]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/ata/libata-core.c
Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[mirror_ubuntu-focal-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
65
66 #include "libata.h"
67
68
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
73
74 const struct ata_port_operations ata_base_port_ops = {
75 .prereset = ata_std_prereset,
76 .postreset = ata_std_postreset,
77 .error_handler = ata_std_error_handler,
78 };
79
80 const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
82
83 .qc_defer = ata_std_qc_defer,
84 .hardreset = sata_std_hardreset,
85 };
86
87 static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
90 static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
92 static void ata_dev_xfermask(struct ata_device *dev);
93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
94
95 unsigned int ata_print_id = 1;
96 static struct workqueue_struct *ata_wq;
97
98 struct workqueue_struct *ata_aux_wq;
99
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
108 };
109
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
114 };
115
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
118
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
127
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
131
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
135
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
139
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
155
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
159
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION);
164
165
166 /*
167 * Iterator helpers. Don't use directly.
168 *
169 * LOCKING:
170 * Host lock or EH context.
171 */
172 struct ata_link *__ata_port_next_link(struct ata_port *ap,
173 struct ata_link *link, bool dev_only)
174 {
175 /* NULL link indicates start of iteration */
176 if (!link) {
177 if (dev_only && sata_pmp_attached(ap))
178 return ap->pmp_link;
179 return &ap->link;
180 }
181
182 /* we just iterated over the host master link, what's next? */
183 if (link == &ap->link) {
184 if (!sata_pmp_attached(ap)) {
185 if (unlikely(ap->slave_link) && !dev_only)
186 return ap->slave_link;
187 return NULL;
188 }
189 return ap->pmp_link;
190 }
191
192 /* slave_link excludes PMP */
193 if (unlikely(link == ap->slave_link))
194 return NULL;
195
196 /* iterate to the next PMP link */
197 if (++link < ap->pmp_link + ap->nr_pmp_links)
198 return link;
199 return NULL;
200 }
201
202 /**
203 * ata_dev_phys_link - find physical link for a device
204 * @dev: ATA device to look up physical link for
205 *
206 * Look up physical link which @dev is attached to. Note that
207 * this is different from @dev->link only when @dev is on slave
208 * link. For all other cases, it's the same as @dev->link.
209 *
210 * LOCKING:
211 * Don't care.
212 *
213 * RETURNS:
214 * Pointer to the found physical link.
215 */
216 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
217 {
218 struct ata_port *ap = dev->link->ap;
219
220 if (!ap->slave_link)
221 return dev->link;
222 if (!dev->devno)
223 return &ap->link;
224 return ap->slave_link;
225 }
226
227 /**
228 * ata_force_cbl - force cable type according to libata.force
229 * @ap: ATA port of interest
230 *
231 * Force cable type according to libata.force and whine about it.
232 * The last entry which has matching port number is used, so it
233 * can be specified as part of device force parameters. For
234 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
235 * same effect.
236 *
237 * LOCKING:
238 * EH context.
239 */
240 void ata_force_cbl(struct ata_port *ap)
241 {
242 int i;
243
244 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
245 const struct ata_force_ent *fe = &ata_force_tbl[i];
246
247 if (fe->port != -1 && fe->port != ap->print_id)
248 continue;
249
250 if (fe->param.cbl == ATA_CBL_NONE)
251 continue;
252
253 ap->cbl = fe->param.cbl;
254 ata_port_printk(ap, KERN_NOTICE,
255 "FORCE: cable set to %s\n", fe->param.name);
256 return;
257 }
258 }
259
260 /**
261 * ata_force_link_limits - force link limits according to libata.force
262 * @link: ATA link of interest
263 *
264 * Force link flags and SATA spd limit according to libata.force
265 * and whine about it. When only the port part is specified
266 * (e.g. 1:), the limit applies to all links connected to both
267 * the host link and all fan-out ports connected via PMP. If the
268 * device part is specified as 0 (e.g. 1.00:), it specifies the
269 * first fan-out link not the host link. Device number 15 always
270 * points to the host link whether PMP is attached or not. If the
271 * controller has slave link, device number 16 points to it.
272 *
273 * LOCKING:
274 * EH context.
275 */
276 static void ata_force_link_limits(struct ata_link *link)
277 {
278 bool did_spd = false;
279 int linkno = link->pmp;
280 int i;
281
282 if (ata_is_host_link(link))
283 linkno += 15;
284
285 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
286 const struct ata_force_ent *fe = &ata_force_tbl[i];
287
288 if (fe->port != -1 && fe->port != link->ap->print_id)
289 continue;
290
291 if (fe->device != -1 && fe->device != linkno)
292 continue;
293
294 /* only honor the first spd limit */
295 if (!did_spd && fe->param.spd_limit) {
296 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
297 ata_link_printk(link, KERN_NOTICE,
298 "FORCE: PHY spd limit set to %s\n",
299 fe->param.name);
300 did_spd = true;
301 }
302
303 /* let lflags stack */
304 if (fe->param.lflags) {
305 link->flags |= fe->param.lflags;
306 ata_link_printk(link, KERN_NOTICE,
307 "FORCE: link flag 0x%x forced -> 0x%x\n",
308 fe->param.lflags, link->flags);
309 }
310 }
311 }
312
313 /**
314 * ata_force_xfermask - force xfermask according to libata.force
315 * @dev: ATA device of interest
316 *
317 * Force xfer_mask according to libata.force and whine about it.
318 * For consistency with link selection, device number 15 selects
319 * the first device connected to the host link.
320 *
321 * LOCKING:
322 * EH context.
323 */
324 static void ata_force_xfermask(struct ata_device *dev)
325 {
326 int devno = dev->link->pmp + dev->devno;
327 int alt_devno = devno;
328 int i;
329
330 /* allow n.15/16 for devices attached to host port */
331 if (ata_is_host_link(dev->link))
332 alt_devno += 15;
333
334 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
335 const struct ata_force_ent *fe = &ata_force_tbl[i];
336 unsigned long pio_mask, mwdma_mask, udma_mask;
337
338 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
339 continue;
340
341 if (fe->device != -1 && fe->device != devno &&
342 fe->device != alt_devno)
343 continue;
344
345 if (!fe->param.xfer_mask)
346 continue;
347
348 ata_unpack_xfermask(fe->param.xfer_mask,
349 &pio_mask, &mwdma_mask, &udma_mask);
350 if (udma_mask)
351 dev->udma_mask = udma_mask;
352 else if (mwdma_mask) {
353 dev->udma_mask = 0;
354 dev->mwdma_mask = mwdma_mask;
355 } else {
356 dev->udma_mask = 0;
357 dev->mwdma_mask = 0;
358 dev->pio_mask = pio_mask;
359 }
360
361 ata_dev_printk(dev, KERN_NOTICE,
362 "FORCE: xfer_mask set to %s\n", fe->param.name);
363 return;
364 }
365 }
366
367 /**
368 * ata_force_horkage - force horkage according to libata.force
369 * @dev: ATA device of interest
370 *
371 * Force horkage according to libata.force and whine about it.
372 * For consistency with link selection, device number 15 selects
373 * the first device connected to the host link.
374 *
375 * LOCKING:
376 * EH context.
377 */
378 static void ata_force_horkage(struct ata_device *dev)
379 {
380 int devno = dev->link->pmp + dev->devno;
381 int alt_devno = devno;
382 int i;
383
384 /* allow n.15/16 for devices attached to host port */
385 if (ata_is_host_link(dev->link))
386 alt_devno += 15;
387
388 for (i = 0; i < ata_force_tbl_size; i++) {
389 const struct ata_force_ent *fe = &ata_force_tbl[i];
390
391 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
392 continue;
393
394 if (fe->device != -1 && fe->device != devno &&
395 fe->device != alt_devno)
396 continue;
397
398 if (!(~dev->horkage & fe->param.horkage_on) &&
399 !(dev->horkage & fe->param.horkage_off))
400 continue;
401
402 dev->horkage |= fe->param.horkage_on;
403 dev->horkage &= ~fe->param.horkage_off;
404
405 ata_dev_printk(dev, KERN_NOTICE,
406 "FORCE: horkage modified (%s)\n", fe->param.name);
407 }
408 }
409
410 /**
411 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
412 * @opcode: SCSI opcode
413 *
414 * Determine ATAPI command type from @opcode.
415 *
416 * LOCKING:
417 * None.
418 *
419 * RETURNS:
420 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
421 */
422 int atapi_cmd_type(u8 opcode)
423 {
424 switch (opcode) {
425 case GPCMD_READ_10:
426 case GPCMD_READ_12:
427 return ATAPI_READ;
428
429 case GPCMD_WRITE_10:
430 case GPCMD_WRITE_12:
431 case GPCMD_WRITE_AND_VERIFY_10:
432 return ATAPI_WRITE;
433
434 case GPCMD_READ_CD:
435 case GPCMD_READ_CD_MSF:
436 return ATAPI_READ_CD;
437
438 case ATA_16:
439 case ATA_12:
440 if (atapi_passthru16)
441 return ATAPI_PASS_THRU;
442 /* fall thru */
443 default:
444 return ATAPI_MISC;
445 }
446 }
447
448 /**
449 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
450 * @tf: Taskfile to convert
451 * @pmp: Port multiplier port
452 * @is_cmd: This FIS is for command
453 * @fis: Buffer into which data will output
454 *
455 * Converts a standard ATA taskfile to a Serial ATA
456 * FIS structure (Register - Host to Device).
457 *
458 * LOCKING:
459 * Inherited from caller.
460 */
461 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
462 {
463 fis[0] = 0x27; /* Register - Host to Device FIS */
464 fis[1] = pmp & 0xf; /* Port multiplier number*/
465 if (is_cmd)
466 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
467
468 fis[2] = tf->command;
469 fis[3] = tf->feature;
470
471 fis[4] = tf->lbal;
472 fis[5] = tf->lbam;
473 fis[6] = tf->lbah;
474 fis[7] = tf->device;
475
476 fis[8] = tf->hob_lbal;
477 fis[9] = tf->hob_lbam;
478 fis[10] = tf->hob_lbah;
479 fis[11] = tf->hob_feature;
480
481 fis[12] = tf->nsect;
482 fis[13] = tf->hob_nsect;
483 fis[14] = 0;
484 fis[15] = tf->ctl;
485
486 fis[16] = 0;
487 fis[17] = 0;
488 fis[18] = 0;
489 fis[19] = 0;
490 }
491
492 /**
493 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
494 * @fis: Buffer from which data will be input
495 * @tf: Taskfile to output
496 *
497 * Converts a serial ATA FIS structure to a standard ATA taskfile.
498 *
499 * LOCKING:
500 * Inherited from caller.
501 */
502
503 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
504 {
505 tf->command = fis[2]; /* status */
506 tf->feature = fis[3]; /* error */
507
508 tf->lbal = fis[4];
509 tf->lbam = fis[5];
510 tf->lbah = fis[6];
511 tf->device = fis[7];
512
513 tf->hob_lbal = fis[8];
514 tf->hob_lbam = fis[9];
515 tf->hob_lbah = fis[10];
516
517 tf->nsect = fis[12];
518 tf->hob_nsect = fis[13];
519 }
520
521 static const u8 ata_rw_cmds[] = {
522 /* pio multi */
523 ATA_CMD_READ_MULTI,
524 ATA_CMD_WRITE_MULTI,
525 ATA_CMD_READ_MULTI_EXT,
526 ATA_CMD_WRITE_MULTI_EXT,
527 0,
528 0,
529 0,
530 ATA_CMD_WRITE_MULTI_FUA_EXT,
531 /* pio */
532 ATA_CMD_PIO_READ,
533 ATA_CMD_PIO_WRITE,
534 ATA_CMD_PIO_READ_EXT,
535 ATA_CMD_PIO_WRITE_EXT,
536 0,
537 0,
538 0,
539 0,
540 /* dma */
541 ATA_CMD_READ,
542 ATA_CMD_WRITE,
543 ATA_CMD_READ_EXT,
544 ATA_CMD_WRITE_EXT,
545 0,
546 0,
547 0,
548 ATA_CMD_WRITE_FUA_EXT
549 };
550
551 /**
552 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
553 * @tf: command to examine and configure
554 * @dev: device tf belongs to
555 *
556 * Examine the device configuration and tf->flags to calculate
557 * the proper read/write commands and protocol to use.
558 *
559 * LOCKING:
560 * caller.
561 */
562 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
563 {
564 u8 cmd;
565
566 int index, fua, lba48, write;
567
568 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
569 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
570 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
571
572 if (dev->flags & ATA_DFLAG_PIO) {
573 tf->protocol = ATA_PROT_PIO;
574 index = dev->multi_count ? 0 : 8;
575 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
576 /* Unable to use DMA due to host limitation */
577 tf->protocol = ATA_PROT_PIO;
578 index = dev->multi_count ? 0 : 8;
579 } else {
580 tf->protocol = ATA_PROT_DMA;
581 index = 16;
582 }
583
584 cmd = ata_rw_cmds[index + fua + lba48 + write];
585 if (cmd) {
586 tf->command = cmd;
587 return 0;
588 }
589 return -1;
590 }
591
592 /**
593 * ata_tf_read_block - Read block address from ATA taskfile
594 * @tf: ATA taskfile of interest
595 * @dev: ATA device @tf belongs to
596 *
597 * LOCKING:
598 * None.
599 *
600 * Read block address from @tf. This function can handle all
601 * three address formats - LBA, LBA48 and CHS. tf->protocol and
602 * flags select the address format to use.
603 *
604 * RETURNS:
605 * Block address read from @tf.
606 */
607 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
608 {
609 u64 block = 0;
610
611 if (tf->flags & ATA_TFLAG_LBA) {
612 if (tf->flags & ATA_TFLAG_LBA48) {
613 block |= (u64)tf->hob_lbah << 40;
614 block |= (u64)tf->hob_lbam << 32;
615 block |= tf->hob_lbal << 24;
616 } else
617 block |= (tf->device & 0xf) << 24;
618
619 block |= tf->lbah << 16;
620 block |= tf->lbam << 8;
621 block |= tf->lbal;
622 } else {
623 u32 cyl, head, sect;
624
625 cyl = tf->lbam | (tf->lbah << 8);
626 head = tf->device & 0xf;
627 sect = tf->lbal;
628
629 block = (cyl * dev->heads + head) * dev->sectors + sect;
630 }
631
632 return block;
633 }
634
635 /**
636 * ata_build_rw_tf - Build ATA taskfile for given read/write request
637 * @tf: Target ATA taskfile
638 * @dev: ATA device @tf belongs to
639 * @block: Block address
640 * @n_block: Number of blocks
641 * @tf_flags: RW/FUA etc...
642 * @tag: tag
643 *
644 * LOCKING:
645 * None.
646 *
647 * Build ATA taskfile @tf for read/write request described by
648 * @block, @n_block, @tf_flags and @tag on @dev.
649 *
650 * RETURNS:
651 *
652 * 0 on success, -ERANGE if the request is too large for @dev,
653 * -EINVAL if the request is invalid.
654 */
655 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
656 u64 block, u32 n_block, unsigned int tf_flags,
657 unsigned int tag)
658 {
659 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
660 tf->flags |= tf_flags;
661
662 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
663 /* yay, NCQ */
664 if (!lba_48_ok(block, n_block))
665 return -ERANGE;
666
667 tf->protocol = ATA_PROT_NCQ;
668 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
669
670 if (tf->flags & ATA_TFLAG_WRITE)
671 tf->command = ATA_CMD_FPDMA_WRITE;
672 else
673 tf->command = ATA_CMD_FPDMA_READ;
674
675 tf->nsect = tag << 3;
676 tf->hob_feature = (n_block >> 8) & 0xff;
677 tf->feature = n_block & 0xff;
678
679 tf->hob_lbah = (block >> 40) & 0xff;
680 tf->hob_lbam = (block >> 32) & 0xff;
681 tf->hob_lbal = (block >> 24) & 0xff;
682 tf->lbah = (block >> 16) & 0xff;
683 tf->lbam = (block >> 8) & 0xff;
684 tf->lbal = block & 0xff;
685
686 tf->device = 1 << 6;
687 if (tf->flags & ATA_TFLAG_FUA)
688 tf->device |= 1 << 7;
689 } else if (dev->flags & ATA_DFLAG_LBA) {
690 tf->flags |= ATA_TFLAG_LBA;
691
692 if (lba_28_ok(block, n_block)) {
693 /* use LBA28 */
694 tf->device |= (block >> 24) & 0xf;
695 } else if (lba_48_ok(block, n_block)) {
696 if (!(dev->flags & ATA_DFLAG_LBA48))
697 return -ERANGE;
698
699 /* use LBA48 */
700 tf->flags |= ATA_TFLAG_LBA48;
701
702 tf->hob_nsect = (n_block >> 8) & 0xff;
703
704 tf->hob_lbah = (block >> 40) & 0xff;
705 tf->hob_lbam = (block >> 32) & 0xff;
706 tf->hob_lbal = (block >> 24) & 0xff;
707 } else
708 /* request too large even for LBA48 */
709 return -ERANGE;
710
711 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
712 return -EINVAL;
713
714 tf->nsect = n_block & 0xff;
715
716 tf->lbah = (block >> 16) & 0xff;
717 tf->lbam = (block >> 8) & 0xff;
718 tf->lbal = block & 0xff;
719
720 tf->device |= ATA_LBA;
721 } else {
722 /* CHS */
723 u32 sect, head, cyl, track;
724
725 /* The request -may- be too large for CHS addressing. */
726 if (!lba_28_ok(block, n_block))
727 return -ERANGE;
728
729 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
730 return -EINVAL;
731
732 /* Convert LBA to CHS */
733 track = (u32)block / dev->sectors;
734 cyl = track / dev->heads;
735 head = track % dev->heads;
736 sect = (u32)block % dev->sectors + 1;
737
738 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
739 (u32)block, track, cyl, head, sect);
740
741 /* Check whether the converted CHS can fit.
742 Cylinder: 0-65535
743 Head: 0-15
744 Sector: 1-255*/
745 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
746 return -ERANGE;
747
748 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
749 tf->lbal = sect;
750 tf->lbam = cyl;
751 tf->lbah = cyl >> 8;
752 tf->device |= head;
753 }
754
755 return 0;
756 }
757
758 /**
759 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
760 * @pio_mask: pio_mask
761 * @mwdma_mask: mwdma_mask
762 * @udma_mask: udma_mask
763 *
764 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
765 * unsigned int xfer_mask.
766 *
767 * LOCKING:
768 * None.
769 *
770 * RETURNS:
771 * Packed xfer_mask.
772 */
773 unsigned long ata_pack_xfermask(unsigned long pio_mask,
774 unsigned long mwdma_mask,
775 unsigned long udma_mask)
776 {
777 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
778 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
779 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
780 }
781
782 /**
783 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
784 * @xfer_mask: xfer_mask to unpack
785 * @pio_mask: resulting pio_mask
786 * @mwdma_mask: resulting mwdma_mask
787 * @udma_mask: resulting udma_mask
788 *
789 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
790 * Any NULL distination masks will be ignored.
791 */
792 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
793 unsigned long *mwdma_mask, unsigned long *udma_mask)
794 {
795 if (pio_mask)
796 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
797 if (mwdma_mask)
798 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
799 if (udma_mask)
800 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
801 }
802
803 static const struct ata_xfer_ent {
804 int shift, bits;
805 u8 base;
806 } ata_xfer_tbl[] = {
807 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
808 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
809 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
810 { -1, },
811 };
812
813 /**
814 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
815 * @xfer_mask: xfer_mask of interest
816 *
817 * Return matching XFER_* value for @xfer_mask. Only the highest
818 * bit of @xfer_mask is considered.
819 *
820 * LOCKING:
821 * None.
822 *
823 * RETURNS:
824 * Matching XFER_* value, 0xff if no match found.
825 */
826 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
827 {
828 int highbit = fls(xfer_mask) - 1;
829 const struct ata_xfer_ent *ent;
830
831 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
832 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
833 return ent->base + highbit - ent->shift;
834 return 0xff;
835 }
836
837 /**
838 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
839 * @xfer_mode: XFER_* of interest
840 *
841 * Return matching xfer_mask for @xfer_mode.
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Matching xfer_mask, 0 if no match found.
848 */
849 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
850 {
851 const struct ata_xfer_ent *ent;
852
853 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
854 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
855 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
856 & ~((1 << ent->shift) - 1);
857 return 0;
858 }
859
860 /**
861 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
862 * @xfer_mode: XFER_* of interest
863 *
864 * Return matching xfer_shift for @xfer_mode.
865 *
866 * LOCKING:
867 * None.
868 *
869 * RETURNS:
870 * Matching xfer_shift, -1 if no match found.
871 */
872 int ata_xfer_mode2shift(unsigned long xfer_mode)
873 {
874 const struct ata_xfer_ent *ent;
875
876 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
877 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
878 return ent->shift;
879 return -1;
880 }
881
882 /**
883 * ata_mode_string - convert xfer_mask to string
884 * @xfer_mask: mask of bits supported; only highest bit counts.
885 *
886 * Determine string which represents the highest speed
887 * (highest bit in @modemask).
888 *
889 * LOCKING:
890 * None.
891 *
892 * RETURNS:
893 * Constant C string representing highest speed listed in
894 * @mode_mask, or the constant C string "<n/a>".
895 */
896 const char *ata_mode_string(unsigned long xfer_mask)
897 {
898 static const char * const xfer_mode_str[] = {
899 "PIO0",
900 "PIO1",
901 "PIO2",
902 "PIO3",
903 "PIO4",
904 "PIO5",
905 "PIO6",
906 "MWDMA0",
907 "MWDMA1",
908 "MWDMA2",
909 "MWDMA3",
910 "MWDMA4",
911 "UDMA/16",
912 "UDMA/25",
913 "UDMA/33",
914 "UDMA/44",
915 "UDMA/66",
916 "UDMA/100",
917 "UDMA/133",
918 "UDMA7",
919 };
920 int highbit;
921
922 highbit = fls(xfer_mask) - 1;
923 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
924 return xfer_mode_str[highbit];
925 return "<n/a>";
926 }
927
928 static const char *sata_spd_string(unsigned int spd)
929 {
930 static const char * const spd_str[] = {
931 "1.5 Gbps",
932 "3.0 Gbps",
933 };
934
935 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
936 return "<unknown>";
937 return spd_str[spd - 1];
938 }
939
940 void ata_dev_disable(struct ata_device *dev)
941 {
942 if (ata_dev_enabled(dev)) {
943 if (ata_msg_drv(dev->link->ap))
944 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
945 ata_acpi_on_disable(dev);
946 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
947 ATA_DNXFER_QUIET);
948 dev->class++;
949 }
950 }
951
952 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
953 {
954 struct ata_link *link = dev->link;
955 struct ata_port *ap = link->ap;
956 u32 scontrol;
957 unsigned int err_mask;
958 int rc;
959
960 /*
961 * disallow DIPM for drivers which haven't set
962 * ATA_FLAG_IPM. This is because when DIPM is enabled,
963 * phy ready will be set in the interrupt status on
964 * state changes, which will cause some drivers to
965 * think there are errors - additionally drivers will
966 * need to disable hot plug.
967 */
968 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
969 ap->pm_policy = NOT_AVAILABLE;
970 return -EINVAL;
971 }
972
973 /*
974 * For DIPM, we will only enable it for the
975 * min_power setting.
