]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
Pull video into release branch
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
78
79 struct workqueue_struct *ata_aux_wq;
80
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
89 int libata_fua = 0;
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
109
110
111 /**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
114 * @pmp: Port multiplier port
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
125 {
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153 }
154
155 /**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
166 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
167 {
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182 }
183
184 static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
199 0,
200 0,
201 0,
202 0,
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
212 };
213
214 /**
215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
218 *
219 * Examine the device configuration and tf->flags to calculate
220 * the proper read/write commands and protocol to use.
221 *
222 * LOCKING:
223 * caller.
224 */
225 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
226 {
227 u8 cmd;
228
229 int index, fua, lba48, write;
230
231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
234
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
237 index = dev->multi_count ? 0 : 8;
238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
241 index = dev->multi_count ? 0 : 8;
242 } else {
243 tf->protocol = ATA_PROT_DMA;
244 index = 16;
245 }
246
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
253 }
254
255 /**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271 {
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296 }
297
298 /**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321 {
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419 }
420
421 /**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439 {
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443 }
444
445 /**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455 static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459 {
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466 }
467
468 static const struct ata_xfer_ent {
469 int shift, bits;
470 u8 base;
471 } ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476 };
477
478 /**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492 {
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500 }
501
502 /**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515 {
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522 }
523
524 /**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536 static int ata_xfer_mode2shift(unsigned int xfer_mode)
537 {
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544 }
545
546 /**
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
549 *
550 * Determine string which represents the highest speed
551 * (highest bit in @modemask).
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
558 * @mode_mask, or the constant C string "<n/a>".
559 */
560 static const char *ata_mode_string(unsigned int xfer_mask)
561 {
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
568 "PIO5",
569 "PIO6",
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
573 "MWDMA3",
574 "MWDMA4",
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
584 int highbit;
585
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
589 return "<n/a>";
590 }
591
592 static const char *sata_spd_string(unsigned int spd)
593 {
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602 }
603
604 void ata_dev_disable(struct ata_device *dev)
605 {
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
611 dev->class++;
612 }
613 }
614
615 /**
616 * ata_devchk - PATA device presence detection
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
633 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
634 {
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
642
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
645
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
648
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656 }
657
658 /**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
674 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
675 {
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695 }
696
697 /**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
701 * @r_err: Value of error register on completion
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
717 */
718
719 unsigned int
720 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
721 {
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
730 ap->ops->tf_read(ap, &tf);
731 err = tf.feature;
732 if (r_err)
733 *r_err = err;
734
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if (err == 1)
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
744 return ATA_DEV_NONE;
745
746 /* determine if device is ATA or ATAPI */
747 class = ata_dev_classify(&tf);
748
749 if (class == ATA_DEV_UNKNOWN)
750 return ATA_DEV_NONE;
751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
752 return ATA_DEV_NONE;
753 return class;
754 }
755
756 /**
757 * ata_id_string - Convert IDENTIFY DEVICE page into string
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
771 void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
773 {
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788 }
789
790 /**
791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
797 * This function is identical to ata_id_string except that it
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
804 void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
806 {
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
811 ata_id_string(id, s, ofs, len - 1);
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817 }
818
819 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820 {
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831 }
832
833 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834 {
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843 }
844
845 /**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854 {
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870 }
871
872 /**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880 static u64 ata_read_native_max_address(struct ata_device *dev)
881 {
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897 }
898
899 /**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
902 * @new_sectors: new max sectors value to set for the device
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909 {
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935 }
936
937 /**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
940 * @new_sectors: new max sectors value to set for the device
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947 {
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969 }
970
971 /**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980 static u64 ata_hpa_resize(struct ata_device *dev)
981 {
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
984
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
995 (long long)sectors, (long long)hpa_sectors);
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1003
1004 if (hpa_sectors) {
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1008 return hpa_sectors;
1009 }
1010 }
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1016 return sectors;
1017 }
1018
1019 static u64 ata_id_n_sectors(const u16 *id)
1020 {
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032 }
1033
1034 /**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
1037 * @unknown: mode to assume if we cannot tell
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050 {
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074 }
1075
1076 /**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1088 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089 {
1090 }
1091
1092
1093 /**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109 {
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
1117 iowrite8(tmp, ap->ioaddr.device_addr);
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119 }
1120
1121 /**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140 void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142 {
1143 if (ata_msg_probe(ap))
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157 }
1158
1159 /**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
1161 * @id: IDENTIFY DEVICE page to dump
1162 *
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
1170 static inline void ata_dump_id(const u16 *id)
1171 {
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
1194 id[88],
1195 id[93]);
1196 }
1197
1198 /**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213 static unsigned int ata_id_xfermask(const u16 *id)
1214 {
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1242
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265 }
1266
1267 /**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
1270 * @fn: workqueue function to be scheduled
1271 * @data: data for @fn to use
1272 * @delay: delay time for workqueue function
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
1286 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1287 unsigned long delay)
1288 {
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
1291
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
1294 }
1295
1296 /**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306 void ata_port_flush_task(struct ata_port *ap)
1307 {
1308 DPRINTK("ENTER\n");
1309
1310 cancel_rearming_delayed_work(&ap->port_task);
1311
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1314 }
1315
1316 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1317 {
1318 struct completion *waiting = qc->private_data;
1319
1320 complete(waiting);
1321 }
1322
1323 /**
1324 * ata_exec_internal_sg - execute libata internal command
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
1327 * @cdb: CDB for packet command
1328 * @dma_dir: Data tranfer direction of the command
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
1343 */
1344 unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
1348 {
1349 struct ata_port *ap = dev->ap;
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
1352 unsigned int tag, preempted_tag;
1353 u32 preempted_sactive, preempted_qc_active;
1354 DECLARE_COMPLETION_ONSTACK(wait);
1355 unsigned long flags;
1356 unsigned int err_mask;
1357 int rc;
1358
1359 spin_lock_irqsave(ap->lock, flags);
1360
1361 /* no internal command while frozen */
1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
1363 spin_unlock_irqrestore(ap->lock, flags);
1364 return AC_ERR_SYSTEM;
1365 }
1366
1367 /* initialize internal qc */
1368
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1373 */
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1376 else
1377 tag = 0;
1378
1379 if (test_and_set_bit(tag, &ap->qc_allocated))
1380 BUG();
1381 qc = __ata_qc_from_tag(ap, tag);
1382
1383 qc->tag = tag;
1384 qc->scsicmd = NULL;
1385 qc->ap = ap;
1386 qc->dev = dev;
1387 ata_qc_reinit(qc);
1388
1389 preempted_tag = ap->active_tag;
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
1392 ap->active_tag = ATA_TAG_POISON;
1393 ap->sactive = 0;
1394 ap->qc_active = 0;
1395
1396 /* prepare & issue qc */
1397 qc->tf = *tf;
1398 if (cdb)
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
1403 unsigned int i, buflen = 0;
1404
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1407
1408 ata_sg_init(qc, sg, n_elem);
1409 qc->nbytes = buflen;
1410 }
1411
1412 qc->private_data = &wait;
1413 qc->complete_fn = ata_qc_complete_internal;
1414
1415 ata_qc_issue(qc);
1416
1417 spin_unlock_irqrestore(ap->lock, flags);
1418
1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1420
1421 ata_port_flush_task(ap);
1422
1423 if (!rc) {
1424 spin_lock_irqsave(ap->lock, flags);
1425
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
1430 */
1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1433
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1436 else
1437 ata_qc_complete(qc);
1438
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
1441 "qc timeout (cmd 0x%x)\n", command);
1442 }
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445 }
1446
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1450
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1455
1456 if (!qc->err_mask)
1457 qc->err_mask |= AC_ERR_OTHER;
1458
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
1461 }
1462
1463 /* finish up */
1464 spin_lock_irqsave(ap->lock, flags);
1465
1466 *tf = qc->result_tf;
1467 err_mask = qc->err_mask;
1468
1469 ata_qc_free(qc);
1470 ap->active_tag = preempted_tag;
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
1473
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * port.
1478 *
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1482 *
1483 * Kill the following code as soon as those drivers are fixed.
1484 */
1485 if (ap->flags & ATA_FLAG_DISABLED) {
1486 err_mask |= AC_ERR_SYSTEM;
1487 ata_port_probe(ap);
1488 }
1489
1490 spin_unlock_irqrestore(ap->lock, flags);
1491
1492 return err_mask;
1493 }
1494
1495 /**
1496 * ata_exec_internal - execute libata internal command
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1503 *
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1506 *
1507 * LOCKING:
1508 * None. Should be called with kernel context, might sleep.
1509 *
1510 * RETURNS:
1511 * Zero on success, AC_ERR_* mask on failure
1512 */
1513 unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1516 {
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
1519
1520 if (dma_dir != DMA_NONE) {
1521 WARN_ON(!buf);
1522 sg_init_one(&sg, buf, buflen);
1523 psg = &sg;
1524 n_elem++;
1525 }
1526
1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1528 }
1529
1530 /**
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1534 *
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1537 *
1538 * LOCKING:
1539 * Kernel thread context (may sleep).
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1543 */
1544 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1545 {
1546 struct ata_taskfile tf;
1547
1548 ata_tf_init(dev, &tf);
1549
1550 tf.command = cmd;
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1553
1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1555 }
1556
1557 /**
1558 * ata_pio_need_iordy - check if iordy needed
1559 * @adev: ATA device
1560 *
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1563 */
1564
1565 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1566 {
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1570 return 0;
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1573 return 1;
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1576 return 1;
1577 return 0;
1578 }
1579
1580 /**
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * @adev: ATA device
1583 *
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1586 */
1587
1588 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1589 {
1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1593 /* Is the speed faster than the drive allows non IORDY ? */
1594 if (pio) {
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1599 }
1600 }
1601 return 3 << ATA_SHIFT_PIO;
1602 }
1603
1604 /**
1605 * ata_dev_read_id - Read ID data from the specified device
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
1608 * @flags: ATA_READID_* flags
1609 * @id: buffer to read IDENTIFY data into
1610 *
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1615 *
1616 * LOCKING:
1617 * Kernel thread context (may sleep)
1618 *
1619 * RETURNS:
1620 * 0 on success, -errno otherwise.
1621 */
1622 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1623 unsigned int flags, u16 *id)
1624 {
1625 struct ata_port *ap = dev->ap;
1626 unsigned int class = *p_class;
1627 struct ata_taskfile tf;
1628 unsigned int err_mask = 0;
1629 const char *reason;
1630 int may_fallback = 1, tried_spinup = 0;
1631 int rc;
1632
1633 if (ata_msg_ctl(ap))
1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1635
1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1637 retry:
1638 ata_tf_init(dev, &tf);
1639
1640 switch (class) {
1641 case ATA_DEV_ATA:
1642 tf.command = ATA_CMD_ID_ATA;
1643 break;
1644 case ATA_DEV_ATAPI:
1645 tf.command = ATA_CMD_ID_ATAPI;
1646 break;
1647 default:
1648 rc = -ENODEV;
1649 reason = "unsupported class";
1650 goto err_out;
1651 }
1652
1653 tf.protocol = ATA_PROT_PIO;
1654
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1657 */
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1659
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1662 */
1663 tf.flags |= ATA_TFLAG_POLLING;
1664
1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1666 id, sizeof(id[0]) * ATA_ID_WORDS);
1667 if (err_mask) {
1668 if (err_mask & AC_ERR_NODEV_HINT) {
1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1670 ap->print_id, dev->devno);
1671 return -ENOENT;
1672 }
1673
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1677 */
1678 if (may_fallback &&
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 may_fallback = 0;
1681
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1684 else
1685 class = ATA_DEV_ATA;
1686 goto retry;
1687 }
1688
1689 rc = -EIO;
1690 reason = "I/O error";
1691 goto err_out;
1692 }
1693
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1696 */
1697 may_fallback = 0;
1698
1699 swap_buf_le16(id, ATA_ID_WORDS);
1700
1701 /* sanity check */
1702 rc = -EINVAL;
1703 reason = "device reports invalid type";
1704
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 goto err_out;
1708 } else {
1709 if (ata_id_is_ata(id))
1710 goto err_out;
1711 }
1712
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 tried_spinup = 1;
1715 /*
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1719 */
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1726 if (err_mask && id[2] != 0x738c) {
1727 rc = -EIO;
1728 reason = "SPINUP failed";
1729 goto err_out;
1730 }
1731 /*
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1734 */
1735 if (id[2] == 0x37c8)
1736 goto retry;
1737 }
1738
1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1740 /*
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * SRST RESET
1743 * IDENTIFY
1744 * INITIALIZE DEVICE PARAMETERS
1745 * anything else..
1746 * Some drives were very specific about that exact sequence.
1747 */
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1750 if (err_mask) {
1751 rc = -EIO;
1752 reason = "INIT_DEV_PARAMS failed";
1753 goto err_out;
1754 }
1755
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1758 */
1759 flags &= ~ATA_READID_POSTRESET;
1760 goto retry;
1761 }
1762 }
1763
1764 *p_class = class;
1765
1766 return 0;
1767
1768 err_out:
1769 if (ata_msg_warn(ap))
1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
1772 return rc;
1773 }
1774
1775 static inline u8 ata_dev_knobble(struct ata_device *dev)
1776 {
1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1778 }
1779
1780 static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1782 {
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1785
1786 if (!ata_id_has_ncq(dev->id)) {
1787 desc[0] = '\0';
1788 return;
1789 }
1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1792 return;
1793 }
1794 if (ap->flags & ATA_FLAG_NCQ) {
1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1796 dev->flags |= ATA_DFLAG_NCQ;
1797 }
1798
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 else
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1803 }
1804
1805 /**
1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
1807 * @dev: Target device to configure
1808 *
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
1811 *
1812 * LOCKING:
1813 * Kernel thread context (may sleep)
1814 *
1815 * RETURNS:
1816 * 0 on success, -errno otherwise
1817 */
1818 int ata_dev_configure(struct ata_device *dev)
1819 {
1820 struct ata_port *ap = dev->ap;
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1823 const u16 *id = dev->id;
1824 unsigned int xfer_mask;
1825 char revbuf[7]; /* XYZ-99\0 */
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
1828 int rc;
1829
1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 __FUNCTION__);
1833 return 0;
1834 }
1835
1836 if (ata_msg_probe(ap))
1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1838
1839 /* set horkage */
1840 dev->horkage |= ata_dev_blacklisted(dev);
1841
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1844 if (rc)
1845 return rc;
1846
1847 /* print device capabilities */
1848 if (ata_msg_probe(ap))
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1852 __FUNCTION__,
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
1855
1856 /* initialize to-be-configured parameters */
1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1858 dev->max_sectors = 0;
1859 dev->cdb_len = 0;
1860 dev->n_sectors = 0;
1861 dev->cylinders = 0;
1862 dev->heads = 0;
1863 dev->sectors = 0;
1864
1865 /*
1866 * common ATA, ATAPI feature tests
1867 */
1868
1869 /* find max transfer mode; for printk only */
1870 xfer_mask = ata_id_xfermask(id);
1871
1872 if (ata_msg_probe(ap))
1873 ata_dump_id(id);
1874
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 sizeof(fwrevbuf));
1878
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 sizeof(modelbuf));
1881
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
1889 snprintf(revbuf, 7, "CFA");
1890 }
1891 else
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1893
1894 dev->n_sectors = ata_id_n_sectors(id);
1895
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1898
1899 if (ata_id_has_lba(id)) {
1900 const char *lba_desc;
1901 char ncq_desc[20];
1902
1903 lba_desc = "LBA";
1904 dev->flags |= ATA_DFLAG_LBA;
1905 if (ata_id_has_lba48(id)) {
1906 dev->flags |= ATA_DFLAG_LBA48;
1907 lba_desc = "LBA48";
1908
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1912 }
1913
1914 if (ata_id_hpa_enabled(dev->id))
1915 dev->n_sectors = ata_hpa_resize(dev);
1916
1917 /* config NCQ */
1918 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1919
1920 /* print device info to dmesg */
1921 if (ata_msg_drv(ap) && print_info) {
1922 ata_dev_printk(dev, KERN_INFO,
1923 "%s: %s, %s, max %s\n",
1924 revbuf, modelbuf, fwrevbuf,
1925 ata_mode_string(xfer_mask));
1926 ata_dev_printk(dev, KERN_INFO,
1927 "%Lu sectors, multi %u: %s %s\n",
1928 (unsigned long long)dev->n_sectors,
1929 dev->multi_count, lba_desc, ncq_desc);
1930 }
1931 } else {
1932 /* CHS */
1933
1934 /* Default translation */
1935 dev->cylinders = id[1];
1936 dev->heads = id[3];
1937 dev->sectors = id[6];
1938
1939 if (ata_id_current_chs_valid(id)) {
1940 /* Current CHS translation is valid. */
1941 dev->cylinders = id[54];
1942 dev->heads = id[55];
1943 dev->sectors = id[56];
1944 }
1945
1946 /* print device info to dmesg */
1947 if (ata_msg_drv(ap) && print_info) {
1948 ata_dev_printk(dev, KERN_INFO,
1949 "%s: %s, %s, max %s\n",
1950 revbuf, modelbuf, fwrevbuf,
1951 ata_mode_string(xfer_mask));
1952 ata_dev_printk(dev, KERN_INFO,
1953 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1954 (unsigned long long)dev->n_sectors,
1955 dev->multi_count, dev->cylinders,
1956 dev->heads, dev->sectors);
1957 }
1958 }
1959
1960 dev->cdb_len = 16;
1961 }
1962
1963 /* ATAPI-specific feature tests */
1964 else if (dev->class == ATA_DEV_ATAPI) {
1965 char *cdb_intr_string = "";
1966
1967 rc = atapi_cdb_len(id);
1968 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1969 if (ata_msg_warn(ap))
1970 ata_dev_printk(dev, KERN_WARNING,
1971 "unsupported CDB len\n");
1972 rc = -EINVAL;
1973 goto err_out_nosup;
1974 }
1975 dev->cdb_len = (unsigned int) rc;
1976
1977 if (ata_id_cdb_intr(dev->id)) {
1978 dev->flags |= ATA_DFLAG_CDB_INTR;
1979 cdb_intr_string = ", CDB intr";
1980 }
1981
1982 /* print device info to dmesg */
1983 if (ata_msg_drv(ap) && print_info)
1984 ata_dev_printk(dev, KERN_INFO,
1985 "ATAPI: %s, %s, max %s%s\n",
1986 modelbuf, fwrevbuf,
1987 ata_mode_string(xfer_mask),
1988 cdb_intr_string);
1989 }
1990
1991 /* determine max_sectors */
1992 dev->max_sectors = ATA_MAX_SECTORS;
1993 if (dev->flags & ATA_DFLAG_LBA48)
1994 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1995
1996 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1997 /* Let the user know. We don't want to disallow opens for
1998 rescue purposes, or in case the vendor is just a blithering
1999 idiot */
2000 if (print_info) {
2001 ata_dev_printk(dev, KERN_WARNING,
2002 "Drive reports diagnostics failure. This may indicate a drive\n");
2003 ata_dev_printk(dev, KERN_WARNING,
2004 "fault or invalid emulation. Contact drive vendor for information.\n");
2005 }
2006 }
2007
2008 /* limit bridge transfers to udma5, 200 sectors */
2009 if (ata_dev_knobble(dev)) {
2010 if (ata_msg_drv(ap) && print_info)
2011 ata_dev_printk(dev, KERN_INFO,
2012 "applying bridge limits\n");
2013 dev->udma_mask &= ATA_UDMA5;
2014 dev->max_sectors = ATA_MAX_SECTORS;
2015 }
2016
2017 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2018 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2019 dev->max_sectors);
2020
2021 if (ap->ops->dev_config)
2022 ap->ops->dev_config(dev);
2023
2024 if (ata_msg_probe(ap))
2025 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2026 __FUNCTION__, ata_chk_status(ap));
2027 return 0;
2028
2029 err_out_nosup:
2030 if (ata_msg_probe(ap))
2031 ata_dev_printk(dev, KERN_DEBUG,
2032 "%s: EXIT, err\n", __FUNCTION__);
2033 return rc;
2034 }
2035
2036 /**
2037 * ata_cable_40wire - return 40 wire cable type
2038 * @ap: port
2039 *
2040 * Helper method for drivers which want to hardwire 40 wire cable
2041 * detection.
2042 */
2043
2044 int ata_cable_40wire(struct ata_port *ap)
2045 {
2046 return ATA_CBL_PATA40;
2047 }
2048
2049 /**
2050 * ata_cable_80wire - return 80 wire cable type
2051 * @ap: port
2052 *
2053 * Helper method for drivers which want to hardwire 80 wire cable
2054 * detection.
