]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/ata/libata-core.c
Merge branch 'master' into for-upstream
[mirror_ubuntu-focal-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
65
66 #include "libata.h"
67
68
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
73
74 const struct ata_port_operations ata_base_port_ops = {
75 .prereset = ata_std_prereset,
76 .postreset = ata_std_postreset,
77 .error_handler = ata_std_error_handler,
78 };
79
80 const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
82
83 .qc_defer = ata_std_qc_defer,
84 .hardreset = sata_std_hardreset,
85 };
86
87 static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
90 static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
92 static void ata_dev_xfermask(struct ata_device *dev);
93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
94
95 unsigned int ata_print_id = 1;
96 static struct workqueue_struct *ata_wq;
97
98 struct workqueue_struct *ata_aux_wq;
99
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
108 };
109
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
114 };
115
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
118
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
127
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
131
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
135
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
139
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
155
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
159
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION);
164
165
166 /*
167 * Iterator helpers. Don't use directly.
168 *
169 * LOCKING:
170 * Host lock or EH context.
171 */
172 struct ata_link *__ata_port_next_link(struct ata_port *ap,
173 struct ata_link *link, bool dev_only)
174 {
175 /* NULL link indicates start of iteration */
176 if (!link) {
177 if (dev_only && sata_pmp_attached(ap))
178 return ap->pmp_link;
179 return &ap->link;
180 }
181
182 /* we just iterated over the host master link, what's next? */
183 if (link == &ap->link) {
184 if (!sata_pmp_attached(ap)) {
185 if (unlikely(ap->slave_link) && !dev_only)
186 return ap->slave_link;
187 return NULL;
188 }
189 return ap->pmp_link;
190 }
191
192 /* slave_link excludes PMP */
193 if (unlikely(link == ap->slave_link))
194 return NULL;
195
196 /* iterate to the next PMP link */
197 if (++link < ap->pmp_link + ap->nr_pmp_links)
198 return link;
199 return NULL;
200 }
201
202 /**
203 * ata_dev_phys_link - find physical link for a device
204 * @dev: ATA device to look up physical link for
205 *
206 * Look up physical link which @dev is attached to. Note that
207 * this is different from @dev->link only when @dev is on slave
208 * link. For all other cases, it's the same as @dev->link.
209 *
210 * LOCKING:
211 * Don't care.
212 *
213 * RETURNS:
214 * Pointer to the found physical link.
215 */
216 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
217 {
218 struct ata_port *ap = dev->link->ap;
219
220 if (!ap->slave_link)
221 return dev->link;
222 if (!dev->devno)
223 return &ap->link;
224 return ap->slave_link;
225 }
226
227 /**
228 * ata_force_cbl - force cable type according to libata.force
229 * @ap: ATA port of interest
230 *
231 * Force cable type according to libata.force and whine about it.
232 * The last entry which has matching port number is used, so it
233 * can be specified as part of device force parameters. For
234 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
235 * same effect.
236 *
237 * LOCKING:
238 * EH context.
239 */
240 void ata_force_cbl(struct ata_port *ap)
241 {
242 int i;
243
244 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
245 const struct ata_force_ent *fe = &ata_force_tbl[i];
246
247 if (fe->port != -1 && fe->port != ap->print_id)
248 continue;
249
250 if (fe->param.cbl == ATA_CBL_NONE)
251 continue;
252
253 ap->cbl = fe->param.cbl;
254 ata_port_printk(ap, KERN_NOTICE,
255 "FORCE: cable set to %s\n", fe->param.name);
256 return;
257 }
258 }
259
260 /**
261 * ata_force_link_limits - force link limits according to libata.force
262 * @link: ATA link of interest
263 *
264 * Force link flags and SATA spd limit according to libata.force
265 * and whine about it. When only the port part is specified
266 * (e.g. 1:), the limit applies to all links connected to both
267 * the host link and all fan-out ports connected via PMP. If the
268 * device part is specified as 0 (e.g. 1.00:), it specifies the
269 * first fan-out link not the host link. Device number 15 always
270 * points to the host link whether PMP is attached or not. If the
271 * controller has slave link, device number 16 points to it.
272 *
273 * LOCKING:
274 * EH context.
275 */
276 static void ata_force_link_limits(struct ata_link *link)
277 {
278 bool did_spd = false;
279 int linkno = link->pmp;
280 int i;
281
282 if (ata_is_host_link(link))
283 linkno += 15;
284
285 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
286 const struct ata_force_ent *fe = &ata_force_tbl[i];
287
288 if (fe->port != -1 && fe->port != link->ap->print_id)
289 continue;
290
291 if (fe->device != -1 && fe->device != linkno)
292 continue;
293
294 /* only honor the first spd limit */
295 if (!did_spd && fe->param.spd_limit) {
296 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
297 ata_link_printk(link, KERN_NOTICE,
298 "FORCE: PHY spd limit set to %s\n",
299 fe->param.name);
300 did_spd = true;
301 }
302
303 /* let lflags stack */
304 if (fe->param.lflags) {
305 link->flags |= fe->param.lflags;
306 ata_link_printk(link, KERN_NOTICE,
307 "FORCE: link flag 0x%x forced -> 0x%x\n",
308 fe->param.lflags, link->flags);
309 }
310 }
311 }
312
313 /**
314 * ata_force_xfermask - force xfermask according to libata.force
315 * @dev: ATA device of interest
316 *
317 * Force xfer_mask according to libata.force and whine about it.
318 * For consistency with link selection, device number 15 selects
319 * the first device connected to the host link.
320 *
321 * LOCKING:
322 * EH context.
323 */
324 static void ata_force_xfermask(struct ata_device *dev)
325 {
326 int devno = dev->link->pmp + dev->devno;
327 int alt_devno = devno;
328 int i;
329
330 /* allow n.15/16 for devices attached to host port */
331 if (ata_is_host_link(dev->link))
332 alt_devno += 15;
333
334 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
335 const struct ata_force_ent *fe = &ata_force_tbl[i];
336 unsigned long pio_mask, mwdma_mask, udma_mask;
337
338 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
339 continue;
340
341 if (fe->device != -1 && fe->device != devno &&
342 fe->device != alt_devno)
343 continue;
344
345 if (!fe->param.xfer_mask)
346 continue;
347
348 ata_unpack_xfermask(fe->param.xfer_mask,
349 &pio_mask, &mwdma_mask, &udma_mask);
350 if (udma_mask)
351 dev->udma_mask = udma_mask;
352 else if (mwdma_mask) {
353 dev->udma_mask = 0;
354 dev->mwdma_mask = mwdma_mask;
355 } else {
356 dev->udma_mask = 0;
357 dev->mwdma_mask = 0;
358 dev->pio_mask = pio_mask;
359 }
360
361 ata_dev_printk(dev, KERN_NOTICE,
362 "FORCE: xfer_mask set to %s\n", fe->param.name);
363 return;
364 }
365 }
366
367 /**
368 * ata_force_horkage - force horkage according to libata.force
369 * @dev: ATA device of interest
370 *
371 * Force horkage according to libata.force and whine about it.
372 * For consistency with link selection, device number 15 selects
373 * the first device connected to the host link.
374 *
375 * LOCKING:
376 * EH context.
377 */
378 static void ata_force_horkage(struct ata_device *dev)
379 {
380 int devno = dev->link->pmp + dev->devno;
381 int alt_devno = devno;
382 int i;
383
384 /* allow n.15/16 for devices attached to host port */
385 if (ata_is_host_link(dev->link))
386 alt_devno += 15;
387
388 for (i = 0; i < ata_force_tbl_size; i++) {
389 const struct ata_force_ent *fe = &ata_force_tbl[i];
390
391 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
392 continue;
393
394 if (fe->device != -1 && fe->device != devno &&
395 fe->device != alt_devno)
396 continue;
397
398 if (!(~dev->horkage & fe->param.horkage_on) &&
399 !(dev->horkage & fe->param.horkage_off))
400 continue;
401
402 dev->horkage |= fe->param.horkage_on;
403 dev->horkage &= ~fe->param.horkage_off;
404
405 ata_dev_printk(dev, KERN_NOTICE,
406 "FORCE: horkage modified (%s)\n", fe->param.name);
407 }
408 }
409
410 /**
411 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
412 * @opcode: SCSI opcode
413 *
414 * Determine ATAPI command type from @opcode.
415 *
416 * LOCKING:
417 * None.
418 *
419 * RETURNS:
420 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
421 */
422 int atapi_cmd_type(u8 opcode)
423 {
424 switch (opcode) {
425 case GPCMD_READ_10:
426 case GPCMD_READ_12:
427 return ATAPI_READ;
428
429 case GPCMD_WRITE_10:
430 case GPCMD_WRITE_12:
431 case GPCMD_WRITE_AND_VERIFY_10:
432 return ATAPI_WRITE;
433
434 case GPCMD_READ_CD:
435 case GPCMD_READ_CD_MSF:
436 return ATAPI_READ_CD;
437
438 case ATA_16:
439 case ATA_12:
440 if (atapi_passthru16)
441 return ATAPI_PASS_THRU;
442 /* fall thru */
443 default:
444 return ATAPI_MISC;
445 }
446 }
447
448 /**
449 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
450 * @tf: Taskfile to convert
451 * @pmp: Port multiplier port
452 * @is_cmd: This FIS is for command
453 * @fis: Buffer into which data will output
454 *
455 * Converts a standard ATA taskfile to a Serial ATA
456 * FIS structure (Register - Host to Device).
457 *
458 * LOCKING:
459 * Inherited from caller.
460 */
461 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
462 {
463 fis[0] = 0x27; /* Register - Host to Device FIS */
464 fis[1] = pmp & 0xf; /* Port multiplier number*/
465 if (is_cmd)
466 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
467
468 fis[2] = tf->command;
469 fis[3] = tf->feature;
470
471 fis[4] = tf->lbal;
472 fis[5] = tf->lbam;
473 fis[6] = tf->lbah;
474 fis[7] = tf->device;
475
476 fis[8] = tf->hob_lbal;
477 fis[9] = tf->hob_lbam;
478 fis[10] = tf->hob_lbah;
479 fis[11] = tf->hob_feature;
480
481 fis[12] = tf->nsect;
482 fis[13] = tf->hob_nsect;
483 fis[14] = 0;
484 fis[15] = tf->ctl;
485
486 fis[16] = 0;
487 fis[17] = 0;
488 fis[18] = 0;
489 fis[19] = 0;
490 }
491
492 /**
493 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
494 * @fis: Buffer from which data will be input
495 * @tf: Taskfile to output
496 *
497 * Converts a serial ATA FIS structure to a standard ATA taskfile.
498 *
499 * LOCKING:
500 * Inherited from caller.
501 */
502
503 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
504 {
505 tf->command = fis[2]; /* status */
506 tf->feature = fis[3]; /* error */
507
508 tf->lbal = fis[4];
509 tf->lbam = fis[5];
510 tf->lbah = fis[6];
511 tf->device = fis[7];
512
513 tf->hob_lbal = fis[8];
514 tf->hob_lbam = fis[9];
515 tf->hob_lbah = fis[10];
516
517 tf->nsect = fis[12];
518 tf->hob_nsect = fis[13];
519 }
520
521 static const u8 ata_rw_cmds[] = {
522 /* pio multi */
523 ATA_CMD_READ_MULTI,
524 ATA_CMD_WRITE_MULTI,
525 ATA_CMD_READ_MULTI_EXT,
526 ATA_CMD_WRITE_MULTI_EXT,
527 0,
528 0,
529 0,
530 ATA_CMD_WRITE_MULTI_FUA_EXT,
531 /* pio */
532 ATA_CMD_PIO_READ,
533 ATA_CMD_PIO_WRITE,
534 ATA_CMD_PIO_READ_EXT,
535 ATA_CMD_PIO_WRITE_EXT,
536 0,
537 0,
538 0,
539 0,
540 /* dma */
541 ATA_CMD_READ,
542 ATA_CMD_WRITE,
543 ATA_CMD_READ_EXT,
544 ATA_CMD_WRITE_EXT,
545 0,
546 0,
547 0,
548 ATA_CMD_WRITE_FUA_EXT
549 };
550
551 /**
552 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
553 * @tf: command to examine and configure
554 * @dev: device tf belongs to
555 *
556 * Examine the device configuration and tf->flags to calculate
557 * the proper read/write commands and protocol to use.
558 *
559 * LOCKING:
560 * caller.
561 */
562 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
563 {
564 u8 cmd;
565
566 int index, fua, lba48, write;
567
568 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
569 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
570 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
571
572 if (dev->flags & ATA_DFLAG_PIO) {
573 tf->protocol = ATA_PROT_PIO;
574 index = dev->multi_count ? 0 : 8;
575 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
576 /* Unable to use DMA due to host limitation */
577 tf->protocol = ATA_PROT_PIO;
578 index = dev->multi_count ? 0 : 8;
579 } else {
580 tf->protocol = ATA_PROT_DMA;
581 index = 16;
582 }
583
584 cmd = ata_rw_cmds[index + fua + lba48 + write];
585 if (cmd) {
586 tf->command = cmd;
587 return 0;
588 }
589 return -1;
590 }
591
592 /**
593 * ata_tf_read_block - Read block address from ATA taskfile
594 * @tf: ATA taskfile of interest
595 * @dev: ATA device @tf belongs to
596 *
597 * LOCKING:
598 * None.
599 *
600 * Read block address from @tf. This function can handle all
601 * three address formats - LBA, LBA48 and CHS. tf->protocol and
602 * flags select the address format to use.
603 *
604 * RETURNS:
605 * Block address read from @tf.
606 */
607 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
608 {
609 u64 block = 0;
610
611 if (tf->flags & ATA_TFLAG_LBA) {
612 if (tf->flags & ATA_TFLAG_LBA48) {
613 block |= (u64)tf->hob_lbah << 40;
614 block |= (u64)tf->hob_lbam << 32;
615 block |= tf->hob_lbal << 24;
616 } else
617 block |= (tf->device & 0xf) << 24;
618
619 block |= tf->lbah << 16;
620 block |= tf->lbam << 8;
621 block |= tf->lbal;
622 } else {
623 u32 cyl, head, sect;
624
625 cyl = tf->lbam | (tf->lbah << 8);
626 head = tf->device & 0xf;
627 sect = tf->lbal;
628
629 block = (cyl * dev->heads + head) * dev->sectors + sect;
630 }
631
632 return block;
633 }
634
635 /**
636 * ata_build_rw_tf - Build ATA taskfile for given read/write request
637 * @tf: Target ATA taskfile
638 * @dev: ATA device @tf belongs to
639 * @block: Block address
640 * @n_block: Number of blocks
641 * @tf_flags: RW/FUA etc...
642 * @tag: tag
643 *
644 * LOCKING:
645 * None.
646 *
647 * Build ATA taskfile @tf for read/write request described by
648 * @block, @n_block, @tf_flags and @tag on @dev.
649 *
650 * RETURNS:
651 *
652 * 0 on success, -ERANGE if the request is too large for @dev,
653 * -EINVAL if the request is invalid.
654 */
655 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
656 u64 block, u32 n_block, unsigned int tf_flags,
657 unsigned int tag)
658 {
659 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
660 tf->flags |= tf_flags;
661
662 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
663 /* yay, NCQ */
664 if (!lba_48_ok(block, n_block))
665 return -ERANGE;
666
667 tf->protocol = ATA_PROT_NCQ;
668 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
669
670 if (tf->flags & ATA_TFLAG_WRITE)
671 tf->command = ATA_CMD_FPDMA_WRITE;
672 else
673 tf->command = ATA_CMD_FPDMA_READ;
674
675 tf->nsect = tag << 3;
676 tf->hob_feature = (n_block >> 8) & 0xff;
677 tf->feature = n_block & 0xff;
678
679 tf->hob_lbah = (block >> 40) & 0xff;
680 tf->hob_lbam = (block >> 32) & 0xff;
681 tf->hob_lbal = (block >> 24) & 0xff;
682 tf->lbah = (block >> 16) & 0xff;
683 tf->lbam = (block >> 8) & 0xff;
684 tf->lbal = block & 0xff;
685
686 tf->device = 1 << 6;
687 if (tf->flags & ATA_TFLAG_FUA)
688 tf->device |= 1 << 7;
689 } else if (dev->flags & ATA_DFLAG_LBA) {
690 tf->flags |= ATA_TFLAG_LBA;
691
692 if (lba_28_ok(block, n_block)) {
693 /* use LBA28 */
694 tf->device |= (block >> 24) & 0xf;
695 } else if (lba_48_ok(block, n_block)) {
696 if (!(dev->flags & ATA_DFLAG_LBA48))
697 return -ERANGE;
698
699 /* use LBA48 */
700 tf->flags |= ATA_TFLAG_LBA48;
701
702 tf->hob_nsect = (n_block >> 8) & 0xff;
703
704 tf->hob_lbah = (block >> 40) & 0xff;
705 tf->hob_lbam = (block >> 32) & 0xff;
706 tf->hob_lbal = (block >> 24) & 0xff;
707 } else
708 /* request too large even for LBA48 */
709 return -ERANGE;
710
711 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
712 return -EINVAL;
713
714 tf->nsect = n_block & 0xff;
715
716 tf->lbah = (block >> 16) & 0xff;
717 tf->lbam = (block >> 8) & 0xff;
718 tf->lbal = block & 0xff;
719
720 tf->device |= ATA_LBA;
721 } else {
722 /* CHS */
723 u32 sect, head, cyl, track;
724
725 /* The request -may- be too large for CHS addressing. */
726 if (!lba_28_ok(block, n_block))
727 return -ERANGE;
728
729 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
730 return -EINVAL;
731
732 /* Convert LBA to CHS */
733 track = (u32)block / dev->sectors;
734 cyl = track / dev->heads;
735 head = track % dev->heads;
736 sect = (u32)block % dev->sectors + 1;
737
738 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
739 (u32)block, track, cyl, head, sect);
740
741 /* Check whether the converted CHS can fit.
742 Cylinder: 0-65535
743 Head: 0-15
744 Sector: 1-255*/
745 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
746 return -ERANGE;
747
748 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
749 tf->lbal = sect;
750 tf->lbam = cyl;
751 tf->lbah = cyl >> 8;
752 tf->device |= head;
753 }
754
755 return 0;
756 }
757
758 /**
759 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
760 * @pio_mask: pio_mask
761 * @mwdma_mask: mwdma_mask
762 * @udma_mask: udma_mask
763 *
764 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
765 * unsigned int xfer_mask.
766 *
767 * LOCKING:
768 * None.
769 *
770 * RETURNS:
771 * Packed xfer_mask.
772 */
773 unsigned long ata_pack_xfermask(unsigned long pio_mask,
774 unsigned long mwdma_mask,
775 unsigned long udma_mask)
776 {
777 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
778 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
779 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
780 }
781
782 /**
783 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
784 * @xfer_mask: xfer_mask to unpack
785 * @pio_mask: resulting pio_mask
786 * @mwdma_mask: resulting mwdma_mask
787 * @udma_mask: resulting udma_mask
788 *
789 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
790 * Any NULL distination masks will be ignored.
791 */
792 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
793 unsigned long *mwdma_mask, unsigned long *udma_mask)
794 {
795 if (pio_mask)
796 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
797 if (mwdma_mask)
798 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
799 if (udma_mask)
800 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
801 }
802
803 static const struct ata_xfer_ent {
804 int shift, bits;
805 u8 base;
806 } ata_xfer_tbl[] = {
807 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
808 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
809 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
810 { -1, },
811 };
812
813 /**
814 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
815 * @xfer_mask: xfer_mask of interest
816 *
817 * Return matching XFER_* value for @xfer_mask. Only the highest
818 * bit of @xfer_mask is considered.
819 *
820 * LOCKING:
821 * None.
822 *
823 * RETURNS:
824 * Matching XFER_* value, 0xff if no match found.
825 */
826 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
827 {
828 int highbit = fls(xfer_mask) - 1;
829 const struct ata_xfer_ent *ent;
830
831 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
832 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
833 return ent->base + highbit - ent->shift;
834 return 0xff;
835 }
836
837 /**
838 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
839 * @xfer_mode: XFER_* of interest
840 *
841 * Return matching xfer_mask for @xfer_mode.
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Matching xfer_mask, 0 if no match found.
848 */
849 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
850 {
851 const struct ata_xfer_ent *ent;
852
853 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
854 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
855 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
856 & ~((1 << ent->shift) - 1);
857 return 0;
858 }
859
860 /**
861 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
862 * @xfer_mode: XFER_* of interest
863 *
864 * Return matching xfer_shift for @xfer_mode.
865 *
866 * LOCKING:
867 * None.
868 *
869 * RETURNS:
870 * Matching xfer_shift, -1 if no match found.
871 */
872 int ata_xfer_mode2shift(unsigned long xfer_mode)
873 {
874 const struct ata_xfer_ent *ent;
875
876 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
877 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
878 return ent->shift;
879 return -1;
880 }
881
882 /**
883 * ata_mode_string - convert xfer_mask to string
884 * @xfer_mask: mask of bits supported; only highest bit counts.
885 *
886 * Determine string which represents the highest speed
887 * (highest bit in @modemask).
888 *
889 * LOCKING:
890 * None.
891 *
892 * RETURNS:
893 * Constant C string representing highest speed listed in
894 * @mode_mask, or the constant C string "<n/a>".
895 */
896 const char *ata_mode_string(unsigned long xfer_mask)
897 {
898 static const char * const xfer_mode_str[] = {
899 "PIO0",
900 "PIO1",
901 "PIO2",
902 "PIO3",
903 "PIO4",
904 "PIO5",
905 "PIO6",
906 "MWDMA0",
907 "MWDMA1",
908 "MWDMA2",
909 "MWDMA3",
910 "MWDMA4",
911 "UDMA/16",
912 "UDMA/25",
913 "UDMA/33",
914 "UDMA/44",
915 "UDMA/66",
916 "UDMA/100",
917 "UDMA/133",
918 "UDMA7",
919 };
920 int highbit;
921
922 highbit = fls(xfer_mask) - 1;
923 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
924 return xfer_mode_str[highbit];
925 return "<n/a>";
926 }
927
928 static const char *sata_spd_string(unsigned int spd)
929 {
930 static const char * const spd_str[] = {
931 "1.5 Gbps",
932 "3.0 Gbps",
933 };
934
935 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
936 return "<unknown>";
937 return spd_str[spd - 1];
938 }
939
940 void ata_dev_disable(struct ata_device *dev)
941 {
942 if (ata_dev_enabled(dev)) {
943 if (ata_msg_drv(dev->link->ap))
944 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
945 ata_acpi_on_disable(dev);
946 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
947 ATA_DNXFER_QUIET);
948 dev->class++;
949 }
950 }
951
952 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
953 {
954 struct ata_link *link = dev->link;
955 struct ata_port *ap = link->ap;
956 u32 scontrol;
957 unsigned int err_mask;
958 int rc;
959
960 /*
961 * disallow DIPM for drivers which haven't set
962 * ATA_FLAG_IPM. This is because when DIPM is enabled,
963 * phy ready will be set in the interrupt status on
964 * state changes, which will cause some drivers to
965 * think there are errors - additionally drivers will
966 * need to disable hot plug.
967 */
968 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
969 ap->pm_policy = NOT_AVAILABLE;
970 return -EINVAL;
971 }
972
973 /*
974 * For DIPM, we will only enable it for the
975 * min_power setting.
976 *
977 * Why? Because Disks are too stupid to know that
978 * If the host rejects a request to go to SLUMBER
979 * they should retry at PARTIAL, and instead it
980 * just would give up. So, for medium_power to
981 * work at all, we need to only allow HIPM.
