]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/ata/libata-core.c
Merge branch 'pxa-fixes'
[mirror_ubuntu-bionic-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67
68 #include "libata.h"
69
70
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
75
76 static unsigned int ata_dev_init_params(struct ata_device *dev,
77 u16 heads, u16 sectors);
78 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
79 static unsigned int ata_dev_set_feature(struct ata_device *dev,
80 u8 enable, u8 feature);
81 static void ata_dev_xfermask(struct ata_device *dev);
82 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
83
84 unsigned int ata_print_id = 1;
85 static struct workqueue_struct *ata_wq;
86
87 struct workqueue_struct *ata_aux_wq;
88
89 int atapi_enabled = 1;
90 module_param(atapi_enabled, int, 0444);
91 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
92
93 int atapi_dmadir = 0;
94 module_param(atapi_dmadir, int, 0444);
95 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
96
97 int atapi_passthru16 = 1;
98 module_param(atapi_passthru16, int, 0444);
99 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
100
101 int libata_fua = 0;
102 module_param_named(fua, libata_fua, int, 0444);
103 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
104
105 static int ata_ignore_hpa;
106 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
107 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
108
109 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
110 module_param_named(dma, libata_dma_mask, int, 0444);
111 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
112
113 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
114 module_param(ata_probe_timeout, int, 0444);
115 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
116
117 int libata_noacpi = 0;
118 module_param_named(noacpi, libata_noacpi, int, 0444);
119 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
120
121 MODULE_AUTHOR("Jeff Garzik");
122 MODULE_DESCRIPTION("Library module for ATA devices");
123 MODULE_LICENSE("GPL");
124 MODULE_VERSION(DRV_VERSION);
125
126
127 /**
128 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
129 * @tf: Taskfile to convert
130 * @pmp: Port multiplier port
131 * @is_cmd: This FIS is for command
132 * @fis: Buffer into which data will output
133 *
134 * Converts a standard ATA taskfile to a Serial ATA
135 * FIS structure (Register - Host to Device).
136 *
137 * LOCKING:
138 * Inherited from caller.
139 */
140 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
141 {
142 fis[0] = 0x27; /* Register - Host to Device FIS */
143 fis[1] = pmp & 0xf; /* Port multiplier number*/
144 if (is_cmd)
145 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
146
147 fis[2] = tf->command;
148 fis[3] = tf->feature;
149
150 fis[4] = tf->lbal;
151 fis[5] = tf->lbam;
152 fis[6] = tf->lbah;
153 fis[7] = tf->device;
154
155 fis[8] = tf->hob_lbal;
156 fis[9] = tf->hob_lbam;
157 fis[10] = tf->hob_lbah;
158 fis[11] = tf->hob_feature;
159
160 fis[12] = tf->nsect;
161 fis[13] = tf->hob_nsect;
162 fis[14] = 0;
163 fis[15] = tf->ctl;
164
165 fis[16] = 0;
166 fis[17] = 0;
167 fis[18] = 0;
168 fis[19] = 0;
169 }
170
171 /**
172 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
173 * @fis: Buffer from which data will be input
174 * @tf: Taskfile to output
175 *
176 * Converts a serial ATA FIS structure to a standard ATA taskfile.
177 *
178 * LOCKING:
179 * Inherited from caller.
180 */
181
182 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
183 {
184 tf->command = fis[2]; /* status */
185 tf->feature = fis[3]; /* error */
186
187 tf->lbal = fis[4];
188 tf->lbam = fis[5];
189 tf->lbah = fis[6];
190 tf->device = fis[7];
191
192 tf->hob_lbal = fis[8];
193 tf->hob_lbam = fis[9];
194 tf->hob_lbah = fis[10];
195
196 tf->nsect = fis[12];
197 tf->hob_nsect = fis[13];
198 }
199
200 static const u8 ata_rw_cmds[] = {
201 /* pio multi */
202 ATA_CMD_READ_MULTI,
203 ATA_CMD_WRITE_MULTI,
204 ATA_CMD_READ_MULTI_EXT,
205 ATA_CMD_WRITE_MULTI_EXT,
206 0,
207 0,
208 0,
209 ATA_CMD_WRITE_MULTI_FUA_EXT,
210 /* pio */
211 ATA_CMD_PIO_READ,
212 ATA_CMD_PIO_WRITE,
213 ATA_CMD_PIO_READ_EXT,
214 ATA_CMD_PIO_WRITE_EXT,
215 0,
216 0,
217 0,
218 0,
219 /* dma */
220 ATA_CMD_READ,
221 ATA_CMD_WRITE,
222 ATA_CMD_READ_EXT,
223 ATA_CMD_WRITE_EXT,
224 0,
225 0,
226 0,
227 ATA_CMD_WRITE_FUA_EXT
228 };
229
230 /**
231 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
232 * @tf: command to examine and configure
233 * @dev: device tf belongs to
234 *
235 * Examine the device configuration and tf->flags to calculate
236 * the proper read/write commands and protocol to use.
237 *
238 * LOCKING:
239 * caller.
240 */
241 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
242 {
243 u8 cmd;
244
245 int index, fua, lba48, write;
246
247 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
248 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
249 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
250
251 if (dev->flags & ATA_DFLAG_PIO) {
252 tf->protocol = ATA_PROT_PIO;
253 index = dev->multi_count ? 0 : 8;
254 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
255 /* Unable to use DMA due to host limitation */
256 tf->protocol = ATA_PROT_PIO;
257 index = dev->multi_count ? 0 : 8;
258 } else {
259 tf->protocol = ATA_PROT_DMA;
260 index = 16;
261 }
262
263 cmd = ata_rw_cmds[index + fua + lba48 + write];
264 if (cmd) {
265 tf->command = cmd;
266 return 0;
267 }
268 return -1;
269 }
270
271 /**
272 * ata_tf_read_block - Read block address from ATA taskfile
273 * @tf: ATA taskfile of interest
274 * @dev: ATA device @tf belongs to
275 *
276 * LOCKING:
277 * None.
278 *
279 * Read block address from @tf. This function can handle all
280 * three address formats - LBA, LBA48 and CHS. tf->protocol and
281 * flags select the address format to use.
282 *
283 * RETURNS:
284 * Block address read from @tf.
285 */
286 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
287 {
288 u64 block = 0;
289
290 if (tf->flags & ATA_TFLAG_LBA) {
291 if (tf->flags & ATA_TFLAG_LBA48) {
292 block |= (u64)tf->hob_lbah << 40;
293 block |= (u64)tf->hob_lbam << 32;
294 block |= tf->hob_lbal << 24;
295 } else
296 block |= (tf->device & 0xf) << 24;
297
298 block |= tf->lbah << 16;
299 block |= tf->lbam << 8;
300 block |= tf->lbal;
301 } else {
302 u32 cyl, head, sect;
303
304 cyl = tf->lbam | (tf->lbah << 8);
305 head = tf->device & 0xf;
306 sect = tf->lbal;
307
308 block = (cyl * dev->heads + head) * dev->sectors + sect;
309 }
310
311 return block;
312 }
313
314 /**
315 * ata_build_rw_tf - Build ATA taskfile for given read/write request
316 * @tf: Target ATA taskfile
317 * @dev: ATA device @tf belongs to
318 * @block: Block address
319 * @n_block: Number of blocks
320 * @tf_flags: RW/FUA etc...
321 * @tag: tag
322 *
323 * LOCKING:
324 * None.
325 *
326 * Build ATA taskfile @tf for read/write request described by
327 * @block, @n_block, @tf_flags and @tag on @dev.
328 *
329 * RETURNS:
330 *
331 * 0 on success, -ERANGE if the request is too large for @dev,
332 * -EINVAL if the request is invalid.
333 */
334 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
335 u64 block, u32 n_block, unsigned int tf_flags,
336 unsigned int tag)
337 {
338 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
339 tf->flags |= tf_flags;
340
341 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
342 /* yay, NCQ */
343 if (!lba_48_ok(block, n_block))
344 return -ERANGE;
345
346 tf->protocol = ATA_PROT_NCQ;
347 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
348
349 if (tf->flags & ATA_TFLAG_WRITE)
350 tf->command = ATA_CMD_FPDMA_WRITE;
351 else
352 tf->command = ATA_CMD_FPDMA_READ;
353
354 tf->nsect = tag << 3;
355 tf->hob_feature = (n_block >> 8) & 0xff;
356 tf->feature = n_block & 0xff;
357
358 tf->hob_lbah = (block >> 40) & 0xff;
359 tf->hob_lbam = (block >> 32) & 0xff;
360 tf->hob_lbal = (block >> 24) & 0xff;
361 tf->lbah = (block >> 16) & 0xff;
362 tf->lbam = (block >> 8) & 0xff;
363 tf->lbal = block & 0xff;
364
365 tf->device = 1 << 6;
366 if (tf->flags & ATA_TFLAG_FUA)
367 tf->device |= 1 << 7;
368 } else if (dev->flags & ATA_DFLAG_LBA) {
369 tf->flags |= ATA_TFLAG_LBA;
370
371 if (lba_28_ok(block, n_block)) {
372 /* use LBA28 */
373 tf->device |= (block >> 24) & 0xf;
374 } else if (lba_48_ok(block, n_block)) {
375 if (!(dev->flags & ATA_DFLAG_LBA48))
376 return -ERANGE;
377
378 /* use LBA48 */
379 tf->flags |= ATA_TFLAG_LBA48;
380
381 tf->hob_nsect = (n_block >> 8) & 0xff;
382
383 tf->hob_lbah = (block >> 40) & 0xff;
384 tf->hob_lbam = (block >> 32) & 0xff;
385 tf->hob_lbal = (block >> 24) & 0xff;
386 } else
387 /* request too large even for LBA48 */
388 return -ERANGE;
389
390 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
391 return -EINVAL;
392
393 tf->nsect = n_block & 0xff;
394
395 tf->lbah = (block >> 16) & 0xff;
396 tf->lbam = (block >> 8) & 0xff;
397 tf->lbal = block & 0xff;
398
399 tf->device |= ATA_LBA;
400 } else {
401 /* CHS */
402 u32 sect, head, cyl, track;
403
404 /* The request -may- be too large for CHS addressing. */
405 if (!lba_28_ok(block, n_block))
406 return -ERANGE;
407
408 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
409 return -EINVAL;
410
411 /* Convert LBA to CHS */
412 track = (u32)block / dev->sectors;
413 cyl = track / dev->heads;
414 head = track % dev->heads;
415 sect = (u32)block % dev->sectors + 1;
416
417 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
418 (u32)block, track, cyl, head, sect);
419
420 /* Check whether the converted CHS can fit.
421 Cylinder: 0-65535
422 Head: 0-15
423 Sector: 1-255*/
424 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
425 return -ERANGE;
426
427 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
428 tf->lbal = sect;
429 tf->lbam = cyl;
430 tf->lbah = cyl >> 8;
431 tf->device |= head;
432 }
433
434 return 0;
435 }
436
437 /**
438 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
439 * @pio_mask: pio_mask
440 * @mwdma_mask: mwdma_mask
441 * @udma_mask: udma_mask
442 *
443 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
444 * unsigned int xfer_mask.
445 *
446 * LOCKING:
447 * None.
448 *
449 * RETURNS:
450 * Packed xfer_mask.
451 */
452 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
453 unsigned int mwdma_mask,
454 unsigned int udma_mask)
455 {
456 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
457 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
458 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
459 }
460
461 /**
462 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
463 * @xfer_mask: xfer_mask to unpack
464 * @pio_mask: resulting pio_mask
465 * @mwdma_mask: resulting mwdma_mask
466 * @udma_mask: resulting udma_mask
467 *
468 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
469 * Any NULL distination masks will be ignored.
470 */
471 static void ata_unpack_xfermask(unsigned int xfer_mask,
472 unsigned int *pio_mask,
473 unsigned int *mwdma_mask,
474 unsigned int *udma_mask)
475 {
476 if (pio_mask)
477 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
478 if (mwdma_mask)
479 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
480 if (udma_mask)
481 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
482 }
483
484 static const struct ata_xfer_ent {
485 int shift, bits;
486 u8 base;
487 } ata_xfer_tbl[] = {
488 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
489 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
490 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
491 { -1, },
492 };
493
494 /**
495 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
496 * @xfer_mask: xfer_mask of interest
497 *
498 * Return matching XFER_* value for @xfer_mask. Only the highest
499 * bit of @xfer_mask is considered.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * Matching XFER_* value, 0 if no match found.
506 */
507 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
508 {
509 int highbit = fls(xfer_mask) - 1;
510 const struct ata_xfer_ent *ent;
511
512 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
513 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
514 return ent->base + highbit - ent->shift;
515 return 0;
516 }
517
518 /**
519 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
520 * @xfer_mode: XFER_* of interest
521 *
522 * Return matching xfer_mask for @xfer_mode.
523 *
524 * LOCKING:
525 * None.
526 *
527 * RETURNS:
528 * Matching xfer_mask, 0 if no match found.
529 */
530 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
531 {
532 const struct ata_xfer_ent *ent;
533
534 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
535 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
536 return 1 << (ent->shift + xfer_mode - ent->base);
537 return 0;
538 }
539
540 /**
541 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
542 * @xfer_mode: XFER_* of interest
543 *
544 * Return matching xfer_shift for @xfer_mode.
545 *
546 * LOCKING:
547 * None.
548 *
549 * RETURNS:
550 * Matching xfer_shift, -1 if no match found.
551 */
552 static int ata_xfer_mode2shift(unsigned int xfer_mode)
553 {
554 const struct ata_xfer_ent *ent;
555
556 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
557 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
558 return ent->shift;
559 return -1;
560 }
561
562 /**
563 * ata_mode_string - convert xfer_mask to string
564 * @xfer_mask: mask of bits supported; only highest bit counts.
565 *
566 * Determine string which represents the highest speed
567 * (highest bit in @modemask).
568 *
569 * LOCKING:
570 * None.
571 *
572 * RETURNS:
573 * Constant C string representing highest speed listed in
574 * @mode_mask, or the constant C string "<n/a>".
575 */
576 static const char *ata_mode_string(unsigned int xfer_mask)
577 {
578 static const char * const xfer_mode_str[] = {
579 "PIO0",
580 "PIO1",
581 "PIO2",
582 "PIO3",
583 "PIO4",
584 "PIO5",
585 "PIO6",
586 "MWDMA0",
587 "MWDMA1",
588 "MWDMA2",
589 "MWDMA3",
590 "MWDMA4",
591 "UDMA/16",
592 "UDMA/25",
593 "UDMA/33",
594 "UDMA/44",
595 "UDMA/66",
596 "UDMA/100",
597 "UDMA/133",
598 "UDMA7",
599 };
600 int highbit;
601
602 highbit = fls(xfer_mask) - 1;
603 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
604 return xfer_mode_str[highbit];
605 return "<n/a>";
606 }
607
608 static const char *sata_spd_string(unsigned int spd)
609 {
610 static const char * const spd_str[] = {
611 "1.5 Gbps",
612 "3.0 Gbps",
613 };
614
615 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
616 return "<unknown>";
617 return spd_str[spd - 1];
618 }
619
620 void ata_dev_disable(struct ata_device *dev)
621 {
622 if (ata_dev_enabled(dev)) {
623 if (ata_msg_drv(dev->link->ap))
624 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
625 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
626 ATA_DNXFER_QUIET);
627 dev->class++;
628 }
629 }
630
631 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
632 {
633 struct ata_link *link = dev->link;
634 struct ata_port *ap = link->ap;
635 u32 scontrol;
636 unsigned int err_mask;
637 int rc;
638
639 /*
640 * disallow DIPM for drivers which haven't set
641 * ATA_FLAG_IPM. This is because when DIPM is enabled,
642 * phy ready will be set in the interrupt status on
643 * state changes, which will cause some drivers to
644 * think there are errors - additionally drivers will
645 * need to disable hot plug.
646 */
647 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
648 ap->pm_policy = NOT_AVAILABLE;
649 return -EINVAL;
650 }
651
652 /*
653 * For DIPM, we will only enable it for the
654 * min_power setting.
655 *
656 * Why? Because Disks are too stupid to know that
657 * If the host rejects a request to go to SLUMBER
658 * they should retry at PARTIAL, and instead it
659 * just would give up. So, for medium_power to
660 * work at all, we need to only allow HIPM.
661 */
662 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
663 if (rc)
664 return rc;
665
666 switch (policy) {
667 case MIN_POWER:
668 /* no restrictions on IPM transitions */
669 scontrol &= ~(0x3 << 8);
670 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
671 if (rc)
672 return rc;
673
674 /* enable DIPM */
675 if (dev->flags & ATA_DFLAG_DIPM)
676 err_mask = ata_dev_set_feature(dev,
677 SETFEATURES_SATA_ENABLE, SATA_DIPM);
678 break;
679 case MEDIUM_POWER:
680 /* allow IPM to PARTIAL */
681 scontrol &= ~(0x1 << 8);
682 scontrol |= (0x2 << 8);
683 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
684 if (rc)
685 return rc;
686
687 /*
688 * we don't have to disable DIPM since IPM flags
689 * disallow transitions to SLUMBER, which effectively
690 * disable DIPM if it does not support PARTIAL
691 */
692 break;
693 case NOT_AVAILABLE:
694 case MAX_PERFORMANCE:
695 /* disable all IPM transitions */
696 scontrol |= (0x3 << 8);
697 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
698 if (rc)
699 return rc;
700
701 /*
702 * we don't have to disable DIPM since IPM flags
703 * disallow all transitions which effectively
704 * disable DIPM anyway.
705 */
706 break;
707 }
708
709 /* FIXME: handle SET FEATURES failure */
710 (void) err_mask;
711
712 return 0;
713 }
714
715 /**
716 * ata_dev_enable_pm - enable SATA interface power management
717 * @dev: device to enable power management
718 * @policy: the link power management policy
719 *
720 * Enable SATA Interface power management. This will enable
721 * Device Interface Power Management (DIPM) for min_power
722 * policy, and then call driver specific callbacks for
723 * enabling Host Initiated Power management.
724 *
725 * Locking: Caller.
726 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
727 */
728 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
729 {
730 int rc = 0;
731 struct ata_port *ap = dev->link->ap;
732
733 /* set HIPM first, then DIPM */
734 if (ap->ops->enable_pm)
735 rc = ap->ops->enable_pm(ap, policy);
736 if (rc)
737 goto enable_pm_out;
738 rc = ata_dev_set_dipm(dev, policy);
739
740 enable_pm_out:
741 if (rc)
742 ap->pm_policy = MAX_PERFORMANCE;
743 else
744 ap->pm_policy = policy;
745 return /* rc */; /* hopefully we can use 'rc' eventually */
746 }
747
748 #ifdef CONFIG_PM
749 /**
750 * ata_dev_disable_pm - disable SATA interface power management
751 * @dev: device to disable power management
752 *
753 * Disable SATA Interface power management. This will disable
754 * Device Interface Power Management (DIPM) without changing
755 * policy, call driver specific callbacks for disabling Host
756 * Initiated Power management.
757 *
758 * Locking: Caller.
759 * Returns: void
760 */
761 static void ata_dev_disable_pm(struct ata_device *dev)
762 {
763 struct ata_port *ap = dev->link->ap;
764
765 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
766 if (ap->ops->disable_pm)
767 ap->ops->disable_pm(ap);
768 }
769 #endif /* CONFIG_PM */
770
771 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
772 {
773 ap->pm_policy = policy;
774 ap->link.eh_info.action |= ATA_EHI_LPM;
775 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
776 ata_port_schedule_eh(ap);
777 }
778
779 #ifdef CONFIG_PM
780 static void ata_lpm_enable(struct ata_host *host)
781 {
782 struct ata_link *link;
783 struct ata_port *ap;
784 struct ata_device *dev;
785 int i;
786
787 for (i = 0; i < host->n_ports; i++) {
788 ap = host->ports[i];
789 ata_port_for_each_link(link, ap) {
790 ata_link_for_each_dev(dev, link)
791 ata_dev_disable_pm(dev);
792 }
793 }
794 }
795
796 static void ata_lpm_disable(struct ata_host *host)
797 {
798 int i;
799
800 for (i = 0; i < host->n_ports; i++) {
801 struct ata_port *ap = host->ports[i];
802 ata_lpm_schedule(ap, ap->pm_policy);
803 }
804 }
805 #endif /* CONFIG_PM */
806
807
808 /**
809 * ata_devchk - PATA device presence detection
810 * @ap: ATA channel to examine
811 * @device: Device to examine (starting at zero)
812 *
813 * This technique was originally described in
814 * Hale Landis's ATADRVR (www.ata-atapi.com), and
815 * later found its way into the ATA/ATAPI spec.
816 *
817 * Write a pattern to the ATA shadow registers,
818 * and if a device is present, it will respond by
819 * correctly storing and echoing back the
820 * ATA shadow register contents.
821 *
822 * LOCKING:
823 * caller.
824 */
825
826 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
827 {
828 struct ata_ioports *ioaddr = &ap->ioaddr;
829 u8 nsect, lbal;
830
831 ap->ops->dev_select(ap, device);
832
833 iowrite8(0x55, ioaddr->nsect_addr);
834 iowrite8(0xaa, ioaddr->lbal_addr);
835
836 iowrite8(0xaa, ioaddr->nsect_addr);
837 iowrite8(0x55, ioaddr->lbal_addr);
838
839 iowrite8(0x55, ioaddr->nsect_addr);
840 iowrite8(0xaa, ioaddr->lbal_addr);
841
842 nsect = ioread8(ioaddr->nsect_addr);
843 lbal = ioread8(ioaddr->lbal_addr);
844
845 if ((nsect == 0x55) && (lbal == 0xaa))
846 return 1; /* we found a device */
847
848 return 0; /* nothing found */
849 }
850
851 /**
852 * ata_dev_classify - determine device type based on ATA-spec signature
853 * @tf: ATA taskfile register set for device to be identified
854 *
855 * Determine from taskfile register contents whether a device is
856 * ATA or ATAPI, as per "Signature and persistence" section
857 * of ATA/PI spec (volume 1, sect 5.14).
858 *
859 * LOCKING:
860 * None.
861 *
862 * RETURNS:
863 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
864 * %ATA_DEV_UNKNOWN the event of failure.
865 */
866 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
867 {
868 /* Apple's open source Darwin code hints that some devices only
869 * put a proper signature into the LBA mid/high registers,
870 * So, we only check those. It's sufficient for uniqueness.
871 *
872 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
873 * signatures for ATA and ATAPI devices attached on SerialATA,
874 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
875 * spec has never mentioned about using different signatures
876 * for ATA/ATAPI devices. Then, Serial ATA II: Port
877 * Multiplier specification began to use 0x69/0x96 to identify
878 * port multpliers and 0x3c/0xc3 to identify SEMB device.
879 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
880 * 0x69/0x96 shortly and described them as reserved for
881 * SerialATA.
882 *
883 * We follow the current spec and consider that 0x69/0x96
884 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
885 */
886 if ((tf->lbam == 0) && (tf->lbah == 0)) {
887 DPRINTK("found ATA device by sig\n");
888 return ATA_DEV_ATA;
889 }
890
891 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
892 DPRINTK("found ATAPI device by sig\n");
893 return ATA_DEV_ATAPI;
894 }
895
896 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
897 DPRINTK("found PMP device by sig\n");
898 return ATA_DEV_PMP;
899 }
900
901 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
902 printk(KERN_INFO "ata: SEMB device ignored\n");
903 return ATA_DEV_SEMB_UNSUP; /* not yet */
904 }
905
906 DPRINTK("unknown device\n");
907 return ATA_DEV_UNKNOWN;
908 }
909
910 /**
911 * ata_dev_try_classify - Parse returned ATA device signature
912 * @dev: ATA device to classify (starting at zero)
913 * @present: device seems present
914 * @r_err: Value of error register on completion
915 *
916 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
917 * an ATA/ATAPI-defined set of values is placed in the ATA
918 * shadow registers, indicating the results of device detection
919 * and diagnostics.
920 *
921 * Select the ATA device, and read the values from the ATA shadow
922 * registers. Then parse according to the Error register value,
923 * and the spec-defined values examined by ata_dev_classify().
924 *
925 * LOCKING:
926 * caller.
927 *
928 * RETURNS:
929 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
930 */
931 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
932 u8 *r_err)
933 {
934 struct ata_port *ap = dev->link->ap;
935 struct ata_taskfile tf;
936 unsigned int class;
937 u8 err;
938
939 ap->ops->dev_select(ap, dev->devno);
940
941 memset(&tf, 0, sizeof(tf));
942
943 ap->ops->tf_read(ap, &tf);
944 err = tf.feature;
945 if (r_err)
946 *r_err = err;
947
948 /* see if device passed diags: if master then continue and warn later */
949 if (err == 0 && dev->devno == 0)
950 /* diagnostic fail : do nothing _YET_ */
951 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
952 else if (err == 1)
953 /* do nothing */ ;
954 else if ((dev->devno == 0) && (err == 0x81))
955 /* do nothing */ ;
956 else
957 return ATA_DEV_NONE;
958
959 /* determine if device is ATA or ATAPI */
960 class = ata_dev_classify(&tf);
961
962 if (class == ATA_DEV_UNKNOWN) {
963 /* If the device failed diagnostic, it's likely to
964 * have reported incorrect device signature too.
965 * Assume ATA device if the device seems present but
966 * device signature is invalid with diagnostic
967 * failure.
968 */
969 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
970 class = ATA_DEV_ATA;
971 else
972 class = ATA_DEV_NONE;
973 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
974 class = ATA_DEV_NONE;
975
976 return class;
977 }
978
979 /**
980 * ata_id_string - Convert IDENTIFY DEVICE page into string
981 * @id: IDENTIFY DEVICE results we will examine
982 * @s: string into which data is output
983 * @ofs: offset into identify device page
984 * @len: length of string to return. must be an even number.
985 *
986 * The strings in the IDENTIFY DEVICE page are broken up into
987 * 16-bit chunks. Run through the string, and output each
988 * 8-bit chunk linearly, regardless of platform.
989 *
990 * LOCKING:
991 * caller.
992 */
993
994 void ata_id_string(const u16 *id, unsigned char *s,
995 unsigned int ofs, unsigned int len)
996 {
997 unsigned int c;
998
999 while (len > 0) {
1000 c = id[ofs] >> 8;
1001 *s = c;
1002 s++;
1003
1004 c = id[ofs] & 0xff;
1005 *s = c;
1006 s++;
1007
1008 ofs++;
1009 len -= 2;
1010 }
1011 }
1012
1013 /**
1014 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1015 * @id: IDENTIFY DEVICE results we will examine
1016 * @s: string into which data is output
1017 * @ofs: offset into identify device page
1018 * @len: length of string to return. must be an odd number.
1019 *
1020 * This function is identical to ata_id_string except that it
1021 * trims trailing spaces and terminates the resulting string with
1022 * null. @len must be actual maximum length (even number) + 1.
1023 *
1024 * LOCKING:
1025 * caller.
1026 */
1027 void ata_id_c_string(const u16 *id, unsigned char *s,
1028 unsigned int ofs, unsigned int len)
1029 {
1030 unsigned char *p;
1031
1032 WARN_ON(!(len & 1));
1033
1034 ata_id_string(id, s, ofs, len - 1);
1035
1036 p = s + strnlen(s, len - 1);
1037 while (p > s && p[-1] == ' ')
1038 p--;
1039 *p = '\0';
1040 }
1041
1042 static u64 ata_id_n_sectors(const u16 *id)
1043 {
1044 if (ata_id_has_lba(id)) {
1045 if (ata_id_has_lba48(id))
1046 return ata_id_u64(id, 100);
1047 else
1048 return ata_id_u32(id, 60);
1049 } else {
1050 if (ata_id_current_chs_valid(id))
1051 return ata_id_u32(id, 57);
1052 else
1053 return id[1] * id[3] * id[6];
1054 }
1055 }
1056
1057 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1058 {
1059 u64 sectors = 0;
1060
1061 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1062 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1063 sectors |= (tf->hob_lbal & 0xff) << 24;
1064 sectors |= (tf->lbah & 0xff) << 16;
1065 sectors |= (tf->lbam & 0xff) << 8;
1066 sectors |= (tf->lbal & 0xff);
1067
1068 return ++sectors;
1069 }
1070
1071 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1072 {
1073 u64 sectors = 0;
1074
1075 sectors |= (tf->device & 0x0f) << 24;
1076 sectors |= (tf->lbah & 0xff) << 16;
1077 sectors |= (tf->lbam & 0xff) << 8;
1078 sectors |= (tf->lbal & 0xff);
1079
1080 return ++sectors;
1081 }
1082
1083 /**
1084 * ata_read_native_max_address - Read native max address
1085 * @dev: target device
1086 * @max_sectors: out parameter for the result native max address
1087 *
1088 * Perform an LBA48 or LBA28 native size query upon the device in
1089 * question.