976 *
977 * Why? Because Disks are too stupid to know that
978 * If the host rejects a request to go to SLUMBER
979 * they should retry at PARTIAL, and instead it
980 * just would give up. So, for medium_power to
981 * work at all, we need to only allow HIPM.
982 */
983 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
984 if (rc)
985 return rc;
986
987 switch (policy) {
988 case MIN_POWER:
989 /* no restrictions on IPM transitions */
990 scontrol &= ~(0x3 << 8);
991 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
992 if (rc)
993 return rc;
994
995 /* enable DIPM */
996 if (dev->flags & ATA_DFLAG_DIPM)
997 err_mask = ata_dev_set_feature(dev,
998 SETFEATURES_SATA_ENABLE, SATA_DIPM);
999 break;
1000 case MEDIUM_POWER:
1001 /* allow IPM to PARTIAL */
1002 scontrol &= ~(0x1 << 8);
1003 scontrol |= (0x2 << 8);
1004 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1005 if (rc)
1006 return rc;
1007
1008 /*
1009 * we don't have to disable DIPM since IPM flags
1010 * disallow transitions to SLUMBER, which effectively
1011 * disable DIPM if it does not support PARTIAL
1012 */
1013 break;
1014 case NOT_AVAILABLE:
1015 case MAX_PERFORMANCE:
1016 /* disable all IPM transitions */
1017 scontrol |= (0x3 << 8);
1018 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1019 if (rc)
1020 return rc;
1021
1022 /*
1023 * we don't have to disable DIPM since IPM flags
1024 * disallow all transitions which effectively
1025 * disable DIPM anyway.
1026 */
1027 break;
1028 }
1029
1030 /* FIXME: handle SET FEATURES failure */
1031 (void) err_mask;
1032
1033 return 0;
1034 }
1035
1036 /**
1037 * ata_dev_enable_pm - enable SATA interface power management
1038 * @dev: device to enable power management
1039 * @policy: the link power management policy
1040 *
1041 * Enable SATA Interface power management. This will enable
1042 * Device Interface Power Management (DIPM) for min_power
1043 * policy, and then call driver specific callbacks for
1044 * enabling Host Initiated Power management.
1045 *
1046 * Locking: Caller.
1047 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1048 */
1049 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1050 {
1051 int rc = 0;
1052 struct ata_port *ap = dev->link->ap;
1053
1054 /* set HIPM first, then DIPM */
1055 if (ap->ops->enable_pm)
1056 rc = ap->ops->enable_pm(ap, policy);
1057 if (rc)
1058 goto enable_pm_out;
1059 rc = ata_dev_set_dipm(dev, policy);
1060
1061 enable_pm_out:
1062 if (rc)
1063 ap->pm_policy = MAX_PERFORMANCE;
1064 else
1065 ap->pm_policy = policy;
1066 return /* rc */; /* hopefully we can use 'rc' eventually */
1067 }
1068
1069 #ifdef CONFIG_PM
1070 /**
1071 * ata_dev_disable_pm - disable SATA interface power management
1072 * @dev: device to disable power management
1073 *
1074 * Disable SATA Interface power management. This will disable
1075 * Device Interface Power Management (DIPM) without changing
1076 * policy, call driver specific callbacks for disabling Host
1077 * Initiated Power management.
1078 *
1079 * Locking: Caller.
1080 * Returns: void
1081 */
1082 static void ata_dev_disable_pm(struct ata_device *dev)
1083 {
1084 struct ata_port *ap = dev->link->ap;
1085
1086 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1087 if (ap->ops->disable_pm)
1088 ap->ops->disable_pm(ap);
1089 }
1090 #endif /* CONFIG_PM */
1091
1092 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1093 {
1094 ap->pm_policy = policy;
1095 ap->link.eh_info.action |= ATA_EH_LPM;
1096 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1097 ata_port_schedule_eh(ap);
1098 }
1099
1100 #ifdef CONFIG_PM
1101 static void ata_lpm_enable(struct ata_host *host)
1102 {
1103 struct ata_link *link;
1104 struct ata_port *ap;
1105 struct ata_device *dev;
1106 int i;
1107
1108 for (i = 0; i < host->n_ports; i++) {
1109 ap = host->ports[i];
1110 ata_port_for_each_link(link, ap) {
1111 ata_link_for_each_dev(dev, link)
1112 ata_dev_disable_pm(dev);
1113 }
1114 }
1115 }
1116
1117 static void ata_lpm_disable(struct ata_host *host)
1118 {
1119 int i;
1120
1121 for (i = 0; i < host->n_ports; i++) {
1122 struct ata_port *ap = host->ports[i];
1123 ata_lpm_schedule(ap, ap->pm_policy);
1124 }
1125 }
1126 #endif /* CONFIG_PM */
1127
1128 /**
1129 * ata_dev_classify - determine device type based on ATA-spec signature
1130 * @tf: ATA taskfile register set for device to be identified
1131 *
1132 * Determine from taskfile register contents whether a device is
1133 * ATA or ATAPI, as per "Signature and persistence" section
1134 * of ATA/PI spec (volume 1, sect 5.14).
1135 *
1136 * LOCKING:
1137 * None.
1138 *
1139 * RETURNS:
1140 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1141 * %ATA_DEV_UNKNOWN the event of failure.
1142 */
1143 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1144 {
1145 /* Apple's open source Darwin code hints that some devices only
1146 * put a proper signature into the LBA mid/high registers,
1147 * So, we only check those. It's sufficient for uniqueness.
1148 *
1149 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1150 * signatures for ATA and ATAPI devices attached on SerialATA,
1151 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1152 * spec has never mentioned about using different signatures
1153 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1154 * Multiplier specification began to use 0x69/0x96 to identify
1155 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1156 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1157 * 0x69/0x96 shortly and described them as reserved for
1158 * SerialATA.
1159 *
1160 * We follow the current spec and consider that 0x69/0x96
1161 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1162 */
1163 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1164 DPRINTK("found ATA device by sig\n");
1165 return ATA_DEV_ATA;
1166 }
1167
1168 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1169 DPRINTK("found ATAPI device by sig\n");
1170 return ATA_DEV_ATAPI;
1171 }
1172
1173 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1174 DPRINTK("found PMP device by sig\n");
1175 return ATA_DEV_PMP;
1176 }
1177
1178 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1179 printk(KERN_INFO "ata: SEMB device ignored\n");
1180 return ATA_DEV_SEMB_UNSUP; /* not yet */
1181 }
1182
1183 DPRINTK("unknown device\n");
1184 return ATA_DEV_UNKNOWN;
1185 }
1186
1187 /**
1188 * ata_id_string - Convert IDENTIFY DEVICE page into string
1189 * @id: IDENTIFY DEVICE results we will examine
1190 * @s: string into which data is output
1191 * @ofs: offset into identify device page
1192 * @len: length of string to return. must be an even number.
1193 *
1194 * The strings in the IDENTIFY DEVICE page are broken up into
1195 * 16-bit chunks. Run through the string, and output each
1196 * 8-bit chunk linearly, regardless of platform.
1197 *
1198 * LOCKING:
1199 * caller.
1200 */
1201
1202 void ata_id_string(const u16 *id, unsigned char *s,
1203 unsigned int ofs, unsigned int len)
1204 {
1205 unsigned int c;
1206
1207 BUG_ON(len & 1);
1208
1209 while (len > 0) {
1210 c = id[ofs] >> 8;
1211 *s = c;
1212 s++;
1213
1214 c = id[ofs] & 0xff;
1215 *s = c;
1216 s++;
1217
1218 ofs++;
1219 len -= 2;
1220 }
1221 }
1222
1223 /**
1224 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1225 * @id: IDENTIFY DEVICE results we will examine
1226 * @s: string into which data is output
1227 * @ofs: offset into identify device page
1228 * @len: length of string to return. must be an odd number.
1229 *
1230 * This function is identical to ata_id_string except that it
1231 * trims trailing spaces and terminates the resulting string with
1232 * null. @len must be actual maximum length (even number) + 1.
1233 *
1234 * LOCKING:
1235 * caller.
1236 */
1237 void ata_id_c_string(const u16 *id, unsigned char *s,
1238 unsigned int ofs, unsigned int len)
1239 {
1240 unsigned char *p;
1241
1242 ata_id_string(id, s, ofs, len - 1);
1243
1244 p = s + strnlen(s, len - 1);
1245 while (p > s && p[-1] == ' ')
1246 p--;
1247 *p = '\0';
1248 }
1249
1250 static u64 ata_id_n_sectors(const u16 *id)
1251 {
1252 if (ata_id_has_lba(id)) {
1253 if (ata_id_has_lba48(id))
1254 return ata_id_u64(id, 100);
1255 else
1256 return ata_id_u32(id, 60);
1257 } else {
1258 if (ata_id_current_chs_valid(id))
1259 return ata_id_u32(id, 57);
1260 else
1261 return id[1] * id[3] * id[6];
1262 }
1263 }
1264
1265 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1266 {
1267 u64 sectors = 0;
1268
1269 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1270 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1271 sectors |= (tf->hob_lbal & 0xff) << 24;
1272 sectors |= (tf->lbah & 0xff) << 16;
1273 sectors |= (tf->lbam & 0xff) << 8;
1274 sectors |= (tf->lbal & 0xff);
1275
1276 return sectors;
1277 }
1278
1279 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1280 {
1281 u64 sectors = 0;
1282
1283 sectors |= (tf->device & 0x0f) << 24;
1284 sectors |= (tf->lbah & 0xff) << 16;
1285 sectors |= (tf->lbam & 0xff) << 8;
1286 sectors |= (tf->lbal & 0xff);
1287
1288 return sectors;
1289 }
1290
1291 /**
1292 * ata_read_native_max_address - Read native max address
1293 * @dev: target device
1294 * @max_sectors: out parameter for the result native max address
1295 *
1296 * Perform an LBA48 or LBA28 native size query upon the device in
1297 * question.
1298 *
1299 * RETURNS:
1300 * 0 on success, -EACCES if command is aborted by the drive.
1301 * -EIO on other errors.
1302 */
1303 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1304 {
1305 unsigned int err_mask;
1306 struct ata_taskfile tf;
1307 int lba48 = ata_id_has_lba48(dev->id);
1308
1309 ata_tf_init(dev, &tf);
1310
1311 /* always clear all address registers */
1312 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1313
1314 if (lba48) {
1315 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1316 tf.flags |= ATA_TFLAG_LBA48;
1317 } else
1318 tf.command = ATA_CMD_READ_NATIVE_MAX;
1319
1320 tf.protocol |= ATA_PROT_NODATA;
1321 tf.device |= ATA_LBA;
1322
1323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1324 if (err_mask) {
1325 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1326 "max address (err_mask=0x%x)\n", err_mask);
1327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1328 return -EACCES;
1329 return -EIO;
1330 }
1331
1332 if (lba48)
1333 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1334 else
1335 *max_sectors = ata_tf_to_lba(&tf) + 1;
1336 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1337 (*max_sectors)--;
1338 return 0;
1339 }
1340
1341 /**
1342 * ata_set_max_sectors - Set max sectors
1343 * @dev: target device
1344 * @new_sectors: new max sectors value to set for the device
1345 *
1346 * Set max sectors of @dev to @new_sectors.
1347 *
1348 * RETURNS:
1349 * 0 on success, -EACCES if command is aborted or denied (due to
1350 * previous non-volatile SET_MAX) by the drive. -EIO on other
1351 * errors.
1352 */
1353 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1354 {
1355 unsigned int err_mask;
1356 struct ata_taskfile tf;
1357 int lba48 = ata_id_has_lba48(dev->id);
1358
1359 new_sectors--;
1360
1361 ata_tf_init(dev, &tf);
1362
1363 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1364
1365 if (lba48) {
1366 tf.command = ATA_CMD_SET_MAX_EXT;
1367 tf.flags |= ATA_TFLAG_LBA48;
1368
1369 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1370 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1371 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1372 } else {
1373 tf.command = ATA_CMD_SET_MAX;
1374
1375 tf.device |= (new_sectors >> 24) & 0xf;
1376 }
1377
1378 tf.protocol |= ATA_PROT_NODATA;
1379 tf.device |= ATA_LBA;
1380
1381 tf.lbal = (new_sectors >> 0) & 0xff;
1382 tf.lbam = (new_sectors >> 8) & 0xff;
1383 tf.lbah = (new_sectors >> 16) & 0xff;
1384
1385 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1386 if (err_mask) {
1387 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1388 "max address (err_mask=0x%x)\n", err_mask);
1389 if (err_mask == AC_ERR_DEV &&
1390 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1391 return -EACCES;
1392 return -EIO;
1393 }
1394
1395 return 0;
1396 }
1397
1398 /**
1399 * ata_hpa_resize - Resize a device with an HPA set
1400 * @dev: Device to resize
1401 *
1402 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1403 * it if required to the full size of the media. The caller must check
1404 * the drive has the HPA feature set enabled.
1405 *
1406 * RETURNS:
1407 * 0 on success, -errno on failure.
1408 */
1409 static int ata_hpa_resize(struct ata_device *dev)
1410 {
1411 struct ata_eh_context *ehc = &dev->link->eh_context;
1412 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1413 u64 sectors = ata_id_n_sectors(dev->id);
1414 u64 native_sectors;
1415 int rc;
1416
1417 /* do we need to do it? */
1418 if (dev->class != ATA_DEV_ATA ||
1419 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1420 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1421 return 0;
1422
1423 /* read native max address */
1424 rc = ata_read_native_max_address(dev, &native_sectors);
1425 if (rc) {
1426 /* If device aborted the command or HPA isn't going to
1427 * be unlocked, skip HPA resizing.
1428 */
1429 if (rc == -EACCES || !ata_ignore_hpa) {
1430 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1431 "broken, skipping HPA handling\n");
1432 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1433
1434 /* we can continue if device aborted the command */
1435 if (rc == -EACCES)
1436 rc = 0;
1437 }
1438
1439 return rc;
1440 }
1441
1442 /* nothing to do? */
1443 if (native_sectors <= sectors || !ata_ignore_hpa) {
1444 if (!print_info || native_sectors == sectors)
1445 return 0;
1446
1447 if (native_sectors > sectors)
1448 ata_dev_printk(dev, KERN_INFO,
1449 "HPA detected: current %llu, native %llu\n",
1450 (unsigned long long)sectors,
1451 (unsigned long long)native_sectors);
1452 else if (native_sectors < sectors)
1453 ata_dev_printk(dev, KERN_WARNING,
1454 "native sectors (%llu) is smaller than "
1455 "sectors (%llu)\n",
1456 (unsigned long long)native_sectors,
1457 (unsigned long long)sectors);
1458 return 0;
1459 }
1460
1461 /* let's unlock HPA */
1462 rc = ata_set_max_sectors(dev, native_sectors);
1463 if (rc == -EACCES) {
1464 /* if device aborted the command, skip HPA resizing */
1465 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1466 "(%llu -> %llu), skipping HPA handling\n",
1467 (unsigned long long)sectors,
1468 (unsigned long long)native_sectors);
1469 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1470 return 0;
1471 } else if (rc)
1472 return rc;
1473
1474 /* re-read IDENTIFY data */
1475 rc = ata_dev_reread_id(dev, 0);
1476 if (rc) {
1477 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1478 "data after HPA resizing\n");
1479 return rc;
1480 }
1481
1482 if (print_info) {
1483 u64 new_sectors = ata_id_n_sectors(dev->id);
1484 ata_dev_printk(dev, KERN_INFO,
1485 "HPA unlocked: %llu -> %llu, native %llu\n",
1486 (unsigned long long)sectors,
1487 (unsigned long long)new_sectors,
1488 (unsigned long long)native_sectors);
1489 }
1490
1491 return 0;
1492 }
1493
1494 /**
1495 * ata_dump_id - IDENTIFY DEVICE info debugging output
1496 * @id: IDENTIFY DEVICE page to dump
1497 *
1498 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1499 * page.
1500 *
1501 * LOCKING:
1502 * caller.
1503 */
1504
1505 static inline void ata_dump_id(const u16 *id)
1506 {
1507 DPRINTK("49==0x%04x "
1508 "53==0x%04x "
1509 "63==0x%04x "
1510 "64==0x%04x "
1511 "75==0x%04x \n",
1512 id[49],
1513 id[53],
1514 id[63],
1515 id[64],
1516 id[75]);
1517 DPRINTK("80==0x%04x "
1518 "81==0x%04x "
1519 "82==0x%04x "
1520 "83==0x%04x "
1521 "84==0x%04x \n",
1522 id[80],
1523 id[81],
1524 id[82],
1525 id[83],
1526 id[84]);
1527 DPRINTK("88==0x%04x "
1528 "93==0x%04x\n",
1529 id[88],
1530 id[93]);
1531 }
1532
1533 /**
1534 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1535 * @id: IDENTIFY data to compute xfer mask from
1536 *
1537 * Compute the xfermask for this device. This is not as trivial
1538 * as it seems if we must consider early devices correctly.
1539 *
1540 * FIXME: pre IDE drive timing (do we care ?).
1541 *
1542 * LOCKING:
1543 * None.
1544 *
1545 * RETURNS:
1546 * Computed xfermask
1547 */
1548 unsigned long ata_id_xfermask(const u16 *id)
1549 {
1550 unsigned long pio_mask, mwdma_mask, udma_mask;
1551
1552 /* Usual case. Word 53 indicates word 64 is valid */
1553 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1554 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1555 pio_mask <<= 3;
1556 pio_mask |= 0x7;
1557 } else {
1558 /* If word 64 isn't valid then Word 51 high byte holds
1559 * the PIO timing number for the maximum. Turn it into
1560 * a mask.
1561 */
1562 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1563 if (mode < 5) /* Valid PIO range */
1564 pio_mask = (2 << mode) - 1;
1565 else
1566 pio_mask = 1;
1567
1568 /* But wait.. there's more. Design your standards by
1569 * committee and you too can get a free iordy field to
1570 * process. However its the speeds not the modes that
1571 * are supported... Note drivers using the timing API
1572 * will get this right anyway
1573 */
1574 }
1575
1576 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1577
1578 if (ata_id_is_cfa(id)) {
1579 /*
1580 * Process compact flash extended modes
1581 */
1582 int pio = id[163] & 0x7;
1583 int dma = (id[163] >> 3) & 7;
1584
1585 if (pio)
1586 pio_mask |= (1 << 5);
1587 if (pio > 1)
1588 pio_mask |= (1 << 6);
1589 if (dma)
1590 mwdma_mask |= (1 << 3);
1591 if (dma > 1)
1592 mwdma_mask |= (1 << 4);
1593 }
1594
1595 udma_mask = 0;
1596 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1597 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1598
1599 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1600 }
1601
1602 /**
1603 * ata_pio_queue_task - Queue port_task
1604 * @ap: The ata_port to queue port_task for
1605 * @fn: workqueue function to be scheduled
1606 * @data: data for @fn to use
1607 * @delay: delay time in msecs for workqueue function
1608 *
1609 * Schedule @fn(@data) for execution after @delay jiffies using
1610 * port_task. There is one port_task per port and it's the
1611 * user(low level driver)'s responsibility to make sure that only
1612 * one task is active at any given time.
1613 *
1614 * libata core layer takes care of synchronization between
1615 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1616 * synchronization.
1617 *
1618 * LOCKING:
1619 * Inherited from caller.
1620 */
1621 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1622 {
1623 ap->port_task_data = data;
1624
1625 /* may fail if ata_port_flush_task() in progress */
1626 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1627 }
1628
1629 /**
1630 * ata_port_flush_task - Flush port_task
1631 * @ap: The ata_port to flush port_task for
1632 *
1633 * After this function completes, port_task is guranteed not to
1634 * be running or scheduled.
1635 *
1636 * LOCKING:
1637 * Kernel thread context (may sleep)
1638 */
1639 void ata_port_flush_task(struct ata_port *ap)
1640 {
1641 DPRINTK("ENTER\n");
1642
1643 cancel_rearming_delayed_work(&ap->port_task);
1644
1645 if (ata_msg_ctl(ap))
1646 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1647 }
1648
1649 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1650 {
1651 struct completion *waiting = qc->private_data;
1652
1653 complete(waiting);
1654 }
1655
1656 /**
1657 * ata_exec_internal_sg - execute libata internal command
1658 * @dev: Device to which the command is sent
1659 * @tf: Taskfile registers for the command and the result
1660 * @cdb: CDB for packet command
1661 * @dma_dir: Data tranfer direction of the command
1662 * @sgl: sg list for the data buffer of the command
1663 * @n_elem: Number of sg entries
1664 * @timeout: Timeout in msecs (0 for default)
1665 *
1666 * Executes libata internal command with timeout. @tf contains
1667 * command on entry and result on return. Timeout and error
1668 * conditions are reported via return value. No recovery action
1669 * is taken after a command times out. It's caller's duty to
1670 * clean up after timeout.
1671 *
1672 * LOCKING:
1673 * None. Should be called with kernel context, might sleep.
1674 *
1675 * RETURNS:
1676 * Zero on success, AC_ERR_* mask on failure
1677 */
1678 unsigned ata_exec_internal_sg(struct ata_device *dev,
1679 struct ata_taskfile *tf, const u8 *cdb,
1680 int dma_dir, struct scatterlist *sgl,
1681 unsigned int n_elem, unsigned long timeout)
1682 {
1683 struct ata_link *link = dev->link;
1684 struct ata_port *ap = link->ap;
1685 u8 command = tf->command;
1686 int auto_timeout = 0;
1687 struct ata_queued_cmd *qc;
1688 unsigned int tag, preempted_tag;
1689 u32 preempted_sactive, preempted_qc_active;
1690 int preempted_nr_active_links;
1691 DECLARE_COMPLETION_ONSTACK(wait);
1692 unsigned long flags;
1693 unsigned int err_mask;
1694 int rc;
1695
1696 spin_lock_irqsave(ap->lock, flags);
1697
1698 /* no internal command while frozen */
1699 if (ap->pflags & ATA_PFLAG_FROZEN) {
1700 spin_unlock_irqrestore(ap->lock, flags);
1701 return AC_ERR_SYSTEM;
1702 }
1703
1704 /* initialize internal qc */
1705
1706 /* XXX: Tag 0 is used for drivers with legacy EH as some
1707 * drivers choke if any other tag is given. This breaks
1708 * ata_tag_internal() test for those drivers. Don't use new
1709 * EH stuff without converting to it.
1710 */
1711 if (ap->ops->error_handler)
1712 tag = ATA_TAG_INTERNAL;
1713 else
1714 tag = 0;
1715
1716 qc = __ata_qc_from_tag(ap, tag);
1717
1718 qc->tag = tag;
1719 qc->scsicmd = NULL;
1720 qc->ap = ap;
1721 qc->dev = dev;
1722 ata_qc_reinit(qc);
1723
1724 preempted_tag = link->active_tag;
1725 preempted_sactive = link->sactive;
1726 preempted_qc_active = ap->qc_active;
1727 preempted_nr_active_links = ap->nr_active_links;
1728 link->active_tag = ATA_TAG_POISON;
1729 link->sactive = 0;
1730 ap->qc_active = 0;
1731 ap->nr_active_links = 0;
1732
1733 /* prepare & issue qc */
1734 qc->tf = *tf;
1735 if (cdb)
1736 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1737 qc->flags |= ATA_QCFLAG_RESULT_TF;
1738 qc->dma_dir = dma_dir;
1739 if (dma_dir != DMA_NONE) {
1740 unsigned int i, buflen = 0;
1741 struct scatterlist *sg;
1742
1743 for_each_sg(sgl, sg, n_elem, i)
1744 buflen += sg->length;
1745
1746 ata_sg_init(qc, sgl, n_elem);
1747 qc->nbytes = buflen;
1748 }
1749
1750 qc->private_data = &wait;
1751 qc->complete_fn = ata_qc_complete_internal;
1752
1753 ata_qc_issue(qc);
1754
1755 spin_unlock_irqrestore(ap->lock, flags);
1756
1757 if (!timeout) {
1758 if (ata_probe_timeout)
1759 timeout = ata_probe_timeout * 1000;
1760 else {
1761 timeout = ata_internal_cmd_timeout(dev, command);
1762 auto_timeout = 1;
1763 }
1764 }
1765
1766 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1767
1768 ata_port_flush_task(ap);
1769
1770 if (!rc) {
1771 spin_lock_irqsave(ap->lock, flags);
1772
1773 /* We're racing with irq here. If we lose, the
1774 * following test prevents us from completing the qc
1775 * twice. If we win, the port is frozen and will be
1776 * cleaned up by ->post_internal_cmd().
