link.eh_info;
7152 unsigned long flags;
7153
7154 ata_port_probe(ap);
7155
7156 /* kick EH for boot probing */
7157 spin_lock_irqsave(ap->lock, flags);
7158
7159 ehi->probe_mask =
7160 (1 << ata_link_max_devices(&ap->link)) - 1;
7161 ehi->action |= ATA_EH_SOFTRESET;
7162 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7163
7164 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7165 ap->pflags |= ATA_PFLAG_LOADING;
7166 ata_port_schedule_eh(ap);
7167
7168 spin_unlock_irqrestore(ap->lock, flags);
7169
7170 /* wait for EH to finish */
7171 ata_port_wait_eh(ap);
7172 } else {
7173 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7174 rc = ata_bus_probe(ap);
7175 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7176
7177 if (rc) {
7178 /* FIXME: do something useful here?
7179 * Current libata behavior will
7180 * tear down everything when
7181 * the module is removed
7182 * or the h/w is unplugged.
7183 */
7184 }
7185 }
7186 }
7187
7188 /* probes are done, now scan each port's disk(s) */
7189 DPRINTK("host probe begin\n");
7190 for (i = 0; i < host->n_ports; i++) {
7191 struct ata_port *ap = host->ports[i];
7192
7193 ata_scsi_scan_host(ap, 1);
7194 ata_lpm_schedule(ap, ap->pm_policy);
7195 }
7196
7197 return 0;
7198 }
7199
7200 /**
7201 * ata_host_activate - start host, request IRQ and register it
7202 * @host: target ATA host
7203 * @irq: IRQ to request
7204 * @irq_handler: irq_handler used when requesting IRQ
7205 * @irq_flags: irq_flags used when requesting IRQ
7206 * @sht: scsi_host_template to use when registering the host
7207 *
7208 * After allocating an ATA host and initializing it, most libata
7209 * LLDs perform three steps to activate the host - start host,
7210 * request IRQ and register it. This helper takes necessasry
7211 * arguments and performs the three steps in one go.
7212 *
7213 * An invalid IRQ skips the IRQ registration and expects the host to
7214 * have set polling mode on the port. In this case, @irq_handler
7215 * should be NULL.
7216 *
7217 * LOCKING:
7218 * Inherited from calling layer (may sleep).
7219 *
7220 * RETURNS:
7221 * 0 on success, -errno otherwise.
7222 */
7223 int ata_host_activate(struct ata_host *host, int irq,
7224 irq_handler_t irq_handler, unsigned long irq_flags,
7225 struct scsi_host_template *sht)
7226 {
7227 int i, rc;
7228
7229 rc = ata_host_start(host);
7230 if (rc)
7231 return rc;
7232
7233 /* Special case for polling mode */
7234 if (!irq) {
7235 WARN_ON(irq_handler);
7236 return ata_host_register(host, sht);
7237 }
7238
7239 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7240 dev_driver_string(host->dev), host);
7241 if (rc)
7242 return rc;
7243
7244 for (i = 0; i < host->n_ports; i++)
7245 ata_port_desc(host->ports[i], "irq %d", irq);
7246
7247 rc = ata_host_register(host, sht);
7248 /* if failed, just free the IRQ and leave ports alone */
7249 if (rc)
7250 devm_free_irq(host->dev, irq, host);
7251
7252 return rc;
7253 }
7254
7255 /**
7256 * ata_port_detach - Detach ATA port in prepration of device removal
7257 * @ap: ATA port to be detached
7258 *
7259 * Detach all ATA devices and the associated SCSI devices of @ap;
7260 * then, remove the associated SCSI host. @ap is guaranteed to
7261 * be quiescent on return from this function.
7262 *
7263 * LOCKING:
7264 * Kernel thread context (may sleep).
7265 */
7266 static void ata_port_detach(struct ata_port *ap)
7267 {
7268 unsigned long flags;
7269 struct ata_link *link;
7270 struct ata_device *dev;
7271
7272 if (!ap->ops->error_handler)
7273 goto skip_eh;
7274
7275 /* tell EH we're leaving & flush EH */
7276 spin_lock_irqsave(ap->lock, flags);
7277 ap->pflags |= ATA_PFLAG_UNLOADING;
7278 spin_unlock_irqrestore(ap->lock, flags);
7279
7280 ata_port_wait_eh(ap);
7281
7282 /* EH is now guaranteed to see UNLOADING, so no new device
7283 * will be attached. Disable all existing devices.
7284 */
7285 spin_lock_irqsave(ap->lock, flags);
7286
7287 ata_port_for_each_link(link, ap) {
7288 ata_link_for_each_dev(dev, link)
7289 ata_dev_disable(dev);
7290 }
7291
7292 spin_unlock_irqrestore(ap->lock, flags);
7293
7294 /* Final freeze & EH. All in-flight commands are aborted. EH
7295 * will be skipped and retrials will be terminated with bad
7296 * target.