1090 *
1091 * RETURNS:
1092 * 0 on success, -EACCES if command is aborted by the drive.
1093 * -EIO on other errors.
1094 */
1095 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1096 {
1097 unsigned int err_mask;
1098 struct ata_taskfile tf;
1099 int lba48 = ata_id_has_lba48(dev->id);
1100
1101 ata_tf_init(dev, &tf);
1102
1103 /* always clear all address registers */
1104 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1105
1106 if (lba48) {
1107 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1108 tf.flags |= ATA_TFLAG_LBA48;
1109 } else
1110 tf.command = ATA_CMD_READ_NATIVE_MAX;
1111
1112 tf.protocol |= ATA_PROT_NODATA;
1113 tf.device |= ATA_LBA;
1114
1115 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1116 if (err_mask) {
1117 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1118 "max address (err_mask=0x%x)\n", err_mask);
1119 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1120 return -EACCES;
1121 return -EIO;
1122 }
1123
1124 if (lba48)
1125 *max_sectors = ata_tf_to_lba48(&tf);
1126 else
1127 *max_sectors = ata_tf_to_lba(&tf);
1128 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1129 (*max_sectors)--;
1130 return 0;
1131 }
1132
1133 /**
1134 * ata_set_max_sectors - Set max sectors
1135 * @dev: target device
1136 * @new_sectors: new max sectors value to set for the device
1137 *
1138 * Set max sectors of @dev to @new_sectors.
1139 *
1140 * RETURNS:
1141 * 0 on success, -EACCES if command is aborted or denied (due to
1142 * previous non-volatile SET_MAX) by the drive. -EIO on other
1143 * errors.
1144 */
1145 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1146 {
1147 unsigned int err_mask;
1148 struct ata_taskfile tf;
1149 int lba48 = ata_id_has_lba48(dev->id);
1150
1151 new_sectors--;
1152
1153 ata_tf_init(dev, &tf);
1154
1155 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1156
1157 if (lba48) {
1158 tf.command = ATA_CMD_SET_MAX_EXT;
1159 tf.flags |= ATA_TFLAG_LBA48;
1160
1161 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1162 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1163 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1164 } else {
1165 tf.command = ATA_CMD_SET_MAX;
1166
1167 tf.device |= (new_sectors >> 24) & 0xf;
1168 }
1169
1170 tf.protocol |= ATA_PROT_NODATA;
1171 tf.device |= ATA_LBA;
1172
1173 tf.lbal = (new_sectors >> 0) & 0xff;
1174 tf.lbam = (new_sectors >> 8) & 0xff;
1175 tf.lbah = (new_sectors >> 16) & 0xff;
1176
1177 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1178 if (err_mask) {
1179 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1180 "max address (err_mask=0x%x)\n", err_mask);
1181 if (err_mask == AC_ERR_DEV &&
1182 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1183 return -EACCES;
1184 return -EIO;
1185 }
1186
1187 return 0;
1188 }
1189
1190 /**
1191 * ata_hpa_resize - Resize a device with an HPA set
1192 * @dev: Device to resize
1193 *
1194 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1195 * it if required to the full size of the media. The caller must check
1196 * the drive has the HPA feature set enabled.
1197 *
1198 * RETURNS:
1199 * 0 on success, -errno on failure.
1200 */
1201 static int ata_hpa_resize(struct ata_device *dev)
1202 {
1203 struct ata_eh_context *ehc = &dev->link->eh_context;
1204 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1205 u64 sectors = ata_id_n_sectors(dev->id);
1206 u64 native_sectors;
1207 int rc;
1208
1209 /* do we need to do it? */
1210 if (dev->class != ATA_DEV_ATA ||
1211 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1212 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1213 return 0;
1214
1215 /* read native max address */
1216 rc = ata_read_native_max_address(dev, &native_sectors);
1217 if (rc) {
1218 /* If HPA isn't going to be unlocked, skip HPA
1219 * resizing from the next try.
1220 */
1221 if (!ata_ignore_hpa) {
1222 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1223 "broken, will skip HPA handling\n");
1224 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1225
1226 /* we can continue if device aborted the command */
1227 if (rc == -EACCES)
1228 rc = 0;
1229 }
1230
1231 return rc;
1232 }
1233
1234 /* nothing to do? */
1235 if (native_sectors <= sectors || !ata_ignore_hpa) {
1236 if (!print_info || native_sectors == sectors)
1237 return 0;
1238
1239 if (native_sectors > sectors)
1240 ata_dev_printk(dev, KERN_INFO,
1241 "HPA detected: current %llu, native %llu\n",
1242 (unsigned long long)sectors,
1243 (unsigned long long)native_sectors);
1244 else if (native_sectors < sectors)
1245 ata_dev_printk(dev, KERN_WARNING,
1246 "native sectors (%llu) is smaller than "
1247 "sectors (%llu)\n",
1248 (unsigned long long)native_sectors,
1249 (unsigned long long)sectors);
1250 return 0;
1251 }
1252
1253 /* let's unlock HPA */
1254 rc = ata_set_max_sectors(dev, native_sectors);
1255 if (rc == -EACCES) {
1256 /* if device aborted the command, skip HPA resizing */
1257 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1258 "(%llu -> %llu), skipping HPA handling\n",
1259 (unsigned long long)sectors,
1260 (unsigned long long)native_sectors);
1261 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1262 return 0;
1263 } else if (rc)
1264 return rc;
1265
1266 /* re-read IDENTIFY data */
1267 rc = ata_dev_reread_id(dev, 0);
1268 if (rc) {
1269 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1270 "data after HPA resizing\n");
1271 return rc;
1272 }
1273
1274 if (print_info) {
1275 u64 new_sectors = ata_id_n_sectors(dev->id);
1276 ata_dev_printk(dev, KERN_INFO,
1277 "HPA unlocked: %llu -> %llu, native %llu\n",
1278 (unsigned long long)sectors,
1279 (unsigned long long)new_sectors,
1280 (unsigned long long)native_sectors);
1281 }
1282
1283 return 0;
1284 }
1285
1286 /**
1287 * ata_id_to_dma_mode - Identify DMA mode from id block
1288 * @dev: device to identify
1289 * @unknown: mode to assume if we cannot tell
1290 *
1291 * Set up the timing values for the device based upon the identify
1292 * reported values for the DMA mode. This function is used by drivers
1293 * which rely upon firmware configured modes, but wish to report the
1294 * mode correctly when possible.
1295 *
1296 * In addition we emit similarly formatted messages to the default
1297 * ata_dev_set_mode handler, in order to provide consistency of
1298 * presentation.
1299 */
1300
1301 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1302 {
1303 unsigned int mask;
1304 u8 mode;
1305
1306 /* Pack the DMA modes */
1307 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1308 if (dev->id[53] & 0x04)
1309 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1310
1311 /* Select the mode in use */
1312 mode = ata_xfer_mask2mode(mask);
1313
1314 if (mode != 0) {
1315 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1316 ata_mode_string(mask));
1317 } else {
1318 /* SWDMA perhaps ? */
1319 mode = unknown;
1320 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1321 }
1322
1323 /* Configure the device reporting */
1324 dev->xfer_mode = mode;
1325 dev->xfer_shift = ata_xfer_mode2shift(mode);
1326 }
1327
1328 /**
1329 * ata_noop_dev_select - Select device 0/1 on ATA bus
1330 * @ap: ATA channel to manipulate
1331 * @device: ATA device (numbered from zero) to select
1332 *
1333 * This function performs no actual function.
1334 *
1335 * May be used as the dev_select() entry in ata_port_operations.
1336 *
1337 * LOCKING:
1338 * caller.
1339 */
1340 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1341 {
1342 }
1343
1344
1345 /**
1346 * ata_std_dev_select - Select device 0/1 on ATA bus
1347 * @ap: ATA channel to manipulate
1348 * @device: ATA device (numbered from zero) to select
1349 *
1350 * Use the method defined in the ATA specification to
1351 * make either device 0, or device 1, active on the
1352 * ATA channel. Works with both PIO and MMIO.
1353 *
1354 * May be used as the dev_select() entry in ata_port_operations.
1355 *
1356 * LOCKING:
1357 * caller.
1358 */
1359
1360 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1361 {
1362 u8 tmp;
1363
1364 if (device == 0)
1365 tmp = ATA_DEVICE_OBS;
1366 else
1367 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1368
1369 iowrite8(tmp, ap->ioaddr.device_addr);
1370 ata_pause(ap); /* needed; also flushes, for mmio */
1371 }
1372
1373 /**
1374 * ata_dev_select - Select device 0/1 on ATA bus
1375 * @ap: ATA channel to manipulate
1376 * @device: ATA device (numbered from zero) to select
1377 * @wait: non-zero to wait for Status register BSY bit to clear
1378 * @can_sleep: non-zero if context allows sleeping
1379 *
1380 * Use the method defined in the ATA specification to
1381 * make either device 0, or device 1, active on the
1382 * ATA channel.
1383 *
1384 * This is a high-level version of ata_std_dev_select(),
1385 * which additionally provides the services of inserting
1386 * the proper pauses and status polling, where needed.
1387 *
1388 * LOCKING:
1389 * caller.
1390 */
1391
1392 void ata_dev_select(struct ata_port *ap, unsigned int device,
1393 unsigned int wait, unsigned int can_sleep)
1394 {
1395 if (ata_msg_probe(ap))
1396 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1397 "device %u, wait %u\n", device, wait);
1398
1399 if (wait)
1400 ata_wait_idle(ap);
1401
1402 ap->ops->dev_select(ap, device);
1403
1404 if (wait) {
1405 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1406 msleep(150);
1407 ata_wait_idle(ap);
1408 }
1409 }
1410
1411 /**
1412 * ata_dump_id - IDENTIFY DEVICE info debugging output
1413 * @id: IDENTIFY DEVICE page to dump
1414 *
1415 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1416 * page.
1417 *
1418 * LOCKING:
1419 * caller.
1420 */
1421
1422 static inline void ata_dump_id(const u16 *id)
1423 {
1424 DPRINTK("49==0x%04x "
1425 "53==0x%04x "
1426 "63==0x%04x "
1427 "64==0x%04x "
1428 "75==0x%04x \n",
1429 id[49],
1430 id[53],
1431 id[63],
1432 id[64],
1433 id[75]);
1434 DPRINTK("80==0x%04x "
1435 "81==0x%04x "
1436 "82==0x%04x "
1437 "83==0x%04x "
1438 "84==0x%04x \n",
1439 id[80],
1440 id[81],
1441 id[82],
1442 id[83],
1443 id[84]);
1444 DPRINTK("88==0x%04x "
1445 "93==0x%04x\n",
1446 id[88],
1447 id[93]);
1448 }
1449
1450 /**
1451 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1452 * @id: IDENTIFY data to compute xfer mask from
1453 *
1454 * Compute the xfermask for this device. This is not as trivial
1455 * as it seems if we must consider early devices correctly.
1456 *
1457 * FIXME: pre IDE drive timing (do we care ?).
1458 *
1459 * LOCKING:
1460 * None.
1461 *
1462 * RETURNS:
1463 * Computed xfermask
1464 */
1465 static unsigned int ata_id_xfermask(const u16 *id)
1466 {
1467 unsigned int pio_mask, mwdma_mask, udma_mask;
1468
1469 /* Usual case. Word 53 indicates word 64 is valid */
1470 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1471 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1472 pio_mask <<= 3;
1473 pio_mask |= 0x7;
1474 } else {
1475 /* If word 64 isn't valid then Word 51 high byte holds
1476 * the PIO timing number for the maximum. Turn it into
1477 * a mask.
1478 */
1479 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1480 if (mode < 5) /* Valid PIO range */
1481 pio_mask = (2 << mode) - 1;
1482 else
1483 pio_mask = 1;
1484
1485 /* But wait.. there's more. Design your standards by
1486 * committee and you too can get a free iordy field to
1487 * process. However its the speeds not the modes that
1488 * are supported... Note drivers using the timing API
1489 * will get this right anyway
1490 */
1491 }
1492
1493 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1494
1495 if (ata_id_is_cfa(id)) {
1496 /*
1497 * Process compact flash extended modes
1498 */
1499 int pio = id[163] & 0x7;
1500 int dma = (id[163] >> 3) & 7;
1501
1502 if (pio)
1503 pio_mask |= (1 << 5);
1504 if (pio > 1)
1505 pio_mask |= (1 << 6);
1506 if (dma)
1507 mwdma_mask |= (1 << 3);
1508 if (dma > 1)
1509 mwdma_mask |= (1 << 4);
1510 }
1511
1512 udma_mask = 0;
1513 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1514 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1515
1516 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1517 }
1518
1519 /**
1520 * ata_port_queue_task - Queue port_task
1521 * @ap: The ata_port to queue port_task for
1522 * @fn: workqueue function to be scheduled
1523 * @data: data for @fn to use
1524 * @delay: delay time for workqueue function
1525 *
1526 * Schedule @fn(@data) for execution after @delay jiffies using
1527 * port_task. There is one port_task per port and it's the
1528 * user(low level driver)'s responsibility to make sure that only
1529 * one task is active at any given time.
1530 *
1531 * libata core layer takes care of synchronization between
1532 * port_task and EH. ata_port_queue_task() may be ignored for EH
1533 * synchronization.
1534 *
1535 * LOCKING:
1536 * Inherited from caller.
1537 */
1538 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1539 unsigned long delay)
1540 {
1541 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1542 ap->port_task_data = data;
1543
1544 /* may fail if ata_port_flush_task() in progress */
1545 queue_delayed_work(ata_wq, &ap->port_task, delay);
1546 }
1547
1548 /**
1549 * ata_port_flush_task - Flush port_task
1550 * @ap: The ata_port to flush port_task for
1551 *
1552 * After this function completes, port_task is guranteed not to
1553 * be running or scheduled.
1554 *
1555 * LOCKING:
1556 * Kernel thread context (may sleep)
1557 */
1558 void ata_port_flush_task(struct ata_port *ap)
1559 {
1560 DPRINTK("ENTER\n");
1561
1562 cancel_rearming_delayed_work(&ap->port_task);
1563
1564 if (ata_msg_ctl(ap))
1565 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1566 }
1567
1568 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1569 {
1570 struct completion *waiting = qc->private_data;
1571
1572 complete(waiting);
1573 }
1574
1575 /**
1576 * ata_exec_internal_sg - execute libata internal command
1577 * @dev: Device to which the command is sent
1578 * @tf: Taskfile registers for the command and the result
1579 * @cdb: CDB for packet command
1580 * @dma_dir: Data tranfer direction of the command
1581 * @sgl: sg list for the data buffer of the command
1582 * @n_elem: Number of sg entries
1583 * @timeout: Timeout in msecs (0 for default)
1584 *
1585 * Executes libata internal command with timeout. @tf contains
1586 * command on entry and result on return. Timeout and error
1587 * conditions are reported via return value. No recovery action
1588 * is taken after a command times out. It's caller's duty to
1589 * clean up after timeout.
1590 *
1591 * LOCKING:
1592 * None. Should be called with kernel context, might sleep.
1593 *
1594 * RETURNS:
1595 * Zero on success, AC_ERR_* mask on failure
1596 */
1597 unsigned ata_exec_internal_sg(struct ata_device *dev,
1598 struct ata_taskfile *tf, const u8 *cdb,
1599 int dma_dir, struct scatterlist *sgl,
1600 unsigned int n_elem, unsigned long timeout)
1601 {
1602 struct ata_link *link = dev->link;
1603 struct ata_port *ap = link->ap;
1604 u8 command = tf->command;
1605 struct ata_queued_cmd *qc;
1606 unsigned int tag, preempted_tag;
1607 u32 preempted_sactive, preempted_qc_active;
1608 int preempted_nr_active_links;
1609 DECLARE_COMPLETION_ONSTACK(wait);
1610 unsigned long flags;
1611 unsigned int err_mask;
1612 int rc;
1613
1614 spin_lock_irqsave(ap->lock, flags);
1615
1616 /* no internal command while frozen */
1617 if (ap->pflags & ATA_PFLAG_FROZEN) {
1618 spin_unlock_irqrestore(ap->lock, flags);
1619 return AC_ERR_SYSTEM;
1620 }
1621
1622 /* initialize internal qc */
1623
1624 /* XXX: Tag 0 is used for drivers with legacy EH as some
1625 * drivers choke if any other tag is given. This breaks
1626 * ata_tag_internal() test for those drivers. Don't use new
1627 * EH stuff without converting to it.
1628 */
1629 if (ap->ops->error_handler)
1630 tag = ATA_TAG_INTERNAL;
1631 else
1632 tag = 0;
1633
1634 if (test_and_set_bit(tag, &ap->qc_allocated))
1635 BUG();
1636 qc = __ata_qc_from_tag(ap, tag);
1637
1638 qc->tag = tag;
1639 qc->scsicmd = NULL;
1640 qc->ap = ap;
1641 qc->dev = dev;
1642 ata_qc_reinit(qc);
1643
1644 preempted_tag = link->active_tag;
1645 preempted_sactive = link->sactive;
1646 preempted_qc_active = ap->qc_active;
1647 preempted_nr_active_links = ap->nr_active_links;
1648 link->active_tag = ATA_TAG_POISON;
1649 link->sactive = 0;
1650 ap->qc_active = 0;
1651 ap->nr_active_links = 0;
1652
1653 /* prepare & issue qc */
1654 qc->tf = *tf;
1655 if (cdb)
1656 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1657 qc->flags |= ATA_QCFLAG_RESULT_TF;
1658 qc->dma_dir = dma_dir;
1659 if (dma_dir != DMA_NONE) {
1660 unsigned int i, buflen = 0;
1661 struct scatterlist *sg;
1662
1663 for_each_sg(sgl, sg, n_elem, i)
1664 buflen += sg->length;
1665
1666 ata_sg_init(qc, sgl, n_elem);
1667 qc->nbytes = buflen;
1668 }
1669
1670 qc->private_data = &wait;
1671 qc->complete_fn = ata_qc_complete_internal;
1672
1673 ata_qc_issue(qc);
1674
1675 spin_unlock_irqrestore(ap->lock, flags);
1676
1677 if (!timeout)
1678 timeout = ata_probe_timeout * 1000 / HZ;
1679
1680 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1681
1682 ata_port_flush_task(ap);
1683
1684 if (!rc) {
1685 spin_lock_irqsave(ap->lock, flags);
1686
1687 /* We're racing with irq here. If we lose, the
1688 * following test prevents us from completing the qc
1689 * twice. If we win, the port is frozen and will be
1690 * cleaned up by ->post_internal_cmd().
1691 */
1692 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1693 qc->err_mask |= AC_ERR_TIMEOUT;
1694
1695 if (ap->ops->error_handler)
1696 ata_port_freeze(ap);
1697 else
1698 ata_qc_complete(qc);
1699
1700 if (ata_msg_warn(ap))
1701 ata_dev_printk(dev, KERN_WARNING,
1702 "qc timeout (cmd 0x%x)\n", command);
1703 }
1704
1705 spin_unlock_irqrestore(ap->lock, flags);
1706 }
1707
1708 /* do post_internal_cmd */
1709 if (ap->ops->post_internal_cmd)
1710 ap->ops->post_internal_cmd(qc);
1711
1712 /* perform minimal error analysis */
1713 if (qc->flags & ATA_QCFLAG_FAILED) {
1714 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1715 qc->err_mask |= AC_ERR_DEV;
1716
1717 if (!qc->err_mask)
1718 qc->err_mask |= AC_ERR_OTHER;
1719
1720 if (qc->err_mask & ~AC_ERR_OTHER)
1721 qc->err_mask &= ~AC_ERR_OTHER;
1722 }
1723
1724 /* finish up */
1725 spin_lock_irqsave(ap->lock, flags);
1726
1727 *tf = qc->result_tf;
1728 err_mask = qc->err_mask;
1729
1730 ata_qc_free(qc);
1731 link->active_tag = preempted_tag;
1732 link->sactive = preempted_sactive;
1733 ap->qc_active = preempted_qc_active;
1734 ap->nr_active_links = preempted_nr_active_links;
1735
1736 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1737 * Until those drivers are fixed, we detect the condition
1738 * here, fail the command with AC_ERR_SYSTEM and reenable the
1739 * port.
1740 *
1741 * Note that this doesn't change any behavior as internal
1742 * command failure results in disabling the device in the
1743 * higher layer for LLDDs without new reset/EH callbacks.
1744 *
1745 * Kill the following code as soon as those drivers are fixed.
1746 */
1747 if (ap->flags & ATA_FLAG_DISABLED) {
1748 err_mask |= AC_ERR_SYSTEM;
1749 ata_port_probe(ap);
1750 }
1751
1752 spin_unlock_irqrestore(ap->lock, flags);
1753
1754 return err_mask;
1755 }
1756
1757 /**
1758 * ata_exec_internal - execute libata internal command
1759 * @dev: Device to which the command is sent
1760 * @tf: Taskfile registers for the command and the result
1761 * @cdb: CDB for packet command
1762 * @dma_dir: Data tranfer direction of the command
1763 * @buf: Data buffer of the command
1764 * @buflen: Length of data buffer
1765 * @timeout: Timeout in msecs (0 for default)
1766 *
1767 * Wrapper around ata_exec_internal_sg() which takes simple
1768 * buffer instead of sg list.
1769 *
1770 * LOCKING:
1771 * None. Should be called with kernel context, might sleep.
1772 *
1773 * RETURNS:
1774 * Zero on success, AC_ERR_* mask on failure
1775 */
1776 unsigned ata_exec_internal(struct ata_device *dev,
1777 struct ata_taskfile *tf, const u8 *cdb,
1778 int dma_dir, void *buf, unsigned int buflen,
1779 unsigned long timeout)
1780 {
1781 struct scatterlist *psg = NULL, sg;
1782 unsigned int n_elem = 0;
1783
1784 if (dma_dir != DMA_NONE) {
1785 WARN_ON(!buf);
1786 sg_init_one(&sg, buf, buflen);
1787 psg = &sg;
1788 n_elem++;
1789 }
1790
1791 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1792 timeout);
1793 }
1794
1795 /**
1796 * ata_do_simple_cmd - execute simple internal command
1797 * @dev: Device to which the command is sent
1798 * @cmd: Opcode to execute
1799 *
1800 * Execute a 'simple' command, that only consists of the opcode
1801 * 'cmd' itself, without filling any other registers
1802 *
1803 * LOCKING:
1804 * Kernel thread context (may sleep).
1805 *
1806 * RETURNS:
1807 * Zero on success, AC_ERR_* mask on failure
1808 */
1809 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1810 {
1811 struct ata_taskfile tf;
1812
1813 ata_tf_init(dev, &tf);
1814
1815 tf.command = cmd;
1816 tf.flags |= ATA_TFLAG_DEVICE;
1817 tf.protocol = ATA_PROT_NODATA;
1818
1819 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1820 }
1821
1822 /**
1823 * ata_pio_need_iordy - check if iordy needed
1824 * @adev: ATA device
1825 *
1826 * Check if the current speed of the device requires IORDY. Used
1827 * by various controllers for chip configuration.
1828 */
1829
1830 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1831 {
1832 /* Controller doesn't support IORDY. Probably a pointless check
1833 as the caller should know this */
1834 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1835 return 0;
1836 /* PIO3 and higher it is mandatory */
1837 if (adev->pio_mode > XFER_PIO_2)
1838 return 1;
1839 /* We turn it on when possible */
1840 if (ata_id_has_iordy(adev->id))
1841 return 1;
1842 return 0;
1843 }
1844
1845 /**
1846 * ata_pio_mask_no_iordy - Return the non IORDY mask
1847 * @adev: ATA device
1848 *
1849 * Compute the highest mode possible if we are not using iordy. Return
1850 * -1 if no iordy mode is available.
1851 */
1852
1853 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1854 {
1855 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1856 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1857 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1858 /* Is the speed faster than the drive allows non IORDY ? */
1859 if (pio) {
1860 /* This is cycle times not frequency - watch the logic! */
1861 if (pio > 240) /* PIO2 is 240nS per cycle */
1862 return 3 << ATA_SHIFT_PIO;
1863 return 7 << ATA_SHIFT_PIO;
1864 }
1865 }
1866 return 3 << ATA_SHIFT_PIO;
1867 }
1868
1869 /**
1870 * ata_dev_read_id - Read ID data from the specified device
1871 * @dev: target device
1872 * @p_class: pointer to class of the target device (may be changed)
1873 * @flags: ATA_READID_* flags
1874 * @id: buffer to read IDENTIFY data into
1875 *
1876 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1877 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1878 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1879 * for pre-ATA4 drives.
1880 *
1881 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1882 * now we abort if we hit that case.
1883 *
1884 * LOCKING:
1885 * Kernel thread context (may sleep)
1886 *
1887 * RETURNS:
1888 * 0 on success, -errno otherwise.
1889 */
1890 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1891 unsigned int flags, u16 *id)
1892 {
1893 struct ata_port *ap = dev->link->ap;
1894 unsigned int class = *p_class;
1895 struct ata_taskfile tf;
1896 unsigned int err_mask = 0;
1897 const char *reason;
1898 int may_fallback = 1, tried_spinup = 0;
1899 int rc;
1900
1901 if (ata_msg_ctl(ap))
1902 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1903
1904 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1905 retry:
1906 ata_tf_init(dev, &tf);
1907
1908 switch (class) {
1909 case ATA_DEV_ATA:
1910 tf.command = ATA_CMD_ID_ATA;
1911 break;
1912 case ATA_DEV_ATAPI:
1913 tf.command = ATA_CMD_ID_ATAPI;
1914 break;
1915 default:
1916 rc = -ENODEV;
1917 reason = "unsupported class";
1918 goto err_out;
1919 }
1920
1921 tf.protocol = ATA_PROT_PIO;
1922
1923 /* Some devices choke if TF registers contain garbage. Make
1924 * sure those are properly initialized.
1925 */
1926 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1927
1928 /* Device presence detection is unreliable on some
1929 * controllers. Always poll IDENTIFY if available.
1930 */
1931 tf.flags |= ATA_TFLAG_POLLING;
1932
1933 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1934 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1935 if (err_mask) {
1936 if (err_mask & AC_ERR_NODEV_HINT) {
1937 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1938 ap->print_id, dev->devno);
1939 return -ENOENT;
1940 }
1941
1942 /* Device or controller might have reported the wrong
1943 * device class. Give a shot at the other IDENTIFY if
1944 * the current one is aborted by the device.
1945 */
1946 if (may_fallback &&
1947 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1948 may_fallback = 0;
1949
1950 if (class == ATA_DEV_ATA)
1951 class = ATA_DEV_ATAPI;
1952 else
1953 class = ATA_DEV_ATA;
1954 goto retry;
1955 }
1956
1957 rc = -EIO;
1958 reason = "I/O error";
1959 goto err_out;
1960 }
1961
1962 /* Falling back doesn't make sense if ID data was read
1963 * successfully at least once.
1964 */
1965 may_fallback = 0;
1966
1967 swap_buf_le16(id, ATA_ID_WORDS);
1968
1969 /* sanity check */
1970 rc = -EINVAL;
1971 reason = "device reports invalid type";
1972
1973 if (class == ATA_DEV_ATA) {
1974 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975 goto err_out;
1976 } else {
1977 if (ata_id_is_ata(id))
1978 goto err_out;
1979 }
1980
1981 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1982 tried_spinup = 1;
1983 /*
1984 * Drive powered-up in standby mode, and requires a specific
1985 * SET_FEATURES spin-up subcommand before it will accept
1986 * anything other than the original IDENTIFY command.