1777 */
1778 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1779 qc->err_mask |= AC_ERR_TIMEOUT;
1780
1781 if (ap->ops->error_handler)
1782 ata_port_freeze(ap);
1783 else
1784 ata_qc_complete(qc);
1785
1786 if (ata_msg_warn(ap))
1787 ata_dev_printk(dev, KERN_WARNING,
1788 "qc timeout (cmd 0x%x)\n", command);
1789 }
1790
1791 spin_unlock_irqrestore(ap->lock, flags);
1792 }
1793
1794 /* do post_internal_cmd */
1795 if (ap->ops->post_internal_cmd)
1796 ap->ops->post_internal_cmd(qc);
1797
1798 /* perform minimal error analysis */
1799 if (qc->flags & ATA_QCFLAG_FAILED) {
1800 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1801 qc->err_mask |= AC_ERR_DEV;
1802
1803 if (!qc->err_mask)
1804 qc->err_mask |= AC_ERR_OTHER;
1805
1806 if (qc->err_mask & ~AC_ERR_OTHER)
1807 qc->err_mask &= ~AC_ERR_OTHER;
1808 }
1809
1810 /* finish up */
1811 spin_lock_irqsave(ap->lock, flags);
1812
1813 *tf = qc->result_tf;
1814 err_mask = qc->err_mask;
1815
1816 ata_qc_free(qc);
1817 link->active_tag = preempted_tag;
1818 link->sactive = preempted_sactive;
1819 ap->qc_active = preempted_qc_active;
1820 ap->nr_active_links = preempted_nr_active_links;
1821
1822 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1823 * Until those drivers are fixed, we detect the condition
1824 * here, fail the command with AC_ERR_SYSTEM and reenable the
1825 * port.
1826 *
1827 * Note that this doesn't change any behavior as internal
1828 * command failure results in disabling the device in the
1829 * higher layer for LLDDs without new reset/EH callbacks.
1830 *
1831 * Kill the following code as soon as those drivers are fixed.
1832 */
1833 if (ap->flags & ATA_FLAG_DISABLED) {
1834 err_mask |= AC_ERR_SYSTEM;
1835 ata_port_probe(ap);
1836 }
1837
1838 spin_unlock_irqrestore(ap->lock, flags);
1839
1840 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1841 ata_internal_cmd_timed_out(dev, command);
1842
1843 return err_mask;
1844 }
1845
1846 /**
1847 * ata_exec_internal - execute libata internal command
1848 * @dev: Device to which the command is sent
1849 * @tf: Taskfile registers for the command and the result
1850 * @cdb: CDB for packet command
1851 * @dma_dir: Data tranfer direction of the command
1852 * @buf: Data buffer of the command
1853 * @buflen: Length of data buffer
1854 * @timeout: Timeout in msecs (0 for default)
1855 *
1856 * Wrapper around ata_exec_internal_sg() which takes simple
1857 * buffer instead of sg list.
1858 *
1859 * LOCKING:
1860 * None. Should be called with kernel context, might sleep.
1861 *
1862 * RETURNS:
1863 * Zero on success, AC_ERR_* mask on failure
1864 */
1865 unsigned ata_exec_internal(struct ata_device *dev,
1866 struct ata_taskfile *tf, const u8 *cdb,
1867 int dma_dir, void *buf, unsigned int buflen,
1868 unsigned long timeout)
1869 {
1870 struct scatterlist *psg = NULL, sg;
1871 unsigned int n_elem = 0;
1872
1873 if (dma_dir != DMA_NONE) {
1874 WARN_ON(!buf);
1875 sg_init_one(&sg, buf, buflen);
1876 psg = &sg;
1877 n_elem++;
1878 }
1879
1880 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1881 timeout);
1882 }
1883
1884 /**
1885 * ata_do_simple_cmd - execute simple internal command
1886 * @dev: Device to which the command is sent
1887 * @cmd: Opcode to execute
1888 *
1889 * Execute a 'simple' command, that only consists of the opcode
1890 * 'cmd' itself, without filling any other registers
1891 *
1892 * LOCKING:
1893 * Kernel thread context (may sleep).
1894 *
1895 * RETURNS:
1896 * Zero on success, AC_ERR_* mask on failure
1897 */
1898 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1899 {
1900 struct ata_taskfile tf;
1901
1902 ata_tf_init(dev, &tf);
1903
1904 tf.command = cmd;
1905 tf.flags |= ATA_TFLAG_DEVICE;
1906 tf.protocol = ATA_PROT_NODATA;
1907
1908 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1909 }
1910
1911 /**
1912 * ata_pio_need_iordy - check if iordy needed
1913 * @adev: ATA device
1914 *
1915 * Check if the current speed of the device requires IORDY. Used
1916 * by various controllers for chip configuration.
1917 */
1918
1919 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1920 {
1921 /* Controller doesn't support IORDY. Probably a pointless check
1922 as the caller should know this */
1923 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1924 return 0;
1925 /* PIO3 and higher it is mandatory */
1926 if (adev->pio_mode > XFER_PIO_2)
1927 return 1;
1928 /* We turn it on when possible */
1929 if (ata_id_has_iordy(adev->id))
1930 return 1;
1931 return 0;
1932 }
1933
1934 /**
1935 * ata_pio_mask_no_iordy - Return the non IORDY mask
1936 * @adev: ATA device
1937 *
1938 * Compute the highest mode possible if we are not using iordy. Return
1939 * -1 if no iordy mode is available.
1940 */
1941
1942 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1943 {
1944 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1945 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1946 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1947 /* Is the speed faster than the drive allows non IORDY ? */
1948 if (pio) {
1949 /* This is cycle times not frequency - watch the logic! */
1950 if (pio > 240) /* PIO2 is 240nS per cycle */
1951 return 3 << ATA_SHIFT_PIO;
1952 return 7 << ATA_SHIFT_PIO;
1953 }
1954 }
1955 return 3 << ATA_SHIFT_PIO;
1956 }
1957
1958 /**
1959 * ata_do_dev_read_id - default ID read method
1960 * @dev: device
1961 * @tf: proposed taskfile
1962 * @id: data buffer
1963 *
1964 * Issue the identify taskfile and hand back the buffer containing
1965 * identify data. For some RAID controllers and for pre ATA devices
1966 * this function is wrapped or replaced by the driver
1967 */
1968 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1969 struct ata_taskfile *tf, u16 *id)
1970 {
1971 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1972 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1973 }
1974
1975 /**
1976 * ata_dev_read_id - Read ID data from the specified device
1977 * @dev: target device
1978 * @p_class: pointer to class of the target device (may be changed)
1979 * @flags: ATA_READID_* flags
1980 * @id: buffer to read IDENTIFY data into
1981 *
1982 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1983 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1984 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1985 * for pre-ATA4 drives.
1986 *
1987 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1988 * now we abort if we hit that case.
1989 *
1990 * LOCKING:
1991 * Kernel thread context (may sleep)
1992 *
1993 * RETURNS:
1994 * 0 on success, -errno otherwise.
1995 */
1996 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1997 unsigned int flags, u16 *id)
1998 {
1999 struct ata_port *ap = dev->link->ap;
2000 unsigned int class = *p_class;
2001 struct ata_taskfile tf;
2002 unsigned int err_mask = 0;
2003 const char *reason;
2004 int may_fallback = 1, tried_spinup = 0;
2005 int rc;
2006
2007 if (ata_msg_ctl(ap))
2008 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2009
2010 retry:
2011 ata_tf_init(dev, &tf);
2012
2013 switch (class) {
2014 case ATA_DEV_ATA:
2015 tf.command = ATA_CMD_ID_ATA;
2016 break;
2017 case ATA_DEV_ATAPI:
2018 tf.command = ATA_CMD_ID_ATAPI;
2019 break;
2020 default:
2021 rc = -ENODEV;
2022 reason = "unsupported class";
2023 goto err_out;
2024 }
2025
2026 tf.protocol = ATA_PROT_PIO;
2027
2028 /* Some devices choke if TF registers contain garbage. Make
2029 * sure those are properly initialized.
2030 */
2031 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2032
2033 /* Device presence detection is unreliable on some
2034 * controllers. Always poll IDENTIFY if available.
2035 */
2036 tf.flags |= ATA_TFLAG_POLLING;
2037
2038 if (ap->ops->read_id)
2039 err_mask = ap->ops->read_id(dev, &tf, id);
2040 else
2041 err_mask = ata_do_dev_read_id(dev, &tf, id);
2042
2043 if (err_mask) {
2044 if (err_mask & AC_ERR_NODEV_HINT) {
2045 ata_dev_printk(dev, KERN_DEBUG,
2046 "NODEV after polling detection\n");
2047 return -ENOENT;
2048 }
2049
2050 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2051 /* Device or controller might have reported
2052 * the wrong device class. Give a shot at the
2053 * other IDENTIFY if the current one is
2054 * aborted by the device.
2055 */
2056 if (may_fallback) {
2057 may_fallback = 0;
2058
2059 if (class == ATA_DEV_ATA)
2060 class = ATA_DEV_ATAPI;
2061 else
2062 class = ATA_DEV_ATA;
2063 goto retry;
2064 }
2065
2066 /* Control reaches here iff the device aborted
2067 * both flavors of IDENTIFYs which happens
2068 * sometimes with phantom devices.
2069 */
2070 ata_dev_printk(dev, KERN_DEBUG,
2071 "both IDENTIFYs aborted, assuming NODEV\n");
2072 return -ENOENT;
2073 }
2074
2075 rc = -EIO;
2076 reason = "I/O error";
2077 goto err_out;
2078 }
2079
2080 /* Falling back doesn't make sense if ID data was read
2081 * successfully at least once.
2082 */
2083 may_fallback = 0;
2084
2085 swap_buf_le16(id, ATA_ID_WORDS);
2086
2087 /* sanity check */
2088 rc = -EINVAL;
2089 reason = "device reports invalid type";
2090
2091 if (class == ATA_DEV_ATA) {
2092 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2093 goto err_out;
2094 } else {
2095 if (ata_id_is_ata(id))
2096 goto err_out;
2097 }
2098
2099 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2100 tried_spinup = 1;
2101 /*
2102 * Drive powered-up in standby mode, and requires a specific
2103 * SET_FEATURES spin-up subcommand before it will accept
2104 * anything other than the original IDENTIFY command.
2105 */
2106 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2107 if (err_mask && id[2] != 0x738c) {
2108 rc = -EIO;
2109 reason = "SPINUP failed";
2110 goto err_out;
2111 }
2112 /*
2113 * If the drive initially returned incomplete IDENTIFY info,
2114 * we now must reissue the IDENTIFY command.
2115 */
2116 if (id[2] == 0x37c8)
2117 goto retry;
2118 }
2119
2120 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2121 /*
2122 * The exact sequence expected by certain pre-ATA4 drives is:
2123 * SRST RESET
2124 * IDENTIFY (optional in early ATA)
2125 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2126 * anything else..
2127 * Some drives were very specific about that exact sequence.
2128 *
2129 * Note that ATA4 says lba is mandatory so the second check
2130 * shoud never trigger.
2131 */
2132 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2133 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2134 if (err_mask) {
2135 rc = -EIO;
2136 reason = "INIT_DEV_PARAMS failed";
2137 goto err_out;
2138 }
2139
2140 /* current CHS translation info (id[53-58]) might be
2141 * changed. reread the identify device info.
2142 */
2143 flags &= ~ATA_READID_POSTRESET;
2144 goto retry;
2145 }
2146 }
2147
2148 *p_class = class;
2149
2150 return 0;
2151
2152 err_out:
2153 if (ata_msg_warn(ap))
2154 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2155 "(%s, err_mask=0x%x)\n", reason, err_mask);
2156 return rc;
2157 }
2158
2159 static inline u8 ata_dev_knobble(struct ata_device *dev)
2160 {
2161 struct ata_port *ap = dev->link->ap;
2162 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2163 }
2164
2165 static void ata_dev_config_ncq(struct ata_device *dev,
2166 char *desc, size_t desc_sz)
2167 {
2168 struct ata_port *ap = dev->link->ap;
2169 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2170
2171 if (!ata_id_has_ncq(dev->id)) {
2172 desc[0] = '\0';
2173 return;
2174 }
2175 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2176 snprintf(desc, desc_sz, "NCQ (not used)");
2177 return;
2178 }
2179 if (ap->flags & ATA_FLAG_NCQ) {
2180 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2181 dev->flags |= ATA_DFLAG_NCQ;
2182 }
2183
2184 if (hdepth >= ddepth)
2185 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2186 else
2187 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2188 }
2189
2190 /**
2191 * ata_dev_configure - Configure the specified ATA/ATAPI device
2192 * @dev: Target device to configure
2193 *
2194 * Configure @dev according to @dev->id. Generic and low-level
2195 * driver specific fixups are also applied.
2196 *
2197 * LOCKING:
2198 * Kernel thread context (may sleep)
2199 *
2200 * RETURNS:
2201 * 0 on success, -errno otherwise
2202 */
2203 int ata_dev_configure(struct ata_device *dev)
2204 {
2205 struct ata_port *ap = dev->link->ap;
2206 struct ata_eh_context *ehc = &dev->link->eh_context;
2207 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2208 const u16 *id = dev->id;
2209 unsigned long xfer_mask;
2210 char revbuf[7]; /* XYZ-99\0 */
2211 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2212 char modelbuf[ATA_ID_PROD_LEN+1];
2213 int rc;
2214
2215 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2216 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2217 __func__);
2218 return 0;
2219 }
2220
2221 if (ata_msg_probe(ap))
2222 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2223
2224 /* set horkage */
2225 dev->horkage |= ata_dev_blacklisted(dev);
2226 ata_force_horkage(dev);
2227
2228 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2229 ata_dev_printk(dev, KERN_INFO,
2230 "unsupported device, disabling\n");
2231 ata_dev_disable(dev);
2232 return 0;
2233 }
2234
2235 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2236 dev->class == ATA_DEV_ATAPI) {
2237 ata_dev_printk(dev, KERN_WARNING,
2238 "WARNING: ATAPI is %s, device ignored.\n",
2239 atapi_enabled ? "not supported with this driver"
2240 : "disabled");
2241 ata_dev_disable(dev);
2242 return 0;
2243 }
2244
2245 /* let ACPI work its magic */
2246 rc = ata_acpi_on_devcfg(dev);
2247 if (rc)
2248 return rc;
2249
2250 /* massage HPA, do it early as it might change IDENTIFY data */
2251 rc = ata_hpa_resize(dev);
2252 if (rc)
2253 return rc;
2254
2255 /* print device capabilities */
2256 if (ata_msg_probe(ap))
2257 ata_dev_printk(dev, KERN_DEBUG,
2258 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2259 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2260 __func__,
2261 id[49], id[82], id[83], id[84],
2262 id[85], id[86], id[87], id[88]);
2263
2264 /* initialize to-be-configured parameters */
2265 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2266 dev->max_sectors = 0;
2267 dev->cdb_len = 0;
2268 dev->n_sectors = 0;
2269 dev->cylinders = 0;
2270 dev->heads = 0;
2271 dev->sectors = 0;
2272
2273 /*
2274 * common ATA, ATAPI feature tests
2275 */
2276
2277 /* find max transfer mode; for printk only */
2278 xfer_mask = ata_id_xfermask(id);
2279
2280 if (ata_msg_probe(ap))
2281 ata_dump_id(id);
2282
2283 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2284 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2285 sizeof(fwrevbuf));
2286
2287 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2288 sizeof(modelbuf));
2289
2290 /* ATA-specific feature tests */
2291 if (dev->class == ATA_DEV_ATA) {
2292 if (ata_id_is_cfa(id)) {
2293 if (id[162] & 1) /* CPRM may make this media unusable */
2294 ata_dev_printk(dev, KERN_WARNING,
2295 "supports DRM functions and may "
2296 "not be fully accessable.\n");
2297 snprintf(revbuf, 7, "CFA");
2298 } else {
2299 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2300 /* Warn the user if the device has TPM extensions */
2301 if (ata_id_has_tpm(id))
2302 ata_dev_printk(dev, KERN_WARNING,
2303 "supports DRM functions and may "
2304 "not be fully accessable.\n");
2305 }
2306
2307 dev->n_sectors = ata_id_n_sectors(id);
2308
2309 if (dev->id[59] & 0x100)
2310 dev->multi_count = dev->id[59] & 0xff;
2311
2312 if (ata_id_has_lba(id)) {
2313 const char *lba_desc;
2314 char ncq_desc[20];
2315
2316 lba_desc = "LBA";
2317 dev->flags |= ATA_DFLAG_LBA;
2318 if (ata_id_has_lba48(id)) {
2319 dev->flags |= ATA_DFLAG_LBA48;
2320 lba_desc = "LBA48";
2321
2322 if (dev->n_sectors >= (1UL << 28) &&
2323 ata_id_has_flush_ext(id))
2324 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2325 }
2326
2327 /* config NCQ */
2328 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2329
2330 /* print device info to dmesg */
2331 if (ata_msg_drv(ap) && print_info) {
2332 ata_dev_printk(dev, KERN_INFO,
2333 "%s: %s, %s, max %s\n",
2334 revbuf, modelbuf, fwrevbuf,
2335 ata_mode_string(xfer_mask));
2336 ata_dev_printk(dev, KERN_INFO,
2337 "%Lu sectors, multi %u: %s %s\n",
2338 (unsigned long long)dev->n_sectors,
2339 dev->multi_count, lba_desc, ncq_desc);
2340 }
2341 } else {
2342 /* CHS */
2343
2344 /* Default translation */
2345 dev->cylinders = id[1];
2346 dev->heads = id[3];
2347 dev->sectors = id[6];
2348
2349 if (ata_id_current_chs_valid(id)) {
2350 /* Current CHS translation is valid. */
2351 dev->cylinders = id[54];
2352 dev->heads = id[55];
2353 dev->sectors = id[56];
2354 }
2355
2356 /* print device info to dmesg */
2357 if (ata_msg_drv(ap) && print_info) {
2358 ata_dev_printk(dev, KERN_INFO,
2359 "%s: %s, %s, max %s\n",
2360 revbuf, modelbuf, fwrevbuf,
2361 ata_mode_string(xfer_mask));
2362 ata_dev_printk(dev, KERN_INFO,
2363 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2364 (unsigned long long)dev->n_sectors,
2365 dev->multi_count, dev->cylinders,
2366 dev->heads, dev->sectors);
2367 }
2368 }
2369
2370 dev->cdb_len = 16;
2371 }
2372
2373 /* ATAPI-specific feature tests */
2374 else if (dev->class == ATA_DEV_ATAPI) {
2375 const char *cdb_intr_string = "";
2376 const char *atapi_an_string = "";
2377 const char *dma_dir_string = "";
2378 u32 sntf;
2379
2380 rc = atapi_cdb_len(id);
2381 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2382 if (ata_msg_warn(ap))
2383 ata_dev_printk(dev, KERN_WARNING,
2384 "unsupported CDB len\n");
2385 rc = -EINVAL;
2386 goto err_out_nosup;
2387 }
2388 dev->cdb_len = (unsigned int) rc;
2389
2390 /* Enable ATAPI AN if both the host and device have
2391 * the support. If PMP is attached, SNTF is required
2392 * to enable ATAPI AN to discern between PHY status
2393 * changed notifications and ATAPI ANs.
2394 */
2395 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2396 (!sata_pmp_attached(ap) ||
2397 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2398 unsigned int err_mask;
2399
2400 /* issue SET feature command to turn this on */
2401 err_mask = ata_dev_set_feature(dev,
2402 SETFEATURES_SATA_ENABLE, SATA_AN);
2403 if (err_mask)
2404 ata_dev_printk(dev, KERN_ERR,
2405 "failed to enable ATAPI AN "
2406 "(err_mask=0x%x)\n", err_mask);
2407 else {
2408 dev->flags |= ATA_DFLAG_AN;
2409 atapi_an_string = ", ATAPI AN";
2410 }
2411 }
2412
2413 if (ata_id_cdb_intr(dev->id)) {
2414 dev->flags |= ATA_DFLAG_CDB_INTR;
2415 cdb_intr_string = ", CDB intr";
2416 }
2417
2418 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2419 dev->flags |= ATA_DFLAG_DMADIR;
2420 dma_dir_string = ", DMADIR";
2421 }
2422
2423 /* print device info to dmesg */
2424 if (ata_msg_drv(ap) && print_info)
2425 ata_dev_printk(dev, KERN_INFO,
2426 "ATAPI: %s, %s, max %s%s%s%s\n",
2427 modelbuf, fwrevbuf,
2428 ata_mode_string(xfer_mask),
2429 cdb_intr_string, atapi_an_string,
2430 dma_dir_string);
2431 }
2432
2433 /* determine max_sectors */
2434 dev->max_sectors = ATA_MAX_SECTORS;
2435 if (dev->flags & ATA_DFLAG_LBA48)
2436 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2437
2438 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2439 if (ata_id_has_hipm(dev->id))
2440 dev->flags |= ATA_DFLAG_HIPM;
2441 if (ata_id_has_dipm(dev->id))
2442 dev->flags |= ATA_DFLAG_DIPM;
2443 }
2444
2445 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2446 200 sectors */
2447 if (ata_dev_knobble(dev)) {
2448 if (ata_msg_drv(ap) && print_info)
2449 ata_dev_printk(dev, KERN_INFO,
2450 "applying bridge limits\n");
2451 dev->udma_mask &= ATA_UDMA5;
2452 dev->max_sectors = ATA_MAX_SECTORS;
2453 }
2454
2455 if ((dev->class == ATA_DEV_ATAPI) &&
2456 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2457 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2458 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2459 }
2460
2461 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2462 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2463 dev->max_sectors);
2464
2465 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2466 dev->horkage |= ATA_HORKAGE_IPM;
2467
2468 /* reset link pm_policy for this port to no pm */
2469 ap->pm_policy = MAX_PERFORMANCE;
2470 }
2471
2472 if (ap->ops->dev_config)
2473 ap->ops->dev_config(dev);
2474
2475 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2476 /* Let the user know. We don't want to disallow opens for
2477 rescue purposes, or in case the vendor is just a blithering
2478 idiot. Do this after the dev_config call as some controllers
2479 with buggy firmware may want to avoid reporting false device
2480 bugs */
2481
2482 if (print_info) {
2483 ata_dev_printk(dev, KERN_WARNING,
2484 "Drive reports diagnostics failure. This may indicate a drive\n");
2485 ata_dev_printk(dev, KERN_WARNING,
2486 "fault or invalid emulation. Contact drive vendor for information.\n");
2487 }
2488 }
2489
2490 return 0;
2491
2492 err_out_nosup:
2493 if (ata_msg_probe(ap))
2494 ata_dev_printk(dev, KERN_DEBUG,
2495 "%s: EXIT, err\n", __func__);
2496 return rc;
2497 }
2498
2499 /**
2500 * ata_cable_40wire - return 40 wire cable type
2501 * @ap: port
2502 *
2503 * Helper method for drivers which want to hardwire 40 wire cable
2504 * detection.