2055 */
2056
2057 int ata_cable_80wire(struct ata_port *ap)
2058 {
2059 return ATA_CBL_PATA80;
2060 }
2061
2062 /**
2063 * ata_cable_unknown - return unknown PATA cable.
2064 * @ap: port
2065 *
2066 * Helper method for drivers which have no PATA cable detection.
2067 */
2068
2069 int ata_cable_unknown(struct ata_port *ap)
2070 {
2071 return ATA_CBL_PATA_UNK;
2072 }
2073
2074 /**
2075 * ata_cable_sata - return SATA cable type
2076 * @ap: port
2077 *
2078 * Helper method for drivers which have SATA cables
2079 */
2080
2081 int ata_cable_sata(struct ata_port *ap)
2082 {
2083 return ATA_CBL_SATA;
2084 }
2085
2086 /**
2087 * ata_bus_probe - Reset and probe ATA bus
2088 * @ap: Bus to probe
2089 *
2090 * Master ATA bus probing function. Initiates a hardware-dependent
2091 * bus reset, then attempts to identify any devices found on
2092 * the bus.
2093 *
2094 * LOCKING:
2095 * PCI/etc. bus probe sem.
2096 *
2097 * RETURNS:
2098 * Zero on success, negative errno otherwise.
2099 */
2100
2101 int ata_bus_probe(struct ata_port *ap)
2102 {
2103 unsigned int classes[ATA_MAX_DEVICES];
2104 int tries[ATA_MAX_DEVICES];
2105 int i, rc;
2106 struct ata_device *dev;
2107
2108 ata_port_probe(ap);
2109
2110 for (i = 0; i < ATA_MAX_DEVICES; i++)
2111 tries[i] = ATA_PROBE_MAX_TRIES;
2112
2113 retry:
2114 /* reset and determine device classes */
2115 ap->ops->phy_reset(ap);
2116
2117 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2118 dev = &ap->device[i];
2119
2120 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2121 dev->class != ATA_DEV_UNKNOWN)
2122 classes[dev->devno] = dev->class;
2123 else
2124 classes[dev->devno] = ATA_DEV_NONE;
2125
2126 dev->class = ATA_DEV_UNKNOWN;
2127 }
2128
2129 ata_port_probe(ap);
2130
2131 /* after the reset the device state is PIO 0 and the controller
2132 state is undefined. Record the mode */
2133
2134 for (i = 0; i < ATA_MAX_DEVICES; i++)
2135 ap->device[i].pio_mode = XFER_PIO_0;
2136
2137 /* read IDENTIFY page and configure devices. We have to do the identify
2138 specific sequence bass-ackwards so that PDIAG- is released by
2139 the slave device */
2140
2141 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2142 dev = &ap->device[i];
2143
2144 if (tries[i])
2145 dev->class = classes[i];
2146
2147 if (!ata_dev_enabled(dev))
2148 continue;
2149
2150 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2151 dev->id);
2152 if (rc)
2153 goto fail;
2154 }
2155
2156 /* Now ask for the cable type as PDIAG- should have been released */
2157 if (ap->ops->cable_detect)
2158 ap->cbl = ap->ops->cable_detect(ap);
2159
2160 /* After the identify sequence we can now set up the devices. We do
2161 this in the normal order so that the user doesn't get confused */
2162
2163 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2164 dev = &ap->device[i];
2165 if (!ata_dev_enabled(dev))
2166 continue;
2167
2168 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2169 rc = ata_dev_configure(dev);
2170 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2171 if (rc)
2172 goto fail;
2173 }
2174
2175 /* configure transfer mode */
2176 rc = ata_set_mode(ap, &dev);
2177 if (rc)
2178 goto fail;
2179
2180 for (i = 0; i < ATA_MAX_DEVICES; i++)
2181 if (ata_dev_enabled(&ap->device[i]))
2182 return 0;
2183
2184 /* no device present, disable port */
2185 ata_port_disable(ap);
2186 ap->ops->port_disable(ap);
2187 return -ENODEV;
2188
2189 fail:
2190 tries[dev->devno]--;
2191
2192 switch (rc) {
2193 case -EINVAL:
2194 /* eeek, something went very wrong, give up */
2195 tries[dev->devno] = 0;
2196 break;
2197
2198 case -ENODEV:
2199 /* give it just one more chance */
2200 tries[dev->devno] = min(tries[dev->devno], 1);
2201 case -EIO:
2202 if (tries[dev->devno] == 1) {
2203 /* This is the last chance, better to slow
2204 * down than lose it.
2205 */
2206 sata_down_spd_limit(ap);
2207 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2208 }
2209 }
2210
2211 if (!tries[dev->devno])
2212 ata_dev_disable(dev);
2213
2214 goto retry;
2215 }
2216
2217 /**
2218 * ata_port_probe - Mark port as enabled
2219 * @ap: Port for which we indicate enablement
2220 *
2221 * Modify @ap data structure such that the system
2222 * thinks that the entire port is enabled.
2223 *
2224 * LOCKING: host lock, or some other form of
2225 * serialization.
2226 */
2227
2228 void ata_port_probe(struct ata_port *ap)
2229 {
2230 ap->flags &= ~ATA_FLAG_DISABLED;
2231 }
2232
2233 /**
2234 * sata_print_link_status - Print SATA link status
2235 * @ap: SATA port to printk link status about
2236 *
2237 * This function prints link speed and status of a SATA link.
2238 *
2239 * LOCKING:
2240 * None.
2241 */
2242 void sata_print_link_status(struct ata_port *ap)
2243 {
2244 u32 sstatus, scontrol, tmp;
2245
2246 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2247 return;
2248 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2249
2250 if (ata_port_online(ap)) {
2251 tmp = (sstatus >> 4) & 0xf;
2252 ata_port_printk(ap, KERN_INFO,
2253 "SATA link up %s (SStatus %X SControl %X)\n",
2254 sata_spd_string(tmp), sstatus, scontrol);
2255 } else {
2256 ata_port_printk(ap, KERN_INFO,
2257 "SATA link down (SStatus %X SControl %X)\n",
2258 sstatus, scontrol);
2259 }
2260 }
2261
2262 /**
2263 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2264 * @ap: SATA port associated with target SATA PHY.
2265 *
2266 * This function issues commands to standard SATA Sxxx
2267 * PHY registers, to wake up the phy (and device), and
2268 * clear any reset condition.
2269 *
2270 * LOCKING:
2271 * PCI/etc. bus probe sem.
2272 *
2273 */
2274 void __sata_phy_reset(struct ata_port *ap)
2275 {
2276 u32 sstatus;
2277 unsigned long timeout = jiffies + (HZ * 5);
2278
2279 if (ap->flags & ATA_FLAG_SATA_RESET) {
2280 /* issue phy wake/reset */
2281 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2282 /* Couldn't find anything in SATA I/II specs, but
2283 * AHCI-1.1 10.4.2 says at least 1 ms. */
2284 mdelay(1);
2285 }
2286 /* phy wake/clear reset */
2287 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2288
2289 /* wait for phy to become ready, if necessary */
2290 do {
2291 msleep(200);
2292 sata_scr_read(ap, SCR_STATUS, &sstatus);
2293 if ((sstatus & 0xf) != 1)
2294 break;
2295 } while (time_before(jiffies, timeout));
2296
2297 /* print link status */
2298 sata_print_link_status(ap);
2299
2300 /* TODO: phy layer with polling, timeouts, etc. */
2301 if (!ata_port_offline(ap))
2302 ata_port_probe(ap);
2303 else
2304 ata_port_disable(ap);
2305
2306 if (ap->flags & ATA_FLAG_DISABLED)
2307 return;
2308
2309 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2310 ata_port_disable(ap);
2311 return;
2312 }
2313
2314 ap->cbl = ATA_CBL_SATA;
2315 }
2316
2317 /**
2318 * sata_phy_reset - Reset SATA bus.
2319 * @ap: SATA port associated with target SATA PHY.
2320 *
2321 * This function resets the SATA bus, and then probes
2322 * the bus for devices.
2323 *
2324 * LOCKING:
2325 * PCI/etc. bus probe sem.
2326 *
2327 */
2328 void sata_phy_reset(struct ata_port *ap)
2329 {
2330 __sata_phy_reset(ap);
2331 if (ap->flags & ATA_FLAG_DISABLED)
2332 return;
2333 ata_bus_reset(ap);
2334 }
2335
2336 /**
2337 * ata_dev_pair - return other device on cable
2338 * @adev: device
2339 *
2340 * Obtain the other device on the same cable, or if none is
2341 * present NULL is returned
2342 */
2343
2344 struct ata_device *ata_dev_pair(struct ata_device *adev)
2345 {
2346 struct ata_port *ap = adev->ap;
2347 struct ata_device *pair = &ap->device[1 - adev->devno];
2348 if (!ata_dev_enabled(pair))
2349 return NULL;
2350 return pair;
2351 }
2352
2353 /**
2354 * ata_port_disable - Disable port.
2355 * @ap: Port to be disabled.
2356 *
2357 * Modify @ap data structure such that the system
2358 * thinks that the entire port is disabled, and should
2359 * never attempt to probe or communicate with devices
2360 * on this port.
2361 *
2362 * LOCKING: host lock, or some other form of
2363 * serialization.
2364 */
2365
2366 void ata_port_disable(struct ata_port *ap)
2367 {
2368 ap->device[0].class = ATA_DEV_NONE;
2369 ap->device[1].class = ATA_DEV_NONE;
2370 ap->flags |= ATA_FLAG_DISABLED;
2371 }
2372
2373 /**
2374 * sata_down_spd_limit - adjust SATA spd limit downward
2375 * @ap: Port to adjust SATA spd limit for
2376 *
2377 * Adjust SATA spd limit of @ap downward. Note that this
2378 * function only adjusts the limit. The change must be applied
2379 * using sata_set_spd().
2380 *
2381 * LOCKING:
2382 * Inherited from caller.
2383 *
2384 * RETURNS:
2385 * 0 on success, negative errno on failure
2386 */
2387 int sata_down_spd_limit(struct ata_port *ap)
2388 {
2389 u32 sstatus, spd, mask;
2390 int rc, highbit;
2391
2392 if (!sata_scr_valid(ap))
2393 return -EOPNOTSUPP;
2394
2395 /* If SCR can be read, use it to determine the current SPD.
2396 * If not, use cached value in ap->sata_spd.
2397 */
2398 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2399 if (rc == 0)
2400 spd = (sstatus >> 4) & 0xf;
2401 else
2402 spd = ap->sata_spd;
2403
2404 mask = ap->sata_spd_limit;
2405 if (mask <= 1)
2406 return -EINVAL;
2407
2408 /* unconditionally mask off the highest bit */
2409 highbit = fls(mask) - 1;
2410 mask &= ~(1 << highbit);
2411
2412 /* Mask off all speeds higher than or equal to the current
2413 * one. Force 1.5Gbps if current SPD is not available.
2414 */
2415 if (spd > 1)
2416 mask &= (1 << (spd - 1)) - 1;
2417 else
2418 mask &= 1;
2419
2420 /* were we already at the bottom? */
2421 if (!mask)
2422 return -EINVAL;
2423
2424 ap->sata_spd_limit = mask;
2425
2426 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2427 sata_spd_string(fls(mask)));
2428
2429 return 0;
2430 }
2431
2432 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2433 {
2434 u32 spd, limit;
2435
2436 if (ap->sata_spd_limit == UINT_MAX)
2437 limit = 0;
2438 else
2439 limit = fls(ap->sata_spd_limit);
2440
2441 spd = (*scontrol >> 4) & 0xf;
2442 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2443
2444 return spd != limit;
2445 }
2446
2447 /**
2448 * sata_set_spd_needed - is SATA spd configuration needed
2449 * @ap: Port in question
2450 *
2451 * Test whether the spd limit in SControl matches
2452 * @ap->sata_spd_limit. This function is used to determine
2453 * whether hardreset is necessary to apply SATA spd
2454 * configuration.
2455 *
2456 * LOCKING:
2457 * Inherited from caller.
2458 *
2459 * RETURNS:
2460 * 1 if SATA spd configuration is needed, 0 otherwise.
2461 */
2462 int sata_set_spd_needed(struct ata_port *ap)
2463 {
2464 u32 scontrol;
2465
2466 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2467 return 0;
2468
2469 return __sata_set_spd_needed(ap, &scontrol);
2470 }
2471
2472 /**
2473 * sata_set_spd - set SATA spd according to spd limit
2474 * @ap: Port to set SATA spd for
2475 *
2476 * Set SATA spd of @ap according to sata_spd_limit.
2477 *
2478 * LOCKING:
2479 * Inherited from caller.
2480 *
2481 * RETURNS:
2482 * 0 if spd doesn't need to be changed, 1 if spd has been
2483 * changed. Negative errno if SCR registers are inaccessible.
2484 */
2485 int sata_set_spd(struct ata_port *ap)
2486 {
2487 u32 scontrol;
2488 int rc;
2489
2490 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2491 return rc;
2492
2493 if (!__sata_set_spd_needed(ap, &scontrol))
2494 return 0;
2495
2496 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2497 return rc;
2498
2499 return 1;
2500 }
2501
2502 /*
2503 * This mode timing computation functionality is ported over from
2504 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2505 */
2506 /*
2507 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2508 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2509 * for UDMA6, which is currently supported only by Maxtor drives.
2510 *
2511 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2512 */
2513
2514 static const struct ata_timing ata_timing[] = {
2515
2516 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2517 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2518 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2519 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2520
2521 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2522 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2523 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2524 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2525 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2526
2527 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2528
2529 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2530 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2531 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2532
2533 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2534 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2535 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2536
2537 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2538 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2539 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2540 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2541
2542 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2543 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2544 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2545
2546 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2547
2548 { 0xFF }
2549 };
2550
2551 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2552 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2553
2554 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2555 {
2556 q->setup = EZ(t->setup * 1000, T);
2557 q->act8b = EZ(t->act8b * 1000, T);
2558 q->rec8b = EZ(t->rec8b * 1000, T);
2559 q->cyc8b = EZ(t->cyc8b * 1000, T);
2560 q->active = EZ(t->active * 1000, T);
2561 q->recover = EZ(t->recover * 1000, T);
2562 q->cycle = EZ(t->cycle * 1000, T);
2563 q->udma = EZ(t->udma * 1000, UT);
2564 }
2565
2566 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2567 struct ata_timing *m, unsigned int what)
2568 {
2569 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2570 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2571 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2572 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2573 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2574 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2575 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2576 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2577 }
2578
2579 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2580 {
2581 const struct ata_timing *t;
2582
2583 for (t = ata_timing; t->mode != speed; t++)
2584 if (t->mode == 0xFF)
2585 return NULL;
2586 return t;
2587 }
2588
2589 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2590 struct ata_timing *t, int T, int UT)
2591 {
2592 const struct ata_timing *s;
2593 struct ata_timing p;
2594
2595 /*
2596 * Find the mode.
2597 */
2598
2599 if (!(s = ata_timing_find_mode(speed)))
2600 return -EINVAL;
2601
2602 memcpy(t, s, sizeof(*s));
2603
2604 /*
2605 * If the drive is an EIDE drive, it can tell us it needs extended
2606 * PIO/MW_DMA cycle timing.
2607 */
2608
2609 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2610 memset(&p, 0, sizeof(p));
2611 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2612 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2613 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2614 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2615 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2616 }
2617 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2618 }
2619
2620 /*
2621 * Convert the timing to bus clock counts.
2622 */
2623
2624 ata_timing_quantize(t, t, T, UT);
2625
2626 /*
2627 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2628 * S.M.A.R.T * and some other commands. We have to ensure that the
2629 * DMA cycle timing is slower/equal than the fastest PIO timing.
2630 */
2631
2632 if (speed > XFER_PIO_6) {
2633 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2634 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2635 }
2636
2637 /*
2638 * Lengthen active & recovery time so that cycle time is correct.
2639 */
2640
2641 if (t->act8b + t->rec8b < t->cyc8b) {
2642 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2643 t->rec8b = t->cyc8b - t->act8b;
2644 }
2645
2646 if (t->active + t->recover < t->cycle) {
2647 t->active += (t->cycle - (t->active + t->recover)) / 2;
2648 t->recover = t->cycle - t->active;
2649 }
2650
2651 /* In a few cases quantisation may produce enough errors to
2652 leave t->cycle too low for the sum of active and recovery
2653 if so we must correct this */
2654 if (t->active + t->recover > t->cycle)
2655 t->cycle = t->active + t->recover;
2656
2657 return 0;
2658 }
2659
2660 /**
2661 * ata_down_xfermask_limit - adjust dev xfer masks downward
2662 * @dev: Device to adjust xfer masks
2663 * @sel: ATA_DNXFER_* selector
2664 *
2665 * Adjust xfer masks of @dev downward. Note that this function
2666 * does not apply the change. Invoking ata_set_mode() afterwards
2667 * will apply the limit.
2668 *
2669 * LOCKING:
2670 * Inherited from caller.
2671 *
2672 * RETURNS:
2673 * 0 on success, negative errno on failure
2674 */
2675 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2676 {
2677 char buf[32];
2678 unsigned int orig_mask, xfer_mask;
2679 unsigned int pio_mask, mwdma_mask, udma_mask;
2680 int quiet, highbit;
2681
2682 quiet = !!(sel & ATA_DNXFER_QUIET);
2683 sel &= ~ATA_DNXFER_QUIET;
2684
2685 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2686 dev->mwdma_mask,
2687 dev->udma_mask);
2688 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2689
2690 switch (sel) {
2691 case ATA_DNXFER_PIO:
2692 highbit = fls(pio_mask) - 1;
2693 pio_mask &= ~(1 << highbit);
2694 break;
2695
2696 case ATA_DNXFER_DMA:
2697 if (udma_mask) {
2698 highbit = fls(udma_mask) - 1;
2699 udma_mask &= ~(1 << highbit);
2700 if (!udma_mask)
2701 return -ENOENT;
2702 } else if (mwdma_mask) {
2703 highbit = fls(mwdma_mask) - 1;
2704 mwdma_mask &= ~(1 << highbit);
2705 if (!mwdma_mask)
2706 return -ENOENT;
2707 }
2708 break;
2709
2710 case ATA_DNXFER_40C:
2711 udma_mask &= ATA_UDMA_MASK_40C;
2712 break;
2713
2714 case ATA_DNXFER_FORCE_PIO0:
2715 pio_mask &= 1;
2716 case ATA_DNXFER_FORCE_PIO:
2717 mwdma_mask = 0;
2718 udma_mask = 0;
2719 break;
2720
2721 default:
2722 BUG();
2723 }
2724
2725 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2726
2727 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2728 return -ENOENT;
2729
2730 if (!quiet) {
2731 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2732 snprintf(buf, sizeof(buf), "%s:%s",
2733 ata_mode_string(xfer_mask),
2734 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2735 else
2736 snprintf(buf, sizeof(buf), "%s",
2737 ata_mode_string(xfer_mask));
2738
2739 ata_dev_printk(dev, KERN_WARNING,
2740 "limiting speed to %s\n", buf);
2741 }
2742
2743 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2744 &dev->udma_mask);
2745
2746 return 0;
2747 }
2748
2749 static int ata_dev_set_mode(struct ata_device *dev)
2750 {
2751 struct ata_eh_context *ehc = &dev->ap->eh_context;
2752 unsigned int err_mask;
2753 int rc;
2754
2755 dev->flags &= ~ATA_DFLAG_PIO;
2756 if (dev->xfer_shift == ATA_SHIFT_PIO)
2757 dev->flags |= ATA_DFLAG_PIO;
2758
2759 err_mask = ata_dev_set_xfermode(dev);
2760 /* Old CFA may refuse this command, which is just fine */
2761 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2762 err_mask &= ~AC_ERR_DEV;
2763
2764 if (err_mask) {
2765 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2766 "(err_mask=0x%x)\n", err_mask);
2767 return -EIO;
2768 }
2769
2770 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2771 rc = ata_dev_revalidate(dev, 0);
2772 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2773 if (rc)
2774 return rc;
2775
2776 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2777 dev->xfer_shift, (int)dev->xfer_mode);
2778
2779 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2780 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2781 return 0;
2782 }
2783
2784 /**
2785 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2786 * @ap: port on which timings will be programmed
2787 * @r_failed_dev: out paramter for failed device
2788 *
2789 * Standard implementation of the function used to tune and set
2790 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2791 * ata_dev_set_mode() fails, pointer to the failing device is
2792 * returned in @r_failed_dev.
2793 *
2794 * LOCKING:
2795 * PCI/etc. bus probe sem.