1987 */
1988 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1989 if (err_mask && id[2] != 0x738c) {
1990 rc = -EIO;
1991 reason = "SPINUP failed";
1992 goto err_out;
1993 }
1994 /*
1995 * If the drive initially returned incomplete IDENTIFY info,
1996 * we now must reissue the IDENTIFY command.
1997 */
1998 if (id[2] == 0x37c8)
1999 goto retry;
2000 }
2001
2002 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2003 /*
2004 * The exact sequence expected by certain pre-ATA4 drives is:
2005 * SRST RESET
2006 * IDENTIFY (optional in early ATA)
2007 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2008 * anything else..
2009 * Some drives were very specific about that exact sequence.
2010 *
2011 * Note that ATA4 says lba is mandatory so the second check
2012 * shoud never trigger.
2013 */
2014 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2015 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2016 if (err_mask) {
2017 rc = -EIO;
2018 reason = "INIT_DEV_PARAMS failed";
2019 goto err_out;
2020 }
2021
2022 /* current CHS translation info (id[53-58]) might be
2023 * changed. reread the identify device info.
2024 */
2025 flags &= ~ATA_READID_POSTRESET;
2026 goto retry;
2027 }
2028 }
2029
2030 *p_class = class;
2031
2032 return 0;
2033
2034 err_out:
2035 if (ata_msg_warn(ap))
2036 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2037 "(%s, err_mask=0x%x)\n", reason, err_mask);
2038 return rc;
2039 }
2040
2041 static inline u8 ata_dev_knobble(struct ata_device *dev)
2042 {
2043 struct ata_port *ap = dev->link->ap;
2044 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2045 }
2046
2047 static void ata_dev_config_ncq(struct ata_device *dev,
2048 char *desc, size_t desc_sz)
2049 {
2050 struct ata_port *ap = dev->link->ap;
2051 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2052
2053 if (!ata_id_has_ncq(dev->id)) {
2054 desc[0] = '\0';
2055 return;
2056 }
2057 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2058 snprintf(desc, desc_sz, "NCQ (not used)");
2059 return;
2060 }
2061 if (ap->flags & ATA_FLAG_NCQ) {
2062 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2063 dev->flags |= ATA_DFLAG_NCQ;
2064 }
2065
2066 if (hdepth >= ddepth)
2067 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2068 else
2069 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2070 }
2071
2072 /**
2073 * ata_dev_configure - Configure the specified ATA/ATAPI device
2074 * @dev: Target device to configure
2075 *
2076 * Configure @dev according to @dev->id. Generic and low-level
2077 * driver specific fixups are also applied.
2078 *
2079 * LOCKING:
2080 * Kernel thread context (may sleep)
2081 *
2082 * RETURNS:
2083 * 0 on success, -errno otherwise
2084 */
2085 int ata_dev_configure(struct ata_device *dev)
2086 {
2087 struct ata_port *ap = dev->link->ap;
2088 struct ata_eh_context *ehc = &dev->link->eh_context;
2089 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2090 const u16 *id = dev->id;
2091 unsigned int xfer_mask;
2092 char revbuf[7]; /* XYZ-99\0 */
2093 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2094 char modelbuf[ATA_ID_PROD_LEN+1];
2095 int rc;
2096
2097 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2098 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2099 __FUNCTION__);
2100 return 0;
2101 }
2102
2103 if (ata_msg_probe(ap))
2104 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2105
2106 /* set horkage */
2107 dev->horkage |= ata_dev_blacklisted(dev);
2108
2109 /* let ACPI work its magic */
2110 rc = ata_acpi_on_devcfg(dev);
2111 if (rc)
2112 return rc;
2113
2114 /* massage HPA, do it early as it might change IDENTIFY data */
2115 rc = ata_hpa_resize(dev);
2116 if (rc)
2117 return rc;
2118
2119 /* print device capabilities */
2120 if (ata_msg_probe(ap))
2121 ata_dev_printk(dev, KERN_DEBUG,
2122 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2123 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2124 __FUNCTION__,
2125 id[49], id[82], id[83], id[84],
2126 id[85], id[86], id[87], id[88]);
2127
2128 /* initialize to-be-configured parameters */
2129 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2130 dev->max_sectors = 0;
2131 dev->cdb_len = 0;
2132 dev->n_sectors = 0;
2133 dev->cylinders = 0;
2134 dev->heads = 0;
2135 dev->sectors = 0;
2136
2137 /*
2138 * common ATA, ATAPI feature tests
2139 */
2140
2141 /* find max transfer mode; for printk only */
2142 xfer_mask = ata_id_xfermask(id);
2143
2144 if (ata_msg_probe(ap))
2145 ata_dump_id(id);
2146
2147 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2148 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2149 sizeof(fwrevbuf));
2150
2151 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2152 sizeof(modelbuf));
2153
2154 /* ATA-specific feature tests */
2155 if (dev->class == ATA_DEV_ATA) {
2156 if (ata_id_is_cfa(id)) {
2157 if (id[162] & 1) /* CPRM may make this media unusable */
2158 ata_dev_printk(dev, KERN_WARNING,
2159 "supports DRM functions and may "
2160 "not be fully accessable.\n");
2161 snprintf(revbuf, 7, "CFA");
2162 } else
2163 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2164
2165 dev->n_sectors = ata_id_n_sectors(id);
2166
2167 if (dev->id[59] & 0x100)
2168 dev->multi_count = dev->id[59] & 0xff;
2169
2170 if (ata_id_has_lba(id)) {
2171 const char *lba_desc;
2172 char ncq_desc[20];
2173
2174 lba_desc = "LBA";
2175 dev->flags |= ATA_DFLAG_LBA;
2176 if (ata_id_has_lba48(id)) {
2177 dev->flags |= ATA_DFLAG_LBA48;
2178 lba_desc = "LBA48";
2179
2180 if (dev->n_sectors >= (1UL << 28) &&
2181 ata_id_has_flush_ext(id))
2182 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2183 }
2184
2185 /* config NCQ */
2186 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2187
2188 /* print device info to dmesg */
2189 if (ata_msg_drv(ap) && print_info) {
2190 ata_dev_printk(dev, KERN_INFO,
2191 "%s: %s, %s, max %s\n",
2192 revbuf, modelbuf, fwrevbuf,
2193 ata_mode_string(xfer_mask));
2194 ata_dev_printk(dev, KERN_INFO,
2195 "%Lu sectors, multi %u: %s %s\n",
2196 (unsigned long long)dev->n_sectors,
2197 dev->multi_count, lba_desc, ncq_desc);
2198 }
2199 } else {
2200 /* CHS */
2201
2202 /* Default translation */
2203 dev->cylinders = id[1];
2204 dev->heads = id[3];
2205 dev->sectors = id[6];
2206
2207 if (ata_id_current_chs_valid(id)) {
2208 /* Current CHS translation is valid. */
2209 dev->cylinders = id[54];
2210 dev->heads = id[55];
2211 dev->sectors = id[56];
2212 }
2213
2214 /* print device info to dmesg */
2215 if (ata_msg_drv(ap) && print_info) {
2216 ata_dev_printk(dev, KERN_INFO,
2217 "%s: %s, %s, max %s\n",
2218 revbuf, modelbuf, fwrevbuf,
2219 ata_mode_string(xfer_mask));
2220 ata_dev_printk(dev, KERN_INFO,
2221 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2222 (unsigned long long)dev->n_sectors,
2223 dev->multi_count, dev->cylinders,
2224 dev->heads, dev->sectors);
2225 }
2226 }
2227
2228 dev->cdb_len = 16;
2229 }
2230
2231 /* ATAPI-specific feature tests */
2232 else if (dev->class == ATA_DEV_ATAPI) {
2233 const char *cdb_intr_string = "";
2234 const char *atapi_an_string = "";
2235 u32 sntf;
2236
2237 rc = atapi_cdb_len(id);
2238 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2239 if (ata_msg_warn(ap))
2240 ata_dev_printk(dev, KERN_WARNING,
2241 "unsupported CDB len\n");
2242 rc = -EINVAL;
2243 goto err_out_nosup;
2244 }
2245 dev->cdb_len = (unsigned int) rc;
2246
2247 /* Enable ATAPI AN if both the host and device have
2248 * the support. If PMP is attached, SNTF is required
2249 * to enable ATAPI AN to discern between PHY status
2250 * changed notifications and ATAPI ANs.
2251 */
2252 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2253 (!ap->nr_pmp_links ||
2254 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2255 unsigned int err_mask;
2256
2257 /* issue SET feature command to turn this on */
2258 err_mask = ata_dev_set_feature(dev,
2259 SETFEATURES_SATA_ENABLE, SATA_AN);
2260 if (err_mask)
2261 ata_dev_printk(dev, KERN_ERR,
2262 "failed to enable ATAPI AN "
2263 "(err_mask=0x%x)\n", err_mask);
2264 else {
2265 dev->flags |= ATA_DFLAG_AN;
2266 atapi_an_string = ", ATAPI AN";
2267 }
2268 }
2269
2270 if (ata_id_cdb_intr(dev->id)) {
2271 dev->flags |= ATA_DFLAG_CDB_INTR;
2272 cdb_intr_string = ", CDB intr";
2273 }
2274
2275 /* print device info to dmesg */
2276 if (ata_msg_drv(ap) && print_info)
2277 ata_dev_printk(dev, KERN_INFO,
2278 "ATAPI: %s, %s, max %s%s%s\n",
2279 modelbuf, fwrevbuf,
2280 ata_mode_string(xfer_mask),
2281 cdb_intr_string, atapi_an_string);
2282 }
2283
2284 /* determine max_sectors */
2285 dev->max_sectors = ATA_MAX_SECTORS;
2286 if (dev->flags & ATA_DFLAG_LBA48)
2287 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2288
2289 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2290 if (ata_id_has_hipm(dev->id))
2291 dev->flags |= ATA_DFLAG_HIPM;
2292 if (ata_id_has_dipm(dev->id))
2293 dev->flags |= ATA_DFLAG_DIPM;
2294 }
2295
2296 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2297 /* Let the user know. We don't want to disallow opens for
2298 rescue purposes, or in case the vendor is just a blithering
2299 idiot */
2300 if (print_info) {
2301 ata_dev_printk(dev, KERN_WARNING,
2302 "Drive reports diagnostics failure. This may indicate a drive\n");
2303 ata_dev_printk(dev, KERN_WARNING,
2304 "fault or invalid emulation. Contact drive vendor for information.\n");
2305 }
2306 }
2307
2308 /* limit bridge transfers to udma5, 200 sectors */
2309 if (ata_dev_knobble(dev)) {
2310 if (ata_msg_drv(ap) && print_info)
2311 ata_dev_printk(dev, KERN_INFO,
2312 "applying bridge limits\n");
2313 dev->udma_mask &= ATA_UDMA5;
2314 dev->max_sectors = ATA_MAX_SECTORS;
2315 }
2316
2317 if ((dev->class == ATA_DEV_ATAPI) &&
2318 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2319 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2320 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2321 }
2322
2323 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2324 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2325 dev->max_sectors);
2326
2327 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2328 dev->horkage |= ATA_HORKAGE_IPM;
2329
2330 /* reset link pm_policy for this port to no pm */
2331 ap->pm_policy = MAX_PERFORMANCE;
2332 }
2333
2334 if (ap->ops->dev_config)
2335 ap->ops->dev_config(dev);
2336
2337 if (ata_msg_probe(ap))
2338 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2339 __FUNCTION__, ata_chk_status(ap));
2340 return 0;
2341
2342 err_out_nosup:
2343 if (ata_msg_probe(ap))
2344 ata_dev_printk(dev, KERN_DEBUG,
2345 "%s: EXIT, err\n", __FUNCTION__);
2346 return rc;
2347 }
2348
2349 /**
2350 * ata_cable_40wire - return 40 wire cable type
2351 * @ap: port
2352 *
2353 * Helper method for drivers which want to hardwire 40 wire cable
2354 * detection.
2355 */
2356
2357 int ata_cable_40wire(struct ata_port *ap)
2358 {
2359 return ATA_CBL_PATA40;
2360 }
2361
2362 /**
2363 * ata_cable_80wire - return 80 wire cable type
2364 * @ap: port
2365 *
2366 * Helper method for drivers which want to hardwire 80 wire cable
2367 * detection.
2368 */
2369
2370 int ata_cable_80wire(struct ata_port *ap)
2371 {
2372 return ATA_CBL_PATA80;
2373 }
2374
2375 /**
2376 * ata_cable_unknown - return unknown PATA cable.
2377 * @ap: port
2378 *
2379 * Helper method for drivers which have no PATA cable detection.
2380 */
2381
2382 int ata_cable_unknown(struct ata_port *ap)
2383 {
2384 return ATA_CBL_PATA_UNK;
2385 }
2386
2387 /**
2388 * ata_cable_sata - return SATA cable type
2389 * @ap: port
2390 *
2391 * Helper method for drivers which have SATA cables
2392 */
2393
2394 int ata_cable_sata(struct ata_port *ap)
2395 {
2396 return ATA_CBL_SATA;
2397 }
2398
2399 /**
2400 * ata_bus_probe - Reset and probe ATA bus
2401 * @ap: Bus to probe
2402 *
2403 * Master ATA bus probing function. Initiates a hardware-dependent
2404 * bus reset, then attempts to identify any devices found on
2405 * the bus.
2406 *
2407 * LOCKING:
2408 * PCI/etc. bus probe sem.
2409 *
2410 * RETURNS:
2411 * Zero on success, negative errno otherwise.
2412 */
2413
2414 int ata_bus_probe(struct ata_port *ap)
2415 {
2416 unsigned int classes[ATA_MAX_DEVICES];
2417 int tries[ATA_MAX_DEVICES];
2418 int rc;
2419 struct ata_device *dev;
2420
2421 ata_port_probe(ap);
2422
2423 ata_link_for_each_dev(dev, &ap->link)
2424 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2425
2426 retry:
2427 ata_link_for_each_dev(dev, &ap->link) {
2428 /* If we issue an SRST then an ATA drive (not ATAPI)
2429 * may change configuration and be in PIO0 timing. If
2430 * we do a hard reset (or are coming from power on)
2431 * this is true for ATA or ATAPI. Until we've set a
2432 * suitable controller mode we should not touch the
2433 * bus as we may be talking too fast.
2434 */
2435 dev->pio_mode = XFER_PIO_0;
2436
2437 /* If the controller has a pio mode setup function
2438 * then use it to set the chipset to rights. Don't
2439 * touch the DMA setup as that will be dealt with when
2440 * configuring devices.
2441 */
2442 if (ap->ops->set_piomode)
2443 ap->ops->set_piomode(ap, dev);
2444 }
2445
2446 /* reset and determine device classes */
2447 ap->ops->phy_reset(ap);
2448
2449 ata_link_for_each_dev(dev, &ap->link) {
2450 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2451 dev->class != ATA_DEV_UNKNOWN)
2452 classes[dev->devno] = dev->class;
2453 else
2454 classes[dev->devno] = ATA_DEV_NONE;
2455
2456 dev->class = ATA_DEV_UNKNOWN;
2457 }
2458
2459 ata_port_probe(ap);
2460
2461 /* read IDENTIFY page and configure devices. We have to do the identify
2462 specific sequence bass-ackwards so that PDIAG- is released by
2463 the slave device */
2464
2465 ata_link_for_each_dev(dev, &ap->link) {
2466 if (tries[dev->devno])
2467 dev->class = classes[dev->devno];
2468
2469 if (!ata_dev_enabled(dev))
2470 continue;
2471
2472 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2473 dev->id);
2474 if (rc)
2475 goto fail;
2476 }
2477
2478 /* Now ask for the cable type as PDIAG- should have been released */
2479 if (ap->ops->cable_detect)
2480 ap->cbl = ap->ops->cable_detect(ap);
2481
2482 /* We may have SATA bridge glue hiding here irrespective of the
2483 reported cable types and sensed types */
2484 ata_link_for_each_dev(dev, &ap->link) {
2485 if (!ata_dev_enabled(dev))
2486 continue;
2487 /* SATA drives indicate we have a bridge. We don't know which
2488 end of the link the bridge is which is a problem */
2489 if (ata_id_is_sata(dev->id))
2490 ap->cbl = ATA_CBL_SATA;
2491 }
2492
2493 /* After the identify sequence we can now set up the devices. We do
2494 this in the normal order so that the user doesn't get confused */
2495
2496 ata_link_for_each_dev(dev, &ap->link) {
2497 if (!ata_dev_enabled(dev))
2498 continue;
2499
2500 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2501 rc = ata_dev_configure(dev);
2502 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2503 if (rc)
2504 goto fail;
2505 }
2506
2507 /* configure transfer mode */
2508 rc = ata_set_mode(&ap->link, &dev);
2509 if (rc)
2510 goto fail;
2511
2512 ata_link_for_each_dev(dev, &ap->link)
2513 if (ata_dev_enabled(dev))
2514 return 0;
2515
2516 /* no device present, disable port */
2517 ata_port_disable(ap);
2518 return -ENODEV;
2519
2520 fail:
2521 tries[dev->devno]--;
2522
2523 switch (rc) {
2524 case -EINVAL:
2525 /* eeek, something went very wrong, give up */
2526 tries[dev->devno] = 0;
2527 break;
2528
2529 case -ENODEV:
2530 /* give it just one more chance */
2531 tries[dev->devno] = min(tries[dev->devno], 1);
2532 case -EIO:
2533 if (tries[dev->devno] == 1) {
2534 /* This is the last chance, better to slow
2535 * down than lose it.
2536 */
2537 sata_down_spd_limit(&ap->link);
2538 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2539 }
2540 }
2541
2542 if (!tries[dev->devno])
2543 ata_dev_disable(dev);
2544
2545 goto retry;
2546 }
2547
2548 /**
2549 * ata_port_probe - Mark port as enabled
2550 * @ap: Port for which we indicate enablement
2551 *
2552 * Modify @ap data structure such that the system
2553 * thinks that the entire port is enabled.
2554 *
2555 * LOCKING: host lock, or some other form of
2556 * serialization.
2557 */
2558
2559 void ata_port_probe(struct ata_port *ap)
2560 {
2561 ap->flags &= ~ATA_FLAG_DISABLED;
2562 }
2563
2564 /**
2565 * sata_print_link_status - Print SATA link status
2566 * @link: SATA link to printk link status about
2567 *
2568 * This function prints link speed and status of a SATA link.
2569 *
2570 * LOCKING:
2571 * None.
2572 */
2573 void sata_print_link_status(struct ata_link *link)
2574 {
2575 u32 sstatus, scontrol, tmp;
2576
2577 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2578 return;
2579 sata_scr_read(link, SCR_CONTROL, &scontrol);
2580
2581 if (ata_link_online(link)) {
2582 tmp = (sstatus >> 4) & 0xf;
2583 ata_link_printk(link, KERN_INFO,
2584 "SATA link up %s (SStatus %X SControl %X)\n",
2585 sata_spd_string(tmp), sstatus, scontrol);
2586 } else {
2587 ata_link_printk(link, KERN_INFO,
2588 "SATA link down (SStatus %X SControl %X)\n",
2589 sstatus, scontrol);
2590 }
2591 }
2592
2593 /**
2594 * ata_dev_pair - return other device on cable
2595 * @adev: device
2596 *
2597 * Obtain the other device on the same cable, or if none is
2598 * present NULL is returned
2599 */
2600
2601 struct ata_device *ata_dev_pair(struct ata_device *adev)
2602 {
2603 struct ata_link *link = adev->link;
2604 struct ata_device *pair = &link->device[1 - adev->devno];
2605 if (!ata_dev_enabled(pair))
2606 return NULL;
2607 return pair;
2608 }
2609
2610 /**
2611 * ata_port_disable - Disable port.
2612 * @ap: Port to be disabled.
2613 *
2614 * Modify @ap data structure such that the system
2615 * thinks that the entire port is disabled, and should
2616 * never attempt to probe or communicate with devices
2617 * on this port.
2618 *
2619 * LOCKING: host lock, or some other form of
2620 * serialization.
2621 */
2622
2623 void ata_port_disable(struct ata_port *ap)
2624 {
2625 ap->link.device[0].class = ATA_DEV_NONE;
2626 ap->link.device[1].class = ATA_DEV_NONE;
2627 ap->flags |= ATA_FLAG_DISABLED;
2628 }
2629
2630 /**
2631 * sata_down_spd_limit - adjust SATA spd limit downward
2632 * @link: Link to adjust SATA spd limit for
2633 *
2634 * Adjust SATA spd limit of @link downward. Note that this
2635 * function only adjusts the limit. The change must be applied
2636 * using sata_set_spd().
2637 *
2638 * LOCKING:
2639 * Inherited from caller.
2640 *
2641 * RETURNS:
2642 * 0 on success, negative errno on failure
2643 */
2644 int sata_down_spd_limit(struct ata_link *link)
2645 {
2646 u32 sstatus, spd, mask;
2647 int rc, highbit;
2648
2649 if (!sata_scr_valid(link))
2650 return -EOPNOTSUPP;
2651
2652 /* If SCR can be read, use it to determine the current SPD.
2653 * If not, use cached value in link->sata_spd.
2654 */
2655 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2656 if (rc == 0)
2657 spd = (sstatus >> 4) & 0xf;
2658 else
2659 spd = link->sata_spd;
2660
2661 mask = link->sata_spd_limit;
2662 if (mask <= 1)
2663 return -EINVAL;
2664
2665 /* unconditionally mask off the highest bit */
2666 highbit = fls(mask) - 1;
2667 mask &= ~(1 << highbit);
2668
2669 /* Mask off all speeds higher than or equal to the current
2670 * one. Force 1.5Gbps if current SPD is not available.
2671 */
2672 if (spd > 1)
2673 mask &= (1 << (spd - 1)) - 1;
2674 else
2675 mask &= 1;
2676
2677 /* were we already at the bottom? */
2678 if (!mask)
2679 return -EINVAL;
2680
2681 link->sata_spd_limit = mask;
2682
2683 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2684 sata_spd_string(fls(mask)));
2685
2686 return 0;
2687 }
2688
2689 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2690 {
2691 struct ata_link *host_link = &link->ap->link;
2692 u32 limit, target, spd;
2693
2694 limit = link->sata_spd_limit;
2695
2696 /* Don't configure downstream link faster than upstream link.
2697 * It doesn't speed up anything and some PMPs choke on such
2698 * configuration.
2699 */
2700 if (!ata_is_host_link(link) && host_link->sata_spd)
2701 limit &= (1 << host_link->sata_spd) - 1;
2702
2703 if (limit == UINT_MAX)
2704 target = 0;
2705 else
2706 target = fls(limit);
2707
2708 spd = (*scontrol >> 4) & 0xf;
2709 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2710
2711 return spd != target;
2712 }
2713
2714 /**
2715 * sata_set_spd_needed - is SATA spd configuration needed
2716 * @link: Link in question
2717 *
2718 * Test whether the spd limit in SControl matches
2719 * @link->sata_spd_limit. This function is used to determine
2720 * whether hardreset is necessary to apply SATA spd
2721 * configuration.
2722 *
2723 * LOCKING:
2724 * Inherited from caller.
2725 *
2726 * RETURNS:
2727 * 1 if SATA spd configuration is needed, 0 otherwise.
2728 */
2729 int sata_set_spd_needed(struct ata_link *link)
2730 {
2731 u32 scontrol;
2732
2733 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2734 return 1;
2735
2736 return __sata_set_spd_needed(link, &scontrol);
2737 }
2738
2739 /**
2740 * sata_set_spd - set SATA spd according to spd limit
2741 * @link: Link to set SATA spd for
2742 *
2743 * Set SATA spd of @link according to sata_spd_limit.
2744 *
2745 * LOCKING:
2746 * Inherited from caller.
2747 *
2748 * RETURNS:
2749 * 0 if spd doesn't need to be changed, 1 if spd has been
2750 * changed. Negative errno if SCR registers are inaccessible.
2751 */
2752 int sata_set_spd(struct ata_link *link)
2753 {
2754 u32 scontrol;
2755 int rc;
2756
2757 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2758 return rc;
2759
2760 if (!__sata_set_spd_needed(link, &scontrol))
2761 return 0;
2762
2763 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2764 return rc;
2765
2766 return 1;
2767 }
2768
2769 /*
2770 * This mode timing computation functionality is ported over from
2771 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2772 */
2773 /*
2774 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2775 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2776 * for UDMA6, which is currently supported only by Maxtor drives.
2777 *
2778 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2779 */
2780
2781 static const struct ata_timing ata_timing[] = {
2782
2783 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2784 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2785 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2786 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2787
2788 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2789 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2790 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2791 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2792 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2793
2794 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2795
2796 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2797 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2798 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2799
2800 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2801 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2802 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2803
2804 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2805 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2806 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2807 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2808
2809 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2810 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2811 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2812
2813 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2814
2815 { 0xFF }
2816 };
2817
2818 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2819 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2820
2821 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2822 {
2823 q->setup = EZ(t->setup * 1000, T);
2824 q->act8b = EZ(t->act8b * 1000, T);
2825 q->rec8b = EZ(t->rec8b * 1000, T);
2826 q->cyc8b = EZ(t->cyc8b * 1000, T);
2827 q->active = EZ(t->active * 1000, T);
2828 q->recover = EZ(t->recover * 1000, T);
2829 q->cycle = EZ(t->cycle * 1000, T);
2830 q->udma = EZ(t->udma * 1000, UT);
2831 }
2832
2833 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2834 struct ata_timing *m, unsigned int what)
2835 {
2836 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2837 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2838 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2839 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2840 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2841 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2842 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2843 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2844 }
2845
2846 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2847 {
2848 const struct ata_timing *t;
2849
2850 for (t = ata_timing; t->mode != speed; t++)
2851 if (t->mode == 0xFF)
2852 return NULL;
2853 return t;
2854 }
2855
2856 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2857 struct ata_timing *t, int T, int UT)
2858 {
2859 const struct ata_timing *s;
2860 struct ata_timing p;
2861
2862 /*
2863 * Find the mode.
2864 */
2865
2866 if (!(s = ata_timing_find_mode(speed)))
2867 return -EINVAL;
2868
2869 memcpy(t, s, sizeof(*s));
2870
2871 /*
2872 * If the drive is an EIDE drive, it can tell us it needs extended
2873 * PIO/MW_DMA cycle timing.
2874 */
2875
2876 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2877 memset(&p, 0, sizeof(p));
2878 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2879 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2880 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2881 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2882 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2883 }
2884 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2885 }
2886
2887 /*
2888 * Convert the timing to bus clock counts.
2889 */
2890
2891 ata_timing_quantize(t, t, T, UT);
2892
2893 /*
2894 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2895 * S.M.A.R.T * and some other commands. We have to ensure that the
2896 * DMA cycle timing is slower/equal than the fastest PIO timing.
2897 */
2898
2899 if (speed > XFER_PIO_6) {
2900 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2901 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2902 }
2903
2904 /*
2905 * Lengthen active & recovery time so that cycle time is correct.
2906 */
2907
2908 if (t->act8b + t->rec8b < t->cyc8b) {
2909 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2910 t->rec8b = t->cyc8b - t->act8b;
2911 }
2912
2913 if (t->active + t->recover < t->cycle) {
2914 t->active += (t->cycle - (t->active + t->recover)) / 2;
2915 t->recover = t->cycle - t->active;
2916 }
2917
2918 /* In a few cases quantisation may produce enough errors to
2919 leave t->cycle too low for the sum of active and recovery
2920 if so we must correct this */
2921 if (t->active + t->recover > t->cycle)
2922 t->cycle = t->active + t->recover;
2923
2924 return 0;
2925 }
2926
2927 /**
2928 * ata_down_xfermask_limit - adjust dev xfer masks downward
2929 * @dev: Device to adjust xfer masks
2930 * @sel: ATA_DNXFER_* selector
2931 *
2932 * Adjust xfer masks of @dev downward. Note that this function
2933 * does not apply the change. Invoking ata_set_mode() afterwards
2934 * will apply the limit.
2935 *
2936 * LOCKING:
2937 * Inherited from caller.