7297 */
7298 spin_lock_irqsave(ap->lock, flags);
7299 ata_port_freeze(ap); /* won't be thawed */
7300 spin_unlock_irqrestore(ap->lock, flags);
7301
7302 ata_port_wait_eh(ap);
7303 cancel_rearming_delayed_work(&ap->hotplug_task);
7304
7305 skip_eh:
7306 /* remove the associated SCSI host */
7307 scsi_remove_host(ap->scsi_host);
7308 }
7309
7310 /**
7311 * ata_host_detach - Detach all ports of an ATA host
7312 * @host: Host to detach
7313 *
7314 * Detach all ports of @host.
7315 *
7316 * LOCKING:
7317 * Kernel thread context (may sleep).
7318 */
7319 void ata_host_detach(struct ata_host *host)
7320 {
7321 int i;
7322
7323 for (i = 0; i < host->n_ports; i++)
7324 ata_port_detach(host->ports[i]);
7325 }
7326
7327 /**
7328 * ata_std_ports - initialize ioaddr with standard port offsets.
7329 * @ioaddr: IO address structure to be initialized
7330 *
7331 * Utility function which initializes data_addr, error_addr,
7332 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7333 * device_addr, status_addr, and command_addr to standard offsets
7334 * relative to cmd_addr.
7335 *
7336 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7337 */
7338
7339 void ata_std_ports(struct ata_ioports *ioaddr)
7340 {
7341 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7342 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7343 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7344 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7345 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7346 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7347 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7348 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7349 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7350 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7351 }
7352
7353
7354 #ifdef CONFIG_PCI
7355
7356 /**
7357 * ata_pci_remove_one - PCI layer callback for device removal
7358 * @pdev: PCI device that was removed
7359 *
7360 * PCI layer indicates to libata via this hook that hot-unplug or
7361 * module unload event has occurred. Detach all ports. Resource
7362 * release is handled via devres.
7363 *
7364 * LOCKING:
7365 * Inherited from PCI layer (may sleep).
7366 */
7367 void ata_pci_remove_one(struct pci_dev *pdev)
7368 {
7369 struct device *dev = &pdev->dev;
7370 struct ata_host *host = dev_get_drvdata(dev);
7371
7372 ata_host_detach(host);
7373 }
7374
7375 /* move to PCI subsystem */
7376 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7377 {
7378 unsigned long tmp = 0;
7379
7380 switch (bits->width) {
7381 case 1: {
7382 u8 tmp8 = 0;
7383 pci_read_config_byte(pdev, bits->reg, &tmp8);
7384 tmp = tmp8;
7385 break;
7386 }
7387 case 2: {
7388 u16 tmp16 = 0;
7389 pci_read_config_word(pdev, bits->reg, &tmp16);
7390 tmp = tmp16;
7391 break;
7392 }
7393 case 4: {
7394 u32 tmp32 = 0;
7395 pci_read_config_dword(pdev, bits->reg, &tmp32);
7396 tmp = tmp32;
7397 break;
7398 }
7399
7400 default:
7401 return -EINVAL;
7402 }
7403
7404 tmp &= bits->mask;
7405
7406 return (tmp == bits->val) ? 1 : 0;
7407 }
7408
7409 #ifdef CONFIG_PM
7410 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7411 {
7412 pci_save_state(pdev);
7413 pci_disable_device(pdev);
7414
7415 if (mesg.event == PM_EVENT_SUSPEND)
7416 pci_set_power_state(pdev, PCI_D3hot);
7417 }
7418
7419 int ata_pci_device_do_resume(struct pci_dev *pdev)
7420 {
7421 int rc;
7422
7423 pci_set_power_state(pdev, PCI_D0);
7424 pci_restore_state(pdev);
7425
7426 rc = pcim_enable_device(pdev);
7427 if (rc) {
7428 dev_printk(KERN_ERR, &pdev->dev,
7429 "failed to enable device after resume (%d)\n", rc);
7430 return rc;
7431 }
7432
7433 pci_set_master(pdev);
7434 return 0;
7435 }
7436
7437 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7438 {
7439 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7440 int rc = 0;
7441
7442 rc = ata_host_suspend(host, mesg);
7443 if (rc)
7444 return rc;
7445
7446 ata_pci_device_do_suspend(pdev, mesg);
7447
7448 return 0;
7449 }
7450
7451 int ata_pci_device_resume(struct pci_dev *pdev)
