]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/ata/libata-core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-hirsute-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
78
79 struct workqueue_struct *ata_aux_wq;
80
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
89 int libata_fua = 0;
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
109
110
111 /**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
114 * @pmp: Port multiplier port
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
125 {
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153 }
154
155 /**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
166 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
167 {
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182 }
183
184 static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
199 0,
200 0,
201 0,
202 0,
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
212 };
213
214 /**
215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
218 *
219 * Examine the device configuration and tf->flags to calculate
220 * the proper read/write commands and protocol to use.
221 *
222 * LOCKING:
223 * caller.
224 */
225 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
226 {
227 u8 cmd;
228
229 int index, fua, lba48, write;
230
231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
234
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
237 index = dev->multi_count ? 0 : 8;
238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
241 index = dev->multi_count ? 0 : 8;
242 } else {
243 tf->protocol = ATA_PROT_DMA;
244 index = 16;
245 }
246
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
253 }
254
255 /**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271 {
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296 }
297
298 /**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321 {
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419 }
420
421 /**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439 {
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443 }
444
445 /**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455 static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459 {
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466 }
467
468 static const struct ata_xfer_ent {
469 int shift, bits;
470 u8 base;
471 } ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476 };
477
478 /**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492 {
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500 }
501
502 /**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515 {
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522 }
523
524 /**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536 static int ata_xfer_mode2shift(unsigned int xfer_mode)
537 {
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544 }
545
546 /**
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
549 *
550 * Determine string which represents the highest speed
551 * (highest bit in @modemask).
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
558 * @mode_mask, or the constant C string "<n/a>".
559 */
560 static const char *ata_mode_string(unsigned int xfer_mask)
561 {
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
568 "PIO5",
569 "PIO6",
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
573 "MWDMA3",
574 "MWDMA4",
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
584 int highbit;
585
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
589 return "<n/a>";
590 }
591
592 static const char *sata_spd_string(unsigned int spd)
593 {
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602 }
603
604 void ata_dev_disable(struct ata_device *dev)
605 {
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
611 dev->class++;
612 }
613 }
614
615 /**
616 * ata_devchk - PATA device presence detection
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
633 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
634 {
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
642
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
645
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
648
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656 }
657
658 /**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
674 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
675 {
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695 }
696
697 /**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
701 * @r_err: Value of error register on completion
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
717 */
718
719 unsigned int
720 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
721 {
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
730 ap->ops->tf_read(ap, &tf);
731 err = tf.feature;
732 if (r_err)
733 *r_err = err;
734
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if (err == 1)
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
744 return ATA_DEV_NONE;
745
746 /* determine if device is ATA or ATAPI */
747 class = ata_dev_classify(&tf);
748
749 if (class == ATA_DEV_UNKNOWN)
750 return ATA_DEV_NONE;
751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
752 return ATA_DEV_NONE;
753 return class;
754 }
755
756 /**
757 * ata_id_string - Convert IDENTIFY DEVICE page into string
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
771 void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
773 {
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788 }
789
790 /**
791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
797 * This function is identical to ata_id_string except that it
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
804 void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
806 {
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
811 ata_id_string(id, s, ofs, len - 1);
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817 }
818
819 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820 {
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831 }
832
833 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834 {
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843 }
844
845 /**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854 {
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870 }
871
872 /**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880 static u64 ata_read_native_max_address(struct ata_device *dev)
881 {
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897 }
898
899 /**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
902 * @new_sectors: new max sectors value to set for the device
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909 {
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935 }
936
937 /**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
940 * @new_sectors: new max sectors value to set for the device
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947 {
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969 }
970
971 /**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980 static u64 ata_hpa_resize(struct ata_device *dev)
981 {
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
984
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
995 (long long)sectors, (long long)hpa_sectors);
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1003
1004 if (hpa_sectors) {
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1008 return hpa_sectors;
1009 }
1010 }