2938 *
2939 * RETURNS:
2940 * 0 on success, negative errno on failure
2941 */
2942 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2943 {
2944 char buf[32];
2945 unsigned int orig_mask, xfer_mask;
2946 unsigned int pio_mask, mwdma_mask, udma_mask;
2947 int quiet, highbit;
2948
2949 quiet = !!(sel & ATA_DNXFER_QUIET);
2950 sel &= ~ATA_DNXFER_QUIET;
2951
2952 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2953 dev->mwdma_mask,
2954 dev->udma_mask);
2955 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2956
2957 switch (sel) {
2958 case ATA_DNXFER_PIO:
2959 highbit = fls(pio_mask) - 1;
2960 pio_mask &= ~(1 << highbit);
2961 break;
2962
2963 case ATA_DNXFER_DMA:
2964 if (udma_mask) {
2965 highbit = fls(udma_mask) - 1;
2966 udma_mask &= ~(1 << highbit);
2967 if (!udma_mask)
2968 return -ENOENT;
2969 } else if (mwdma_mask) {
2970 highbit = fls(mwdma_mask) - 1;
2971 mwdma_mask &= ~(1 << highbit);
2972 if (!mwdma_mask)
2973 return -ENOENT;
2974 }
2975 break;
2976
2977 case ATA_DNXFER_40C:
2978 udma_mask &= ATA_UDMA_MASK_40C;
2979 break;
2980
2981 case ATA_DNXFER_FORCE_PIO0:
2982 pio_mask &= 1;
2983 case ATA_DNXFER_FORCE_PIO:
2984 mwdma_mask = 0;
2985 udma_mask = 0;
2986 break;
2987
2988 default:
2989 BUG();
2990 }
2991
2992 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2993
2994 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2995 return -ENOENT;
2996
2997 if (!quiet) {
2998 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2999 snprintf(buf, sizeof(buf), "%s:%s",
3000 ata_mode_string(xfer_mask),
3001 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3002 else
3003 snprintf(buf, sizeof(buf), "%s",
3004 ata_mode_string(xfer_mask));
3005
3006 ata_dev_printk(dev, KERN_WARNING,
3007 "limiting speed to %s\n", buf);
3008 }
3009
3010 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3011 &dev->udma_mask);
3012
3013 return 0;
3014 }
3015
3016 static int ata_dev_set_mode(struct ata_device *dev)
3017 {
3018 struct ata_eh_context *ehc = &dev->link->eh_context;
3019 unsigned int err_mask;
3020 int rc;
3021
3022 dev->flags &= ~ATA_DFLAG_PIO;
3023 if (dev->xfer_shift == ATA_SHIFT_PIO)
3024 dev->flags |= ATA_DFLAG_PIO;
3025
3026 err_mask = ata_dev_set_xfermode(dev);
3027
3028 /* Old CFA may refuse this command, which is just fine */
3029 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3030 err_mask &= ~AC_ERR_DEV;
3031
3032 /* Some very old devices and some bad newer ones fail any kind of
3033 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3034 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3035 dev->pio_mode <= XFER_PIO_2)
3036 err_mask &= ~AC_ERR_DEV;
3037
3038 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3039 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3040 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3041 dev->dma_mode == XFER_MW_DMA_0 &&
3042 (dev->id[63] >> 8) & 1)
3043 err_mask &= ~AC_ERR_DEV;
3044
3045 if (err_mask) {
3046 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3047 "(err_mask=0x%x)\n", err_mask);
3048 return -EIO;
3049 }
3050
3051 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3052 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3053 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3054 if (rc)
3055 return rc;
3056
3057 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3058 dev->xfer_shift, (int)dev->xfer_mode);
3059
3060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3061 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3062 return 0;
3063 }
3064
3065 /**
3066 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3067 * @link: link on which timings will be programmed
3068 * @r_failed_dev: out paramter for failed device
3069 *
3070 * Standard implementation of the function used to tune and set
3071 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3072 * ata_dev_set_mode() fails, pointer to the failing device is
3073 * returned in @r_failed_dev.
3074 *
3075 * LOCKING:
3076 * PCI/etc. bus probe sem.
3077 *
3078 * RETURNS:
3079 * 0 on success, negative errno otherwise
3080 */
3081
3082 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3083 {
3084 struct ata_port *ap = link->ap;
3085 struct ata_device *dev;
3086 int rc = 0, used_dma = 0, found = 0;
3087
3088 /* step 1: calculate xfer_mask */
3089 ata_link_for_each_dev(dev, link) {
3090 unsigned int pio_mask, dma_mask;
3091 unsigned int mode_mask;
3092
3093 if (!ata_dev_enabled(dev))
3094 continue;
3095
3096 mode_mask = ATA_DMA_MASK_ATA;
3097 if (dev->class == ATA_DEV_ATAPI)
3098 mode_mask = ATA_DMA_MASK_ATAPI;
3099 else if (ata_id_is_cfa(dev->id))
3100 mode_mask = ATA_DMA_MASK_CFA;
3101
3102 ata_dev_xfermask(dev);
3103
3104 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3105 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3106
3107 if (libata_dma_mask & mode_mask)
3108 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3109 else
3110 dma_mask = 0;
3111
3112 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3113 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3114
3115 found = 1;
3116 if (dev->dma_mode)
3117 used_dma = 1;
3118 }
3119 if (!found)
3120 goto out;
3121
3122 /* step 2: always set host PIO timings */
3123 ata_link_for_each_dev(dev, link) {
3124 if (!ata_dev_enabled(dev))
3125 continue;
3126
3127 if (!dev->pio_mode) {
3128 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3129 rc = -EINVAL;
3130 goto out;
3131 }
3132
3133 dev->xfer_mode = dev->pio_mode;
3134 dev->xfer_shift = ATA_SHIFT_PIO;
3135 if (ap->ops->set_piomode)
3136 ap->ops->set_piomode(ap, dev);
3137 }
3138
3139 /* step 3: set host DMA timings */
3140 ata_link_for_each_dev(dev, link) {
3141 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3142 continue;
3143
3144 dev->xfer_mode = dev->dma_mode;
3145 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3146 if (ap->ops->set_dmamode)
3147 ap->ops->set_dmamode(ap, dev);
3148 }
3149
3150 /* step 4: update devices' xfer mode */
3151 ata_link_for_each_dev(dev, link) {
3152 /* don't update suspended devices' xfer mode */
3153 if (!ata_dev_enabled(dev))
3154 continue;
3155
3156 rc = ata_dev_set_mode(dev);
3157 if (rc)
3158 goto out;
3159 }
3160
3161 /* Record simplex status. If we selected DMA then the other
3162 * host channels are not permitted to do so.
3163 */
3164 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3165 ap->host->simplex_claimed = ap;
3166
3167 out:
3168 if (rc)
3169 *r_failed_dev = dev;
3170 return rc;
3171 }
3172
3173 /**
3174 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3175 * @link: link on which timings will be programmed
3176 * @r_failed_dev: out paramter for failed device
3177 *
3178 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3179 * ata_set_mode() fails, pointer to the failing device is
3180 * returned in @r_failed_dev.
3181 *
3182 * LOCKING:
3183 * PCI/etc. bus probe sem.
3184 *
3185 * RETURNS:
3186 * 0 on success, negative errno otherwise
3187 */
3188 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3189 {
3190 struct ata_port *ap = link->ap;
3191
3192 /* has private set_mode? */
3193 if (ap->ops->set_mode)
3194 return ap->ops->set_mode(link, r_failed_dev);
3195 return ata_do_set_mode(link, r_failed_dev);
3196 }
3197
3198 /**
3199 * ata_tf_to_host - issue ATA taskfile to host controller
3200 * @ap: port to which command is being issued
3201 * @tf: ATA taskfile register set
3202 *
3203 * Issues ATA taskfile register set to ATA host controller,
3204 * with proper synchronization with interrupt handler and
3205 * other threads.
3206 *
3207 * LOCKING:
3208 * spin_lock_irqsave(host lock)
3209 */
3210
3211 static inline void ata_tf_to_host(struct ata_port *ap,
3212 const struct ata_taskfile *tf)
3213 {
3214 ap->ops->tf_load(ap, tf);
3215 ap->ops->exec_command(ap, tf);
3216 }
3217
3218 /**
3219 * ata_busy_sleep - sleep until BSY clears, or timeout
3220 * @ap: port containing status register to be polled
3221 * @tmout_pat: impatience timeout
3222 * @tmout: overall timeout
3223 *
3224 * Sleep until ATA Status register bit BSY clears,
3225 * or a timeout occurs.
3226 *
3227 * LOCKING:
3228 * Kernel thread context (may sleep).
3229 *
3230 * RETURNS:
3231 * 0 on success, -errno otherwise.
3232 */
3233 int ata_busy_sleep(struct ata_port *ap,
3234 unsigned long tmout_pat, unsigned long tmout)
3235 {
3236 unsigned long timer_start, timeout;
3237 u8 status;
3238
3239 status = ata_busy_wait(ap, ATA_BUSY, 300);
3240 timer_start = jiffies;
3241 timeout = timer_start + tmout_pat;
3242 while (status != 0xff && (status & ATA_BUSY) &&
3243 time_before(jiffies, timeout)) {
3244 msleep(50);
3245 status = ata_busy_wait(ap, ATA_BUSY, 3);
3246 }
3247
3248 if (status != 0xff && (status & ATA_BUSY))
3249 ata_port_printk(ap, KERN_WARNING,
3250 "port is slow to respond, please be patient "
3251 "(Status 0x%x)\n", status);
3252
3253 timeout = timer_start + tmout;
3254 while (status != 0xff && (status & ATA_BUSY) &&
3255 time_before(jiffies, timeout)) {
3256 msleep(50);
3257 status = ata_chk_status(ap);
3258 }
3259
3260 if (status == 0xff)
3261 return -ENODEV;
3262
3263 if (status & ATA_BUSY) {
3264 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3265 "(%lu secs, Status 0x%x)\n",
3266 tmout / HZ, status);
3267 return -EBUSY;
3268 }
3269
3270 return 0;
3271 }
3272
3273 /**
3274 * ata_wait_after_reset - wait before checking status after reset
3275 * @ap: port containing status register to be polled
3276 * @deadline: deadline jiffies for the operation
3277 *
3278 * After reset, we need to pause a while before reading status.
3279 * Also, certain combination of controller and device report 0xff
3280 * for some duration (e.g. until SATA PHY is up and running)
3281 * which is interpreted as empty port in ATA world. This
3282 * function also waits for such devices to get out of 0xff
3283 * status.
3284 *
3285 * LOCKING:
3286 * Kernel thread context (may sleep).
3287 */
3288 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3289 {
3290 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3291
3292 if (time_before(until, deadline))
3293 deadline = until;
3294
3295 /* Spec mandates ">= 2ms" before checking status. We wait
3296 * 150ms, because that was the magic delay used for ATAPI
3297 * devices in Hale Landis's ATADRVR, for the period of time
3298 * between when the ATA command register is written, and then
3299 * status is checked. Because waiting for "a while" before
3300 * checking status is fine, post SRST, we perform this magic
3301 * delay here as well.
3302 *
3303 * Old drivers/ide uses the 2mS rule and then waits for ready.
3304 */
3305 msleep(150);
3306
3307 /* Wait for 0xff to clear. Some SATA devices take a long time
3308 * to clear 0xff after reset. For example, HHD424020F7SV00
3309 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3310 * than that.
3311 *
3312 * Note that some PATA controllers (pata_ali) explode if
3313 * status register is read more than once when there's no
3314 * device attached.
3315 */
3316 if (ap->flags & ATA_FLAG_SATA) {
3317 while (1) {
3318 u8 status = ata_chk_status(ap);
3319
3320 if (status != 0xff || time_after(jiffies, deadline))
3321 return;
3322
3323 msleep(50);
3324 }
3325 }
3326 }
3327
3328 /**
3329 * ata_wait_ready - sleep until BSY clears, or timeout
3330 * @ap: port containing status register to be polled
3331 * @deadline: deadline jiffies for the operation
3332 *
3333 * Sleep until ATA Status register bit BSY clears, or timeout
3334 * occurs.
3335 *
3336 * LOCKING:
3337 * Kernel thread context (may sleep).
3338 *
3339 * RETURNS:
3340 * 0 on success, -errno otherwise.
3341 */
3342 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3343 {
3344 unsigned long start = jiffies;
3345 int warned = 0;
3346
3347 while (1) {
3348 u8 status = ata_chk_status(ap);
3349 unsigned long now = jiffies;
3350
3351 if (!(status & ATA_BUSY))
3352 return 0;
3353 if (!ata_link_online(&ap->link) && status == 0xff)
3354 return -ENODEV;
3355 if (time_after(now, deadline))
3356 return -EBUSY;
3357
3358 if (!warned && time_after(now, start + 5 * HZ) &&
3359 (deadline - now > 3 * HZ)) {
3360 ata_port_printk(ap, KERN_WARNING,
3361 "port is slow to respond, please be patient "
3362 "(Status 0x%x)\n", status);
3363 warned = 1;
3364 }
3365
3366 msleep(50);
3367 }
3368 }
3369
3370 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3371 unsigned long deadline)
3372 {
3373 struct ata_ioports *ioaddr = &ap->ioaddr;
3374 unsigned int dev0 = devmask & (1 << 0);
3375 unsigned int dev1 = devmask & (1 << 1);
3376 int rc, ret = 0;
3377
3378 /* if device 0 was found in ata_devchk, wait for its
3379 * BSY bit to clear
3380 */
3381 if (dev0) {
3382 rc = ata_wait_ready(ap, deadline);
3383 if (rc) {
3384 if (rc != -ENODEV)
3385 return rc;
3386 ret = rc;
3387 }
3388 }
3389
3390 /* if device 1 was found in ata_devchk, wait for register
3391 * access briefly, then wait for BSY to clear.
3392 */
3393 if (dev1) {
3394 int i;
3395
3396 ap->ops->dev_select(ap, 1);
3397
3398 /* Wait for register access. Some ATAPI devices fail
3399 * to set nsect/lbal after reset, so don't waste too
3400 * much time on it. We're gonna wait for !BSY anyway.
3401 */
3402 for (i = 0; i < 2; i++) {
3403 u8 nsect, lbal;
3404
3405 nsect = ioread8(ioaddr->nsect_addr);
3406 lbal = ioread8(ioaddr->lbal_addr);
3407 if ((nsect == 1) && (lbal == 1))
3408 break;
3409 msleep(50); /* give drive a breather */
3410 }
3411
3412 rc = ata_wait_ready(ap, deadline);
3413 if (rc) {
3414 if (rc != -ENODEV)
3415 return rc;
3416 ret = rc;
3417 }
3418 }
3419
3420 /* is all this really necessary? */
3421 ap->ops->dev_select(ap, 0);
3422 if (dev1)
3423 ap->ops->dev_select(ap, 1);
3424 if (dev0)
3425 ap->ops->dev_select(ap, 0);
3426
3427 return ret;
3428 }
3429
3430 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3431 unsigned long deadline)
3432 {
3433 struct ata_ioports *ioaddr = &ap->ioaddr;
3434
3435 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3436
3437 /* software reset. causes dev0 to be selected */
3438 iowrite8(ap->ctl, ioaddr->ctl_addr);
3439 udelay(20); /* FIXME: flush */
3440 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3441 udelay(20); /* FIXME: flush */
3442 iowrite8(ap->ctl, ioaddr->ctl_addr);
3443
3444 /* wait a while before checking status */
3445 ata_wait_after_reset(ap, deadline);
3446
3447 /* Before we perform post reset processing we want to see if
3448 * the bus shows 0xFF because the odd clown forgets the D7
3449 * pulldown resistor.
3450 */
3451 if (ata_chk_status(ap) == 0xFF)
3452 return -ENODEV;
3453
3454 return ata_bus_post_reset(ap, devmask, deadline);
3455 }
3456
3457 /**
3458 * ata_bus_reset - reset host port and associated ATA channel
3459 * @ap: port to reset
3460 *
3461 * This is typically the first time we actually start issuing
3462 * commands to the ATA channel. We wait for BSY to clear, then
3463 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3464 * result. Determine what devices, if any, are on the channel
3465 * by looking at the device 0/1 error register. Look at the signature
3466 * stored in each device's taskfile registers, to determine if
3467 * the device is ATA or ATAPI.
3468 *
3469 * LOCKING:
3470 * PCI/etc. bus probe sem.
3471 * Obtains host lock.
3472 *
3473 * SIDE EFFECTS:
3474 * Sets ATA_FLAG_DISABLED if bus reset fails.
3475 */
3476
3477 void ata_bus_reset(struct ata_port *ap)
3478 {
3479 struct ata_device *device = ap->link.device;
3480 struct ata_ioports *ioaddr = &ap->ioaddr;
3481 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3482 u8 err;
3483 unsigned int dev0, dev1 = 0, devmask = 0;
3484 int rc;
3485
3486 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3487
3488 /* determine if device 0/1 are present */
3489 if (ap->flags & ATA_FLAG_SATA_RESET)
3490 dev0 = 1;
3491 else {
3492 dev0 = ata_devchk(ap, 0);
3493 if (slave_possible)
3494 dev1 = ata_devchk(ap, 1);
3495 }
3496
3497 if (dev0)
3498 devmask |= (1 << 0);
3499 if (dev1)
3500 devmask |= (1 << 1);
3501
3502 /* select device 0 again */
3503 ap->ops->dev_select(ap, 0);
3504
3505 /* issue bus reset */
3506 if (ap->flags & ATA_FLAG_SRST) {
3507 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3508 if (rc && rc != -ENODEV)
3509 goto err_out;
3510 }
3511
3512 /*
3513 * determine by signature whether we have ATA or ATAPI devices
3514 */
3515 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3516 if ((slave_possible) && (err != 0x81))
3517 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3518
3519 /* is double-select really necessary? */
3520 if (device[1].class != ATA_DEV_NONE)
3521 ap->ops->dev_select(ap, 1);
3522 if (device[0].class != ATA_DEV_NONE)
3523 ap->ops->dev_select(ap, 0);
3524
3525 /* if no devices were detected, disable this port */
3526 if ((device[0].class == ATA_DEV_NONE) &&
3527 (device[1].class == ATA_DEV_NONE))
3528 goto err_out;
3529
3530 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3531 /* set up device control for ATA_FLAG_SATA_RESET */
3532 iowrite8(ap->ctl, ioaddr->ctl_addr);
3533 }
3534
3535 DPRINTK("EXIT\n");
3536 return;
3537
3538 err_out:
3539 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3540 ata_port_disable(ap);
3541
3542 DPRINTK("EXIT\n");
3543 }
3544
3545 /**
3546 * sata_link_debounce - debounce SATA phy status
3547 * @link: ATA link to debounce SATA phy status for
3548 * @params: timing parameters { interval, duratinon, timeout } in msec
3549 * @deadline: deadline jiffies for the operation
3550 *
3551 * Make sure SStatus of @link reaches stable state, determined by
3552 * holding the same value where DET is not 1 for @duration polled
3553 * every @interval, before @timeout. Timeout constraints the
3554 * beginning of the stable state. Because DET gets stuck at 1 on
3555 * some controllers after hot unplugging, this functions waits
3556 * until timeout then returns 0 if DET is stable at 1.
3557 *
3558 * @timeout is further limited by @deadline. The sooner of the
3559 * two is used.
3560 *
3561 * LOCKING:
3562 * Kernel thread context (may sleep)
3563 *
3564 * RETURNS:
3565 * 0 on success, -errno on failure.
3566 */
3567 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3568 unsigned long deadline)
3569 {
3570 unsigned long interval_msec = params[0];
3571 unsigned long duration = msecs_to_jiffies(params[1]);
3572 unsigned long last_jiffies, t;
3573 u32 last, cur;
3574 int rc;
3575
3576 t = jiffies + msecs_to_jiffies(params[2]);
3577 if (time_before(t, deadline))
3578 deadline = t;
3579
3580 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3581 return rc;
3582 cur &= 0xf;
3583
3584 last = cur;
3585 last_jiffies = jiffies;
3586
3587 while (1) {
3588 msleep(interval_msec);
3589 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3590 return rc;
3591 cur &= 0xf;
3592
3593 /* DET stable? */
3594 if (cur == last) {
3595 if (cur == 1 && time_before(jiffies, deadline))
3596 continue;
3597 if (time_after(jiffies, last_jiffies + duration))
3598 return 0;
3599 continue;
3600 }
3601
3602 /* unstable, start over */
3603 last = cur;
3604 last_jiffies = jiffies;
3605
3606 /* Check deadline. If debouncing failed, return
3607 * -EPIPE to tell upper layer to lower link speed.
3608 */
3609 if (time_after(jiffies, deadline))
3610 return -EPIPE;
3611 }
3612 }
3613
3614 /**
3615 * sata_link_resume - resume SATA link
3616 * @link: ATA link to resume SATA
3617 * @params: timing parameters { interval, duratinon, timeout } in msec
3618 * @deadline: deadline jiffies for the operation
3619 *
3620 * Resume SATA phy @link and debounce it.
3621 *
3622 * LOCKING:
3623 * Kernel thread context (may sleep)
3624 *
3625 * RETURNS:
3626 * 0 on success, -errno on failure.
3627 */
3628 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3629 unsigned long deadline)
3630 {
3631 u32 scontrol;
3632 int rc;
3633
3634 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3635 return rc;
3636
3637 scontrol = (scontrol & 0x0f0) | 0x300;
3638
3639 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3640 return rc;
3641
3642 /* Some PHYs react badly if SStatus is pounded immediately
3643 * after resuming. Delay 200ms before debouncing.
3644 */
3645 msleep(200);
3646
3647 return sata_link_debounce(link, params, deadline);
3648 }
3649
3650 /**
3651 * ata_std_prereset - prepare for reset
3652 * @link: ATA link to be reset
3653 * @deadline: deadline jiffies for the operation
3654 *
3655 * @link is about to be reset. Initialize it. Failure from
3656 * prereset makes libata abort whole reset sequence and give up
3657 * that port, so prereset should be best-effort. It does its
3658 * best to prepare for reset sequence but if things go wrong, it
3659 * should just whine, not fail.
3660 *
3661 * LOCKING:
3662 * Kernel thread context (may sleep)
3663 *
3664 * RETURNS:
3665 * 0 on success, -errno otherwise.
3666 */
3667 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3668 {
3669 struct ata_port *ap = link->ap;
3670 struct ata_eh_context *ehc = &link->eh_context;
3671 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3672 int rc;
3673
3674 /* handle link resume */
3675 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3676 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3677 ehc->i.action |= ATA_EH_HARDRESET;
3678
3679 /* Some PMPs don't work with only SRST, force hardreset if PMP
3680 * is supported.
3681 */
3682 if (ap->flags & ATA_FLAG_PMP)
3683 ehc->i.action |= ATA_EH_HARDRESET;
3684
3685 /* if we're about to do hardreset, nothing more to do */
3686 if (ehc->i.action & ATA_EH_HARDRESET)
3687 return 0;
3688
3689 /* if SATA, resume link */
3690 if (ap->flags & ATA_FLAG_SATA) {
3691 rc = sata_link_resume(link, timing, deadline);
3692 /* whine about phy resume failure but proceed */
3693 if (rc && rc != -EOPNOTSUPP)
3694 ata_link_printk(link, KERN_WARNING, "failed to resume "
3695 "link for reset (errno=%d)\n", rc);
3696 }
3697
3698 /* Wait for !BSY if the controller can wait for the first D2H
3699 * Reg FIS and we don't know that no device is attached.
3700 */
3701 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3702 rc = ata_wait_ready(ap, deadline);
3703 if (rc && rc != -ENODEV) {
3704 ata_link_printk(link, KERN_WARNING, "device not ready "
3705 "(errno=%d), forcing hardreset\n", rc);
3706 ehc->i.action |= ATA_EH_HARDRESET;
3707 }
3708 }
3709
3710 return 0;
3711 }
3712
3713 /**
3714 * ata_std_softreset - reset host port via ATA SRST
3715 * @link: ATA link to reset
3716 * @classes: resulting classes of attached devices
3717 * @deadline: deadline jiffies for the operation
3718 *
3719 * Reset host port using ATA SRST.
3720 *
3721 * LOCKING:
3722 * Kernel thread context (may sleep)
3723 *
3724 * RETURNS:
3725 * 0 on success, -errno otherwise.
3726 */
3727 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3728 unsigned long deadline)
3729 {
3730 struct ata_port *ap = link->ap;
3731 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3732 unsigned int devmask = 0;
3733 int rc;
3734 u8 err;
3735
3736 DPRINTK("ENTER\n");
3737
3738 if (ata_link_offline(link)) {
3739 classes[0] = ATA_DEV_NONE;
3740 goto out;
3741 }
3742
3743 /* determine if device 0/1 are present */
3744 if (ata_devchk(ap, 0))
3745 devmask |= (1 << 0);
3746 if (slave_possible && ata_devchk(ap, 1))
3747 devmask |= (1 << 1);
3748
3749 /* select device 0 again */
3750 ap->ops->dev_select(ap, 0);
3751
3752 /* issue bus reset */
3753 DPRINTK("about to softreset, devmask=%x\n", devmask);
3754 rc = ata_bus_softreset(ap, devmask, deadline);
3755 /* if link is occupied, -ENODEV too is an error */
3756 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3757 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3758 return rc;
3759 }
3760
3761 /* determine by signature whether we have ATA or ATAPI devices */
3762 classes[0] = ata_dev_try_classify(&link->device[0],
3763 devmask & (1 << 0), &err);
3764 if (slave_possible && err != 0x81)
3765 classes[1] = ata_dev_try_classify(&link->device[1],
3766 devmask & (1 << 1), &err);
3767
3768 out:
3769 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3770 return 0;
3771 }
3772
3773 /**
3774 * sata_link_hardreset - reset link via SATA phy reset
3775 * @link: link to reset
3776 * @timing: timing parameters { interval, duratinon, timeout } in msec
3777 * @deadline: deadline jiffies for the operation
3778 *
3779 * SATA phy-reset @link using DET bits of SControl register.
3780 *
3781 * LOCKING:
3782 * Kernel thread context (may sleep)
3783 *
3784 * RETURNS:
3785 * 0 on success, -errno otherwise.
3786 */
3787 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3788 unsigned long deadline)
3789 {
3790 u32 scontrol;
3791 int rc;
3792
3793 DPRINTK("ENTER\n");
3794
3795 if (sata_set_spd_needed(link)) {
3796 /* SATA spec says nothing about how to reconfigure
3797 * spd. To be on the safe side, turn off phy during
3798 * reconfiguration. This works for at least ICH7 AHCI
3799 * and Sil3124.
3800 */
3801 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3802 goto out;
3803
3804 scontrol = (scontrol & 0x0f0) | 0x304;
3805
3806 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3807 goto out;
3808
3809 sata_set_spd(link);
3810 }
3811
3812 /* issue phy wake/reset */
3813 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3814 goto out;
3815
3816 scontrol = (scontrol & 0x0f0) | 0x301;
3817
3818 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3819 goto out;
3820
3821 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3822 * 10.4.2 says at least 1 ms.
3823 */
3824 msleep(1);
3825
3826 /* bring link back */
3827 rc = sata_link_resume(link, timing, deadline);
3828 out:
3829 DPRINTK("EXIT, rc=%d\n", rc);
3830 return rc;
3831 }
3832
3833 /**
3834 * sata_std_hardreset - reset host port via SATA phy reset
3835 * @link: link to reset
3836 * @class: resulting class of attached device
3837 * @deadline: deadline jiffies for the operation
3838 *
3839 * SATA phy-reset host port using DET bits of SControl register,
3840 * wait for !BSY and classify the attached device.
3841 *
3842 * LOCKING:
3843 * Kernel thread context (may sleep)
3844 *
3845 * RETURNS:
3846 * 0 on success, -errno otherwise.