7452 {
7453 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7454 int rc;
7455
7456 rc = ata_pci_device_do_resume(pdev);
7457 if (rc == 0)
7458 ata_host_resume(host);
7459 return rc;
7460 }
7461 #endif /* CONFIG_PM */
7462
7463 #endif /* CONFIG_PCI */
7464
7465
7466 static int __init ata_init(void)
7467 {
7468 ata_probe_timeout *= HZ;
7469 ata_wq = create_workqueue("ata");
7470 if (!ata_wq)
7471 return -ENOMEM;
7472
7473 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7474 if (!ata_aux_wq) {
7475 destroy_workqueue(ata_wq);
7476 return -ENOMEM;
7477 }
7478
7479 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7480 return 0;
7481 }
7482
7483 static void __exit ata_exit(void)
7484 {
7485 destroy_workqueue(ata_wq);
7486 destroy_workqueue(ata_aux_wq);
7487 }
7488
7489 subsys_initcall(ata_init);
7490 module_exit(ata_exit);
7491
7492 static unsigned long ratelimit_time;
7493 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7494
7495 int ata_ratelimit(void)
7496 {
7497 int rc;
7498 unsigned long flags;
7499
7500 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7501
7502 if (time_after(jiffies, ratelimit_time)) {
7503 rc = 1;
7504 ratelimit_time = jiffies + (HZ/5);
7505 } else
7506 rc = 0;
7507
7508 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7509
7510 return rc;
7511 }
7512
7513 /**
7514 * ata_wait_register - wait until register value changes
7515 * @reg: IO-mapped register
7516 * @mask: Mask to apply to read register value
7517 * @val: Wait condition
7518 * @interval_msec: polling interval in milliseconds
7519 * @timeout_msec: timeout in milliseconds
7520 *
7521 * Waiting for some bits of register to change is a common
7522 * operation for ATA controllers. This function reads 32bit LE
7523 * IO-mapped register @reg and tests for the following condition.
7524 *
7525 * (*@reg & mask) != val
7526 *
7527 * If the condition is met, it returns; otherwise, the process is
7528 * repeated after @interval_msec until timeout.
7529 *
7530 * LOCKING:
7531 * Kernel thread context (may sleep)
7532 *
7533 * RETURNS:
7534 * The final register value.
7535 */
7536 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7537 unsigned long interval_msec,
7538 unsigned long timeout_msec)
7539 {
7540 unsigned long timeout;
7541 u32 tmp;
7542
7543 tmp = ioread32(reg);
7544
7545 /* Calculate timeout _after_ the first read to make sure
7546 * preceding writes reach the controller before starting to
7547 * eat away the timeout.
7548 */
7549 timeout = jiffies + (timeout_msec * HZ) / 1000;
7550
7551 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7552 msleep(interval_msec);
7553 tmp = ioread32(reg);
7554 }
7555
7556 return tmp;
7557 }
7558
7559 /*
7560 * Dummy port_ops
7561 */
7562 static void ata_dummy_noret(struct ata_port *ap) { }
7563 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7564 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7565
7566 static u8 ata_dummy_check_status(struct ata_port *ap)
7567 {
7568 return ATA_DRDY;
7569 }
7570
7571 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7572 {
7573 return AC_ERR_SYSTEM;
7574 }
7575
7576 const struct ata_port_operations ata_dummy_port_ops = {
7577 .check_status = ata_dummy_check_status,
7578 .check_altstatus = ata_dummy_check_status,
7579 .dev_select = ata_noop_dev_select,
7580 .qc_prep = ata_noop_qc_prep,
7581 .qc_issue = ata_dummy_qc_issue,
7582 .freeze = ata_dummy_noret,
7583 .thaw = ata_dummy_noret,
7584 .error_handler = ata_dummy_noret,
7585 .post_internal_cmd = ata_dummy_qc_noret,
7586 .irq_clear = ata_dummy_noret,
7587 .port_start = ata_dummy_ret0,
7588 .port_stop = ata_dummy_noret,
7589 };
7590
7591 const struct ata_port_info ata_dummy_port_info = {
7592 .port_ops = &ata_dummy_port_ops,
7593 };
7594
7595 /*
7596 * libata is essentially a library of internal helper functions for
7597 * low-level ATA host controller drivers. As such, the API/ABI is
7598 * likely to change as new drivers are added and updated.
7599 * Do not depend on ABI/API stability.