2505 */
2506
2507 int ata_cable_40wire(struct ata_port *ap)
2508 {
2509 return ATA_CBL_PATA40;
2510 }
2511
2512 /**
2513 * ata_cable_80wire - return 80 wire cable type
2514 * @ap: port
2515 *
2516 * Helper method for drivers which want to hardwire 80 wire cable
2517 * detection.
2518 */
2519
2520 int ata_cable_80wire(struct ata_port *ap)
2521 {
2522 return ATA_CBL_PATA80;
2523 }
2524
2525 /**
2526 * ata_cable_unknown - return unknown PATA cable.
2527 * @ap: port
2528 *
2529 * Helper method for drivers which have no PATA cable detection.
2530 */
2531
2532 int ata_cable_unknown(struct ata_port *ap)
2533 {
2534 return ATA_CBL_PATA_UNK;
2535 }
2536
2537 /**
2538 * ata_cable_ignore - return ignored PATA cable.
2539 * @ap: port
2540 *
2541 * Helper method for drivers which don't use cable type to limit
2542 * transfer mode.
2543 */
2544 int ata_cable_ignore(struct ata_port *ap)
2545 {
2546 return ATA_CBL_PATA_IGN;
2547 }
2548
2549 /**
2550 * ata_cable_sata - return SATA cable type
2551 * @ap: port
2552 *
2553 * Helper method for drivers which have SATA cables
2554 */
2555
2556 int ata_cable_sata(struct ata_port *ap)
2557 {
2558 return ATA_CBL_SATA;
2559 }
2560
2561 /**
2562 * ata_bus_probe - Reset and probe ATA bus
2563 * @ap: Bus to probe
2564 *
2565 * Master ATA bus probing function. Initiates a hardware-dependent
2566 * bus reset, then attempts to identify any devices found on
2567 * the bus.
2568 *
2569 * LOCKING:
2570 * PCI/etc. bus probe sem.
2571 *
2572 * RETURNS:
2573 * Zero on success, negative errno otherwise.
2574 */
2575
2576 int ata_bus_probe(struct ata_port *ap)
2577 {
2578 unsigned int classes[ATA_MAX_DEVICES];
2579 int tries[ATA_MAX_DEVICES];
2580 int rc;
2581 struct ata_device *dev;
2582
2583 ata_port_probe(ap);
2584
2585 ata_link_for_each_dev(dev, &ap->link)
2586 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2587
2588 retry:
2589 ata_link_for_each_dev(dev, &ap->link) {
2590 /* If we issue an SRST then an ATA drive (not ATAPI)
2591 * may change configuration and be in PIO0 timing. If
2592 * we do a hard reset (or are coming from power on)
2593 * this is true for ATA or ATAPI. Until we've set a
2594 * suitable controller mode we should not touch the
2595 * bus as we may be talking too fast.
2596 */
2597 dev->pio_mode = XFER_PIO_0;
2598
2599 /* If the controller has a pio mode setup function
2600 * then use it to set the chipset to rights. Don't
2601 * touch the DMA setup as that will be dealt with when
2602 * configuring devices.
2603 */
2604 if (ap->ops->set_piomode)
2605 ap->ops->set_piomode(ap, dev);
2606 }
2607
2608 /* reset and determine device classes */
2609 ap->ops->phy_reset(ap);
2610
2611 ata_link_for_each_dev(dev, &ap->link) {
2612 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2613 dev->class != ATA_DEV_UNKNOWN)
2614 classes[dev->devno] = dev->class;
2615 else
2616 classes[dev->devno] = ATA_DEV_NONE;
2617
2618 dev->class = ATA_DEV_UNKNOWN;
2619 }
2620
2621 ata_port_probe(ap);
2622
2623 /* read IDENTIFY page and configure devices. We have to do the identify
2624 specific sequence bass-ackwards so that PDIAG- is released by
2625 the slave device */
2626
2627 ata_link_for_each_dev_reverse(dev, &ap->link) {
2628 if (tries[dev->devno])
2629 dev->class = classes[dev->devno];
2630
2631 if (!ata_dev_enabled(dev))
2632 continue;
2633
2634 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2635 dev->id);
2636 if (rc)
2637 goto fail;
2638 }
2639
2640 /* Now ask for the cable type as PDIAG- should have been released */
2641 if (ap->ops->cable_detect)
2642 ap->cbl = ap->ops->cable_detect(ap);
2643
2644 /* We may have SATA bridge glue hiding here irrespective of the
2645 reported cable types and sensed types */
2646 ata_link_for_each_dev(dev, &ap->link) {
2647 if (!ata_dev_enabled(dev))
2648 continue;
2649 /* SATA drives indicate we have a bridge. We don't know which
2650 end of the link the bridge is which is a problem */
2651 if (ata_id_is_sata(dev->id))
2652 ap->cbl = ATA_CBL_SATA;
2653 }
2654
2655 /* After the identify sequence we can now set up the devices. We do
2656 this in the normal order so that the user doesn't get confused */
2657
2658 ata_link_for_each_dev(dev, &ap->link) {
2659 if (!ata_dev_enabled(dev))
2660 continue;
2661
2662 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2663 rc = ata_dev_configure(dev);
2664 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2665 if (rc)
2666 goto fail;
2667 }
2668
2669 /* configure transfer mode */
2670 rc = ata_set_mode(&ap->link, &dev);
2671 if (rc)
2672 goto fail;
2673
2674 ata_link_for_each_dev(dev, &ap->link)
2675 if (ata_dev_enabled(dev))
2676 return 0;
2677
2678 /* no device present, disable port */
2679 ata_port_disable(ap);
2680 return -ENODEV;
2681
2682 fail:
2683 tries[dev->devno]--;
2684
2685 switch (rc) {
2686 case -EINVAL:
2687 /* eeek, something went very wrong, give up */
2688 tries[dev->devno] = 0;
2689 break;
2690
2691 case -ENODEV:
2692 /* give it just one more chance */
2693 tries[dev->devno] = min(tries[dev->devno], 1);
2694 case -EIO:
2695 if (tries[dev->devno] == 1) {
2696 /* This is the last chance, better to slow
2697 * down than lose it.
2698 */
2699 sata_down_spd_limit(&ap->link);
2700 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2701 }
2702 }
2703
2704 if (!tries[dev->devno])
2705 ata_dev_disable(dev);
2706
2707 goto retry;
2708 }
2709
2710 /**
2711 * ata_port_probe - Mark port as enabled
2712 * @ap: Port for which we indicate enablement
2713 *
2714 * Modify @ap data structure such that the system
2715 * thinks that the entire port is enabled.
2716 *
2717 * LOCKING: host lock, or some other form of
2718 * serialization.
2719 */
2720
2721 void ata_port_probe(struct ata_port *ap)
2722 {
2723 ap->flags &= ~ATA_FLAG_DISABLED;
2724 }
2725
2726 /**
2727 * sata_print_link_status - Print SATA link status
2728 * @link: SATA link to printk link status about
2729 *
2730 * This function prints link speed and status of a SATA link.
2731 *
2732 * LOCKING:
2733 * None.
2734 */
2735 static void sata_print_link_status(struct ata_link *link)
2736 {
2737 u32 sstatus, scontrol, tmp;
2738
2739 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2740 return;
2741 sata_scr_read(link, SCR_CONTROL, &scontrol);
2742
2743 if (ata_phys_link_online(link)) {
2744 tmp = (sstatus >> 4) & 0xf;
2745 ata_link_printk(link, KERN_INFO,
2746 "SATA link up %s (SStatus %X SControl %X)\n",
2747 sata_spd_string(tmp), sstatus, scontrol);
2748 } else {
2749 ata_link_printk(link, KERN_INFO,
2750 "SATA link down (SStatus %X SControl %X)\n",
2751 sstatus, scontrol);
2752 }
2753 }
2754
2755 /**
2756 * ata_dev_pair - return other device on cable
2757 * @adev: device
2758 *
2759 * Obtain the other device on the same cable, or if none is
2760 * present NULL is returned
2761 */
2762
2763 struct ata_device *ata_dev_pair(struct ata_device *adev)
2764 {
2765 struct ata_link *link = adev->link;
2766 struct ata_device *pair = &link->device[1 - adev->devno];
2767 if (!ata_dev_enabled(pair))
2768 return NULL;
2769 return pair;
2770 }
2771
2772 /**
2773 * ata_port_disable - Disable port.
2774 * @ap: Port to be disabled.
2775 *
2776 * Modify @ap data structure such that the system
2777 * thinks that the entire port is disabled, and should
2778 * never attempt to probe or communicate with devices
2779 * on this port.
2780 *
2781 * LOCKING: host lock, or some other form of
2782 * serialization.
2783 */
2784
2785 void ata_port_disable(struct ata_port *ap)
2786 {
2787 ap->link.device[0].class = ATA_DEV_NONE;
2788 ap->link.device[1].class = ATA_DEV_NONE;
2789 ap->flags |= ATA_FLAG_DISABLED;
2790 }
2791
2792 /**
2793 * sata_down_spd_limit - adjust SATA spd limit downward
2794 * @link: Link to adjust SATA spd limit for
2795 *
2796 * Adjust SATA spd limit of @link downward. Note that this
2797 * function only adjusts the limit. The change must be applied
2798 * using sata_set_spd().
2799 *
2800 * LOCKING:
2801 * Inherited from caller.
2802 *
2803 * RETURNS:
2804 * 0 on success, negative errno on failure
2805 */
2806 int sata_down_spd_limit(struct ata_link *link)
2807 {
2808 u32 sstatus, spd, mask;
2809 int rc, highbit;
2810
2811 if (!sata_scr_valid(link))
2812 return -EOPNOTSUPP;
2813
2814 /* If SCR can be read, use it to determine the current SPD.
2815 * If not, use cached value in link->sata_spd.
2816 */
2817 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2818 if (rc == 0)
2819 spd = (sstatus >> 4) & 0xf;
2820 else
2821 spd = link->sata_spd;
2822
2823 mask = link->sata_spd_limit;
2824 if (mask <= 1)
2825 return -EINVAL;
2826
2827 /* unconditionally mask off the highest bit */
2828 highbit = fls(mask) - 1;
2829 mask &= ~(1 << highbit);
2830
2831 /* Mask off all speeds higher than or equal to the current
2832 * one. Force 1.5Gbps if current SPD is not available.
2833 */
2834 if (spd > 1)
2835 mask &= (1 << (spd - 1)) - 1;
2836 else
2837 mask &= 1;
2838
2839 /* were we already at the bottom? */
2840 if (!mask)
2841 return -EINVAL;
2842
2843 link->sata_spd_limit = mask;
2844
2845 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2846 sata_spd_string(fls(mask)));
2847
2848 return 0;
2849 }
2850
2851 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2852 {
2853 struct ata_link *host_link = &link->ap->link;
2854 u32 limit, target, spd;
2855
2856 limit = link->sata_spd_limit;
2857
2858 /* Don't configure downstream link faster than upstream link.
2859 * It doesn't speed up anything and some PMPs choke on such
2860 * configuration.
2861 */
2862 if (!ata_is_host_link(link) && host_link->sata_spd)
2863 limit &= (1 << host_link->sata_spd) - 1;
2864
2865 if (limit == UINT_MAX)
2866 target = 0;
2867 else
2868 target = fls(limit);
2869
2870 spd = (*scontrol >> 4) & 0xf;
2871 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2872
2873 return spd != target;
2874 }
2875
2876 /**
2877 * sata_set_spd_needed - is SATA spd configuration needed
2878 * @link: Link in question
2879 *
2880 * Test whether the spd limit in SControl matches
2881 * @link->sata_spd_limit. This function is used to determine
2882 * whether hardreset is necessary to apply SATA spd
2883 * configuration.
2884 *
2885 * LOCKING:
2886 * Inherited from caller.
2887 *
2888 * RETURNS:
2889 * 1 if SATA spd configuration is needed, 0 otherwise.
2890 */
2891 static int sata_set_spd_needed(struct ata_link *link)
2892 {
2893 u32 scontrol;
2894
2895 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2896 return 1;
2897
2898 return __sata_set_spd_needed(link, &scontrol);
2899 }
2900
2901 /**
2902 * sata_set_spd - set SATA spd according to spd limit
2903 * @link: Link to set SATA spd for
2904 *
2905 * Set SATA spd of @link according to sata_spd_limit.
2906 *
2907 * LOCKING:
2908 * Inherited from caller.
2909 *
2910 * RETURNS:
2911 * 0 if spd doesn't need to be changed, 1 if spd has been
2912 * changed. Negative errno if SCR registers are inaccessible.
2913 */
2914 int sata_set_spd(struct ata_link *link)
2915 {
2916 u32 scontrol;
2917 int rc;
2918
2919 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2920 return rc;
2921
2922 if (!__sata_set_spd_needed(link, &scontrol))
2923 return 0;
2924
2925 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2926 return rc;
2927
2928 return 1;
2929 }
2930
2931 /*
2932 * This mode timing computation functionality is ported over from
2933 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2934 */
2935 /*
2936 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2937 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2938 * for UDMA6, which is currently supported only by Maxtor drives.
2939 *
2940 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2941 */
2942
2943 static const struct ata_timing ata_timing[] = {
2944 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2945 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2946 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2947 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2948 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2949 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2950 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2951 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2952
2953 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2954 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2955 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2956
2957 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2958 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2959 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2960 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2961 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2962
2963 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2964 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2965 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2966 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2967 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2968 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2969 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2970 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2971
2972 { 0xFF }
2973 };
2974
2975 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2976 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2977
2978 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2979 {
2980 q->setup = EZ(t->setup * 1000, T);
2981 q->act8b = EZ(t->act8b * 1000, T);
2982 q->rec8b = EZ(t->rec8b * 1000, T);
2983 q->cyc8b = EZ(t->cyc8b * 1000, T);
2984 q->active = EZ(t->active * 1000, T);
2985 q->recover = EZ(t->recover * 1000, T);
2986 q->cycle = EZ(t->cycle * 1000, T);
2987 q->udma = EZ(t->udma * 1000, UT);
2988 }
2989
2990 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2991 struct ata_timing *m, unsigned int what)
2992 {
2993 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2994 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2995 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2996 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2997 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2998 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2999 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3000 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3001 }
3002
3003 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3004 {
3005 const struct ata_timing *t = ata_timing;
3006
3007 while (xfer_mode > t->mode)
3008 t++;
3009
3010 if (xfer_mode == t->mode)
3011 return t;
3012 return NULL;
3013 }
3014
3015 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3016 struct ata_timing *t, int T, int UT)
3017 {
3018 const struct ata_timing *s;
3019 struct ata_timing p;
3020
3021 /*
3022 * Find the mode.
3023 */
3024
3025 if (!(s = ata_timing_find_mode(speed)))
3026 return -EINVAL;
3027
3028 memcpy(t, s, sizeof(*s));
3029
3030 /*
3031 * If the drive is an EIDE drive, it can tell us it needs extended
3032 * PIO/MW_DMA cycle timing.
3033 */
3034
3035 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3036 memset(&p, 0, sizeof(p));
3037 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3038 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3039 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3040 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3041 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3042 }
3043 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3044 }
3045
3046 /*
3047 * Convert the timing to bus clock counts.
3048 */
3049
3050 ata_timing_quantize(t, t, T, UT);
3051
3052 /*
3053 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3054 * S.M.A.R.T * and some other commands. We have to ensure that the
3055 * DMA cycle timing is slower/equal than the fastest PIO timing.
3056 */
3057
3058 if (speed > XFER_PIO_6) {
3059 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3060 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3061 }
3062
3063 /*
3064 * Lengthen active & recovery time so that cycle time is correct.
3065 */
3066
3067 if (t->act8b + t->rec8b < t->cyc8b) {
3068 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3069 t->rec8b = t->cyc8b - t->act8b;
3070 }
3071
3072 if (t->active + t->recover < t->cycle) {
3073 t->active += (t->cycle - (t->active + t->recover)) / 2;
3074 t->recover = t->cycle - t->active;
3075 }
3076
3077 /* In a few cases quantisation may produce enough errors to
3078 leave t->cycle too low for the sum of active and recovery
3079 if so we must correct this */
3080 if (t->active + t->recover > t->cycle)
3081 t->cycle = t->active + t->recover;
3082
3083 return 0;
3084 }
3085
3086 /**
3087 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3088 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3089 * @cycle: cycle duration in ns
3090 *
3091 * Return matching xfer mode for @cycle. The returned mode is of
3092 * the transfer type specified by @xfer_shift. If @cycle is too
3093 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3094 * than the fastest known mode, the fasted mode is returned.
3095 *
3096 * LOCKING:
3097 * None.
3098 *
3099 * RETURNS:
3100 * Matching xfer_mode, 0xff if no match found.
3101 */
3102 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3103 {
3104 u8 base_mode = 0xff, last_mode = 0xff;
3105 const struct ata_xfer_ent *ent;
3106 const struct ata_timing *t;
3107
3108 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3109 if (ent->shift == xfer_shift)
3110 base_mode = ent->base;
3111
3112 for (t = ata_timing_find_mode(base_mode);
3113 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3114 unsigned short this_cycle;
3115
3116 switch (xfer_shift) {
3117 case ATA_SHIFT_PIO:
3118 case ATA_SHIFT_MWDMA:
3119 this_cycle = t->cycle;
3120 break;
3121 case ATA_SHIFT_UDMA:
3122 this_cycle = t->udma;
3123 break;
3124 default:
3125 return 0xff;
3126 }
3127
3128 if (cycle > this_cycle)
3129 break;
3130
3131 last_mode = t->mode;
3132 }
3133
3134 return last_mode;
3135 }
3136
3137 /**
3138 * ata_down_xfermask_limit - adjust dev xfer masks downward
3139 * @dev: Device to adjust xfer masks
3140 * @sel: ATA_DNXFER_* selector
3141 *
3142 * Adjust xfer masks of @dev downward. Note that this function
3143 * does not apply the change. Invoking ata_set_mode() afterwards
3144 * will apply the limit.
3145 *
3146 * LOCKING:
3147 * Inherited from caller.
3148 *
3149 * RETURNS:
3150 * 0 on success, negative errno on failure
3151 */
3152 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3153 {
3154 char buf[32];
3155 unsigned long orig_mask, xfer_mask;
3156 unsigned long pio_mask, mwdma_mask, udma_mask;
3157 int quiet, highbit;
3158
3159 quiet = !!(sel & ATA_DNXFER_QUIET);
3160 sel &= ~ATA_DNXFER_QUIET;
3161
3162 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3163 dev->mwdma_mask,
3164 dev->udma_mask);
3165 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3166
3167 switch (sel) {
3168 case ATA_DNXFER_PIO:
3169 highbit = fls(pio_mask) - 1;
3170 pio_mask &= ~(1 << highbit);
3171 break;
3172
3173 case ATA_DNXFER_DMA:
3174 if (udma_mask) {
3175 highbit = fls(udma_mask) - 1;
3176 udma_mask &= ~(1 << highbit);
3177 if (!udma_mask)
3178 return -ENOENT;
3179 } else if (mwdma_mask) {
3180 highbit = fls(mwdma_mask) - 1;
3181 mwdma_mask &= ~(1 << highbit);
3182 if (!mwdma_mask)
3183 return -ENOENT;
3184 }
3185 break;
3186
3187 case ATA_DNXFER_40C:
3188 udma_mask &= ATA_UDMA_MASK_40C;
3189 break;
3190
3191 case ATA_DNXFER_FORCE_PIO0:
3192 pio_mask &= 1;
3193 case ATA_DNXFER_FORCE_PIO:
3194 mwdma_mask = 0;
3195 udma_mask = 0;
3196 break;
3197
3198 default:
3199 BUG();
3200 }
3201
3202 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3203
3204 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3205 return -ENOENT;
3206
3207 if (!quiet) {
3208 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3209 snprintf(buf, sizeof(buf), "%s:%s",
3210 ata_mode_string(xfer_mask),
3211 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3212 else
3213 snprintf(buf, sizeof(buf), "%s",
3214 ata_mode_string(xfer_mask));
3215
3216 ata_dev_printk(dev, KERN_WARNING,
3217 "limiting speed to %s\n", buf);
3218 }
3219
3220 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3221 &dev->udma_mask);
3222
3223 return 0;
3224 }
3225
3226 static int ata_dev_set_mode(struct ata_device *dev)
3227 {
3228 struct ata_eh_context *ehc = &dev->link->eh_context;
3229 const char *dev_err_whine = "";
3230 int ign_dev_err = 0;
3231 unsigned int err_mask;
3232 int rc;
3233
3234 dev->flags &= ~ATA_DFLAG_PIO;
3235 if (dev->xfer_shift == ATA_SHIFT_PIO)
3236 dev->flags |= ATA_DFLAG_PIO;
3237
3238 err_mask = ata_dev_set_xfermode(dev);
3239
3240 if (err_mask & ~AC_ERR_DEV)
3241 goto fail;
3242
3243 /* revalidate */
3244 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3245 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3246 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3247 if (rc)
3248 return rc;
3249
3250 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3251 /* Old CFA may refuse this command, which is just fine */
3252 if (ata_id_is_cfa(dev->id))
3253 ign_dev_err = 1;
3254 /* Catch several broken garbage emulations plus some pre
3255 ATA devices */
3256 if (ata_id_major_version(dev->id) == 0 &&
3257 dev->pio_mode <= XFER_PIO_2)
3258 ign_dev_err = 1;
3259 /* Some very old devices and some bad newer ones fail
3260 any kind of SET_XFERMODE request but support PIO0-2
3261 timings and no IORDY */
3262 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3263 ign_dev_err = 1;
3264 }
3265 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3266 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3267 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3268 dev->dma_mode == XFER_MW_DMA_0 &&
3269 (dev->id[63] >> 8) & 1)
3270 ign_dev_err = 1;
3271
3272 /* if the device is actually configured correctly, ignore dev err */
3273 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3274 ign_dev_err = 1;
3275
3276 if (err_mask & AC_ERR_DEV) {
3277 if (!ign_dev_err)
3278 goto fail;
3279 else
3280 dev_err_whine = " (device error ignored)";
3281 }
3282
3283 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3284 dev->xfer_shift, (int)dev->xfer_mode);
3285
3286 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3287 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3288 dev_err_whine);
3289
3290 return 0;
3291
3292 fail:
3293 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3294 "(err_mask=0x%x)\n", err_mask);
3295 return -EIO;
3296 }
3297
3298 /**
3299 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3300 * @link: link on which timings will be programmed
3301 * @r_failed_dev: out parameter for failed device
3302 *
3303 * Standard implementation of the function used to tune and set
3304 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3305 * ata_dev_set_mode() fails, pointer to the failing device is
3306 * returned in @r_failed_dev.
3307 *
3308 * LOCKING:
3309 * PCI/etc. bus probe sem.