3847 */
3848 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3849 unsigned long deadline)
3850 {
3851 struct ata_port *ap = link->ap;
3852 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3853 int rc;
3854
3855 DPRINTK("ENTER\n");
3856
3857 /* do hardreset */
3858 rc = sata_link_hardreset(link, timing, deadline);
3859 if (rc) {
3860 ata_link_printk(link, KERN_ERR,
3861 "COMRESET failed (errno=%d)\n", rc);
3862 return rc;
3863 }
3864
3865 /* TODO: phy layer with polling, timeouts, etc. */
3866 if (ata_link_offline(link)) {
3867 *class = ATA_DEV_NONE;
3868 DPRINTK("EXIT, link offline\n");
3869 return 0;
3870 }
3871
3872 /* wait a while before checking status */
3873 ata_wait_after_reset(ap, deadline);
3874
3875 /* If PMP is supported, we have to do follow-up SRST. Note
3876 * that some PMPs don't send D2H Reg FIS after hardreset at
3877 * all if the first port is empty. Wait for it just for a
3878 * second and request follow-up SRST.
3879 */
3880 if (ap->flags & ATA_FLAG_PMP) {
3881 ata_wait_ready(ap, jiffies + HZ);
3882 return -EAGAIN;
3883 }
3884
3885 rc = ata_wait_ready(ap, deadline);
3886 /* link occupied, -ENODEV too is an error */
3887 if (rc) {
3888 ata_link_printk(link, KERN_ERR,
3889 "COMRESET failed (errno=%d)\n", rc);
3890 return rc;
3891 }
3892
3893 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3894
3895 *class = ata_dev_try_classify(link->device, 1, NULL);
3896
3897 DPRINTK("EXIT, class=%u\n", *class);
3898 return 0;
3899 }
3900
3901 /**
3902 * ata_std_postreset - standard postreset callback
3903 * @link: the target ata_link
3904 * @classes: classes of attached devices
3905 *
3906 * This function is invoked after a successful reset. Note that
3907 * the device might have been reset more than once using
3908 * different reset methods before postreset is invoked.
3909 *
3910 * LOCKING:
3911 * Kernel thread context (may sleep)
3912 */
3913 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3914 {
3915 struct ata_port *ap = link->ap;
3916 u32 serror;
3917
3918 DPRINTK("ENTER\n");
3919
3920 /* print link status */
3921 sata_print_link_status(link);
3922
3923 /* clear SError */
3924 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3925 sata_scr_write(link, SCR_ERROR, serror);
3926
3927 /* is double-select really necessary? */
3928 if (classes[0] != ATA_DEV_NONE)
3929 ap->ops->dev_select(ap, 1);
3930 if (classes[1] != ATA_DEV_NONE)
3931 ap->ops->dev_select(ap, 0);
3932
3933 /* bail out if no device is present */
3934 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3935 DPRINTK("EXIT, no device\n");
3936 return;
3937 }
3938
3939 /* set up device control */
3940 if (ap->ioaddr.ctl_addr)
3941 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3942
3943 DPRINTK("EXIT\n");
3944 }
3945
3946 /**
3947 * ata_dev_same_device - Determine whether new ID matches configured device
3948 * @dev: device to compare against
3949 * @new_class: class of the new device
3950 * @new_id: IDENTIFY page of the new device
3951 *
3952 * Compare @new_class and @new_id against @dev and determine
3953 * whether @dev is the device indicated by @new_class and
3954 * @new_id.
3955 *
3956 * LOCKING:
3957 * None.
3958 *
3959 * RETURNS:
3960 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3961 */
3962 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3963 const u16 *new_id)
3964 {
3965 const u16 *old_id = dev->id;
3966 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3967 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3968
3969 if (dev->class != new_class) {
3970 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3971 dev->class, new_class);
3972 return 0;
3973 }
3974
3975 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3976 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3977 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3978 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3979
3980 if (strcmp(model[0], model[1])) {
3981 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3982 "'%s' != '%s'\n", model[0], model[1]);
3983 return 0;
3984 }
3985
3986 if (strcmp(serial[0], serial[1])) {
3987 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3988 "'%s' != '%s'\n", serial[0], serial[1]);
3989 return 0;
3990 }
3991
3992 return 1;
3993 }
3994
3995 /**
3996 * ata_dev_reread_id - Re-read IDENTIFY data
3997 * @dev: target ATA device
3998 * @readid_flags: read ID flags
3999 *
4000 * Re-read IDENTIFY page and make sure @dev is still attached to
4001 * the port.
4002 *
4003 * LOCKING:
4004 * Kernel thread context (may sleep)
4005 *
4006 * RETURNS:
4007 * 0 on success, negative errno otherwise
4008 */
4009 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4010 {
4011 unsigned int class = dev->class;
4012 u16 *id = (void *)dev->link->ap->sector_buf;
4013 int rc;
4014
4015 /* read ID data */
4016 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4017 if (rc)
4018 return rc;
4019
4020 /* is the device still there? */
4021 if (!ata_dev_same_device(dev, class, id))
4022 return -ENODEV;
4023
4024 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4025 return 0;
4026 }
4027
4028 /**
4029 * ata_dev_revalidate - Revalidate ATA device
4030 * @dev: device to revalidate
4031 * @new_class: new class code
4032 * @readid_flags: read ID flags
4033 *
4034 * Re-read IDENTIFY page, make sure @dev is still attached to the
4035 * port and reconfigure it according to the new IDENTIFY page.
4036 *
4037 * LOCKING:
4038 * Kernel thread context (may sleep)
4039 *
4040 * RETURNS:
4041 * 0 on success, negative errno otherwise
4042 */
4043 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4044 unsigned int readid_flags)
4045 {
4046 u64 n_sectors = dev->n_sectors;
4047 int rc;
4048
4049 if (!ata_dev_enabled(dev))
4050 return -ENODEV;
4051
4052 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4053 if (ata_class_enabled(new_class) &&
4054 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4055 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4056 dev->class, new_class);
4057 rc = -ENODEV;
4058 goto fail;
4059 }
4060
4061 /* re-read ID */
4062 rc = ata_dev_reread_id(dev, readid_flags);
4063 if (rc)
4064 goto fail;
4065
4066 /* configure device according to the new ID */
4067 rc = ata_dev_configure(dev);
4068 if (rc)
4069 goto fail;
4070
4071 /* verify n_sectors hasn't changed */
4072 if (dev->class == ATA_DEV_ATA && n_sectors &&
4073 dev->n_sectors != n_sectors) {
4074 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4075 "%llu != %llu\n",
4076 (unsigned long long)n_sectors,
4077 (unsigned long long)dev->n_sectors);
4078
4079 /* restore original n_sectors */
4080 dev->n_sectors = n_sectors;
4081
4082 rc = -ENODEV;
4083 goto fail;
4084 }
4085
4086 return 0;
4087
4088 fail:
4089 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4090 return rc;
4091 }
4092
4093 struct ata_blacklist_entry {
4094 const char *model_num;
4095 const char *model_rev;
4096 unsigned long horkage;
4097 };
4098
4099 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4100 /* Devices with DMA related problems under Linux */
4101 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4102 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4103 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4104 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4105 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4106 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4107 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4108 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4109 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4110 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4111 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4112 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4113 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4114 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4115 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4116 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4117 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4118 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4119 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4120 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4121 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4122 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4123 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4124 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4125 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4126 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4127 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4128 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4129 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4130 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4131 /* Odd clown on sil3726/4726 PMPs */
4132 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4133 ATA_HORKAGE_SKIP_PM },
4134
4135 /* Weird ATAPI devices */
4136 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4137
4138 /* Devices we expect to fail diagnostics */
4139
4140 /* Devices where NCQ should be avoided */
4141 /* NCQ is slow */
4142 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4143 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4144 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4145 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4146 /* NCQ is broken */
4147 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4148 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4149 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4150 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4151 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4152
4153 /* Blacklist entries taken from Silicon Image 3124/3132
4154 Windows driver .inf file - also several Linux problem reports */
4155 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4156 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4157 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4158
4159 /* devices which puke on READ_NATIVE_MAX */
4160 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4161 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4162 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4163 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4164
4165 /* Devices which report 1 sector over size HPA */
4166 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4167 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4168
4169 /* Devices which get the IVB wrong */
4170 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4171 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4172 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4173 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4174 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4175
4176 /* End Marker */
4177 { }
4178 };
4179
4180 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4181 {
4182 const char *p;
4183 int len;
4184
4185 /*
4186 * check for trailing wildcard: *\0
4187 */
4188 p = strchr(patt, wildchar);
4189 if (p && ((*(p + 1)) == 0))
4190 len = p - patt;
4191 else {
4192 len = strlen(name);
4193 if (!len) {
4194 if (!*patt)
4195 return 0;
4196 return -1;
4197 }
4198 }
4199
4200 return strncmp(patt, name, len);
4201 }
4202
4203 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4204 {
4205 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4206 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4207 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4208
4209 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4210 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4211
4212 while (ad->model_num) {
4213 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4214 if (ad->model_rev == NULL)
4215 return ad->horkage;
4216 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4217 return ad->horkage;
4218 }
4219 ad++;
4220 }
4221 return 0;
4222 }
4223
4224 static int ata_dma_blacklisted(const struct ata_device *dev)
4225 {
4226 /* We don't support polling DMA.
4227 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4228 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4229 */
4230 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4231 (dev->flags & ATA_DFLAG_CDB_INTR))
4232 return 1;
4233 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4234 }
4235
4236 /**
4237 * ata_is_40wire - check drive side detection
4238 * @dev: device
4239 *
4240 * Perform drive side detection decoding, allowing for device vendors
4241 * who can't follow the documentation.
4242 */
4243
4244 static int ata_is_40wire(struct ata_device *dev)
4245 {
4246 if (dev->horkage & ATA_HORKAGE_IVB)
4247 return ata_drive_40wire_relaxed(dev->id);
4248 return ata_drive_40wire(dev->id);
4249 }
4250
4251 /**
4252 * ata_dev_xfermask - Compute supported xfermask of the given device
4253 * @dev: Device to compute xfermask for
4254 *
4255 * Compute supported xfermask of @dev and store it in
4256 * dev->*_mask. This function is responsible for applying all
4257 * known limits including host controller limits, device
4258 * blacklist, etc...
4259 *
4260 * LOCKING:
4261 * None.
4262 */
4263 static void ata_dev_xfermask(struct ata_device *dev)
4264 {
4265 struct ata_link *link = dev->link;
4266 struct ata_port *ap = link->ap;
4267 struct ata_host *host = ap->host;
4268 unsigned long xfer_mask;
4269
4270 /* controller modes available */
4271 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4272 ap->mwdma_mask, ap->udma_mask);
4273
4274 /* drive modes available */
4275 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4276 dev->mwdma_mask, dev->udma_mask);
4277 xfer_mask &= ata_id_xfermask(dev->id);
4278
4279 /*
4280 * CFA Advanced TrueIDE timings are not allowed on a shared
4281 * cable
4282 */
4283 if (ata_dev_pair(dev)) {
4284 /* No PIO5 or PIO6 */
4285 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4286 /* No MWDMA3 or MWDMA 4 */
4287 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4288 }
4289
4290 if (ata_dma_blacklisted(dev)) {
4291 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4292 ata_dev_printk(dev, KERN_WARNING,
4293 "device is on DMA blacklist, disabling DMA\n");
4294 }
4295
4296 if ((host->flags & ATA_HOST_SIMPLEX) &&
4297 host->simplex_claimed && host->simplex_claimed != ap) {
4298 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4299 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4300 "other device, disabling DMA\n");
4301 }
4302
4303 if (ap->flags & ATA_FLAG_NO_IORDY)
4304 xfer_mask &= ata_pio_mask_no_iordy(dev);
4305
4306 if (ap->ops->mode_filter)
4307 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4308
4309 /* Apply cable rule here. Don't apply it early because when
4310 * we handle hot plug the cable type can itself change.
4311 * Check this last so that we know if the transfer rate was
4312 * solely limited by the cable.
4313 * Unknown or 80 wire cables reported host side are checked
4314 * drive side as well. Cases where we know a 40wire cable
4315 * is used safely for 80 are not checked here.
4316 */
4317 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4318 /* UDMA/44 or higher would be available */
4319 if ((ap->cbl == ATA_CBL_PATA40) ||
4320 (ata_is_40wire(dev) &&
4321 (ap->cbl == ATA_CBL_PATA_UNK ||
4322 ap->cbl == ATA_CBL_PATA80))) {
4323 ata_dev_printk(dev, KERN_WARNING,
4324 "limited to UDMA/33 due to 40-wire cable\n");
4325 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4326 }
4327
4328 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4329 &dev->mwdma_mask, &dev->udma_mask);
4330 }
4331
4332 /**
4333 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4334 * @dev: Device to which command will be sent
4335 *
4336 * Issue SET FEATURES - XFER MODE command to device @dev
4337 * on port @ap.
4338 *
4339 * LOCKING:
4340 * PCI/etc. bus probe sem.
4341 *
4342 * RETURNS:
4343 * 0 on success, AC_ERR_* mask otherwise.
4344 */
4345
4346 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4347 {
4348 struct ata_taskfile tf;
4349 unsigned int err_mask;
4350
4351 /* set up set-features taskfile */
4352 DPRINTK("set features - xfer mode\n");
4353
4354 /* Some controllers and ATAPI devices show flaky interrupt
4355 * behavior after setting xfer mode. Use polling instead.
4356 */
4357 ata_tf_init(dev, &tf);
4358 tf.command = ATA_CMD_SET_FEATURES;
4359 tf.feature = SETFEATURES_XFER;
4360 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4361 tf.protocol = ATA_PROT_NODATA;
4362 tf.nsect = dev->xfer_mode;
4363
4364 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4365
4366 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4367 return err_mask;
4368 }
4369 /**
4370 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4371 * @dev: Device to which command will be sent
4372 * @enable: Whether to enable or disable the feature
4373 * @feature: The sector count represents the feature to set
4374 *
4375 * Issue SET FEATURES - SATA FEATURES command to device @dev
4376 * on port @ap with sector count
4377 *
4378 * LOCKING:
4379 * PCI/etc. bus probe sem.
4380 *
4381 * RETURNS:
4382 * 0 on success, AC_ERR_* mask otherwise.
4383 */
4384 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4385 u8 feature)
4386 {
4387 struct ata_taskfile tf;
4388 unsigned int err_mask;
4389
4390 /* set up set-features taskfile */
4391 DPRINTK("set features - SATA features\n");
4392
4393 ata_tf_init(dev, &tf);
4394 tf.command = ATA_CMD_SET_FEATURES;
4395 tf.feature = enable;
4396 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4397 tf.protocol = ATA_PROT_NODATA;
4398 tf.nsect = feature;
4399
4400 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4401
4402 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4403 return err_mask;
4404 }
4405
4406 /**
4407 * ata_dev_init_params - Issue INIT DEV PARAMS command
4408 * @dev: Device to which command will be sent
4409 * @heads: Number of heads (taskfile parameter)
4410 * @sectors: Number of sectors (taskfile parameter)
4411 *
4412 * LOCKING:
4413 * Kernel thread context (may sleep)
4414 *
4415 * RETURNS:
4416 * 0 on success, AC_ERR_* mask otherwise.
4417 */
4418 static unsigned int ata_dev_init_params(struct ata_device *dev,
4419 u16 heads, u16 sectors)
4420 {
4421 struct ata_taskfile tf;
4422 unsigned int err_mask;
4423
4424 /* Number of sectors per track 1-255. Number of heads 1-16 */
4425 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4426 return AC_ERR_INVALID;
4427
4428 /* set up init dev params taskfile */
4429 DPRINTK("init dev params \n");
4430
4431 ata_tf_init(dev, &tf);
4432 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4433 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4434 tf.protocol = ATA_PROT_NODATA;
4435 tf.nsect = sectors;
4436 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4437
4438 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4439 /* A clean abort indicates an original or just out of spec drive
4440 and we should continue as we issue the setup based on the
4441 drive reported working geometry */
4442 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4443 err_mask = 0;
4444
4445 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4446 return err_mask;
4447 }
4448
4449 /**
4450 * ata_sg_clean - Unmap DMA memory associated with command
4451 * @qc: Command containing DMA memory to be released
4452 *
4453 * Unmap all mapped DMA memory associated with this command.
4454 *
4455 * LOCKING:
4456 * spin_lock_irqsave(host lock)
4457 */
4458 void ata_sg_clean(struct ata_queued_cmd *qc)
4459 {
4460 struct ata_port *ap = qc->ap;
4461 struct scatterlist *sg = qc->__sg;
4462 int dir = qc->dma_dir;
4463 void *pad_buf = NULL;
4464
4465 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4466 WARN_ON(sg == NULL);
4467
4468 if (qc->flags & ATA_QCFLAG_SINGLE)
4469 WARN_ON(qc->n_elem > 1);
4470
4471 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4472
4473 /* if we padded the buffer out to 32-bit bound, and data
4474 * xfer direction is from-device, we must copy from the
4475 * pad buffer back into the supplied buffer
4476 */
4477 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4478 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4479
4480 if (qc->flags & ATA_QCFLAG_SG) {
4481 if (qc->n_elem)
4482 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4483 /* restore last sg */
4484 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4485 if (pad_buf) {
4486 struct scatterlist *psg = &qc->pad_sgent;
4487 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4488 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4489 kunmap_atomic(addr, KM_IRQ0);
4490 }
4491 } else {
4492 if (qc->n_elem)
4493 dma_unmap_single(ap->dev,
4494 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4495 dir);
4496 /* restore sg */
4497 sg->length += qc->pad_len;
4498 if (pad_buf)
4499 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4500 pad_buf, qc->pad_len);
4501 }
4502
4503 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4504 qc->__sg = NULL;
4505 }
4506
4507 /**
4508 * ata_fill_sg - Fill PCI IDE PRD table
4509 * @qc: Metadata associated with taskfile to be transferred
4510 *
4511 * Fill PCI IDE PRD (scatter-gather) table with segments
4512 * associated with the current disk command.
4513 *
4514 * LOCKING:
4515 * spin_lock_irqsave(host lock)
4516 *
4517 */
4518 static void ata_fill_sg(struct ata_queued_cmd *qc)
4519 {
4520 struct ata_port *ap = qc->ap;
4521 struct scatterlist *sg;
4522 unsigned int idx;
4523
4524 WARN_ON(qc->__sg == NULL);
4525 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4526
4527 idx = 0;
4528 ata_for_each_sg(sg, qc) {
4529 u32 addr, offset;
4530 u32 sg_len, len;
4531
4532 /* determine if physical DMA addr spans 64K boundary.
4533 * Note h/w doesn't support 64-bit, so we unconditionally
4534 * truncate dma_addr_t to u32.
4535 */
4536 addr = (u32) sg_dma_address(sg);
4537 sg_len = sg_dma_len(sg);
4538
4539 while (sg_len) {
4540 offset = addr & 0xffff;
4541 len = sg_len;
4542 if ((offset + sg_len) > 0x10000)
4543 len = 0x10000 - offset;
4544
4545 ap->prd[idx].addr = cpu_to_le32(addr);
4546 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4547 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4548
4549 idx++;
4550 sg_len -= len;
4551 addr += len;
4552 }
4553 }
4554
4555 if (idx)
4556 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4557 }
4558
4559 /**
4560 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4561 * @qc: Metadata associated with taskfile to be transferred
4562 *
4563 * Fill PCI IDE PRD (scatter-gather) table with segments
4564 * associated with the current disk command. Perform the fill
4565 * so that we avoid writing any length 64K records for
4566 * controllers that don't follow the spec.
4567 *
4568 * LOCKING:
4569 * spin_lock_irqsave(host lock)
4570 *
4571 */
4572 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4573 {
4574 struct ata_port *ap = qc->ap;
4575 struct scatterlist *sg;
4576 unsigned int idx;
4577
4578 WARN_ON(qc->__sg == NULL);
4579 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4580
4581 idx = 0;
4582 ata_for_each_sg(sg, qc) {
4583 u32 addr, offset;
4584 u32 sg_len, len, blen;
4585
4586 /* determine if physical DMA addr spans 64K boundary.
4587 * Note h/w doesn't support 64-bit, so we unconditionally
4588 * truncate dma_addr_t to u32.
4589 */
4590 addr = (u32) sg_dma_address(sg);
4591 sg_len = sg_dma_len(sg);
4592
4593 while (sg_len) {
4594 offset = addr & 0xffff;
4595 len = sg_len;
4596 if ((offset + sg_len) > 0x10000)
4597 len = 0x10000 - offset;
4598
4599 blen = len & 0xffff;
4600 ap->prd[idx].addr = cpu_to_le32(addr);
4601 if (blen == 0) {
4602 /* Some PATA chipsets like the CS5530 can't
4603 cope with 0x0000 meaning 64K as the spec says */
4604 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4605 blen = 0x8000;
4606 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4607 }
4608 ap->prd[idx].flags_len = cpu_to_le32(blen);
4609 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4610
4611 idx++;
4612 sg_len -= len;
4613 addr += len;
4614 }
4615 }
4616
4617 if (idx)
4618 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4619 }
4620
4621 /**
4622 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4623 * @qc: Metadata associated with taskfile to check
4624 *
4625 * Allow low-level driver to filter ATA PACKET commands, returning
4626 * a status indicating whether or not it is OK to use DMA for the
4627 * supplied PACKET command.
4628 *
4629 * LOCKING:
4630 * spin_lock_irqsave(host lock)
4631 *
4632 * RETURNS: 0 when ATAPI DMA can be used
4633 * nonzero otherwise
4634 */
4635 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4636 {
4637 struct ata_port *ap = qc->ap;
4638
4639 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4640 * few ATAPI devices choke on such DMA requests.
4641 */
4642 if (unlikely(qc->nbytes & 15))
4643 return 1;
4644
4645 if (ap->ops->check_atapi_dma)
4646 return ap->ops->check_atapi_dma(qc);
4647
4648 return 0;
4649 }
4650
4651 /**
4652 * ata_std_qc_defer - Check whether a qc needs to be deferred
4653 * @qc: ATA command in question
4654 *
4655 * Non-NCQ commands cannot run with any other command, NCQ or
4656 * not. As upper layer only knows the queue depth, we are
4657 * responsible for maintaining exclusion. This function checks
4658 * whether a new command @qc can be issued.
4659 *
4660 * LOCKING:
4661 * spin_lock_irqsave(host lock)
4662 *
4663 * RETURNS:
4664 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4665 */
4666 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4667 {
4668 struct ata_link *link = qc->dev->link;
4669
4670 if (qc->tf.protocol == ATA_PROT_NCQ) {
4671 if (!ata_tag_valid(link->active_tag))
4672 return 0;
4673 } else {
4674 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4675 return 0;
4676 }
4677
4678 return ATA_DEFER_LINK;
4679 }
4680
4681 /**
4682 * ata_qc_prep - Prepare taskfile for submission
4683 * @qc: Metadata associated with taskfile to be prepared
4684 *
4685 * Prepare ATA taskfile for submission.
4686 *
4687 * LOCKING:
4688 * spin_lock_irqsave(host lock)
4689 */
4690 void ata_qc_prep(struct ata_queued_cmd *qc)
4691 {
4692 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4693 return;
4694
4695 ata_fill_sg(qc);
4696 }
4697
4698 /**
4699 * ata_dumb_qc_prep - Prepare taskfile for submission
4700 * @qc: Metadata associated with taskfile to be prepared
4701 *
4702 * Prepare ATA taskfile for submission.
4703 *
4704 * LOCKING:
4705 * spin_lock_irqsave(host lock)
4706 */
4707 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4708 {
4709 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4710 return;
4711
4712 ata_fill_sg_dumb(qc);
4713 }
4714
4715 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4716
4717 /**
4718 * ata_sg_init_one - Associate command with memory buffer
4719 * @qc: Command to be associated
4720 * @buf: Memory buffer
4721 * @buflen: Length of memory buffer, in bytes.
4722 *
4723 * Initialize the data-related elements of queued_cmd @qc
4724 * to point to a single memory buffer, @buf of byte length @buflen.
4725 *
4726 * LOCKING:
4727 * spin_lock_irqsave(host lock)
4728 */
4729
4730 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4731 {
4732 qc->flags |= ATA_QCFLAG_SINGLE;
4733
4734 qc->__sg = &qc->sgent;
4735 qc->n_elem = 1;
4736 qc->orig_n_elem = 1;
4737 qc->buf_virt = buf;
4738 qc->nbytes = buflen;
4739 qc->cursg = qc->__sg;
4740
4741 sg_init_one(&qc->sgent, buf, buflen);
4742 }
4743
4744 /**
4745 * ata_sg_init - Associate command with scatter-gather table.
4746 * @qc: Command to be associated
4747 * @sg: Scatter-gather table.
4748 * @n_elem: Number of elements in s/g table.
4749 *
4750 * Initialize the data-related elements of queued_cmd @qc
4751 * to point to a scatter-gather table @sg, containing @n_elem
4752 * elements.
4753 *
4754 * LOCKING:
4755 * spin_lock_irqsave(host lock)
4756 */
4757
4758 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4759 unsigned int n_elem)
4760 {
4761 qc->flags |= ATA_QCFLAG_SG;
4762 qc->__sg = sg;
4763 qc->n_elem = n_elem;
4764 qc->orig_n_elem = n_elem;
4765 qc->cursg = qc->__sg;
4766 }
4767
4768 /**
4769 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4770 * @qc: Command with memory buffer to be mapped.
4771 *
4772 * DMA-map the memory buffer associated with queued_cmd @qc.
4773 *
4774 * LOCKING:
4775 * spin_lock_irqsave(host lock)
4776 *
4777 * RETURNS:
4778 * Zero on success, negative on error.
4779 */
4780
4781 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4782 {
4783 struct ata_port *ap = qc->ap;
4784 int dir = qc->dma_dir;
4785 struct scatterlist *sg = qc->__sg;
4786 dma_addr_t dma_address;
4787 int trim_sg = 0;
4788
4789 /* we must lengthen transfers to end on a 32-bit boundary */
4790 qc->pad_len = sg->length & 3;
4791 if (qc->pad_len) {
4792 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4793 struct scatterlist *psg = &qc->pad_sgent;
4794
4795 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4796
4797 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4798
4799 if (qc->tf.flags & ATA_TFLAG_WRITE)
4800 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4801 qc->pad_len);
4802
4803 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4804 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4805 /* trim sg */
4806 sg->length -= qc->pad_len;
4807 if (sg->length == 0)
4808 trim_sg = 1;
4809
4810 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4811 sg->length, qc->pad_len);
4812 }
4813
4814 if (trim_sg) {
4815 qc->n_elem--;
4816 goto skip_map;
4817 }
4818
4819 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4820 sg->length, dir);
4821 if (dma_mapping_error(dma_address)) {
4822 /* restore sg */
4823 sg->length += qc->pad_len;
4824 return -1;
4825 }
4826
4827 sg_dma_address(sg) = dma_address;
4828 sg_dma_len(sg) = sg->length;
4829
4830 skip_map:
4831 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4832 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4833
4834 return 0;
4835 }
4836
4837 /**
4838 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4839 * @qc: Command with scatter-gather table to be mapped.
4840 *
4841 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4842 *
4843 * LOCKING:
4844 * spin_lock_irqsave(host lock)
4845 *
4846 * RETURNS:
4847 * Zero on success, negative on error.
4848 *
4849 */
4850
4851 static int ata_sg_setup(struct ata_queued_cmd *qc)
4852 {
4853 struct ata_port *ap = qc->ap;
4854 struct scatterlist *sg = qc->__sg;
4855 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4856 int n_elem, pre_n_elem, dir, trim_sg = 0;
4857
4858 VPRINTK("ENTER, ata%u\n", ap->print_id);
4859 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4860
4861 /* we must lengthen transfers to end on a 32-bit boundary */
4862 qc->pad_len = lsg->length & 3;
4863 if (qc->pad_len) {
4864 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4865 struct scatterlist *psg = &qc->pad_sgent;
4866 unsigned int offset;
4867
4868 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4869
4870 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4871
4872 /*
4873 * psg->page/offset are used to copy to-be-written
4874 * data in this function or read data in ata_sg_clean.