982 */
983 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
984 if (rc)
985 return rc;
986
987 switch (policy) {
988 case MIN_POWER:
989 /* no restrictions on IPM transitions */
990 scontrol &= ~(0x3 << 8);
991 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
992 if (rc)
993 return rc;
994
995 /* enable DIPM */
996 if (dev->flags & ATA_DFLAG_DIPM)
997 err_mask = ata_dev_set_feature(dev,
998 SETFEATURES_SATA_ENABLE, SATA_DIPM);
999 break;
1000 case MEDIUM_POWER:
1001 /* allow IPM to PARTIAL */
1002 scontrol &= ~(0x1 << 8);
1003 scontrol |= (0x2 << 8);
1004 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1005 if (rc)
1006 return rc;
1007
1008 /*
1009 * we don't have to disable DIPM since IPM flags
1010 * disallow transitions to SLUMBER, which effectively
1011 * disable DIPM if it does not support PARTIAL
1012 */
1013 break;
1014 case NOT_AVAILABLE:
1015 case MAX_PERFORMANCE:
1016 /* disable all IPM transitions */
1017 scontrol |= (0x3 << 8);
1018 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1019 if (rc)
1020 return rc;
1021
1022 /*
1023 * we don't have to disable DIPM since IPM flags
1024 * disallow all transitions which effectively
1025 * disable DIPM anyway.
1026 */
1027 break;
1028 }
1029
1030 /* FIXME: handle SET FEATURES failure */
1031 (void) err_mask;
1032
1033 return 0;
1034 }
1035
1036 /**
1037 * ata_dev_enable_pm - enable SATA interface power management
1038 * @dev: device to enable power management
1039 * @policy: the link power management policy
1040 *
1041 * Enable SATA Interface power management. This will enable
1042 * Device Interface Power Management (DIPM) for min_power
1043 * policy, and then call driver specific callbacks for
1044 * enabling Host Initiated Power management.
1045 *
1046 * Locking: Caller.
1047 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1048 */
1049 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1050 {
1051 int rc = 0;
1052 struct ata_port *ap = dev->link->ap;
1053
1054 /* set HIPM first, then DIPM */
1055 if (ap->ops->enable_pm)
1056 rc = ap->ops->enable_pm(ap, policy);
1057 if (rc)
1058 goto enable_pm_out;
1059 rc = ata_dev_set_dipm(dev, policy);
1060
1061 enable_pm_out:
1062 if (rc)
1063 ap->pm_policy = MAX_PERFORMANCE;
1064 else
1065 ap->pm_policy = policy;
1066 return /* rc */; /* hopefully we can use 'rc' eventually */
1067 }
1068
1069 #ifdef CONFIG_PM
1070 /**
1071 * ata_dev_disable_pm - disable SATA interface power management
1072 * @dev: device to disable power management
1073 *
1074 * Disable SATA Interface power management. This will disable
1075 * Device Interface Power Management (DIPM) without changing
1076 * policy, call driver specific callbacks for disabling Host
1077 * Initiated Power management.
1078 *
1079 * Locking: Caller.
1080 * Returns: void
1081 */
1082 static void ata_dev_disable_pm(struct ata_device *dev)
1083 {
1084 struct ata_port *ap = dev->link->ap;
1085
1086 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1087 if (ap->ops->disable_pm)
1088 ap->ops->disable_pm(ap);
1089 }
1090 #endif /* CONFIG_PM */
1091
1092 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1093 {
1094 ap->pm_policy = policy;
1095 ap->link.eh_info.action |= ATA_EH_LPM;
1096 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1097 ata_port_schedule_eh(ap);
1098 }
1099
1100 #ifdef CONFIG_PM
1101 static void ata_lpm_enable(struct ata_host *host)
1102 {
1103 struct ata_link *link;
1104 struct ata_port *ap;
1105 struct ata_device *dev;
1106 int i;
1107
1108 for (i = 0; i < host->n_ports; i++) {
1109 ap = host->ports[i];
1110 ata_port_for_each_link(link, ap) {
1111 ata_link_for_each_dev(dev, link)
1112 ata_dev_disable_pm(dev);
1113 }
1114 }
1115 }
1116
1117 static void ata_lpm_disable(struct ata_host *host)
1118 {
1119 int i;
1120
1121 for (i = 0; i < host->n_ports; i++) {
1122 struct ata_port *ap = host->ports[i];
1123 ata_lpm_schedule(ap, ap->pm_policy);
1124 }
1125 }
1126 #endif /* CONFIG_PM */
1127
1128 /**
1129 * ata_dev_classify - determine device type based on ATA-spec signature
1130 * @tf: ATA taskfile register set for device to be identified
1131 *
1132 * Determine from taskfile register contents whether a device is
1133 * ATA or ATAPI, as per "Signature and persistence" section
1134 * of ATA/PI spec (volume 1, sect 5.14).
1135 *
1136 * LOCKING:
1137 * None.
1138 *
1139 * RETURNS:
1140 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1141 * %ATA_DEV_UNKNOWN the event of failure.
1142 */
1143 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1144 {
1145 /* Apple's open source Darwin code hints that some devices only
1146 * put a proper signature into the LBA mid/high registers,
1147 * So, we only check those. It's sufficient for uniqueness.
1148 *
1149 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1150 * signatures for ATA and ATAPI devices attached on SerialATA,
1151 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1152 * spec has never mentioned about using different signatures
1153 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1154 * Multiplier specification began to use 0x69/0x96 to identify
1155 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1156 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1157 * 0x69/0x96 shortly and described them as reserved for
1158 * SerialATA.
1159 *
1160 * We follow the current spec and consider that 0x69/0x96
1161 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1162 */
1163 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1164 DPRINTK("found ATA device by sig\n");
1165 return ATA_DEV_ATA;
1166 }
1167
1168 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1169 DPRINTK("found ATAPI device by sig\n");
1170 return ATA_DEV_ATAPI;
1171 }
1172
1173 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1174 DPRINTK("found PMP device by sig\n");
1175 return ATA_DEV_PMP;
1176 }
1177
1178 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1179 printk(KERN_INFO "ata: SEMB device ignored\n");
1180 return ATA_DEV_SEMB_UNSUP; /* not yet */
1181 }
1182
1183 DPRINTK("unknown device\n");
1184 return ATA_DEV_UNKNOWN;
1185 }
1186
1187 /**
1188 * ata_id_string - Convert IDENTIFY DEVICE page into string
1189 * @id: IDENTIFY DEVICE results we will examine
1190 * @s: string into which data is output
1191 * @ofs: offset into identify device page
1192 * @len: length of string to return. must be an even number.
1193 *
1194 * The strings in the IDENTIFY DEVICE page are broken up into
1195 * 16-bit chunks. Run through the string, and output each
1196 * 8-bit chunk linearly, regardless of platform.
1197 *
1198 * LOCKING:
1199 * caller.
1200 */
1201
1202 void ata_id_string(const u16 *id, unsigned char *s,
1203 unsigned int ofs, unsigned int len)
1204 {
1205 unsigned int c;
1206
1207 BUG_ON(len & 1);
1208
1209 while (len > 0) {
1210 c = id[ofs] >> 8;
1211 *s = c;
1212 s++;
1213
1214 c = id[ofs] & 0xff;
1215 *s = c;
1216 s++;
1217
1218 ofs++;
1219 len -= 2;
1220 }
1221 }
1222
1223 /**
1224 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1225 * @id: IDENTIFY DEVICE results we will examine
1226 * @s: string into which data is output
1227 * @ofs: offset into identify device page
1228 * @len: length of string to return. must be an odd number.
1229 *
1230 * This function is identical to ata_id_string except that it
1231 * trims trailing spaces and terminates the resulting string with
1232 * null. @len must be actual maximum length (even number) + 1.
1233 *
1234 * LOCKING:
1235 * caller.
1236 */
1237 void ata_id_c_string(const u16 *id, unsigned char *s,
1238 unsigned int ofs, unsigned int len)
1239 {
1240 unsigned char *p;
1241
1242 ata_id_string(id, s, ofs, len - 1);
1243
1244 p = s + strnlen(s, len - 1);
1245 while (p > s && p[-1] == ' ')
1246 p--;
1247 *p = '\0';
1248 }
1249
1250 static u64 ata_id_n_sectors(const u16 *id)
1251 {
1252 if (ata_id_has_lba(id)) {
1253 if (ata_id_has_lba48(id))
1254 return ata_id_u64(id, 100);
1255 else
1256 return ata_id_u32(id, 60);
1257 } else {
1258 if (ata_id_current_chs_valid(id))
1259 return ata_id_u32(id, 57);
1260 else
1261 return id[1] * id[3] * id[6];
1262 }
1263 }
1264
1265 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1266 {
1267 u64 sectors = 0;
1268
1269 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1270 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1271 sectors |= (tf->hob_lbal & 0xff) << 24;
1272 sectors |= (tf->lbah & 0xff) << 16;
1273 sectors |= (tf->lbam & 0xff) << 8;
1274 sectors |= (tf->lbal & 0xff);
1275
1276 return sectors;
1277 }
1278
1279 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1280 {
1281 u64 sectors = 0;
1282
1283 sectors |= (tf->device & 0x0f) << 24;
1284 sectors |= (tf->lbah & 0xff) << 16;
1285 sectors |= (tf->lbam & 0xff) << 8;
1286 sectors |= (tf->lbal & 0xff);
1287
1288 return sectors;
1289 }
1290
1291 /**
1292 * ata_read_native_max_address - Read native max address
1293 * @dev: target device
1294 * @max_sectors: out parameter for the result native max address
1295 *
1296 * Perform an LBA48 or LBA28 native size query upon the device in
1297 * question.
1298 *
1299 * RETURNS:
1300 * 0 on success, -EACCES if command is aborted by the drive.
1301 * -EIO on other errors.
1302 */
1303 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1304 {
1305 unsigned int err_mask;
1306 struct ata_taskfile tf;
1307 int lba48 = ata_id_has_lba48(dev->id);
1308
1309 ata_tf_init(dev, &tf);
1310
1311 /* always clear all address registers */
1312 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1313
1314 if (lba48) {
1315 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1316 tf.flags |= ATA_TFLAG_LBA48;
1317 } else
1318 tf.command = ATA_CMD_READ_NATIVE_MAX;
1319
1320 tf.protocol |= ATA_PROT_NODATA;
1321 tf.device |= ATA_LBA;
1322
1323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1324 if (err_mask) {
1325 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1326 "max address (err_mask=0x%x)\n", err_mask);
1327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1328 return -EACCES;
1329 return -EIO;
1330 }
1331
1332 if (lba48)
1333 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1334 else
1335 *max_sectors = ata_tf_to_lba(&tf) + 1;
1336 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1337 (*max_sectors)--;
1338 return 0;
1339 }
1340
1341 /**
1342 * ata_set_max_sectors - Set max sectors
1343 * @dev: target device
1344 * @new_sectors: new max sectors value to set for the device
1345 *
1346 * Set max sectors of @dev to @new_sectors.
1347 *
1348 * RETURNS:
1349 * 0 on success, -EACCES if command is aborted or denied (due to
1350 * previous non-volatile SET_MAX) by the drive. -EIO on other
1351 * errors.
1352 */
1353 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1354 {
1355 unsigned int err_mask;
1356 struct ata_taskfile tf;
1357 int lba48 = ata_id_has_lba48(dev->id);
1358
1359 new_sectors--;
1360
1361 ata_tf_init(dev, &tf);
1362
1363 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1364
1365 if (lba48) {
1366 tf.command = ATA_CMD_SET_MAX_EXT;
1367 tf.flags |= ATA_TFLAG_LBA48;
1368
1369 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1370 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1371 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1372 } else {
1373 tf.command = ATA_CMD_SET_MAX;
1374
1375 tf.device |= (new_sectors >> 24) & 0xf;
1376 }
1377
1378 tf.protocol |= ATA_PROT_NODATA;
1379 tf.device |= ATA_LBA;
1380
1381 tf.lbal = (new_sectors >> 0) & 0xff;
1382 tf.lbam = (new_sectors >> 8) & 0xff;
1383 tf.lbah = (new_sectors >> 16) & 0xff;
1384
1385 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1386 if (err_mask) {
1387 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1388 "max address (err_mask=0x%x)\n", err_mask);
1389 if (err_mask == AC_ERR_DEV &&
1390 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1391 return -EACCES;
1392 return -EIO;
1393 }
1394
1395 return 0;
1396 }
1397
1398 /**
1399 * ata_hpa_resize - Resize a device with an HPA set
1400 * @dev: Device to resize
1401 *
1402 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1403 * it if required to the full size of the media. The caller must check
1404 * the drive has the HPA feature set enabled.
1405 *
1406 * RETURNS:
1407 * 0 on success, -errno on failure.
1408 */
1409 static int ata_hpa_resize(struct ata_device *dev)
1410 {
1411 struct ata_eh_context *ehc = &dev->link->eh_context;
1412 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1413 u64 sectors = ata_id_n_sectors(dev->id);
1414 u64 native_sectors;
1415 int rc;
1416
1417 /* do we need to do it? */
1418 if (dev->class != ATA_DEV_ATA ||
1419 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1420 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1421 return 0;
1422
1423 /* read native max address */
1424 rc = ata_read_native_max_address(dev, &native_sectors);
1425 if (rc) {
1426 /* If device aborted the command or HPA isn't going to
1427 * be unlocked, skip HPA resizing.
1428 */
1429 if (rc == -EACCES || !ata_ignore_hpa) {
1430 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1431 "broken, skipping HPA handling\n");
1432 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1433
1434 /* we can continue if device aborted the command */
1435 if (rc == -EACCES)
1436 rc = 0;
1437 }
1438
1439 return rc;
1440 }
1441
1442 /* nothing to do? */
1443 if (native_sectors <= sectors || !ata_ignore_hpa) {
1444 if (!print_info || native_sectors == sectors)
1445 return 0;
1446
1447 if (native_sectors > sectors)
1448 ata_dev_printk(dev, KERN_INFO,
1449 "HPA detected: current %llu, native %llu\n",
1450 (unsigned long long)sectors,
1451 (unsigned long long)native_sectors);
1452 else if (native_sectors < sectors)
1453 ata_dev_printk(dev, KERN_WARNING,
1454 "native sectors (%llu) is smaller than "
1455 "sectors (%llu)\n",
1456 (unsigned long long)native_sectors,
1457 (unsigned long long)sectors);
1458 return 0;
1459 }
1460
1461 /* let's unlock HPA */
1462 rc = ata_set_max_sectors(dev, native_sectors);
1463 if (rc == -EACCES) {
1464 /* if device aborted the command, skip HPA resizing */
1465 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1466 "(%llu -> %llu), skipping HPA handling\n",
1467 (unsigned long long)sectors,
1468 (unsigned long long)native_sectors);
1469 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1470 return 0;
1471 } else if (rc)
1472 return rc;
1473
1474 /* re-read IDENTIFY data */
1475 rc = ata_dev_reread_id(dev, 0);
1476 if (rc) {
1477 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1478 "data after HPA resizing\n");
1479 return rc;
1480 }
1481
1482 if (print_info) {
1483 u64 new_sectors = ata_id_n_sectors(dev->id);
1484 ata_dev_printk(dev, KERN_INFO,
1485 "HPA unlocked: %llu -> %llu, native %llu\n",
1486 (unsigned long long)sectors,
1487 (unsigned long long)new_sectors,
1488 (unsigned long long)native_sectors);
1489 }
1490
1491 return 0;
1492 }
1493
1494 /**
1495 * ata_dump_id - IDENTIFY DEVICE info debugging output
1496 * @id: IDENTIFY DEVICE page to dump
1497 *
1498 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1499 * page.
1500 *
1501 * LOCKING:
1502 * caller.
1503 */
1504
1505 static inline void ata_dump_id(const u16 *id)
1506 {
1507 DPRINTK("49==0x%04x "
1508 "53==0x%04x "
1509 "63==0x%04x "
1510 "64==0x%04x "
1511 "75==0x%04x \n",
1512 id[49],
1513 id[53],
1514 id[63],
1515 id[64],
1516 id[75]);
1517 DPRINTK("80==0x%04x "
1518 "81==0x%04x "
1519 "82==0x%04x "
1520 "83==0x%04x "
1521 "84==0x%04x \n",
1522 id[80],
1523 id[81],
1524 id[82],
1525 id[83],
1526 id[84]);
1527 DPRINTK("88==0x%04x "
1528 "93==0x%04x\n",
1529 id[88],
1530 id[93]);
1531 }
1532
1533 /**
1534 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1535 * @id: IDENTIFY data to compute xfer mask from
1536 *
1537 * Compute the xfermask for this device. This is not as trivial
1538 * as it seems if we must consider early devices correctly.
1539 *
1540 * FIXME: pre IDE drive timing (do we care ?).
1541 *
1542 * LOCKING:
1543 * None.
1544 *
1545 * RETURNS:
1546 * Computed xfermask
1547 */
1548 unsigned long ata_id_xfermask(const u16 *id)
1549 {
1550 unsigned long pio_mask, mwdma_mask, udma_mask;
1551
1552 /* Usual case. Word 53 indicates word 64 is valid */
1553 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1554 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1555 pio_mask <<= 3;
1556 pio_mask |= 0x7;
1557 } else {
1558 /* If word 64 isn't valid then Word 51 high byte holds
1559 * the PIO timing number for the maximum. Turn it into
1560 * a mask.
1561 */
1562 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1563 if (mode < 5) /* Valid PIO range */
1564 pio_mask = (2 << mode) - 1;
1565 else
1566 pio_mask = 1;
1567
1568 /* But wait.. there's more. Design your standards by
1569 * committee and you too can get a free iordy field to
1570 * process. However its the speeds not the modes that
1571 * are supported... Note drivers using the timing API
1572 * will get this right anyway
1573 */
1574 }
1575
1576 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1577
1578 if (ata_id_is_cfa(id)) {
1579 /*
1580 * Process compact flash extended modes
1581 */
1582 int pio = id[163] & 0x7;
1583 int dma = (id[163] >> 3) & 7;
1584
1585 if (pio)
1586 pio_mask |= (1 << 5);
1587 if (pio > 1)
1588 pio_mask |= (1 << 6);
1589 if (dma)
1590 mwdma_mask |= (1 << 3);
1591 if (dma > 1)
1592 mwdma_mask |= (1 << 4);
1593 }
1594
1595 udma_mask = 0;
1596 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1597 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1598
1599 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1600 }
1601
1602 /**
1603 * ata_pio_queue_task - Queue port_task
1604 * @ap: The ata_port to queue port_task for
1605 * @fn: workqueue function to be scheduled
1606 * @data: data for @fn to use
1607 * @delay: delay time in msecs for workqueue function
1608 *
1609 * Schedule @fn(@data) for execution after @delay jiffies using
1610 * port_task. There is one port_task per port and it's the
1611 * user(low level driver)'s responsibility to make sure that only
1612 * one task is active at any given time.
1613 *
1614 * libata core layer takes care of synchronization between
1615 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1616 * synchronization.
1617 *
1618 * LOCKING:
1619 * Inherited from caller.
1620 */
1621 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1622 {
1623 ap->port_task_data = data;
1624
1625 /* may fail if ata_port_flush_task() in progress */
1626 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1627 }
1628
1629 /**
1630 * ata_port_flush_task - Flush port_task
1631 * @ap: The ata_port to flush port_task for
1632 *
1633 * After this function completes, port_task is guranteed not to
1634 * be running or scheduled.
1635 *
1636 * LOCKING:
1637 * Kernel thread context (may sleep)
1638 */
1639 void ata_port_flush_task(struct ata_port *ap)
1640 {
1641 DPRINTK("ENTER\n");
1642
1643 cancel_rearming_delayed_work(&ap->port_task);
1644
1645 if (ata_msg_ctl(ap))
1646 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1647 }
1648
1649 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1650 {
1651 struct completion *waiting = qc->private_data;
1652
1653 complete(waiting);
1654 }
1655
1656 /**
1657 * ata_exec_internal_sg - execute libata internal command
1658 * @dev: Device to which the command is sent
1659 * @tf: Taskfile registers for the command and the result
1660 * @cdb: CDB for packet command
1661 * @dma_dir: Data tranfer direction of the command
1662 * @sgl: sg list for the data buffer of the command
1663 * @n_elem: Number of sg entries
1664 * @timeout: Timeout in msecs (0 for default)
1665 *
1666 * Executes libata internal command with timeout. @tf contains
1667 * command on entry and result on return. Timeout and error
1668 * conditions are reported via return value. No recovery action
1669 * is taken after a command times out. It's caller's duty to
1670 * clean up after timeout.
1671 *
1672 * LOCKING:
1673 * None. Should be called with kernel context, might sleep.
1674 *
1675 * RETURNS:
1676 * Zero on success, AC_ERR_* mask on failure
1677 */
1678 unsigned ata_exec_internal_sg(struct ata_device *dev,
1679 struct ata_taskfile *tf, const u8 *cdb,
1680 int dma_dir, struct scatterlist *sgl,
1681 unsigned int n_elem, unsigned long timeout)
1682 {
1683 struct ata_link *link = dev->link;
1684 struct ata_port *ap = link->ap;
1685 u8 command = tf->command;
1686 int auto_timeout = 0;
1687 struct ata_queued_cmd *qc;
1688 unsigned int tag, preempted_tag;
1689 u32 preempted_sactive, preempted_qc_active;
1690 int preempted_nr_active_links;
1691 DECLARE_COMPLETION_ONSTACK(wait);
1692 unsigned long flags;
1693 unsigned int err_mask;
1694 int rc;
1695
1696 spin_lock_irqsave(ap->lock, flags);
1697
1698 /* no internal command while frozen */
1699 if (ap->pflags & ATA_PFLAG_FROZEN) {
1700 spin_unlock_irqrestore(ap->lock, flags);
1701 return AC_ERR_SYSTEM;
1702 }
1703
1704 /* initialize internal qc */
1705
1706 /* XXX: Tag 0 is used for drivers with legacy EH as some
1707 * drivers choke if any other tag is given. This breaks
1708 * ata_tag_internal() test for those drivers. Don't use new
1709 * EH stuff without converting to it.
1710 */
1711 if (ap->ops->error_handler)
1712 tag = ATA_TAG_INTERNAL;
1713 else
1714 tag = 0;
1715
1716 if (test_and_set_bit(tag, &ap->qc_allocated))
1717 BUG();
1718 qc = __ata_qc_from_tag(ap, tag);
1719
1720 qc->tag = tag;
1721 qc->scsicmd = NULL;
1722 qc->ap = ap;
1723 qc->dev = dev;
1724 ata_qc_reinit(qc);
1725
1726 preempted_tag = link->active_tag;
1727 preempted_sactive = link->sactive;
1728 preempted_qc_active = ap->qc_active;
1729 preempted_nr_active_links = ap->nr_active_links;
1730 link->active_tag = ATA_TAG_POISON;
1731 link->sactive = 0;
1732 ap->qc_active = 0;
1733 ap->nr_active_links = 0;
1734
1735 /* prepare & issue qc */
1736 qc->tf = *tf;
1737 if (cdb)
1738 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1739 qc->flags |= ATA_QCFLAG_RESULT_TF;
1740 qc->dma_dir = dma_dir;
1741 if (dma_dir != DMA_NONE) {
1742 unsigned int i, buflen = 0;
1743 struct scatterlist *sg;
1744
1745 for_each_sg(sgl, sg, n_elem, i)
1746 buflen += sg->length;
1747
1748 ata_sg_init(qc, sgl, n_elem);
1749 qc->nbytes = buflen;
1750 }
1751
1752 qc->private_data = &wait;
1753 qc->complete_fn = ata_qc_complete_internal;
1754
1755 ata_qc_issue(qc);
1756
1757 spin_unlock_irqrestore(ap->lock, flags);
1758
1759 if (!timeout) {
1760 if (ata_probe_timeout)
1761 timeout = ata_probe_timeout * 1000;
1762 else {
1763 timeout = ata_internal_cmd_timeout(dev, command);
1764 auto_timeout = 1;
1765 }
1766 }
1767
1768 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1769
1770 ata_port_flush_task(ap);
1771
1772 if (!rc) {
1773 spin_lock_irqsave(ap->lock, flags);
1774
1775 /* We're racing with irq here. If we lose, the
1776 * following test prevents us from completing the qc
1777 * twice. If we win, the port is frozen and will be
1778 * cleaned up by ->post_internal_cmd().