3310 *
3311 * RETURNS:
3312 * 0 on success, negative errno otherwise
3313 */
3314
3315 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3316 {
3317 struct ata_port *ap = link->ap;
3318 struct ata_device *dev;
3319 int rc = 0, used_dma = 0, found = 0;
3320
3321 /* step 1: calculate xfer_mask */
3322 ata_link_for_each_dev(dev, link) {
3323 unsigned long pio_mask, dma_mask;
3324 unsigned int mode_mask;
3325
3326 if (!ata_dev_enabled(dev))
3327 continue;
3328
3329 mode_mask = ATA_DMA_MASK_ATA;
3330 if (dev->class == ATA_DEV_ATAPI)
3331 mode_mask = ATA_DMA_MASK_ATAPI;
3332 else if (ata_id_is_cfa(dev->id))
3333 mode_mask = ATA_DMA_MASK_CFA;
3334
3335 ata_dev_xfermask(dev);
3336 ata_force_xfermask(dev);
3337
3338 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3339 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3340
3341 if (libata_dma_mask & mode_mask)
3342 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3343 else
3344 dma_mask = 0;
3345
3346 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3347 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3348
3349 found = 1;
3350 if (ata_dma_enabled(dev))
3351 used_dma = 1;
3352 }
3353 if (!found)
3354 goto out;
3355
3356 /* step 2: always set host PIO timings */
3357 ata_link_for_each_dev(dev, link) {
3358 if (!ata_dev_enabled(dev))
3359 continue;
3360
3361 if (dev->pio_mode == 0xff) {
3362 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3363 rc = -EINVAL;
3364 goto out;
3365 }
3366
3367 dev->xfer_mode = dev->pio_mode;
3368 dev->xfer_shift = ATA_SHIFT_PIO;
3369 if (ap->ops->set_piomode)
3370 ap->ops->set_piomode(ap, dev);
3371 }
3372
3373 /* step 3: set host DMA timings */
3374 ata_link_for_each_dev(dev, link) {
3375 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev))
3376 continue;
3377
3378 dev->xfer_mode = dev->dma_mode;
3379 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3380 if (ap->ops->set_dmamode)
3381 ap->ops->set_dmamode(ap, dev);
3382 }
3383
3384 /* step 4: update devices' xfer mode */
3385 ata_link_for_each_dev(dev, link) {
3386 /* don't update suspended devices' xfer mode */
3387 if (!ata_dev_enabled(dev))
3388 continue;
3389
3390 rc = ata_dev_set_mode(dev);
3391 if (rc)
3392 goto out;
3393 }
3394
3395 /* Record simplex status. If we selected DMA then the other
3396 * host channels are not permitted to do so.
3397 */
3398 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3399 ap->host->simplex_claimed = ap;
3400
3401 out:
3402 if (rc)
3403 *r_failed_dev = dev;
3404 return rc;
3405 }
3406
3407 /**
3408 * ata_wait_ready - wait for link to become ready
3409 * @link: link to be waited on
3410 * @deadline: deadline jiffies for the operation
3411 * @check_ready: callback to check link readiness
3412 *
3413 * Wait for @link to become ready. @check_ready should return
3414 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3415 * link doesn't seem to be occupied, other errno for other error
3416 * conditions.
3417 *
3418 * Transient -ENODEV conditions are allowed for
3419 * ATA_TMOUT_FF_WAIT.
3420 *
3421 * LOCKING:
3422 * EH context.
3423 *
3424 * RETURNS:
3425 * 0 if @linke is ready before @deadline; otherwise, -errno.
3426 */
3427 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3428 int (*check_ready)(struct ata_link *link))
3429 {
3430 unsigned long start = jiffies;
3431 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3432 int warned = 0;
3433
3434 /* Slave readiness can't be tested separately from master. On
3435 * M/S emulation configuration, this function should be called
3436 * only on the master and it will handle both master and slave.
3437 */
3438 WARN_ON(link == link->ap->slave_link);
3439
3440 if (time_after(nodev_deadline, deadline))
3441 nodev_deadline = deadline;
3442
3443 while (1) {
3444 unsigned long now = jiffies;
3445 int ready, tmp;
3446
3447 ready = tmp = check_ready(link);
3448 if (ready > 0)
3449 return 0;
3450
3451 /* -ENODEV could be transient. Ignore -ENODEV if link
3452 * is online. Also, some SATA devices take a long
3453 * time to clear 0xff after reset. For example,
3454 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3455 * GoVault needs even more than that. Wait for
3456 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3457 *
3458 * Note that some PATA controllers (pata_ali) explode
3459 * if status register is read more than once when
3460 * there's no device attached.
3461 */
3462 if (ready == -ENODEV) {
3463 if (ata_link_online(link))
3464 ready = 0;
3465 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3466 !ata_link_offline(link) &&
3467 time_before(now, nodev_deadline))
3468 ready = 0;
3469 }
3470
3471 if (ready)
3472 return ready;
3473 if (time_after(now, deadline))
3474 return -EBUSY;
3475
3476 if (!warned && time_after(now, start + 5 * HZ) &&
3477 (deadline - now > 3 * HZ)) {
3478 ata_link_printk(link, KERN_WARNING,
3479 "link is slow to respond, please be patient "
3480 "(ready=%d)\n", tmp);
3481 warned = 1;
3482 }
3483
3484 msleep(50);
3485 }
3486 }
3487
3488 /**
3489 * ata_wait_after_reset - wait for link to become ready after reset
3490 * @link: link to be waited on
3491 * @deadline: deadline jiffies for the operation
3492 * @check_ready: callback to check link readiness
3493 *
3494 * Wait for @link to become ready after reset.
3495 *
3496 * LOCKING:
3497 * EH context.
3498 *
3499 * RETURNS:
3500 * 0 if @linke is ready before @deadline; otherwise, -errno.
3501 */
3502 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3503 int (*check_ready)(struct ata_link *link))
3504 {
3505 msleep(ATA_WAIT_AFTER_RESET);
3506
3507 return ata_wait_ready(link, deadline, check_ready);
3508 }
3509
3510 /**
3511 * sata_link_debounce - debounce SATA phy status
3512 * @link: ATA link to debounce SATA phy status for
3513 * @params: timing parameters { interval, duratinon, timeout } in msec
3514 * @deadline: deadline jiffies for the operation
3515 *
3516 * Make sure SStatus of @link reaches stable state, determined by
3517 * holding the same value where DET is not 1 for @duration polled
3518 * every @interval, before @timeout. Timeout constraints the
3519 * beginning of the stable state. Because DET gets stuck at 1 on
3520 * some controllers after hot unplugging, this functions waits
3521 * until timeout then returns 0 if DET is stable at 1.
3522 *
3523 * @timeout is further limited by @deadline. The sooner of the
3524 * two is used.
3525 *
3526 * LOCKING:
3527 * Kernel thread context (may sleep)
3528 *
3529 * RETURNS:
3530 * 0 on success, -errno on failure.
3531 */
3532 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3533 unsigned long deadline)
3534 {
3535 unsigned long interval = params[0];
3536 unsigned long duration = params[1];
3537 unsigned long last_jiffies, t;
3538 u32 last, cur;
3539 int rc;
3540
3541 t = ata_deadline(jiffies, params[2]);
3542 if (time_before(t, deadline))
3543 deadline = t;
3544
3545 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3546 return rc;
3547 cur &= 0xf;
3548
3549 last = cur;
3550 last_jiffies = jiffies;
3551
3552 while (1) {
3553 msleep(interval);
3554 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3555 return rc;
3556 cur &= 0xf;
3557
3558 /* DET stable? */
3559 if (cur == last) {
3560 if (cur == 1 && time_before(jiffies, deadline))
3561 continue;
3562 if (time_after(jiffies,
3563 ata_deadline(last_jiffies, duration)))
3564 return 0;
3565 continue;
3566 }
3567
3568 /* unstable, start over */
3569 last = cur;
3570 last_jiffies = jiffies;
3571
3572 /* Check deadline. If debouncing failed, return
3573 * -EPIPE to tell upper layer to lower link speed.
3574 */
3575 if (time_after(jiffies, deadline))
3576 return -EPIPE;
3577 }
3578 }
3579
3580 /**
3581 * sata_link_resume - resume SATA link
3582 * @link: ATA link to resume SATA
3583 * @params: timing parameters { interval, duratinon, timeout } in msec
3584 * @deadline: deadline jiffies for the operation
3585 *
3586 * Resume SATA phy @link and debounce it.
3587 *
3588 * LOCKING:
3589 * Kernel thread context (may sleep)
3590 *
3591 * RETURNS:
3592 * 0 on success, -errno on failure.
3593 */
3594 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3595 unsigned long deadline)
3596 {
3597 u32 scontrol, serror;
3598 int rc;
3599
3600 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3601 return rc;
3602
3603 scontrol = (scontrol & 0x0f0) | 0x300;
3604
3605 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3606 return rc;
3607
3608 /* Some PHYs react badly if SStatus is pounded immediately
3609 * after resuming. Delay 200ms before debouncing.
3610 */
3611 msleep(200);
3612
3613 if ((rc = sata_link_debounce(link, params, deadline)))
3614 return rc;
3615
3616 /* clear SError, some PHYs require this even for SRST to work */
3617 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3618 rc = sata_scr_write(link, SCR_ERROR, serror);
3619
3620 return rc != -EINVAL ? rc : 0;
3621 }
3622
3623 /**
3624 * ata_std_prereset - prepare for reset
3625 * @link: ATA link to be reset
3626 * @deadline: deadline jiffies for the operation
3627 *
3628 * @link is about to be reset. Initialize it. Failure from
3629 * prereset makes libata abort whole reset sequence and give up
3630 * that port, so prereset should be best-effort. It does its
3631 * best to prepare for reset sequence but if things go wrong, it
3632 * should just whine, not fail.
3633 *
3634 * LOCKING:
3635 * Kernel thread context (may sleep)
3636 *
3637 * RETURNS:
3638 * 0 on success, -errno otherwise.
3639 */
3640 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3641 {
3642 struct ata_port *ap = link->ap;
3643 struct ata_eh_context *ehc = &link->eh_context;
3644 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3645 int rc;
3646
3647 /* if we're about to do hardreset, nothing more to do */
3648 if (ehc->i.action & ATA_EH_HARDRESET)
3649 return 0;
3650
3651 /* if SATA, resume link */
3652 if (ap->flags & ATA_FLAG_SATA) {
3653 rc = sata_link_resume(link, timing, deadline);
3654 /* whine about phy resume failure but proceed */
3655 if (rc && rc != -EOPNOTSUPP)
3656 ata_link_printk(link, KERN_WARNING, "failed to resume "
3657 "link for reset (errno=%d)\n", rc);
3658 }
3659
3660 /* no point in trying softreset on offline link */
3661 if (ata_phys_link_offline(link))
3662 ehc->i.action &= ~ATA_EH_SOFTRESET;
3663
3664 return 0;
3665 }
3666
3667 /**
3668 * sata_link_hardreset - reset link via SATA phy reset
3669 * @link: link to reset
3670 * @timing: timing parameters { interval, duratinon, timeout } in msec
3671 * @deadline: deadline jiffies for the operation
3672 * @online: optional out parameter indicating link onlineness
3673 * @check_ready: optional callback to check link readiness
3674 *
3675 * SATA phy-reset @link using DET bits of SControl register.
3676 * After hardreset, link readiness is waited upon using
3677 * ata_wait_ready() if @check_ready is specified. LLDs are
3678 * allowed to not specify @check_ready and wait itself after this
3679 * function returns. Device classification is LLD's
3680 * responsibility.
3681 *
3682 * *@online is set to one iff reset succeeded and @link is online
3683 * after reset.
3684 *
3685 * LOCKING:
3686 * Kernel thread context (may sleep)
3687 *
3688 * RETURNS:
3689 * 0 on success, -errno otherwise.
3690 */
3691 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3692 unsigned long deadline,
3693 bool *online, int (*check_ready)(struct ata_link *))
3694 {
3695 u32 scontrol;
3696 int rc;
3697
3698 DPRINTK("ENTER\n");
3699
3700 if (online)
3701 *online = false;
3702
3703 if (sata_set_spd_needed(link)) {
3704 /* SATA spec says nothing about how to reconfigure
3705 * spd. To be on the safe side, turn off phy during
3706 * reconfiguration. This works for at least ICH7 AHCI
3707 * and Sil3124.
3708 */
3709 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3710 goto out;
3711
3712 scontrol = (scontrol & 0x0f0) | 0x304;
3713
3714 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3715 goto out;
3716
3717 sata_set_spd(link);
3718 }
3719
3720 /* issue phy wake/reset */
3721 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3722 goto out;
3723
3724 scontrol = (scontrol & 0x0f0) | 0x301;
3725
3726 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3727 goto out;
3728
3729 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3730 * 10.4.2 says at least 1 ms.
3731 */
3732 msleep(1);
3733
3734 /* bring link back */
3735 rc = sata_link_resume(link, timing, deadline);
3736 if (rc)
3737 goto out;
3738 /* if link is offline nothing more to do */
3739 if (ata_phys_link_offline(link))
3740 goto out;
3741
3742 /* Link is online. From this point, -ENODEV too is an error. */
3743 if (online)
3744 *online = true;
3745
3746 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3747 /* If PMP is supported, we have to do follow-up SRST.
3748 * Some PMPs don't send D2H Reg FIS after hardreset if
3749 * the first port is empty. Wait only for
3750 * ATA_TMOUT_PMP_SRST_WAIT.
3751 */
3752 if (check_ready) {
3753 unsigned long pmp_deadline;
3754
3755 pmp_deadline = ata_deadline(jiffies,
3756 ATA_TMOUT_PMP_SRST_WAIT);
3757 if (time_after(pmp_deadline, deadline))
3758 pmp_deadline = deadline;
3759 ata_wait_ready(link, pmp_deadline, check_ready);
3760 }
3761 rc = -EAGAIN;
3762 goto out;
3763 }
3764
3765 rc = 0;
3766 if (check_ready)
3767 rc = ata_wait_ready(link, deadline, check_ready);
3768 out:
3769 if (rc && rc != -EAGAIN) {
3770 /* online is set iff link is online && reset succeeded */
3771 if (online)
3772 *online = false;
3773 ata_link_printk(link, KERN_ERR,
3774 "COMRESET failed (errno=%d)\n", rc);
3775 }
3776 DPRINTK("EXIT, rc=%d\n", rc);
3777 return rc;
3778 }
3779
3780 /**
3781 * sata_std_hardreset - COMRESET w/o waiting or classification
3782 * @link: link to reset
3783 * @class: resulting class of attached device
3784 * @deadline: deadline jiffies for the operation
3785 *
3786 * Standard SATA COMRESET w/o waiting or classification.
3787 *
3788 * LOCKING:
3789 * Kernel thread context (may sleep)
3790 *
3791 * RETURNS:
3792 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3793 */
3794 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3795 unsigned long deadline)
3796 {
3797 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3798 bool online;
3799 int rc;
3800
3801 /* do hardreset */
3802 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3803 return online ? -EAGAIN : rc;
3804 }
3805
3806 /**
3807 * ata_std_postreset - standard postreset callback
3808 * @link: the target ata_link
3809 * @classes: classes of attached devices
3810 *
3811 * This function is invoked after a successful reset. Note that
3812 * the device might have been reset more than once using
3813 * different reset methods before postreset is invoked.
3814 *
3815 * LOCKING:
3816 * Kernel thread context (may sleep)
3817 */
3818 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3819 {
3820 u32 serror;
3821
3822 DPRINTK("ENTER\n");
3823
3824 /* reset complete, clear SError */
3825 if (!sata_scr_read(link, SCR_ERROR, &serror))
3826 sata_scr_write(link, SCR_ERROR, serror);
3827
3828 /* print link status */
3829 sata_print_link_status(link);
3830
3831 DPRINTK("EXIT\n");
3832 }
3833
3834 /**
3835 * ata_dev_same_device - Determine whether new ID matches configured device
3836 * @dev: device to compare against
3837 * @new_class: class of the new device
3838 * @new_id: IDENTIFY page of the new device
3839 *
3840 * Compare @new_class and @new_id against @dev and determine
3841 * whether @dev is the device indicated by @new_class and
3842 * @new_id.
3843 *
3844 * LOCKING:
3845 * None.
3846 *
3847 * RETURNS:
3848 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3849 */
3850 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3851 const u16 *new_id)
3852 {
3853 const u16 *old_id = dev->id;
3854 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3855 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3856
3857 if (dev->class != new_class) {
3858 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3859 dev->class, new_class);
3860 return 0;
3861 }
3862
3863 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3864 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3865 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3866 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3867
3868 if (strcmp(model[0], model[1])) {
3869 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3870 "'%s' != '%s'\n", model[0], model[1]);
3871 return 0;
3872 }
3873
3874 if (strcmp(serial[0], serial[1])) {
3875 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3876 "'%s' != '%s'\n", serial[0], serial[1]);
3877 return 0;
3878 }
3879
3880 return 1;
3881 }
3882
3883 /**
3884 * ata_dev_reread_id - Re-read IDENTIFY data
3885 * @dev: target ATA device
3886 * @readid_flags: read ID flags
3887 *
3888 * Re-read IDENTIFY page and make sure @dev is still attached to
3889 * the port.
3890 *
3891 * LOCKING:
3892 * Kernel thread context (may sleep)
3893 *
3894 * RETURNS:
3895 * 0 on success, negative errno otherwise
3896 */
3897 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3898 {
3899 unsigned int class = dev->class;
3900 u16 *id = (void *)dev->link->ap->sector_buf;
3901 int rc;
3902
3903 /* read ID data */
3904 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3905 if (rc)
3906 return rc;
3907
3908 /* is the device still there? */
3909 if (!ata_dev_same_device(dev, class, id))
3910 return -ENODEV;
3911
3912 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3913 return 0;
3914 }
3915
3916 /**
3917 * ata_dev_revalidate - Revalidate ATA device
3918 * @dev: device to revalidate
3919 * @new_class: new class code
3920 * @readid_flags: read ID flags
3921 *
3922 * Re-read IDENTIFY page, make sure @dev is still attached to the
3923 * port and reconfigure it according to the new IDENTIFY page.
3924 *
3925 * LOCKING:
3926 * Kernel thread context (may sleep)
3927 *
3928 * RETURNS:
3929 * 0 on success, negative errno otherwise
3930 */
3931 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3932 unsigned int readid_flags)
3933 {
3934 u64 n_sectors = dev->n_sectors;
3935 int rc;
3936
3937 if (!ata_dev_enabled(dev))
3938 return -ENODEV;
3939
3940 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3941 if (ata_class_enabled(new_class) &&
3942 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3943 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3944 dev->class, new_class);
3945 rc = -ENODEV;
3946 goto fail;
3947 }
3948
3949 /* re-read ID */
3950 rc = ata_dev_reread_id(dev, readid_flags);
3951 if (rc)
3952 goto fail;
3953
3954 /* configure device according to the new ID */
3955 rc = ata_dev_configure(dev);
3956 if (rc)
3957 goto fail;
3958
3959 /* verify n_sectors hasn't changed */
3960 if (dev->class == ATA_DEV_ATA && n_sectors &&
3961 dev->n_sectors != n_sectors) {
3962 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3963 "%llu != %llu\n",
3964 (unsigned long long)n_sectors,
3965 (unsigned long long)dev->n_sectors);
3966
3967 /* restore original n_sectors */
3968 dev->n_sectors = n_sectors;
3969
3970 rc = -ENODEV;
3971 goto fail;
3972 }
3973
3974 return 0;
3975
3976 fail:
3977 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3978 return rc;
3979 }
3980
3981 struct ata_blacklist_entry {
3982 const char *model_num;
3983 const char *model_rev;
3984 unsigned long horkage;
3985 };
3986
3987 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3988 /* Devices with DMA related problems under Linux */
3989 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3990 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3991 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3992 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3993 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3994 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3995 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3996 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3997 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3998 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3999 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4000 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4001 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4002 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4003 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4004 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4005 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4006 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4007 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4008 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4009 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4010 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4011 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4012 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4013 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4014 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4015 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4016 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4017 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4018 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4019 /* Odd clown on sil3726/4726 PMPs */
4020 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4021
4022 /* Weird ATAPI devices */
4023 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4024
4025 /* Devices we expect to fail diagnostics */
4026
4027 /* Devices where NCQ should be avoided */
4028 /* NCQ is slow */
4029 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4030 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4031 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4032 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4033 /* NCQ is broken */
4034 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4035 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4036 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4037 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4038
4039 /* Blacklist entries taken from Silicon Image 3124/3132
4040 Windows driver .inf file - also several Linux problem reports */
4041 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4042 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4043 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4044
4045 /* devices which puke on READ_NATIVE_MAX */
4046 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4047 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4048 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4049 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4050
4051 /* Devices which report 1 sector over size HPA */
4052 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4053 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4054 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4055
4056 /* Devices which get the IVB wrong */
4057 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4058 /* Maybe we should just blacklist TSSTcorp... */
4059 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4060 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4061 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4062 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4063 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4064 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4065
4066 /* End Marker */
4067 { }
4068 };
4069
4070 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4071 {
4072 const char *p;
4073 int len;
4074
4075 /*
4076 * check for trailing wildcard: *\0
4077 */
4078 p = strchr(patt, wildchar);
4079 if (p && ((*(p + 1)) == 0))
4080 len = p - patt;
4081 else {
4082 len = strlen(name);
4083 if (!len) {
4084 if (!*patt)
4085 return 0;
4086 return -1;
4087 }
4088 }
4089
4090 return strncmp(patt, name, len);
4091 }
4092
4093 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4094 {
4095 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4096 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4097 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4098
4099 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4100 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4101
4102 while (ad->model_num) {
4103 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4104 if (ad->model_rev == NULL)
4105 return ad->horkage;
4106 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4107 return ad->horkage;
4108 }
4109 ad++;
4110 }
4111 return 0;
4112 }
4113
4114 static int ata_dma_blacklisted(const struct ata_device *dev)
4115 {
4116 /* We don't support polling DMA.
4117 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4118 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4119 */
4120 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4121 (dev->flags & ATA_DFLAG_CDB_INTR))
4122 return 1;
4123 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4124 }
4125
4126 /**
4127 * ata_is_40wire - check drive side detection
4128 * @dev: device
4129 *
4130 * Perform drive side detection decoding, allowing for device vendors
4131 * who can't follow the documentation.
4132 */
4133
4134 static int ata_is_40wire(struct ata_device *dev)
4135 {
4136 if (dev->horkage & ATA_HORKAGE_IVB)
4137 return ata_drive_40wire_relaxed(dev->id);
4138 return ata_drive_40wire(dev->id);
4139 }
4140
4141 /**
4142 * cable_is_40wire - 40/80/SATA decider
4143 * @ap: port to consider
4144 *
4145 * This function encapsulates the policy for speed management
4146 * in one place. At the moment we don't cache the result but
4147 * there is a good case for setting ap->cbl to the result when
4148 * we are called with unknown cables (and figuring out if it
4149 * impacts hotplug at all).
4150 *
4151 * Return 1 if the cable appears to be 40 wire.
4152 */
4153
4154 static int cable_is_40wire(struct ata_port *ap)
4155 {
4156 struct ata_link *link;
4157 struct ata_device *dev;
4158
4159 /* If the controller thinks we are 40 wire, we are. */
4160 if (ap->cbl == ATA_CBL_PATA40)
4161 return 1;
4162
4163 /* If the controller thinks we are 80 wire, we are. */
4164 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4165 return 0;
4166
4167 /* If the system is known to be 40 wire short cable (eg
4168 * laptop), then we allow 80 wire modes even if the drive
4169 * isn't sure.