4875 */
4876 offset = lsg->offset + lsg->length - qc->pad_len;
4877 sg_init_table(psg, 1);
4878 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4879 qc->pad_len, offset_in_page(offset));
4880
4881 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4882 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4883 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4884 kunmap_atomic(addr, KM_IRQ0);
4885 }
4886
4887 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4888 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4889 /* trim last sg */
4890 lsg->length -= qc->pad_len;
4891 if (lsg->length == 0)
4892 trim_sg = 1;
4893
4894 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4895 qc->n_elem - 1, lsg->length, qc->pad_len);
4896 }
4897
4898 pre_n_elem = qc->n_elem;
4899 if (trim_sg && pre_n_elem)
4900 pre_n_elem--;
4901
4902 if (!pre_n_elem) {
4903 n_elem = 0;
4904 goto skip_map;
4905 }
4906
4907 dir = qc->dma_dir;
4908 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4909 if (n_elem < 1) {
4910 /* restore last sg */
4911 lsg->length += qc->pad_len;
4912 return -1;
4913 }
4914
4915 DPRINTK("%d sg elements mapped\n", n_elem);
4916
4917 skip_map:
4918 qc->n_elem = n_elem;
4919
4920 return 0;
4921 }
4922
4923 /**
4924 * swap_buf_le16 - swap halves of 16-bit words in place
4925 * @buf: Buffer to swap
4926 * @buf_words: Number of 16-bit words in buffer.
4927 *
4928 * Swap halves of 16-bit words if needed to convert from
4929 * little-endian byte order to native cpu byte order, or
4930 * vice-versa.
4931 *
4932 * LOCKING:
4933 * Inherited from caller.
4934 */
4935 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4936 {
4937 #ifdef __BIG_ENDIAN
4938 unsigned int i;
4939
4940 for (i = 0; i < buf_words; i++)
4941 buf[i] = le16_to_cpu(buf[i]);
4942 #endif /* __BIG_ENDIAN */
4943 }
4944
4945 /**
4946 * ata_data_xfer - Transfer data by PIO
4947 * @adev: device to target
4948 * @buf: data buffer
4949 * @buflen: buffer length
4950 * @write_data: read/write
4951 *
4952 * Transfer data from/to the device data register by PIO.
4953 *
4954 * LOCKING:
4955 * Inherited from caller.
4956 */
4957 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4958 unsigned int buflen, int write_data)
4959 {
4960 struct ata_port *ap = adev->link->ap;
4961 unsigned int words = buflen >> 1;
4962
4963 /* Transfer multiple of 2 bytes */
4964 if (write_data)
4965 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4966 else
4967 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4968
4969 /* Transfer trailing 1 byte, if any. */
4970 if (unlikely(buflen & 0x01)) {
4971 u16 align_buf[1] = { 0 };
4972 unsigned char *trailing_buf = buf + buflen - 1;
4973
4974 if (write_data) {
4975 memcpy(align_buf, trailing_buf, 1);
4976 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4977 } else {
4978 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4979 memcpy(trailing_buf, align_buf, 1);
4980 }
4981 }
4982 }
4983
4984 /**
4985 * ata_data_xfer_noirq - Transfer data by PIO
4986 * @adev: device to target
4987 * @buf: data buffer
4988 * @buflen: buffer length
4989 * @write_data: read/write
4990 *
4991 * Transfer data from/to the device data register by PIO. Do the
4992 * transfer with interrupts disabled.
4993 *
4994 * LOCKING:
4995 * Inherited from caller.
4996 */
4997 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4998 unsigned int buflen, int write_data)
4999 {
5000 unsigned long flags;
5001 local_irq_save(flags);
5002 ata_data_xfer(adev, buf, buflen, write_data);
5003 local_irq_restore(flags);
5004 }
5005
5006
5007 /**
5008 * ata_pio_sector - Transfer a sector of data.
5009 * @qc: Command on going
5010 *
5011 * Transfer qc->sect_size bytes of data from/to the ATA device.
5012 *
5013 * LOCKING:
5014 * Inherited from caller.
5015 */
5016
5017 static void ata_pio_sector(struct ata_queued_cmd *qc)
5018 {
5019 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5020 struct ata_port *ap = qc->ap;
5021 struct page *page;
5022 unsigned int offset;
5023 unsigned char *buf;
5024
5025 if (qc->curbytes == qc->nbytes - qc->sect_size)
5026 ap->hsm_task_state = HSM_ST_LAST;
5027
5028 page = sg_page(qc->cursg);
5029 offset = qc->cursg->offset + qc->cursg_ofs;
5030
5031 /* get the current page and offset */
5032 page = nth_page(page, (offset >> PAGE_SHIFT));
5033 offset %= PAGE_SIZE;
5034
5035 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5036
5037 if (PageHighMem(page)) {
5038 unsigned long flags;
5039
5040 /* FIXME: use a bounce buffer */
5041 local_irq_save(flags);
5042 buf = kmap_atomic(page, KM_IRQ0);
5043
5044 /* do the actual data transfer */
5045 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5046
5047 kunmap_atomic(buf, KM_IRQ0);
5048 local_irq_restore(flags);
5049 } else {
5050 buf = page_address(page);
5051 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5052 }
5053
5054 qc->curbytes += qc->sect_size;
5055 qc->cursg_ofs += qc->sect_size;
5056
5057 if (qc->cursg_ofs == qc->cursg->length) {
5058 qc->cursg = sg_next(qc->cursg);
5059 qc->cursg_ofs = 0;
5060 }
5061 }
5062
5063 /**
5064 * ata_pio_sectors - Transfer one or many sectors.
5065 * @qc: Command on going
5066 *
5067 * Transfer one or many sectors of data from/to the
5068 * ATA device for the DRQ request.
5069 *
5070 * LOCKING:
5071 * Inherited from caller.
5072 */
5073
5074 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5075 {
5076 if (is_multi_taskfile(&qc->tf)) {
5077 /* READ/WRITE MULTIPLE */
5078 unsigned int nsect;
5079
5080 WARN_ON(qc->dev->multi_count == 0);
5081
5082 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5083 qc->dev->multi_count);
5084 while (nsect--)
5085 ata_pio_sector(qc);
5086 } else
5087 ata_pio_sector(qc);
5088
5089 ata_altstatus(qc->ap); /* flush */
5090 }
5091
5092 /**
5093 * atapi_send_cdb - Write CDB bytes to hardware
5094 * @ap: Port to which ATAPI device is attached.
5095 * @qc: Taskfile currently active
5096 *
5097 * When device has indicated its readiness to accept
5098 * a CDB, this function is called. Send the CDB.
5099 *
5100 * LOCKING:
5101 * caller.
5102 */
5103
5104 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5105 {
5106 /* send SCSI cdb */
5107 DPRINTK("send cdb\n");
5108 WARN_ON(qc->dev->cdb_len < 12);
5109
5110 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5111 ata_altstatus(ap); /* flush */
5112
5113 switch (qc->tf.protocol) {
5114 case ATA_PROT_ATAPI:
5115 ap->hsm_task_state = HSM_ST;
5116 break;
5117 case ATA_PROT_ATAPI_NODATA:
5118 ap->hsm_task_state = HSM_ST_LAST;
5119 break;
5120 case ATA_PROT_ATAPI_DMA:
5121 ap->hsm_task_state = HSM_ST_LAST;
5122 /* initiate bmdma */
5123 ap->ops->bmdma_start(qc);
5124 break;
5125 }
5126 }
5127
5128 /**
5129 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5130 * @qc: Command on going
5131 * @bytes: number of bytes
5132 *
5133 * Transfer Transfer data from/to the ATAPI device.
5134 *
5135 * LOCKING:
5136 * Inherited from caller.
5137 *
5138 */
5139
5140 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5141 {
5142 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5143 struct scatterlist *sg = qc->__sg;
5144 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
5145 struct ata_port *ap = qc->ap;
5146 struct page *page;
5147 unsigned char *buf;
5148 unsigned int offset, count;
5149 int no_more_sg = 0;
5150
5151 if (qc->curbytes + bytes >= qc->nbytes)
5152 ap->hsm_task_state = HSM_ST_LAST;
5153
5154 next_sg:
5155 if (unlikely(no_more_sg)) {
5156 /*
5157 * The end of qc->sg is reached and the device expects
5158 * more data to transfer. In order not to overrun qc->sg
5159 * and fulfill length specified in the byte count register,
5160 * - for read case, discard trailing data from the device
5161 * - for write case, padding zero data to the device
5162 */
5163 u16 pad_buf[1] = { 0 };
5164 unsigned int words = bytes >> 1;
5165 unsigned int i;
5166
5167 if (words) /* warning if bytes > 1 */
5168 ata_dev_printk(qc->dev, KERN_WARNING,
5169 "%u bytes trailing data\n", bytes);
5170
5171 for (i = 0; i < words; i++)
5172 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5173
5174 ap->hsm_task_state = HSM_ST_LAST;
5175 return;
5176 }
5177
5178 sg = qc->cursg;
5179
5180 page = sg_page(sg);
5181 offset = sg->offset + qc->cursg_ofs;
5182
5183 /* get the current page and offset */
5184 page = nth_page(page, (offset >> PAGE_SHIFT));
5185 offset %= PAGE_SIZE;
5186
5187 /* don't overrun current sg */
5188 count = min(sg->length - qc->cursg_ofs, bytes);
5189
5190 /* don't cross page boundaries */
5191 count = min(count, (unsigned int)PAGE_SIZE - offset);
5192
5193 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5194
5195 if (PageHighMem(page)) {
5196 unsigned long flags;
5197
5198 /* FIXME: use bounce buffer */
5199 local_irq_save(flags);
5200 buf = kmap_atomic(page, KM_IRQ0);
5201
5202 /* do the actual data transfer */
5203 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5204
5205 kunmap_atomic(buf, KM_IRQ0);
5206 local_irq_restore(flags);
5207 } else {
5208 buf = page_address(page);
5209 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5210 }
5211
5212 bytes -= count;
5213 qc->curbytes += count;
5214 qc->cursg_ofs += count;
5215
5216 if (qc->cursg_ofs == sg->length) {
5217 if (qc->cursg == lsg)
5218 no_more_sg = 1;
5219
5220 qc->cursg = sg_next(qc->cursg);
5221 qc->cursg_ofs = 0;
5222 }
5223
5224 if (bytes)
5225 goto next_sg;
5226 }
5227
5228 /**
5229 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5230 * @qc: Command on going
5231 *
5232 * Transfer Transfer data from/to the ATAPI device.
5233 *
5234 * LOCKING:
5235 * Inherited from caller.
5236 */
5237
5238 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5239 {
5240 struct ata_port *ap = qc->ap;
5241 struct ata_device *dev = qc->dev;
5242 unsigned int ireason, bc_lo, bc_hi, bytes;
5243 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5244
5245 /* Abuse qc->result_tf for temp storage of intermediate TF
5246 * here to save some kernel stack usage.
5247 * For normal completion, qc->result_tf is not relevant. For
5248 * error, qc->result_tf is later overwritten by ata_qc_complete().
5249 * So, the correctness of qc->result_tf is not affected.
5250 */
5251 ap->ops->tf_read(ap, &qc->result_tf);
5252 ireason = qc->result_tf.nsect;
5253 bc_lo = qc->result_tf.lbam;
5254 bc_hi = qc->result_tf.lbah;
5255 bytes = (bc_hi << 8) | bc_lo;
5256
5257 /* shall be cleared to zero, indicating xfer of data */
5258 if (ireason & (1 << 0))
5259 goto err_out;
5260
5261 /* make sure transfer direction matches expected */
5262 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5263 if (do_write != i_write)
5264 goto err_out;
5265
5266 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5267
5268 __atapi_pio_bytes(qc, bytes);
5269 ata_altstatus(ap); /* flush */
5270
5271 return;
5272
5273 err_out:
5274 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5275 qc->err_mask |= AC_ERR_HSM;
5276 ap->hsm_task_state = HSM_ST_ERR;
5277 }
5278
5279 /**
5280 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5281 * @ap: the target ata_port
5282 * @qc: qc on going
5283 *
5284 * RETURNS:
5285 * 1 if ok in workqueue, 0 otherwise.
5286 */
5287
5288 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5289 {
5290 if (qc->tf.flags & ATA_TFLAG_POLLING)
5291 return 1;
5292
5293 if (ap->hsm_task_state == HSM_ST_FIRST) {
5294 if (qc->tf.protocol == ATA_PROT_PIO &&
5295 (qc->tf.flags & ATA_TFLAG_WRITE))
5296 return 1;
5297
5298 if (is_atapi_taskfile(&qc->tf) &&
5299 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5300 return 1;
5301 }
5302
5303 return 0;
5304 }
5305
5306 /**
5307 * ata_hsm_qc_complete - finish a qc running on standard HSM
5308 * @qc: Command to complete
5309 * @in_wq: 1 if called from workqueue, 0 otherwise
5310 *
5311 * Finish @qc which is running on standard HSM.
5312 *
5313 * LOCKING:
5314 * If @in_wq is zero, spin_lock_irqsave(host lock).
5315 * Otherwise, none on entry and grabs host lock.
5316 */
5317 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5318 {
5319 struct ata_port *ap = qc->ap;
5320 unsigned long flags;
5321
5322 if (ap->ops->error_handler) {
5323 if (in_wq) {
5324 spin_lock_irqsave(ap->lock, flags);
5325
5326 /* EH might have kicked in while host lock is
5327 * released.
5328 */
5329 qc = ata_qc_from_tag(ap, qc->tag);
5330 if (qc) {
5331 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5332 ap->ops->irq_on(ap);
5333 ata_qc_complete(qc);
5334 } else
5335 ata_port_freeze(ap);
5336 }
5337
5338 spin_unlock_irqrestore(ap->lock, flags);
5339 } else {
5340 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5341 ata_qc_complete(qc);
5342 else
5343 ata_port_freeze(ap);
5344 }
5345 } else {
5346 if (in_wq) {
5347 spin_lock_irqsave(ap->lock, flags);
5348 ap->ops->irq_on(ap);
5349 ata_qc_complete(qc);
5350 spin_unlock_irqrestore(ap->lock, flags);
5351 } else
5352 ata_qc_complete(qc);
5353 }
5354 }
5355
5356 /**
5357 * ata_hsm_move - move the HSM to the next state.
5358 * @ap: the target ata_port
5359 * @qc: qc on going
5360 * @status: current device status
5361 * @in_wq: 1 if called from workqueue, 0 otherwise
5362 *
5363 * RETURNS:
5364 * 1 when poll next status needed, 0 otherwise.
5365 */
5366 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5367 u8 status, int in_wq)
5368 {
5369 unsigned long flags = 0;
5370 int poll_next;
5371
5372 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5373
5374 /* Make sure ata_qc_issue_prot() does not throw things
5375 * like DMA polling into the workqueue. Notice that
5376 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5377 */
5378 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5379
5380 fsm_start:
5381 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5382 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5383
5384 switch (ap->hsm_task_state) {
5385 case HSM_ST_FIRST:
5386 /* Send first data block or PACKET CDB */
5387
5388 /* If polling, we will stay in the work queue after
5389 * sending the data. Otherwise, interrupt handler
5390 * takes over after sending the data.
5391 */
5392 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5393
5394 /* check device status */
5395 if (unlikely((status & ATA_DRQ) == 0)) {
5396 /* handle BSY=0, DRQ=0 as error */
5397 if (likely(status & (ATA_ERR | ATA_DF)))
5398 /* device stops HSM for abort/error */
5399 qc->err_mask |= AC_ERR_DEV;
5400 else
5401 /* HSM violation. Let EH handle this */
5402 qc->err_mask |= AC_ERR_HSM;
5403
5404 ap->hsm_task_state = HSM_ST_ERR;
5405 goto fsm_start;
5406 }
5407
5408 /* Device should not ask for data transfer (DRQ=1)
5409 * when it finds something wrong.
5410 * We ignore DRQ here and stop the HSM by
5411 * changing hsm_task_state to HSM_ST_ERR and
5412 * let the EH abort the command or reset the device.
5413 */
5414 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5415 /* Some ATAPI tape drives forget to clear the ERR bit
5416 * when doing the next command (mostly request sense).
5417 * We ignore ERR here to workaround and proceed sending
5418 * the CDB.
5419 */
5420 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5421 ata_port_printk(ap, KERN_WARNING,
5422 "DRQ=1 with device error, "
5423 "dev_stat 0x%X\n", status);
5424 qc->err_mask |= AC_ERR_HSM;
5425 ap->hsm_task_state = HSM_ST_ERR;
5426 goto fsm_start;
5427 }
5428 }
5429
5430 /* Send the CDB (atapi) or the first data block (ata pio out).
5431 * During the state transition, interrupt handler shouldn't
5432 * be invoked before the data transfer is complete and
5433 * hsm_task_state is changed. Hence, the following locking.
5434 */
5435 if (in_wq)
5436 spin_lock_irqsave(ap->lock, flags);
5437
5438 if (qc->tf.protocol == ATA_PROT_PIO) {
5439 /* PIO data out protocol.
5440 * send first data block.
5441 */
5442
5443 /* ata_pio_sectors() might change the state
5444 * to HSM_ST_LAST. so, the state is changed here
5445 * before ata_pio_sectors().
5446 */
5447 ap->hsm_task_state = HSM_ST;
5448 ata_pio_sectors(qc);
5449 } else
5450 /* send CDB */
5451 atapi_send_cdb(ap, qc);
5452
5453 if (in_wq)
5454 spin_unlock_irqrestore(ap->lock, flags);
5455
5456 /* if polling, ata_pio_task() handles the rest.
5457 * otherwise, interrupt handler takes over from here.
5458 */
5459 break;
5460
5461 case HSM_ST:
5462 /* complete command or read/write the data register */
5463 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5464 /* ATAPI PIO protocol */
5465 if ((status & ATA_DRQ) == 0) {
5466 /* No more data to transfer or device error.
5467 * Device error will be tagged in HSM_ST_LAST.
5468 */
5469 ap->hsm_task_state = HSM_ST_LAST;
5470 goto fsm_start;
5471 }
5472
5473 /* Device should not ask for data transfer (DRQ=1)
5474 * when it finds something wrong.
5475 * We ignore DRQ here and stop the HSM by
5476 * changing hsm_task_state to HSM_ST_ERR and
5477 * let the EH abort the command or reset the device.
5478 */
5479 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5480 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5481 "device error, dev_stat 0x%X\n",
5482 status);
5483 qc->err_mask |= AC_ERR_HSM;
5484 ap->hsm_task_state = HSM_ST_ERR;
5485 goto fsm_start;
5486 }
5487
5488 atapi_pio_bytes(qc);
5489
5490 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5491 /* bad ireason reported by device */
5492 goto fsm_start;
5493
5494 } else {
5495 /* ATA PIO protocol */
5496 if (unlikely((status & ATA_DRQ) == 0)) {
5497 /* handle BSY=0, DRQ=0 as error */
5498 if (likely(status & (ATA_ERR | ATA_DF)))
5499 /* device stops HSM for abort/error */
5500 qc->err_mask |= AC_ERR_DEV;
5501 else
5502 /* HSM violation. Let EH handle this.
5503 * Phantom devices also trigger this
5504 * condition. Mark hint.
5505 */
5506 qc->err_mask |= AC_ERR_HSM |
5507 AC_ERR_NODEV_HINT;
5508
5509 ap->hsm_task_state = HSM_ST_ERR;
5510 goto fsm_start;
5511 }
5512
5513 /* For PIO reads, some devices may ask for
5514 * data transfer (DRQ=1) alone with ERR=1.
5515 * We respect DRQ here and transfer one
5516 * block of junk data before changing the
5517 * hsm_task_state to HSM_ST_ERR.
5518 *
5519 * For PIO writes, ERR=1 DRQ=1 doesn't make
5520 * sense since the data block has been
5521 * transferred to the device.
5522 */
5523 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5524 /* data might be corrputed */
5525 qc->err_mask |= AC_ERR_DEV;
5526
5527 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5528 ata_pio_sectors(qc);
5529 status = ata_wait_idle(ap);
5530 }
5531
5532 if (status & (ATA_BUSY | ATA_DRQ))
5533 qc->err_mask |= AC_ERR_HSM;
5534
5535 /* ata_pio_sectors() might change the
5536 * state to HSM_ST_LAST. so, the state
5537 * is changed after ata_pio_sectors().
5538 */
5539 ap->hsm_task_state = HSM_ST_ERR;
5540 goto fsm_start;
5541 }
5542
5543 ata_pio_sectors(qc);
5544
5545 if (ap->hsm_task_state == HSM_ST_LAST &&
5546 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5547 /* all data read */
5548 status = ata_wait_idle(ap);
5549 goto fsm_start;
5550 }
5551 }
5552
5553 poll_next = 1;
5554 break;
5555
5556 case HSM_ST_LAST:
5557 if (unlikely(!ata_ok(status))) {
5558 qc->err_mask |= __ac_err_mask(status);
5559 ap->hsm_task_state = HSM_ST_ERR;
5560 goto fsm_start;
5561 }
5562
5563 /* no more data to transfer */
5564 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5565 ap->print_id, qc->dev->devno, status);
5566
5567 WARN_ON(qc->err_mask);
5568
5569 ap->hsm_task_state = HSM_ST_IDLE;
5570
5571 /* complete taskfile transaction */
5572 ata_hsm_qc_complete(qc, in_wq);
5573
5574 poll_next = 0;
5575 break;
5576
5577 case HSM_ST_ERR:
5578 /* make sure qc->err_mask is available to
5579 * know what's wrong and recover
5580 */
5581 WARN_ON(qc->err_mask == 0);
5582
5583 ap->hsm_task_state = HSM_ST_IDLE;
5584
5585 /* complete taskfile transaction */
5586 ata_hsm_qc_complete(qc, in_wq);
5587
5588 poll_next = 0;
5589 break;
5590 default:
5591 poll_next = 0;
5592 BUG();
5593 }
5594
5595 return poll_next;
5596 }
5597
5598 static void ata_pio_task(struct work_struct *work)
5599 {
5600 struct ata_port *ap =
5601 container_of(work, struct ata_port, port_task.work);
5602 struct ata_queued_cmd *qc = ap->port_task_data;
5603 u8 status;
5604 int poll_next;
5605
5606 fsm_start:
5607 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5608
5609 /*
5610 * This is purely heuristic. This is a fast path.
5611 * Sometimes when we enter, BSY will be cleared in
5612 * a chk-status or two. If not, the drive is probably seeking
5613 * or something. Snooze for a couple msecs, then
5614 * chk-status again. If still busy, queue delayed work.
5615 */
5616 status = ata_busy_wait(ap, ATA_BUSY, 5);
5617 if (status & ATA_BUSY) {
5618 msleep(2);
5619 status = ata_busy_wait(ap, ATA_BUSY, 10);
5620 if (status & ATA_BUSY) {
5621 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5622 return;
5623 }
5624 }
5625
5626 /* move the HSM */
5627 poll_next = ata_hsm_move(ap, qc, status, 1);
5628
5629 /* another command or interrupt handler
5630 * may be running at this point.
5631 */
5632 if (poll_next)
5633 goto fsm_start;
5634 }
5635
5636 /**
5637 * ata_qc_new - Request an available ATA command, for queueing
5638 * @ap: Port associated with device @dev
5639 * @dev: Device from whom we request an available command structure
5640 *
5641 * LOCKING:
5642 * None.
5643 */
5644
5645 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5646 {
5647 struct ata_queued_cmd *qc = NULL;
5648 unsigned int i;
5649
5650 /* no command while frozen */
5651 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5652 return NULL;
5653
5654 /* the last tag is reserved for internal command. */
5655 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5656 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5657 qc = __ata_qc_from_tag(ap, i);
5658 break;
5659 }
5660
5661 if (qc)
5662 qc->tag = i;
5663
5664 return qc;
5665 }
5666
5667 /**
5668 * ata_qc_new_init - Request an available ATA command, and initialize it
5669 * @dev: Device from whom we request an available command structure
5670 *
5671 * LOCKING:
5672 * None.
5673 */
5674
5675 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5676 {
5677 struct ata_port *ap = dev->link->ap;
5678 struct ata_queued_cmd *qc;
5679
5680 qc = ata_qc_new(ap);
5681 if (qc) {
5682 qc->scsicmd = NULL;
5683 qc->ap = ap;
5684 qc->dev = dev;
5685
5686 ata_qc_reinit(qc);
5687 }
5688
5689 return qc;
5690 }
5691
5692 /**
5693 * ata_qc_free - free unused ata_queued_cmd
5694 * @qc: Command to complete
5695 *
5696 * Designed to free unused ata_queued_cmd object
5697 * in case something prevents using it.
5698 *
5699 * LOCKING:
5700 * spin_lock_irqsave(host lock)
5701 */
5702 void ata_qc_free(struct ata_queued_cmd *qc)
5703 {
5704 struct ata_port *ap = qc->ap;
5705 unsigned int tag;
5706
5707 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5708
5709 qc->flags = 0;
5710 tag = qc->tag;
5711 if (likely(ata_tag_valid(tag))) {
5712 qc->tag = ATA_TAG_POISON;
5713 clear_bit(tag, &ap->qc_allocated);
5714 }
5715 }
5716
5717 void __ata_qc_complete(struct ata_queued_cmd *qc)
5718 {
5719 struct ata_port *ap = qc->ap;
5720 struct ata_link *link = qc->dev->link;
5721
5722 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5723 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5724
5725 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5726 ata_sg_clean(qc);
5727
5728 /* command should be marked inactive atomically with qc completion */
5729 if (qc->tf.protocol == ATA_PROT_NCQ) {
5730 link->sactive &= ~(1 << qc->tag);
5731 if (!link->sactive)
5732 ap->nr_active_links--;
5733 } else {
5734 link->active_tag = ATA_TAG_POISON;
5735 ap->nr_active_links--;
5736 }
5737
5738 /* clear exclusive status */
5739 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5740 ap->excl_link == link))
5741 ap->excl_link = NULL;
5742
5743 /* atapi: mark qc as inactive to prevent the interrupt handler
5744 * from completing the command twice later, before the error handler
5745 * is called. (when rc != 0 and atapi request sense is needed)
5746 */
5747 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5748 ap->qc_active &= ~(1 << qc->tag);
5749
5750 /* call completion callback */
5751 qc->complete_fn(qc);
5752 }
5753
5754 static void fill_result_tf(struct ata_queued_cmd *qc)
5755 {
5756 struct ata_port *ap = qc->ap;
5757
5758 qc->result_tf.flags = qc->tf.flags;
5759 ap->ops->tf_read(ap, &qc->result_tf);
5760 }
5761
5762 /**
5763 * ata_qc_complete - Complete an active ATA command
5764 * @qc: Command to complete
5765 * @err_mask: ATA Status register contents
5766 *
5767 * Indicate to the mid and upper layers that an ATA
5768 * command has completed, with either an ok or not-ok status.
5769 *
5770 * LOCKING:
5771 * spin_lock_irqsave(host lock)
5772 */
5773 void ata_qc_complete(struct ata_queued_cmd *qc)
5774 {
5775 struct ata_port *ap = qc->ap;
5776
5777 /* XXX: New EH and old EH use different mechanisms to
5778 * synchronize EH with regular execution path.
5779 *
5780 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5781 * Normal execution path is responsible for not accessing a
5782 * failed qc. libata core enforces the rule by returning NULL
5783 * from ata_qc_from_tag() for failed qcs.
5784 *
5785 * Old EH depends on ata_qc_complete() nullifying completion
5786 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5787 * not synchronize with interrupt handler. Only PIO task is
5788 * taken care of.
5789 */
5790 if (ap->ops->error_handler) {
5791 struct ata_device *dev = qc->dev;
5792 struct ata_eh_info *ehi = &dev->link->eh_info;
5793
5794 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5795
5796 if (unlikely(qc->err_mask))
5797 qc->flags |= ATA_QCFLAG_FAILED;
5798
5799 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5800 if (!ata_tag_internal(qc->tag)) {
5801 /* always fill result TF for failed qc */
5802 fill_result_tf(qc);
5803 ata_qc_schedule_eh(qc);
5804 return;
5805 }
5806 }
5807
5808 /* read result TF if requested */
5809 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5810 fill_result_tf(qc);
5811
5812 /* Some commands need post-processing after successful
5813 * completion.