1779 */
1780 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1781 qc->err_mask |= AC_ERR_TIMEOUT;
1782
1783 if (ap->ops->error_handler)
1784 ata_port_freeze(ap);
1785 else
1786 ata_qc_complete(qc);
1787
1788 if (ata_msg_warn(ap))
1789 ata_dev_printk(dev, KERN_WARNING,
1790 "qc timeout (cmd 0x%x)\n", command);
1791 }
1792
1793 spin_unlock_irqrestore(ap->lock, flags);
1794 }
1795
1796 /* do post_internal_cmd */
1797 if (ap->ops->post_internal_cmd)
1798 ap->ops->post_internal_cmd(qc);
1799
1800 /* perform minimal error analysis */
1801 if (qc->flags & ATA_QCFLAG_FAILED) {
1802 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1803 qc->err_mask |= AC_ERR_DEV;
1804
1805 if (!qc->err_mask)
1806 qc->err_mask |= AC_ERR_OTHER;
1807
1808 if (qc->err_mask & ~AC_ERR_OTHER)
1809 qc->err_mask &= ~AC_ERR_OTHER;
1810 }
1811
1812 /* finish up */
1813 spin_lock_irqsave(ap->lock, flags);
1814
1815 *tf = qc->result_tf;
1816 err_mask = qc->err_mask;
1817
1818 ata_qc_free(qc);
1819 link->active_tag = preempted_tag;
1820 link->sactive = preempted_sactive;
1821 ap->qc_active = preempted_qc_active;
1822 ap->nr_active_links = preempted_nr_active_links;
1823
1824 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1825 * Until those drivers are fixed, we detect the condition
1826 * here, fail the command with AC_ERR_SYSTEM and reenable the
1827 * port.
1828 *
1829 * Note that this doesn't change any behavior as internal
1830 * command failure results in disabling the device in the
1831 * higher layer for LLDDs without new reset/EH callbacks.
1832 *
1833 * Kill the following code as soon as those drivers are fixed.
1834 */
1835 if (ap->flags & ATA_FLAG_DISABLED) {
1836 err_mask |= AC_ERR_SYSTEM;
1837 ata_port_probe(ap);
1838 }
1839
1840 spin_unlock_irqrestore(ap->lock, flags);
1841
1842 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1843 ata_internal_cmd_timed_out(dev, command);
1844
1845 return err_mask;
1846 }
1847
1848 /**
1849 * ata_exec_internal - execute libata internal command
1850 * @dev: Device to which the command is sent
1851 * @tf: Taskfile registers for the command and the result
1852 * @cdb: CDB for packet command
1853 * @dma_dir: Data tranfer direction of the command
1854 * @buf: Data buffer of the command
1855 * @buflen: Length of data buffer
1856 * @timeout: Timeout in msecs (0 for default)
1857 *
1858 * Wrapper around ata_exec_internal_sg() which takes simple
1859 * buffer instead of sg list.
1860 *
1861 * LOCKING:
1862 * None. Should be called with kernel context, might sleep.
1863 *
1864 * RETURNS:
1865 * Zero on success, AC_ERR_* mask on failure
1866 */
1867 unsigned ata_exec_internal(struct ata_device *dev,
1868 struct ata_taskfile *tf, const u8 *cdb,
1869 int dma_dir, void *buf, unsigned int buflen,
1870 unsigned long timeout)
1871 {
1872 struct scatterlist *psg = NULL, sg;
1873 unsigned int n_elem = 0;
1874
1875 if (dma_dir != DMA_NONE) {
1876 WARN_ON(!buf);
1877 sg_init_one(&sg, buf, buflen);
1878 psg = &sg;
1879 n_elem++;
1880 }
1881
1882 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1883 timeout);
1884 }
1885
1886 /**
1887 * ata_do_simple_cmd - execute simple internal command
1888 * @dev: Device to which the command is sent
1889 * @cmd: Opcode to execute
1890 *
1891 * Execute a 'simple' command, that only consists of the opcode
1892 * 'cmd' itself, without filling any other registers
1893 *
1894 * LOCKING:
1895 * Kernel thread context (may sleep).
1896 *
1897 * RETURNS:
1898 * Zero on success, AC_ERR_* mask on failure
1899 */
1900 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1901 {
1902 struct ata_taskfile tf;
1903
1904 ata_tf_init(dev, &tf);
1905
1906 tf.command = cmd;
1907 tf.flags |= ATA_TFLAG_DEVICE;
1908 tf.protocol = ATA_PROT_NODATA;
1909
1910 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1911 }
1912
1913 /**
1914 * ata_pio_need_iordy - check if iordy needed
1915 * @adev: ATA device
1916 *
1917 * Check if the current speed of the device requires IORDY. Used
1918 * by various controllers for chip configuration.
1919 */
1920
1921 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1922 {
1923 /* Controller doesn't support IORDY. Probably a pointless check
1924 as the caller should know this */
1925 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1926 return 0;
1927 /* PIO3 and higher it is mandatory */
1928 if (adev->pio_mode > XFER_PIO_2)
1929 return 1;
1930 /* We turn it on when possible */
1931 if (ata_id_has_iordy(adev->id))
1932 return 1;
1933 return 0;
1934 }
1935
1936 /**
1937 * ata_pio_mask_no_iordy - Return the non IORDY mask
1938 * @adev: ATA device
1939 *
1940 * Compute the highest mode possible if we are not using iordy. Return
1941 * -1 if no iordy mode is available.
1942 */
1943
1944 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1945 {
1946 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1947 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1948 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1949 /* Is the speed faster than the drive allows non IORDY ? */
1950 if (pio) {
1951 /* This is cycle times not frequency - watch the logic! */
1952 if (pio > 240) /* PIO2 is 240nS per cycle */
1953 return 3 << ATA_SHIFT_PIO;
1954 return 7 << ATA_SHIFT_PIO;
1955 }
1956 }
1957 return 3 << ATA_SHIFT_PIO;
1958 }
1959
1960 /**
1961 * ata_do_dev_read_id - default ID read method
1962 * @dev: device
1963 * @tf: proposed taskfile
1964 * @id: data buffer
1965 *
1966 * Issue the identify taskfile and hand back the buffer containing
1967 * identify data. For some RAID controllers and for pre ATA devices
1968 * this function is wrapped or replaced by the driver
1969 */
1970 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1971 struct ata_taskfile *tf, u16 *id)
1972 {
1973 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1974 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1975 }
1976
1977 /**
1978 * ata_dev_read_id - Read ID data from the specified device
1979 * @dev: target device
1980 * @p_class: pointer to class of the target device (may be changed)
1981 * @flags: ATA_READID_* flags
1982 * @id: buffer to read IDENTIFY data into
1983 *
1984 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1985 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1986 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1987 * for pre-ATA4 drives.
1988 *
1989 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1990 * now we abort if we hit that case.
1991 *
1992 * LOCKING:
1993 * Kernel thread context (may sleep)
1994 *
1995 * RETURNS:
1996 * 0 on success, -errno otherwise.
1997 */
1998 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1999 unsigned int flags, u16 *id)
2000 {
2001 struct ata_port *ap = dev->link->ap;
2002 unsigned int class = *p_class;
2003 struct ata_taskfile tf;
2004 unsigned int err_mask = 0;
2005 const char *reason;
2006 int may_fallback = 1, tried_spinup = 0;
2007 int rc;
2008
2009 if (ata_msg_ctl(ap))
2010 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2011
2012 retry:
2013 ata_tf_init(dev, &tf);
2014
2015 switch (class) {
2016 case ATA_DEV_ATA:
2017 tf.command = ATA_CMD_ID_ATA;
2018 break;
2019 case ATA_DEV_ATAPI:
2020 tf.command = ATA_CMD_ID_ATAPI;
2021 break;
2022 default:
2023 rc = -ENODEV;
2024 reason = "unsupported class";
2025 goto err_out;
2026 }
2027
2028 tf.protocol = ATA_PROT_PIO;
2029
2030 /* Some devices choke if TF registers contain garbage. Make
2031 * sure those are properly initialized.
2032 */
2033 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2034
2035 /* Device presence detection is unreliable on some
2036 * controllers. Always poll IDENTIFY if available.
2037 */
2038 tf.flags |= ATA_TFLAG_POLLING;
2039
2040 if (ap->ops->read_id)
2041 err_mask = ap->ops->read_id(dev, &tf, id);
2042 else
2043 err_mask = ata_do_dev_read_id(dev, &tf, id);
2044
2045 if (err_mask) {
2046 if (err_mask & AC_ERR_NODEV_HINT) {
2047 ata_dev_printk(dev, KERN_DEBUG,
2048 "NODEV after polling detection\n");
2049 return -ENOENT;
2050 }
2051
2052 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2053 /* Device or controller might have reported
2054 * the wrong device class. Give a shot at the
2055 * other IDENTIFY if the current one is
2056 * aborted by the device.
2057 */
2058 if (may_fallback) {
2059 may_fallback = 0;
2060
2061 if (class == ATA_DEV_ATA)
2062 class = ATA_DEV_ATAPI;
2063 else
2064 class = ATA_DEV_ATA;
2065 goto retry;
2066 }
2067
2068 /* Control reaches here iff the device aborted
2069 * both flavors of IDENTIFYs which happens
2070 * sometimes with phantom devices.
2071 */
2072 ata_dev_printk(dev, KERN_DEBUG,
2073 "both IDENTIFYs aborted, assuming NODEV\n");
2074 return -ENOENT;
2075 }
2076
2077 rc = -EIO;
2078 reason = "I/O error";
2079 goto err_out;
2080 }
2081
2082 /* Falling back doesn't make sense if ID data was read
2083 * successfully at least once.
2084 */
2085 may_fallback = 0;
2086
2087 swap_buf_le16(id, ATA_ID_WORDS);
2088
2089 /* sanity check */
2090 rc = -EINVAL;
2091 reason = "device reports invalid type";
2092
2093 if (class == ATA_DEV_ATA) {
2094 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2095 goto err_out;
2096 } else {
2097 if (ata_id_is_ata(id))
2098 goto err_out;
2099 }
2100
2101 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2102 tried_spinup = 1;
2103 /*
2104 * Drive powered-up in standby mode, and requires a specific
2105 * SET_FEATURES spin-up subcommand before it will accept
2106 * anything other than the original IDENTIFY command.
2107 */
2108 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2109 if (err_mask && id[2] != 0x738c) {
2110 rc = -EIO;
2111 reason = "SPINUP failed";
2112 goto err_out;
2113 }
2114 /*
2115 * If the drive initially returned incomplete IDENTIFY info,
2116 * we now must reissue the IDENTIFY command.
2117 */
2118 if (id[2] == 0x37c8)
2119 goto retry;
2120 }
2121
2122 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2123 /*
2124 * The exact sequence expected by certain pre-ATA4 drives is:
2125 * SRST RESET
2126 * IDENTIFY (optional in early ATA)
2127 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2128 * anything else..
2129 * Some drives were very specific about that exact sequence.
2130 *
2131 * Note that ATA4 says lba is mandatory so the second check
2132 * shoud never trigger.
2133 */
2134 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2135 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2136 if (err_mask) {
2137 rc = -EIO;
2138 reason = "INIT_DEV_PARAMS failed";
2139 goto err_out;
2140 }
2141
2142 /* current CHS translation info (id[53-58]) might be
2143 * changed. reread the identify device info.
2144 */
2145 flags &= ~ATA_READID_POSTRESET;
2146 goto retry;
2147 }
2148 }
2149
2150 *p_class = class;
2151
2152 return 0;
2153
2154 err_out:
2155 if (ata_msg_warn(ap))
2156 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2157 "(%s, err_mask=0x%x)\n", reason, err_mask);
2158 return rc;
2159 }
2160
2161 static inline u8 ata_dev_knobble(struct ata_device *dev)
2162 {
2163 struct ata_port *ap = dev->link->ap;
2164 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2165 }
2166
2167 static void ata_dev_config_ncq(struct ata_device *dev,
2168 char *desc, size_t desc_sz)
2169 {
2170 struct ata_port *ap = dev->link->ap;
2171 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2172
2173 if (!ata_id_has_ncq(dev->id)) {
2174 desc[0] = '\0';
2175 return;
2176 }
2177 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2178 snprintf(desc, desc_sz, "NCQ (not used)");
2179 return;
2180 }
2181 if (ap->flags & ATA_FLAG_NCQ) {
2182 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2183 dev->flags |= ATA_DFLAG_NCQ;
2184 }
2185
2186 if (hdepth >= ddepth)
2187 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2188 else
2189 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2190 }
2191
2192 /**
2193 * ata_dev_configure - Configure the specified ATA/ATAPI device
2194 * @dev: Target device to configure
2195 *
2196 * Configure @dev according to @dev->id. Generic and low-level
2197 * driver specific fixups are also applied.
2198 *
2199 * LOCKING:
2200 * Kernel thread context (may sleep)
2201 *
2202 * RETURNS:
2203 * 0 on success, -errno otherwise
2204 */
2205 int ata_dev_configure(struct ata_device *dev)
2206 {
2207 struct ata_port *ap = dev->link->ap;
2208 struct ata_eh_context *ehc = &dev->link->eh_context;
2209 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2210 const u16 *id = dev->id;
2211 unsigned long xfer_mask;
2212 char revbuf[7]; /* XYZ-99\0 */
2213 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2214 char modelbuf[ATA_ID_PROD_LEN+1];
2215 int rc;
2216
2217 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2218 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2219 __func__);
2220 return 0;
2221 }
2222
2223 if (ata_msg_probe(ap))
2224 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2225
2226 /* set horkage */
2227 dev->horkage |= ata_dev_blacklisted(dev);
2228 ata_force_horkage(dev);
2229
2230 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2231 ata_dev_printk(dev, KERN_INFO,
2232 "unsupported device, disabling\n");
2233 ata_dev_disable(dev);
2234 return 0;
2235 }
2236
2237 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2238 dev->class == ATA_DEV_ATAPI) {
2239 ata_dev_printk(dev, KERN_WARNING,
2240 "WARNING: ATAPI is %s, device ignored.\n",
2241 atapi_enabled ? "not supported with this driver"
2242 : "disabled");
2243 ata_dev_disable(dev);
2244 return 0;
2245 }
2246
2247 /* let ACPI work its magic */
2248 rc = ata_acpi_on_devcfg(dev);
2249 if (rc)
2250 return rc;
2251
2252 /* massage HPA, do it early as it might change IDENTIFY data */
2253 rc = ata_hpa_resize(dev);
2254 if (rc)
2255 return rc;
2256
2257 /* print device capabilities */
2258 if (ata_msg_probe(ap))
2259 ata_dev_printk(dev, KERN_DEBUG,
2260 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2261 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2262 __func__,
2263 id[49], id[82], id[83], id[84],
2264 id[85], id[86], id[87], id[88]);
2265
2266 /* initialize to-be-configured parameters */
2267 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2268 dev->max_sectors = 0;
2269 dev->cdb_len = 0;
2270 dev->n_sectors = 0;
2271 dev->cylinders = 0;
2272 dev->heads = 0;
2273 dev->sectors = 0;
2274
2275 /*
2276 * common ATA, ATAPI feature tests
2277 */
2278
2279 /* find max transfer mode; for printk only */
2280 xfer_mask = ata_id_xfermask(id);
2281
2282 if (ata_msg_probe(ap))
2283 ata_dump_id(id);
2284
2285 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2286 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2287 sizeof(fwrevbuf));
2288
2289 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2290 sizeof(modelbuf));
2291
2292 /* ATA-specific feature tests */
2293 if (dev->class == ATA_DEV_ATA) {
2294 if (ata_id_is_cfa(id)) {
2295 if (id[162] & 1) /* CPRM may make this media unusable */
2296 ata_dev_printk(dev, KERN_WARNING,
2297 "supports DRM functions and may "
2298 "not be fully accessable.\n");
2299 snprintf(revbuf, 7, "CFA");
2300 } else {
2301 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2302 /* Warn the user if the device has TPM extensions */
2303 if (ata_id_has_tpm(id))
2304 ata_dev_printk(dev, KERN_WARNING,
2305 "supports DRM functions and may "
2306 "not be fully accessable.\n");
2307 }
2308
2309 dev->n_sectors = ata_id_n_sectors(id);
2310
2311 if (dev->id[59] & 0x100)
2312 dev->multi_count = dev->id[59] & 0xff;
2313
2314 if (ata_id_has_lba(id)) {
2315 const char *lba_desc;
2316 char ncq_desc[20];
2317
2318 lba_desc = "LBA";
2319 dev->flags |= ATA_DFLAG_LBA;
2320 if (ata_id_has_lba48(id)) {
2321 dev->flags |= ATA_DFLAG_LBA48;
2322 lba_desc = "LBA48";
2323
2324 if (dev->n_sectors >= (1UL << 28) &&
2325 ata_id_has_flush_ext(id))
2326 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2327 }
2328
2329 /* config NCQ */
2330 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2331
2332 /* print device info to dmesg */
2333 if (ata_msg_drv(ap) && print_info) {
2334 ata_dev_printk(dev, KERN_INFO,
2335 "%s: %s, %s, max %s\n",
2336 revbuf, modelbuf, fwrevbuf,
2337 ata_mode_string(xfer_mask));
2338 ata_dev_printk(dev, KERN_INFO,
2339 "%Lu sectors, multi %u: %s %s\n",
2340 (unsigned long long)dev->n_sectors,
2341 dev->multi_count, lba_desc, ncq_desc);
2342 }
2343 } else {
2344 /* CHS */
2345
2346 /* Default translation */
2347 dev->cylinders = id[1];
2348 dev->heads = id[3];
2349 dev->sectors = id[6];
2350
2351 if (ata_id_current_chs_valid(id)) {
2352 /* Current CHS translation is valid. */
2353 dev->cylinders = id[54];
2354 dev->heads = id[55];
2355 dev->sectors = id[56];
2356 }
2357
2358 /* print device info to dmesg */
2359 if (ata_msg_drv(ap) && print_info) {
2360 ata_dev_printk(dev, KERN_INFO,
2361 "%s: %s, %s, max %s\n",
2362 revbuf, modelbuf, fwrevbuf,
2363 ata_mode_string(xfer_mask));
2364 ata_dev_printk(dev, KERN_INFO,
2365 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2366 (unsigned long long)dev->n_sectors,
2367 dev->multi_count, dev->cylinders,
2368 dev->heads, dev->sectors);
2369 }
2370 }
2371
2372 dev->cdb_len = 16;
2373 }
2374
2375 /* ATAPI-specific feature tests */
2376 else if (dev->class == ATA_DEV_ATAPI) {
2377 const char *cdb_intr_string = "";
2378 const char *atapi_an_string = "";
2379 const char *dma_dir_string = "";
2380 u32 sntf;
2381
2382 rc = atapi_cdb_len(id);
2383 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2384 if (ata_msg_warn(ap))
2385 ata_dev_printk(dev, KERN_WARNING,
2386 "unsupported CDB len\n");
2387 rc = -EINVAL;
2388 goto err_out_nosup;
2389 }
2390 dev->cdb_len = (unsigned int) rc;
2391
2392 /* Enable ATAPI AN if both the host and device have
2393 * the support. If PMP is attached, SNTF is required
2394 * to enable ATAPI AN to discern between PHY status
2395 * changed notifications and ATAPI ANs.
2396 */
2397 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2398 (!sata_pmp_attached(ap) ||
2399 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2400 unsigned int err_mask;
2401
2402 /* issue SET feature command to turn this on */
2403 err_mask = ata_dev_set_feature(dev,
2404 SETFEATURES_SATA_ENABLE, SATA_AN);
2405 if (err_mask)
2406 ata_dev_printk(dev, KERN_ERR,
2407 "failed to enable ATAPI AN "
2408 "(err_mask=0x%x)\n", err_mask);
2409 else {
2410 dev->flags |= ATA_DFLAG_AN;
2411 atapi_an_string = ", ATAPI AN";
2412 }
2413 }
2414
2415 if (ata_id_cdb_intr(dev->id)) {
2416 dev->flags |= ATA_DFLAG_CDB_INTR;
2417 cdb_intr_string = ", CDB intr";
2418 }
2419
2420 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2421 dev->flags |= ATA_DFLAG_DMADIR;
2422 dma_dir_string = ", DMADIR";
2423 }
2424
2425 /* print device info to dmesg */
2426 if (ata_msg_drv(ap) && print_info)
2427 ata_dev_printk(dev, KERN_INFO,
2428 "ATAPI: %s, %s, max %s%s%s%s\n",
2429 modelbuf, fwrevbuf,
2430 ata_mode_string(xfer_mask),
2431 cdb_intr_string, atapi_an_string,
2432 dma_dir_string);
2433 }
2434
2435 /* determine max_sectors */
2436 dev->max_sectors = ATA_MAX_SECTORS;
2437 if (dev->flags & ATA_DFLAG_LBA48)
2438 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2439
2440 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2441 if (ata_id_has_hipm(dev->id))
2442 dev->flags |= ATA_DFLAG_HIPM;
2443 if (ata_id_has_dipm(dev->id))
2444 dev->flags |= ATA_DFLAG_DIPM;
2445 }
2446
2447 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2448 200 sectors */
2449 if (ata_dev_knobble(dev)) {
2450 if (ata_msg_drv(ap) && print_info)
2451 ata_dev_printk(dev, KERN_INFO,
2452 "applying bridge limits\n");
2453 dev->udma_mask &= ATA_UDMA5;
2454 dev->max_sectors = ATA_MAX_SECTORS;
2455 }
2456
2457 if ((dev->class == ATA_DEV_ATAPI) &&
2458 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2459 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2460 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2461 }
2462
2463 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2464 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2465 dev->max_sectors);
2466
2467 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2468 dev->horkage |= ATA_HORKAGE_IPM;
2469
2470 /* reset link pm_policy for this port to no pm */
2471 ap->pm_policy = MAX_PERFORMANCE;
2472 }
2473
2474 if (ap->ops->dev_config)
2475 ap->ops->dev_config(dev);
2476
2477 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2478 /* Let the user know. We don't want to disallow opens for
2479 rescue purposes, or in case the vendor is just a blithering
2480 idiot. Do this after the dev_config call as some controllers
2481 with buggy firmware may want to avoid reporting false device
2482 bugs */
2483
2484 if (print_info) {
2485 ata_dev_printk(dev, KERN_WARNING,
2486 "Drive reports diagnostics failure. This may indicate a drive\n");
2487 ata_dev_printk(dev, KERN_WARNING,
2488 "fault or invalid emulation. Contact drive vendor for information.\n");
2489 }
2490 }
2491
2492 return 0;
2493
2494 err_out_nosup:
2495 if (ata_msg_probe(ap))
2496 ata_dev_printk(dev, KERN_DEBUG,
2497 "%s: EXIT, err\n", __func__);
2498 return rc;
2499 }
2500
2501 /**
2502 * ata_cable_40wire - return 40 wire cable type
2503 * @ap: port
2504 *
2505 * Helper method for drivers which want to hardwire 40 wire cable
2506 * detection.