4170 */
4171 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4172 return 0;
4173
4174 /* If the controller doesn't know, we scan.
4175 *
4176 * Note: We look for all 40 wire detects at this point. Any
4177 * 80 wire detect is taken to be 80 wire cable because
4178 * - in many setups only the one drive (slave if present) will
4179 * give a valid detect
4180 * - if you have a non detect capable drive you don't want it
4181 * to colour the choice
4182 */
4183 ata_port_for_each_link(link, ap) {
4184 ata_link_for_each_dev(dev, link) {
4185 if (ata_dev_enabled(dev) && !ata_is_40wire(dev))
4186 return 0;
4187 }
4188 }
4189 return 1;
4190 }
4191
4192 /**
4193 * ata_dev_xfermask - Compute supported xfermask of the given device
4194 * @dev: Device to compute xfermask for
4195 *
4196 * Compute supported xfermask of @dev and store it in
4197 * dev->*_mask. This function is responsible for applying all
4198 * known limits including host controller limits, device
4199 * blacklist, etc...
4200 *
4201 * LOCKING:
4202 * None.
4203 */
4204 static void ata_dev_xfermask(struct ata_device *dev)
4205 {
4206 struct ata_link *link = dev->link;
4207 struct ata_port *ap = link->ap;
4208 struct ata_host *host = ap->host;
4209 unsigned long xfer_mask;
4210
4211 /* controller modes available */
4212 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4213 ap->mwdma_mask, ap->udma_mask);
4214
4215 /* drive modes available */
4216 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4217 dev->mwdma_mask, dev->udma_mask);
4218 xfer_mask &= ata_id_xfermask(dev->id);
4219
4220 /*
4221 * CFA Advanced TrueIDE timings are not allowed on a shared
4222 * cable
4223 */
4224 if (ata_dev_pair(dev)) {
4225 /* No PIO5 or PIO6 */
4226 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4227 /* No MWDMA3 or MWDMA 4 */
4228 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4229 }
4230
4231 if (ata_dma_blacklisted(dev)) {
4232 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4233 ata_dev_printk(dev, KERN_WARNING,
4234 "device is on DMA blacklist, disabling DMA\n");
4235 }
4236
4237 if ((host->flags & ATA_HOST_SIMPLEX) &&
4238 host->simplex_claimed && host->simplex_claimed != ap) {
4239 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4240 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4241 "other device, disabling DMA\n");
4242 }
4243
4244 if (ap->flags & ATA_FLAG_NO_IORDY)
4245 xfer_mask &= ata_pio_mask_no_iordy(dev);
4246
4247 if (ap->ops->mode_filter)
4248 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4249
4250 /* Apply cable rule here. Don't apply it early because when
4251 * we handle hot plug the cable type can itself change.
4252 * Check this last so that we know if the transfer rate was
4253 * solely limited by the cable.
4254 * Unknown or 80 wire cables reported host side are checked
4255 * drive side as well. Cases where we know a 40wire cable
4256 * is used safely for 80 are not checked here.
4257 */
4258 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4259 /* UDMA/44 or higher would be available */
4260 if (cable_is_40wire(ap)) {
4261 ata_dev_printk(dev, KERN_WARNING,
4262 "limited to UDMA/33 due to 40-wire cable\n");
4263 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4264 }
4265
4266 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4267 &dev->mwdma_mask, &dev->udma_mask);
4268 }
4269
4270 /**
4271 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4272 * @dev: Device to which command will be sent
4273 *
4274 * Issue SET FEATURES - XFER MODE command to device @dev
4275 * on port @ap.
4276 *
4277 * LOCKING:
4278 * PCI/etc. bus probe sem.
4279 *
4280 * RETURNS:
4281 * 0 on success, AC_ERR_* mask otherwise.
4282 */
4283
4284 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4285 {
4286 struct ata_taskfile tf;
4287 unsigned int err_mask;
4288
4289 /* set up set-features taskfile */
4290 DPRINTK("set features - xfer mode\n");
4291
4292 /* Some controllers and ATAPI devices show flaky interrupt
4293 * behavior after setting xfer mode. Use polling instead.
4294 */
4295 ata_tf_init(dev, &tf);
4296 tf.command = ATA_CMD_SET_FEATURES;
4297 tf.feature = SETFEATURES_XFER;
4298 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4299 tf.protocol = ATA_PROT_NODATA;
4300 /* If we are using IORDY we must send the mode setting command */
4301 if (ata_pio_need_iordy(dev))
4302 tf.nsect = dev->xfer_mode;
4303 /* If the device has IORDY and the controller does not - turn it off */
4304 else if (ata_id_has_iordy(dev->id))
4305 tf.nsect = 0x01;
4306 else /* In the ancient relic department - skip all of this */
4307 return 0;
4308
4309 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4310
4311 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4312 return err_mask;
4313 }
4314 /**
4315 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4316 * @dev: Device to which command will be sent
4317 * @enable: Whether to enable or disable the feature
4318 * @feature: The sector count represents the feature to set
4319 *
4320 * Issue SET FEATURES - SATA FEATURES command to device @dev
4321 * on port @ap with sector count
4322 *
4323 * LOCKING:
4324 * PCI/etc. bus probe sem.
4325 *
4326 * RETURNS:
4327 * 0 on success, AC_ERR_* mask otherwise.
4328 */
4329 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4330 u8 feature)
4331 {
4332 struct ata_taskfile tf;
4333 unsigned int err_mask;
4334
4335 /* set up set-features taskfile */
4336 DPRINTK("set features - SATA features\n");
4337
4338 ata_tf_init(dev, &tf);
4339 tf.command = ATA_CMD_SET_FEATURES;
4340 tf.feature = enable;
4341 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4342 tf.protocol = ATA_PROT_NODATA;
4343 tf.nsect = feature;
4344
4345 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4346
4347 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4348 return err_mask;
4349 }
4350
4351 /**
4352 * ata_dev_init_params - Issue INIT DEV PARAMS command
4353 * @dev: Device to which command will be sent
4354 * @heads: Number of heads (taskfile parameter)
4355 * @sectors: Number of sectors (taskfile parameter)
4356 *
4357 * LOCKING:
4358 * Kernel thread context (may sleep)
4359 *
4360 * RETURNS:
4361 * 0 on success, AC_ERR_* mask otherwise.
4362 */
4363 static unsigned int ata_dev_init_params(struct ata_device *dev,
4364 u16 heads, u16 sectors)
4365 {
4366 struct ata_taskfile tf;
4367 unsigned int err_mask;
4368
4369 /* Number of sectors per track 1-255. Number of heads 1-16 */
4370 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4371 return AC_ERR_INVALID;
4372
4373 /* set up init dev params taskfile */
4374 DPRINTK("init dev params \n");
4375
4376 ata_tf_init(dev, &tf);
4377 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4378 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4379 tf.protocol = ATA_PROT_NODATA;
4380 tf.nsect = sectors;
4381 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4382
4383 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4384 /* A clean abort indicates an original or just out of spec drive
4385 and we should continue as we issue the setup based on the
4386 drive reported working geometry */
4387 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4388 err_mask = 0;
4389
4390 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4391 return err_mask;
4392 }
4393
4394 /**
4395 * ata_sg_clean - Unmap DMA memory associated with command
4396 * @qc: Command containing DMA memory to be released
4397 *
4398 * Unmap all mapped DMA memory associated with this command.
4399 *
4400 * LOCKING:
4401 * spin_lock_irqsave(host lock)
4402 */
4403 void ata_sg_clean(struct ata_queued_cmd *qc)
4404 {
4405 struct ata_port *ap = qc->ap;
4406 struct scatterlist *sg = qc->sg;
4407 int dir = qc->dma_dir;
4408
4409 WARN_ON(sg == NULL);
4410
4411 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4412
4413 if (qc->n_elem)
4414 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4415
4416 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4417 qc->sg = NULL;
4418 }
4419
4420 /**
4421 * atapi_check_dma - Check whether ATAPI DMA can be supported
4422 * @qc: Metadata associated with taskfile to check
4423 *
4424 * Allow low-level driver to filter ATA PACKET commands, returning
4425 * a status indicating whether or not it is OK to use DMA for the
4426 * supplied PACKET command.
4427 *
4428 * LOCKING:
4429 * spin_lock_irqsave(host lock)
4430 *
4431 * RETURNS: 0 when ATAPI DMA can be used
4432 * nonzero otherwise
4433 */
4434 int atapi_check_dma(struct ata_queued_cmd *qc)
4435 {
4436 struct ata_port *ap = qc->ap;
4437
4438 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4439 * few ATAPI devices choke on such DMA requests.
4440 */
4441 if (unlikely(qc->nbytes & 15))
4442 return 1;
4443
4444 if (ap->ops->check_atapi_dma)
4445 return ap->ops->check_atapi_dma(qc);
4446
4447 return 0;
4448 }
4449
4450 /**
4451 * ata_std_qc_defer - Check whether a qc needs to be deferred
4452 * @qc: ATA command in question
4453 *
4454 * Non-NCQ commands cannot run with any other command, NCQ or
4455 * not. As upper layer only knows the queue depth, we are
4456 * responsible for maintaining exclusion. This function checks
4457 * whether a new command @qc can be issued.
4458 *
4459 * LOCKING:
4460 * spin_lock_irqsave(host lock)
4461 *
4462 * RETURNS:
4463 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4464 */
4465 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4466 {
4467 struct ata_link *link = qc->dev->link;
4468
4469 if (qc->tf.protocol == ATA_PROT_NCQ) {
4470 if (!ata_tag_valid(link->active_tag))
4471 return 0;
4472 } else {
4473 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4474 return 0;
4475 }
4476
4477 return ATA_DEFER_LINK;
4478 }
4479
4480 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4481
4482 /**
4483 * ata_sg_init - Associate command with scatter-gather table.
4484 * @qc: Command to be associated
4485 * @sg: Scatter-gather table.
4486 * @n_elem: Number of elements in s/g table.
4487 *
4488 * Initialize the data-related elements of queued_cmd @qc
4489 * to point to a scatter-gather table @sg, containing @n_elem
4490 * elements.
4491 *
4492 * LOCKING:
4493 * spin_lock_irqsave(host lock)
4494 */
4495 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4496 unsigned int n_elem)
4497 {
4498 qc->sg = sg;
4499 qc->n_elem = n_elem;
4500 qc->cursg = qc->sg;
4501 }
4502
4503 /**
4504 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4505 * @qc: Command with scatter-gather table to be mapped.
4506 *
4507 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4508 *
4509 * LOCKING:
4510 * spin_lock_irqsave(host lock)
4511 *
4512 * RETURNS:
4513 * Zero on success, negative on error.
4514 *
4515 */
4516 static int ata_sg_setup(struct ata_queued_cmd *qc)
4517 {
4518 struct ata_port *ap = qc->ap;
4519 unsigned int n_elem;
4520
4521 VPRINTK("ENTER, ata%u\n", ap->print_id);
4522
4523 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4524 if (n_elem < 1)
4525 return -1;
4526
4527 DPRINTK("%d sg elements mapped\n", n_elem);
4528
4529 qc->n_elem = n_elem;
4530 qc->flags |= ATA_QCFLAG_DMAMAP;
4531
4532 return 0;
4533 }
4534
4535 /**
4536 * swap_buf_le16 - swap halves of 16-bit words in place
4537 * @buf: Buffer to swap
4538 * @buf_words: Number of 16-bit words in buffer.
4539 *
4540 * Swap halves of 16-bit words if needed to convert from
4541 * little-endian byte order to native cpu byte order, or
4542 * vice-versa.
4543 *
4544 * LOCKING:
4545 * Inherited from caller.
4546 */
4547 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4548 {
4549 #ifdef __BIG_ENDIAN
4550 unsigned int i;
4551
4552 for (i = 0; i < buf_words; i++)
4553 buf[i] = le16_to_cpu(buf[i]);
4554 #endif /* __BIG_ENDIAN */
4555 }
4556
4557 /**
4558 * ata_qc_new_init - Request an available ATA command, and initialize it
4559 * @dev: Device from whom we request an available command structure
4560 * @tag: command tag
4561 *
4562 * LOCKING:
4563 * None.
4564 */
4565
4566 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4567 {
4568 struct ata_port *ap = dev->link->ap;
4569 struct ata_queued_cmd *qc;
4570
4571 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4572 return NULL;
4573
4574 qc = __ata_qc_from_tag(ap, tag);
4575 if (qc) {
4576 qc->scsicmd = NULL;
4577 qc->ap = ap;
4578 qc->dev = dev;
4579 qc->tag = tag;
4580
4581 ata_qc_reinit(qc);
4582 }
4583
4584 return qc;
4585 }
4586
4587 void __ata_qc_complete(struct ata_queued_cmd *qc)
4588 {
4589 struct ata_port *ap = qc->ap;
4590 struct ata_link *link = qc->dev->link;
4591
4592 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4593 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4594
4595 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4596 ata_sg_clean(qc);
4597
4598 /* command should be marked inactive atomically with qc completion */
4599 if (qc->tf.protocol == ATA_PROT_NCQ) {
4600 link->sactive &= ~(1 << qc->tag);
4601 if (!link->sactive)
4602 ap->nr_active_links--;
4603 } else {
4604 link->active_tag = ATA_TAG_POISON;
4605 ap->nr_active_links--;
4606 }
4607
4608 /* clear exclusive status */
4609 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4610 ap->excl_link == link))
4611 ap->excl_link = NULL;
4612
4613 /* atapi: mark qc as inactive to prevent the interrupt handler
4614 * from completing the command twice later, before the error handler
4615 * is called. (when rc != 0 and atapi request sense is needed)
4616 */
4617 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4618 ap->qc_active &= ~(1 << qc->tag);
4619
4620 /* call completion callback */
4621 qc->complete_fn(qc);
4622 }
4623
4624 static void fill_result_tf(struct ata_queued_cmd *qc)
4625 {
4626 struct ata_port *ap = qc->ap;
4627
4628 qc->result_tf.flags = qc->tf.flags;
4629 ap->ops->qc_fill_rtf(qc);
4630 }
4631
4632 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4633 {
4634 struct ata_device *dev = qc->dev;
4635
4636 if (ata_tag_internal(qc->tag))
4637 return;
4638
4639 if (ata_is_nodata(qc->tf.protocol))
4640 return;
4641
4642 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4643 return;
4644
4645 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4646 }
4647
4648 /**
4649 * ata_qc_complete - Complete an active ATA command
4650 * @qc: Command to complete
4651 * @err_mask: ATA Status register contents
4652 *
4653 * Indicate to the mid and upper layers that an ATA
4654 * command has completed, with either an ok or not-ok status.
4655 *
4656 * LOCKING:
4657 * spin_lock_irqsave(host lock)
4658 */
4659 void ata_qc_complete(struct ata_queued_cmd *qc)
4660 {
4661 struct ata_port *ap = qc->ap;
4662
4663 /* XXX: New EH and old EH use different mechanisms to
4664 * synchronize EH with regular execution path.
4665 *
4666 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4667 * Normal execution path is responsible for not accessing a
4668 * failed qc. libata core enforces the rule by returning NULL
4669 * from ata_qc_from_tag() for failed qcs.
4670 *
4671 * Old EH depends on ata_qc_complete() nullifying completion
4672 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4673 * not synchronize with interrupt handler. Only PIO task is
4674 * taken care of.
4675 */
4676 if (ap->ops->error_handler) {
4677 struct ata_device *dev = qc->dev;
4678 struct ata_eh_info *ehi = &dev->link->eh_info;
4679
4680 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4681
4682 if (unlikely(qc->err_mask))
4683 qc->flags |= ATA_QCFLAG_FAILED;
4684
4685 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4686 if (!ata_tag_internal(qc->tag)) {
4687 /* always fill result TF for failed qc */
4688 fill_result_tf(qc);
4689 ata_qc_schedule_eh(qc);
4690 return;
4691 }
4692 }
4693
4694 /* read result TF if requested */
4695 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4696 fill_result_tf(qc);
4697
4698 /* Some commands need post-processing after successful
4699 * completion.
4700 */
4701 switch (qc->tf.command) {
4702 case ATA_CMD_SET_FEATURES:
4703 if (qc->tf.feature != SETFEATURES_WC_ON &&
4704 qc->tf.feature != SETFEATURES_WC_OFF)
4705 break;
4706 /* fall through */
4707 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4708 case ATA_CMD_SET_MULTI: /* multi_count changed */
4709 /* revalidate device */
4710 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4711 ata_port_schedule_eh(ap);
4712 break;
4713
4714 case ATA_CMD_SLEEP:
4715 dev->flags |= ATA_DFLAG_SLEEPING;
4716 break;
4717 }
4718
4719 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4720 ata_verify_xfer(qc);
4721
4722 __ata_qc_complete(qc);
4723 } else {
4724 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4725 return;
4726
4727 /* read result TF if failed or requested */
4728 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4729 fill_result_tf(qc);
4730
4731 __ata_qc_complete(qc);
4732 }
4733 }
4734
4735 /**
4736 * ata_qc_complete_multiple - Complete multiple qcs successfully
4737 * @ap: port in question
4738 * @qc_active: new qc_active mask
4739 *
4740 * Complete in-flight commands. This functions is meant to be
4741 * called from low-level driver's interrupt routine to complete
4742 * requests normally. ap->qc_active and @qc_active is compared
4743 * and commands are completed accordingly.
4744 *
4745 * LOCKING:
4746 * spin_lock_irqsave(host lock)
4747 *
4748 * RETURNS:
4749 * Number of completed commands on success, -errno otherwise.
4750 */
4751 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4752 {
4753 int nr_done = 0;
4754 u32 done_mask;
4755 int i;
4756
4757 done_mask = ap->qc_active ^ qc_active;
4758
4759 if (unlikely(done_mask & qc_active)) {
4760 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4761 "(%08x->%08x)\n", ap->qc_active, qc_active);
4762 return -EINVAL;
4763 }
4764
4765 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4766 struct ata_queued_cmd *qc;
4767
4768 if (!(done_mask & (1 << i)))
4769 continue;
4770
4771 if ((qc = ata_qc_from_tag(ap, i))) {
4772 ata_qc_complete(qc);
4773 nr_done++;
4774 }
4775 }
4776
4777 return nr_done;
4778 }
4779
4780 /**
4781 * ata_qc_issue - issue taskfile to device
4782 * @qc: command to issue to device
4783 *
4784 * Prepare an ATA command to submission to device.
4785 * This includes mapping the data into a DMA-able
4786 * area, filling in the S/G table, and finally
4787 * writing the taskfile to hardware, starting the command.
4788 *
4789 * LOCKING:
4790 * spin_lock_irqsave(host lock)
4791 */
4792 void ata_qc_issue(struct ata_queued_cmd *qc)
4793 {
4794 struct ata_port *ap = qc->ap;
4795 struct ata_link *link = qc->dev->link;
4796 u8 prot = qc->tf.protocol;
4797
4798 /* Make sure only one non-NCQ command is outstanding. The
4799 * check is skipped for old EH because it reuses active qc to
4800 * request ATAPI sense.
4801 */
4802 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4803
4804 if (ata_is_ncq(prot)) {
4805 WARN_ON(link->sactive & (1 << qc->tag));
4806
4807 if (!link->sactive)
4808 ap->nr_active_links++;
4809 link->sactive |= 1 << qc->tag;
4810 } else {
4811 WARN_ON(link->sactive);
4812
4813 ap->nr_active_links++;
4814 link->active_tag = qc->tag;
4815 }
4816
4817 qc->flags |= ATA_QCFLAG_ACTIVE;
4818 ap->qc_active |= 1 << qc->tag;
4819
4820 /* We guarantee to LLDs that they will have at least one
4821 * non-zero sg if the command is a data command.
4822 */
4823 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4824
4825 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4826 (ap->flags & ATA_FLAG_PIO_DMA)))
4827 if (ata_sg_setup(qc))
4828 goto sg_err;
4829
4830 /* if device is sleeping, schedule reset and abort the link */
4831 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4832 link->eh_info.action |= ATA_EH_RESET;
4833 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4834 ata_link_abort(link);
4835 return;
4836 }
4837
4838 ap->ops->qc_prep(qc);
4839
4840 qc->err_mask |= ap->ops->qc_issue(qc);
4841 if (unlikely(qc->err_mask))
4842 goto err;
4843 return;
4844
4845 sg_err:
4846 qc->err_mask |= AC_ERR_SYSTEM;
4847 err:
4848 ata_qc_complete(qc);
4849 }
4850
4851 /**
4852 * sata_scr_valid - test whether SCRs are accessible
4853 * @link: ATA link to test SCR accessibility for
4854 *
4855 * Test whether SCRs are accessible for @link.
4856 *
4857 * LOCKING:
4858 * None.
4859 *
4860 * RETURNS:
4861 * 1 if SCRs are accessible, 0 otherwise.
4862 */
4863 int sata_scr_valid(struct ata_link *link)
4864 {
4865 struct ata_port *ap = link->ap;
4866
4867 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4868 }
4869
4870 /**
4871 * sata_scr_read - read SCR register of the specified port
4872 * @link: ATA link to read SCR for
4873 * @reg: SCR to read
4874 * @val: Place to store read value
4875 *
4876 * Read SCR register @reg of @link into *@val. This function is
4877 * guaranteed to succeed if @link is ap->link, the cable type of
4878 * the port is SATA and the port implements ->scr_read.
4879 *
4880 * LOCKING:
4881 * None if @link is ap->link. Kernel thread context otherwise.
4882 *
4883 * RETURNS:
4884 * 0 on success, negative errno on failure.
4885 */
4886 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4887 {
4888 if (ata_is_host_link(link)) {
4889 if (sata_scr_valid(link))
4890 return link->ap->ops->scr_read(link, reg, val);
4891 return -EOPNOTSUPP;
4892 }
4893
4894 return sata_pmp_scr_read(link, reg, val);
4895 }
4896
4897 /**
4898 * sata_scr_write - write SCR register of the specified port
4899 * @link: ATA link to write SCR for
4900 * @reg: SCR to write
4901 * @val: value to write
4902 *
4903 * Write @val to SCR register @reg of @link. This function is
4904 * guaranteed to succeed if @link is ap->link, the cable type of
4905 * the port is SATA and the port implements ->scr_read.
4906 *
4907 * LOCKING:
4908 * None if @link is ap->link. Kernel thread context otherwise.
4909 *
4910 * RETURNS:
4911 * 0 on success, negative errno on failure.
4912 */
4913 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4914 {
4915 if (ata_is_host_link(link)) {
4916 if (sata_scr_valid(link))
4917 return link->ap->ops->scr_write(link, reg, val);
4918 return -EOPNOTSUPP;
4919 }
4920
4921 return sata_pmp_scr_write(link, reg, val);
4922 }
4923
4924 /**
4925 * sata_scr_write_flush - write SCR register of the specified port and flush
4926 * @link: ATA link to write SCR for
4927 * @reg: SCR to write
4928 * @val: value to write
4929 *
4930 * This function is identical to sata_scr_write() except that this
4931 * function performs flush after writing to the register.
4932 *
4933 * LOCKING:
4934 * None if @link is ap->link. Kernel thread context otherwise.
4935 *
4936 * RETURNS:
4937 * 0 on success, negative errno on failure.