5814 */
5815 switch (qc->tf.command) {
5816 case ATA_CMD_SET_FEATURES:
5817 if (qc->tf.feature != SETFEATURES_WC_ON &&
5818 qc->tf.feature != SETFEATURES_WC_OFF)
5819 break;
5820 /* fall through */
5821 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5822 case ATA_CMD_SET_MULTI: /* multi_count changed */
5823 /* revalidate device */
5824 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5825 ata_port_schedule_eh(ap);
5826 break;
5827
5828 case ATA_CMD_SLEEP:
5829 dev->flags |= ATA_DFLAG_SLEEPING;
5830 break;
5831 }
5832
5833 __ata_qc_complete(qc);
5834 } else {
5835 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5836 return;
5837
5838 /* read result TF if failed or requested */
5839 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5840 fill_result_tf(qc);
5841
5842 __ata_qc_complete(qc);
5843 }
5844 }
5845
5846 /**
5847 * ata_qc_complete_multiple - Complete multiple qcs successfully
5848 * @ap: port in question
5849 * @qc_active: new qc_active mask
5850 * @finish_qc: LLDD callback invoked before completing a qc
5851 *
5852 * Complete in-flight commands. This functions is meant to be
5853 * called from low-level driver's interrupt routine to complete
5854 * requests normally. ap->qc_active and @qc_active is compared
5855 * and commands are completed accordingly.
5856 *
5857 * LOCKING:
5858 * spin_lock_irqsave(host lock)
5859 *
5860 * RETURNS:
5861 * Number of completed commands on success, -errno otherwise.
5862 */
5863 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5864 void (*finish_qc)(struct ata_queued_cmd *))
5865 {
5866 int nr_done = 0;
5867 u32 done_mask;
5868 int i;
5869
5870 done_mask = ap->qc_active ^ qc_active;
5871
5872 if (unlikely(done_mask & qc_active)) {
5873 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5874 "(%08x->%08x)\n", ap->qc_active, qc_active);
5875 return -EINVAL;
5876 }
5877
5878 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5879 struct ata_queued_cmd *qc;
5880
5881 if (!(done_mask & (1 << i)))
5882 continue;
5883
5884 if ((qc = ata_qc_from_tag(ap, i))) {
5885 if (finish_qc)
5886 finish_qc(qc);
5887 ata_qc_complete(qc);
5888 nr_done++;
5889 }
5890 }
5891
5892 return nr_done;
5893 }
5894
5895 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5896 {
5897 struct ata_port *ap = qc->ap;
5898
5899 switch (qc->tf.protocol) {
5900 case ATA_PROT_NCQ:
5901 case ATA_PROT_DMA:
5902 case ATA_PROT_ATAPI_DMA:
5903 return 1;
5904
5905 case ATA_PROT_ATAPI:
5906 case ATA_PROT_PIO:
5907 if (ap->flags & ATA_FLAG_PIO_DMA)
5908 return 1;
5909
5910 /* fall through */
5911
5912 default:
5913 return 0;
5914 }
5915
5916 /* never reached */
5917 }
5918
5919 /**
5920 * ata_qc_issue - issue taskfile to device
5921 * @qc: command to issue to device
5922 *
5923 * Prepare an ATA command to submission to device.
5924 * This includes mapping the data into a DMA-able
5925 * area, filling in the S/G table, and finally
5926 * writing the taskfile to hardware, starting the command.
5927 *
5928 * LOCKING:
5929 * spin_lock_irqsave(host lock)
5930 */
5931 void ata_qc_issue(struct ata_queued_cmd *qc)
5932 {
5933 struct ata_port *ap = qc->ap;
5934 struct ata_link *link = qc->dev->link;
5935
5936 /* Make sure only one non-NCQ command is outstanding. The
5937 * check is skipped for old EH because it reuses active qc to
5938 * request ATAPI sense.
5939 */
5940 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5941
5942 if (qc->tf.protocol == ATA_PROT_NCQ) {
5943 WARN_ON(link->sactive & (1 << qc->tag));
5944
5945 if (!link->sactive)
5946 ap->nr_active_links++;
5947 link->sactive |= 1 << qc->tag;
5948 } else {
5949 WARN_ON(link->sactive);
5950
5951 ap->nr_active_links++;
5952 link->active_tag = qc->tag;
5953 }
5954
5955 qc->flags |= ATA_QCFLAG_ACTIVE;
5956 ap->qc_active |= 1 << qc->tag;
5957
5958 if (ata_should_dma_map(qc)) {
5959 if (qc->flags & ATA_QCFLAG_SG) {
5960 if (ata_sg_setup(qc))
5961 goto sg_err;
5962 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5963 if (ata_sg_setup_one(qc))
5964 goto sg_err;
5965 }
5966 } else {
5967 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5968 }
5969
5970 /* if device is sleeping, schedule softreset and abort the link */
5971 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5972 link->eh_info.action |= ATA_EH_SOFTRESET;
5973 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5974 ata_link_abort(link);
5975 return;
5976 }
5977
5978 ap->ops->qc_prep(qc);
5979
5980 qc->err_mask |= ap->ops->qc_issue(qc);
5981 if (unlikely(qc->err_mask))
5982 goto err;
5983 return;
5984
5985 sg_err:
5986 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5987 qc->err_mask |= AC_ERR_SYSTEM;
5988 err:
5989 ata_qc_complete(qc);
5990 }
5991
5992 /**
5993 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5994 * @qc: command to issue to device
5995 *
5996 * Using various libata functions and hooks, this function
5997 * starts an ATA command. ATA commands are grouped into
5998 * classes called "protocols", and issuing each type of protocol
5999 * is slightly different.
6000 *
6001 * May be used as the qc_issue() entry in ata_port_operations.
6002 *
6003 * LOCKING:
6004 * spin_lock_irqsave(host lock)
6005 *
6006 * RETURNS:
6007 * Zero on success, AC_ERR_* mask on failure
6008 */
6009
6010 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6011 {
6012 struct ata_port *ap = qc->ap;
6013
6014 /* Use polling pio if the LLD doesn't handle
6015 * interrupt driven pio and atapi CDB interrupt.
6016 */
6017 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6018 switch (qc->tf.protocol) {
6019 case ATA_PROT_PIO:
6020 case ATA_PROT_NODATA:
6021 case ATA_PROT_ATAPI:
6022 case ATA_PROT_ATAPI_NODATA:
6023 qc->tf.flags |= ATA_TFLAG_POLLING;
6024 break;
6025 case ATA_PROT_ATAPI_DMA:
6026 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6027 /* see ata_dma_blacklisted() */
6028 BUG();
6029 break;
6030 default:
6031 break;
6032 }
6033 }
6034
6035 /* select the device */
6036 ata_dev_select(ap, qc->dev->devno, 1, 0);
6037
6038 /* start the command */
6039 switch (qc->tf.protocol) {
6040 case ATA_PROT_NODATA:
6041 if (qc->tf.flags & ATA_TFLAG_POLLING)
6042 ata_qc_set_polling(qc);
6043
6044 ata_tf_to_host(ap, &qc->tf);
6045 ap->hsm_task_state = HSM_ST_LAST;
6046
6047 if (qc->tf.flags & ATA_TFLAG_POLLING)
6048 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6049
6050 break;
6051
6052 case ATA_PROT_DMA:
6053 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6054
6055 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6056 ap->ops->bmdma_setup(qc); /* set up bmdma */
6057 ap->ops->bmdma_start(qc); /* initiate bmdma */
6058 ap->hsm_task_state = HSM_ST_LAST;
6059 break;
6060
6061 case ATA_PROT_PIO:
6062 if (qc->tf.flags & ATA_TFLAG_POLLING)
6063 ata_qc_set_polling(qc);
6064
6065 ata_tf_to_host(ap, &qc->tf);
6066
6067 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6068 /* PIO data out protocol */
6069 ap->hsm_task_state = HSM_ST_FIRST;
6070 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6071
6072 /* always send first data block using
6073 * the ata_pio_task() codepath.
6074 */
6075 } else {
6076 /* PIO data in protocol */
6077 ap->hsm_task_state = HSM_ST;
6078
6079 if (qc->tf.flags & ATA_TFLAG_POLLING)
6080 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6081
6082 /* if polling, ata_pio_task() handles the rest.
6083 * otherwise, interrupt handler takes over from here.
6084 */
6085 }
6086
6087 break;
6088
6089 case ATA_PROT_ATAPI:
6090 case ATA_PROT_ATAPI_NODATA:
6091 if (qc->tf.flags & ATA_TFLAG_POLLING)
6092 ata_qc_set_polling(qc);
6093
6094 ata_tf_to_host(ap, &qc->tf);
6095
6096 ap->hsm_task_state = HSM_ST_FIRST;
6097
6098 /* send cdb by polling if no cdb interrupt */
6099 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6100 (qc->tf.flags & ATA_TFLAG_POLLING))
6101 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6102 break;
6103
6104 case ATA_PROT_ATAPI_DMA:
6105 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6106
6107 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6108 ap->ops->bmdma_setup(qc); /* set up bmdma */
6109 ap->hsm_task_state = HSM_ST_FIRST;
6110
6111 /* send cdb by polling if no cdb interrupt */
6112 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6113 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6114 break;
6115
6116 default:
6117 WARN_ON(1);
6118 return AC_ERR_SYSTEM;
6119 }
6120
6121 return 0;
6122 }
6123
6124 /**
6125 * ata_host_intr - Handle host interrupt for given (port, task)
6126 * @ap: Port on which interrupt arrived (possibly...)
6127 * @qc: Taskfile currently active in engine
6128 *
6129 * Handle host interrupt for given queued command. Currently,
6130 * only DMA interrupts are handled. All other commands are
6131 * handled via polling with interrupts disabled (nIEN bit).
6132 *
6133 * LOCKING:
6134 * spin_lock_irqsave(host lock)
6135 *
6136 * RETURNS:
6137 * One if interrupt was handled, zero if not (shared irq).
6138 */
6139
6140 inline unsigned int ata_host_intr(struct ata_port *ap,
6141 struct ata_queued_cmd *qc)
6142 {
6143 struct ata_eh_info *ehi = &ap->link.eh_info;
6144 u8 status, host_stat = 0;
6145
6146 VPRINTK("ata%u: protocol %d task_state %d\n",
6147 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6148
6149 /* Check whether we are expecting interrupt in this state */
6150 switch (ap->hsm_task_state) {
6151 case HSM_ST_FIRST:
6152 /* Some pre-ATAPI-4 devices assert INTRQ
6153 * at this state when ready to receive CDB.
6154 */
6155
6156 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6157 * The flag was turned on only for atapi devices.
6158 * No need to check is_atapi_taskfile(&qc->tf) again.
6159 */
6160 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6161 goto idle_irq;
6162 break;
6163 case HSM_ST_LAST:
6164 if (qc->tf.protocol == ATA_PROT_DMA ||
6165 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6166 /* check status of DMA engine */
6167 host_stat = ap->ops->bmdma_status(ap);
6168 VPRINTK("ata%u: host_stat 0x%X\n",
6169 ap->print_id, host_stat);
6170
6171 /* if it's not our irq... */
6172 if (!(host_stat & ATA_DMA_INTR))
6173 goto idle_irq;
6174
6175 /* before we do anything else, clear DMA-Start bit */
6176 ap->ops->bmdma_stop(qc);
6177
6178 if (unlikely(host_stat & ATA_DMA_ERR)) {
6179 /* error when transfering data to/from memory */
6180 qc->err_mask |= AC_ERR_HOST_BUS;
6181 ap->hsm_task_state = HSM_ST_ERR;
6182 }
6183 }
6184 break;
6185 case HSM_ST:
6186 break;
6187 default:
6188 goto idle_irq;
6189 }
6190
6191 /* check altstatus */
6192 status = ata_altstatus(ap);
6193 if (status & ATA_BUSY)
6194 goto idle_irq;
6195
6196 /* check main status, clearing INTRQ */
6197 status = ata_chk_status(ap);
6198 if (unlikely(status & ATA_BUSY))
6199 goto idle_irq;
6200
6201 /* ack bmdma irq events */
6202 ap->ops->irq_clear(ap);
6203
6204 ata_hsm_move(ap, qc, status, 0);
6205
6206 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6207 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6208 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6209
6210 return 1; /* irq handled */
6211
6212 idle_irq:
6213 ap->stats.idle_irq++;
6214
6215 #ifdef ATA_IRQ_TRAP
6216 if ((ap->stats.idle_irq % 1000) == 0) {
6217 ata_chk_status(ap);
6218 ap->ops->irq_clear(ap);
6219 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6220 return 1;
6221 }
6222 #endif
6223 return 0; /* irq not handled */
6224 }
6225
6226 /**
6227 * ata_interrupt - Default ATA host interrupt handler
6228 * @irq: irq line (unused)
6229 * @dev_instance: pointer to our ata_host information structure
6230 *
6231 * Default interrupt handler for PCI IDE devices. Calls
6232 * ata_host_intr() for each port that is not disabled.
6233 *
6234 * LOCKING:
6235 * Obtains host lock during operation.
6236 *
6237 * RETURNS:
6238 * IRQ_NONE or IRQ_HANDLED.
6239 */
6240
6241 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6242 {
6243 struct ata_host *host = dev_instance;
6244 unsigned int i;
6245 unsigned int handled = 0;
6246 unsigned long flags;
6247
6248 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6249 spin_lock_irqsave(&host->lock, flags);
6250
6251 for (i = 0; i < host->n_ports; i++) {
6252 struct ata_port *ap;
6253
6254 ap = host->ports[i];
6255 if (ap &&
6256 !(ap->flags & ATA_FLAG_DISABLED)) {
6257 struct ata_queued_cmd *qc;
6258
6259 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6260 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6261 (qc->flags & ATA_QCFLAG_ACTIVE))
6262 handled |= ata_host_intr(ap, qc);
6263 }
6264 }
6265
6266 spin_unlock_irqrestore(&host->lock, flags);
6267
6268 return IRQ_RETVAL(handled);
6269 }
6270
6271 /**
6272 * sata_scr_valid - test whether SCRs are accessible
6273 * @link: ATA link to test SCR accessibility for
6274 *
6275 * Test whether SCRs are accessible for @link.
6276 *
6277 * LOCKING:
6278 * None.
6279 *
6280 * RETURNS:
6281 * 1 if SCRs are accessible, 0 otherwise.
6282 */
6283 int sata_scr_valid(struct ata_link *link)
6284 {
6285 struct ata_port *ap = link->ap;
6286
6287 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6288 }
6289
6290 /**
6291 * sata_scr_read - read SCR register of the specified port
6292 * @link: ATA link to read SCR for
6293 * @reg: SCR to read
6294 * @val: Place to store read value
6295 *
6296 * Read SCR register @reg of @link into *@val. This function is
6297 * guaranteed to succeed if @link is ap->link, the cable type of
6298 * the port is SATA and the port implements ->scr_read.
6299 *
6300 * LOCKING:
6301 * None if @link is ap->link. Kernel thread context otherwise.
6302 *
6303 * RETURNS:
6304 * 0 on success, negative errno on failure.
6305 */
6306 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6307 {
6308 if (ata_is_host_link(link)) {
6309 struct ata_port *ap = link->ap;
6310
6311 if (sata_scr_valid(link))
6312 return ap->ops->scr_read(ap, reg, val);
6313 return -EOPNOTSUPP;
6314 }
6315
6316 return sata_pmp_scr_read(link, reg, val);
6317 }
6318
6319 /**
6320 * sata_scr_write - write SCR register of the specified port
6321 * @link: ATA link to write SCR for
6322 * @reg: SCR to write
6323 * @val: value to write
6324 *
6325 * Write @val to SCR register @reg of @link. This function is
6326 * guaranteed to succeed if @link is ap->link, the cable type of
6327 * the port is SATA and the port implements ->scr_read.
6328 *
6329 * LOCKING:
6330 * None if @link is ap->link. Kernel thread context otherwise.
6331 *
6332 * RETURNS:
6333 * 0 on success, negative errno on failure.
6334 */
6335 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6336 {
6337 if (ata_is_host_link(link)) {
6338 struct ata_port *ap = link->ap;
6339
6340 if (sata_scr_valid(link))
6341 return ap->ops->scr_write(ap, reg, val);
6342 return -EOPNOTSUPP;
6343 }
6344
6345 return sata_pmp_scr_write(link, reg, val);
6346 }
6347
6348 /**
6349 * sata_scr_write_flush - write SCR register of the specified port and flush
6350 * @link: ATA link to write SCR for
6351 * @reg: SCR to write
6352 * @val: value to write
6353 *
6354 * This function is identical to sata_scr_write() except that this
6355 * function performs flush after writing to the register.
6356 *
6357 * LOCKING:
6358 * None if @link is ap->link. Kernel thread context otherwise.
6359 *
6360 * RETURNS:
6361 * 0 on success, negative errno on failure.
6362 */
6363 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6364 {
6365 if (ata_is_host_link(link)) {
6366 struct ata_port *ap = link->ap;
6367 int rc;
6368
6369 if (sata_scr_valid(link)) {
6370 rc = ap->ops->scr_write(ap, reg, val);
6371 if (rc == 0)
6372 rc = ap->ops->scr_read(ap, reg, &val);
6373 return rc;
6374 }
6375 return -EOPNOTSUPP;
6376 }
6377
6378 return sata_pmp_scr_write(link, reg, val);
6379 }
6380
6381 /**
6382 * ata_link_online - test whether the given link is online
6383 * @link: ATA link to test
6384 *
6385 * Test whether @link is online. Note that this function returns
6386 * 0 if online status of @link cannot be obtained, so
6387 * ata_link_online(link) != !ata_link_offline(link).
6388 *
6389 * LOCKING:
6390 * None.
6391 *
6392 * RETURNS:
6393 * 1 if the port online status is available and online.
6394 */
6395 int ata_link_online(struct ata_link *link)
6396 {
6397 u32 sstatus;
6398
6399 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6400 (sstatus & 0xf) == 0x3)
6401 return 1;
6402 return 0;
6403 }
6404
6405 /**
6406 * ata_link_offline - test whether the given link is offline
6407 * @link: ATA link to test
6408 *
6409 * Test whether @link is offline. Note that this function
6410 * returns 0 if offline status of @link cannot be obtained, so
6411 * ata_link_online(link) != !ata_link_offline(link).
6412 *
6413 * LOCKING:
6414 * None.
6415 *
6416 * RETURNS:
6417 * 1 if the port offline status is available and offline.
6418 */
6419 int ata_link_offline(struct ata_link *link)
6420 {
6421 u32 sstatus;
6422
6423 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6424 (sstatus & 0xf) != 0x3)
6425 return 1;
6426 return 0;
6427 }
6428
6429 int ata_flush_cache(struct ata_device *dev)
6430 {
6431 unsigned int err_mask;
6432 u8 cmd;
6433
6434 if (!ata_try_flush_cache(dev))
6435 return 0;
6436
6437 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6438 cmd = ATA_CMD_FLUSH_EXT;
6439 else
6440 cmd = ATA_CMD_FLUSH;
6441
6442 /* This is wrong. On a failed flush we get back the LBA of the lost
6443 sector and we should (assuming it wasn't aborted as unknown) issue
6444 a further flush command to continue the writeback until it
6445 does not error */
6446 err_mask = ata_do_simple_cmd(dev, cmd);
6447 if (err_mask) {
6448 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6449 return -EIO;
6450 }
6451
6452 return 0;
6453 }
6454
6455 #ifdef CONFIG_PM
6456 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6457 unsigned int action, unsigned int ehi_flags,
6458 int wait)
6459 {
6460 unsigned long flags;
6461 int i, rc;
6462
6463 for (i = 0; i < host->n_ports; i++) {
6464 struct ata_port *ap = host->ports[i];
6465 struct ata_link *link;
6466
6467 /* Previous resume operation might still be in
6468 * progress. Wait for PM_PENDING to clear.
6469 */
6470 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6471 ata_port_wait_eh(ap);
6472 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6473 }
6474
6475 /* request PM ops to EH */
6476 spin_lock_irqsave(ap->lock, flags);
6477
6478 ap->pm_mesg = mesg;
6479 if (wait) {
6480 rc = 0;
6481 ap->pm_result = &rc;
6482 }
6483
6484 ap->pflags |= ATA_PFLAG_PM_PENDING;
6485 __ata_port_for_each_link(link, ap) {
6486 link->eh_info.action |= action;
6487 link->eh_info.flags |= ehi_flags;
6488 }
6489
6490 ata_port_schedule_eh(ap);
6491
6492 spin_unlock_irqrestore(ap->lock, flags);
6493
6494 /* wait and check result */
6495 if (wait) {
6496 ata_port_wait_eh(ap);
6497 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6498 if (rc)
6499 return rc;
6500 }
6501 }
6502
6503 return 0;
6504 }
6505
6506 /**
6507 * ata_host_suspend - suspend host
6508 * @host: host to suspend
6509 * @mesg: PM message
6510 *
6511 * Suspend @host. Actual operation is performed by EH. This
6512 * function requests EH to perform PM operations and waits for EH
6513 * to finish.
6514 *
6515 * LOCKING:
6516 * Kernel thread context (may sleep).
6517 *
6518 * RETURNS:
6519 * 0 on success, -errno on failure.
6520 */
6521 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6522 {
6523 int rc;
6524
6525 /*
6526 * disable link pm on all ports before requesting
6527 * any pm activity
6528 */
6529 ata_lpm_enable(host);
6530
6531 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6532 if (rc == 0)
6533 host->dev->power.power_state = mesg;
6534 return rc;
6535 }
6536
6537 /**
6538 * ata_host_resume - resume host
6539 * @host: host to resume
6540 *
6541 * Resume @host. Actual operation is performed by EH. This
6542 * function requests EH to perform PM operations and returns.
6543 * Note that all resume operations are performed parallely.
6544 *
6545 * LOCKING:
6546 * Kernel thread context (may sleep).
6547 */
6548 void ata_host_resume(struct ata_host *host)
6549 {
6550 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6551 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6552 host->dev->power.power_state = PMSG_ON;
6553
6554 /* reenable link pm */
6555 ata_lpm_disable(host);
6556 }
6557 #endif
6558
6559 /**
6560 * ata_port_start - Set port up for dma.
6561 * @ap: Port to initialize
6562 *
6563 * Called just after data structures for each port are
6564 * initialized. Allocates space for PRD table.
6565 *
6566 * May be used as the port_start() entry in ata_port_operations.
6567 *
6568 * LOCKING:
6569 * Inherited from caller.
6570 */
6571 int ata_port_start(struct ata_port *ap)
6572 {
6573 struct device *dev = ap->dev;
6574 int rc;
6575
6576 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6577 GFP_KERNEL);
6578 if (!ap->prd)
6579 return -ENOMEM;
6580
6581 rc = ata_pad_alloc(ap, dev);
6582 if (rc)
6583 return rc;
6584
6585 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6586 (unsigned long long)ap->prd_dma);
6587 return 0;
6588 }
6589
6590 /**
6591 * ata_dev_init - Initialize an ata_device structure
6592 * @dev: Device structure to initialize
6593 *
6594 * Initialize @dev in preparation for probing.
6595 *
6596 * LOCKING:
6597 * Inherited from caller.
6598 */
6599 void ata_dev_init(struct ata_device *dev)
6600 {
6601 struct ata_link *link = dev->link;
6602 struct ata_port *ap = link->ap;
6603 unsigned long flags;
6604
6605 /* SATA spd limit is bound to the first device */
6606 link->sata_spd_limit = link->hw_sata_spd_limit;
6607 link->sata_spd = 0;
6608
6609 /* High bits of dev->flags are used to record warm plug
6610 * requests which occur asynchronously. Synchronize using
6611 * host lock.
6612 */
6613 spin_lock_irqsave(ap->lock, flags);
6614 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6615 dev->horkage = 0;
6616 spin_unlock_irqrestore(ap->lock, flags);
6617
6618 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6619 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6620 dev->pio_mask = UINT_MAX;
6621 dev->mwdma_mask = UINT_MAX;
6622 dev->udma_mask = UINT_MAX;
6623 }
6624
6625 /**
6626 * ata_link_init - Initialize an ata_link structure
6627 * @ap: ATA port link is attached to
6628 * @link: Link structure to initialize
6629 * @pmp: Port multiplier port number
6630 *
6631 * Initialize @link.
6632 *
6633 * LOCKING:
6634 * Kernel thread context (may sleep)
6635 */
6636 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6637 {
6638 int i;
6639
6640 /* clear everything except for devices */
6641 memset(link, 0, offsetof(struct ata_link, device[0]));
6642
6643 link->ap = ap;
6644 link->pmp = pmp;
6645 link->active_tag = ATA_TAG_POISON;
6646 link->hw_sata_spd_limit = UINT_MAX;
6647
6648 /* can't use iterator, ap isn't initialized yet */
6649 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6650 struct ata_device *dev = &link->device[i];
6651
6652 dev->link = link;
6653 dev->devno = dev - link->device;
6654 ata_dev_init(dev);
6655 }
6656 }
6657
6658 /**
6659 * sata_link_init_spd - Initialize link->sata_spd_limit
6660 * @link: Link to configure sata_spd_limit for
6661 *
6662 * Initialize @link->[hw_]sata_spd_limit to the currently
6663 * configured value.
6664 *
6665 * LOCKING:
6666 * Kernel thread context (may sleep).
6667 *
6668 * RETURNS:
6669 * 0 on success, -errno on failure.
6670 */
6671 int sata_link_init_spd(struct ata_link *link)
6672 {
6673 u32 scontrol, spd;
6674 int rc;
6675
6676 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6677 if (rc)
6678 return rc;
6679
6680 spd = (scontrol >> 4) & 0xf;
6681 if (spd)
6682 link->hw_sata_spd_limit &= (1 << spd) - 1;
6683
6684 link->sata_spd_limit = link->hw_sata_spd_limit;
6685
6686 return 0;
6687 }
6688
6689 /**
6690 * ata_port_alloc - allocate and initialize basic ATA port resources
6691 * @host: ATA host this allocated port belongs to
6692 *
6693 * Allocate and initialize basic ATA port resources.
6694 *
6695 * RETURNS:
6696 * Allocate ATA port on success, NULL on failure.
6697 *
6698 * LOCKING:
6699 * Inherited from calling layer (may sleep).
6700 */
6701 struct ata_port *ata_port_alloc(struct ata_host *host)
6702 {
6703 struct ata_port *ap;
6704
6705 DPRINTK("ENTER\n");
6706
6707 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6708 if (!ap)
6709 return NULL;
6710
6711 ap->pflags |= ATA_PFLAG_INITIALIZING;
6712 ap->lock = &host->lock;
6713 ap->flags = ATA_FLAG_DISABLED;
6714 ap->print_id = -1;
6715 ap->ctl = ATA_DEVCTL_OBS;
6716 ap->host = host;
6717 ap->dev = host->dev;
6718 ap->last_ctl = 0xFF;
6719
6720 #if defined(ATA_VERBOSE_DEBUG)
6721 /* turn on all debugging levels */
6722 ap->msg_enable = 0x00FF;
6723 #elif defined(ATA_DEBUG)
6724 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6725 #else
6726 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6727 #endif
6728
6729 INIT_DELAYED_WORK(&ap->port_task, NULL);
6730 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6731 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6732 INIT_LIST_HEAD(&ap->eh_done_q);
6733 init_waitqueue_head(&ap->eh_wait_q);
6734 init_timer_deferrable(&ap->fastdrain_timer);
6735 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6736 ap->fastdrain_timer.data = (unsigned long)ap;
6737
6738 ap->cbl = ATA_CBL_NONE;
6739
6740 ata_link_init(ap, &ap->link, 0);
6741
6742 #ifdef ATA_IRQ_TRAP
6743 ap->stats.unhandled_irq = 1;
6744 ap->stats.idle_irq = 1;
6745 #endif
6746 return ap;
6747 }
6748
6749 static void ata_host_release(struct device *gendev, void *res)
6750 {
6751 struct ata_host *host = dev_get_drvdata(gendev);
6752 int i;
6753
6754 for (i = 0; i < host->n_ports; i++) {
6755 struct ata_port *ap = host->ports[i];
6756
6757 if (!ap)
6758 continue;
6759
6760 if (ap->scsi_host)
6761 scsi_host_put(ap->scsi_host);
6762
6763 kfree(ap->pmp_link);
6764 kfree(ap);
6765 host->ports[i] = NULL;
6766 }
6767
6768 dev_set_drvdata(gendev, NULL);
6769 }
6770
6771 /**
6772 * ata_host_alloc - allocate and init basic ATA host resources
6773 * @dev: generic device this host is associated with
6774 * @max_ports: maximum number of ATA ports associated with this host
6775 *
6776 * Allocate and initialize basic ATA host resources. LLD calls
6777 * this function to allocate a host, initializes it fully and
6778 * attaches it using ata_host_register().