2507 */
2508
2509 int ata_cable_40wire(struct ata_port *ap)
2510 {
2511 return ATA_CBL_PATA40;
2512 }
2513
2514 /**
2515 * ata_cable_80wire - return 80 wire cable type
2516 * @ap: port
2517 *
2518 * Helper method for drivers which want to hardwire 80 wire cable
2519 * detection.
2520 */
2521
2522 int ata_cable_80wire(struct ata_port *ap)
2523 {
2524 return ATA_CBL_PATA80;
2525 }
2526
2527 /**
2528 * ata_cable_unknown - return unknown PATA cable.
2529 * @ap: port
2530 *
2531 * Helper method for drivers which have no PATA cable detection.
2532 */
2533
2534 int ata_cable_unknown(struct ata_port *ap)
2535 {
2536 return ATA_CBL_PATA_UNK;
2537 }
2538
2539 /**
2540 * ata_cable_ignore - return ignored PATA cable.
2541 * @ap: port
2542 *
2543 * Helper method for drivers which don't use cable type to limit
2544 * transfer mode.
2545 */
2546 int ata_cable_ignore(struct ata_port *ap)
2547 {
2548 return ATA_CBL_PATA_IGN;
2549 }
2550
2551 /**
2552 * ata_cable_sata - return SATA cable type
2553 * @ap: port
2554 *
2555 * Helper method for drivers which have SATA cables
2556 */
2557
2558 int ata_cable_sata(struct ata_port *ap)
2559 {
2560 return ATA_CBL_SATA;
2561 }
2562
2563 /**
2564 * ata_bus_probe - Reset and probe ATA bus
2565 * @ap: Bus to probe
2566 *
2567 * Master ATA bus probing function. Initiates a hardware-dependent
2568 * bus reset, then attempts to identify any devices found on
2569 * the bus.
2570 *
2571 * LOCKING:
2572 * PCI/etc. bus probe sem.
2573 *
2574 * RETURNS:
2575 * Zero on success, negative errno otherwise.
2576 */
2577
2578 int ata_bus_probe(struct ata_port *ap)
2579 {
2580 unsigned int classes[ATA_MAX_DEVICES];
2581 int tries[ATA_MAX_DEVICES];
2582 int rc;
2583 struct ata_device *dev;
2584
2585 ata_port_probe(ap);
2586
2587 ata_link_for_each_dev(dev, &ap->link)
2588 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2589
2590 retry:
2591 ata_link_for_each_dev(dev, &ap->link) {
2592 /* If we issue an SRST then an ATA drive (not ATAPI)
2593 * may change configuration and be in PIO0 timing. If
2594 * we do a hard reset (or are coming from power on)
2595 * this is true for ATA or ATAPI. Until we've set a
2596 * suitable controller mode we should not touch the
2597 * bus as we may be talking too fast.
2598 */
2599 dev->pio_mode = XFER_PIO_0;
2600
2601 /* If the controller has a pio mode setup function
2602 * then use it to set the chipset to rights. Don't
2603 * touch the DMA setup as that will be dealt with when
2604 * configuring devices.
2605 */
2606 if (ap->ops->set_piomode)
2607 ap->ops->set_piomode(ap, dev);
2608 }
2609
2610 /* reset and determine device classes */
2611 ap->ops->phy_reset(ap);
2612
2613 ata_link_for_each_dev(dev, &ap->link) {
2614 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2615 dev->class != ATA_DEV_UNKNOWN)
2616 classes[dev->devno] = dev->class;
2617 else
2618 classes[dev->devno] = ATA_DEV_NONE;
2619
2620 dev->class = ATA_DEV_UNKNOWN;
2621 }
2622
2623 ata_port_probe(ap);
2624
2625 /* read IDENTIFY page and configure devices. We have to do the identify
2626 specific sequence bass-ackwards so that PDIAG- is released by
2627 the slave device */
2628
2629 ata_link_for_each_dev_reverse(dev, &ap->link) {
2630 if (tries[dev->devno])
2631 dev->class = classes[dev->devno];
2632
2633 if (!ata_dev_enabled(dev))
2634 continue;
2635
2636 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2637 dev->id);
2638 if (rc)
2639 goto fail;
2640 }
2641
2642 /* Now ask for the cable type as PDIAG- should have been released */
2643 if (ap->ops->cable_detect)
2644 ap->cbl = ap->ops->cable_detect(ap);
2645
2646 /* We may have SATA bridge glue hiding here irrespective of the
2647 reported cable types and sensed types */
2648 ata_link_for_each_dev(dev, &ap->link) {
2649 if (!ata_dev_enabled(dev))
2650 continue;
2651 /* SATA drives indicate we have a bridge. We don't know which
2652 end of the link the bridge is which is a problem */
2653 if (ata_id_is_sata(dev->id))
2654 ap->cbl = ATA_CBL_SATA;
2655 }
2656
2657 /* After the identify sequence we can now set up the devices. We do
2658 this in the normal order so that the user doesn't get confused */
2659
2660 ata_link_for_each_dev(dev, &ap->link) {
2661 if (!ata_dev_enabled(dev))
2662 continue;
2663
2664 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2665 rc = ata_dev_configure(dev);
2666 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2667 if (rc)
2668 goto fail;
2669 }
2670
2671 /* configure transfer mode */
2672 rc = ata_set_mode(&ap->link, &dev);
2673 if (rc)
2674 goto fail;
2675
2676 ata_link_for_each_dev(dev, &ap->link)
2677 if (ata_dev_enabled(dev))
2678 return 0;
2679
2680 /* no device present, disable port */
2681 ata_port_disable(ap);
2682 return -ENODEV;
2683
2684 fail:
2685 tries[dev->devno]--;
2686
2687 switch (rc) {
2688 case -EINVAL:
2689 /* eeek, something went very wrong, give up */
2690 tries[dev->devno] = 0;
2691 break;
2692
2693 case -ENODEV:
2694 /* give it just one more chance */
2695 tries[dev->devno] = min(tries[dev->devno], 1);
2696 case -EIO:
2697 if (tries[dev->devno] == 1) {
2698 /* This is the last chance, better to slow
2699 * down than lose it.
2700 */
2701 sata_down_spd_limit(&ap->link);
2702 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2703 }
2704 }
2705
2706 if (!tries[dev->devno])
2707 ata_dev_disable(dev);
2708
2709 goto retry;
2710 }
2711
2712 /**
2713 * ata_port_probe - Mark port as enabled
2714 * @ap: Port for which we indicate enablement
2715 *
2716 * Modify @ap data structure such that the system
2717 * thinks that the entire port is enabled.
2718 *
2719 * LOCKING: host lock, or some other form of
2720 * serialization.
2721 */
2722
2723 void ata_port_probe(struct ata_port *ap)
2724 {
2725 ap->flags &= ~ATA_FLAG_DISABLED;
2726 }
2727
2728 /**
2729 * sata_print_link_status - Print SATA link status
2730 * @link: SATA link to printk link status about
2731 *
2732 * This function prints link speed and status of a SATA link.
2733 *
2734 * LOCKING:
2735 * None.
2736 */
2737 static void sata_print_link_status(struct ata_link *link)
2738 {
2739 u32 sstatus, scontrol, tmp;
2740
2741 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2742 return;
2743 sata_scr_read(link, SCR_CONTROL, &scontrol);
2744
2745 if (ata_phys_link_online(link)) {
2746 tmp = (sstatus >> 4) & 0xf;
2747 ata_link_printk(link, KERN_INFO,
2748 "SATA link up %s (SStatus %X SControl %X)\n",
2749 sata_spd_string(tmp), sstatus, scontrol);
2750 } else {
2751 ata_link_printk(link, KERN_INFO,
2752 "SATA link down (SStatus %X SControl %X)\n",
2753 sstatus, scontrol);
2754 }
2755 }
2756
2757 /**
2758 * ata_dev_pair - return other device on cable
2759 * @adev: device
2760 *
2761 * Obtain the other device on the same cable, or if none is
2762 * present NULL is returned
2763 */
2764
2765 struct ata_device *ata_dev_pair(struct ata_device *adev)
2766 {
2767 struct ata_link *link = adev->link;
2768 struct ata_device *pair = &link->device[1 - adev->devno];
2769 if (!ata_dev_enabled(pair))
2770 return NULL;
2771 return pair;
2772 }
2773
2774 /**
2775 * ata_port_disable - Disable port.
2776 * @ap: Port to be disabled.
2777 *
2778 * Modify @ap data structure such that the system
2779 * thinks that the entire port is disabled, and should
2780 * never attempt to probe or communicate with devices
2781 * on this port.
2782 *
2783 * LOCKING: host lock, or some other form of
2784 * serialization.
2785 */
2786
2787 void ata_port_disable(struct ata_port *ap)
2788 {
2789 ap->link.device[0].class = ATA_DEV_NONE;
2790 ap->link.device[1].class = ATA_DEV_NONE;
2791 ap->flags |= ATA_FLAG_DISABLED;
2792 }
2793
2794 /**
2795 * sata_down_spd_limit - adjust SATA spd limit downward
2796 * @link: Link to adjust SATA spd limit for
2797 *
2798 * Adjust SATA spd limit of @link downward. Note that this
2799 * function only adjusts the limit. The change must be applied
2800 * using sata_set_spd().
2801 *
2802 * LOCKING:
2803 * Inherited from caller.
2804 *
2805 * RETURNS:
2806 * 0 on success, negative errno on failure
2807 */
2808 int sata_down_spd_limit(struct ata_link *link)
2809 {
2810 u32 sstatus, spd, mask;
2811 int rc, highbit;
2812
2813 if (!sata_scr_valid(link))
2814 return -EOPNOTSUPP;
2815
2816 /* If SCR can be read, use it to determine the current SPD.
2817 * If not, use cached value in link->sata_spd.
2818 */
2819 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2820 if (rc == 0)
2821 spd = (sstatus >> 4) & 0xf;
2822 else
2823 spd = link->sata_spd;
2824
2825 mask = link->sata_spd_limit;
2826 if (mask <= 1)
2827 return -EINVAL;
2828
2829 /* unconditionally mask off the highest bit */
2830 highbit = fls(mask) - 1;
2831 mask &= ~(1 << highbit);
2832
2833 /* Mask off all speeds higher than or equal to the current
2834 * one. Force 1.5Gbps if current SPD is not available.
2835 */
2836 if (spd > 1)
2837 mask &= (1 << (spd - 1)) - 1;
2838 else
2839 mask &= 1;
2840
2841 /* were we already at the bottom? */
2842 if (!mask)
2843 return -EINVAL;
2844
2845 link->sata_spd_limit = mask;
2846
2847 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2848 sata_spd_string(fls(mask)));
2849
2850 return 0;
2851 }
2852
2853 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2854 {
2855 struct ata_link *host_link = &link->ap->link;
2856 u32 limit, target, spd;
2857
2858 limit = link->sata_spd_limit;
2859
2860 /* Don't configure downstream link faster than upstream link.
2861 * It doesn't speed up anything and some PMPs choke on such
2862 * configuration.
2863 */
2864 if (!ata_is_host_link(link) && host_link->sata_spd)
2865 limit &= (1 << host_link->sata_spd) - 1;
2866
2867 if (limit == UINT_MAX)
2868 target = 0;
2869 else
2870 target = fls(limit);
2871
2872 spd = (*scontrol >> 4) & 0xf;
2873 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2874
2875 return spd != target;
2876 }
2877
2878 /**
2879 * sata_set_spd_needed - is SATA spd configuration needed
2880 * @link: Link in question
2881 *
2882 * Test whether the spd limit in SControl matches
2883 * @link->sata_spd_limit. This function is used to determine
2884 * whether hardreset is necessary to apply SATA spd
2885 * configuration.
2886 *
2887 * LOCKING:
2888 * Inherited from caller.
2889 *
2890 * RETURNS:
2891 * 1 if SATA spd configuration is needed, 0 otherwise.
2892 */
2893 static int sata_set_spd_needed(struct ata_link *link)
2894 {
2895 u32 scontrol;
2896
2897 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2898 return 1;
2899
2900 return __sata_set_spd_needed(link, &scontrol);
2901 }
2902
2903 /**
2904 * sata_set_spd - set SATA spd according to spd limit
2905 * @link: Link to set SATA spd for
2906 *
2907 * Set SATA spd of @link according to sata_spd_limit.
2908 *
2909 * LOCKING:
2910 * Inherited from caller.
2911 *
2912 * RETURNS:
2913 * 0 if spd doesn't need to be changed, 1 if spd has been
2914 * changed. Negative errno if SCR registers are inaccessible.
2915 */
2916 int sata_set_spd(struct ata_link *link)
2917 {
2918 u32 scontrol;
2919 int rc;
2920
2921 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2922 return rc;
2923
2924 if (!__sata_set_spd_needed(link, &scontrol))
2925 return 0;
2926
2927 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2928 return rc;
2929
2930 return 1;
2931 }
2932
2933 /*
2934 * This mode timing computation functionality is ported over from
2935 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2936 */
2937 /*
2938 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2939 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2940 * for UDMA6, which is currently supported only by Maxtor drives.
2941 *
2942 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2943 */
2944
2945 static const struct ata_timing ata_timing[] = {
2946 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2947 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2948 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2949 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2950 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2951 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2952 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2953 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2954
2955 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2956 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2957 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2958
2959 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2960 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2961 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2962 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2963 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2964
2965 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2966 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2967 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2968 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2969 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2970 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2971 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2972 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2973
2974 { 0xFF }
2975 };
2976
2977 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2978 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2979
2980 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2981 {
2982 q->setup = EZ(t->setup * 1000, T);
2983 q->act8b = EZ(t->act8b * 1000, T);
2984 q->rec8b = EZ(t->rec8b * 1000, T);
2985 q->cyc8b = EZ(t->cyc8b * 1000, T);
2986 q->active = EZ(t->active * 1000, T);
2987 q->recover = EZ(t->recover * 1000, T);
2988 q->cycle = EZ(t->cycle * 1000, T);
2989 q->udma = EZ(t->udma * 1000, UT);
2990 }
2991
2992 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2993 struct ata_timing *m, unsigned int what)
2994 {
2995 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2996 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2997 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2998 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2999 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3000 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3001 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3002 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3003 }
3004
3005 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3006 {
3007 const struct ata_timing *t = ata_timing;
3008
3009 while (xfer_mode > t->mode)
3010 t++;
3011
3012 if (xfer_mode == t->mode)
3013 return t;
3014 return NULL;
3015 }
3016
3017 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3018 struct ata_timing *t, int T, int UT)
3019 {
3020 const struct ata_timing *s;
3021 struct ata_timing p;
3022
3023 /*
3024 * Find the mode.
3025 */
3026
3027 if (!(s = ata_timing_find_mode(speed)))
3028 return -EINVAL;
3029
3030 memcpy(t, s, sizeof(*s));
3031
3032 /*
3033 * If the drive is an EIDE drive, it can tell us it needs extended
3034 * PIO/MW_DMA cycle timing.
3035 */
3036
3037 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3038 memset(&p, 0, sizeof(p));
3039 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3040 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3041 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3042 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3043 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3044 }
3045 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3046 }
3047
3048 /*
3049 * Convert the timing to bus clock counts.
3050 */
3051
3052 ata_timing_quantize(t, t, T, UT);
3053
3054 /*
3055 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3056 * S.M.A.R.T * and some other commands. We have to ensure that the
3057 * DMA cycle timing is slower/equal than the fastest PIO timing.
3058 */
3059
3060 if (speed > XFER_PIO_6) {
3061 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3062 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3063 }
3064
3065 /*
3066 * Lengthen active & recovery time so that cycle time is correct.
3067 */
3068
3069 if (t->act8b + t->rec8b < t->cyc8b) {
3070 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3071 t->rec8b = t->cyc8b - t->act8b;
3072 }
3073
3074 if (t->active + t->recover < t->cycle) {
3075 t->active += (t->cycle - (t->active + t->recover)) / 2;
3076 t->recover = t->cycle - t->active;
3077 }
3078
3079 /* In a few cases quantisation may produce enough errors to
3080 leave t->cycle too low for the sum of active and recovery
3081 if so we must correct this */
3082 if (t->active + t->recover > t->cycle)
3083 t->cycle = t->active + t->recover;
3084
3085 return 0;
3086 }
3087
3088 /**
3089 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3090 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3091 * @cycle: cycle duration in ns
3092 *
3093 * Return matching xfer mode for @cycle. The returned mode is of
3094 * the transfer type specified by @xfer_shift. If @cycle is too
3095 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3096 * than the fastest known mode, the fasted mode is returned.
3097 *
3098 * LOCKING:
3099 * None.
3100 *
3101 * RETURNS:
3102 * Matching xfer_mode, 0xff if no match found.
3103 */
3104 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3105 {
3106 u8 base_mode = 0xff, last_mode = 0xff;
3107 const struct ata_xfer_ent *ent;
3108 const struct ata_timing *t;
3109
3110 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3111 if (ent->shift == xfer_shift)
3112 base_mode = ent->base;
3113
3114 for (t = ata_timing_find_mode(base_mode);
3115 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3116 unsigned short this_cycle;
3117
3118 switch (xfer_shift) {
3119 case ATA_SHIFT_PIO:
3120 case ATA_SHIFT_MWDMA:
3121 this_cycle = t->cycle;
3122 break;
3123 case ATA_SHIFT_UDMA:
3124 this_cycle = t->udma;
3125 break;
3126 default:
3127 return 0xff;
3128 }
3129
3130 if (cycle > this_cycle)
3131 break;
3132
3133 last_mode = t->mode;
3134 }
3135
3136 return last_mode;
3137 }
3138
3139 /**
3140 * ata_down_xfermask_limit - adjust dev xfer masks downward
3141 * @dev: Device to adjust xfer masks
3142 * @sel: ATA_DNXFER_* selector
3143 *
3144 * Adjust xfer masks of @dev downward. Note that this function
3145 * does not apply the change. Invoking ata_set_mode() afterwards
3146 * will apply the limit.
3147 *
3148 * LOCKING:
3149 * Inherited from caller.
3150 *
3151 * RETURNS:
3152 * 0 on success, negative errno on failure
3153 */
3154 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3155 {
3156 char buf[32];
3157 unsigned long orig_mask, xfer_mask;
3158 unsigned long pio_mask, mwdma_mask, udma_mask;
3159 int quiet, highbit;
3160
3161 quiet = !!(sel & ATA_DNXFER_QUIET);
3162 sel &= ~ATA_DNXFER_QUIET;
3163
3164 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3165 dev->mwdma_mask,
3166 dev->udma_mask);
3167 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3168
3169 switch (sel) {
3170 case ATA_DNXFER_PIO:
3171 highbit = fls(pio_mask) - 1;
3172 pio_mask &= ~(1 << highbit);
3173 break;
3174
3175 case ATA_DNXFER_DMA:
3176 if (udma_mask) {
3177 highbit = fls(udma_mask) - 1;
3178 udma_mask &= ~(1 << highbit);
3179 if (!udma_mask)
3180 return -ENOENT;
3181 } else if (mwdma_mask) {
3182 highbit = fls(mwdma_mask) - 1;
3183 mwdma_mask &= ~(1 << highbit);
3184 if (!mwdma_mask)
3185 return -ENOENT;
3186 }
3187 break;
3188
3189 case ATA_DNXFER_40C:
3190 udma_mask &= ATA_UDMA_MASK_40C;
3191 break;
3192
3193 case ATA_DNXFER_FORCE_PIO0:
3194 pio_mask &= 1;
3195 case ATA_DNXFER_FORCE_PIO:
3196 mwdma_mask = 0;
3197 udma_mask = 0;
3198 break;
3199
3200 default:
3201 BUG();
3202 }
3203
3204 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3205
3206 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3207 return -ENOENT;
3208
3209 if (!quiet) {
3210 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3211 snprintf(buf, sizeof(buf), "%s:%s",
3212 ata_mode_string(xfer_mask),
3213 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3214 else
3215 snprintf(buf, sizeof(buf), "%s",
3216 ata_mode_string(xfer_mask));
3217
3218 ata_dev_printk(dev, KERN_WARNING,
3219 "limiting speed to %s\n", buf);
3220 }
3221
3222 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3223 &dev->udma_mask);
3224
3225 return 0;
3226 }
3227
3228 static int ata_dev_set_mode(struct ata_device *dev)
3229 {
3230 struct ata_eh_context *ehc = &dev->link->eh_context;
3231 const char *dev_err_whine = "";
3232 int ign_dev_err = 0;
3233 unsigned int err_mask;
3234 int rc;
3235
3236 dev->flags &= ~ATA_DFLAG_PIO;
3237 if (dev->xfer_shift == ATA_SHIFT_PIO)
3238 dev->flags |= ATA_DFLAG_PIO;
3239
3240 err_mask = ata_dev_set_xfermode(dev);
3241
3242 if (err_mask & ~AC_ERR_DEV)
3243 goto fail;
3244
3245 /* revalidate */
3246 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3247 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3248 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3249 if (rc)
3250 return rc;
3251
3252 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3253 /* Old CFA may refuse this command, which is just fine */
3254 if (ata_id_is_cfa(dev->id))
3255 ign_dev_err = 1;
3256 /* Catch several broken garbage emulations plus some pre
3257 ATA devices */
3258 if (ata_id_major_version(dev->id) == 0 &&
3259 dev->pio_mode <= XFER_PIO_2)
3260 ign_dev_err = 1;
3261 /* Some very old devices and some bad newer ones fail
3262 any kind of SET_XFERMODE request but support PIO0-2
3263 timings and no IORDY */
3264 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3265 ign_dev_err = 1;
3266 }
3267 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3268 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3269 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3270 dev->dma_mode == XFER_MW_DMA_0 &&
3271 (dev->id[63] >> 8) & 1)
3272 ign_dev_err = 1;
3273
3274 /* if the device is actually configured correctly, ignore dev err */
3275 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3276 ign_dev_err = 1;
3277
3278 if (err_mask & AC_ERR_DEV) {
3279 if (!ign_dev_err)
3280 goto fail;
3281 else
3282 dev_err_whine = " (device error ignored)";
3283 }
3284
3285 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3286 dev->xfer_shift, (int)dev->xfer_mode);
3287
3288 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3289 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3290 dev_err_whine);
3291
3292 return 0;
3293
3294 fail:
3295 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3296 "(err_mask=0x%x)\n", err_mask);
3297 return -EIO;
3298 }
3299
3300 /**
3301 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3302 * @link: link on which timings will be programmed
3303 * @r_failed_dev: out parameter for failed device
3304 *
3305 * Standard implementation of the function used to tune and set
3306 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3307 * ata_dev_set_mode() fails, pointer to the failing device is
3308 * returned in @r_failed_dev.
3309 *
3310 * LOCKING:
3311 * PCI/etc. bus probe sem.