2796 *
2797 * RETURNS:
2798 * 0 on success, negative errno otherwise
2799 */
2800
2801 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2802 {
2803 struct ata_device *dev;
2804 int i, rc = 0, used_dma = 0, found = 0;
2805
2806
2807 /* step 1: calculate xfer_mask */
2808 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2809 unsigned int pio_mask, dma_mask;
2810
2811 dev = &ap->device[i];
2812
2813 if (!ata_dev_enabled(dev))
2814 continue;
2815
2816 ata_dev_xfermask(dev);
2817
2818 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2819 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2820 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2821 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2822
2823 found = 1;
2824 if (dev->dma_mode)
2825 used_dma = 1;
2826 }
2827 if (!found)
2828 goto out;
2829
2830 /* step 2: always set host PIO timings */
2831 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2832 dev = &ap->device[i];
2833 if (!ata_dev_enabled(dev))
2834 continue;
2835
2836 if (!dev->pio_mode) {
2837 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2838 rc = -EINVAL;
2839 goto out;
2840 }
2841
2842 dev->xfer_mode = dev->pio_mode;
2843 dev->xfer_shift = ATA_SHIFT_PIO;
2844 if (ap->ops->set_piomode)
2845 ap->ops->set_piomode(ap, dev);
2846 }
2847
2848 /* step 3: set host DMA timings */
2849 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2850 dev = &ap->device[i];
2851
2852 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2853 continue;
2854
2855 dev->xfer_mode = dev->dma_mode;
2856 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2857 if (ap->ops->set_dmamode)
2858 ap->ops->set_dmamode(ap, dev);
2859 }
2860
2861 /* step 4: update devices' xfer mode */
2862 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2863 dev = &ap->device[i];
2864
2865 /* don't update suspended devices' xfer mode */
2866 if (!ata_dev_enabled(dev))
2867 continue;
2868
2869 rc = ata_dev_set_mode(dev);
2870 if (rc)
2871 goto out;
2872 }
2873
2874 /* Record simplex status. If we selected DMA then the other
2875 * host channels are not permitted to do so.
2876 */
2877 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2878 ap->host->simplex_claimed = ap;
2879
2880 out:
2881 if (rc)
2882 *r_failed_dev = dev;
2883 return rc;
2884 }
2885
2886 /**
2887 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2888 * @ap: port on which timings will be programmed
2889 * @r_failed_dev: out paramter for failed device
2890 *
2891 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2892 * ata_set_mode() fails, pointer to the failing device is
2893 * returned in @r_failed_dev.
2894 *
2895 * LOCKING:
2896 * PCI/etc. bus probe sem.
2897 *
2898 * RETURNS:
2899 * 0 on success, negative errno otherwise
2900 */
2901 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2902 {
2903 /* has private set_mode? */
2904 if (ap->ops->set_mode)
2905 return ap->ops->set_mode(ap, r_failed_dev);
2906 return ata_do_set_mode(ap, r_failed_dev);
2907 }
2908
2909 /**
2910 * ata_tf_to_host - issue ATA taskfile to host controller
2911 * @ap: port to which command is being issued
2912 * @tf: ATA taskfile register set
2913 *
2914 * Issues ATA taskfile register set to ATA host controller,
2915 * with proper synchronization with interrupt handler and
2916 * other threads.
2917 *
2918 * LOCKING:
2919 * spin_lock_irqsave(host lock)
2920 */
2921
2922 static inline void ata_tf_to_host(struct ata_port *ap,
2923 const struct ata_taskfile *tf)
2924 {
2925 ap->ops->tf_load(ap, tf);
2926 ap->ops->exec_command(ap, tf);
2927 }
2928
2929 /**
2930 * ata_busy_sleep - sleep until BSY clears, or timeout
2931 * @ap: port containing status register to be polled
2932 * @tmout_pat: impatience timeout
2933 * @tmout: overall timeout
2934 *
2935 * Sleep until ATA Status register bit BSY clears,
2936 * or a timeout occurs.
2937 *
2938 * LOCKING:
2939 * Kernel thread context (may sleep).
2940 *
2941 * RETURNS:
2942 * 0 on success, -errno otherwise.
2943 */
2944 int ata_busy_sleep(struct ata_port *ap,
2945 unsigned long tmout_pat, unsigned long tmout)
2946 {
2947 unsigned long timer_start, timeout;
2948 u8 status;
2949
2950 status = ata_busy_wait(ap, ATA_BUSY, 300);
2951 timer_start = jiffies;
2952 timeout = timer_start + tmout_pat;
2953 while (status != 0xff && (status & ATA_BUSY) &&
2954 time_before(jiffies, timeout)) {
2955 msleep(50);
2956 status = ata_busy_wait(ap, ATA_BUSY, 3);
2957 }
2958
2959 if (status != 0xff && (status & ATA_BUSY))
2960 ata_port_printk(ap, KERN_WARNING,
2961 "port is slow to respond, please be patient "
2962 "(Status 0x%x)\n", status);
2963
2964 timeout = timer_start + tmout;
2965 while (status != 0xff && (status & ATA_BUSY) &&
2966 time_before(jiffies, timeout)) {
2967 msleep(50);
2968 status = ata_chk_status(ap);
2969 }
2970
2971 if (status == 0xff)
2972 return -ENODEV;
2973
2974 if (status & ATA_BUSY) {
2975 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2976 "(%lu secs, Status 0x%x)\n",
2977 tmout / HZ, status);
2978 return -EBUSY;
2979 }
2980
2981 return 0;
2982 }
2983
2984 /**
2985 * ata_wait_ready - sleep until BSY clears, or timeout
2986 * @ap: port containing status register to be polled
2987 * @deadline: deadline jiffies for the operation
2988 *
2989 * Sleep until ATA Status register bit BSY clears, or timeout
2990 * occurs.
2991 *
2992 * LOCKING:
2993 * Kernel thread context (may sleep).
2994 *
2995 * RETURNS:
2996 * 0 on success, -errno otherwise.
2997 */
2998 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2999 {
3000 unsigned long start = jiffies;
3001 int warned = 0;
3002
3003 while (1) {
3004 u8 status = ata_chk_status(ap);
3005 unsigned long now = jiffies;
3006
3007 if (!(status & ATA_BUSY))
3008 return 0;
3009 if (!ata_port_online(ap) && status == 0xff)
3010 return -ENODEV;
3011 if (time_after(now, deadline))
3012 return -EBUSY;
3013
3014 if (!warned && time_after(now, start + 5 * HZ) &&
3015 (deadline - now > 3 * HZ)) {
3016 ata_port_printk(ap, KERN_WARNING,
3017 "port is slow to respond, please be patient "
3018 "(Status 0x%x)\n", status);
3019 warned = 1;
3020 }
3021
3022 msleep(50);
3023 }
3024 }
3025
3026 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3027 unsigned long deadline)
3028 {
3029 struct ata_ioports *ioaddr = &ap->ioaddr;
3030 unsigned int dev0 = devmask & (1 << 0);
3031 unsigned int dev1 = devmask & (1 << 1);
3032 int rc, ret = 0;
3033
3034 /* if device 0 was found in ata_devchk, wait for its
3035 * BSY bit to clear
3036 */
3037 if (dev0) {
3038 rc = ata_wait_ready(ap, deadline);
3039 if (rc) {
3040 if (rc != -ENODEV)
3041 return rc;
3042 ret = rc;
3043 }
3044 }
3045
3046 /* if device 1 was found in ata_devchk, wait for register
3047 * access briefly, then wait for BSY to clear.
3048 */
3049 if (dev1) {
3050 int i;
3051
3052 ap->ops->dev_select(ap, 1);
3053
3054 /* Wait for register access. Some ATAPI devices fail
3055 * to set nsect/lbal after reset, so don't waste too
3056 * much time on it. We're gonna wait for !BSY anyway.
3057 */
3058 for (i = 0; i < 2; i++) {
3059 u8 nsect, lbal;
3060
3061 nsect = ioread8(ioaddr->nsect_addr);
3062 lbal = ioread8(ioaddr->lbal_addr);
3063 if ((nsect == 1) && (lbal == 1))
3064 break;
3065 msleep(50); /* give drive a breather */
3066 }
3067
3068 rc = ata_wait_ready(ap, deadline);
3069 if (rc) {
3070 if (rc != -ENODEV)
3071 return rc;
3072 ret = rc;
3073 }
3074 }
3075
3076 /* is all this really necessary? */
3077 ap->ops->dev_select(ap, 0);
3078 if (dev1)
3079 ap->ops->dev_select(ap, 1);
3080 if (dev0)
3081 ap->ops->dev_select(ap, 0);
3082
3083 return ret;
3084 }
3085
3086 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3087 unsigned long deadline)
3088 {
3089 struct ata_ioports *ioaddr = &ap->ioaddr;
3090
3091 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3092
3093 /* software reset. causes dev0 to be selected */
3094 iowrite8(ap->ctl, ioaddr->ctl_addr);
3095 udelay(20); /* FIXME: flush */
3096 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3097 udelay(20); /* FIXME: flush */
3098 iowrite8(ap->ctl, ioaddr->ctl_addr);
3099
3100 /* spec mandates ">= 2ms" before checking status.
3101 * We wait 150ms, because that was the magic delay used for
3102 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3103 * between when the ATA command register is written, and then
3104 * status is checked. Because waiting for "a while" before
3105 * checking status is fine, post SRST, we perform this magic
3106 * delay here as well.
3107 *
3108 * Old drivers/ide uses the 2mS rule and then waits for ready
3109 */
3110 msleep(150);
3111
3112 /* Before we perform post reset processing we want to see if
3113 * the bus shows 0xFF because the odd clown forgets the D7
3114 * pulldown resistor.
3115 */
3116 if (ata_check_status(ap) == 0xFF)
3117 return -ENODEV;
3118
3119 return ata_bus_post_reset(ap, devmask, deadline);
3120 }
3121
3122 /**
3123 * ata_bus_reset - reset host port and associated ATA channel
3124 * @ap: port to reset
3125 *
3126 * This is typically the first time we actually start issuing
3127 * commands to the ATA channel. We wait for BSY to clear, then
3128 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3129 * result. Determine what devices, if any, are on the channel
3130 * by looking at the device 0/1 error register. Look at the signature
3131 * stored in each device's taskfile registers, to determine if
3132 * the device is ATA or ATAPI.
3133 *
3134 * LOCKING:
3135 * PCI/etc. bus probe sem.
3136 * Obtains host lock.
3137 *
3138 * SIDE EFFECTS:
3139 * Sets ATA_FLAG_DISABLED if bus reset fails.
3140 */
3141
3142 void ata_bus_reset(struct ata_port *ap)
3143 {
3144 struct ata_ioports *ioaddr = &ap->ioaddr;
3145 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3146 u8 err;
3147 unsigned int dev0, dev1 = 0, devmask = 0;
3148 int rc;
3149
3150 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3151
3152 /* determine if device 0/1 are present */
3153 if (ap->flags & ATA_FLAG_SATA_RESET)
3154 dev0 = 1;
3155 else {
3156 dev0 = ata_devchk(ap, 0);
3157 if (slave_possible)
3158 dev1 = ata_devchk(ap, 1);
3159 }
3160
3161 if (dev0)
3162 devmask |= (1 << 0);
3163 if (dev1)
3164 devmask |= (1 << 1);
3165
3166 /* select device 0 again */
3167 ap->ops->dev_select(ap, 0);
3168
3169 /* issue bus reset */
3170 if (ap->flags & ATA_FLAG_SRST) {
3171 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3172 if (rc && rc != -ENODEV)
3173 goto err_out;
3174 }
3175
3176 /*
3177 * determine by signature whether we have ATA or ATAPI devices
3178 */
3179 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3180 if ((slave_possible) && (err != 0x81))
3181 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3182
3183 /* is double-select really necessary? */
3184 if (ap->device[1].class != ATA_DEV_NONE)
3185 ap->ops->dev_select(ap, 1);
3186 if (ap->device[0].class != ATA_DEV_NONE)
3187 ap->ops->dev_select(ap, 0);
3188
3189 /* if no devices were detected, disable this port */
3190 if ((ap->device[0].class == ATA_DEV_NONE) &&
3191 (ap->device[1].class == ATA_DEV_NONE))
3192 goto err_out;
3193
3194 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3195 /* set up device control for ATA_FLAG_SATA_RESET */
3196 iowrite8(ap->ctl, ioaddr->ctl_addr);
3197 }
3198
3199 DPRINTK("EXIT\n");
3200 return;
3201
3202 err_out:
3203 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3204 ap->ops->port_disable(ap);
3205
3206 DPRINTK("EXIT\n");
3207 }
3208
3209 /**
3210 * sata_phy_debounce - debounce SATA phy status
3211 * @ap: ATA port to debounce SATA phy status for
3212 * @params: timing parameters { interval, duratinon, timeout } in msec
3213 * @deadline: deadline jiffies for the operation
3214 *
3215 * Make sure SStatus of @ap reaches stable state, determined by
3216 * holding the same value where DET is not 1 for @duration polled
3217 * every @interval, before @timeout. Timeout constraints the
3218 * beginning of the stable state. Because DET gets stuck at 1 on
3219 * some controllers after hot unplugging, this functions waits
3220 * until timeout then returns 0 if DET is stable at 1.
3221 *
3222 * @timeout is further limited by @deadline. The sooner of the
3223 * two is used.
3224 *
3225 * LOCKING:
3226 * Kernel thread context (may sleep)
3227 *
3228 * RETURNS:
3229 * 0 on success, -errno on failure.
3230 */
3231 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3232 unsigned long deadline)
3233 {
3234 unsigned long interval_msec = params[0];
3235 unsigned long duration = msecs_to_jiffies(params[1]);
3236 unsigned long last_jiffies, t;
3237 u32 last, cur;
3238 int rc;
3239
3240 t = jiffies + msecs_to_jiffies(params[2]);
3241 if (time_before(t, deadline))
3242 deadline = t;
3243
3244 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3245 return rc;
3246 cur &= 0xf;
3247
3248 last = cur;
3249 last_jiffies = jiffies;
3250
3251 while (1) {
3252 msleep(interval_msec);
3253 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3254 return rc;
3255 cur &= 0xf;
3256
3257 /* DET stable? */
3258 if (cur == last) {
3259 if (cur == 1 && time_before(jiffies, deadline))
3260 continue;
3261 if (time_after(jiffies, last_jiffies + duration))
3262 return 0;
3263 continue;
3264 }
3265
3266 /* unstable, start over */
3267 last = cur;
3268 last_jiffies = jiffies;
3269
3270 /* Check deadline. If debouncing failed, return
3271 * -EPIPE to tell upper layer to lower link speed.
3272 */
3273 if (time_after(jiffies, deadline))
3274 return -EPIPE;
3275 }
3276 }
3277
3278 /**
3279 * sata_phy_resume - resume SATA phy
3280 * @ap: ATA port to resume SATA phy for
3281 * @params: timing parameters { interval, duratinon, timeout } in msec
3282 * @deadline: deadline jiffies for the operation
3283 *
3284 * Resume SATA phy of @ap and debounce it.
3285 *
3286 * LOCKING:
3287 * Kernel thread context (may sleep)
3288 *
3289 * RETURNS:
3290 * 0 on success, -errno on failure.
3291 */
3292 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3293 unsigned long deadline)
3294 {
3295 u32 scontrol;
3296 int rc;
3297
3298 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3299 return rc;
3300
3301 scontrol = (scontrol & 0x0f0) | 0x300;
3302
3303 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3304 return rc;
3305
3306 /* Some PHYs react badly if SStatus is pounded immediately
3307 * after resuming. Delay 200ms before debouncing.
3308 */
3309 msleep(200);
3310
3311 return sata_phy_debounce(ap, params, deadline);
3312 }
3313
3314 /**
3315 * ata_std_prereset - prepare for reset
3316 * @ap: ATA port to be reset
3317 * @deadline: deadline jiffies for the operation
3318 *
3319 * @ap is about to be reset. Initialize it. Failure from
3320 * prereset makes libata abort whole reset sequence and give up
3321 * that port, so prereset should be best-effort. It does its
3322 * best to prepare for reset sequence but if things go wrong, it
3323 * should just whine, not fail.
3324 *
3325 * LOCKING:
3326 * Kernel thread context (may sleep)
3327 *
3328 * RETURNS:
3329 * 0 on success, -errno otherwise.
3330 */
3331 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3332 {
3333 struct ata_eh_context *ehc = &ap->eh_context;
3334 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3335 int rc;
3336
3337 /* handle link resume */
3338 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3339 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3340 ehc->i.action |= ATA_EH_HARDRESET;
3341
3342 /* if we're about to do hardreset, nothing more to do */
3343 if (ehc->i.action & ATA_EH_HARDRESET)
3344 return 0;
3345
3346 /* if SATA, resume phy */
3347 if (ap->flags & ATA_FLAG_SATA) {
3348 rc = sata_phy_resume(ap, timing, deadline);
3349 /* whine about phy resume failure but proceed */
3350 if (rc && rc != -EOPNOTSUPP)
3351 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3352 "link for reset (errno=%d)\n", rc);
3353 }
3354
3355 /* Wait for !BSY if the controller can wait for the first D2H
3356 * Reg FIS and we don't know that no device is attached.
3357 */
3358 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3359 rc = ata_wait_ready(ap, deadline);
3360 if (rc && rc != -ENODEV) {
3361 ata_port_printk(ap, KERN_WARNING, "device not ready "
3362 "(errno=%d), forcing hardreset\n", rc);
3363 ehc->i.action |= ATA_EH_HARDRESET;
3364 }
3365 }
3366
3367 return 0;
3368 }
3369
3370 /**
3371 * ata_std_softreset - reset host port via ATA SRST
3372 * @ap: port to reset
3373 * @classes: resulting classes of attached devices
3374 * @deadline: deadline jiffies for the operation
3375 *
3376 * Reset host port using ATA SRST.
3377 *
3378 * LOCKING:
3379 * Kernel thread context (may sleep)
3380 *
3381 * RETURNS:
3382 * 0 on success, -errno otherwise.
3383 */
3384 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3385 unsigned long deadline)
3386 {
3387 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3388 unsigned int devmask = 0;
3389 int rc;
3390 u8 err;
3391
3392 DPRINTK("ENTER\n");
3393
3394 if (ata_port_offline(ap)) {
3395 classes[0] = ATA_DEV_NONE;
3396 goto out;
3397 }
3398
3399 /* determine if device 0/1 are present */
3400 if (ata_devchk(ap, 0))
3401 devmask |= (1 << 0);
3402 if (slave_possible && ata_devchk(ap, 1))
3403 devmask |= (1 << 1);
3404
3405 /* select device 0 again */
3406 ap->ops->dev_select(ap, 0);
3407
3408 /* issue bus reset */
3409 DPRINTK("about to softreset, devmask=%x\n", devmask);
3410 rc = ata_bus_softreset(ap, devmask, deadline);
3411 /* if link is occupied, -ENODEV too is an error */
3412 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3413 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3414 return rc;
3415 }
3416
3417 /* determine by signature whether we have ATA or ATAPI devices */
3418 classes[0] = ata_dev_try_classify(ap, 0, &err);
3419 if (slave_possible && err != 0x81)
3420 classes[1] = ata_dev_try_classify(ap, 1, &err);
3421
3422 out:
3423 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3424 return 0;
3425 }
3426
3427 /**
3428 * sata_port_hardreset - reset port via SATA phy reset
3429 * @ap: port to reset
3430 * @timing: timing parameters { interval, duratinon, timeout } in msec
3431 * @deadline: deadline jiffies for the operation
3432 *
3433 * SATA phy-reset host port using DET bits of SControl register.
3434 *
3435 * LOCKING:
3436 * Kernel thread context (may sleep)
3437 *
3438 * RETURNS:
3439 * 0 on success, -errno otherwise.
3440 */
3441 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3442 unsigned long deadline)
3443 {
3444 u32 scontrol;
3445 int rc;
3446
3447 DPRINTK("ENTER\n");
3448
3449 if (sata_set_spd_needed(ap)) {
3450 /* SATA spec says nothing about how to reconfigure
3451 * spd. To be on the safe side, turn off phy during
3452 * reconfiguration. This works for at least ICH7 AHCI
3453 * and Sil3124.
3454 */
3455 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3456 goto out;
3457
3458 scontrol = (scontrol & 0x0f0) | 0x304;
3459
3460 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3461 goto out;
3462
3463 sata_set_spd(ap);
3464 }
3465
3466 /* issue phy wake/reset */
3467 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3468 goto out;
3469
3470 scontrol = (scontrol & 0x0f0) | 0x301;
3471
3472 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3473 goto out;
3474
3475 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3476 * 10.4.2 says at least 1 ms.