4938 */
4939 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
4940 {
4941 if (ata_is_host_link(link)) {
4942 int rc;
4943
4944 if (sata_scr_valid(link)) {
4945 rc = link->ap->ops->scr_write(link, reg, val);
4946 if (rc == 0)
4947 rc = link->ap->ops->scr_read(link, reg, &val);
4948 return rc;
4949 }
4950 return -EOPNOTSUPP;
4951 }
4952
4953 return sata_pmp_scr_write(link, reg, val);
4954 }
4955
4956 /**
4957 * ata_phys_link_online - test whether the given link is online
4958 * @link: ATA link to test
4959 *
4960 * Test whether @link is online. Note that this function returns
4961 * 0 if online status of @link cannot be obtained, so
4962 * ata_link_online(link) != !ata_link_offline(link).
4963 *
4964 * LOCKING:
4965 * None.
4966 *
4967 * RETURNS:
4968 * True if the port online status is available and online.
4969 */
4970 bool ata_phys_link_online(struct ata_link *link)
4971 {
4972 u32 sstatus;
4973
4974 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4975 (sstatus & 0xf) == 0x3)
4976 return true;
4977 return false;
4978 }
4979
4980 /**
4981 * ata_phys_link_offline - test whether the given link is offline
4982 * @link: ATA link to test
4983 *
4984 * Test whether @link is offline. Note that this function
4985 * returns 0 if offline status of @link cannot be obtained, so
4986 * ata_link_online(link) != !ata_link_offline(link).
4987 *
4988 * LOCKING:
4989 * None.
4990 *
4991 * RETURNS:
4992 * True if the port offline status is available and offline.
4993 */
4994 bool ata_phys_link_offline(struct ata_link *link)
4995 {
4996 u32 sstatus;
4997
4998 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4999 (sstatus & 0xf) != 0x3)
5000 return true;
5001 return false;
5002 }
5003
5004 /**
5005 * ata_link_online - test whether the given link is online
5006 * @link: ATA link to test
5007 *
5008 * Test whether @link is online. This is identical to
5009 * ata_phys_link_online() when there's no slave link. When
5010 * there's a slave link, this function should only be called on
5011 * the master link and will return true if any of M/S links is
5012 * online.
5013 *
5014 * LOCKING:
5015 * None.
5016 *
5017 * RETURNS:
5018 * True if the port online status is available and online.
5019 */
5020 bool ata_link_online(struct ata_link *link)
5021 {
5022 struct ata_link *slave = link->ap->slave_link;
5023
5024 WARN_ON(link == slave); /* shouldn't be called on slave link */
5025
5026 return ata_phys_link_online(link) ||
5027 (slave && ata_phys_link_online(slave));
5028 }
5029
5030 /**
5031 * ata_link_offline - test whether the given link is offline
5032 * @link: ATA link to test
5033 *
5034 * Test whether @link is offline. This is identical to
5035 * ata_phys_link_offline() when there's no slave link. When
5036 * there's a slave link, this function should only be called on
5037 * the master link and will return true if both M/S links are
5038 * offline.
5039 *
5040 * LOCKING:
5041 * None.
5042 *
5043 * RETURNS:
5044 * True if the port offline status is available and offline.
5045 */
5046 bool ata_link_offline(struct ata_link *link)
5047 {
5048 struct ata_link *slave = link->ap->slave_link;
5049
5050 WARN_ON(link == slave); /* shouldn't be called on slave link */
5051
5052 return ata_phys_link_offline(link) &&
5053 (!slave || ata_phys_link_offline(slave));
5054 }
5055
5056 #ifdef CONFIG_PM
5057 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5058 unsigned int action, unsigned int ehi_flags,
5059 int wait)
5060 {
5061 unsigned long flags;
5062 int i, rc;
5063
5064 for (i = 0; i < host->n_ports; i++) {
5065 struct ata_port *ap = host->ports[i];
5066 struct ata_link *link;
5067
5068 /* Previous resume operation might still be in
5069 * progress. Wait for PM_PENDING to clear.
5070 */
5071 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5072 ata_port_wait_eh(ap);
5073 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5074 }
5075
5076 /* request PM ops to EH */
5077 spin_lock_irqsave(ap->lock, flags);
5078
5079 ap->pm_mesg = mesg;
5080 if (wait) {
5081 rc = 0;
5082 ap->pm_result = &rc;
5083 }
5084
5085 ap->pflags |= ATA_PFLAG_PM_PENDING;
5086 __ata_port_for_each_link(link, ap) {
5087 link->eh_info.action |= action;
5088 link->eh_info.flags |= ehi_flags;
5089 }
5090
5091 ata_port_schedule_eh(ap);
5092
5093 spin_unlock_irqrestore(ap->lock, flags);
5094
5095 /* wait and check result */
5096 if (wait) {
5097 ata_port_wait_eh(ap);
5098 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5099 if (rc)
5100 return rc;
5101 }
5102 }
5103
5104 return 0;
5105 }
5106
5107 /**
5108 * ata_host_suspend - suspend host
5109 * @host: host to suspend
5110 * @mesg: PM message
5111 *
5112 * Suspend @host. Actual operation is performed by EH. This
5113 * function requests EH to perform PM operations and waits for EH
5114 * to finish.
5115 *
5116 * LOCKING:
5117 * Kernel thread context (may sleep).
5118 *
5119 * RETURNS:
5120 * 0 on success, -errno on failure.
5121 */
5122 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5123 {
5124 int rc;
5125
5126 /*
5127 * disable link pm on all ports before requesting
5128 * any pm activity
5129 */
5130 ata_lpm_enable(host);
5131
5132 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5133 if (rc == 0)
5134 host->dev->power.power_state = mesg;
5135 return rc;
5136 }
5137
5138 /**
5139 * ata_host_resume - resume host
5140 * @host: host to resume
5141 *
5142 * Resume @host. Actual operation is performed by EH. This
5143 * function requests EH to perform PM operations and returns.
5144 * Note that all resume operations are performed parallely.
5145 *
5146 * LOCKING:
5147 * Kernel thread context (may sleep).
5148 */
5149 void ata_host_resume(struct ata_host *host)
5150 {
5151 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5152 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5153 host->dev->power.power_state = PMSG_ON;
5154
5155 /* reenable link pm */
5156 ata_lpm_disable(host);
5157 }
5158 #endif
5159
5160 /**
5161 * ata_port_start - Set port up for dma.
5162 * @ap: Port to initialize
5163 *
5164 * Called just after data structures for each port are
5165 * initialized. Allocates space for PRD table.
5166 *
5167 * May be used as the port_start() entry in ata_port_operations.
5168 *
5169 * LOCKING:
5170 * Inherited from caller.
5171 */
5172 int ata_port_start(struct ata_port *ap)
5173 {
5174 struct device *dev = ap->dev;
5175
5176 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5177 GFP_KERNEL);
5178 if (!ap->prd)
5179 return -ENOMEM;
5180
5181 return 0;
5182 }
5183
5184 /**
5185 * ata_dev_init - Initialize an ata_device structure
5186 * @dev: Device structure to initialize
5187 *
5188 * Initialize @dev in preparation for probing.
5189 *
5190 * LOCKING:
5191 * Inherited from caller.
5192 */
5193 void ata_dev_init(struct ata_device *dev)
5194 {
5195 struct ata_link *link = ata_dev_phys_link(dev);
5196 struct ata_port *ap = link->ap;
5197 unsigned long flags;
5198
5199 /* SATA spd limit is bound to the attached device, reset together */
5200 link->sata_spd_limit = link->hw_sata_spd_limit;
5201 link->sata_spd = 0;
5202
5203 /* High bits of dev->flags are used to record warm plug
5204 * requests which occur asynchronously. Synchronize using
5205 * host lock.
5206 */
5207 spin_lock_irqsave(ap->lock, flags);
5208 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5209 dev->horkage = 0;
5210 spin_unlock_irqrestore(ap->lock, flags);
5211
5212 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5213 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5214 dev->pio_mask = UINT_MAX;
5215 dev->mwdma_mask = UINT_MAX;
5216 dev->udma_mask = UINT_MAX;
5217 }
5218
5219 /**
5220 * ata_link_init - Initialize an ata_link structure
5221 * @ap: ATA port link is attached to
5222 * @link: Link structure to initialize
5223 * @pmp: Port multiplier port number
5224 *
5225 * Initialize @link.
5226 *
5227 * LOCKING:
5228 * Kernel thread context (may sleep)
5229 */
5230 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5231 {
5232 int i;
5233
5234 /* clear everything except for devices */
5235 memset(link, 0, offsetof(struct ata_link, device[0]));
5236
5237 link->ap = ap;
5238 link->pmp = pmp;
5239 link->active_tag = ATA_TAG_POISON;
5240 link->hw_sata_spd_limit = UINT_MAX;
5241
5242 /* can't use iterator, ap isn't initialized yet */
5243 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5244 struct ata_device *dev = &link->device[i];
5245
5246 dev->link = link;
5247 dev->devno = dev - link->device;
5248 ata_dev_init(dev);
5249 }
5250 }
5251
5252 /**
5253 * sata_link_init_spd - Initialize link->sata_spd_limit
5254 * @link: Link to configure sata_spd_limit for
5255 *
5256 * Initialize @link->[hw_]sata_spd_limit to the currently
5257 * configured value.
5258 *
5259 * LOCKING:
5260 * Kernel thread context (may sleep).
5261 *
5262 * RETURNS:
5263 * 0 on success, -errno on failure.
5264 */
5265 int sata_link_init_spd(struct ata_link *link)
5266 {
5267 u8 spd;
5268 int rc;
5269
5270 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5271 if (rc)
5272 return rc;
5273
5274 spd = (link->saved_scontrol >> 4) & 0xf;
5275 if (spd)
5276 link->hw_sata_spd_limit &= (1 << spd) - 1;
5277
5278 ata_force_link_limits(link);
5279
5280 link->sata_spd_limit = link->hw_sata_spd_limit;
5281
5282 return 0;
5283 }
5284
5285 /**
5286 * ata_port_alloc - allocate and initialize basic ATA port resources
5287 * @host: ATA host this allocated port belongs to
5288 *
5289 * Allocate and initialize basic ATA port resources.
5290 *
5291 * RETURNS:
5292 * Allocate ATA port on success, NULL on failure.
5293 *
5294 * LOCKING:
5295 * Inherited from calling layer (may sleep).
5296 */
5297 struct ata_port *ata_port_alloc(struct ata_host *host)
5298 {
5299 struct ata_port *ap;
5300
5301 DPRINTK("ENTER\n");
5302
5303 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5304 if (!ap)
5305 return NULL;
5306
5307 ap->pflags |= ATA_PFLAG_INITIALIZING;
5308 ap->lock = &host->lock;
5309 ap->flags = ATA_FLAG_DISABLED;
5310 ap->print_id = -1;
5311 ap->ctl = ATA_DEVCTL_OBS;
5312 ap->host = host;
5313 ap->dev = host->dev;
5314 ap->last_ctl = 0xFF;
5315
5316 #if defined(ATA_VERBOSE_DEBUG)
5317 /* turn on all debugging levels */
5318 ap->msg_enable = 0x00FF;
5319 #elif defined(ATA_DEBUG)
5320 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5321 #else
5322 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5323 #endif
5324
5325 #ifdef CONFIG_ATA_SFF
5326 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5327 #else
5328 INIT_DELAYED_WORK(&ap->port_task, NULL);
5329 #endif
5330 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5331 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5332 INIT_LIST_HEAD(&ap->eh_done_q);
5333 init_waitqueue_head(&ap->eh_wait_q);
5334 init_completion(&ap->park_req_pending);
5335 init_timer_deferrable(&ap->fastdrain_timer);
5336 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5337 ap->fastdrain_timer.data = (unsigned long)ap;
5338
5339 ap->cbl = ATA_CBL_NONE;
5340
5341 ata_link_init(ap, &ap->link, 0);
5342
5343 #ifdef ATA_IRQ_TRAP
5344 ap->stats.unhandled_irq = 1;
5345 ap->stats.idle_irq = 1;
5346 #endif
5347 return ap;
5348 }
5349
5350 static void ata_host_release(struct device *gendev, void *res)
5351 {
5352 struct ata_host *host = dev_get_drvdata(gendev);
5353 int i;
5354
5355 for (i = 0; i < host->n_ports; i++) {
5356 struct ata_port *ap = host->ports[i];
5357
5358 if (!ap)
5359 continue;
5360
5361 if (ap->scsi_host)
5362 scsi_host_put(ap->scsi_host);
5363
5364 kfree(ap->pmp_link);
5365 kfree(ap->slave_link);
5366 kfree(ap);
5367 host->ports[i] = NULL;
5368 }
5369
5370 dev_set_drvdata(gendev, NULL);
5371 }
5372
5373 /**
5374 * ata_host_alloc - allocate and init basic ATA host resources
5375 * @dev: generic device this host is associated with
5376 * @max_ports: maximum number of ATA ports associated with this host
5377 *
5378 * Allocate and initialize basic ATA host resources. LLD calls
5379 * this function to allocate a host, initializes it fully and
5380 * attaches it using ata_host_register().
5381 *
5382 * @max_ports ports are allocated and host->n_ports is
5383 * initialized to @max_ports. The caller is allowed to decrease
5384 * host->n_ports before calling ata_host_register(). The unused
5385 * ports will be automatically freed on registration.
5386 *
5387 * RETURNS:
5388 * Allocate ATA host on success, NULL on failure.
5389 *
5390 * LOCKING:
5391 * Inherited from calling layer (may sleep).
5392 */
5393 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5394 {
5395 struct ata_host *host;
5396 size_t sz;
5397 int i;
5398
5399 DPRINTK("ENTER\n");
5400
5401 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5402 return NULL;
5403
5404 /* alloc a container for our list of ATA ports (buses) */
5405 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5406 /* alloc a container for our list of ATA ports (buses) */
5407 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5408 if (!host)
5409 goto err_out;
5410
5411 devres_add(dev, host);
5412 dev_set_drvdata(dev, host);
5413
5414 spin_lock_init(&host->lock);
5415 host->dev = dev;
5416 host->n_ports = max_ports;
5417
5418 /* allocate ports bound to this host */
5419 for (i = 0; i < max_ports; i++) {
5420 struct ata_port *ap;
5421
5422 ap = ata_port_alloc(host);
5423 if (!ap)
5424 goto err_out;
5425
5426 ap->port_no = i;
5427 host->ports[i] = ap;
5428 }
5429
5430 devres_remove_group(dev, NULL);
5431 return host;
5432
5433 err_out:
5434 devres_release_group(dev, NULL);
5435 return NULL;
5436 }
5437
5438 /**
5439 * ata_host_alloc_pinfo - alloc host and init with port_info array
5440 * @dev: generic device this host is associated with
5441 * @ppi: array of ATA port_info to initialize host with
5442 * @n_ports: number of ATA ports attached to this host
5443 *
5444 * Allocate ATA host and initialize with info from @ppi. If NULL
5445 * terminated, @ppi may contain fewer entries than @n_ports. The
5446 * last entry will be used for the remaining ports.
5447 *
5448 * RETURNS:
5449 * Allocate ATA host on success, NULL on failure.
5450 *
5451 * LOCKING:
5452 * Inherited from calling layer (may sleep).
5453 */
5454 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5455 const struct ata_port_info * const * ppi,
5456 int n_ports)
5457 {
5458 const struct ata_port_info *pi;
5459 struct ata_host *host;
5460 int i, j;
5461
5462 host = ata_host_alloc(dev, n_ports);
5463 if (!host)
5464 return NULL;
5465
5466 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5467 struct ata_port *ap = host->ports[i];
5468
5469 if (ppi[j])
5470 pi = ppi[j++];
5471
5472 ap->pio_mask = pi->pio_mask;
5473 ap->mwdma_mask = pi->mwdma_mask;
5474 ap->udma_mask = pi->udma_mask;
5475 ap->flags |= pi->flags;
5476 ap->link.flags |= pi->link_flags;
5477 ap->ops = pi->port_ops;
5478
5479 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5480 host->ops = pi->port_ops;
5481 }
5482
5483 return host;
5484 }
5485
5486 /**
5487 * ata_slave_link_init - initialize slave link
5488 * @ap: port to initialize slave link for
5489 *
5490 * Create and initialize slave link for @ap. This enables slave
5491 * link handling on the port.
5492 *
5493 * In libata, a port contains links and a link contains devices.
5494 * There is single host link but if a PMP is attached to it,
5495 * there can be multiple fan-out links. On SATA, there's usually
5496 * a single device connected to a link but PATA and SATA
5497 * controllers emulating TF based interface can have two - master
5498 * and slave.
5499 *
5500 * However, there are a few controllers which don't fit into this
5501 * abstraction too well - SATA controllers which emulate TF
5502 * interface with both master and slave devices but also have
5503 * separate SCR register sets for each device. These controllers
5504 * need separate links for physical link handling
5505 * (e.g. onlineness, link speed) but should be treated like a
5506 * traditional M/S controller for everything else (e.g. command
5507 * issue, softreset).
5508 *
5509 * slave_link is libata's way of handling this class of
5510 * controllers without impacting core layer too much. For
5511 * anything other than physical link handling, the default host
5512 * link is used for both master and slave. For physical link
5513 * handling, separate @ap->slave_link is used. All dirty details
5514 * are implemented inside libata core layer. From LLD's POV, the
5515 * only difference is that prereset, hardreset and postreset are
5516 * called once more for the slave link, so the reset sequence
5517 * looks like the following.
5518 *
5519 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5520 * softreset(M) -> postreset(M) -> postreset(S)
5521 *
5522 * Note that softreset is called only for the master. Softreset
5523 * resets both M/S by definition, so SRST on master should handle
5524 * both (the standard method will work just fine).
5525 *
5526 * LOCKING:
5527 * Should be called before host is registered.
5528 *
5529 * RETURNS:
5530 * 0 on success, -errno on failure.
5531 */
5532 int ata_slave_link_init(struct ata_port *ap)
5533 {
5534 struct ata_link *link;
5535
5536 WARN_ON(ap->slave_link);
5537 WARN_ON(ap->flags & ATA_FLAG_PMP);
5538
5539 link = kzalloc(sizeof(*link), GFP_KERNEL);
5540 if (!link)
5541 return -ENOMEM;
5542
5543 ata_link_init(ap, link, 1);
5544 ap->slave_link = link;
5545 return 0;
5546 }
5547
5548 static void ata_host_stop(struct device *gendev, void *res)
5549 {
5550 struct ata_host *host = dev_get_drvdata(gendev);
5551 int i;
5552
5553 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5554
5555 for (i = 0; i < host->n_ports; i++) {
5556 struct ata_port *ap = host->ports[i];
5557
5558 if (ap->ops->port_stop)
5559 ap->ops->port_stop(ap);
5560 }
5561
5562 if (host->ops->host_stop)
5563 host->ops->host_stop(host);
5564 }
5565
5566 /**
5567 * ata_finalize_port_ops - finalize ata_port_operations
5568 * @ops: ata_port_operations to finalize
5569 *
5570 * An ata_port_operations can inherit from another ops and that
5571 * ops can again inherit from another. This can go on as many
5572 * times as necessary as long as there is no loop in the
5573 * inheritance chain.
5574 *
5575 * Ops tables are finalized when the host is started. NULL or
5576 * unspecified entries are inherited from the closet ancestor
5577 * which has the method and the entry is populated with it.
5578 * After finalization, the ops table directly points to all the
5579 * methods and ->inherits is no longer necessary and cleared.
5580 *
5581 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5582 *
5583 * LOCKING:
5584 * None.
5585 */
5586 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5587 {
5588 static DEFINE_SPINLOCK(lock);
5589 const struct ata_port_operations *cur;
5590 void **begin = (void **)ops;
5591 void **end = (void **)&ops->inherits;
5592 void **pp;
5593
5594 if (!ops || !ops->inherits)
5595 return;
5596
5597 spin_lock(&lock);
5598
5599 for (cur = ops->inherits; cur; cur = cur->inherits) {
5600 void **inherit = (void **)cur;
5601
5602 for (pp = begin; pp < end; pp++, inherit++)
5603 if (!*pp)
5604 *pp = *inherit;
5605 }
5606
5607 for (pp = begin; pp < end; pp++)
5608 if (IS_ERR(*pp))
5609 *pp = NULL;
5610
5611 ops->inherits = NULL;
5612
5613 spin_unlock(&lock);
5614 }
5615
5616 /**
5617 * ata_host_start - start and freeze ports of an ATA host
5618 * @host: ATA host to start ports for
5619 *
5620 * Start and then freeze ports of @host. Started status is
5621 * recorded in host->flags, so this function can be called
5622 * multiple times. Ports are guaranteed to get started only
5623 * once. If host->ops isn't initialized yet, its set to the
5624 * first non-dummy port ops.
5625 *
5626 * LOCKING:
5627 * Inherited from calling layer (may sleep).
5628 *
5629 * RETURNS:
5630 * 0 if all ports are started successfully, -errno otherwise.
5631 */
5632 int ata_host_start(struct ata_host *host)
5633 {
5634 int have_stop = 0;
5635 void *start_dr = NULL;
5636 int i, rc;
5637
5638 if (host->flags & ATA_HOST_STARTED)
5639 return 0;
5640
5641 ata_finalize_port_ops(host->ops);
5642
5643 for (i = 0; i < host->n_ports; i++) {
5644 struct ata_port *ap = host->ports[i];
5645
5646 ata_finalize_port_ops(ap->ops);
5647
5648 if (!host->ops && !ata_port_is_dummy(ap))
5649 host->ops = ap->ops;
5650
5651 if (ap->ops->port_stop)
5652 have_stop = 1;
5653 }
5654
5655 if (host->ops->host_stop)
5656 have_stop = 1;
5657
5658 if (have_stop) {
5659 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5660 if (!start_dr)
5661 return -ENOMEM;
5662 }
5663
5664 for (i = 0; i < host->n_ports; i++) {
5665 struct ata_port *ap = host->ports[i];
5666
5667 if (ap->ops->port_start) {
5668 rc = ap->ops->port_start(ap);
5669 if (rc) {
5670 if (rc != -ENODEV)
5671 dev_printk(KERN_ERR, host->dev,
5672 "failed to start port %d "
5673 "(errno=%d)\n", i, rc);
5674 goto err_out;
5675 }
5676 }
5677 ata_eh_freeze_port(ap);
5678 }
5679
5680 if (start_dr)
5681 devres_add(host->dev, start_dr);
5682 host->flags |= ATA_HOST_STARTED;
5683 return 0;
5684
5685 err_out:
5686 while (--i >= 0) {
5687 struct ata_port *ap = host->ports[i];
5688
5689 if (ap->ops->port_stop)
5690 ap->ops->port_stop(ap);
5691 }
5692 devres_free(start_dr);
5693 return rc;
5694 }
5695
5696 /**
5697 * ata_sas_host_init - Initialize a host struct
5698 * @host: host to initialize
5699 * @dev: device host is attached to
5700 * @flags: host flags
5701 * @ops: port_ops
5702 *
5703 * LOCKING:
5704 * PCI/etc. bus probe sem.