3312 *
3313 * RETURNS:
3314 * 0 on success, negative errno otherwise
3315 */
3316
3317 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3318 {
3319 struct ata_port *ap = link->ap;
3320 struct ata_device *dev;
3321 int rc = 0, used_dma = 0, found = 0;
3322
3323 /* step 1: calculate xfer_mask */
3324 ata_link_for_each_dev(dev, link) {
3325 unsigned long pio_mask, dma_mask;
3326 unsigned int mode_mask;
3327
3328 if (!ata_dev_enabled(dev))
3329 continue;
3330
3331 mode_mask = ATA_DMA_MASK_ATA;
3332 if (dev->class == ATA_DEV_ATAPI)
3333 mode_mask = ATA_DMA_MASK_ATAPI;
3334 else if (ata_id_is_cfa(dev->id))
3335 mode_mask = ATA_DMA_MASK_CFA;
3336
3337 ata_dev_xfermask(dev);
3338 ata_force_xfermask(dev);
3339
3340 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3341 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3342
3343 if (libata_dma_mask & mode_mask)
3344 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3345 else
3346 dma_mask = 0;
3347
3348 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3349 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3350
3351 found = 1;
3352 if (ata_dma_enabled(dev))
3353 used_dma = 1;
3354 }
3355 if (!found)
3356 goto out;
3357
3358 /* step 2: always set host PIO timings */
3359 ata_link_for_each_dev(dev, link) {
3360 if (!ata_dev_enabled(dev))
3361 continue;
3362
3363 if (dev->pio_mode == 0xff) {
3364 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3365 rc = -EINVAL;
3366 goto out;
3367 }
3368
3369 dev->xfer_mode = dev->pio_mode;
3370 dev->xfer_shift = ATA_SHIFT_PIO;
3371 if (ap->ops->set_piomode)
3372 ap->ops->set_piomode(ap, dev);
3373 }
3374
3375 /* step 3: set host DMA timings */
3376 ata_link_for_each_dev(dev, link) {
3377 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev))
3378 continue;
3379
3380 dev->xfer_mode = dev->dma_mode;
3381 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3382 if (ap->ops->set_dmamode)
3383 ap->ops->set_dmamode(ap, dev);
3384 }
3385
3386 /* step 4: update devices' xfer mode */
3387 ata_link_for_each_dev(dev, link) {
3388 /* don't update suspended devices' xfer mode */
3389 if (!ata_dev_enabled(dev))
3390 continue;
3391
3392 rc = ata_dev_set_mode(dev);
3393 if (rc)
3394 goto out;
3395 }
3396
3397 /* Record simplex status. If we selected DMA then the other
3398 * host channels are not permitted to do so.
3399 */
3400 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3401 ap->host->simplex_claimed = ap;
3402
3403 out:
3404 if (rc)
3405 *r_failed_dev = dev;
3406 return rc;
3407 }
3408
3409 /**
3410 * ata_wait_ready - wait for link to become ready
3411 * @link: link to be waited on
3412 * @deadline: deadline jiffies for the operation
3413 * @check_ready: callback to check link readiness
3414 *
3415 * Wait for @link to become ready. @check_ready should return
3416 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3417 * link doesn't seem to be occupied, other errno for other error
3418 * conditions.
3419 *
3420 * Transient -ENODEV conditions are allowed for
3421 * ATA_TMOUT_FF_WAIT.
3422 *
3423 * LOCKING:
3424 * EH context.
3425 *
3426 * RETURNS:
3427 * 0 if @linke is ready before @deadline; otherwise, -errno.
3428 */
3429 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3430 int (*check_ready)(struct ata_link *link))
3431 {
3432 unsigned long start = jiffies;
3433 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3434 int warned = 0;
3435
3436 /* Slave readiness can't be tested separately from master. On
3437 * M/S emulation configuration, this function should be called
3438 * only on the master and it will handle both master and slave.
3439 */
3440 WARN_ON(link == link->ap->slave_link);
3441
3442 if (time_after(nodev_deadline, deadline))
3443 nodev_deadline = deadline;
3444
3445 while (1) {
3446 unsigned long now = jiffies;
3447 int ready, tmp;
3448
3449 ready = tmp = check_ready(link);
3450 if (ready > 0)
3451 return 0;
3452
3453 /* -ENODEV could be transient. Ignore -ENODEV if link
3454 * is online. Also, some SATA devices take a long
3455 * time to clear 0xff after reset. For example,
3456 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3457 * GoVault needs even more than that. Wait for
3458 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3459 *
3460 * Note that some PATA controllers (pata_ali) explode
3461 * if status register is read more than once when
3462 * there's no device attached.
3463 */
3464 if (ready == -ENODEV) {
3465 if (ata_link_online(link))
3466 ready = 0;
3467 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3468 !ata_link_offline(link) &&
3469 time_before(now, nodev_deadline))
3470 ready = 0;
3471 }
3472
3473 if (ready)
3474 return ready;
3475 if (time_after(now, deadline))
3476 return -EBUSY;
3477
3478 if (!warned && time_after(now, start + 5 * HZ) &&
3479 (deadline - now > 3 * HZ)) {
3480 ata_link_printk(link, KERN_WARNING,
3481 "link is slow to respond, please be patient "
3482 "(ready=%d)\n", tmp);
3483 warned = 1;
3484 }
3485
3486 msleep(50);
3487 }
3488 }
3489
3490 /**
3491 * ata_wait_after_reset - wait for link to become ready after reset
3492 * @link: link to be waited on
3493 * @deadline: deadline jiffies for the operation
3494 * @check_ready: callback to check link readiness
3495 *
3496 * Wait for @link to become ready after reset.
3497 *
3498 * LOCKING:
3499 * EH context.
3500 *
3501 * RETURNS:
3502 * 0 if @linke is ready before @deadline; otherwise, -errno.
3503 */
3504 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3505 int (*check_ready)(struct ata_link *link))
3506 {
3507 msleep(ATA_WAIT_AFTER_RESET);
3508
3509 return ata_wait_ready(link, deadline, check_ready);
3510 }
3511
3512 /**
3513 * sata_link_debounce - debounce SATA phy status
3514 * @link: ATA link to debounce SATA phy status for
3515 * @params: timing parameters { interval, duratinon, timeout } in msec
3516 * @deadline: deadline jiffies for the operation
3517 *
3518 * Make sure SStatus of @link reaches stable state, determined by
3519 * holding the same value where DET is not 1 for @duration polled
3520 * every @interval, before @timeout. Timeout constraints the
3521 * beginning of the stable state. Because DET gets stuck at 1 on
3522 * some controllers after hot unplugging, this functions waits
3523 * until timeout then returns 0 if DET is stable at 1.
3524 *
3525 * @timeout is further limited by @deadline. The sooner of the
3526 * two is used.
3527 *
3528 * LOCKING:
3529 * Kernel thread context (may sleep)
3530 *
3531 * RETURNS:
3532 * 0 on success, -errno on failure.
3533 */
3534 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3535 unsigned long deadline)
3536 {
3537 unsigned long interval = params[0];
3538 unsigned long duration = params[1];
3539 unsigned long last_jiffies, t;
3540 u32 last, cur;
3541 int rc;
3542
3543 t = ata_deadline(jiffies, params[2]);
3544 if (time_before(t, deadline))
3545 deadline = t;
3546
3547 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3548 return rc;
3549 cur &= 0xf;
3550
3551 last = cur;
3552 last_jiffies = jiffies;
3553
3554 while (1) {
3555 msleep(interval);
3556 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3557 return rc;
3558 cur &= 0xf;
3559
3560 /* DET stable? */
3561 if (cur == last) {
3562 if (cur == 1 && time_before(jiffies, deadline))
3563 continue;
3564 if (time_after(jiffies,
3565 ata_deadline(last_jiffies, duration)))
3566 return 0;
3567 continue;
3568 }
3569
3570 /* unstable, start over */
3571 last = cur;
3572 last_jiffies = jiffies;
3573
3574 /* Check deadline. If debouncing failed, return
3575 * -EPIPE to tell upper layer to lower link speed.
3576 */
3577 if (time_after(jiffies, deadline))
3578 return -EPIPE;
3579 }
3580 }
3581
3582 /**
3583 * sata_link_resume - resume SATA link
3584 * @link: ATA link to resume SATA
3585 * @params: timing parameters { interval, duratinon, timeout } in msec
3586 * @deadline: deadline jiffies for the operation
3587 *
3588 * Resume SATA phy @link and debounce it.
3589 *
3590 * LOCKING:
3591 * Kernel thread context (may sleep)
3592 *
3593 * RETURNS:
3594 * 0 on success, -errno on failure.
3595 */
3596 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3597 unsigned long deadline)
3598 {
3599 u32 scontrol, serror;
3600 int rc;
3601
3602 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3603 return rc;
3604
3605 scontrol = (scontrol & 0x0f0) | 0x300;
3606
3607 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3608 return rc;
3609
3610 /* Some PHYs react badly if SStatus is pounded immediately
3611 * after resuming. Delay 200ms before debouncing.
3612 */
3613 msleep(200);
3614
3615 if ((rc = sata_link_debounce(link, params, deadline)))
3616 return rc;
3617
3618 /* clear SError, some PHYs require this even for SRST to work */
3619 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3620 rc = sata_scr_write(link, SCR_ERROR, serror);
3621
3622 return rc != -EINVAL ? rc : 0;
3623 }
3624
3625 /**
3626 * ata_std_prereset - prepare for reset
3627 * @link: ATA link to be reset
3628 * @deadline: deadline jiffies for the operation
3629 *
3630 * @link is about to be reset. Initialize it. Failure from
3631 * prereset makes libata abort whole reset sequence and give up
3632 * that port, so prereset should be best-effort. It does its
3633 * best to prepare for reset sequence but if things go wrong, it
3634 * should just whine, not fail.
3635 *
3636 * LOCKING:
3637 * Kernel thread context (may sleep)
3638 *
3639 * RETURNS:
3640 * 0 on success, -errno otherwise.
3641 */
3642 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3643 {
3644 struct ata_port *ap = link->ap;
3645 struct ata_eh_context *ehc = &link->eh_context;
3646 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3647 int rc;
3648
3649 /* if we're about to do hardreset, nothing more to do */
3650 if (ehc->i.action & ATA_EH_HARDRESET)
3651 return 0;
3652
3653 /* if SATA, resume link */
3654 if (ap->flags & ATA_FLAG_SATA) {
3655 rc = sata_link_resume(link, timing, deadline);
3656 /* whine about phy resume failure but proceed */
3657 if (rc && rc != -EOPNOTSUPP)
3658 ata_link_printk(link, KERN_WARNING, "failed to resume "
3659 "link for reset (errno=%d)\n", rc);
3660 }
3661
3662 /* no point in trying softreset on offline link */
3663 if (ata_phys_link_offline(link))
3664 ehc->i.action &= ~ATA_EH_SOFTRESET;
3665
3666 return 0;
3667 }
3668
3669 /**
3670 * sata_link_hardreset - reset link via SATA phy reset
3671 * @link: link to reset
3672 * @timing: timing parameters { interval, duratinon, timeout } in msec
3673 * @deadline: deadline jiffies for the operation
3674 * @online: optional out parameter indicating link onlineness
3675 * @check_ready: optional callback to check link readiness
3676 *
3677 * SATA phy-reset @link using DET bits of SControl register.
3678 * After hardreset, link readiness is waited upon using
3679 * ata_wait_ready() if @check_ready is specified. LLDs are
3680 * allowed to not specify @check_ready and wait itself after this
3681 * function returns. Device classification is LLD's
3682 * responsibility.
3683 *
3684 * *@online is set to one iff reset succeeded and @link is online
3685 * after reset.
3686 *
3687 * LOCKING:
3688 * Kernel thread context (may sleep)
3689 *
3690 * RETURNS:
3691 * 0 on success, -errno otherwise.
3692 */
3693 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3694 unsigned long deadline,
3695 bool *online, int (*check_ready)(struct ata_link *))
3696 {
3697 u32 scontrol;
3698 int rc;
3699
3700 DPRINTK("ENTER\n");
3701
3702 if (online)
3703 *online = false;
3704
3705 if (sata_set_spd_needed(link)) {
3706 /* SATA spec says nothing about how to reconfigure
3707 * spd. To be on the safe side, turn off phy during
3708 * reconfiguration. This works for at least ICH7 AHCI
3709 * and Sil3124.
3710 */
3711 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3712 goto out;
3713
3714 scontrol = (scontrol & 0x0f0) | 0x304;
3715
3716 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3717 goto out;
3718
3719 sata_set_spd(link);
3720 }
3721
3722 /* issue phy wake/reset */
3723 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3724 goto out;
3725
3726 scontrol = (scontrol & 0x0f0) | 0x301;
3727
3728 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3729 goto out;
3730
3731 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3732 * 10.4.2 says at least 1 ms.
3733 */
3734 msleep(1);
3735
3736 /* bring link back */
3737 rc = sata_link_resume(link, timing, deadline);
3738 if (rc)
3739 goto out;
3740 /* if link is offline nothing more to do */
3741 if (ata_phys_link_offline(link))
3742 goto out;
3743
3744 /* Link is online. From this point, -ENODEV too is an error. */
3745 if (online)
3746 *online = true;
3747
3748 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3749 /* If PMP is supported, we have to do follow-up SRST.
3750 * Some PMPs don't send D2H Reg FIS after hardreset if
3751 * the first port is empty. Wait only for
3752 * ATA_TMOUT_PMP_SRST_WAIT.
3753 */
3754 if (check_ready) {
3755 unsigned long pmp_deadline;
3756
3757 pmp_deadline = ata_deadline(jiffies,
3758 ATA_TMOUT_PMP_SRST_WAIT);
3759 if (time_after(pmp_deadline, deadline))
3760 pmp_deadline = deadline;
3761 ata_wait_ready(link, pmp_deadline, check_ready);
3762 }
3763 rc = -EAGAIN;
3764 goto out;
3765 }
3766
3767 rc = 0;
3768 if (check_ready)
3769 rc = ata_wait_ready(link, deadline, check_ready);
3770 out:
3771 if (rc && rc != -EAGAIN) {
3772 /* online is set iff link is online && reset succeeded */
3773 if (online)
3774 *online = false;
3775 ata_link_printk(link, KERN_ERR,
3776 "COMRESET failed (errno=%d)\n", rc);
3777 }
3778 DPRINTK("EXIT, rc=%d\n", rc);
3779 return rc;
3780 }
3781
3782 /**
3783 * sata_std_hardreset - COMRESET w/o waiting or classification
3784 * @link: link to reset
3785 * @class: resulting class of attached device
3786 * @deadline: deadline jiffies for the operation
3787 *
3788 * Standard SATA COMRESET w/o waiting or classification.
3789 *
3790 * LOCKING:
3791 * Kernel thread context (may sleep)
3792 *
3793 * RETURNS:
3794 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3795 */
3796 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3797 unsigned long deadline)
3798 {
3799 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3800 bool online;
3801 int rc;
3802
3803 /* do hardreset */
3804 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3805 return online ? -EAGAIN : rc;
3806 }
3807
3808 /**
3809 * ata_std_postreset - standard postreset callback
3810 * @link: the target ata_link
3811 * @classes: classes of attached devices
3812 *
3813 * This function is invoked after a successful reset. Note that
3814 * the device might have been reset more than once using
3815 * different reset methods before postreset is invoked.
3816 *
3817 * LOCKING:
3818 * Kernel thread context (may sleep)
3819 */
3820 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3821 {
3822 u32 serror;
3823
3824 DPRINTK("ENTER\n");
3825
3826 /* reset complete, clear SError */
3827 if (!sata_scr_read(link, SCR_ERROR, &serror))
3828 sata_scr_write(link, SCR_ERROR, serror);
3829
3830 /* print link status */
3831 sata_print_link_status(link);
3832
3833 DPRINTK("EXIT\n");
3834 }
3835
3836 /**
3837 * ata_dev_same_device - Determine whether new ID matches configured device
3838 * @dev: device to compare against
3839 * @new_class: class of the new device
3840 * @new_id: IDENTIFY page of the new device
3841 *
3842 * Compare @new_class and @new_id against @dev and determine
3843 * whether @dev is the device indicated by @new_class and
3844 * @new_id.
3845 *
3846 * LOCKING:
3847 * None.
3848 *
3849 * RETURNS:
3850 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3851 */
3852 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3853 const u16 *new_id)
3854 {
3855 const u16 *old_id = dev->id;
3856 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3857 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3858
3859 if (dev->class != new_class) {
3860 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3861 dev->class, new_class);
3862 return 0;
3863 }
3864
3865 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3866 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3867 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3868 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3869
3870 if (strcmp(model[0], model[1])) {
3871 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3872 "'%s' != '%s'\n", model[0], model[1]);
3873 return 0;
3874 }
3875
3876 if (strcmp(serial[0], serial[1])) {
3877 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3878 "'%s' != '%s'\n", serial[0], serial[1]);
3879 return 0;
3880 }
3881
3882 return 1;
3883 }
3884
3885 /**
3886 * ata_dev_reread_id - Re-read IDENTIFY data
3887 * @dev: target ATA device
3888 * @readid_flags: read ID flags
3889 *
3890 * Re-read IDENTIFY page and make sure @dev is still attached to
3891 * the port.
3892 *
3893 * LOCKING:
3894 * Kernel thread context (may sleep)
3895 *
3896 * RETURNS:
3897 * 0 on success, negative errno otherwise
3898 */
3899 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3900 {
3901 unsigned int class = dev->class;
3902 u16 *id = (void *)dev->link->ap->sector_buf;
3903 int rc;
3904
3905 /* read ID data */
3906 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3907 if (rc)
3908 return rc;
3909
3910 /* is the device still there? */
3911 if (!ata_dev_same_device(dev, class, id))
3912 return -ENODEV;
3913
3914 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3915 return 0;
3916 }
3917
3918 /**
3919 * ata_dev_revalidate - Revalidate ATA device
3920 * @dev: device to revalidate
3921 * @new_class: new class code
3922 * @readid_flags: read ID flags
3923 *
3924 * Re-read IDENTIFY page, make sure @dev is still attached to the
3925 * port and reconfigure it according to the new IDENTIFY page.
3926 *
3927 * LOCKING:
3928 * Kernel thread context (may sleep)
3929 *
3930 * RETURNS:
3931 * 0 on success, negative errno otherwise
3932 */
3933 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3934 unsigned int readid_flags)
3935 {
3936 u64 n_sectors = dev->n_sectors;
3937 int rc;
3938
3939 if (!ata_dev_enabled(dev))
3940 return -ENODEV;
3941
3942 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3943 if (ata_class_enabled(new_class) &&
3944 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3945 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3946 dev->class, new_class);
3947 rc = -ENODEV;
3948 goto fail;
3949 }
3950
3951 /* re-read ID */
3952 rc = ata_dev_reread_id(dev, readid_flags);
3953 if (rc)
3954 goto fail;
3955
3956 /* configure device according to the new ID */
3957 rc = ata_dev_configure(dev);
3958 if (rc)
3959 goto fail;
3960
3961 /* verify n_sectors hasn't changed */
3962 if (dev->class == ATA_DEV_ATA && n_sectors &&
3963 dev->n_sectors != n_sectors) {
3964 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3965 "%llu != %llu\n",
3966 (unsigned long long)n_sectors,
3967 (unsigned long long)dev->n_sectors);
3968
3969 /* restore original n_sectors */
3970 dev->n_sectors = n_sectors;
3971
3972 rc = -ENODEV;
3973 goto fail;
3974 }
3975
3976 return 0;
3977
3978 fail:
3979 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3980 return rc;
3981 }
3982
3983 struct ata_blacklist_entry {
3984 const char *model_num;
3985 const char *model_rev;
3986 unsigned long horkage;
3987 };
3988
3989 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3990 /* Devices with DMA related problems under Linux */
3991 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3992 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3993 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3994 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3995 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3996 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3997 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3998 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3999 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4000 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4001 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4002 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4003 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4004 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4005 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4006 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4007 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4008 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4009 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4010 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4011 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4012 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4013 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4014 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4015 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4016 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4017 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4018 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4019 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4020 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4021 /* Odd clown on sil3726/4726 PMPs */
4022 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4023
4024 /* Weird ATAPI devices */
4025 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4026
4027 /* Devices we expect to fail diagnostics */
4028
4029 /* Devices where NCQ should be avoided */
4030 /* NCQ is slow */
4031 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4032 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4033 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4034 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4035 /* NCQ is broken */
4036 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4037 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4038 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4039 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4040
4041 /* Blacklist entries taken from Silicon Image 3124/3132
4042 Windows driver .inf file - also several Linux problem reports */
4043 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4044 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4045 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4046
4047 /* devices which puke on READ_NATIVE_MAX */
4048 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4049 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4050 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4051 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4052
4053 /* Devices which report 1 sector over size HPA */
4054 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4055 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4056 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4057
4058 /* Devices which get the IVB wrong */
4059 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4060 /* Maybe we should just blacklist TSSTcorp... */
4061 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4062 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4063 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4064 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4065 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4066 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4067
4068 /* End Marker */
4069 { }
4070 };
4071
4072 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4073 {
4074 const char *p;
4075 int len;
4076
4077 /*
4078 * check for trailing wildcard: *\0
4079 */
4080 p = strchr(patt, wildchar);
4081 if (p && ((*(p + 1)) == 0))
4082 len = p - patt;
4083 else {
4084 len = strlen(name);
4085 if (!len) {
4086 if (!*patt)
4087 return 0;
4088 return -1;
4089 }
4090 }
4091
4092 return strncmp(patt, name, len);
4093 }
4094
4095 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4096 {
4097 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4098 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4099 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4100
4101 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4102 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4103
4104 while (ad->model_num) {
4105 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4106 if (ad->model_rev == NULL)
4107 return ad->horkage;
4108 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4109 return ad->horkage;
4110 }
4111 ad++;
4112 }
4113 return 0;
4114 }
4115
4116 static int ata_dma_blacklisted(const struct ata_device *dev)
4117 {
4118 /* We don't support polling DMA.
4119 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4120 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4121 */
4122 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4123 (dev->flags & ATA_DFLAG_CDB_INTR))
4124 return 1;
4125 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4126 }
4127
4128 /**
4129 * ata_is_40wire - check drive side detection
4130 * @dev: device
4131 *
4132 * Perform drive side detection decoding, allowing for device vendors
4133 * who can't follow the documentation.
4134 */
4135
4136 static int ata_is_40wire(struct ata_device *dev)
4137 {
4138 if (dev->horkage & ATA_HORKAGE_IVB)
4139 return ata_drive_40wire_relaxed(dev->id);
4140 return ata_drive_40wire(dev->id);
4141 }
4142
4143 /**
4144 * cable_is_40wire - 40/80/SATA decider
4145 * @ap: port to consider
4146 *
4147 * This function encapsulates the policy for speed management
4148 * in one place. At the moment we don't cache the result but
4149 * there is a good case for setting ap->cbl to the result when
4150 * we are called with unknown cables (and figuring out if it
4151 * impacts hotplug at all).
4152 *
4153 * Return 1 if the cable appears to be 40 wire.
4154 */
4155
4156 static int cable_is_40wire(struct ata_port *ap)
4157 {
4158 struct ata_link *link;
4159 struct ata_device *dev;
4160
4161 /* If the controller thinks we are 40 wire, we are */
4162 if (ap->cbl == ATA_CBL_PATA40)
4163 return 1;
4164 /* If the controller thinks we are 80 wire, we are */
4165 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4166 return 0;
4167 /* If the system is known to be 40 wire short cable (eg laptop),
4168 then we allow 80 wire modes even if the drive isn't sure */
4169 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4170 return 0;
4171 /* If the controller doesn't know we scan
4172
4173 - Note: We look for all 40 wire detects at this point.