7600 */
7601 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7602 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7603 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7604 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7605 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7606 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7607 EXPORT_SYMBOL_GPL(ata_std_ports);
7608 EXPORT_SYMBOL_GPL(ata_host_init);
7609 EXPORT_SYMBOL_GPL(ata_host_alloc);
7610 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7611 EXPORT_SYMBOL_GPL(ata_host_start);
7612 EXPORT_SYMBOL_GPL(ata_host_register);
7613 EXPORT_SYMBOL_GPL(ata_host_activate);
7614 EXPORT_SYMBOL_GPL(ata_host_detach);
7615 EXPORT_SYMBOL_GPL(ata_sg_init);
7616 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7617 EXPORT_SYMBOL_GPL(ata_hsm_move);
7618 EXPORT_SYMBOL_GPL(ata_qc_complete);
7619 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7620 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7621 EXPORT_SYMBOL_GPL(ata_tf_load);
7622 EXPORT_SYMBOL_GPL(ata_tf_read);
7623 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7624 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7625 EXPORT_SYMBOL_GPL(sata_print_link_status);
7626 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7627 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7628 EXPORT_SYMBOL_GPL(ata_check_status);
7629 EXPORT_SYMBOL_GPL(ata_altstatus);
7630 EXPORT_SYMBOL_GPL(ata_exec_command);
7631 EXPORT_SYMBOL_GPL(ata_port_start);
7632 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7633 EXPORT_SYMBOL_GPL(ata_interrupt);
7634 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7635 EXPORT_SYMBOL_GPL(ata_data_xfer);
7636 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7637 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7638 EXPORT_SYMBOL_GPL(ata_qc_prep);
7639 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7640 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7641 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7642 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7643 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7644 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7645 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7646 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7647 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7648 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7649 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7650 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7651 EXPORT_SYMBOL_GPL(ata_port_probe);
7652 EXPORT_SYMBOL_GPL(ata_dev_disable);
7653 EXPORT_SYMBOL_GPL(sata_set_spd);
7654 EXPORT_SYMBOL_GPL(sata_link_debounce);
7655 EXPORT_SYMBOL_GPL(sata_link_resume);
7656 EXPORT_SYMBOL_GPL(sata_phy_reset);
7657 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7658 EXPORT_SYMBOL_GPL(ata_bus_reset);
7659 EXPORT_SYMBOL_GPL(ata_std_prereset);
7660 EXPORT_SYMBOL_GPL(ata_std_softreset);
7661 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7662 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7663 EXPORT_SYMBOL_GPL(ata_std_postreset);
7664 EXPORT_SYMBOL_GPL(ata_dev_classify);
7665 EXPORT_SYMBOL_GPL(ata_dev_pair);
7666 EXPORT_SYMBOL_GPL(ata_port_disable);
7667 EXPORT_SYMBOL_GPL(ata_ratelimit);
7668 EXPORT_SYMBOL_GPL(ata_wait_register);
7669 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7670 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7671 EXPORT_SYMBOL_GPL(ata_wait_ready);
7672 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7673 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7674 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7675 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7676 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7677 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7678 EXPORT_SYMBOL_GPL(ata_host_intr);
7679 EXPORT_SYMBOL_GPL(sata_scr_valid);
7680 EXPORT_SYMBOL_GPL(sata_scr_read);
7681 EXPORT_SYMBOL_GPL(sata_scr_write);
7682 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7683 EXPORT_SYMBOL_GPL(ata_link_online);
7684 EXPORT_SYMBOL_GPL(ata_link_offline);
7685 #ifdef CONFIG_PM
7686 EXPORT_SYMBOL_GPL(ata_host_suspend);
7687 EXPORT_SYMBOL_GPL(ata_host_resume);
7688 #endif /* CONFIG_PM */
7689 EXPORT_SYMBOL_GPL(ata_id_string);
7690 EXPORT_SYMBOL_GPL(ata_id_c_string);
7691 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7692 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7693
7694 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7695 EXPORT_SYMBOL_GPL(ata_timing_compute);
7696 EXPORT_SYMBOL_GPL(ata_timing_merge);
7697
7698 #ifdef CONFIG_PCI
7699 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7700 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7701 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7702 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7703 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7704 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7705 #ifdef CONFIG_PM
7706 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7707 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7708 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7709 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7710 #endif /* CONFIG_PM */
7711 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7712 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7713 #endif /* CONFIG_PCI */
7714
7715 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7716 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7717 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7718 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7719 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7720
7721 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7722 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7723 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7724 EXPORT_SYMBOL_GPL(ata_port_desc);
7725 #ifdef CONFIG_PCI
7726 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7727 #endif /* CONFIG_PCI */
7728 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7729 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7730 EXPORT_SYMBOL_GPL(ata_link_abort);
7731 EXPORT_SYMBOL_GPL(ata_port_abort);
7732 EXPORT_SYMBOL_GPL(ata_port_freeze);
7733 EXPORT_SYMBOL_GPL(sata_async_notification);
7734 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7735 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7736 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7737 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7738 EXPORT_SYMBOL_GPL(ata_do_eh);
7739 EXPORT_SYMBOL_GPL(ata_irq_on);
7740 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7741
7742 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7743 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7744 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7745 EXPORT_SYMBOL_GPL(ata_cable_sata);