3477 */
3478 msleep(1);
3479
3480 /* bring phy back */
3481 rc = sata_phy_resume(ap, timing, deadline);
3482 out:
3483 DPRINTK("EXIT, rc=%d\n", rc);
3484 return rc;
3485 }
3486
3487 /**
3488 * sata_std_hardreset - reset host port via SATA phy reset
3489 * @ap: port to reset
3490 * @class: resulting class of attached device
3491 * @deadline: deadline jiffies for the operation
3492 *
3493 * SATA phy-reset host port using DET bits of SControl register,
3494 * wait for !BSY and classify the attached device.
3495 *
3496 * LOCKING:
3497 * Kernel thread context (may sleep)
3498 *
3499 * RETURNS:
3500 * 0 on success, -errno otherwise.
3501 */
3502 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3503 unsigned long deadline)
3504 {
3505 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3506 int rc;
3507
3508 DPRINTK("ENTER\n");
3509
3510 /* do hardreset */
3511 rc = sata_port_hardreset(ap, timing, deadline);
3512 if (rc) {
3513 ata_port_printk(ap, KERN_ERR,
3514 "COMRESET failed (errno=%d)\n", rc);
3515 return rc;
3516 }
3517
3518 /* TODO: phy layer with polling, timeouts, etc. */
3519 if (ata_port_offline(ap)) {
3520 *class = ATA_DEV_NONE;
3521 DPRINTK("EXIT, link offline\n");
3522 return 0;
3523 }
3524
3525 /* wait a while before checking status, see SRST for more info */
3526 msleep(150);
3527
3528 rc = ata_wait_ready(ap, deadline);
3529 /* link occupied, -ENODEV too is an error */
3530 if (rc) {
3531 ata_port_printk(ap, KERN_ERR,
3532 "COMRESET failed (errno=%d)\n", rc);
3533 return rc;
3534 }
3535
3536 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3537
3538 *class = ata_dev_try_classify(ap, 0, NULL);
3539
3540 DPRINTK("EXIT, class=%u\n", *class);
3541 return 0;
3542 }
3543
3544 /**
3545 * ata_std_postreset - standard postreset callback
3546 * @ap: the target ata_port
3547 * @classes: classes of attached devices
3548 *
3549 * This function is invoked after a successful reset. Note that
3550 * the device might have been reset more than once using
3551 * different reset methods before postreset is invoked.
3552 *
3553 * LOCKING:
3554 * Kernel thread context (may sleep)
3555 */
3556 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3557 {
3558 u32 serror;
3559
3560 DPRINTK("ENTER\n");
3561
3562 /* print link status */
3563 sata_print_link_status(ap);
3564
3565 /* clear SError */
3566 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3567 sata_scr_write(ap, SCR_ERROR, serror);
3568
3569 /* is double-select really necessary? */
3570 if (classes[0] != ATA_DEV_NONE)
3571 ap->ops->dev_select(ap, 1);
3572 if (classes[1] != ATA_DEV_NONE)
3573 ap->ops->dev_select(ap, 0);
3574
3575 /* bail out if no device is present */
3576 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3577 DPRINTK("EXIT, no device\n");
3578 return;
3579 }
3580
3581 /* set up device control */
3582 if (ap->ioaddr.ctl_addr)
3583 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3584
3585 DPRINTK("EXIT\n");
3586 }
3587
3588 /**
3589 * ata_dev_same_device - Determine whether new ID matches configured device
3590 * @dev: device to compare against
3591 * @new_class: class of the new device
3592 * @new_id: IDENTIFY page of the new device
3593 *
3594 * Compare @new_class and @new_id against @dev and determine
3595 * whether @dev is the device indicated by @new_class and
3596 * @new_id.
3597 *
3598 * LOCKING:
3599 * None.
3600 *
3601 * RETURNS:
3602 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3603 */
3604 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3605 const u16 *new_id)
3606 {
3607 const u16 *old_id = dev->id;
3608 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3609 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3610
3611 if (dev->class != new_class) {
3612 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3613 dev->class, new_class);
3614 return 0;
3615 }
3616
3617 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3618 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3619 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3620 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3621
3622 if (strcmp(model[0], model[1])) {
3623 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3624 "'%s' != '%s'\n", model[0], model[1]);
3625 return 0;
3626 }
3627
3628 if (strcmp(serial[0], serial[1])) {
3629 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3630 "'%s' != '%s'\n", serial[0], serial[1]);
3631 return 0;
3632 }
3633
3634 return 1;
3635 }
3636
3637 /**
3638 * ata_dev_reread_id - Re-read IDENTIFY data
3639 * @dev: target ATA device
3640 * @readid_flags: read ID flags
3641 *
3642 * Re-read IDENTIFY page and make sure @dev is still attached to
3643 * the port.
3644 *
3645 * LOCKING:
3646 * Kernel thread context (may sleep)
3647 *
3648 * RETURNS:
3649 * 0 on success, negative errno otherwise
3650 */
3651 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3652 {
3653 unsigned int class = dev->class;
3654 u16 *id = (void *)dev->ap->sector_buf;
3655 int rc;
3656
3657 /* read ID data */
3658 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3659 if (rc)
3660 return rc;
3661
3662 /* is the device still there? */
3663 if (!ata_dev_same_device(dev, class, id))
3664 return -ENODEV;
3665
3666 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3667 return 0;
3668 }
3669
3670 /**
3671 * ata_dev_revalidate - Revalidate ATA device
3672 * @dev: device to revalidate
3673 * @readid_flags: read ID flags
3674 *
3675 * Re-read IDENTIFY page, make sure @dev is still attached to the
3676 * port and reconfigure it according to the new IDENTIFY page.
3677 *
3678 * LOCKING:
3679 * Kernel thread context (may sleep)
3680 *
3681 * RETURNS:
3682 * 0 on success, negative errno otherwise
3683 */
3684 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3685 {
3686 u64 n_sectors = dev->n_sectors;
3687 int rc;
3688
3689 if (!ata_dev_enabled(dev))
3690 return -ENODEV;
3691
3692 /* re-read ID */
3693 rc = ata_dev_reread_id(dev, readid_flags);
3694 if (rc)
3695 goto fail;
3696
3697 /* configure device according to the new ID */
3698 rc = ata_dev_configure(dev);
3699 if (rc)
3700 goto fail;
3701
3702 /* verify n_sectors hasn't changed */
3703 if (dev->class == ATA_DEV_ATA && n_sectors &&
3704 dev->n_sectors != n_sectors) {
3705 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3706 "%llu != %llu\n",
3707 (unsigned long long)n_sectors,
3708 (unsigned long long)dev->n_sectors);
3709
3710 /* restore original n_sectors */
3711 dev->n_sectors = n_sectors;
3712
3713 rc = -ENODEV;
3714 goto fail;
3715 }
3716
3717 return 0;
3718
3719 fail:
3720 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3721 return rc;
3722 }
3723
3724 struct ata_blacklist_entry {
3725 const char *model_num;
3726 const char *model_rev;
3727 unsigned long horkage;
3728 };
3729
3730 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3731 /* Devices with DMA related problems under Linux */
3732 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3733 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3734 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3735 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3736 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3737 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3738 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3739 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3740 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3741 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3742 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3743 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3744 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3745 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3746 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3747 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3748 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3749 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3750 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3751 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3752 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3753 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3754 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3755 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3756 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3757 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3758 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3759 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3760 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3761 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3762 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3763 { "IOMEGA ZIP 250 ATAPI Floppy",
3764 NULL, ATA_HORKAGE_NODMA },
3765
3766 /* Weird ATAPI devices */
3767 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3768
3769 /* Devices we expect to fail diagnostics */
3770
3771 /* Devices where NCQ should be avoided */
3772 /* NCQ is slow */
3773 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3774 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3775 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3776 /* NCQ is broken */
3777 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3778 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3779 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3780 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3781 ATA_HORKAGE_NONCQ },
3782 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3783 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3784 /* Blacklist entries taken from Silicon Image 3124/3132
3785 Windows driver .inf file - also several Linux problem reports */
3786 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3787 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3788 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3789 /* Drives which do spurious command completion */
3790 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3791 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3792 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3793 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3794 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3795 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3796 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3797
3798 /* Devices with NCQ limits */
3799
3800 /* End Marker */
3801 { }
3802 };
3803
3804 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3805 {
3806 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3807 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3808 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3809
3810 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3811 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3812
3813 while (ad->model_num) {
3814 if (!strcmp(ad->model_num, model_num)) {
3815 if (ad->model_rev == NULL)
3816 return ad->horkage;
3817 if (!strcmp(ad->model_rev, model_rev))
3818 return ad->horkage;
3819 }
3820 ad++;
3821 }
3822 return 0;
3823 }
3824
3825 static int ata_dma_blacklisted(const struct ata_device *dev)
3826 {
3827 /* We don't support polling DMA.
3828 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3829 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3830 */
3831 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3832 (dev->flags & ATA_DFLAG_CDB_INTR))
3833 return 1;
3834 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3835 }
3836
3837 /**
3838 * ata_dev_xfermask - Compute supported xfermask of the given device
3839 * @dev: Device to compute xfermask for
3840 *
3841 * Compute supported xfermask of @dev and store it in
3842 * dev->*_mask. This function is responsible for applying all
3843 * known limits including host controller limits, device
3844 * blacklist, etc...
3845 *
3846 * LOCKING:
3847 * None.
3848 */
3849 static void ata_dev_xfermask(struct ata_device *dev)
3850 {
3851 struct ata_port *ap = dev->ap;
3852 struct ata_host *host = ap->host;
3853 unsigned long xfer_mask;
3854
3855 /* controller modes available */
3856 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3857 ap->mwdma_mask, ap->udma_mask);
3858
3859 /* drive modes available */
3860 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3861 dev->mwdma_mask, dev->udma_mask);
3862 xfer_mask &= ata_id_xfermask(dev->id);
3863
3864 /*
3865 * CFA Advanced TrueIDE timings are not allowed on a shared
3866 * cable
3867 */
3868 if (ata_dev_pair(dev)) {
3869 /* No PIO5 or PIO6 */
3870 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3871 /* No MWDMA3 or MWDMA 4 */
3872 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3873 }
3874
3875 if (ata_dma_blacklisted(dev)) {
3876 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3877 ata_dev_printk(dev, KERN_WARNING,
3878 "device is on DMA blacklist, disabling DMA\n");
3879 }
3880
3881 if ((host->flags & ATA_HOST_SIMPLEX) &&
3882 host->simplex_claimed && host->simplex_claimed != ap) {
3883 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3884 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3885 "other device, disabling DMA\n");
3886 }
3887
3888 if (ap->flags & ATA_FLAG_NO_IORDY)
3889 xfer_mask &= ata_pio_mask_no_iordy(dev);
3890
3891 if (ap->ops->mode_filter)
3892 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3893
3894 /* Apply cable rule here. Don't apply it early because when
3895 * we handle hot plug the cable type can itself change.
3896 * Check this last so that we know if the transfer rate was
3897 * solely limited by the cable.
3898 * Unknown or 80 wire cables reported host side are checked
3899 * drive side as well. Cases where we know a 40wire cable
3900 * is used safely for 80 are not checked here.
3901 */
3902 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3903 /* UDMA/44 or higher would be available */
3904 if((ap->cbl == ATA_CBL_PATA40) ||
3905 (ata_drive_40wire(dev->id) &&
3906 (ap->cbl == ATA_CBL_PATA_UNK ||
3907 ap->cbl == ATA_CBL_PATA80))) {
3908 ata_dev_printk(dev, KERN_WARNING,
3909 "limited to UDMA/33 due to 40-wire cable\n");
3910 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3911 }
3912
3913 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3914 &dev->mwdma_mask, &dev->udma_mask);
3915 }
3916
3917 /**
3918 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3919 * @dev: Device to which command will be sent
3920 *
3921 * Issue SET FEATURES - XFER MODE command to device @dev
3922 * on port @ap.
3923 *
3924 * LOCKING:
3925 * PCI/etc. bus probe sem.
3926 *
3927 * RETURNS:
3928 * 0 on success, AC_ERR_* mask otherwise.
3929 */
3930
3931 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3932 {
3933 struct ata_taskfile tf;
3934 unsigned int err_mask;
3935
3936 /* set up set-features taskfile */
3937 DPRINTK("set features - xfer mode\n");
3938
3939 /* Some controllers and ATAPI devices show flaky interrupt
3940 * behavior after setting xfer mode. Use polling instead.
3941 */
3942 ata_tf_init(dev, &tf);
3943 tf.command = ATA_CMD_SET_FEATURES;
3944 tf.feature = SETFEATURES_XFER;
3945 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3946 tf.protocol = ATA_PROT_NODATA;
3947 tf.nsect = dev->xfer_mode;
3948
3949 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3950
3951 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3952 return err_mask;
3953 }
3954
3955 /**
3956 * ata_dev_init_params - Issue INIT DEV PARAMS command
3957 * @dev: Device to which command will be sent
3958 * @heads: Number of heads (taskfile parameter)
3959 * @sectors: Number of sectors (taskfile parameter)
3960 *
3961 * LOCKING:
3962 * Kernel thread context (may sleep)
3963 *
3964 * RETURNS:
3965 * 0 on success, AC_ERR_* mask otherwise.
3966 */
3967 static unsigned int ata_dev_init_params(struct ata_device *dev,
3968 u16 heads, u16 sectors)
3969 {
3970 struct ata_taskfile tf;
3971 unsigned int err_mask;
3972
3973 /* Number of sectors per track 1-255. Number of heads 1-16 */
3974 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3975 return AC_ERR_INVALID;
3976
3977 /* set up init dev params taskfile */
3978 DPRINTK("init dev params \n");
3979
3980 ata_tf_init(dev, &tf);
3981 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3982 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3983 tf.protocol = ATA_PROT_NODATA;
3984 tf.nsect = sectors;
3985 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3986
3987 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3988
3989 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3990 return err_mask;
3991 }
3992
3993 /**
3994 * ata_sg_clean - Unmap DMA memory associated with command
3995 * @qc: Command containing DMA memory to be released
3996 *
3997 * Unmap all mapped DMA memory associated with this command.
3998 *
3999 * LOCKING:
4000 * spin_lock_irqsave(host lock)
4001 */
4002 void ata_sg_clean(struct ata_queued_cmd *qc)
4003 {
4004 struct ata_port *ap = qc->ap;
4005 struct scatterlist *sg = qc->__sg;
4006 int dir = qc->dma_dir;
4007 void *pad_buf = NULL;
4008
4009 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4010 WARN_ON(sg == NULL);
4011
4012 if (qc->flags & ATA_QCFLAG_SINGLE)
4013 WARN_ON(qc->n_elem > 1);
4014
4015 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4016
4017 /* if we padded the buffer out to 32-bit bound, and data
4018 * xfer direction is from-device, we must copy from the
4019 * pad buffer back into the supplied buffer
4020 */
4021 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4022 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4023
4024 if (qc->flags & ATA_QCFLAG_SG) {
4025 if (qc->n_elem)
4026 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4027 /* restore last sg */
4028 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4029 if (pad_buf) {
4030 struct scatterlist *psg = &qc->pad_sgent;
4031 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4032 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4033 kunmap_atomic(addr, KM_IRQ0);
4034 }
4035 } else {
4036 if (qc->n_elem)
4037 dma_unmap_single(ap->dev,
4038 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4039 dir);
4040 /* restore sg */
4041 sg->length += qc->pad_len;
4042 if (pad_buf)
4043 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4044 pad_buf, qc->pad_len);
4045 }
4046
4047 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4048 qc->__sg = NULL;
4049 }
4050
4051 /**
4052 * ata_fill_sg - Fill PCI IDE PRD table
4053 * @qc: Metadata associated with taskfile to be transferred
4054 *
4055 * Fill PCI IDE PRD (scatter-gather) table with segments
4056 * associated with the current disk command.
4057 *
4058 * LOCKING:
4059 * spin_lock_irqsave(host lock)
4060 *
4061 */
4062 static void ata_fill_sg(struct ata_queued_cmd *qc)
4063 {
4064 struct ata_port *ap = qc->ap;
4065 struct scatterlist *sg;
4066 unsigned int idx;
4067
4068 WARN_ON(qc->__sg == NULL);
4069 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4070
4071 idx = 0;
4072 ata_for_each_sg(sg, qc) {
4073 u32 addr, offset;
4074 u32 sg_len, len;
4075
4076 /* determine if physical DMA addr spans 64K boundary.
4077 * Note h/w doesn't support 64-bit, so we unconditionally
4078 * truncate dma_addr_t to u32.
4079 */
4080 addr = (u32) sg_dma_address(sg);
4081 sg_len = sg_dma_len(sg);
4082
4083 while (sg_len) {
4084 offset = addr & 0xffff;
4085 len = sg_len;
4086 if ((offset + sg_len) > 0x10000)
4087 len = 0x10000 - offset;
4088
4089 ap->prd[idx].addr = cpu_to_le32(addr);
4090 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4091 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4092
4093 idx++;
4094 sg_len -= len;
4095 addr += len;
4096 }
4097 }
4098
4099 if (idx)
4100 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4101 }
4102
4103 /**
4104 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4105 * @qc: Metadata associated with taskfile to be transferred
4106 *
4107 * Fill PCI IDE PRD (scatter-gather) table with segments
4108 * associated with the current disk command. Perform the fill
4109 * so that we avoid writing any length 64K records for
4110 * controllers that don't follow the spec.
4111 *
4112 * LOCKING:
4113 * spin_lock_irqsave(host lock)
4114 *
4115 */
4116 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4117 {
4118 struct ata_port *ap = qc->ap;
4119 struct scatterlist *sg;
4120 unsigned int idx;
4121
4122 WARN_ON(qc->__sg == NULL);
4123 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4124
4125 idx = 0;
4126 ata_for_each_sg(sg, qc) {
4127 u32 addr, offset;
4128 u32 sg_len, len, blen;
4129
4130 /* determine if physical DMA addr spans 64K boundary.
4131 * Note h/w doesn't support 64-bit, so we unconditionally
4132 * truncate dma_addr_t to u32.
4133 */
4134 addr = (u32) sg_dma_address(sg);
4135 sg_len = sg_dma_len(sg);
4136
4137 while (sg_len) {
4138 offset = addr & 0xffff;
4139 len = sg_len;
4140 if ((offset + sg_len) > 0x10000)
4141 len = 0x10000 - offset;
4142
4143 blen = len & 0xffff;
4144 ap->prd[idx].addr = cpu_to_le32(addr);
4145 if (blen == 0) {
4146 /* Some PATA chipsets like the CS5530 can't
4147 cope with 0x0000 meaning 64K as the spec says */
4148 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4149 blen = 0x8000;
4150 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4151 }
4152 ap->prd[idx].flags_len = cpu_to_le32(blen);
4153 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4154
4155 idx++;
4156 sg_len -= len;
4157 addr += len;
4158 }
4159 }
4160
4161 if (idx)
4162 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4163 }
4164
4165 /**
4166 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4167 * @qc: Metadata associated with taskfile to check
4168 *
4169 * Allow low-level driver to filter ATA PACKET commands, returning
4170 * a status indicating whether or not it is OK to use DMA for the
4171 * supplied PACKET command.
4172 *
4173 * LOCKING:
4174 * spin_lock_irqsave(host lock)
4175 *
4176 * RETURNS: 0 when ATAPI DMA can be used
4177 * nonzero otherwise
4178 */
4179 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4180 {
4181 struct ata_port *ap = qc->ap;
4182
4183 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4184 * few ATAPI devices choke on such DMA requests.
4185 */
4186 if (unlikely(qc->nbytes & 15))
4187 return 1;
4188
4189 if (ap->ops->check_atapi_dma)
4190 return ap->ops->check_atapi_dma(qc);
4191
4192 return 0;
4193 }
4194
4195 /**
4196 * ata_qc_prep - Prepare taskfile for submission
4197 * @qc: Metadata associated with taskfile to be prepared
4198 *
4199 * Prepare ATA taskfile for submission.
4200 *
4201 * LOCKING:
4202 * spin_lock_irqsave(host lock)
4203 */
4204 void ata_qc_prep(struct ata_queued_cmd *qc)
4205 {
4206 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4207 return;
4208
4209 ata_fill_sg(qc);
4210 }
4211
4212 /**
4213 * ata_dumb_qc_prep - Prepare taskfile for submission
4214 * @qc: Metadata associated with taskfile to be prepared
4215 *
4216 * Prepare ATA taskfile for submission.
4217 *
4218 * LOCKING:
4219 * spin_lock_irqsave(host lock)
4220 */
4221 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4222 {
4223 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4224 return;
4225
4226 ata_fill_sg_dumb(qc);
4227 }
4228
4229 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4230
4231 /**
4232 * ata_sg_init_one - Associate command with memory buffer
4233 * @qc: Command to be associated
4234 * @buf: Memory buffer
4235 * @buflen: Length of memory buffer, in bytes.