4174 Any 80 wire detect is taken to be 80 wire cable
4175 because
4176 - In many setups only the one drive (slave if present)
4177 will give a valid detect
4178 - If you have a non detect capable drive you don't
4179 want it to colour the choice
4180 */
4181 ata_port_for_each_link(link, ap) {
4182 ata_link_for_each_dev(dev, link) {
4183 if (!ata_is_40wire(dev))
4184 return 0;
4185 }
4186 }
4187 return 1;
4188 }
4189
4190 /**
4191 * ata_dev_xfermask - Compute supported xfermask of the given device
4192 * @dev: Device to compute xfermask for
4193 *
4194 * Compute supported xfermask of @dev and store it in
4195 * dev->*_mask. This function is responsible for applying all
4196 * known limits including host controller limits, device
4197 * blacklist, etc...
4198 *
4199 * LOCKING:
4200 * None.
4201 */
4202 static void ata_dev_xfermask(struct ata_device *dev)
4203 {
4204 struct ata_link *link = dev->link;
4205 struct ata_port *ap = link->ap;
4206 struct ata_host *host = ap->host;
4207 unsigned long xfer_mask;
4208
4209 /* controller modes available */
4210 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4211 ap->mwdma_mask, ap->udma_mask);
4212
4213 /* drive modes available */
4214 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4215 dev->mwdma_mask, dev->udma_mask);
4216 xfer_mask &= ata_id_xfermask(dev->id);
4217
4218 /*
4219 * CFA Advanced TrueIDE timings are not allowed on a shared
4220 * cable
4221 */
4222 if (ata_dev_pair(dev)) {
4223 /* No PIO5 or PIO6 */
4224 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4225 /* No MWDMA3 or MWDMA 4 */
4226 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4227 }
4228
4229 if (ata_dma_blacklisted(dev)) {
4230 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4231 ata_dev_printk(dev, KERN_WARNING,
4232 "device is on DMA blacklist, disabling DMA\n");
4233 }
4234
4235 if ((host->flags & ATA_HOST_SIMPLEX) &&
4236 host->simplex_claimed && host->simplex_claimed != ap) {
4237 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4238 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4239 "other device, disabling DMA\n");
4240 }
4241
4242 if (ap->flags & ATA_FLAG_NO_IORDY)
4243 xfer_mask &= ata_pio_mask_no_iordy(dev);
4244
4245 if (ap->ops->mode_filter)
4246 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4247
4248 /* Apply cable rule here. Don't apply it early because when
4249 * we handle hot plug the cable type can itself change.
4250 * Check this last so that we know if the transfer rate was
4251 * solely limited by the cable.
4252 * Unknown or 80 wire cables reported host side are checked
4253 * drive side as well. Cases where we know a 40wire cable
4254 * is used safely for 80 are not checked here.
4255 */
4256 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4257 /* UDMA/44 or higher would be available */
4258 if (cable_is_40wire(ap)) {
4259 ata_dev_printk(dev, KERN_WARNING,
4260 "limited to UDMA/33 due to 40-wire cable\n");
4261 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4262 }
4263
4264 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4265 &dev->mwdma_mask, &dev->udma_mask);
4266 }
4267
4268 /**
4269 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4270 * @dev: Device to which command will be sent
4271 *
4272 * Issue SET FEATURES - XFER MODE command to device @dev
4273 * on port @ap.
4274 *
4275 * LOCKING:
4276 * PCI/etc. bus probe sem.
4277 *
4278 * RETURNS:
4279 * 0 on success, AC_ERR_* mask otherwise.
4280 */
4281
4282 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4283 {
4284 struct ata_taskfile tf;
4285 unsigned int err_mask;
4286
4287 /* set up set-features taskfile */
4288 DPRINTK("set features - xfer mode\n");
4289
4290 /* Some controllers and ATAPI devices show flaky interrupt
4291 * behavior after setting xfer mode. Use polling instead.
4292 */
4293 ata_tf_init(dev, &tf);
4294 tf.command = ATA_CMD_SET_FEATURES;
4295 tf.feature = SETFEATURES_XFER;
4296 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4297 tf.protocol = ATA_PROT_NODATA;
4298 /* If we are using IORDY we must send the mode setting command */
4299 if (ata_pio_need_iordy(dev))
4300 tf.nsect = dev->xfer_mode;
4301 /* If the device has IORDY and the controller does not - turn it off */
4302 else if (ata_id_has_iordy(dev->id))
4303 tf.nsect = 0x01;
4304 else /* In the ancient relic department - skip all of this */
4305 return 0;
4306
4307 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4308
4309 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4310 return err_mask;
4311 }
4312 /**
4313 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4314 * @dev: Device to which command will be sent
4315 * @enable: Whether to enable or disable the feature
4316 * @feature: The sector count represents the feature to set
4317 *
4318 * Issue SET FEATURES - SATA FEATURES command to device @dev
4319 * on port @ap with sector count
4320 *
4321 * LOCKING:
4322 * PCI/etc. bus probe sem.
4323 *
4324 * RETURNS:
4325 * 0 on success, AC_ERR_* mask otherwise.
4326 */
4327 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4328 u8 feature)
4329 {
4330 struct ata_taskfile tf;
4331 unsigned int err_mask;
4332
4333 /* set up set-features taskfile */
4334 DPRINTK("set features - SATA features\n");
4335
4336 ata_tf_init(dev, &tf);
4337 tf.command = ATA_CMD_SET_FEATURES;
4338 tf.feature = enable;
4339 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4340 tf.protocol = ATA_PROT_NODATA;
4341 tf.nsect = feature;
4342
4343 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4344
4345 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4346 return err_mask;
4347 }
4348
4349 /**
4350 * ata_dev_init_params - Issue INIT DEV PARAMS command
4351 * @dev: Device to which command will be sent
4352 * @heads: Number of heads (taskfile parameter)
4353 * @sectors: Number of sectors (taskfile parameter)
4354 *
4355 * LOCKING:
4356 * Kernel thread context (may sleep)
4357 *
4358 * RETURNS:
4359 * 0 on success, AC_ERR_* mask otherwise.
4360 */
4361 static unsigned int ata_dev_init_params(struct ata_device *dev,
4362 u16 heads, u16 sectors)
4363 {
4364 struct ata_taskfile tf;
4365 unsigned int err_mask;
4366
4367 /* Number of sectors per track 1-255. Number of heads 1-16 */
4368 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4369 return AC_ERR_INVALID;
4370
4371 /* set up init dev params taskfile */
4372 DPRINTK("init dev params \n");
4373
4374 ata_tf_init(dev, &tf);
4375 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4376 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4377 tf.protocol = ATA_PROT_NODATA;
4378 tf.nsect = sectors;
4379 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4380
4381 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4382 /* A clean abort indicates an original or just out of spec drive
4383 and we should continue as we issue the setup based on the
4384 drive reported working geometry */
4385 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4386 err_mask = 0;
4387
4388 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4389 return err_mask;
4390 }
4391
4392 /**
4393 * ata_sg_clean - Unmap DMA memory associated with command
4394 * @qc: Command containing DMA memory to be released
4395 *
4396 * Unmap all mapped DMA memory associated with this command.
4397 *
4398 * LOCKING:
4399 * spin_lock_irqsave(host lock)
4400 */
4401 void ata_sg_clean(struct ata_queued_cmd *qc)
4402 {
4403 struct ata_port *ap = qc->ap;
4404 struct scatterlist *sg = qc->sg;
4405 int dir = qc->dma_dir;
4406
4407 WARN_ON(sg == NULL);
4408
4409 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4410
4411 if (qc->n_elem)
4412 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4413
4414 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4415 qc->sg = NULL;
4416 }
4417
4418 /**
4419 * atapi_check_dma - Check whether ATAPI DMA can be supported
4420 * @qc: Metadata associated with taskfile to check
4421 *
4422 * Allow low-level driver to filter ATA PACKET commands, returning
4423 * a status indicating whether or not it is OK to use DMA for the
4424 * supplied PACKET command.
4425 *
4426 * LOCKING:
4427 * spin_lock_irqsave(host lock)
4428 *
4429 * RETURNS: 0 when ATAPI DMA can be used
4430 * nonzero otherwise
4431 */
4432 int atapi_check_dma(struct ata_queued_cmd *qc)
4433 {
4434 struct ata_port *ap = qc->ap;
4435
4436 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4437 * few ATAPI devices choke on such DMA requests.
4438 */
4439 if (unlikely(qc->nbytes & 15))
4440 return 1;
4441
4442 if (ap->ops->check_atapi_dma)
4443 return ap->ops->check_atapi_dma(qc);
4444
4445 return 0;
4446 }
4447
4448 /**
4449 * ata_std_qc_defer - Check whether a qc needs to be deferred
4450 * @qc: ATA command in question
4451 *
4452 * Non-NCQ commands cannot run with any other command, NCQ or
4453 * not. As upper layer only knows the queue depth, we are
4454 * responsible for maintaining exclusion. This function checks
4455 * whether a new command @qc can be issued.
4456 *
4457 * LOCKING:
4458 * spin_lock_irqsave(host lock)
4459 *
4460 * RETURNS:
4461 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4462 */
4463 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4464 {
4465 struct ata_link *link = qc->dev->link;
4466
4467 if (qc->tf.protocol == ATA_PROT_NCQ) {
4468 if (!ata_tag_valid(link->active_tag))
4469 return 0;
4470 } else {
4471 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4472 return 0;
4473 }
4474
4475 return ATA_DEFER_LINK;
4476 }
4477
4478 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4479
4480 /**
4481 * ata_sg_init - Associate command with scatter-gather table.
4482 * @qc: Command to be associated
4483 * @sg: Scatter-gather table.
4484 * @n_elem: Number of elements in s/g table.
4485 *
4486 * Initialize the data-related elements of queued_cmd @qc
4487 * to point to a scatter-gather table @sg, containing @n_elem
4488 * elements.
4489 *
4490 * LOCKING:
4491 * spin_lock_irqsave(host lock)
4492 */
4493 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4494 unsigned int n_elem)
4495 {
4496 qc->sg = sg;
4497 qc->n_elem = n_elem;
4498 qc->cursg = qc->sg;
4499 }
4500
4501 /**
4502 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4503 * @qc: Command with scatter-gather table to be mapped.
4504 *
4505 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4506 *
4507 * LOCKING:
4508 * spin_lock_irqsave(host lock)
4509 *
4510 * RETURNS:
4511 * Zero on success, negative on error.
4512 *
4513 */
4514 static int ata_sg_setup(struct ata_queued_cmd *qc)
4515 {
4516 struct ata_port *ap = qc->ap;
4517 unsigned int n_elem;
4518
4519 VPRINTK("ENTER, ata%u\n", ap->print_id);
4520
4521 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4522 if (n_elem < 1)
4523 return -1;
4524
4525 DPRINTK("%d sg elements mapped\n", n_elem);
4526
4527 qc->n_elem = n_elem;
4528 qc->flags |= ATA_QCFLAG_DMAMAP;
4529
4530 return 0;
4531 }
4532
4533 /**
4534 * swap_buf_le16 - swap halves of 16-bit words in place
4535 * @buf: Buffer to swap
4536 * @buf_words: Number of 16-bit words in buffer.
4537 *
4538 * Swap halves of 16-bit words if needed to convert from
4539 * little-endian byte order to native cpu byte order, or
4540 * vice-versa.
4541 *
4542 * LOCKING:
4543 * Inherited from caller.
4544 */
4545 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4546 {
4547 #ifdef __BIG_ENDIAN
4548 unsigned int i;
4549
4550 for (i = 0; i < buf_words; i++)
4551 buf[i] = le16_to_cpu(buf[i]);
4552 #endif /* __BIG_ENDIAN */
4553 }
4554
4555 /**
4556 * ata_qc_new - Request an available ATA command, for queueing
4557 * @ap: Port associated with device @dev
4558 * @dev: Device from whom we request an available command structure
4559 *
4560 * LOCKING:
4561 * None.
4562 */
4563
4564 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4565 {
4566 struct ata_queued_cmd *qc = NULL;
4567 unsigned int i;
4568
4569 /* no command while frozen */
4570 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4571 return NULL;
4572
4573 /* the last tag is reserved for internal command. */
4574 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4575 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4576 qc = __ata_qc_from_tag(ap, i);
4577 break;
4578 }
4579
4580 if (qc)
4581 qc->tag = i;
4582
4583 return qc;
4584 }
4585
4586 /**
4587 * ata_qc_new_init - Request an available ATA command, and initialize it
4588 * @dev: Device from whom we request an available command structure
4589 *
4590 * LOCKING:
4591 * None.
4592 */
4593
4594 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4595 {
4596 struct ata_port *ap = dev->link->ap;
4597 struct ata_queued_cmd *qc;
4598
4599 qc = ata_qc_new(ap);
4600 if (qc) {
4601 qc->scsicmd = NULL;
4602 qc->ap = ap;
4603 qc->dev = dev;
4604
4605 ata_qc_reinit(qc);
4606 }
4607
4608 return qc;
4609 }
4610
4611 /**
4612 * ata_qc_free - free unused ata_queued_cmd
4613 * @qc: Command to complete
4614 *
4615 * Designed to free unused ata_queued_cmd object
4616 * in case something prevents using it.
4617 *
4618 * LOCKING:
4619 * spin_lock_irqsave(host lock)
4620 */
4621 void ata_qc_free(struct ata_queued_cmd *qc)
4622 {
4623 struct ata_port *ap = qc->ap;
4624 unsigned int tag;
4625
4626 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4627
4628 qc->flags = 0;
4629 tag = qc->tag;
4630 if (likely(ata_tag_valid(tag))) {
4631 qc->tag = ATA_TAG_POISON;
4632 clear_bit(tag, &ap->qc_allocated);
4633 }
4634 }
4635
4636 void __ata_qc_complete(struct ata_queued_cmd *qc)
4637 {
4638 struct ata_port *ap = qc->ap;
4639 struct ata_link *link = qc->dev->link;
4640
4641 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4642 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4643
4644 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4645 ata_sg_clean(qc);
4646
4647 /* command should be marked inactive atomically with qc completion */
4648 if (qc->tf.protocol == ATA_PROT_NCQ) {
4649 link->sactive &= ~(1 << qc->tag);
4650 if (!link->sactive)
4651 ap->nr_active_links--;
4652 } else {
4653 link->active_tag = ATA_TAG_POISON;
4654 ap->nr_active_links--;
4655 }
4656
4657 /* clear exclusive status */
4658 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4659 ap->excl_link == link))
4660 ap->excl_link = NULL;
4661
4662 /* atapi: mark qc as inactive to prevent the interrupt handler
4663 * from completing the command twice later, before the error handler
4664 * is called. (when rc != 0 and atapi request sense is needed)
4665 */
4666 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4667 ap->qc_active &= ~(1 << qc->tag);
4668
4669 /* call completion callback */
4670 qc->complete_fn(qc);
4671 }
4672
4673 static void fill_result_tf(struct ata_queued_cmd *qc)
4674 {
4675 struct ata_port *ap = qc->ap;
4676
4677 qc->result_tf.flags = qc->tf.flags;
4678 ap->ops->qc_fill_rtf(qc);
4679 }
4680
4681 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4682 {
4683 struct ata_device *dev = qc->dev;
4684
4685 if (ata_tag_internal(qc->tag))
4686 return;
4687
4688 if (ata_is_nodata(qc->tf.protocol))
4689 return;
4690
4691 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4692 return;
4693
4694 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4695 }
4696
4697 /**
4698 * ata_qc_complete - Complete an active ATA command
4699 * @qc: Command to complete
4700 * @err_mask: ATA Status register contents
4701 *
4702 * Indicate to the mid and upper layers that an ATA
4703 * command has completed, with either an ok or not-ok status.
4704 *
4705 * LOCKING:
4706 * spin_lock_irqsave(host lock)
4707 */
4708 void ata_qc_complete(struct ata_queued_cmd *qc)
4709 {
4710 struct ata_port *ap = qc->ap;
4711
4712 /* XXX: New EH and old EH use different mechanisms to
4713 * synchronize EH with regular execution path.
4714 *
4715 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4716 * Normal execution path is responsible for not accessing a
4717 * failed qc. libata core enforces the rule by returning NULL
4718 * from ata_qc_from_tag() for failed qcs.
4719 *
4720 * Old EH depends on ata_qc_complete() nullifying completion
4721 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4722 * not synchronize with interrupt handler. Only PIO task is
4723 * taken care of.
4724 */
4725 if (ap->ops->error_handler) {
4726 struct ata_device *dev = qc->dev;
4727 struct ata_eh_info *ehi = &dev->link->eh_info;
4728
4729 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4730
4731 if (unlikely(qc->err_mask))
4732 qc->flags |= ATA_QCFLAG_FAILED;
4733
4734 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4735 if (!ata_tag_internal(qc->tag)) {
4736 /* always fill result TF for failed qc */
4737 fill_result_tf(qc);
4738 ata_qc_schedule_eh(qc);
4739 return;
4740 }
4741 }
4742
4743 /* read result TF if requested */
4744 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4745 fill_result_tf(qc);
4746
4747 /* Some commands need post-processing after successful
4748 * completion.
4749 */
4750 switch (qc->tf.command) {
4751 case ATA_CMD_SET_FEATURES:
4752 if (qc->tf.feature != SETFEATURES_WC_ON &&
4753 qc->tf.feature != SETFEATURES_WC_OFF)
4754 break;
4755 /* fall through */
4756 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4757 case ATA_CMD_SET_MULTI: /* multi_count changed */
4758 /* revalidate device */
4759 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4760 ata_port_schedule_eh(ap);
4761 break;
4762
4763 case ATA_CMD_SLEEP:
4764 dev->flags |= ATA_DFLAG_SLEEPING;
4765 break;
4766 }
4767
4768 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4769 ata_verify_xfer(qc);
4770
4771 __ata_qc_complete(qc);
4772 } else {
4773 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4774 return;
4775
4776 /* read result TF if failed or requested */
4777 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4778 fill_result_tf(qc);
4779
4780 __ata_qc_complete(qc);
4781 }
4782 }
4783
4784 /**
4785 * ata_qc_complete_multiple - Complete multiple qcs successfully
4786 * @ap: port in question
4787 * @qc_active: new qc_active mask
4788 *
4789 * Complete in-flight commands. This functions is meant to be
4790 * called from low-level driver's interrupt routine to complete
4791 * requests normally. ap->qc_active and @qc_active is compared
4792 * and commands are completed accordingly.
4793 *
4794 * LOCKING:
4795 * spin_lock_irqsave(host lock)
4796 *
4797 * RETURNS:
4798 * Number of completed commands on success, -errno otherwise.
4799 */
4800 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4801 {
4802 int nr_done = 0;
4803 u32 done_mask;
4804 int i;
4805
4806 done_mask = ap->qc_active ^ qc_active;
4807
4808 if (unlikely(done_mask & qc_active)) {
4809 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4810 "(%08x->%08x)\n", ap->qc_active, qc_active);
4811 return -EINVAL;
4812 }
4813
4814 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4815 struct ata_queued_cmd *qc;
4816
4817 if (!(done_mask & (1 << i)))
4818 continue;
4819
4820 if ((qc = ata_qc_from_tag(ap, i))) {
4821 ata_qc_complete(qc);
4822 nr_done++;
4823 }
4824 }
4825
4826 return nr_done;
4827 }
4828
4829 /**
4830 * ata_qc_issue - issue taskfile to device
4831 * @qc: command to issue to device
4832 *
4833 * Prepare an ATA command to submission to device.
4834 * This includes mapping the data into a DMA-able
4835 * area, filling in the S/G table, and finally
4836 * writing the taskfile to hardware, starting the command.
4837 *
4838 * LOCKING:
4839 * spin_lock_irqsave(host lock)
4840 */
4841 void ata_qc_issue(struct ata_queued_cmd *qc)
4842 {
4843 struct ata_port *ap = qc->ap;
4844 struct ata_link *link = qc->dev->link;
4845 u8 prot = qc->tf.protocol;
4846
4847 /* Make sure only one non-NCQ command is outstanding. The
4848 * check is skipped for old EH because it reuses active qc to
4849 * request ATAPI sense.
4850 */
4851 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4852
4853 if (ata_is_ncq(prot)) {
4854 WARN_ON(link->sactive & (1 << qc->tag));
4855
4856 if (!link->sactive)
4857 ap->nr_active_links++;
4858 link->sactive |= 1 << qc->tag;
4859 } else {
4860 WARN_ON(link->sactive);
4861
4862 ap->nr_active_links++;
4863 link->active_tag = qc->tag;
4864 }
4865
4866 qc->flags |= ATA_QCFLAG_ACTIVE;
4867 ap->qc_active |= 1 << qc->tag;
4868
4869 /* We guarantee to LLDs that they will have at least one
4870 * non-zero sg if the command is a data command.
4871 */
4872 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4873
4874 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4875 (ap->flags & ATA_FLAG_PIO_DMA)))
4876 if (ata_sg_setup(qc))
4877 goto sg_err;
4878
4879 /* if device is sleeping, schedule reset and abort the link */
4880 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4881 link->eh_info.action |= ATA_EH_RESET;
4882 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4883 ata_link_abort(link);
4884 return;
4885 }
4886
4887 ap->ops->qc_prep(qc);
4888
4889 qc->err_mask |= ap->ops->qc_issue(qc);
4890 if (unlikely(qc->err_mask))
4891 goto err;
4892 return;
4893
4894 sg_err:
4895 qc->err_mask |= AC_ERR_SYSTEM;
4896 err:
4897 ata_qc_complete(qc);
4898 }
4899
4900 /**
4901 * sata_scr_valid - test whether SCRs are accessible
4902 * @link: ATA link to test SCR accessibility for
4903 *
4904 * Test whether SCRs are accessible for @link.
4905 *
4906 * LOCKING:
4907 * None.
4908 *
4909 * RETURNS:
4910 * 1 if SCRs are accessible, 0 otherwise.
4911 */
4912 int sata_scr_valid(struct ata_link *link)
4913 {
4914 struct ata_port *ap = link->ap;
4915
4916 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4917 }
4918
4919 /**
4920 * sata_scr_read - read SCR register of the specified port
4921 * @link: ATA link to read SCR for
4922 * @reg: SCR to read
4923 * @val: Place to store read value
4924 *
4925 * Read SCR register @reg of @link into *@val. This function is
4926 * guaranteed to succeed if @link is ap->link, the cable type of
4927 * the port is SATA and the port implements ->scr_read.
4928 *
4929 * LOCKING:
4930 * None if @link is ap->link. Kernel thread context otherwise.
4931 *
4932 * RETURNS:
4933 * 0 on success, negative errno on failure.
4934 */
4935 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4936 {
4937 if (ata_is_host_link(link)) {
4938 if (sata_scr_valid(link))
4939 return link->ap->ops->scr_read(link, reg, val);
4940 return -EOPNOTSUPP;
4941 }
4942
4943 return sata_pmp_scr_read(link, reg, val);
4944 }
4945
4946 /**
4947 * sata_scr_write - write SCR register of the specified port
4948 * @link: ATA link to write SCR for
4949 * @reg: SCR to write
4950 * @val: value to write
4951 *
4952 * Write @val to SCR register @reg of @link. This function is
4953 * guaranteed to succeed if @link is ap->link, the cable type of
4954 * the port is SATA and the port implements ->scr_read.
4955 *
4956 * LOCKING:
4957 * None if @link is ap->link. Kernel thread context otherwise.
4958 *
4959 * RETURNS:
4960 * 0 on success, negative errno on failure.
4961 */
4962 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4963 {
4964 if (ata_is_host_link(link)) {
4965 if (sata_scr_valid(link))
4966 return link->ap->ops->scr_write(link, reg, val);
4967 return -EOPNOTSUPP;
4968 }
4969
4970 return sata_pmp_scr_write(link, reg, val);
4971 }
4972
4973 /**
4974 * sata_scr_write_flush - write SCR register of the specified port and flush
4975 * @link: ATA link to write SCR for
4976 * @reg: SCR to write
4977 * @val: value to write
4978 *
4979 * This function is identical to sata_scr_write() except that this
4980 * function performs flush after writing to the register.