6779 *
6780 * @max_ports ports are allocated and host->n_ports is
6781 * initialized to @max_ports. The caller is allowed to decrease
6782 * host->n_ports before calling ata_host_register(). The unused
6783 * ports will be automatically freed on registration.
6784 *
6785 * RETURNS:
6786 * Allocate ATA host on success, NULL on failure.
6787 *
6788 * LOCKING:
6789 * Inherited from calling layer (may sleep).
6790 */
6791 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6792 {
6793 struct ata_host *host;
6794 size_t sz;
6795 int i;
6796
6797 DPRINTK("ENTER\n");
6798
6799 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6800 return NULL;
6801
6802 /* alloc a container for our list of ATA ports (buses) */
6803 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6804 /* alloc a container for our list of ATA ports (buses) */
6805 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6806 if (!host)
6807 goto err_out;
6808
6809 devres_add(dev, host);
6810 dev_set_drvdata(dev, host);
6811
6812 spin_lock_init(&host->lock);
6813 host->dev = dev;
6814 host->n_ports = max_ports;
6815
6816 /* allocate ports bound to this host */
6817 for (i = 0; i < max_ports; i++) {
6818 struct ata_port *ap;
6819
6820 ap = ata_port_alloc(host);
6821 if (!ap)
6822 goto err_out;
6823
6824 ap->port_no = i;
6825 host->ports[i] = ap;
6826 }
6827
6828 devres_remove_group(dev, NULL);
6829 return host;
6830
6831 err_out:
6832 devres_release_group(dev, NULL);
6833 return NULL;
6834 }
6835
6836 /**
6837 * ata_host_alloc_pinfo - alloc host and init with port_info array
6838 * @dev: generic device this host is associated with
6839 * @ppi: array of ATA port_info to initialize host with
6840 * @n_ports: number of ATA ports attached to this host
6841 *
6842 * Allocate ATA host and initialize with info from @ppi. If NULL
6843 * terminated, @ppi may contain fewer entries than @n_ports. The
6844 * last entry will be used for the remaining ports.
6845 *
6846 * RETURNS:
6847 * Allocate ATA host on success, NULL on failure.
6848 *
6849 * LOCKING:
6850 * Inherited from calling layer (may sleep).
6851 */
6852 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6853 const struct ata_port_info * const * ppi,
6854 int n_ports)
6855 {
6856 const struct ata_port_info *pi;
6857 struct ata_host *host;
6858 int i, j;
6859
6860 host = ata_host_alloc(dev, n_ports);
6861 if (!host)
6862 return NULL;
6863
6864 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6865 struct ata_port *ap = host->ports[i];
6866
6867 if (ppi[j])
6868 pi = ppi[j++];
6869
6870 ap->pio_mask = pi->pio_mask;
6871 ap->mwdma_mask = pi->mwdma_mask;
6872 ap->udma_mask = pi->udma_mask;
6873 ap->flags |= pi->flags;
6874 ap->link.flags |= pi->link_flags;
6875 ap->ops = pi->port_ops;
6876
6877 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6878 host->ops = pi->port_ops;
6879 if (!host->private_data && pi->private_data)
6880 host->private_data = pi->private_data;
6881 }
6882
6883 return host;
6884 }
6885
6886 static void ata_host_stop(struct device *gendev, void *res)
6887 {
6888 struct ata_host *host = dev_get_drvdata(gendev);
6889 int i;
6890
6891 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6892
6893 for (i = 0; i < host->n_ports; i++) {
6894 struct ata_port *ap = host->ports[i];
6895
6896 if (ap->ops->port_stop)
6897 ap->ops->port_stop(ap);
6898 }
6899
6900 if (host->ops->host_stop)
6901 host->ops->host_stop(host);
6902 }
6903
6904 /**
6905 * ata_host_start - start and freeze ports of an ATA host
6906 * @host: ATA host to start ports for
6907 *
6908 * Start and then freeze ports of @host. Started status is
6909 * recorded in host->flags, so this function can be called
6910 * multiple times. Ports are guaranteed to get started only
6911 * once. If host->ops isn't initialized yet, its set to the
6912 * first non-dummy port ops.
6913 *
6914 * LOCKING:
6915 * Inherited from calling layer (may sleep).
6916 *
6917 * RETURNS:
6918 * 0 if all ports are started successfully, -errno otherwise.
6919 */
6920 int ata_host_start(struct ata_host *host)
6921 {
6922 int have_stop = 0;
6923 void *start_dr = NULL;
6924 int i, rc;
6925
6926 if (host->flags & ATA_HOST_STARTED)
6927 return 0;
6928
6929 for (i = 0; i < host->n_ports; i++) {
6930 struct ata_port *ap = host->ports[i];
6931
6932 if (!host->ops && !ata_port_is_dummy(ap))
6933 host->ops = ap->ops;
6934
6935 if (ap->ops->port_stop)
6936 have_stop = 1;
6937 }
6938
6939 if (host->ops->host_stop)
6940 have_stop = 1;
6941
6942 if (have_stop) {
6943 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6944 if (!start_dr)
6945 return -ENOMEM;
6946 }
6947
6948 for (i = 0; i < host->n_ports; i++) {
6949 struct ata_port *ap = host->ports[i];
6950
6951 if (ap->ops->port_start) {
6952 rc = ap->ops->port_start(ap);
6953 if (rc) {
6954 if (rc != -ENODEV)
6955 dev_printk(KERN_ERR, host->dev, "failed to start port %d (errno=%d)\n", i, rc);
6956 goto err_out;
6957 }
6958 }
6959 ata_eh_freeze_port(ap);
6960 }
6961
6962 if (start_dr)
6963 devres_add(host->dev, start_dr);
6964 host->flags |= ATA_HOST_STARTED;
6965 return 0;
6966
6967 err_out:
6968 while (--i >= 0) {
6969 struct ata_port *ap = host->ports[i];
6970
6971 if (ap->ops->port_stop)
6972 ap->ops->port_stop(ap);
6973 }
6974 devres_free(start_dr);
6975 return rc;
6976 }
6977
6978 /**
6979 * ata_sas_host_init - Initialize a host struct
6980 * @host: host to initialize
6981 * @dev: device host is attached to
6982 * @flags: host flags
6983 * @ops: port_ops
6984 *
6985 * LOCKING:
6986 * PCI/etc. bus probe sem.
6987 *
6988 */
6989 /* KILLME - the only user left is ipr */
6990 void ata_host_init(struct ata_host *host, struct device *dev,
6991 unsigned long flags, const struct ata_port_operations *ops)
6992 {
6993 spin_lock_init(&host->lock);
6994 host->dev = dev;
6995 host->flags = flags;
6996 host->ops = ops;
6997 }
6998
6999 /**
7000 * ata_host_register - register initialized ATA host
7001 * @host: ATA host to register
7002 * @sht: template for SCSI host
7003 *
7004 * Register initialized ATA host. @host is allocated using
7005 * ata_host_alloc() and fully initialized by LLD. This function
7006 * starts ports, registers @host with ATA and SCSI layers and
7007 * probe registered devices.
7008 *
7009 * LOCKING:
7010 * Inherited from calling layer (may sleep).
7011 *
7012 * RETURNS:
7013 * 0 on success, -errno otherwise.
7014 */
7015 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7016 {
7017 int i, rc;
7018
7019 /* host must have been started */
7020 if (!(host->flags & ATA_HOST_STARTED)) {
7021 dev_printk(KERN_ERR, host->dev,
7022 "BUG: trying to register unstarted host\n");
7023 WARN_ON(1);
7024 return -EINVAL;
7025 }
7026
7027 /* Blow away unused ports. This happens when LLD can't
7028 * determine the exact number of ports to allocate at
7029 * allocation time.
7030 */
7031 for (i = host->n_ports; host->ports[i]; i++)
7032 kfree(host->ports[i]);
7033
7034 /* give ports names and add SCSI hosts */
7035 for (i = 0; i < host->n_ports; i++)
7036 host->ports[i]->print_id = ata_print_id++;
7037
7038 rc = ata_scsi_add_hosts(host, sht);
7039 if (rc)
7040 return rc;
7041
7042 /* associate with ACPI nodes */
7043 ata_acpi_associate(host);
7044
7045 /* set cable, sata_spd_limit and report */
7046 for (i = 0; i < host->n_ports; i++) {
7047 struct ata_port *ap = host->ports[i];
7048 unsigned long xfer_mask;
7049
7050 /* set SATA cable type if still unset */
7051 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7052 ap->cbl = ATA_CBL_SATA;
7053
7054 /* init sata_spd_limit to the current value */
7055 sata_link_init_spd(&ap->link);
7056
7057 /* print per-port info to dmesg */
7058 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7059 ap->udma_mask);
7060
7061 if (!ata_port_is_dummy(ap)) {
7062 ata_port_printk(ap, KERN_INFO,
7063 "%cATA max %s %s\n",
7064 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7065 ata_mode_string(xfer_mask),
7066 ap->link.eh_info.desc);
7067 ata_ehi_clear_desc(&ap->link.eh_info);
7068 } else
7069 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7070 }
7071
7072 /* perform each probe synchronously */
7073 DPRINTK("probe begin\n");
7074 for (i = 0; i < host->n_ports; i++) {
7075 struct ata_port *ap = host->ports[i];
7076 int rc;
7077
7078 /* probe */
7079 if (ap->ops->error_handler) {
7080 struct ata_eh_info *ehi = &ap->link.eh_info;
7081 unsigned long flags;
7082
7083 ata_port_probe(ap);
7084
7085 /* kick EH for boot probing */
7086 spin_lock_irqsave(ap->lock, flags);
7087
7088 ehi->probe_mask =
7089 (1 << ata_link_max_devices(&ap->link)) - 1;
7090 ehi->action |= ATA_EH_SOFTRESET;
7091 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7092
7093 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7094 ap->pflags |= ATA_PFLAG_LOADING;
7095 ata_port_schedule_eh(ap);
7096
7097 spin_unlock_irqrestore(ap->lock, flags);
7098
7099 /* wait for EH to finish */
7100 ata_port_wait_eh(ap);
7101 } else {
7102 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7103 rc = ata_bus_probe(ap);
7104 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7105
7106 if (rc) {
7107 /* FIXME: do something useful here?
7108 * Current libata behavior will
7109 * tear down everything when
7110 * the module is removed
7111 * or the h/w is unplugged.
7112 */
7113 }
7114 }
7115 }
7116
7117 /* probes are done, now scan each port's disk(s) */
7118 DPRINTK("host probe begin\n");
7119 for (i = 0; i < host->n_ports; i++) {
7120 struct ata_port *ap = host->ports[i];
7121
7122 ata_scsi_scan_host(ap, 1);
7123 ata_lpm_schedule(ap, ap->pm_policy);
7124 }
7125
7126 return 0;
7127 }
7128
7129 /**
7130 * ata_host_activate - start host, request IRQ and register it
7131 * @host: target ATA host
7132 * @irq: IRQ to request
7133 * @irq_handler: irq_handler used when requesting IRQ
7134 * @irq_flags: irq_flags used when requesting IRQ
7135 * @sht: scsi_host_template to use when registering the host
7136 *
7137 * After allocating an ATA host and initializing it, most libata
7138 * LLDs perform three steps to activate the host - start host,
7139 * request IRQ and register it. This helper takes necessasry
7140 * arguments and performs the three steps in one go.
7141 *
7142 * An invalid IRQ skips the IRQ registration and expects the host to
7143 * have set polling mode on the port. In this case, @irq_handler
7144 * should be NULL.
7145 *
7146 * LOCKING:
7147 * Inherited from calling layer (may sleep).
7148 *
7149 * RETURNS:
7150 * 0 on success, -errno otherwise.
7151 */
7152 int ata_host_activate(struct ata_host *host, int irq,
7153 irq_handler_t irq_handler, unsigned long irq_flags,
7154 struct scsi_host_template *sht)
7155 {
7156 int i, rc;
7157
7158 rc = ata_host_start(host);
7159 if (rc)
7160 return rc;
7161
7162 /* Special case for polling mode */
7163 if (!irq) {
7164 WARN_ON(irq_handler);
7165 return ata_host_register(host, sht);
7166 }
7167
7168 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7169 dev_driver_string(host->dev), host);
7170 if (rc)
7171 return rc;
7172
7173 for (i = 0; i < host->n_ports; i++)
7174 ata_port_desc(host->ports[i], "irq %d", irq);
7175
7176 rc = ata_host_register(host, sht);
7177 /* if failed, just free the IRQ and leave ports alone */
7178 if (rc)
7179 devm_free_irq(host->dev, irq, host);
7180
7181 return rc;
7182 }
7183
7184 /**
7185 * ata_port_detach - Detach ATA port in prepration of device removal
7186 * @ap: ATA port to be detached
7187 *
7188 * Detach all ATA devices and the associated SCSI devices of @ap;
7189 * then, remove the associated SCSI host. @ap is guaranteed to
7190 * be quiescent on return from this function.
7191 *
7192 * LOCKING:
7193 * Kernel thread context (may sleep).
7194 */
7195 static void ata_port_detach(struct ata_port *ap)
7196 {
7197 unsigned long flags;
7198 struct ata_link *link;
7199 struct ata_device *dev;
7200
7201 if (!ap->ops->error_handler)
7202 goto skip_eh;
7203
7204 /* tell EH we're leaving & flush EH */
7205 spin_lock_irqsave(ap->lock, flags);
7206 ap->pflags |= ATA_PFLAG_UNLOADING;
7207 spin_unlock_irqrestore(ap->lock, flags);
7208
7209 ata_port_wait_eh(ap);
7210
7211 /* EH is now guaranteed to see UNLOADING, so no new device
7212 * will be attached. Disable all existing devices.
7213 */
7214 spin_lock_irqsave(ap->lock, flags);
7215
7216 ata_port_for_each_link(link, ap) {
7217 ata_link_for_each_dev(dev, link)
7218 ata_dev_disable(dev);
7219 }
7220
7221 spin_unlock_irqrestore(ap->lock, flags);
7222
7223 /* Final freeze & EH. All in-flight commands are aborted. EH
7224 * will be skipped and retrials will be terminated with bad
7225 * target.
7226 */
7227 spin_lock_irqsave(ap->lock, flags);
7228 ata_port_freeze(ap); /* won't be thawed */
7229 spin_unlock_irqrestore(ap->lock, flags);
7230
7231 ata_port_wait_eh(ap);
7232 cancel_rearming_delayed_work(&ap->hotplug_task);
7233
7234 skip_eh:
7235 /* remove the associated SCSI host */
7236 scsi_remove_host(ap->scsi_host);
7237 }
7238
7239 /**
7240 * ata_host_detach - Detach all ports of an ATA host
7241 * @host: Host to detach
7242 *
7243 * Detach all ports of @host.
7244 *
7245 * LOCKING:
7246 * Kernel thread context (may sleep).
7247 */
7248 void ata_host_detach(struct ata_host *host)
7249 {
7250 int i;
7251
7252 for (i = 0; i < host->n_ports; i++)
7253 ata_port_detach(host->ports[i]);
7254 }
7255
7256 /**
7257 * ata_std_ports - initialize ioaddr with standard port offsets.
7258 * @ioaddr: IO address structure to be initialized
7259 *
7260 * Utility function which initializes data_addr, error_addr,
7261 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7262 * device_addr, status_addr, and command_addr to standard offsets
7263 * relative to cmd_addr.
7264 *
7265 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7266 */
7267
7268 void ata_std_ports(struct ata_ioports *ioaddr)
7269 {
7270 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7271 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7272 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7273 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7274 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7275 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7276 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7277 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7278 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7279 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7280 }
7281
7282
7283 #ifdef CONFIG_PCI
7284
7285 /**
7286 * ata_pci_remove_one - PCI layer callback for device removal
7287 * @pdev: PCI device that was removed
7288 *
7289 * PCI layer indicates to libata via this hook that hot-unplug or
7290 * module unload event has occurred. Detach all ports. Resource
7291 * release is handled via devres.
7292 *
7293 * LOCKING:
7294 * Inherited from PCI layer (may sleep).
7295 */
7296 void ata_pci_remove_one(struct pci_dev *pdev)
7297 {
7298 struct device *dev = &pdev->dev;
7299 struct ata_host *host = dev_get_drvdata(dev);
7300
7301 ata_host_detach(host);
7302 }
7303
7304 /* move to PCI subsystem */
7305 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7306 {
7307 unsigned long tmp = 0;
7308
7309 switch (bits->width) {
7310 case 1: {
7311 u8 tmp8 = 0;
7312 pci_read_config_byte(pdev, bits->reg, &tmp8);
7313 tmp = tmp8;
7314 break;
7315 }
7316 case 2: {
7317 u16 tmp16 = 0;
7318 pci_read_config_word(pdev, bits->reg, &tmp16);
7319 tmp = tmp16;
7320 break;
7321 }
7322 case 4: {
7323 u32 tmp32 = 0;
7324 pci_read_config_dword(pdev, bits->reg, &tmp32);
7325 tmp = tmp32;
7326 break;
7327 }
7328
7329 default:
7330 return -EINVAL;
7331 }
7332
7333 tmp &= bits->mask;
7334
7335 return (tmp == bits->val) ? 1 : 0;
7336 }
7337
7338 #ifdef CONFIG_PM
7339 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7340 {
7341 pci_save_state(pdev);
7342 pci_disable_device(pdev);
7343
7344 if (mesg.event == PM_EVENT_SUSPEND)
7345 pci_set_power_state(pdev, PCI_D3hot);
7346 }
7347
7348 int ata_pci_device_do_resume(struct pci_dev *pdev)
7349 {
7350 int rc;
7351
7352 pci_set_power_state(pdev, PCI_D0);
7353 pci_restore_state(pdev);
7354
7355 rc = pcim_enable_device(pdev);
7356 if (rc) {
7357 dev_printk(KERN_ERR, &pdev->dev,
7358 "failed to enable device after resume (%d)\n", rc);
7359 return rc;
7360 }
7361
7362 pci_set_master(pdev);
7363 return 0;
7364 }
7365
7366 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7367 {
7368 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7369 int rc = 0;
7370
7371 rc = ata_host_suspend(host, mesg);
7372 if (rc)
7373 return rc;
7374
7375 ata_pci_device_do_suspend(pdev, mesg);
7376
7377 return 0;
7378 }
7379
7380 int ata_pci_device_resume(struct pci_dev *pdev)
7381 {
7382 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7383 int rc;
7384
7385 rc = ata_pci_device_do_resume(pdev);
7386 if (rc == 0)
7387 ata_host_resume(host);
7388 return rc;
7389 }
7390 #endif /* CONFIG_PM */
7391
7392 #endif /* CONFIG_PCI */
7393
7394
7395 static int __init ata_init(void)
7396 {
7397 ata_probe_timeout *= HZ;
7398 ata_wq = create_workqueue("ata");
7399 if (!ata_wq)
7400 return -ENOMEM;
7401
7402 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7403 if (!ata_aux_wq) {
7404 destroy_workqueue(ata_wq);
7405 return -ENOMEM;
7406 }
7407
7408 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7409 return 0;
7410 }
7411
7412 static void __exit ata_exit(void)
7413 {
7414 destroy_workqueue(ata_wq);
7415 destroy_workqueue(ata_aux_wq);
7416 }
7417
7418 subsys_initcall(ata_init);
7419 module_exit(ata_exit);
7420
7421 static unsigned long ratelimit_time;
7422 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7423
7424 int ata_ratelimit(void)
7425 {
7426 int rc;
7427 unsigned long flags;
7428
7429 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7430
7431 if (time_after(jiffies, ratelimit_time)) {
7432 rc = 1;
7433 ratelimit_time = jiffies + (HZ/5);
7434 } else
7435 rc = 0;
7436
7437 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7438
7439 return rc;
7440 }
7441
7442 /**
7443 * ata_wait_register - wait until register value changes
7444 * @reg: IO-mapped register
7445 * @mask: Mask to apply to read register value
7446 * @val: Wait condition
7447 * @interval_msec: polling interval in milliseconds
7448 * @timeout_msec: timeout in milliseconds
7449 *
7450 * Waiting for some bits of register to change is a common
7451 * operation for ATA controllers. This function reads 32bit LE
7452 * IO-mapped register @reg and tests for the following condition.
7453 *
7454 * (*@reg & mask) != val
7455 *
7456 * If the condition is met, it returns; otherwise, the process is
7457 * repeated after @interval_msec until timeout.
7458 *
7459 * LOCKING:
7460 * Kernel thread context (may sleep)
7461 *
7462 * RETURNS:
7463 * The final register value.
7464 */
7465 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7466 unsigned long interval_msec,
7467 unsigned long timeout_msec)
7468 {
7469 unsigned long timeout;
7470 u32 tmp;
7471
7472 tmp = ioread32(reg);
7473
7474 /* Calculate timeout _after_ the first read to make sure
7475 * preceding writes reach the controller before starting to
7476 * eat away the timeout.
7477 */
7478 timeout = jiffies + (timeout_msec * HZ) / 1000;
7479
7480 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7481 msleep(interval_msec);
7482 tmp = ioread32(reg);
7483 }
7484
7485 return tmp;
7486 }
7487
7488 /*
7489 * Dummy port_ops
7490 */
7491 static void ata_dummy_noret(struct ata_port *ap) { }
7492 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7493 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7494
7495 static u8 ata_dummy_check_status(struct ata_port *ap)
7496 {
7497 return ATA_DRDY;
7498 }
7499
7500 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7501 {
7502 return AC_ERR_SYSTEM;
7503 }
7504
7505 const struct ata_port_operations ata_dummy_port_ops = {
7506 .check_status = ata_dummy_check_status,
7507 .check_altstatus = ata_dummy_check_status,
7508 .dev_select = ata_noop_dev_select,
7509 .qc_prep = ata_noop_qc_prep,
7510 .qc_issue = ata_dummy_qc_issue,
7511 .freeze = ata_dummy_noret,
7512 .thaw = ata_dummy_noret,
7513 .error_handler = ata_dummy_noret,
7514 .post_internal_cmd = ata_dummy_qc_noret,
7515 .irq_clear = ata_dummy_noret,
7516 .port_start = ata_dummy_ret0,
7517 .port_stop = ata_dummy_noret,
7518 };
7519
7520 const struct ata_port_info ata_dummy_port_info = {
7521 .port_ops = &ata_dummy_port_ops,
7522 };
7523
7524 /*
7525 * libata is essentially a library of internal helper functions for
7526 * low-level ATA host controller drivers. As such, the API/ABI is
7527 * likely to change as new drivers are added and updated.
7528 * Do not depend on ABI/API stability.
7529 */
7530 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7531 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7532 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7533 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7534 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7535 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7536 EXPORT_SYMBOL_GPL(ata_std_ports);
7537 EXPORT_SYMBOL_GPL(ata_host_init);
7538 EXPORT_SYMBOL_GPL(ata_host_alloc);
7539 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7540 EXPORT_SYMBOL_GPL(ata_host_start);
7541 EXPORT_SYMBOL_GPL(ata_host_register);
7542 EXPORT_SYMBOL_GPL(ata_host_activate);
7543 EXPORT_SYMBOL_GPL(ata_host_detach);
7544 EXPORT_SYMBOL_GPL(ata_sg_init);
7545 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7546 EXPORT_SYMBOL_GPL(ata_hsm_move);
7547 EXPORT_SYMBOL_GPL(ata_qc_complete);
7548 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7549 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7550 EXPORT_SYMBOL_GPL(ata_tf_load);
7551 EXPORT_SYMBOL_GPL(ata_tf_read);
7552 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7553 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7554 EXPORT_SYMBOL_GPL(sata_print_link_status);
7555 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7556 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7557 EXPORT_SYMBOL_GPL(ata_check_status);
7558 EXPORT_SYMBOL_GPL(ata_altstatus);
7559 EXPORT_SYMBOL_GPL(ata_exec_command);
7560 EXPORT_SYMBOL_GPL(ata_port_start);
7561 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7562 EXPORT_SYMBOL_GPL(ata_interrupt);
7563 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7564 EXPORT_SYMBOL_GPL(ata_data_xfer);
7565 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7566 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7567 EXPORT_SYMBOL_GPL(ata_qc_prep);
7568 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7569 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7570 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7571 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7572 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7573 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7574 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7575 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7576 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7577 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7578 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7579 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7580 EXPORT_SYMBOL_GPL(ata_port_probe);
7581 EXPORT_SYMBOL_GPL(ata_dev_disable);
7582 EXPORT_SYMBOL_GPL(sata_set_spd);
7583 EXPORT_SYMBOL_GPL(sata_link_debounce);
7584 EXPORT_SYMBOL_GPL(sata_link_resume);
7585 EXPORT_SYMBOL_GPL(ata_bus_reset);
7586 EXPORT_SYMBOL_GPL(ata_std_prereset);
7587 EXPORT_SYMBOL_GPL(ata_std_softreset);
7588 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7589 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7590 EXPORT_SYMBOL_GPL(ata_std_postreset);
7591 EXPORT_SYMBOL_GPL(ata_dev_classify);
7592 EXPORT_SYMBOL_GPL(ata_dev_pair);
7593 EXPORT_SYMBOL_GPL(ata_port_disable);
7594 EXPORT_SYMBOL_GPL(ata_ratelimit);
7595 EXPORT_SYMBOL_GPL(ata_wait_register);
7596 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7597 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7598 EXPORT_SYMBOL_GPL(ata_wait_ready);
7599 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7600 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7601 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7602 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7603 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7604 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7605 EXPORT_SYMBOL_GPL(ata_host_intr);
7606 EXPORT_SYMBOL_GPL(sata_scr_valid);
7607 EXPORT_SYMBOL_GPL(sata_scr_read);
7608 EXPORT_SYMBOL_GPL(sata_scr_write);
7609 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7610 EXPORT_SYMBOL_GPL(ata_link_online);
7611 EXPORT_SYMBOL_GPL(ata_link_offline);
7612 #ifdef CONFIG_PM
7613 EXPORT_SYMBOL_GPL(ata_host_suspend);
7614 EXPORT_SYMBOL_GPL(ata_host_resume);
7615 #endif /* CONFIG_PM */
7616 EXPORT_SYMBOL_GPL(ata_id_string);
7617 EXPORT_SYMBOL_GPL(ata_id_c_string);
7618 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7619 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7620
7621 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7622 EXPORT_SYMBOL_GPL(ata_timing_compute);
7623 EXPORT_SYMBOL_GPL(ata_timing_merge);
7624
7625 #ifdef CONFIG_PCI
7626 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7627 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7628 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7629 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7630 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7631 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7632 #ifdef CONFIG_PM
7633 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7634 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7635 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7636 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7637 #endif /* CONFIG_PM */
7638 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7639 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7640 #endif /* CONFIG_PCI */
7641
7642 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7643 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7644 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7645 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7646 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7647
7648 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7649 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7650 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7651 EXPORT_SYMBOL_GPL(ata_port_desc);
7652 #ifdef CONFIG_PCI
7653 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7654 #endif /* CONFIG_PCI */
7655 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7656 EXPORT_SYMBOL_GPL(ata_link_abort);
7657 EXPORT_SYMBOL_GPL(ata_port_abort);
7658 EXPORT_SYMBOL_GPL(ata_port_freeze);
7659 EXPORT_SYMBOL_GPL(sata_async_notification);
7660 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7661 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7662 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7663 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7664 EXPORT_SYMBOL_GPL(ata_do_eh);
7665 EXPORT_SYMBOL_GPL(ata_irq_on);
7666 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7667
7668 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7669 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7670 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7671 EXPORT_SYMBOL_GPL(ata_cable_sata);