5705 *
5706 */
5707 /* KILLME - the only user left is ipr */
5708 void ata_host_init(struct ata_host *host, struct device *dev,
5709 unsigned long flags, struct ata_port_operations *ops)
5710 {
5711 spin_lock_init(&host->lock);
5712 host->dev = dev;
5713 host->flags = flags;
5714 host->ops = ops;
5715 }
5716
5717 /**
5718 * ata_host_register - register initialized ATA host
5719 * @host: ATA host to register
5720 * @sht: template for SCSI host
5721 *
5722 * Register initialized ATA host. @host is allocated using
5723 * ata_host_alloc() and fully initialized by LLD. This function
5724 * starts ports, registers @host with ATA and SCSI layers and
5725 * probe registered devices.
5726 *
5727 * LOCKING:
5728 * Inherited from calling layer (may sleep).
5729 *
5730 * RETURNS:
5731 * 0 on success, -errno otherwise.
5732 */
5733 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5734 {
5735 int i, rc;
5736
5737 /* host must have been started */
5738 if (!(host->flags & ATA_HOST_STARTED)) {
5739 dev_printk(KERN_ERR, host->dev,
5740 "BUG: trying to register unstarted host\n");
5741 WARN_ON(1);
5742 return -EINVAL;
5743 }
5744
5745 /* Blow away unused ports. This happens when LLD can't
5746 * determine the exact number of ports to allocate at
5747 * allocation time.
5748 */
5749 for (i = host->n_ports; host->ports[i]; i++)
5750 kfree(host->ports[i]);
5751
5752 /* give ports names and add SCSI hosts */
5753 for (i = 0; i < host->n_ports; i++)
5754 host->ports[i]->print_id = ata_print_id++;
5755
5756 rc = ata_scsi_add_hosts(host, sht);
5757 if (rc)
5758 return rc;
5759
5760 /* associate with ACPI nodes */
5761 ata_acpi_associate(host);
5762
5763 /* set cable, sata_spd_limit and report */
5764 for (i = 0; i < host->n_ports; i++) {
5765 struct ata_port *ap = host->ports[i];
5766 unsigned long xfer_mask;
5767
5768 /* set SATA cable type if still unset */
5769 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5770 ap->cbl = ATA_CBL_SATA;
5771
5772 /* init sata_spd_limit to the current value */
5773 sata_link_init_spd(&ap->link);
5774 if (ap->slave_link)
5775 sata_link_init_spd(ap->slave_link);
5776
5777 /* print per-port info to dmesg */
5778 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5779 ap->udma_mask);
5780
5781 if (!ata_port_is_dummy(ap)) {
5782 ata_port_printk(ap, KERN_INFO,
5783 "%cATA max %s %s\n",
5784 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5785 ata_mode_string(xfer_mask),
5786 ap->link.eh_info.desc);
5787 ata_ehi_clear_desc(&ap->link.eh_info);
5788 } else
5789 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5790 }
5791
5792 /* perform each probe synchronously */
5793 DPRINTK("probe begin\n");
5794 for (i = 0; i < host->n_ports; i++) {
5795 struct ata_port *ap = host->ports[i];
5796
5797 /* probe */
5798 if (ap->ops->error_handler) {
5799 struct ata_eh_info *ehi = &ap->link.eh_info;
5800 unsigned long flags;
5801
5802 ata_port_probe(ap);
5803
5804 /* kick EH for boot probing */
5805 spin_lock_irqsave(ap->lock, flags);
5806
5807 ehi->probe_mask |= ATA_ALL_DEVICES;
5808 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5809 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5810
5811 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5812 ap->pflags |= ATA_PFLAG_LOADING;
5813 ata_port_schedule_eh(ap);
5814
5815 spin_unlock_irqrestore(ap->lock, flags);
5816
5817 /* wait for EH to finish */
5818 ata_port_wait_eh(ap);
5819 } else {
5820 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5821 rc = ata_bus_probe(ap);
5822 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5823
5824 if (rc) {
5825 /* FIXME: do something useful here?
5826 * Current libata behavior will
5827 * tear down everything when
5828 * the module is removed
5829 * or the h/w is unplugged.
5830 */
5831 }
5832 }
5833 }
5834
5835 /* probes are done, now scan each port's disk(s) */
5836 DPRINTK("host probe begin\n");
5837 for (i = 0; i < host->n_ports; i++) {
5838 struct ata_port *ap = host->ports[i];
5839
5840 ata_scsi_scan_host(ap, 1);
5841 }
5842
5843 return 0;
5844 }
5845
5846 /**
5847 * ata_host_activate - start host, request IRQ and register it
5848 * @host: target ATA host
5849 * @irq: IRQ to request
5850 * @irq_handler: irq_handler used when requesting IRQ
5851 * @irq_flags: irq_flags used when requesting IRQ
5852 * @sht: scsi_host_template to use when registering the host
5853 *
5854 * After allocating an ATA host and initializing it, most libata
5855 * LLDs perform three steps to activate the host - start host,
5856 * request IRQ and register it. This helper takes necessasry
5857 * arguments and performs the three steps in one go.
5858 *
5859 * An invalid IRQ skips the IRQ registration and expects the host to
5860 * have set polling mode on the port. In this case, @irq_handler
5861 * should be NULL.
5862 *
5863 * LOCKING:
5864 * Inherited from calling layer (may sleep).
5865 *
5866 * RETURNS:
5867 * 0 on success, -errno otherwise.
5868 */
5869 int ata_host_activate(struct ata_host *host, int irq,
5870 irq_handler_t irq_handler, unsigned long irq_flags,
5871 struct scsi_host_template *sht)
5872 {
5873 int i, rc;
5874
5875 rc = ata_host_start(host);
5876 if (rc)
5877 return rc;
5878
5879 /* Special case for polling mode */
5880 if (!irq) {
5881 WARN_ON(irq_handler);
5882 return ata_host_register(host, sht);
5883 }
5884
5885 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5886 dev_driver_string(host->dev), host);
5887 if (rc)
5888 return rc;
5889
5890 for (i = 0; i < host->n_ports; i++)
5891 ata_port_desc(host->ports[i], "irq %d", irq);
5892
5893 rc = ata_host_register(host, sht);
5894 /* if failed, just free the IRQ and leave ports alone */
5895 if (rc)
5896 devm_free_irq(host->dev, irq, host);
5897
5898 return rc;
5899 }
5900
5901 /**
5902 * ata_port_detach - Detach ATA port in prepration of device removal
5903 * @ap: ATA port to be detached
5904 *
5905 * Detach all ATA devices and the associated SCSI devices of @ap;
5906 * then, remove the associated SCSI host. @ap is guaranteed to
5907 * be quiescent on return from this function.
5908 *
5909 * LOCKING:
5910 * Kernel thread context (may sleep).
5911 */
5912 static void ata_port_detach(struct ata_port *ap)
5913 {
5914 unsigned long flags;
5915 struct ata_link *link;
5916 struct ata_device *dev;
5917
5918 if (!ap->ops->error_handler)
5919 goto skip_eh;
5920
5921 /* tell EH we're leaving & flush EH */
5922 spin_lock_irqsave(ap->lock, flags);
5923 ap->pflags |= ATA_PFLAG_UNLOADING;
5924 spin_unlock_irqrestore(ap->lock, flags);
5925
5926 ata_port_wait_eh(ap);
5927
5928 /* EH is now guaranteed to see UNLOADING - EH context belongs
5929 * to us. Restore SControl and disable all existing devices.
5930 */
5931 __ata_port_for_each_link(link, ap) {
5932 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol);
5933 ata_link_for_each_dev(dev, link)
5934 ata_dev_disable(dev);
5935 }
5936
5937 /* Final freeze & EH. All in-flight commands are aborted. EH
5938 * will be skipped and retrials will be terminated with bad
5939 * target.
5940 */
5941 spin_lock_irqsave(ap->lock, flags);
5942 ata_port_freeze(ap); /* won't be thawed */
5943 spin_unlock_irqrestore(ap->lock, flags);
5944
5945 ata_port_wait_eh(ap);
5946 cancel_rearming_delayed_work(&ap->hotplug_task);
5947
5948 skip_eh:
5949 /* remove the associated SCSI host */
5950 scsi_remove_host(ap->scsi_host);
5951 }
5952
5953 /**
5954 * ata_host_detach - Detach all ports of an ATA host
5955 * @host: Host to detach
5956 *
5957 * Detach all ports of @host.
5958 *
5959 * LOCKING:
5960 * Kernel thread context (may sleep).
5961 */
5962 void ata_host_detach(struct ata_host *host)
5963 {
5964 int i;
5965
5966 for (i = 0; i < host->n_ports; i++)
5967 ata_port_detach(host->ports[i]);
5968
5969 /* the host is dead now, dissociate ACPI */
5970 ata_acpi_dissociate(host);
5971 }
5972
5973 #ifdef CONFIG_PCI
5974
5975 /**
5976 * ata_pci_remove_one - PCI layer callback for device removal
5977 * @pdev: PCI device that was removed
5978 *
5979 * PCI layer indicates to libata via this hook that hot-unplug or
5980 * module unload event has occurred. Detach all ports. Resource
5981 * release is handled via devres.
5982 *
5983 * LOCKING:
5984 * Inherited from PCI layer (may sleep).
5985 */
5986 void ata_pci_remove_one(struct pci_dev *pdev)
5987 {
5988 struct device *dev = &pdev->dev;
5989 struct ata_host *host = dev_get_drvdata(dev);
5990
5991 ata_host_detach(host);
5992 }
5993
5994 /* move to PCI subsystem */
5995 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5996 {
5997 unsigned long tmp = 0;
5998
5999 switch (bits->width) {
6000 case 1: {
6001 u8 tmp8 = 0;
6002 pci_read_config_byte(pdev, bits->reg, &tmp8);
6003 tmp = tmp8;
6004 break;
6005 }
6006 case 2: {
6007 u16 tmp16 = 0;
6008 pci_read_config_word(pdev, bits->reg, &tmp16);
6009 tmp = tmp16;
6010 break;
6011 }
6012 case 4: {
6013 u32 tmp32 = 0;
6014 pci_read_config_dword(pdev, bits->reg, &tmp32);
6015 tmp = tmp32;
6016 break;
6017 }
6018
6019 default:
6020 return -EINVAL;
6021 }
6022
6023 tmp &= bits->mask;
6024
6025 return (tmp == bits->val) ? 1 : 0;
6026 }
6027
6028 #ifdef CONFIG_PM
6029 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6030 {
6031 pci_save_state(pdev);
6032 pci_disable_device(pdev);
6033
6034 if (mesg.event & PM_EVENT_SLEEP)
6035 pci_set_power_state(pdev, PCI_D3hot);
6036 }
6037
6038 int ata_pci_device_do_resume(struct pci_dev *pdev)
6039 {
6040 int rc;
6041
6042 pci_set_power_state(pdev, PCI_D0);
6043 pci_restore_state(pdev);
6044
6045 rc = pcim_enable_device(pdev);
6046 if (rc) {
6047 dev_printk(KERN_ERR, &pdev->dev,
6048 "failed to enable device after resume (%d)\n", rc);
6049 return rc;
6050 }
6051
6052 pci_set_master(pdev);
6053 return 0;
6054 }
6055
6056 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6057 {
6058 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6059 int rc = 0;
6060
6061 rc = ata_host_suspend(host, mesg);
6062 if (rc)
6063 return rc;
6064
6065 ata_pci_device_do_suspend(pdev, mesg);
6066
6067 return 0;
6068 }
6069
6070 int ata_pci_device_resume(struct pci_dev *pdev)
6071 {
6072 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6073 int rc;
6074
6075 rc = ata_pci_device_do_resume(pdev);
6076 if (rc == 0)
6077 ata_host_resume(host);
6078 return rc;
6079 }
6080 #endif /* CONFIG_PM */
6081
6082 #endif /* CONFIG_PCI */
6083
6084 static int __init ata_parse_force_one(char **cur,
6085 struct ata_force_ent *force_ent,
6086 const char **reason)
6087 {
6088 /* FIXME: Currently, there's no way to tag init const data and
6089 * using __initdata causes build failure on some versions of
6090 * gcc. Once __initdataconst is implemented, add const to the
6091 * following structure.
6092 */
6093 static struct ata_force_param force_tbl[] __initdata = {
6094 { "40c", .cbl = ATA_CBL_PATA40 },
6095 { "80c", .cbl = ATA_CBL_PATA80 },
6096 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6097 { "unk", .cbl = ATA_CBL_PATA_UNK },
6098 { "ign", .cbl = ATA_CBL_PATA_IGN },
6099 { "sata", .cbl = ATA_CBL_SATA },
6100 { "1.5Gbps", .spd_limit = 1 },
6101 { "3.0Gbps", .spd_limit = 2 },
6102 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6103 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6104 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6105 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6106 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6107 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6108 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6109 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6110 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6111 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6112 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6113 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6114 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6115 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6116 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6117 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6118 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6119 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6120 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6121 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6122 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6123 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6124 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6125 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6126 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6127 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6128 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6129 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6130 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6131 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6132 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6133 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6134 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6135 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6136 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6137 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6138 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6139 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6140 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6141 };
6142 char *start = *cur, *p = *cur;
6143 char *id, *val, *endp;
6144 const struct ata_force_param *match_fp = NULL;
6145 int nr_matches = 0, i;
6146
6147 /* find where this param ends and update *cur */
6148 while (*p != '\0' && *p != ',')
6149 p++;
6150
6151 if (*p == '\0')
6152 *cur = p;
6153 else
6154 *cur = p + 1;
6155
6156 *p = '\0';
6157
6158 /* parse */
6159 p = strchr(start, ':');
6160 if (!p) {
6161 val = strstrip(start);
6162 goto parse_val;
6163 }
6164 *p = '\0';
6165
6166 id = strstrip(start);
6167 val = strstrip(p + 1);
6168
6169 /* parse id */
6170 p = strchr(id, '.');
6171 if (p) {
6172 *p++ = '\0';
6173 force_ent->device = simple_strtoul(p, &endp, 10);
6174 if (p == endp || *endp != '\0') {
6175 *reason = "invalid device";
6176 return -EINVAL;
6177 }
6178 }
6179
6180 force_ent->port = simple_strtoul(id, &endp, 10);
6181 if (p == endp || *endp != '\0') {
6182 *reason = "invalid port/link";
6183 return -EINVAL;
6184 }
6185
6186 parse_val:
6187 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6188 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6189 const struct ata_force_param *fp = &force_tbl[i];
6190
6191 if (strncasecmp(val, fp->name, strlen(val)))
6192 continue;
6193
6194 nr_matches++;
6195 match_fp = fp;
6196
6197 if (strcasecmp(val, fp->name) == 0) {
6198 nr_matches = 1;
6199 break;
6200 }
6201 }
6202
6203 if (!nr_matches) {
6204 *reason = "unknown value";
6205 return -EINVAL;
6206 }
6207 if (nr_matches > 1) {
6208 *reason = "ambigious value";
6209 return -EINVAL;
6210 }
6211
6212 force_ent->param = *match_fp;
6213
6214 return 0;
6215 }
6216
6217 static void __init ata_parse_force_param(void)
6218 {
6219 int idx = 0, size = 1;
6220 int last_port = -1, last_device = -1;
6221 char *p, *cur, *next;
6222
6223 /* calculate maximum number of params and allocate force_tbl */
6224 for (p = ata_force_param_buf; *p; p++)
6225 if (*p == ',')
6226 size++;
6227
6228 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6229 if (!ata_force_tbl) {
6230 printk(KERN_WARNING "ata: failed to extend force table, "
6231 "libata.force ignored\n");
6232 return;
6233 }
6234
6235 /* parse and populate the table */
6236 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6237 const char *reason = "";
6238 struct ata_force_ent te = { .port = -1, .device = -1 };
6239
6240 next = cur;
6241 if (ata_parse_force_one(&next, &te, &reason)) {
6242 printk(KERN_WARNING "ata: failed to parse force "
6243 "parameter \"%s\" (%s)\n",
6244 cur, reason);
6245 continue;
6246 }
6247
6248 if (te.port == -1) {
6249 te.port = last_port;
6250 te.device = last_device;
6251 }
6252
6253 ata_force_tbl[idx++] = te;
6254
6255 last_port = te.port;
6256 last_device = te.device;
6257 }
6258
6259 ata_force_tbl_size = idx;
6260 }
6261
6262 static int __init ata_init(void)
6263 {
6264 ata_parse_force_param();
6265
6266 ata_wq = create_workqueue("ata");
6267 if (!ata_wq)
6268 goto free_force_tbl;
6269
6270 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6271 if (!ata_aux_wq)
6272 goto free_wq;
6273
6274 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6275 return 0;
6276
6277 free_wq:
6278 destroy_workqueue(ata_wq);
6279 free_force_tbl:
6280 kfree(ata_force_tbl);
6281 return -ENOMEM;
6282 }
6283
6284 static void __exit ata_exit(void)
6285 {
6286 kfree(ata_force_tbl);
6287 destroy_workqueue(ata_wq);
6288 destroy_workqueue(ata_aux_wq);
6289 }
6290
6291 subsys_initcall(ata_init);
6292 module_exit(ata_exit);
6293
6294 static unsigned long ratelimit_time;
6295 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6296
6297 int ata_ratelimit(void)
6298 {
6299 int rc;
6300 unsigned long flags;
6301
6302 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6303
6304 if (time_after(jiffies, ratelimit_time)) {
6305 rc = 1;
6306 ratelimit_time = jiffies + (HZ/5);
6307 } else
6308 rc = 0;
6309
6310 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6311
6312 return rc;
6313 }
6314
6315 /**
6316 * ata_wait_register - wait until register value changes
6317 * @reg: IO-mapped register
6318 * @mask: Mask to apply to read register value
6319 * @val: Wait condition
6320 * @interval: polling interval in milliseconds
6321 * @timeout: timeout in milliseconds
6322 *
6323 * Waiting for some bits of register to change is a common
6324 * operation for ATA controllers. This function reads 32bit LE
6325 * IO-mapped register @reg and tests for the following condition.
6326 *
6327 * (*@reg & mask) != val
6328 *
6329 * If the condition is met, it returns; otherwise, the process is
6330 * repeated after @interval_msec until timeout.
6331 *
6332 * LOCKING:
6333 * Kernel thread context (may sleep)
6334 *
6335 * RETURNS:
6336 * The final register value.
6337 */
6338 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6339 unsigned long interval, unsigned long timeout)
6340 {
6341 unsigned long deadline;
6342 u32 tmp;
6343
6344 tmp = ioread32(reg);
6345
6346 /* Calculate timeout _after_ the first read to make sure
6347 * preceding writes reach the controller before starting to
6348 * eat away the timeout.
6349 */
6350 deadline = ata_deadline(jiffies, timeout);
6351
6352 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6353 msleep(interval);
6354 tmp = ioread32(reg);
6355 }
6356
6357 return tmp;
6358 }
6359
6360 /*
6361 * Dummy port_ops
6362 */
6363 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6364 {
6365 return AC_ERR_SYSTEM;
6366 }
6367
6368 static void ata_dummy_error_handler(struct ata_port *ap)
6369 {
6370 /* truly dummy */
6371 }
6372
6373 struct ata_port_operations ata_dummy_port_ops = {
6374 .qc_prep = ata_noop_qc_prep,
6375 .qc_issue = ata_dummy_qc_issue,
6376 .error_handler = ata_dummy_error_handler,
6377 };
6378
6379 const struct ata_port_info ata_dummy_port_info = {
6380 .port_ops = &ata_dummy_port_ops,
6381 };
6382
6383 /*
6384 * libata is essentially a library of internal helper functions for
6385 * low-level ATA host controller drivers. As such, the API/ABI is
6386 * likely to change as new drivers are added and updated.
6387 * Do not depend on ABI/API stability.
6388 */
6389 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6390 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6391 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6392 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6393 EXPORT_SYMBOL_GPL(sata_port_ops);
6394 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6395 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6396 EXPORT_SYMBOL_GPL(__ata_port_next_link);
6397 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6398 EXPORT_SYMBOL_GPL(ata_host_init);
6399 EXPORT_SYMBOL_GPL(ata_host_alloc);
6400 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6401 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6402 EXPORT_SYMBOL_GPL(ata_host_start);
6403 EXPORT_SYMBOL_GPL(ata_host_register);
6404 EXPORT_SYMBOL_GPL(ata_host_activate);
6405 EXPORT_SYMBOL_GPL(ata_host_detach);
6406 EXPORT_SYMBOL_GPL(ata_sg_init);
6407 EXPORT_SYMBOL_GPL(ata_qc_complete);
6408 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6409 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6410 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6411 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6412 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6413 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6414 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6415 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6416 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6417 EXPORT_SYMBOL_GPL(ata_mode_string);
6418 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6419 EXPORT_SYMBOL_GPL(ata_port_start);
6420 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6421 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6422 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6423 EXPORT_SYMBOL_GPL(ata_port_probe);
6424 EXPORT_SYMBOL_GPL(ata_dev_disable);
6425 EXPORT_SYMBOL_GPL(sata_set_spd);
6426 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6427 EXPORT_SYMBOL_GPL(sata_link_debounce);
6428 EXPORT_SYMBOL_GPL(sata_link_resume);
6429 EXPORT_SYMBOL_GPL(ata_std_prereset);
6430 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6431 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6432 EXPORT_SYMBOL_GPL(ata_std_postreset);
6433 EXPORT_SYMBOL_GPL(ata_dev_classify);
6434 EXPORT_SYMBOL_GPL(ata_dev_pair);
6435 EXPORT_SYMBOL_GPL(ata_port_disable);
6436 EXPORT_SYMBOL_GPL(ata_ratelimit);
6437 EXPORT_SYMBOL_GPL(ata_wait_register);
6438 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6439 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6440 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6441 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6442 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6443 EXPORT_SYMBOL_GPL(sata_scr_valid);
6444 EXPORT_SYMBOL_GPL(sata_scr_read);
6445 EXPORT_SYMBOL_GPL(sata_scr_write);
6446 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6447 EXPORT_SYMBOL_GPL(ata_link_online);
6448 EXPORT_SYMBOL_GPL(ata_link_offline);
6449 #ifdef CONFIG_PM
6450 EXPORT_SYMBOL_GPL(ata_host_suspend);
6451 EXPORT_SYMBOL_GPL(ata_host_resume);
6452 #endif /* CONFIG_PM */
6453 EXPORT_SYMBOL_GPL(ata_id_string);
6454 EXPORT_SYMBOL_GPL(ata_id_c_string);
6455 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6456 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6457
6458 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6459 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6460 EXPORT_SYMBOL_GPL(ata_timing_compute);
6461 EXPORT_SYMBOL_GPL(ata_timing_merge);
6462 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6463
6464 #ifdef CONFIG_PCI
6465 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6466 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6467 #ifdef CONFIG_PM
6468 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6469 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6470 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6471 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6472 #endif /* CONFIG_PM */
6473 #endif /* CONFIG_PCI */
6474
6475 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6476 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6477 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6478 EXPORT_SYMBOL_GPL(ata_port_desc);
6479 #ifdef CONFIG_PCI
6480 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6481 #endif /* CONFIG_PCI */
6482 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6483 EXPORT_SYMBOL_GPL(ata_link_abort);
6484 EXPORT_SYMBOL_GPL(ata_port_abort);
6485 EXPORT_SYMBOL_GPL(ata_port_freeze);
6486 EXPORT_SYMBOL_GPL(sata_async_notification);
6487 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6488 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6489 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6490 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6491 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6492 EXPORT_SYMBOL_GPL(ata_do_eh);
6493 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6494
6495 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6496 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6497 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6498 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6499 EXPORT_SYMBOL_GPL(ata_cable_sata);