4981 *
4982 * LOCKING:
4983 * None if @link is ap->link. Kernel thread context otherwise.
4984 *
4985 * RETURNS:
4986 * 0 on success, negative errno on failure.
4987 */
4988 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
4989 {
4990 if (ata_is_host_link(link)) {
4991 int rc;
4992
4993 if (sata_scr_valid(link)) {
4994 rc = link->ap->ops->scr_write(link, reg, val);
4995 if (rc == 0)
4996 rc = link->ap->ops->scr_read(link, reg, &val);
4997 return rc;
4998 }
4999 return -EOPNOTSUPP;
5000 }
5001
5002 return sata_pmp_scr_write(link, reg, val);
5003 }
5004
5005 /**
5006 * ata_phys_link_online - test whether the given link is online
5007 * @link: ATA link to test
5008 *
5009 * Test whether @link is online. Note that this function returns
5010 * 0 if online status of @link cannot be obtained, so
5011 * ata_link_online(link) != !ata_link_offline(link).
5012 *
5013 * LOCKING:
5014 * None.
5015 *
5016 * RETURNS:
5017 * True if the port online status is available and online.
5018 */
5019 bool ata_phys_link_online(struct ata_link *link)
5020 {
5021 u32 sstatus;
5022
5023 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5024 (sstatus & 0xf) == 0x3)
5025 return true;
5026 return false;
5027 }
5028
5029 /**
5030 * ata_phys_link_offline - test whether the given link is offline
5031 * @link: ATA link to test
5032 *
5033 * Test whether @link is offline. Note that this function
5034 * returns 0 if offline status of @link cannot be obtained, so
5035 * ata_link_online(link) != !ata_link_offline(link).
5036 *
5037 * LOCKING:
5038 * None.
5039 *
5040 * RETURNS:
5041 * True if the port offline status is available and offline.
5042 */
5043 bool ata_phys_link_offline(struct ata_link *link)
5044 {
5045 u32 sstatus;
5046
5047 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5048 (sstatus & 0xf) != 0x3)
5049 return true;
5050 return false;
5051 }
5052
5053 /**
5054 * ata_link_online - test whether the given link is online
5055 * @link: ATA link to test
5056 *
5057 * Test whether @link is online. This is identical to
5058 * ata_phys_link_online() when there's no slave link. When
5059 * there's a slave link, this function should only be called on
5060 * the master link and will return true if any of M/S links is
5061 * online.
5062 *
5063 * LOCKING:
5064 * None.
5065 *
5066 * RETURNS:
5067 * True if the port online status is available and online.
5068 */
5069 bool ata_link_online(struct ata_link *link)
5070 {
5071 struct ata_link *slave = link->ap->slave_link;
5072
5073 WARN_ON(link == slave); /* shouldn't be called on slave link */
5074
5075 return ata_phys_link_online(link) ||
5076 (slave && ata_phys_link_online(slave));
5077 }
5078
5079 /**
5080 * ata_link_offline - test whether the given link is offline
5081 * @link: ATA link to test
5082 *
5083 * Test whether @link is offline. This is identical to
5084 * ata_phys_link_offline() when there's no slave link. When
5085 * there's a slave link, this function should only be called on
5086 * the master link and will return true if both M/S links are
5087 * offline.
5088 *
5089 * LOCKING:
5090 * None.
5091 *
5092 * RETURNS:
5093 * True if the port offline status is available and offline.
5094 */
5095 bool ata_link_offline(struct ata_link *link)
5096 {
5097 struct ata_link *slave = link->ap->slave_link;
5098
5099 WARN_ON(link == slave); /* shouldn't be called on slave link */
5100
5101 return ata_phys_link_offline(link) &&
5102 (!slave || ata_phys_link_offline(slave));
5103 }
5104
5105 #ifdef CONFIG_PM
5106 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5107 unsigned int action, unsigned int ehi_flags,
5108 int wait)
5109 {
5110 unsigned long flags;
5111 int i, rc;
5112
5113 for (i = 0; i < host->n_ports; i++) {
5114 struct ata_port *ap = host->ports[i];
5115 struct ata_link *link;
5116
5117 /* Previous resume operation might still be in
5118 * progress. Wait for PM_PENDING to clear.
5119 */
5120 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5121 ata_port_wait_eh(ap);
5122 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5123 }
5124
5125 /* request PM ops to EH */
5126 spin_lock_irqsave(ap->lock, flags);
5127
5128 ap->pm_mesg = mesg;
5129 if (wait) {
5130 rc = 0;
5131 ap->pm_result = &rc;
5132 }
5133
5134 ap->pflags |= ATA_PFLAG_PM_PENDING;
5135 __ata_port_for_each_link(link, ap) {
5136 link->eh_info.action |= action;
5137 link->eh_info.flags |= ehi_flags;
5138 }
5139
5140 ata_port_schedule_eh(ap);
5141
5142 spin_unlock_irqrestore(ap->lock, flags);
5143
5144 /* wait and check result */
5145 if (wait) {
5146 ata_port_wait_eh(ap);
5147 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5148 if (rc)
5149 return rc;
5150 }
5151 }
5152
5153 return 0;
5154 }
5155
5156 /**
5157 * ata_host_suspend - suspend host
5158 * @host: host to suspend
5159 * @mesg: PM message
5160 *
5161 * Suspend @host. Actual operation is performed by EH. This
5162 * function requests EH to perform PM operations and waits for EH
5163 * to finish.
5164 *
5165 * LOCKING:
5166 * Kernel thread context (may sleep).
5167 *
5168 * RETURNS:
5169 * 0 on success, -errno on failure.
5170 */
5171 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5172 {
5173 int rc;
5174
5175 /*
5176 * disable link pm on all ports before requesting
5177 * any pm activity
5178 */
5179 ata_lpm_enable(host);
5180
5181 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5182 if (rc == 0)
5183 host->dev->power.power_state = mesg;
5184 return rc;
5185 }
5186
5187 /**
5188 * ata_host_resume - resume host
5189 * @host: host to resume
5190 *
5191 * Resume @host. Actual operation is performed by EH. This
5192 * function requests EH to perform PM operations and returns.
5193 * Note that all resume operations are performed parallely.
5194 *
5195 * LOCKING:
5196 * Kernel thread context (may sleep).
5197 */
5198 void ata_host_resume(struct ata_host *host)
5199 {
5200 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5201 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5202 host->dev->power.power_state = PMSG_ON;
5203
5204 /* reenable link pm */
5205 ata_lpm_disable(host);
5206 }
5207 #endif
5208
5209 /**
5210 * ata_port_start - Set port up for dma.
5211 * @ap: Port to initialize
5212 *
5213 * Called just after data structures for each port are
5214 * initialized. Allocates space for PRD table.
5215 *
5216 * May be used as the port_start() entry in ata_port_operations.
5217 *
5218 * LOCKING:
5219 * Inherited from caller.
5220 */
5221 int ata_port_start(struct ata_port *ap)
5222 {
5223 struct device *dev = ap->dev;
5224
5225 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5226 GFP_KERNEL);
5227 if (!ap->prd)
5228 return -ENOMEM;
5229
5230 return 0;
5231 }
5232
5233 /**
5234 * ata_dev_init - Initialize an ata_device structure
5235 * @dev: Device structure to initialize
5236 *
5237 * Initialize @dev in preparation for probing.
5238 *
5239 * LOCKING:
5240 * Inherited from caller.
5241 */
5242 void ata_dev_init(struct ata_device *dev)
5243 {
5244 struct ata_link *link = ata_dev_phys_link(dev);
5245 struct ata_port *ap = link->ap;
5246 unsigned long flags;
5247
5248 /* SATA spd limit is bound to the attached device, reset together */
5249 link->sata_spd_limit = link->hw_sata_spd_limit;
5250 link->sata_spd = 0;
5251
5252 /* High bits of dev->flags are used to record warm plug
5253 * requests which occur asynchronously. Synchronize using
5254 * host lock.
5255 */
5256 spin_lock_irqsave(ap->lock, flags);
5257 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5258 dev->horkage = 0;
5259 spin_unlock_irqrestore(ap->lock, flags);
5260
5261 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5262 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5263 dev->pio_mask = UINT_MAX;
5264 dev->mwdma_mask = UINT_MAX;
5265 dev->udma_mask = UINT_MAX;
5266 }
5267
5268 /**
5269 * ata_link_init - Initialize an ata_link structure
5270 * @ap: ATA port link is attached to
5271 * @link: Link structure to initialize
5272 * @pmp: Port multiplier port number
5273 *
5274 * Initialize @link.
5275 *
5276 * LOCKING:
5277 * Kernel thread context (may sleep)
5278 */
5279 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5280 {
5281 int i;
5282
5283 /* clear everything except for devices */
5284 memset(link, 0, offsetof(struct ata_link, device[0]));
5285
5286 link->ap = ap;
5287 link->pmp = pmp;
5288 link->active_tag = ATA_TAG_POISON;
5289 link->hw_sata_spd_limit = UINT_MAX;
5290
5291 /* can't use iterator, ap isn't initialized yet */
5292 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5293 struct ata_device *dev = &link->device[i];
5294
5295 dev->link = link;
5296 dev->devno = dev - link->device;
5297 ata_dev_init(dev);
5298 }
5299 }
5300
5301 /**
5302 * sata_link_init_spd - Initialize link->sata_spd_limit
5303 * @link: Link to configure sata_spd_limit for
5304 *
5305 * Initialize @link->[hw_]sata_spd_limit to the currently
5306 * configured value.
5307 *
5308 * LOCKING:
5309 * Kernel thread context (may sleep).
5310 *
5311 * RETURNS:
5312 * 0 on success, -errno on failure.
5313 */
5314 int sata_link_init_spd(struct ata_link *link)
5315 {
5316 u8 spd;
5317 int rc;
5318
5319 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5320 if (rc)
5321 return rc;
5322
5323 spd = (link->saved_scontrol >> 4) & 0xf;
5324 if (spd)
5325 link->hw_sata_spd_limit &= (1 << spd) - 1;
5326
5327 ata_force_link_limits(link);
5328
5329 link->sata_spd_limit = link->hw_sata_spd_limit;
5330
5331 return 0;
5332 }
5333
5334 /**
5335 * ata_port_alloc - allocate and initialize basic ATA port resources
5336 * @host: ATA host this allocated port belongs to
5337 *
5338 * Allocate and initialize basic ATA port resources.
5339 *
5340 * RETURNS:
5341 * Allocate ATA port on success, NULL on failure.
5342 *
5343 * LOCKING:
5344 * Inherited from calling layer (may sleep).
5345 */
5346 struct ata_port *ata_port_alloc(struct ata_host *host)
5347 {
5348 struct ata_port *ap;
5349
5350 DPRINTK("ENTER\n");
5351
5352 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5353 if (!ap)
5354 return NULL;
5355
5356 ap->pflags |= ATA_PFLAG_INITIALIZING;
5357 ap->lock = &host->lock;
5358 ap->flags = ATA_FLAG_DISABLED;
5359 ap->print_id = -1;
5360 ap->ctl = ATA_DEVCTL_OBS;
5361 ap->host = host;
5362 ap->dev = host->dev;
5363 ap->last_ctl = 0xFF;
5364
5365 #if defined(ATA_VERBOSE_DEBUG)
5366 /* turn on all debugging levels */
5367 ap->msg_enable = 0x00FF;
5368 #elif defined(ATA_DEBUG)
5369 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5370 #else
5371 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5372 #endif
5373
5374 #ifdef CONFIG_ATA_SFF
5375 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5376 #endif
5377 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5378 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5379 INIT_LIST_HEAD(&ap->eh_done_q);
5380 init_waitqueue_head(&ap->eh_wait_q);
5381 init_completion(&ap->park_req_pending);
5382 init_timer_deferrable(&ap->fastdrain_timer);
5383 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5384 ap->fastdrain_timer.data = (unsigned long)ap;
5385
5386 ap->cbl = ATA_CBL_NONE;
5387
5388 ata_link_init(ap, &ap->link, 0);
5389
5390 #ifdef ATA_IRQ_TRAP
5391 ap->stats.unhandled_irq = 1;
5392 ap->stats.idle_irq = 1;
5393 #endif
5394 return ap;
5395 }
5396
5397 static void ata_host_release(struct device *gendev, void *res)
5398 {
5399 struct ata_host *host = dev_get_drvdata(gendev);
5400 int i;
5401
5402 for (i = 0; i < host->n_ports; i++) {
5403 struct ata_port *ap = host->ports[i];
5404
5405 if (!ap)
5406 continue;
5407
5408 if (ap->scsi_host)
5409 scsi_host_put(ap->scsi_host);
5410
5411 kfree(ap->pmp_link);
5412 kfree(ap->slave_link);
5413 kfree(ap);
5414 host->ports[i] = NULL;
5415 }
5416
5417 dev_set_drvdata(gendev, NULL);
5418 }
5419
5420 /**
5421 * ata_host_alloc - allocate and init basic ATA host resources
5422 * @dev: generic device this host is associated with
5423 * @max_ports: maximum number of ATA ports associated with this host
5424 *
5425 * Allocate and initialize basic ATA host resources. LLD calls
5426 * this function to allocate a host, initializes it fully and
5427 * attaches it using ata_host_register().
5428 *
5429 * @max_ports ports are allocated and host->n_ports is
5430 * initialized to @max_ports. The caller is allowed to decrease
5431 * host->n_ports before calling ata_host_register(). The unused
5432 * ports will be automatically freed on registration.
5433 *
5434 * RETURNS:
5435 * Allocate ATA host on success, NULL on failure.
5436 *
5437 * LOCKING:
5438 * Inherited from calling layer (may sleep).
5439 */
5440 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5441 {
5442 struct ata_host *host;
5443 size_t sz;
5444 int i;
5445
5446 DPRINTK("ENTER\n");
5447
5448 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5449 return NULL;
5450
5451 /* alloc a container for our list of ATA ports (buses) */
5452 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5453 /* alloc a container for our list of ATA ports (buses) */
5454 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5455 if (!host)
5456 goto err_out;
5457
5458 devres_add(dev, host);
5459 dev_set_drvdata(dev, host);
5460
5461 spin_lock_init(&host->lock);
5462 host->dev = dev;
5463 host->n_ports = max_ports;
5464
5465 /* allocate ports bound to this host */
5466 for (i = 0; i < max_ports; i++) {
5467 struct ata_port *ap;
5468
5469 ap = ata_port_alloc(host);
5470 if (!ap)
5471 goto err_out;
5472
5473 ap->port_no = i;
5474 host->ports[i] = ap;
5475 }
5476
5477 devres_remove_group(dev, NULL);
5478 return host;
5479
5480 err_out:
5481 devres_release_group(dev, NULL);
5482 return NULL;
5483 }
5484
5485 /**
5486 * ata_host_alloc_pinfo - alloc host and init with port_info array
5487 * @dev: generic device this host is associated with
5488 * @ppi: array of ATA port_info to initialize host with
5489 * @n_ports: number of ATA ports attached to this host
5490 *
5491 * Allocate ATA host and initialize with info from @ppi. If NULL
5492 * terminated, @ppi may contain fewer entries than @n_ports. The
5493 * last entry will be used for the remaining ports.
5494 *
5495 * RETURNS:
5496 * Allocate ATA host on success, NULL on failure.
5497 *
5498 * LOCKING:
5499 * Inherited from calling layer (may sleep).
5500 */
5501 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5502 const struct ata_port_info * const * ppi,
5503 int n_ports)
5504 {
5505 const struct ata_port_info *pi;
5506 struct ata_host *host;
5507 int i, j;
5508
5509 host = ata_host_alloc(dev, n_ports);
5510 if (!host)
5511 return NULL;
5512
5513 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5514 struct ata_port *ap = host->ports[i];
5515
5516 if (ppi[j])
5517 pi = ppi[j++];
5518
5519 ap->pio_mask = pi->pio_mask;
5520 ap->mwdma_mask = pi->mwdma_mask;
5521 ap->udma_mask = pi->udma_mask;
5522 ap->flags |= pi->flags;
5523 ap->link.flags |= pi->link_flags;
5524 ap->ops = pi->port_ops;
5525
5526 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5527 host->ops = pi->port_ops;
5528 }
5529
5530 return host;
5531 }
5532
5533 /**
5534 * ata_slave_link_init - initialize slave link
5535 * @ap: port to initialize slave link for
5536 *
5537 * Create and initialize slave link for @ap. This enables slave
5538 * link handling on the port.
5539 *
5540 * In libata, a port contains links and a link contains devices.
5541 * There is single host link but if a PMP is attached to it,
5542 * there can be multiple fan-out links. On SATA, there's usually
5543 * a single device connected to a link but PATA and SATA
5544 * controllers emulating TF based interface can have two - master
5545 * and slave.
5546 *
5547 * However, there are a few controllers which don't fit into this
5548 * abstraction too well - SATA controllers which emulate TF
5549 * interface with both master and slave devices but also have
5550 * separate SCR register sets for each device. These controllers
5551 * need separate links for physical link handling
5552 * (e.g. onlineness, link speed) but should be treated like a
5553 * traditional M/S controller for everything else (e.g. command
5554 * issue, softreset).
5555 *
5556 * slave_link is libata's way of handling this class of
5557 * controllers without impacting core layer too much. For
5558 * anything other than physical link handling, the default host
5559 * link is used for both master and slave. For physical link
5560 * handling, separate @ap->slave_link is used. All dirty details
5561 * are implemented inside libata core layer. From LLD's POV, the
5562 * only difference is that prereset, hardreset and postreset are
5563 * called once more for the slave link, so the reset sequence
5564 * looks like the following.
5565 *
5566 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5567 * softreset(M) -> postreset(M) -> postreset(S)
5568 *
5569 * Note that softreset is called only for the master. Softreset
5570 * resets both M/S by definition, so SRST on master should handle
5571 * both (the standard method will work just fine).
5572 *
5573 * LOCKING:
5574 * Should be called before host is registered.
5575 *
5576 * RETURNS:
5577 * 0 on success, -errno on failure.
5578 */
5579 int ata_slave_link_init(struct ata_port *ap)
5580 {
5581 struct ata_link *link;
5582
5583 WARN_ON(ap->slave_link);
5584 WARN_ON(ap->flags & ATA_FLAG_PMP);
5585
5586 link = kzalloc(sizeof(*link), GFP_KERNEL);
5587 if (!link)
5588 return -ENOMEM;
5589
5590 ata_link_init(ap, link, 1);
5591 ap->slave_link = link;
5592 return 0;
5593 }
5594
5595 static void ata_host_stop(struct device *gendev, void *res)
5596 {
5597 struct ata_host *host = dev_get_drvdata(gendev);
5598 int i;
5599
5600 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5601
5602 for (i = 0; i < host->n_ports; i++) {
5603 struct ata_port *ap = host->ports[i];
5604
5605 if (ap->ops->port_stop)
5606 ap->ops->port_stop(ap);
5607 }
5608
5609 if (host->ops->host_stop)
5610 host->ops->host_stop(host);
5611 }
5612
5613 /**
5614 * ata_finalize_port_ops - finalize ata_port_operations
5615 * @ops: ata_port_operations to finalize
5616 *
5617 * An ata_port_operations can inherit from another ops and that
5618 * ops can again inherit from another. This can go on as many
5619 * times as necessary as long as there is no loop in the
5620 * inheritance chain.
5621 *
5622 * Ops tables are finalized when the host is started. NULL or
5623 * unspecified entries are inherited from the closet ancestor
5624 * which has the method and the entry is populated with it.
5625 * After finalization, the ops table directly points to all the
5626 * methods and ->inherits is no longer necessary and cleared.
5627 *
5628 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5629 *
5630 * LOCKING:
5631 * None.
5632 */
5633 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5634 {
5635 static DEFINE_SPINLOCK(lock);
5636 const struct ata_port_operations *cur;
5637 void **begin = (void **)ops;
5638 void **end = (void **)&ops->inherits;
5639 void **pp;
5640
5641 if (!ops || !ops->inherits)
5642 return;
5643
5644 spin_lock(&lock);
5645
5646 for (cur = ops->inherits; cur; cur = cur->inherits) {
5647 void **inherit = (void **)cur;
5648
5649 for (pp = begin; pp < end; pp++, inherit++)
5650 if (!*pp)
5651 *pp = *inherit;
5652 }
5653
5654 for (pp = begin; pp < end; pp++)
5655 if (IS_ERR(*pp))
5656 *pp = NULL;
5657
5658 ops->inherits = NULL;
5659
5660 spin_unlock(&lock);
5661 }
5662
5663 /**
5664 * ata_host_start - start and freeze ports of an ATA host
5665 * @host: ATA host to start ports for
5666 *
5667 * Start and then freeze ports of @host. Started status is
5668 * recorded in host->flags, so this function can be called
5669 * multiple times. Ports are guaranteed to get started only
5670 * once. If host->ops isn't initialized yet, its set to the
5671 * first non-dummy port ops.
5672 *
5673 * LOCKING:
5674 * Inherited from calling layer (may sleep).
5675 *
5676 * RETURNS:
5677 * 0 if all ports are started successfully, -errno otherwise.
5678 */
5679 int ata_host_start(struct ata_host *host)
5680 {
5681 int have_stop = 0;
5682 void *start_dr = NULL;
5683 int i, rc;
5684
5685 if (host->flags & ATA_HOST_STARTED)
5686 return 0;
5687
5688 ata_finalize_port_ops(host->ops);
5689
5690 for (i = 0; i < host->n_ports; i++) {
5691 struct ata_port *ap = host->ports[i];
5692
5693 ata_finalize_port_ops(ap->ops);
5694
5695 if (!host->ops && !ata_port_is_dummy(ap))
5696 host->ops = ap->ops;
5697
5698 if (ap->ops->port_stop)
5699 have_stop = 1;
5700 }
5701
5702 if (host->ops->host_stop)
5703 have_stop = 1;
5704
5705 if (have_stop) {
5706 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5707 if (!start_dr)
5708 return -ENOMEM;
5709 }
5710
5711 for (i = 0; i < host->n_ports; i++) {
5712 struct ata_port *ap = host->ports[i];
5713
5714 if (ap->ops->port_start) {
5715 rc = ap->ops->port_start(ap);
5716 if (rc) {
5717 if (rc != -ENODEV)
5718 dev_printk(KERN_ERR, host->dev,
5719 "failed to start port %d "
5720 "(errno=%d)\n", i, rc);
5721 goto err_out;
5722 }
5723 }
5724 ata_eh_freeze_port(ap);
5725 }
5726
5727 if (start_dr)
5728 devres_add(host->dev, start_dr);
5729 host->flags |= ATA_HOST_STARTED;
5730 return 0;
5731
5732 err_out:
5733 while (--i >= 0) {
5734 struct ata_port *ap = host->ports[i];
5735
5736 if (ap->ops->port_stop)
5737 ap->ops->port_stop(ap);
5738 }
5739 devres_free(start_dr);
5740 return rc;
5741 }
5742
5743 /**
5744 * ata_sas_host_init - Initialize a host struct
5745 * @host: host to initialize
5746 * @dev: device host is attached to
5747 * @flags: host flags
5748 * @ops: port_ops
5749 *
5750 * LOCKING:
5751 * PCI/etc. bus probe sem.