4236 *
4237 * Initialize the data-related elements of queued_cmd @qc
4238 * to point to a single memory buffer, @buf of byte length @buflen.
4239 *
4240 * LOCKING:
4241 * spin_lock_irqsave(host lock)
4242 */
4243
4244 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4245 {
4246 qc->flags |= ATA_QCFLAG_SINGLE;
4247
4248 qc->__sg = &qc->sgent;
4249 qc->n_elem = 1;
4250 qc->orig_n_elem = 1;
4251 qc->buf_virt = buf;
4252 qc->nbytes = buflen;
4253
4254 sg_init_one(&qc->sgent, buf, buflen);
4255 }
4256
4257 /**
4258 * ata_sg_init - Associate command with scatter-gather table.
4259 * @qc: Command to be associated
4260 * @sg: Scatter-gather table.
4261 * @n_elem: Number of elements in s/g table.
4262 *
4263 * Initialize the data-related elements of queued_cmd @qc
4264 * to point to a scatter-gather table @sg, containing @n_elem
4265 * elements.
4266 *
4267 * LOCKING:
4268 * spin_lock_irqsave(host lock)
4269 */
4270
4271 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4272 unsigned int n_elem)
4273 {
4274 qc->flags |= ATA_QCFLAG_SG;
4275 qc->__sg = sg;
4276 qc->n_elem = n_elem;
4277 qc->orig_n_elem = n_elem;
4278 }
4279
4280 /**
4281 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4282 * @qc: Command with memory buffer to be mapped.
4283 *
4284 * DMA-map the memory buffer associated with queued_cmd @qc.
4285 *
4286 * LOCKING:
4287 * spin_lock_irqsave(host lock)
4288 *
4289 * RETURNS:
4290 * Zero on success, negative on error.
4291 */
4292
4293 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4294 {
4295 struct ata_port *ap = qc->ap;
4296 int dir = qc->dma_dir;
4297 struct scatterlist *sg = qc->__sg;
4298 dma_addr_t dma_address;
4299 int trim_sg = 0;
4300
4301 /* we must lengthen transfers to end on a 32-bit boundary */
4302 qc->pad_len = sg->length & 3;
4303 if (qc->pad_len) {
4304 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4305 struct scatterlist *psg = &qc->pad_sgent;
4306
4307 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4308
4309 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4310
4311 if (qc->tf.flags & ATA_TFLAG_WRITE)
4312 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4313 qc->pad_len);
4314
4315 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4316 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4317 /* trim sg */
4318 sg->length -= qc->pad_len;
4319 if (sg->length == 0)
4320 trim_sg = 1;
4321
4322 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4323 sg->length, qc->pad_len);
4324 }
4325
4326 if (trim_sg) {
4327 qc->n_elem--;
4328 goto skip_map;
4329 }
4330
4331 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4332 sg->length, dir);
4333 if (dma_mapping_error(dma_address)) {
4334 /* restore sg */
4335 sg->length += qc->pad_len;
4336 return -1;
4337 }
4338
4339 sg_dma_address(sg) = dma_address;
4340 sg_dma_len(sg) = sg->length;
4341
4342 skip_map:
4343 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4344 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4345
4346 return 0;
4347 }
4348
4349 /**
4350 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4351 * @qc: Command with scatter-gather table to be mapped.
4352 *
4353 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4354 *
4355 * LOCKING:
4356 * spin_lock_irqsave(host lock)
4357 *
4358 * RETURNS:
4359 * Zero on success, negative on error.
4360 *
4361 */
4362
4363 static int ata_sg_setup(struct ata_queued_cmd *qc)
4364 {
4365 struct ata_port *ap = qc->ap;
4366 struct scatterlist *sg = qc->__sg;
4367 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4368 int n_elem, pre_n_elem, dir, trim_sg = 0;
4369
4370 VPRINTK("ENTER, ata%u\n", ap->print_id);
4371 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4372
4373 /* we must lengthen transfers to end on a 32-bit boundary */
4374 qc->pad_len = lsg->length & 3;
4375 if (qc->pad_len) {
4376 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4377 struct scatterlist *psg = &qc->pad_sgent;
4378 unsigned int offset;
4379
4380 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4381
4382 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4383
4384 /*
4385 * psg->page/offset are used to copy to-be-written
4386 * data in this function or read data in ata_sg_clean.
4387 */
4388 offset = lsg->offset + lsg->length - qc->pad_len;
4389 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4390 psg->offset = offset_in_page(offset);
4391
4392 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4393 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4394 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4395 kunmap_atomic(addr, KM_IRQ0);
4396 }
4397
4398 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4399 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4400 /* trim last sg */
4401 lsg->length -= qc->pad_len;
4402 if (lsg->length == 0)
4403 trim_sg = 1;
4404
4405 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4406 qc->n_elem - 1, lsg->length, qc->pad_len);
4407 }
4408
4409 pre_n_elem = qc->n_elem;
4410 if (trim_sg && pre_n_elem)
4411 pre_n_elem--;
4412
4413 if (!pre_n_elem) {
4414 n_elem = 0;
4415 goto skip_map;
4416 }
4417
4418 dir = qc->dma_dir;
4419 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4420 if (n_elem < 1) {
4421 /* restore last sg */
4422 lsg->length += qc->pad_len;
4423 return -1;
4424 }
4425
4426 DPRINTK("%d sg elements mapped\n", n_elem);
4427
4428 skip_map:
4429 qc->n_elem = n_elem;
4430
4431 return 0;
4432 }
4433
4434 /**
4435 * swap_buf_le16 - swap halves of 16-bit words in place
4436 * @buf: Buffer to swap
4437 * @buf_words: Number of 16-bit words in buffer.
4438 *
4439 * Swap halves of 16-bit words if needed to convert from
4440 * little-endian byte order to native cpu byte order, or
4441 * vice-versa.
4442 *
4443 * LOCKING:
4444 * Inherited from caller.
4445 */
4446 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4447 {
4448 #ifdef __BIG_ENDIAN
4449 unsigned int i;
4450
4451 for (i = 0; i < buf_words; i++)
4452 buf[i] = le16_to_cpu(buf[i]);
4453 #endif /* __BIG_ENDIAN */
4454 }
4455
4456 /**
4457 * ata_data_xfer - Transfer data by PIO
4458 * @adev: device to target
4459 * @buf: data buffer
4460 * @buflen: buffer length
4461 * @write_data: read/write
4462 *
4463 * Transfer data from/to the device data register by PIO.
4464 *
4465 * LOCKING:
4466 * Inherited from caller.
4467 */
4468 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4469 unsigned int buflen, int write_data)
4470 {
4471 struct ata_port *ap = adev->ap;
4472 unsigned int words = buflen >> 1;
4473
4474 /* Transfer multiple of 2 bytes */
4475 if (write_data)
4476 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4477 else
4478 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4479
4480 /* Transfer trailing 1 byte, if any. */
4481 if (unlikely(buflen & 0x01)) {
4482 u16 align_buf[1] = { 0 };
4483 unsigned char *trailing_buf = buf + buflen - 1;
4484
4485 if (write_data) {
4486 memcpy(align_buf, trailing_buf, 1);
4487 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4488 } else {
4489 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4490 memcpy(trailing_buf, align_buf, 1);
4491 }
4492 }
4493 }
4494
4495 /**
4496 * ata_data_xfer_noirq - Transfer data by PIO
4497 * @adev: device to target
4498 * @buf: data buffer
4499 * @buflen: buffer length
4500 * @write_data: read/write
4501 *
4502 * Transfer data from/to the device data register by PIO. Do the
4503 * transfer with interrupts disabled.
4504 *
4505 * LOCKING:
4506 * Inherited from caller.
4507 */
4508 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4509 unsigned int buflen, int write_data)
4510 {
4511 unsigned long flags;
4512 local_irq_save(flags);
4513 ata_data_xfer(adev, buf, buflen, write_data);
4514 local_irq_restore(flags);
4515 }
4516
4517
4518 /**
4519 * ata_pio_sector - Transfer a sector of data.
4520 * @qc: Command on going
4521 *
4522 * Transfer qc->sect_size bytes of data from/to the ATA device.
4523 *
4524 * LOCKING:
4525 * Inherited from caller.
4526 */
4527
4528 static void ata_pio_sector(struct ata_queued_cmd *qc)
4529 {
4530 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4531 struct scatterlist *sg = qc->__sg;
4532 struct ata_port *ap = qc->ap;
4533 struct page *page;
4534 unsigned int offset;
4535 unsigned char *buf;
4536
4537 if (qc->curbytes == qc->nbytes - qc->sect_size)
4538 ap->hsm_task_state = HSM_ST_LAST;
4539
4540 page = sg[qc->cursg].page;
4541 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4542
4543 /* get the current page and offset */
4544 page = nth_page(page, (offset >> PAGE_SHIFT));
4545 offset %= PAGE_SIZE;
4546
4547 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4548
4549 if (PageHighMem(page)) {
4550 unsigned long flags;
4551
4552 /* FIXME: use a bounce buffer */
4553 local_irq_save(flags);
4554 buf = kmap_atomic(page, KM_IRQ0);
4555
4556 /* do the actual data transfer */
4557 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4558
4559 kunmap_atomic(buf, KM_IRQ0);
4560 local_irq_restore(flags);
4561 } else {
4562 buf = page_address(page);
4563 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4564 }
4565
4566 qc->curbytes += qc->sect_size;
4567 qc->cursg_ofs += qc->sect_size;
4568
4569 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4570 qc->cursg++;
4571 qc->cursg_ofs = 0;
4572 }
4573 }
4574
4575 /**
4576 * ata_pio_sectors - Transfer one or many sectors.
4577 * @qc: Command on going
4578 *
4579 * Transfer one or many sectors of data from/to the
4580 * ATA device for the DRQ request.
4581 *
4582 * LOCKING:
4583 * Inherited from caller.
4584 */
4585
4586 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4587 {
4588 if (is_multi_taskfile(&qc->tf)) {
4589 /* READ/WRITE MULTIPLE */
4590 unsigned int nsect;
4591
4592 WARN_ON(qc->dev->multi_count == 0);
4593
4594 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4595 qc->dev->multi_count);
4596 while (nsect--)
4597 ata_pio_sector(qc);
4598 } else
4599 ata_pio_sector(qc);
4600 }
4601
4602 /**
4603 * atapi_send_cdb - Write CDB bytes to hardware
4604 * @ap: Port to which ATAPI device is attached.
4605 * @qc: Taskfile currently active
4606 *
4607 * When device has indicated its readiness to accept
4608 * a CDB, this function is called. Send the CDB.
4609 *
4610 * LOCKING:
4611 * caller.
4612 */
4613
4614 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4615 {
4616 /* send SCSI cdb */
4617 DPRINTK("send cdb\n");
4618 WARN_ON(qc->dev->cdb_len < 12);
4619
4620 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4621 ata_altstatus(ap); /* flush */
4622
4623 switch (qc->tf.protocol) {
4624 case ATA_PROT_ATAPI:
4625 ap->hsm_task_state = HSM_ST;
4626 break;
4627 case ATA_PROT_ATAPI_NODATA:
4628 ap->hsm_task_state = HSM_ST_LAST;
4629 break;
4630 case ATA_PROT_ATAPI_DMA:
4631 ap->hsm_task_state = HSM_ST_LAST;
4632 /* initiate bmdma */
4633 ap->ops->bmdma_start(qc);
4634 break;
4635 }
4636 }
4637
4638 /**
4639 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4640 * @qc: Command on going
4641 * @bytes: number of bytes
4642 *
4643 * Transfer Transfer data from/to the ATAPI device.
4644 *
4645 * LOCKING:
4646 * Inherited from caller.
4647 *
4648 */
4649
4650 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4651 {
4652 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4653 struct scatterlist *sg = qc->__sg;
4654 struct ata_port *ap = qc->ap;
4655 struct page *page;
4656 unsigned char *buf;
4657 unsigned int offset, count;
4658
4659 if (qc->curbytes + bytes >= qc->nbytes)
4660 ap->hsm_task_state = HSM_ST_LAST;
4661
4662 next_sg:
4663 if (unlikely(qc->cursg >= qc->n_elem)) {
4664 /*
4665 * The end of qc->sg is reached and the device expects
4666 * more data to transfer. In order not to overrun qc->sg
4667 * and fulfill length specified in the byte count register,
4668 * - for read case, discard trailing data from the device
4669 * - for write case, padding zero data to the device
4670 */
4671 u16 pad_buf[1] = { 0 };
4672 unsigned int words = bytes >> 1;
4673 unsigned int i;
4674
4675 if (words) /* warning if bytes > 1 */
4676 ata_dev_printk(qc->dev, KERN_WARNING,
4677 "%u bytes trailing data\n", bytes);
4678
4679 for (i = 0; i < words; i++)
4680 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4681
4682 ap->hsm_task_state = HSM_ST_LAST;
4683 return;
4684 }
4685
4686 sg = &qc->__sg[qc->cursg];
4687
4688 page = sg->page;
4689 offset = sg->offset + qc->cursg_ofs;
4690
4691 /* get the current page and offset */
4692 page = nth_page(page, (offset >> PAGE_SHIFT));
4693 offset %= PAGE_SIZE;
4694
4695 /* don't overrun current sg */
4696 count = min(sg->length - qc->cursg_ofs, bytes);
4697
4698 /* don't cross page boundaries */
4699 count = min(count, (unsigned int)PAGE_SIZE - offset);
4700
4701 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4702
4703 if (PageHighMem(page)) {
4704 unsigned long flags;
4705
4706 /* FIXME: use bounce buffer */
4707 local_irq_save(flags);
4708 buf = kmap_atomic(page, KM_IRQ0);
4709
4710 /* do the actual data transfer */
4711 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4712
4713 kunmap_atomic(buf, KM_IRQ0);
4714 local_irq_restore(flags);
4715 } else {
4716 buf = page_address(page);
4717 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4718 }
4719
4720 bytes -= count;
4721 qc->curbytes += count;
4722 qc->cursg_ofs += count;
4723
4724 if (qc->cursg_ofs == sg->length) {
4725 qc->cursg++;
4726 qc->cursg_ofs = 0;
4727 }
4728
4729 if (bytes)
4730 goto next_sg;
4731 }
4732
4733 /**
4734 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4735 * @qc: Command on going
4736 *
4737 * Transfer Transfer data from/to the ATAPI device.
4738 *
4739 * LOCKING:
4740 * Inherited from caller.
4741 */
4742
4743 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4744 {
4745 struct ata_port *ap = qc->ap;
4746 struct ata_device *dev = qc->dev;
4747 unsigned int ireason, bc_lo, bc_hi, bytes;
4748 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4749
4750 /* Abuse qc->result_tf for temp storage of intermediate TF
4751 * here to save some kernel stack usage.
4752 * For normal completion, qc->result_tf is not relevant. For
4753 * error, qc->result_tf is later overwritten by ata_qc_complete().
4754 * So, the correctness of qc->result_tf is not affected.
4755 */
4756 ap->ops->tf_read(ap, &qc->result_tf);
4757 ireason = qc->result_tf.nsect;
4758 bc_lo = qc->result_tf.lbam;
4759 bc_hi = qc->result_tf.lbah;
4760 bytes = (bc_hi << 8) | bc_lo;
4761
4762 /* shall be cleared to zero, indicating xfer of data */
4763 if (ireason & (1 << 0))
4764 goto err_out;
4765
4766 /* make sure transfer direction matches expected */
4767 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4768 if (do_write != i_write)
4769 goto err_out;
4770
4771 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4772
4773 __atapi_pio_bytes(qc, bytes);
4774
4775 return;
4776
4777 err_out:
4778 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4779 qc->err_mask |= AC_ERR_HSM;
4780 ap->hsm_task_state = HSM_ST_ERR;
4781 }
4782
4783 /**
4784 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4785 * @ap: the target ata_port
4786 * @qc: qc on going
4787 *
4788 * RETURNS:
4789 * 1 if ok in workqueue, 0 otherwise.
4790 */
4791
4792 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4793 {
4794 if (qc->tf.flags & ATA_TFLAG_POLLING)
4795 return 1;
4796
4797 if (ap->hsm_task_state == HSM_ST_FIRST) {
4798 if (qc->tf.protocol == ATA_PROT_PIO &&
4799 (qc->tf.flags & ATA_TFLAG_WRITE))
4800 return 1;
4801
4802 if (is_atapi_taskfile(&qc->tf) &&
4803 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4804 return 1;
4805 }
4806
4807 return 0;
4808 }
4809
4810 /**
4811 * ata_hsm_qc_complete - finish a qc running on standard HSM
4812 * @qc: Command to complete
4813 * @in_wq: 1 if called from workqueue, 0 otherwise
4814 *
4815 * Finish @qc which is running on standard HSM.
4816 *
4817 * LOCKING:
4818 * If @in_wq is zero, spin_lock_irqsave(host lock).
4819 * Otherwise, none on entry and grabs host lock.
4820 */
4821 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4822 {
4823 struct ata_port *ap = qc->ap;
4824 unsigned long flags;
4825
4826 if (ap->ops->error_handler) {
4827 if (in_wq) {
4828 spin_lock_irqsave(ap->lock, flags);
4829
4830 /* EH might have kicked in while host lock is
4831 * released.
4832 */
4833 qc = ata_qc_from_tag(ap, qc->tag);
4834 if (qc) {
4835 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4836 ap->ops->irq_on(ap);
4837 ata_qc_complete(qc);
4838 } else
4839 ata_port_freeze(ap);
4840 }
4841
4842 spin_unlock_irqrestore(ap->lock, flags);
4843 } else {
4844 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4845 ata_qc_complete(qc);
4846 else
4847 ata_port_freeze(ap);
4848 }
4849 } else {
4850 if (in_wq) {
4851 spin_lock_irqsave(ap->lock, flags);
4852 ap->ops->irq_on(ap);
4853 ata_qc_complete(qc);
4854 spin_unlock_irqrestore(ap->lock, flags);
4855 } else
4856 ata_qc_complete(qc);
4857 }
4858 }
4859
4860 /**
4861 * ata_hsm_move - move the HSM to the next state.
4862 * @ap: the target ata_port
4863 * @qc: qc on going
4864 * @status: current device status
4865 * @in_wq: 1 if called from workqueue, 0 otherwise
4866 *
4867 * RETURNS:
4868 * 1 when poll next status needed, 0 otherwise.
4869 */
4870 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4871 u8 status, int in_wq)
4872 {
4873 unsigned long flags = 0;
4874 int poll_next;
4875
4876 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4877
4878 /* Make sure ata_qc_issue_prot() does not throw things
4879 * like DMA polling into the workqueue. Notice that
4880 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4881 */
4882 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4883
4884 fsm_start:
4885 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4886 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4887
4888 switch (ap->hsm_task_state) {
4889 case HSM_ST_FIRST:
4890 /* Send first data block or PACKET CDB */
4891
4892 /* If polling, we will stay in the work queue after
4893 * sending the data. Otherwise, interrupt handler
4894 * takes over after sending the data.
4895 */
4896 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4897
4898 /* check device status */
4899 if (unlikely((status & ATA_DRQ) == 0)) {
4900 /* handle BSY=0, DRQ=0 as error */
4901 if (likely(status & (ATA_ERR | ATA_DF)))
4902 /* device stops HSM for abort/error */
4903 qc->err_mask |= AC_ERR_DEV;
4904 else
4905 /* HSM violation. Let EH handle this */
4906 qc->err_mask |= AC_ERR_HSM;
4907
4908 ap->hsm_task_state = HSM_ST_ERR;
4909 goto fsm_start;
4910 }
4911
4912 /* Device should not ask for data transfer (DRQ=1)
4913 * when it finds something wrong.
4914 * We ignore DRQ here and stop the HSM by
4915 * changing hsm_task_state to HSM_ST_ERR and
4916 * let the EH abort the command or reset the device.
4917 */
4918 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4919 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4920 "error, dev_stat 0x%X\n", status);
4921 qc->err_mask |= AC_ERR_HSM;
4922 ap->hsm_task_state = HSM_ST_ERR;
4923 goto fsm_start;
4924 }
4925
4926 /* Send the CDB (atapi) or the first data block (ata pio out).
4927 * During the state transition, interrupt handler shouldn't
4928 * be invoked before the data transfer is complete and
4929 * hsm_task_state is changed. Hence, the following locking.
4930 */
4931 if (in_wq)
4932 spin_lock_irqsave(ap->lock, flags);
4933
4934 if (qc->tf.protocol == ATA_PROT_PIO) {
4935 /* PIO data out protocol.
4936 * send first data block.
4937 */
4938
4939 /* ata_pio_sectors() might change the state
4940 * to HSM_ST_LAST. so, the state is changed here
4941 * before ata_pio_sectors().