5752 *
5753 */
5754 /* KILLME - the only user left is ipr */
5755 void ata_host_init(struct ata_host *host, struct device *dev,
5756 unsigned long flags, struct ata_port_operations *ops)
5757 {
5758 spin_lock_init(&host->lock);
5759 host->dev = dev;
5760 host->flags = flags;
5761 host->ops = ops;
5762 }
5763
5764 /**
5765 * ata_host_register - register initialized ATA host
5766 * @host: ATA host to register
5767 * @sht: template for SCSI host
5768 *
5769 * Register initialized ATA host. @host is allocated using
5770 * ata_host_alloc() and fully initialized by LLD. This function
5771 * starts ports, registers @host with ATA and SCSI layers and
5772 * probe registered devices.
5773 *
5774 * LOCKING:
5775 * Inherited from calling layer (may sleep).
5776 *
5777 * RETURNS:
5778 * 0 on success, -errno otherwise.
5779 */
5780 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5781 {
5782 int i, rc;
5783
5784 /* host must have been started */
5785 if (!(host->flags & ATA_HOST_STARTED)) {
5786 dev_printk(KERN_ERR, host->dev,
5787 "BUG: trying to register unstarted host\n");
5788 WARN_ON(1);
5789 return -EINVAL;
5790 }
5791
5792 /* Blow away unused ports. This happens when LLD can't
5793 * determine the exact number of ports to allocate at
5794 * allocation time.
5795 */
5796 for (i = host->n_ports; host->ports[i]; i++)
5797 kfree(host->ports[i]);
5798
5799 /* give ports names and add SCSI hosts */
5800 for (i = 0; i < host->n_ports; i++)
5801 host->ports[i]->print_id = ata_print_id++;
5802
5803 rc = ata_scsi_add_hosts(host, sht);
5804 if (rc)
5805 return rc;
5806
5807 /* associate with ACPI nodes */
5808 ata_acpi_associate(host);
5809
5810 /* set cable, sata_spd_limit and report */
5811 for (i = 0; i < host->n_ports; i++) {
5812 struct ata_port *ap = host->ports[i];
5813 unsigned long xfer_mask;
5814
5815 /* set SATA cable type if still unset */
5816 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5817 ap->cbl = ATA_CBL_SATA;
5818
5819 /* init sata_spd_limit to the current value */
5820 sata_link_init_spd(&ap->link);
5821 if (ap->slave_link)
5822 sata_link_init_spd(ap->slave_link);
5823
5824 /* print per-port info to dmesg */
5825 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5826 ap->udma_mask);
5827
5828 if (!ata_port_is_dummy(ap)) {
5829 ata_port_printk(ap, KERN_INFO,
5830 "%cATA max %s %s\n",
5831 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5832 ata_mode_string(xfer_mask),
5833 ap->link.eh_info.desc);
5834 ata_ehi_clear_desc(&ap->link.eh_info);
5835 } else
5836 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5837 }
5838
5839 /* perform each probe synchronously */
5840 DPRINTK("probe begin\n");
5841 for (i = 0; i < host->n_ports; i++) {
5842 struct ata_port *ap = host->ports[i];
5843
5844 /* probe */
5845 if (ap->ops->error_handler) {
5846 struct ata_eh_info *ehi = &ap->link.eh_info;
5847 unsigned long flags;
5848
5849 ata_port_probe(ap);
5850
5851 /* kick EH for boot probing */
5852 spin_lock_irqsave(ap->lock, flags);
5853
5854 ehi->probe_mask |= ATA_ALL_DEVICES;
5855 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5856 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5857
5858 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5859 ap->pflags |= ATA_PFLAG_LOADING;
5860 ata_port_schedule_eh(ap);
5861
5862 spin_unlock_irqrestore(ap->lock, flags);
5863
5864 /* wait for EH to finish */
5865 ata_port_wait_eh(ap);
5866 } else {
5867 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5868 rc = ata_bus_probe(ap);
5869 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5870
5871 if (rc) {
5872 /* FIXME: do something useful here?
5873 * Current libata behavior will
5874 * tear down everything when
5875 * the module is removed
5876 * or the h/w is unplugged.
5877 */
5878 }
5879 }
5880 }
5881
5882 /* probes are done, now scan each port's disk(s) */
5883 DPRINTK("host probe begin\n");
5884 for (i = 0; i < host->n_ports; i++) {
5885 struct ata_port *ap = host->ports[i];
5886
5887 ata_scsi_scan_host(ap, 1);
5888 }
5889
5890 return 0;
5891 }
5892
5893 /**
5894 * ata_host_activate - start host, request IRQ and register it
5895 * @host: target ATA host
5896 * @irq: IRQ to request
5897 * @irq_handler: irq_handler used when requesting IRQ
5898 * @irq_flags: irq_flags used when requesting IRQ
5899 * @sht: scsi_host_template to use when registering the host
5900 *
5901 * After allocating an ATA host and initializing it, most libata
5902 * LLDs perform three steps to activate the host - start host,
5903 * request IRQ and register it. This helper takes necessasry
5904 * arguments and performs the three steps in one go.
5905 *
5906 * An invalid IRQ skips the IRQ registration and expects the host to
5907 * have set polling mode on the port. In this case, @irq_handler
5908 * should be NULL.
5909 *
5910 * LOCKING:
5911 * Inherited from calling layer (may sleep).
5912 *
5913 * RETURNS:
5914 * 0 on success, -errno otherwise.
5915 */
5916 int ata_host_activate(struct ata_host *host, int irq,
5917 irq_handler_t irq_handler, unsigned long irq_flags,
5918 struct scsi_host_template *sht)
5919 {
5920 int i, rc;
5921
5922 rc = ata_host_start(host);
5923 if (rc)
5924 return rc;
5925
5926 /* Special case for polling mode */
5927 if (!irq) {
5928 WARN_ON(irq_handler);
5929 return ata_host_register(host, sht);
5930 }
5931
5932 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5933 dev_driver_string(host->dev), host);
5934 if (rc)
5935 return rc;
5936
5937 for (i = 0; i < host->n_ports; i++)
5938 ata_port_desc(host->ports[i], "irq %d", irq);
5939
5940 rc = ata_host_register(host, sht);
5941 /* if failed, just free the IRQ and leave ports alone */
5942 if (rc)
5943 devm_free_irq(host->dev, irq, host);
5944
5945 return rc;
5946 }
5947
5948 /**
5949 * ata_port_detach - Detach ATA port in prepration of device removal
5950 * @ap: ATA port to be detached
5951 *
5952 * Detach all ATA devices and the associated SCSI devices of @ap;
5953 * then, remove the associated SCSI host. @ap is guaranteed to
5954 * be quiescent on return from this function.
5955 *
5956 * LOCKING:
5957 * Kernel thread context (may sleep).
5958 */
5959 static void ata_port_detach(struct ata_port *ap)
5960 {
5961 unsigned long flags;
5962 struct ata_link *link;
5963 struct ata_device *dev;
5964
5965 if (!ap->ops->error_handler)
5966 goto skip_eh;
5967
5968 /* tell EH we're leaving & flush EH */
5969 spin_lock_irqsave(ap->lock, flags);
5970 ap->pflags |= ATA_PFLAG_UNLOADING;
5971 spin_unlock_irqrestore(ap->lock, flags);
5972
5973 ata_port_wait_eh(ap);
5974
5975 /* EH is now guaranteed to see UNLOADING - EH context belongs
5976 * to us. Restore SControl and disable all existing devices.
5977 */
5978 __ata_port_for_each_link(link, ap) {
5979 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol);
5980 ata_link_for_each_dev(dev, link)
5981 ata_dev_disable(dev);
5982 }
5983
5984 /* Final freeze & EH. All in-flight commands are aborted. EH
5985 * will be skipped and retrials will be terminated with bad
5986 * target.
5987 */
5988 spin_lock_irqsave(ap->lock, flags);
5989 ata_port_freeze(ap); /* won't be thawed */
5990 spin_unlock_irqrestore(ap->lock, flags);
5991
5992 ata_port_wait_eh(ap);
5993 cancel_rearming_delayed_work(&ap->hotplug_task);
5994
5995 skip_eh:
5996 /* remove the associated SCSI host */
5997 scsi_remove_host(ap->scsi_host);
5998 }
5999
6000 /**
6001 * ata_host_detach - Detach all ports of an ATA host
6002 * @host: Host to detach
6003 *
6004 * Detach all ports of @host.
6005 *
6006 * LOCKING:
6007 * Kernel thread context (may sleep).
6008 */
6009 void ata_host_detach(struct ata_host *host)
6010 {
6011 int i;
6012
6013 for (i = 0; i < host->n_ports; i++)
6014 ata_port_detach(host->ports[i]);
6015
6016 /* the host is dead now, dissociate ACPI */
6017 ata_acpi_dissociate(host);
6018 }
6019
6020 #ifdef CONFIG_PCI
6021
6022 /**
6023 * ata_pci_remove_one - PCI layer callback for device removal
6024 * @pdev: PCI device that was removed
6025 *
6026 * PCI layer indicates to libata via this hook that hot-unplug or
6027 * module unload event has occurred. Detach all ports. Resource
6028 * release is handled via devres.
6029 *
6030 * LOCKING:
6031 * Inherited from PCI layer (may sleep).
6032 */
6033 void ata_pci_remove_one(struct pci_dev *pdev)
6034 {
6035 struct device *dev = &pdev->dev;
6036 struct ata_host *host = dev_get_drvdata(dev);
6037
6038 ata_host_detach(host);
6039 }
6040
6041 /* move to PCI subsystem */
6042 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6043 {
6044 unsigned long tmp = 0;
6045
6046 switch (bits->width) {
6047 case 1: {
6048 u8 tmp8 = 0;
6049 pci_read_config_byte(pdev, bits->reg, &tmp8);
6050 tmp = tmp8;
6051 break;
6052 }
6053 case 2: {
6054 u16 tmp16 = 0;
6055 pci_read_config_word(pdev, bits->reg, &tmp16);
6056 tmp = tmp16;
6057 break;
6058 }
6059 case 4: {
6060 u32 tmp32 = 0;
6061 pci_read_config_dword(pdev, bits->reg, &tmp32);
6062 tmp = tmp32;
6063 break;
6064 }
6065
6066 default:
6067 return -EINVAL;
6068 }
6069
6070 tmp &= bits->mask;
6071
6072 return (tmp == bits->val) ? 1 : 0;
6073 }
6074
6075 #ifdef CONFIG_PM
6076 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6077 {
6078 pci_save_state(pdev);
6079 pci_disable_device(pdev);
6080
6081 if (mesg.event & PM_EVENT_SLEEP)
6082 pci_set_power_state(pdev, PCI_D3hot);
6083 }
6084
6085 int ata_pci_device_do_resume(struct pci_dev *pdev)
6086 {
6087 int rc;
6088
6089 pci_set_power_state(pdev, PCI_D0);
6090 pci_restore_state(pdev);
6091
6092 rc = pcim_enable_device(pdev);
6093 if (rc) {
6094 dev_printk(KERN_ERR, &pdev->dev,
6095 "failed to enable device after resume (%d)\n", rc);
6096 return rc;
6097 }
6098
6099 pci_set_master(pdev);
6100 return 0;
6101 }
6102
6103 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6104 {
6105 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6106 int rc = 0;
6107
6108 rc = ata_host_suspend(host, mesg);
6109 if (rc)
6110 return rc;
6111
6112 ata_pci_device_do_suspend(pdev, mesg);
6113
6114 return 0;
6115 }
6116
6117 int ata_pci_device_resume(struct pci_dev *pdev)
6118 {
6119 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6120 int rc;
6121
6122 rc = ata_pci_device_do_resume(pdev);
6123 if (rc == 0)
6124 ata_host_resume(host);
6125 return rc;
6126 }
6127 #endif /* CONFIG_PM */
6128
6129 #endif /* CONFIG_PCI */
6130
6131 static int __init ata_parse_force_one(char **cur,
6132 struct ata_force_ent *force_ent,
6133 const char **reason)
6134 {
6135 /* FIXME: Currently, there's no way to tag init const data and
6136 * using __initdata causes build failure on some versions of
6137 * gcc. Once __initdataconst is implemented, add const to the
6138 * following structure.
6139 */
6140 static struct ata_force_param force_tbl[] __initdata = {
6141 { "40c", .cbl = ATA_CBL_PATA40 },
6142 { "80c", .cbl = ATA_CBL_PATA80 },
6143 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6144 { "unk", .cbl = ATA_CBL_PATA_UNK },
6145 { "ign", .cbl = ATA_CBL_PATA_IGN },
6146 { "sata", .cbl = ATA_CBL_SATA },
6147 { "1.5Gbps", .spd_limit = 1 },
6148 { "3.0Gbps", .spd_limit = 2 },
6149 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6150 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6151 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6152 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6153 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6154 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6155 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6156 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6157 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6158 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6159 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6160 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6161 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6162 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6163 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6164 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6165 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6166 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6167 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6168 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6169 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6170 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6171 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6172 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6173 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6174 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6175 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6176 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6177 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6178 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6179 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6180 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6181 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6182 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6183 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6184 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6185 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6186 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6187 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6188 };
6189 char *start = *cur, *p = *cur;
6190 char *id, *val, *endp;
6191 const struct ata_force_param *match_fp = NULL;
6192 int nr_matches = 0, i;
6193
6194 /* find where this param ends and update *cur */
6195 while (*p != '\0' && *p != ',')
6196 p++;
6197
6198 if (*p == '\0')
6199 *cur = p;
6200 else
6201 *cur = p + 1;
6202
6203 *p = '\0';
6204
6205 /* parse */
6206 p = strchr(start, ':');
6207 if (!p) {
6208 val = strstrip(start);
6209 goto parse_val;
6210 }
6211 *p = '\0';
6212
6213 id = strstrip(start);
6214 val = strstrip(p + 1);
6215
6216 /* parse id */
6217 p = strchr(id, '.');
6218 if (p) {
6219 *p++ = '\0';
6220 force_ent->device = simple_strtoul(p, &endp, 10);
6221 if (p == endp || *endp != '\0') {
6222 *reason = "invalid device";
6223 return -EINVAL;
6224 }
6225 }
6226
6227 force_ent->port = simple_strtoul(id, &endp, 10);
6228 if (p == endp || *endp != '\0') {
6229 *reason = "invalid port/link";
6230 return -EINVAL;
6231 }
6232
6233 parse_val:
6234 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6235 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6236 const struct ata_force_param *fp = &force_tbl[i];
6237
6238 if (strncasecmp(val, fp->name, strlen(val)))
6239 continue;
6240
6241 nr_matches++;
6242 match_fp = fp;
6243
6244 if (strcasecmp(val, fp->name) == 0) {
6245 nr_matches = 1;
6246 break;
6247 }
6248 }
6249
6250 if (!nr_matches) {
6251 *reason = "unknown value";
6252 return -EINVAL;
6253 }
6254 if (nr_matches > 1) {
6255 *reason = "ambigious value";
6256 return -EINVAL;
6257 }
6258
6259 force_ent->param = *match_fp;
6260
6261 return 0;
6262 }
6263
6264 static void __init ata_parse_force_param(void)
6265 {
6266 int idx = 0, size = 1;
6267 int last_port = -1, last_device = -1;
6268 char *p, *cur, *next;
6269
6270 /* calculate maximum number of params and allocate force_tbl */
6271 for (p = ata_force_param_buf; *p; p++)
6272 if (*p == ',')
6273 size++;
6274
6275 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6276 if (!ata_force_tbl) {
6277 printk(KERN_WARNING "ata: failed to extend force table, "
6278 "libata.force ignored\n");
6279 return;
6280 }
6281
6282 /* parse and populate the table */
6283 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6284 const char *reason = "";
6285 struct ata_force_ent te = { .port = -1, .device = -1 };
6286
6287 next = cur;
6288 if (ata_parse_force_one(&next, &te, &reason)) {
6289 printk(KERN_WARNING "ata: failed to parse force "
6290 "parameter \"%s\" (%s)\n",
6291 cur, reason);
6292 continue;
6293 }
6294
6295 if (te.port == -1) {
6296 te.port = last_port;
6297 te.device = last_device;
6298 }
6299
6300 ata_force_tbl[idx++] = te;
6301
6302 last_port = te.port;
6303 last_device = te.device;
6304 }
6305
6306 ata_force_tbl_size = idx;
6307 }
6308
6309 static int __init ata_init(void)
6310 {
6311 ata_parse_force_param();
6312
6313 ata_wq = create_workqueue("ata");
6314 if (!ata_wq)
6315 goto free_force_tbl;
6316
6317 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6318 if (!ata_aux_wq)
6319 goto free_wq;
6320
6321 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6322 return 0;
6323
6324 free_wq:
6325 destroy_workqueue(ata_wq);
6326 free_force_tbl:
6327 kfree(ata_force_tbl);
6328 return -ENOMEM;
6329 }
6330
6331 static void __exit ata_exit(void)
6332 {
6333 kfree(ata_force_tbl);
6334 destroy_workqueue(ata_wq);
6335 destroy_workqueue(ata_aux_wq);
6336 }
6337
6338 subsys_initcall(ata_init);
6339 module_exit(ata_exit);
6340
6341 static unsigned long ratelimit_time;
6342 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6343
6344 int ata_ratelimit(void)
6345 {
6346 int rc;
6347 unsigned long flags;
6348
6349 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6350
6351 if (time_after(jiffies, ratelimit_time)) {
6352 rc = 1;
6353 ratelimit_time = jiffies + (HZ/5);
6354 } else
6355 rc = 0;
6356
6357 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6358
6359 return rc;
6360 }
6361
6362 /**
6363 * ata_wait_register - wait until register value changes
6364 * @reg: IO-mapped register
6365 * @mask: Mask to apply to read register value
6366 * @val: Wait condition
6367 * @interval: polling interval in milliseconds
6368 * @timeout: timeout in milliseconds
6369 *
6370 * Waiting for some bits of register to change is a common
6371 * operation for ATA controllers. This function reads 32bit LE
6372 * IO-mapped register @reg and tests for the following condition.
6373 *
6374 * (*@reg & mask) != val
6375 *
6376 * If the condition is met, it returns; otherwise, the process is
6377 * repeated after @interval_msec until timeout.
6378 *
6379 * LOCKING:
6380 * Kernel thread context (may sleep)
6381 *
6382 * RETURNS:
6383 * The final register value.
6384 */
6385 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6386 unsigned long interval, unsigned long timeout)
6387 {
6388 unsigned long deadline;
6389 u32 tmp;
6390
6391 tmp = ioread32(reg);
6392
6393 /* Calculate timeout _after_ the first read to make sure
6394 * preceding writes reach the controller before starting to
6395 * eat away the timeout.
6396 */
6397 deadline = ata_deadline(jiffies, timeout);
6398
6399 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6400 msleep(interval);
6401 tmp = ioread32(reg);
6402 }
6403
6404 return tmp;
6405 }
6406
6407 /*
6408 * Dummy port_ops
6409 */
6410 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6411 {
6412 return AC_ERR_SYSTEM;
6413 }
6414
6415 static void ata_dummy_error_handler(struct ata_port *ap)
6416 {
6417 /* truly dummy */
6418 }
6419
6420 struct ata_port_operations ata_dummy_port_ops = {
6421 .qc_prep = ata_noop_qc_prep,
6422 .qc_issue = ata_dummy_qc_issue,
6423 .error_handler = ata_dummy_error_handler,
6424 };
6425
6426 const struct ata_port_info ata_dummy_port_info = {
6427 .port_ops = &ata_dummy_port_ops,
6428 };
6429
6430 /*
6431 * libata is essentially a library of internal helper functions for
6432 * low-level ATA host controller drivers. As such, the API/ABI is
6433 * likely to change as new drivers are added and updated.
6434 * Do not depend on ABI/API stability.
6435 */
6436 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6437 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6438 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6439 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6440 EXPORT_SYMBOL_GPL(sata_port_ops);
6441 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6442 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6443 EXPORT_SYMBOL_GPL(__ata_port_next_link);
6444 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6445 EXPORT_SYMBOL_GPL(ata_host_init);
6446 EXPORT_SYMBOL_GPL(ata_host_alloc);
6447 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6448 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6449 EXPORT_SYMBOL_GPL(ata_host_start);
6450 EXPORT_SYMBOL_GPL(ata_host_register);
6451 EXPORT_SYMBOL_GPL(ata_host_activate);
6452 EXPORT_SYMBOL_GPL(ata_host_detach);
6453 EXPORT_SYMBOL_GPL(ata_sg_init);
6454 EXPORT_SYMBOL_GPL(ata_qc_complete);
6455 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6456 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6457 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6458 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6459 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6460 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6461 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6462 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6463 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6464 EXPORT_SYMBOL_GPL(ata_mode_string);
6465 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6466 EXPORT_SYMBOL_GPL(ata_port_start);
6467 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6468 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6469 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6470 EXPORT_SYMBOL_GPL(ata_port_probe);
6471 EXPORT_SYMBOL_GPL(ata_dev_disable);
6472 EXPORT_SYMBOL_GPL(sata_set_spd);
6473 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6474 EXPORT_SYMBOL_GPL(sata_link_debounce);
6475 EXPORT_SYMBOL_GPL(sata_link_resume);
6476 EXPORT_SYMBOL_GPL(ata_std_prereset);
6477 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6478 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6479 EXPORT_SYMBOL_GPL(ata_std_postreset);
6480 EXPORT_SYMBOL_GPL(ata_dev_classify);
6481 EXPORT_SYMBOL_GPL(ata_dev_pair);
6482 EXPORT_SYMBOL_GPL(ata_port_disable);
6483 EXPORT_SYMBOL_GPL(ata_ratelimit);
6484 EXPORT_SYMBOL_GPL(ata_wait_register);
6485 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6486 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6487 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6488 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6489 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6490 EXPORT_SYMBOL_GPL(sata_scr_valid);
6491 EXPORT_SYMBOL_GPL(sata_scr_read);
6492 EXPORT_SYMBOL_GPL(sata_scr_write);
6493 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6494 EXPORT_SYMBOL_GPL(ata_link_online);
6495 EXPORT_SYMBOL_GPL(ata_link_offline);
6496 #ifdef CONFIG_PM
6497 EXPORT_SYMBOL_GPL(ata_host_suspend);
6498 EXPORT_SYMBOL_GPL(ata_host_resume);
6499 #endif /* CONFIG_PM */
6500 EXPORT_SYMBOL_GPL(ata_id_string);
6501 EXPORT_SYMBOL_GPL(ata_id_c_string);
6502 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6503 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6504
6505 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6506 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6507 EXPORT_SYMBOL_GPL(ata_timing_compute);
6508 EXPORT_SYMBOL_GPL(ata_timing_merge);
6509 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6510
6511 #ifdef CONFIG_PCI
6512 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6513 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6514 #ifdef CONFIG_PM
6515 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6516 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6517 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6518 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6519 #endif /* CONFIG_PM */
6520 #endif /* CONFIG_PCI */
6521
6522 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6523 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6524 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6525 EXPORT_SYMBOL_GPL(ata_port_desc);
6526 #ifdef CONFIG_PCI
6527 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6528 #endif /* CONFIG_PCI */
6529 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6530 EXPORT_SYMBOL_GPL(ata_link_abort);
6531 EXPORT_SYMBOL_GPL(ata_port_abort);
6532 EXPORT_SYMBOL_GPL(ata_port_freeze);
6533 EXPORT_SYMBOL_GPL(sata_async_notification);
6534 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6535 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6536 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6537 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6538 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6539 EXPORT_SYMBOL_GPL(ata_do_eh);
6540 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6541
6542 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6543 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6544 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6545 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6546 EXPORT_SYMBOL_GPL(ata_cable_sata);