4942 */
4943 ap->hsm_task_state = HSM_ST;
4944 ata_pio_sectors(qc);
4945 ata_altstatus(ap); /* flush */
4946 } else
4947 /* send CDB */
4948 atapi_send_cdb(ap, qc);
4949
4950 if (in_wq)
4951 spin_unlock_irqrestore(ap->lock, flags);
4952
4953 /* if polling, ata_pio_task() handles the rest.
4954 * otherwise, interrupt handler takes over from here.
4955 */
4956 break;
4957
4958 case HSM_ST:
4959 /* complete command or read/write the data register */
4960 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4961 /* ATAPI PIO protocol */
4962 if ((status & ATA_DRQ) == 0) {
4963 /* No more data to transfer or device error.
4964 * Device error will be tagged in HSM_ST_LAST.
4965 */
4966 ap->hsm_task_state = HSM_ST_LAST;
4967 goto fsm_start;
4968 }
4969
4970 /* Device should not ask for data transfer (DRQ=1)
4971 * when it finds something wrong.
4972 * We ignore DRQ here and stop the HSM by
4973 * changing hsm_task_state to HSM_ST_ERR and
4974 * let the EH abort the command or reset the device.
4975 */
4976 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4977 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4978 "device error, dev_stat 0x%X\n",
4979 status);
4980 qc->err_mask |= AC_ERR_HSM;
4981 ap->hsm_task_state = HSM_ST_ERR;
4982 goto fsm_start;
4983 }
4984
4985 atapi_pio_bytes(qc);
4986
4987 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4988 /* bad ireason reported by device */
4989 goto fsm_start;
4990
4991 } else {
4992 /* ATA PIO protocol */
4993 if (unlikely((status & ATA_DRQ) == 0)) {
4994 /* handle BSY=0, DRQ=0 as error */
4995 if (likely(status & (ATA_ERR | ATA_DF)))
4996 /* device stops HSM for abort/error */
4997 qc->err_mask |= AC_ERR_DEV;
4998 else
4999 /* HSM violation. Let EH handle this.
5000 * Phantom devices also trigger this
5001 * condition. Mark hint.
5002 */
5003 qc->err_mask |= AC_ERR_HSM |
5004 AC_ERR_NODEV_HINT;
5005
5006 ap->hsm_task_state = HSM_ST_ERR;
5007 goto fsm_start;
5008 }
5009
5010 /* For PIO reads, some devices may ask for
5011 * data transfer (DRQ=1) alone with ERR=1.
5012 * We respect DRQ here and transfer one
5013 * block of junk data before changing the
5014 * hsm_task_state to HSM_ST_ERR.
5015 *
5016 * For PIO writes, ERR=1 DRQ=1 doesn't make
5017 * sense since the data block has been
5018 * transferred to the device.
5019 */
5020 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5021 /* data might be corrputed */
5022 qc->err_mask |= AC_ERR_DEV;
5023
5024 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5025 ata_pio_sectors(qc);
5026 ata_altstatus(ap);
5027 status = ata_wait_idle(ap);
5028 }
5029
5030 if (status & (ATA_BUSY | ATA_DRQ))
5031 qc->err_mask |= AC_ERR_HSM;
5032
5033 /* ata_pio_sectors() might change the
5034 * state to HSM_ST_LAST. so, the state
5035 * is changed after ata_pio_sectors().
5036 */
5037 ap->hsm_task_state = HSM_ST_ERR;
5038 goto fsm_start;
5039 }
5040
5041 ata_pio_sectors(qc);
5042
5043 if (ap->hsm_task_state == HSM_ST_LAST &&
5044 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5045 /* all data read */
5046 ata_altstatus(ap);
5047 status = ata_wait_idle(ap);
5048 goto fsm_start;
5049 }
5050 }
5051
5052 ata_altstatus(ap); /* flush */
5053 poll_next = 1;
5054 break;
5055
5056 case HSM_ST_LAST:
5057 if (unlikely(!ata_ok(status))) {
5058 qc->err_mask |= __ac_err_mask(status);
5059 ap->hsm_task_state = HSM_ST_ERR;
5060 goto fsm_start;
5061 }
5062
5063 /* no more data to transfer */
5064 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5065 ap->print_id, qc->dev->devno, status);
5066
5067 WARN_ON(qc->err_mask);
5068
5069 ap->hsm_task_state = HSM_ST_IDLE;
5070
5071 /* complete taskfile transaction */
5072 ata_hsm_qc_complete(qc, in_wq);
5073
5074 poll_next = 0;
5075 break;
5076
5077 case HSM_ST_ERR:
5078 /* make sure qc->err_mask is available to
5079 * know what's wrong and recover
5080 */
5081 WARN_ON(qc->err_mask == 0);
5082
5083 ap->hsm_task_state = HSM_ST_IDLE;
5084
5085 /* complete taskfile transaction */
5086 ata_hsm_qc_complete(qc, in_wq);
5087
5088 poll_next = 0;
5089 break;
5090 default:
5091 poll_next = 0;
5092 BUG();
5093 }
5094
5095 return poll_next;
5096 }
5097
5098 static void ata_pio_task(struct work_struct *work)
5099 {
5100 struct ata_port *ap =
5101 container_of(work, struct ata_port, port_task.work);
5102 struct ata_queued_cmd *qc = ap->port_task_data;
5103 u8 status;
5104 int poll_next;
5105
5106 fsm_start:
5107 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5108
5109 /*
5110 * This is purely heuristic. This is a fast path.
5111 * Sometimes when we enter, BSY will be cleared in
5112 * a chk-status or two. If not, the drive is probably seeking
5113 * or something. Snooze for a couple msecs, then
5114 * chk-status again. If still busy, queue delayed work.
5115 */
5116 status = ata_busy_wait(ap, ATA_BUSY, 5);
5117 if (status & ATA_BUSY) {
5118 msleep(2);
5119 status = ata_busy_wait(ap, ATA_BUSY, 10);
5120 if (status & ATA_BUSY) {
5121 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5122 return;
5123 }
5124 }
5125
5126 /* move the HSM */
5127 poll_next = ata_hsm_move(ap, qc, status, 1);
5128
5129 /* another command or interrupt handler
5130 * may be running at this point.
5131 */
5132 if (poll_next)
5133 goto fsm_start;
5134 }
5135
5136 /**
5137 * ata_qc_new - Request an available ATA command, for queueing
5138 * @ap: Port associated with device @dev
5139 * @dev: Device from whom we request an available command structure
5140 *
5141 * LOCKING:
5142 * None.
5143 */
5144
5145 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5146 {
5147 struct ata_queued_cmd *qc = NULL;
5148 unsigned int i;
5149
5150 /* no command while frozen */
5151 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5152 return NULL;
5153
5154 /* the last tag is reserved for internal command. */
5155 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5156 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5157 qc = __ata_qc_from_tag(ap, i);
5158 break;
5159 }
5160
5161 if (qc)
5162 qc->tag = i;
5163
5164 return qc;
5165 }
5166
5167 /**
5168 * ata_qc_new_init - Request an available ATA command, and initialize it
5169 * @dev: Device from whom we request an available command structure
5170 *
5171 * LOCKING:
5172 * None.
5173 */
5174
5175 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5176 {
5177 struct ata_port *ap = dev->ap;
5178 struct ata_queued_cmd *qc;
5179
5180 qc = ata_qc_new(ap);
5181 if (qc) {
5182 qc->scsicmd = NULL;
5183 qc->ap = ap;
5184 qc->dev = dev;
5185
5186 ata_qc_reinit(qc);
5187 }
5188
5189 return qc;
5190 }
5191
5192 /**
5193 * ata_qc_free - free unused ata_queued_cmd
5194 * @qc: Command to complete
5195 *
5196 * Designed to free unused ata_queued_cmd object
5197 * in case something prevents using it.
5198 *
5199 * LOCKING:
5200 * spin_lock_irqsave(host lock)
5201 */
5202 void ata_qc_free(struct ata_queued_cmd *qc)
5203 {
5204 struct ata_port *ap = qc->ap;
5205 unsigned int tag;
5206
5207 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5208
5209 qc->flags = 0;
5210 tag = qc->tag;
5211 if (likely(ata_tag_valid(tag))) {
5212 qc->tag = ATA_TAG_POISON;
5213 clear_bit(tag, &ap->qc_allocated);
5214 }
5215 }
5216
5217 void __ata_qc_complete(struct ata_queued_cmd *qc)
5218 {
5219 struct ata_port *ap = qc->ap;
5220
5221 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5222 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5223
5224 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5225 ata_sg_clean(qc);
5226
5227 /* command should be marked inactive atomically with qc completion */
5228 if (qc->tf.protocol == ATA_PROT_NCQ)
5229 ap->sactive &= ~(1 << qc->tag);
5230 else
5231 ap->active_tag = ATA_TAG_POISON;
5232
5233 /* atapi: mark qc as inactive to prevent the interrupt handler
5234 * from completing the command twice later, before the error handler
5235 * is called. (when rc != 0 and atapi request sense is needed)
5236 */
5237 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5238 ap->qc_active &= ~(1 << qc->tag);
5239
5240 /* call completion callback */
5241 qc->complete_fn(qc);
5242 }
5243
5244 static void fill_result_tf(struct ata_queued_cmd *qc)
5245 {
5246 struct ata_port *ap = qc->ap;
5247
5248 qc->result_tf.flags = qc->tf.flags;
5249 ap->ops->tf_read(ap, &qc->result_tf);
5250 }
5251
5252 /**
5253 * ata_qc_complete - Complete an active ATA command
5254 * @qc: Command to complete
5255 * @err_mask: ATA Status register contents
5256 *
5257 * Indicate to the mid and upper layers that an ATA
5258 * command has completed, with either an ok or not-ok status.
5259 *
5260 * LOCKING:
5261 * spin_lock_irqsave(host lock)
5262 */
5263 void ata_qc_complete(struct ata_queued_cmd *qc)
5264 {
5265 struct ata_port *ap = qc->ap;
5266
5267 /* XXX: New EH and old EH use different mechanisms to
5268 * synchronize EH with regular execution path.
5269 *
5270 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5271 * Normal execution path is responsible for not accessing a
5272 * failed qc. libata core enforces the rule by returning NULL
5273 * from ata_qc_from_tag() for failed qcs.
5274 *
5275 * Old EH depends on ata_qc_complete() nullifying completion
5276 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5277 * not synchronize with interrupt handler. Only PIO task is
5278 * taken care of.
5279 */
5280 if (ap->ops->error_handler) {
5281 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5282
5283 if (unlikely(qc->err_mask))
5284 qc->flags |= ATA_QCFLAG_FAILED;
5285
5286 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5287 if (!ata_tag_internal(qc->tag)) {
5288 /* always fill result TF for failed qc */
5289 fill_result_tf(qc);
5290 ata_qc_schedule_eh(qc);
5291 return;
5292 }
5293 }
5294
5295 /* read result TF if requested */
5296 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5297 fill_result_tf(qc);
5298
5299 __ata_qc_complete(qc);
5300 } else {
5301 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5302 return;
5303
5304 /* read result TF if failed or requested */
5305 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5306 fill_result_tf(qc);
5307
5308 __ata_qc_complete(qc);
5309 }
5310 }
5311
5312 /**
5313 * ata_qc_complete_multiple - Complete multiple qcs successfully
5314 * @ap: port in question
5315 * @qc_active: new qc_active mask
5316 * @finish_qc: LLDD callback invoked before completing a qc
5317 *
5318 * Complete in-flight commands. This functions is meant to be
5319 * called from low-level driver's interrupt routine to complete
5320 * requests normally. ap->qc_active and @qc_active is compared
5321 * and commands are completed accordingly.
5322 *
5323 * LOCKING:
5324 * spin_lock_irqsave(host lock)
5325 *
5326 * RETURNS:
5327 * Number of completed commands on success, -errno otherwise.
5328 */
5329 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5330 void (*finish_qc)(struct ata_queued_cmd *))
5331 {
5332 int nr_done = 0;
5333 u32 done_mask;
5334 int i;
5335
5336 done_mask = ap->qc_active ^ qc_active;
5337
5338 if (unlikely(done_mask & qc_active)) {
5339 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5340 "(%08x->%08x)\n", ap->qc_active, qc_active);
5341 return -EINVAL;
5342 }
5343
5344 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5345 struct ata_queued_cmd *qc;
5346
5347 if (!(done_mask & (1 << i)))
5348 continue;
5349
5350 if ((qc = ata_qc_from_tag(ap, i))) {
5351 if (finish_qc)
5352 finish_qc(qc);
5353 ata_qc_complete(qc);
5354 nr_done++;
5355 }
5356 }
5357
5358 return nr_done;
5359 }
5360
5361 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5362 {
5363 struct ata_port *ap = qc->ap;
5364
5365 switch (qc->tf.protocol) {
5366 case ATA_PROT_NCQ:
5367 case ATA_PROT_DMA:
5368 case ATA_PROT_ATAPI_DMA:
5369 return 1;
5370
5371 case ATA_PROT_ATAPI:
5372 case ATA_PROT_PIO:
5373 if (ap->flags & ATA_FLAG_PIO_DMA)
5374 return 1;
5375
5376 /* fall through */
5377
5378 default:
5379 return 0;
5380 }
5381
5382 /* never reached */
5383 }
5384
5385 /**
5386 * ata_qc_issue - issue taskfile to device
5387 * @qc: command to issue to device
5388 *
5389 * Prepare an ATA command to submission to device.
5390 * This includes mapping the data into a DMA-able
5391 * area, filling in the S/G table, and finally
5392 * writing the taskfile to hardware, starting the command.
5393 *
5394 * LOCKING:
5395 * spin_lock_irqsave(host lock)
5396 */
5397 void ata_qc_issue(struct ata_queued_cmd *qc)
5398 {
5399 struct ata_port *ap = qc->ap;
5400
5401 /* Make sure only one non-NCQ command is outstanding. The
5402 * check is skipped for old EH because it reuses active qc to
5403 * request ATAPI sense.
5404 */
5405 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5406
5407 if (qc->tf.protocol == ATA_PROT_NCQ) {
5408 WARN_ON(ap->sactive & (1 << qc->tag));
5409 ap->sactive |= 1 << qc->tag;
5410 } else {
5411 WARN_ON(ap->sactive);
5412 ap->active_tag = qc->tag;
5413 }
5414
5415 qc->flags |= ATA_QCFLAG_ACTIVE;
5416 ap->qc_active |= 1 << qc->tag;
5417
5418 if (ata_should_dma_map(qc)) {
5419 if (qc->flags & ATA_QCFLAG_SG) {
5420 if (ata_sg_setup(qc))
5421 goto sg_err;
5422 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5423 if (ata_sg_setup_one(qc))
5424 goto sg_err;
5425 }
5426 } else {
5427 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5428 }
5429
5430 ap->ops->qc_prep(qc);
5431
5432 qc->err_mask |= ap->ops->qc_issue(qc);
5433 if (unlikely(qc->err_mask))
5434 goto err;
5435 return;
5436
5437 sg_err:
5438 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5439 qc->err_mask |= AC_ERR_SYSTEM;
5440 err:
5441 ata_qc_complete(qc);
5442 }
5443
5444 /**
5445 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5446 * @qc: command to issue to device
5447 *
5448 * Using various libata functions and hooks, this function
5449 * starts an ATA command. ATA commands are grouped into
5450 * classes called "protocols", and issuing each type of protocol
5451 * is slightly different.
5452 *
5453 * May be used as the qc_issue() entry in ata_port_operations.
5454 *
5455 * LOCKING:
5456 * spin_lock_irqsave(host lock)
5457 *
5458 * RETURNS:
5459 * Zero on success, AC_ERR_* mask on failure
5460 */
5461
5462 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5463 {
5464 struct ata_port *ap = qc->ap;
5465
5466 /* Use polling pio if the LLD doesn't handle
5467 * interrupt driven pio and atapi CDB interrupt.
5468 */
5469 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5470 switch (qc->tf.protocol) {
5471 case ATA_PROT_PIO:
5472 case ATA_PROT_NODATA:
5473 case ATA_PROT_ATAPI:
5474 case ATA_PROT_ATAPI_NODATA:
5475 qc->tf.flags |= ATA_TFLAG_POLLING;
5476 break;
5477 case ATA_PROT_ATAPI_DMA:
5478 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5479 /* see ata_dma_blacklisted() */
5480 BUG();
5481 break;
5482 default:
5483 break;
5484 }
5485 }
5486
5487 /* select the device */
5488 ata_dev_select(ap, qc->dev->devno, 1, 0);
5489
5490 /* start the command */
5491 switch (qc->tf.protocol) {
5492 case ATA_PROT_NODATA:
5493 if (qc->tf.flags & ATA_TFLAG_POLLING)
5494 ata_qc_set_polling(qc);
5495
5496 ata_tf_to_host(ap, &qc->tf);
5497 ap->hsm_task_state = HSM_ST_LAST;
5498
5499 if (qc->tf.flags & ATA_TFLAG_POLLING)
5500 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5501
5502 break;
5503
5504 case ATA_PROT_DMA:
5505 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5506
5507 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5508 ap->ops->bmdma_setup(qc); /* set up bmdma */
5509 ap->ops->bmdma_start(qc); /* initiate bmdma */
5510 ap->hsm_task_state = HSM_ST_LAST;
5511 break;
5512
5513 case ATA_PROT_PIO:
5514 if (qc->tf.flags & ATA_TFLAG_POLLING)
5515 ata_qc_set_polling(qc);
5516
5517 ata_tf_to_host(ap, &qc->tf);
5518
5519 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5520 /* PIO data out protocol */
5521 ap->hsm_task_state = HSM_ST_FIRST;
5522 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5523
5524 /* always send first data block using
5525 * the ata_pio_task() codepath.
5526 */
5527 } else {
5528 /* PIO data in protocol */
5529 ap->hsm_task_state = HSM_ST;
5530
5531 if (qc->tf.flags & ATA_TFLAG_POLLING)
5532 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5533
5534 /* if polling, ata_pio_task() handles the rest.
5535 * otherwise, interrupt handler takes over from here.
5536 */
5537 }
5538
5539 break;
5540
5541 case ATA_PROT_ATAPI:
5542 case ATA_PROT_ATAPI_NODATA:
5543 if (qc->tf.flags & ATA_TFLAG_POLLING)
5544 ata_qc_set_polling(qc);
5545
5546 ata_tf_to_host(ap, &qc->tf);
5547
5548 ap->hsm_task_state = HSM_ST_FIRST;
5549
5550 /* send cdb by polling if no cdb interrupt */
5551 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5552 (qc->tf.flags & ATA_TFLAG_POLLING))
5553 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5554 break;
5555
5556 case ATA_PROT_ATAPI_DMA:
5557 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5558
5559 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5560 ap->ops->bmdma_setup(qc); /* set up bmdma */
5561 ap->hsm_task_state = HSM_ST_FIRST;
5562
5563 /* send cdb by polling if no cdb interrupt */
5564 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5565 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5566 break;
5567
5568 default:
5569 WARN_ON(1);
5570 return AC_ERR_SYSTEM;
5571 }
5572
5573 return 0;
5574 }
5575
5576 /**
5577 * ata_host_intr - Handle host interrupt for given (port, task)
5578 * @ap: Port on which interrupt arrived (possibly...)
5579 * @qc: Taskfile currently active in engine
5580 *
5581 * Handle host interrupt for given queued command. Currently,
5582 * only DMA interrupts are handled. All other commands are
5583 * handled via polling with interrupts disabled (nIEN bit).
5584 *
5585 * LOCKING:
5586 * spin_lock_irqsave(host lock)
5587 *
5588 * RETURNS:
5589 * One if interrupt was handled, zero if not (shared irq).
5590 */
5591
5592 inline unsigned int ata_host_intr (struct ata_port *ap,
5593 struct ata_queued_cmd *qc)
5594 {
5595 struct ata_eh_info *ehi = &ap->eh_info;
5596 u8 status, host_stat = 0;
5597
5598 VPRINTK("ata%u: protocol %d task_state %d\n",
5599 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5600
5601 /* Check whether we are expecting interrupt in this state */
5602 switch (ap->hsm_task_state) {
5603 case HSM_ST_FIRST:
5604 /* Some pre-ATAPI-4 devices assert INTRQ
5605 * at this state when ready to receive CDB.
5606 */
5607
5608 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5609 * The flag was turned on only for atapi devices.
5610 * No need to check is_atapi_taskfile(&qc->tf) again.
5611 */
5612 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5613 goto idle_irq;
5614 break;
5615 case HSM_ST_LAST:
5616 if (qc->tf.protocol == ATA_PROT_DMA ||
5617 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5618 /* check status of DMA engine */
5619 host_stat = ap->ops->bmdma_status(ap);
5620 VPRINTK("ata%u: host_stat 0x%X\n",
5621 ap->print_id, host_stat);
5622
5623 /* if it's not our irq... */
5624 if (!(host_stat & ATA_DMA_INTR))
5625 goto idle_irq;
5626
5627 /* before we do anything else, clear DMA-Start bit */
5628 ap->ops->bmdma_stop(qc);
5629
5630 if (unlikely(host_stat & ATA_DMA_ERR)) {
5631 /* error when transfering data to/from memory */
5632 qc->err_mask |= AC_ERR_HOST_BUS;
5633 ap->hsm_task_state = HSM_ST_ERR;
5634 }
5635 }
5636 break;
5637 case HSM_ST:
5638 break;
5639 default:
5640 goto idle_irq;
5641 }
5642
5643 /* check altstatus */
5644 status = ata_altstatus(ap);
5645 if (status & ATA_BUSY)
5646 goto idle_irq;
5647
5648 /* check main status, clearing INTRQ */
5649 status = ata_chk_status(ap);
5650 if (unlikely(status & ATA_BUSY))
5651 goto idle_irq;
5652
5653 /* ack bmdma irq events */
5654 ap->ops->irq_clear(ap);
5655
5656 ata_hsm_move(ap, qc, status, 0);
5657
5658 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5659 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5660 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5661
5662 return 1; /* irq handled */
5663
5664 idle_irq:
5665 ap->stats.idle_irq++;
5666
5667 #ifdef ATA_IRQ_TRAP
5668 if ((ap->stats.idle_irq % 1000) == 0) {
5669 ap->ops->irq_ack(ap, 0); /* debug trap */
5670 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5671 return 1;
5672 }
5673 #endif
5674 return 0; /* irq not handled */
5675 }
5676
5677 /**
5678 * ata_interrupt - Default ATA host interrupt handler
5679 * @irq: irq line (unused)
5680 * @dev_instance: pointer to our ata_host information structure
5681 *
5682 * Default interrupt handler for PCI IDE devices. Calls
5683 * ata_host_intr() for each port that is not disabled.
5684 *
5685 * LOCKING:
5686 * Obtains host lock during operation.
5687 *
5688 * RETURNS:
5689 * IRQ_NONE or IRQ_HANDLED.
5690 */
5691
5692 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5693 {
5694 struct ata_host *host = dev_instance;
5695 unsigned int i;
5696 unsigned int handled = 0;
5697 unsigned long flags;
5698
5699 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5700 spin_lock_irqsave(&host->lock, flags);
5701
5702 for (i = 0; i < host->n_ports; i++) {
5703 struct ata_port *ap;
5704
5705 ap = host->ports[i];
5706 if (ap &&
5707 !(ap->flags & ATA_FLAG_DISABLED)) {
5708 struct ata_queued_cmd *qc;
5709
5710 qc = ata_qc_from_tag(ap, ap->active_tag);
5711 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5712 (qc->flags & ATA_QCFLAG_ACTIVE))
5713 handled |= ata_host_intr(ap, qc);
5714 }
5715 }
5716
5717 spin_unlock_irqrestore(&host->lock, flags);
5718
5719 return IRQ_RETVAL(handled);
5720 }
5721
5722 /**
5723 * sata_scr_valid - test whether SCRs are accessible
5724 * @ap: ATA port to test SCR accessibility for
5725 *
5726 * Test whether SCRs are accessible for @ap.
5727 *
5728 * LOCKING:
5729 * None.
5730 *
5731 * RETURNS:
5732 * 1 if SCRs are accessible, 0 otherwise.
5733 */
5734 int sata_scr_valid(struct ata_port *ap)
5735 {
5736 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5737 }
5738
5739 /**
5740 * sata_scr_read - read SCR register of the specified port
5741 * @ap: ATA port to read SCR for
5742 * @reg: SCR to read
5743 * @val: Place to store read value
5744 *
5745 * Read SCR register @reg of @ap into *@val. This function is
5746 * guaranteed to succeed if the cable type of the port is SATA
5747 * and the port implements ->scr_read.
5748 *
5749 * LOCKING:
5750 * None.
5751 *
5752 * RETURNS:
5753 * 0 on success, negative errno on failure.
5754 */
5755 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5756 {
5757 if (sata_scr_valid(ap))
5758 return ap->ops->scr_read(ap, reg, val);
5759 return -EOPNOTSUPP;
5760 }
5761
5762 /**
5763 * sata_scr_write - write SCR register of the specified port
5764 * @ap: ATA port to write SCR for
5765 * @reg: SCR to write
5766 * @val: value to write
5767 *
5768 * Write @val to SCR register @reg of @ap. This function is
5769 * guaranteed to succeed if the cable type of the port is SATA
5770 * and the port implements ->scr_read.
5771 *
5772 * LOCKING:
5773 * None.
5774 *
5775 * RETURNS:
5776 * 0 on success, negative errno on failure.
5777 */
5778 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5779 {
5780 if (sata_scr_valid(ap))
5781 return ap->ops->scr_write(ap, reg, val);
5782 return -EOPNOTSUPP;
5783 }
5784
5785 /**
5786 * sata_scr_write_flush - write SCR register of the specified port and flush
5787 * @ap: ATA port to write SCR for
5788 * @reg: SCR to write
5789 * @val: value to write
5790 *
5791 * This function is identical to sata_scr_write() except that this
5792 * function performs flush after writing to the register.
5793 *
5794 * LOCKING:
5795 * None.
5796 *
5797 * RETURNS:
5798 * 0 on success, negative errno on failure.
5799 */
5800 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5801 {
5802 int rc;
5803
5804 if (sata_scr_valid(ap)) {
5805 rc = ap->ops->scr_write(ap, reg, val);
5806 if (rc == 0)
5807 rc = ap->ops->scr_read(ap, reg, &val);
5808 return rc;
5809 }
5810 return -EOPNOTSUPP;
5811 }
5812
5813 /**
5814 * ata_port_online - test whether the given port is online
5815 * @ap: ATA port to test
5816 *
5817 * Test whether @ap is online. Note that this function returns 0
5818 * if online status of @ap cannot be obtained, so
5819 * ata_port_online(ap) != !ata_port_offline(ap).
5820 *
5821 * LOCKING:
5822 * None.
5823 *
5824 * RETURNS:
5825 * 1 if the port online status is available and online.
5826 */
5827 int ata_port_online(struct ata_port *ap)
5828 {
5829 u32 sstatus;
5830
5831 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5832 return 1;
5833 return 0;
5834 }
5835
5836 /**
5837 * ata_port_offline - test whether the given port is offline
5838 * @ap: ATA port to test
5839 *
5840 * Test whether @ap is offline. Note that this function returns
5841 * 0 if offline status of @ap cannot be obtained, so
5842 * ata_port_online(ap) != !ata_port_offline(ap).
5843 *
5844 * LOCKING:
5845 * None.
5846 *
5847 * RETURNS:
5848 * 1 if the port offline status is available and offline.
5849 */
5850 int ata_port_offline(struct ata_port *ap)
5851 {
5852 u32 sstatus;
5853
5854 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5855 return 1;
5856 return 0;
5857 }
5858
5859 int ata_flush_cache(struct ata_device *dev)
5860 {
5861 unsigned int err_mask;
5862 u8 cmd;
5863
5864 if (!ata_try_flush_cache(dev))
5865 return 0;
5866
5867 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5868 cmd = ATA_CMD_FLUSH_EXT;
5869 else
5870 cmd = ATA_CMD_FLUSH;
5871
5872 err_mask = ata_do_simple_cmd(dev, cmd);
5873 if (err_mask) {
5874 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5875 return -EIO;
5876 }
5877
5878 return 0;
5879 }
5880
5881 #ifdef CONFIG_PM
5882 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5883 unsigned int action, unsigned int ehi_flags,
5884 int wait)
5885 {
5886 unsigned long flags;
5887 int i, rc;
5888
5889 for (i = 0; i < host->n_ports; i++) {
5890 struct ata_port *ap = host->ports[i];
5891
5892 /* Previous resume operation might still be in
5893 * progress. Wait for PM_PENDING to clear.
5894 */
5895 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5896 ata_port_wait_eh(ap);
5897 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5898 }
5899
5900 /* request PM ops to EH */
5901 spin_lock_irqsave(ap->lock, flags);
5902
5903 ap->pm_mesg = mesg;
5904 if (wait) {
5905 rc = 0;
5906 ap->pm_result = &rc;
5907 }
5908
5909 ap->pflags |= ATA_PFLAG_PM_PENDING;
5910 ap->eh_info.action |= action;
5911 ap->eh_info.flags |= ehi_flags;
5912
5913 ata_port_schedule_eh(ap);
5914
5915 spin_unlock_irqrestore(ap->lock, flags);
5916
5917 /* wait and check result */
5918 if (wait) {
5919 ata_port_wait_eh(ap);
5920 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5921 if (rc)
5922 return rc;
5923 }
5924 }
5925
5926 return 0;
5927 }
5928
5929 /**
5930 * ata_host_suspend - suspend host
5931 * @host: host to suspend
5932 * @mesg: PM message
5933 *
5934 * Suspend @host. Actual operation is performed by EH. This
5935 * function requests EH to perform PM operations and waits for EH
5936 * to finish.
5937 *
5938 * LOCKING:
5939 * Kernel thread context (may sleep).
5940 *
5941 * RETURNS:
5942 * 0 on success, -errno on failure.
5943 */
5944 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5945 {
5946 int rc;
5947
5948 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5949 if (rc == 0)
5950 host->dev->power.power_state = mesg;
5951 return rc;
5952 }
5953
5954 /**
5955 * ata_host_resume - resume host
5956 * @host: host to resume
5957 *
5958 * Resume @host. Actual operation is performed by EH. This
5959 * function requests EH to perform PM operations and returns.
5960 * Note that all resume operations are performed parallely.
5961 *
5962 * LOCKING:
5963 * Kernel thread context (may sleep).
5964 */
5965 void ata_host_resume(struct ata_host *host)
5966 {
5967 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5968 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5969 host->dev->power.power_state = PMSG_ON;
5970 }
5971 #endif
5972
5973 /**
5974 * ata_port_start - Set port up for dma.
5975 * @ap: Port to initialize
5976 *
5977 * Called just after data structures for each port are
5978 * initialized. Allocates space for PRD table.
5979 *
5980 * May be used as the port_start() entry in ata_port_operations.
5981 *
5982 * LOCKING:
5983 * Inherited from caller.
5984 */
5985 int ata_port_start(struct ata_port *ap)
5986 {
5987 struct device *dev = ap->dev;
5988 int rc;
5989
5990 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5991 GFP_KERNEL);
5992 if (!ap->prd)
5993 return -ENOMEM;
5994
5995 rc = ata_pad_alloc(ap, dev);
5996 if (rc)
5997 return rc;
5998
5999 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6000 (unsigned long long)ap->prd_dma);
6001 return 0;
6002 }
6003
6004 /**
6005 * ata_dev_init - Initialize an ata_device structure
6006 * @dev: Device structure to initialize
6007 *
6008 * Initialize @dev in preparation for probing.
6009 *
6010 * LOCKING:
6011 * Inherited from caller.
6012 */
6013 void ata_dev_init(struct ata_device *dev)
6014 {
6015 struct ata_port *ap = dev->ap;
6016 unsigned long flags;
6017
6018 /* SATA spd limit is bound to the first device */
6019 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6020 ap->sata_spd = 0;
6021
6022 /* High bits of dev->flags are used to record warm plug
6023 * requests which occur asynchronously. Synchronize using
6024 * host lock.
6025 */
6026 spin_lock_irqsave(ap->lock, flags);
6027 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6028 spin_unlock_irqrestore(ap->lock, flags);
6029
6030 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6031 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6032 dev->pio_mask = UINT_MAX;
6033 dev->mwdma_mask = UINT_MAX;
6034 dev->udma_mask = UINT_MAX;
6035 }
6036
6037 /**
6038 * ata_port_alloc - allocate and initialize basic ATA port resources
6039 * @host: ATA host this allocated port belongs to
6040 *
6041 * Allocate and initialize basic ATA port resources.
6042 *
6043 * RETURNS:
6044 * Allocate ATA port on success, NULL on failure.
6045 *
6046 * LOCKING:
6047 * Inherited from calling layer (may sleep).
6048 */
6049 struct ata_port *ata_port_alloc(struct ata_host *host)
6050 {
6051 struct ata_port *ap;
6052 unsigned int i;
6053
6054 DPRINTK("ENTER\n");
6055
6056 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6057 if (!ap)
6058 return NULL;
6059
6060 ap->pflags |= ATA_PFLAG_INITIALIZING;
6061 ap->lock = &host->lock;
6062 ap->flags = ATA_FLAG_DISABLED;
6063 ap->print_id = -1;
6064 ap->ctl = ATA_DEVCTL_OBS;
6065 ap->host = host;
6066 ap->dev = host->dev;
6067
6068 ap->hw_sata_spd_limit = UINT_MAX;
6069 ap->active_tag = ATA_TAG_POISON;
6070 ap->last_ctl = 0xFF;
6071
6072 #if defined(ATA_VERBOSE_DEBUG)
6073 /* turn on all debugging levels */
6074 ap->msg_enable = 0x00FF;
6075 #elif defined(ATA_DEBUG)
6076 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6077 #else
6078 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6079 #endif
6080
6081 INIT_DELAYED_WORK(&ap->port_task, NULL);
6082 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6083 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6084 INIT_LIST_HEAD(&ap->eh_done_q);
6085 init_waitqueue_head(&ap->eh_wait_q);
6086 init_timer_deferrable(&ap->fastdrain_timer);
6087 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6088 ap->fastdrain_timer.data = (unsigned long)ap;
6089
6090 ap->cbl = ATA_CBL_NONE;
6091
6092 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6093 struct ata_device *dev = &ap->device[i];
6094 dev->ap = ap;
6095 dev->devno = i;
6096 ata_dev_init(dev);
6097 }
6098
6099 #ifdef ATA_IRQ_TRAP
6100 ap->stats.unhandled_irq = 1;
6101 ap->stats.idle_irq = 1;
6102 #endif
6103 return ap;
6104 }
6105
6106 static void ata_host_release(struct device *gendev, void *res)
6107 {
6108 struct ata_host *host = dev_get_drvdata(gendev);
6109 int i;
6110
6111 for (i = 0; i < host->n_ports; i++) {
6112 struct ata_port *ap = host->ports[i];
6113
6114 if (!ap)
6115 continue;
6116
6117 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6118 ap->ops->port_stop(ap);
6119 }
6120
6121 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6122 host->ops->host_stop(host);
6123
6124 for (i = 0; i < host->n_ports; i++) {
6125 struct ata_port *ap = host->ports[i];
6126
6127 if (!ap)
6128 continue;
6129
6130 if (ap->scsi_host)
6131 scsi_host_put(ap->scsi_host);
6132
6133 kfree(ap);
6134 host->ports[i] = NULL;
6135 }
6136
6137 dev_set_drvdata(gendev, NULL);
6138 }
6139
6140 /**
6141 * ata_host_alloc - allocate and init basic ATA host resources
6142 * @dev: generic device this host is associated with
6143 * @max_ports: maximum number of ATA ports associated with this host
6144 *
6145 * Allocate and initialize basic ATA host resources. LLD calls
6146 * this function to allocate a host, initializes it fully and
6147 * attaches it using ata_host_register().
6148 *
6149 * @max_ports ports are allocated and host->n_ports is
6150 * initialized to @max_ports. The caller is allowed to decrease
6151 * host->n_ports before calling ata_host_register(). The unused
6152 * ports will be automatically freed on registration.
6153 *
6154 * RETURNS:
6155 * Allocate ATA host on success, NULL on failure.
6156 *
6157 * LOCKING:
6158 * Inherited from calling layer (may sleep).
6159 */
6160 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6161 {
6162 struct ata_host *host;
6163 size_t sz;
6164 int i;
6165
6166 DPRINTK("ENTER\n");
6167
6168 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6169 return NULL;
6170
6171 /* alloc a container for our list of ATA ports (buses) */
6172 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6173 /* alloc a container for our list of ATA ports (buses) */
6174 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6175 if (!host)
6176 goto err_out;
6177
6178 devres_add(dev, host);
6179 dev_set_drvdata(dev, host);
6180
6181 spin_lock_init(&host->lock);
6182 host->dev = dev;
6183 host->n_ports = max_ports;
6184
6185 /* allocate ports bound to this host */
6186 for (i = 0; i < max_ports; i++) {
6187 struct ata_port *ap;
6188
6189 ap = ata_port_alloc(host);
6190 if (!ap)
6191 goto err_out;
6192
6193 ap->port_no = i;
6194 host->ports[i] = ap;
6195 }
6196
6197 devres_remove_group(dev, NULL);
6198 return host;
6199
6200 err_out:
6201 devres_release_group(dev, NULL);
6202 return NULL;
6203 }
6204
6205 /**
6206 * ata_host_alloc_pinfo - alloc host and init with port_info array
6207 * @dev: generic device this host is associated with
6208 * @ppi: array of ATA port_info to initialize host with
6209 * @n_ports: number of ATA ports attached to this host
6210 *
6211 * Allocate ATA host and initialize with info from @ppi. If NULL
6212 * terminated, @ppi may contain fewer entries than @n_ports. The
6213 * last entry will be used for the remaining ports.
6214 *
6215 * RETURNS:
6216 * Allocate ATA host on success, NULL on failure.
6217 *
6218 * LOCKING:
6219 * Inherited from calling layer (may sleep).
6220 */
6221 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6222 const struct ata_port_info * const * ppi,
6223 int n_ports)
6224 {
6225 const struct ata_port_info *pi;
6226 struct ata_host *host;
6227 int i, j;
6228
6229 host = ata_host_alloc(dev, n_ports);
6230 if (!host)
6231 return NULL;
6232
6233 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6234 struct ata_port *ap = host->ports[i];
6235
6236 if (ppi[j])
6237 pi = ppi[j++];
6238
6239 ap->pio_mask = pi->pio_mask;
6240 ap->mwdma_mask = pi->mwdma_mask;
6241 ap->udma_mask = pi->udma_mask;
6242 ap->flags |= pi->flags;
6243 ap->ops = pi->port_ops;
6244
6245 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6246 host->ops = pi->port_ops;
6247 if (!host->private_data && pi->private_data)
6248 host->private_data = pi->private_data;
6249 }
6250
6251 return host;
6252 }
6253
6254 /**
6255 * ata_host_start - start and freeze ports of an ATA host
6256 * @host: ATA host to start ports for
6257 *
6258 * Start and then freeze ports of @host. Started status is
6259 * recorded in host->flags, so this function can be called
6260 * multiple times. Ports are guaranteed to get started only
6261 * once. If host->ops isn't initialized yet, its set to the
6262 * first non-dummy port ops.
6263 *
6264 * LOCKING:
6265 * Inherited from calling layer (may sleep).
6266 *
6267 * RETURNS:
6268 * 0 if all ports are started successfully, -errno otherwise.
6269 */
6270 int ata_host_start(struct ata_host *host)
6271 {
6272 int i, rc;
6273
6274 if (host->flags & ATA_HOST_STARTED)
6275 return 0;
6276
6277 for (i = 0; i < host->n_ports; i++) {
6278 struct ata_port *ap = host->ports[i];
6279
6280 if (!host->ops && !ata_port_is_dummy(ap))
6281 host->ops = ap->ops;
6282
6283 if (ap->ops->port_start) {
6284 rc = ap->ops->port_start(ap);
6285 if (rc) {
6286 ata_port_printk(ap, KERN_ERR, "failed to "
6287 "start port (errno=%d)\n", rc);
6288 goto err_out;
6289 }
6290 }
6291
6292 ata_eh_freeze_port(ap);
6293 }
6294
6295 host->flags |= ATA_HOST_STARTED;
6296 return 0;
6297
6298 err_out:
6299 while (--i >= 0) {
6300 struct ata_port *ap = host->ports[i];
6301
6302 if (ap->ops->port_stop)
6303 ap->ops->port_stop(ap);
6304 }
6305 return rc;
6306 }
6307
6308 /**
6309 * ata_sas_host_init - Initialize a host struct
6310 * @host: host to initialize
6311 * @dev: device host is attached to
6312 * @flags: host flags
6313 * @ops: port_ops
6314 *
6315 * LOCKING:
6316 * PCI/etc. bus probe sem.
6317 *
6318 */
6319 /* KILLME - the only user left is ipr */
6320 void ata_host_init(struct ata_host *host, struct device *dev,
6321 unsigned long flags, const struct ata_port_operations *ops)
6322 {
6323 spin_lock_init(&host->lock);
6324 host->dev = dev;
6325 host->flags = flags;
6326 host->ops = ops;
6327 }
6328
6329 /**
6330 * ata_host_register - register initialized ATA host
6331 * @host: ATA host to register
6332 * @sht: template for SCSI host
6333 *
6334 * Register initialized ATA host. @host is allocated using
6335 * ata_host_alloc() and fully initialized by LLD. This function
6336 * starts ports, registers @host with ATA and SCSI layers and
6337 * probe registered devices.
6338 *
6339 * LOCKING:
6340 * Inherited from calling layer (may sleep).
6341 *
6342 * RETURNS:
6343 * 0 on success, -errno otherwise.
6344 */
6345 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6346 {
6347 int i, rc;
6348
6349 /* host must have been started */
6350 if (!(host->flags & ATA_HOST_STARTED)) {
6351 dev_printk(KERN_ERR, host->dev,
6352 "BUG: trying to register unstarted host\n");
6353 WARN_ON(1);
6354 return -EINVAL;
6355 }
6356
6357 /* Blow away unused ports. This happens when LLD can't
6358 * determine the exact number of ports to allocate at
6359 * allocation time.
6360 */
6361 for (i = host->n_ports; host->ports[i]; i++)
6362 kfree(host->ports[i]);
6363
6364 /* give ports names and add SCSI hosts */
6365 for (i = 0; i < host->n_ports; i++)
6366 host->ports[i]->print_id = ata_print_id++;
6367
6368 rc = ata_scsi_add_hosts(host, sht);
6369 if (rc)
6370 return rc;
6371
6372 /* associate with ACPI nodes */
6373 ata_acpi_associate(host);
6374
6375 /* set cable, sata_spd_limit and report */
6376 for (i = 0; i < host->n_ports; i++) {
6377 struct ata_port *ap = host->ports[i];
6378 int irq_line;
6379 u32 scontrol;
6380 unsigned long xfer_mask;
6381
6382 /* set SATA cable type if still unset */
6383 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6384 ap->cbl = ATA_CBL_SATA;
6385
6386 /* init sata_spd_limit to the current value */
6387 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6388 int spd = (scontrol >> 4) & 0xf;
6389 if (spd)
6390 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6391 }
6392 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6393
6394 /* report the secondary IRQ for second channel legacy */
6395 irq_line = host->irq;
6396 if (i == 1 && host->irq2)
6397 irq_line = host->irq2;
6398
6399 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6400 ap->udma_mask);
6401
6402 /* print per-port info to dmesg */
6403 if (!ata_port_is_dummy(ap))
6404 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6405 "ctl 0x%p bmdma 0x%p irq %d\n",
6406 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6407 ata_mode_string(xfer_mask),
6408 ap->ioaddr.cmd_addr,
6409 ap->ioaddr.ctl_addr,
6410 ap->ioaddr.bmdma_addr,
6411 irq_line);
6412 else
6413 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6414 }
6415
6416 /* perform each probe synchronously */
6417 DPRINTK("probe begin\n");
6418 for (i = 0; i < host->n_ports; i++) {
6419 struct ata_port *ap = host->ports[i];
6420 int rc;
6421
6422 /* probe */
6423 if (ap->ops->error_handler) {
6424 struct ata_eh_info *ehi = &ap->eh_info;
6425 unsigned long flags;
6426
6427 ata_port_probe(ap);
6428
6429 /* kick EH for boot probing */
6430 spin_lock_irqsave(ap->lock, flags);
6431
6432 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6433 ehi->action |= ATA_EH_SOFTRESET;
6434 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6435
6436 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6437 ap->pflags |= ATA_PFLAG_LOADING;
6438 ata_port_schedule_eh(ap);
6439
6440 spin_unlock_irqrestore(ap->lock, flags);
6441
6442 /* wait for EH to finish */
6443 ata_port_wait_eh(ap);
6444 } else {
6445 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6446 rc = ata_bus_probe(ap);
6447 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6448
6449 if (rc) {
6450 /* FIXME: do something useful here?
6451 * Current libata behavior will
6452 * tear down everything when
6453 * the module is removed
6454 * or the h/w is unplugged.
6455 */
6456 }
6457 }
6458 }
6459
6460 /* probes are done, now scan each port's disk(s) */
6461 DPRINTK("host probe begin\n");
6462 for (i = 0; i < host->n_ports; i++) {
6463 struct ata_port *ap = host->ports[i];
6464
6465 ata_scsi_scan_host(ap, 1);
6466 }
6467
6468 return 0;
6469 }
6470
6471 /**
6472 * ata_host_activate - start host, request IRQ and register it
6473 * @host: target ATA host
6474 * @irq: IRQ to request
6475 * @irq_handler: irq_handler used when requesting IRQ
6476 * @irq_flags: irq_flags used when requesting IRQ
6477 * @sht: scsi_host_template to use when registering the host
6478 *
6479 * After allocating an ATA host and initializing it, most libata
6480 * LLDs perform three steps to activate the host - start host,
6481 * request IRQ and register it. This helper takes necessasry
6482 * arguments and performs the three steps in one go.
6483 *
6484 * LOCKING:
6485 * Inherited from calling layer (may sleep).
6486 *
6487 * RETURNS:
6488 * 0 on success, -errno otherwise.
6489 */
6490 int ata_host_activate(struct ata_host *host, int irq,
6491 irq_handler_t irq_handler, unsigned long irq_flags,
6492 struct scsi_host_template *sht)
6493 {
6494 int rc;
6495
6496 rc = ata_host_start(host);
6497 if (rc)
6498 return rc;
6499
6500 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6501 dev_driver_string(host->dev), host);
6502 if (rc)
6503 return rc;
6504
6505 /* Used to print device info at probe */
6506 host->irq = irq;
6507
6508 rc = ata_host_register(host, sht);
6509 /* if failed, just free the IRQ and leave ports alone */
6510 if (rc)
6511 devm_free_irq(host->dev, irq, host);
6512
6513 return rc;
6514 }
6515
6516 /**
6517 * ata_port_detach - Detach ATA port in prepration of device removal
6518 * @ap: ATA port to be detached
6519 *
6520 * Detach all ATA devices and the associated SCSI devices of @ap;
6521 * then, remove the associated SCSI host. @ap is guaranteed to
6522 * be quiescent on return from this function.
6523 *
6524 * LOCKING:
6525 * Kernel thread context (may sleep).
6526 */
6527 void ata_port_detach(struct ata_port *ap)
6528 {
6529 unsigned long flags;
6530 int i;
6531
6532 if (!ap->ops->error_handler)
6533 goto skip_eh;
6534
6535 /* tell EH we're leaving & flush EH */
6536 spin_lock_irqsave(ap->lock, flags);
6537 ap->pflags |= ATA_PFLAG_UNLOADING;
6538 spin_unlock_irqrestore(ap->lock, flags);
6539
6540 ata_port_wait_eh(ap);
6541
6542 /* EH is now guaranteed to see UNLOADING, so no new device
6543 * will be attached. Disable all existing devices.
6544 */
6545 spin_lock_irqsave(ap->lock, flags);
6546
6547 for (i = 0; i < ATA_MAX_DEVICES; i++)
6548 ata_dev_disable(&ap->device[i]);
6549
6550 spin_unlock_irqrestore(ap->lock, flags);
6551
6552 /* Final freeze & EH. All in-flight commands are aborted. EH
6553 * will be skipped and retrials will be terminated with bad
6554 * target.
6555 */
6556 spin_lock_irqsave(ap->lock, flags);
6557 ata_port_freeze(ap); /* won't be thawed */
6558 spin_unlock_irqrestore(ap->lock, flags);
6559
6560 ata_port_wait_eh(ap);
6561 cancel_rearming_delayed_work(&ap->hotplug_task);
6562
6563 skip_eh:
6564 /* remove the associated SCSI host */
6565 scsi_remove_host(ap->scsi_host);
6566 }
6567
6568 /**
6569 * ata_host_detach - Detach all ports of an ATA host
6570 * @host: Host to detach
6571 *
6572 * Detach all ports of @host.
6573 *
6574 * LOCKING:
6575 * Kernel thread context (may sleep).
6576 */
6577 void ata_host_detach(struct ata_host *host)
6578 {
6579 int i;
6580
6581 for (i = 0; i < host->n_ports; i++)
6582 ata_port_detach(host->ports[i]);
6583 }
6584
6585 /**
6586 * ata_std_ports - initialize ioaddr with standard port offsets.
6587 * @ioaddr: IO address structure to be initialized
6588 *
6589 * Utility function which initializes data_addr, error_addr,
6590 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6591 * device_addr, status_addr, and command_addr to standard offsets
6592 * relative to cmd_addr.
6593 *
6594 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6595 */
6596
6597 void ata_std_ports(struct ata_ioports *ioaddr)
6598 {
6599 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6600 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6601 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6602 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6603 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6604 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6605 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6606 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6607 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6608 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6609 }
6610
6611
6612 #ifdef CONFIG_PCI
6613
6614 /**
6615 * ata_pci_remove_one - PCI layer callback for device removal
6616 * @pdev: PCI device that was removed
6617 *
6618 * PCI layer indicates to libata via this hook that hot-unplug or
6619 * module unload event has occurred. Detach all ports. Resource
6620 * release is handled via devres.
6621 *
6622 * LOCKING:
6623 * Inherited from PCI layer (may sleep).
6624 */
6625 void ata_pci_remove_one(struct pci_dev *pdev)
6626 {
6627 struct device *dev = pci_dev_to_dev(pdev);
6628 struct ata_host *host = dev_get_drvdata(dev);
6629
6630 ata_host_detach(host);
6631 }
6632
6633 /* move to PCI subsystem */
6634 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6635 {
6636 unsigned long tmp = 0;
6637
6638 switch (bits->width) {
6639 case 1: {
6640 u8 tmp8 = 0;
6641 pci_read_config_byte(pdev, bits->reg, &tmp8);
6642 tmp = tmp8;
6643 break;
6644 }
6645 case 2: {
6646 u16 tmp16 = 0;
6647 pci_read_config_word(pdev, bits->reg, &tmp16);
6648 tmp = tmp16;
6649 break;
6650 }
6651 case 4: {
6652 u32 tmp32 = 0;
6653 pci_read_config_dword(pdev, bits->reg, &tmp32);
6654 tmp = tmp32;
6655 break;
6656 }
6657
6658 default:
6659 return -EINVAL;
6660 }
6661
6662 tmp &= bits->mask;
6663
6664 return (tmp == bits->val) ? 1 : 0;
6665 }
6666
6667 #ifdef CONFIG_PM
6668 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6669 {
6670 pci_save_state(pdev);
6671 pci_disable_device(pdev);
6672
6673 if (mesg.event == PM_EVENT_SUSPEND)
6674 pci_set_power_state(pdev, PCI_D3hot);
6675 }
6676
6677 int ata_pci_device_do_resume(struct pci_dev *pdev)
6678 {
6679 int rc;
6680
6681 pci_set_power_state(pdev, PCI_D0);
6682 pci_restore_state(pdev);
6683
6684 rc = pcim_enable_device(pdev);
6685 if (rc) {
6686 dev_printk(KERN_ERR, &pdev->dev,
6687 "failed to enable device after resume (%d)\n", rc);
6688 return rc;
6689 }
6690
6691 pci_set_master(pdev);
6692 return 0;
6693 }
6694
6695 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6696 {
6697 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6698 int rc = 0;
6699
6700 rc = ata_host_suspend(host, mesg);
6701 if (rc)
6702 return rc;
6703
6704 ata_pci_device_do_suspend(pdev, mesg);
6705
6706 return 0;
6707 }
6708
6709 int ata_pci_device_resume(struct pci_dev *pdev)
6710 {
6711 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6712 int rc;
6713
6714 rc = ata_pci_device_do_resume(pdev);
6715 if (rc == 0)
6716 ata_host_resume(host);
6717 return rc;
6718 }
6719 #endif /* CONFIG_PM */
6720
6721 #endif /* CONFIG_PCI */
6722
6723
6724 static int __init ata_init(void)
6725 {
6726 ata_probe_timeout *= HZ;
6727 ata_wq = create_workqueue("ata");
6728 if (!ata_wq)
6729 return -ENOMEM;
6730
6731 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6732 if (!ata_aux_wq) {
6733 destroy_workqueue(ata_wq);
6734 return -ENOMEM;
6735 }
6736
6737 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6738 return 0;
6739 }
6740
6741 static void __exit ata_exit(void)
6742 {
6743 destroy_workqueue(ata_wq);
6744 destroy_workqueue(ata_aux_wq);
6745 }
6746
6747 subsys_initcall(ata_init);
6748 module_exit(ata_exit);
6749
6750 static unsigned long ratelimit_time;
6751 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6752
6753 int ata_ratelimit(void)
6754 {
6755 int rc;
6756 unsigned long flags;
6757
6758 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6759
6760 if (time_after(jiffies, ratelimit_time)) {
6761 rc = 1;
6762 ratelimit_time = jiffies + (HZ/5);
6763 } else
6764 rc = 0;
6765
6766 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6767
6768 return rc;
6769 }
6770
6771 /**
6772 * ata_wait_register - wait until register value changes
6773 * @reg: IO-mapped register
6774 * @mask: Mask to apply to read register value
6775 * @val: Wait condition
6776 * @interval_msec: polling interval in milliseconds
6777 * @timeout_msec: timeout in milliseconds
6778 *
6779 * Waiting for some bits of register to change is a common
6780 * operation for ATA controllers. This function reads 32bit LE
6781 * IO-mapped register @reg and tests for the following condition.
6782 *
6783 * (*@reg & mask) != val
6784 *
6785 * If the condition is met, it returns; otherwise, the process is
6786 * repeated after @interval_msec until timeout.
6787 *
6788 * LOCKING:
6789 * Kernel thread context (may sleep)
6790 *
6791 * RETURNS:
6792 * The final register value.
6793 */
6794 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6795 unsigned long interval_msec,
6796 unsigned long timeout_msec)
6797 {
6798 unsigned long timeout;
6799 u32 tmp;
6800
6801 tmp = ioread32(reg);
6802
6803 /* Calculate timeout _after_ the first read to make sure
6804 * preceding writes reach the controller before starting to
6805 * eat away the timeout.
6806 */
6807 timeout = jiffies + (timeout_msec * HZ) / 1000;
6808
6809 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6810 msleep(interval_msec);
6811 tmp = ioread32(reg);
6812 }
6813
6814 return tmp;
6815 }
6816
6817 /*
6818 * Dummy port_ops
6819 */
6820 static void ata_dummy_noret(struct ata_port *ap) { }
6821 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6822 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6823
6824 static u8 ata_dummy_check_status(struct ata_port *ap)
6825 {
6826 return ATA_DRDY;
6827 }
6828
6829 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6830 {
6831 return AC_ERR_SYSTEM;
6832 }
6833
6834 const struct ata_port_operations ata_dummy_port_ops = {
6835 .port_disable = ata_port_disable,
6836 .check_status = ata_dummy_check_status,
6837 .check_altstatus = ata_dummy_check_status,
6838 .dev_select = ata_noop_dev_select,
6839 .qc_prep = ata_noop_qc_prep,
6840 .qc_issue = ata_dummy_qc_issue,
6841 .freeze = ata_dummy_noret,
6842 .thaw = ata_dummy_noret,
6843 .error_handler = ata_dummy_noret,
6844 .post_internal_cmd = ata_dummy_qc_noret,
6845 .irq_clear = ata_dummy_noret,
6846 .port_start = ata_dummy_ret0,
6847 .port_stop = ata_dummy_noret,
6848 };
6849
6850 const struct ata_port_info ata_dummy_port_info = {
6851 .port_ops = &ata_dummy_port_ops,
6852 };
6853
6854 /*
6855 * libata is essentially a library of internal helper functions for
6856 * low-level ATA host controller drivers. As such, the API/ABI is
6857 * likely to change as new drivers are added and updated.
6858 * Do not depend on ABI/API stability.
6859 */
6860
6861 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6862 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6863 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6864 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6865 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6866 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6867 EXPORT_SYMBOL_GPL(ata_std_ports);
6868 EXPORT_SYMBOL_GPL(ata_host_init);
6869 EXPORT_SYMBOL_GPL(ata_host_alloc);
6870 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6871 EXPORT_SYMBOL_GPL(ata_host_start);
6872 EXPORT_SYMBOL_GPL(ata_host_register);
6873 EXPORT_SYMBOL_GPL(ata_host_activate);
6874 EXPORT_SYMBOL_GPL(ata_host_detach);
6875 EXPORT_SYMBOL_GPL(ata_sg_init);
6876 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6877 EXPORT_SYMBOL_GPL(ata_hsm_move);
6878 EXPORT_SYMBOL_GPL(ata_qc_complete);
6879 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6880 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6881 EXPORT_SYMBOL_GPL(ata_tf_load);
6882 EXPORT_SYMBOL_GPL(ata_tf_read);
6883 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6884 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6885 EXPORT_SYMBOL_GPL(sata_print_link_status);
6886 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6887 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6888 EXPORT_SYMBOL_GPL(ata_check_status);
6889 EXPORT_SYMBOL_GPL(ata_altstatus);
6890 EXPORT_SYMBOL_GPL(ata_exec_command);
6891 EXPORT_SYMBOL_GPL(ata_port_start);
6892 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6893 EXPORT_SYMBOL_GPL(ata_interrupt);
6894 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6895 EXPORT_SYMBOL_GPL(ata_data_xfer);
6896 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6897 EXPORT_SYMBOL_GPL(ata_qc_prep);
6898 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6899 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6900 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6901 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6902 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6903 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6904 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6905 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6906 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6907 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6908 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6909 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6910 EXPORT_SYMBOL_GPL(ata_port_probe);
6911 EXPORT_SYMBOL_GPL(ata_dev_disable);
6912 EXPORT_SYMBOL_GPL(sata_set_spd);
6913 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6914 EXPORT_SYMBOL_GPL(sata_phy_resume);
6915 EXPORT_SYMBOL_GPL(sata_phy_reset);
6916 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6917 EXPORT_SYMBOL_GPL(ata_bus_reset);
6918 EXPORT_SYMBOL_GPL(ata_std_prereset);
6919 EXPORT_SYMBOL_GPL(ata_std_softreset);
6920 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6921 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6922 EXPORT_SYMBOL_GPL(ata_std_postreset);
6923 EXPORT_SYMBOL_GPL(ata_dev_classify);
6924 EXPORT_SYMBOL_GPL(ata_dev_pair);
6925 EXPORT_SYMBOL_GPL(ata_port_disable);
6926 EXPORT_SYMBOL_GPL(ata_ratelimit);
6927 EXPORT_SYMBOL_GPL(ata_wait_register);
6928 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6929 EXPORT_SYMBOL_GPL(ata_wait_ready);
6930 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6931 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6932 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6933 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6934 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6935 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6936 EXPORT_SYMBOL_GPL(ata_host_intr);
6937 EXPORT_SYMBOL_GPL(sata_scr_valid);
6938 EXPORT_SYMBOL_GPL(sata_scr_read);
6939 EXPORT_SYMBOL_GPL(sata_scr_write);
6940 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6941 EXPORT_SYMBOL_GPL(ata_port_online);
6942 EXPORT_SYMBOL_GPL(ata_port_offline);
6943 #ifdef CONFIG_PM
6944 EXPORT_SYMBOL_GPL(ata_host_suspend);
6945 EXPORT_SYMBOL_GPL(ata_host_resume);
6946 #endif /* CONFIG_PM */
6947 EXPORT_SYMBOL_GPL(ata_id_string);
6948 EXPORT_SYMBOL_GPL(ata_id_c_string);
6949 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6950 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6951
6952 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6953 EXPORT_SYMBOL_GPL(ata_timing_compute);
6954 EXPORT_SYMBOL_GPL(ata_timing_merge);
6955
6956 #ifdef CONFIG_PCI
6957 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6958 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
6959 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6960 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
6961 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6962 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6963 #ifdef CONFIG_PM
6964 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6965 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6966 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6967 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6968 #endif /* CONFIG_PM */
6969 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6970 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6971 #endif /* CONFIG_PCI */
6972
6973 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6974 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6975 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6976 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6977 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6978 EXPORT_SYMBOL_GPL(ata_port_abort);
6979 EXPORT_SYMBOL_GPL(ata_port_freeze);
6980 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6981 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6982 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6983 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6984 EXPORT_SYMBOL_GPL(ata_do_eh);
6985 EXPORT_SYMBOL_GPL(ata_irq_on);
6986 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6987 EXPORT_SYMBOL_GPL(ata_irq_ack);
6988 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6989 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6990
6991 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6992 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6993 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6994 EXPORT_SYMBOL_GPL(ata_cable_sata);