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1016 return sectors;
1017 }
1018
1019 static u64 ata_id_n_sectors(const u16 *id)
1020 {
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032 }
1033
1034 /**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
1037 * @unknown: mode to assume if we cannot tell
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050 {
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074 }
1075
1076 /**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1088 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089 {
1090 }
1091
1092
1093 /**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109 {
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
1117 iowrite8(tmp, ap->ioaddr.device_addr);
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119 }
1120
1121 /**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140 void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142 {
1143 if (ata_msg_probe(ap))
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157 }
1158
1159 /**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
1161 * @id: IDENTIFY DEVICE page to dump
1162 *
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
1170 static inline void ata_dump_id(const u16 *id)
1171 {
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
1194 id[88],
1195 id[93]);
1196 }
1197
1198 /**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213 static unsigned int ata_id_xfermask(const u16 *id)
1214 {
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1242
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265 }
1266
1267 /**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
1270 * @fn: workqueue function to be scheduled
1271 * @data: data for @fn to use
1272 * @delay: delay time for workqueue function
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
1286 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1287 unsigned long delay)
1288 {
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
1291
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
1294 }
1295
1296 /**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306 void ata_port_flush_task(struct ata_port *ap)
1307 {
1308 DPRINTK("ENTER\n");
1309
1310 cancel_rearming_delayed_work(&ap->port_task);
1311
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1314 }
1315
1316 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1317 {
1318 struct completion *waiting = qc->private_data;
1319
1320 complete(waiting);
1321 }
1322
1323 /**
1324 * ata_exec_internal_sg - execute libata internal command
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
1327 * @cdb: CDB for packet command
1328 * @dma_dir: Data tranfer direction of the command
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
1343 */
1344 unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
1348 {
1349 struct ata_port *ap = dev->ap;
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
1352 unsigned int tag, preempted_tag;
1353 u32 preempted_sactive, preempted_qc_active;
1354 DECLARE_COMPLETION_ONSTACK(wait);
1355 unsigned long flags;
1356 unsigned int err_mask;
1357 int rc;
1358
1359 spin_lock_irqsave(ap->lock, flags);
1360
1361 /* no internal command while frozen */
1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
1363 spin_unlock_irqrestore(ap->lock, flags);
1364 return AC_ERR_SYSTEM;
1365 }
1366
1367 /* initialize internal qc */
1368
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1373 */
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1376 else
1377 tag = 0;
1378
1379 if (test_and_set_bit(tag, &ap->qc_allocated))
1380 BUG();
1381 qc = __ata_qc_from_tag(ap, tag);
1382
1383 qc->tag = tag;
1384 qc->scsicmd = NULL;
1385 qc->ap = ap;
1386 qc->dev = dev;
1387 ata_qc_reinit(qc);
1388
1389 preempted_tag = ap->active_tag;
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
1392 ap->active_tag = ATA_TAG_POISON;
1393 ap->sactive = 0;
1394 ap->qc_active = 0;
1395
1396 /* prepare & issue qc */
1397 qc->tf = *tf;
1398 if (cdb)
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
1403 unsigned int i, buflen = 0;
1404
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1407
1408 ata_sg_init(qc, sg, n_elem);
1409 qc->nbytes = buflen;
1410 }
1411
1412 qc->private_data = &wait;
1413 qc->complete_fn = ata_qc_complete_internal;
1414
1415 ata_qc_issue(qc);
1416
1417 spin_unlock_irqrestore(ap->lock, flags);
1418
1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1420
1421 ata_port_flush_task(ap);
1422
1423 if (!rc) {
1424 spin_lock_irqsave(ap->lock, flags);
1425
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
1430 */
1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1433
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1436 else
1437 ata_qc_complete(qc);
1438
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
1441 "qc timeout (cmd 0x%x)\n", command);
1442 }
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445 }
1446
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1450
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1455
1456 if (!qc->err_mask)
1457 qc->err_mask |= AC_ERR_OTHER;
1458
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
1461 }
1462
1463 /* finish up */
1464 spin_lock_irqsave(ap->lock, flags);
1465
1466 *tf = qc->result_tf;
1467 err_mask = qc->err_mask;
1468
1469 ata_qc_free(qc);
1470 ap->active_tag = preempted_tag;
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
1473
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * port.
1478 *
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1482 *
1483 * Kill the following code as soon as those drivers are fixed.
1484 */
1485 if (ap->flags & ATA_FLAG_DISABLED) {
1486 err_mask |= AC_ERR_SYSTEM;
1487 ata_port_probe(ap);
1488 }
1489
1490 spin_unlock_irqrestore(ap->lock, flags);
1491
1492 return err_mask;
1493 }
1494
1495 /**
1496 * ata_exec_internal - execute libata internal command
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1503 *
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1506 *
1507 * LOCKING:
1508 * None. Should be called with kernel context, might sleep.
1509 *
1510 * RETURNS:
1511 * Zero on success, AC_ERR_* mask on failure
1512 */
1513 unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1516 {
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
1519
1520 if (dma_dir != DMA_NONE) {
1521 WARN_ON(!buf);
1522 sg_init_one(&sg, buf, buflen);
1523 psg = &sg;
1524 n_elem++;
1525 }
1526
1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1528 }
1529
1530 /**
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1534 *
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1537 *
1538 * LOCKING:
1539 * Kernel thread context (may sleep).
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1543 */
1544 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1545 {
1546 struct ata_taskfile tf;
1547
1548 ata_tf_init(dev, &tf);
1549
1550 tf.command = cmd;
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1553
1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1555 }
1556
1557 /**
1558 * ata_pio_need_iordy - check if iordy needed
1559 * @adev: ATA device
1560 *
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1563 */
1564
1565 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1566 {
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1570 return 0;
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1573 return 1;
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1576 return 1;
1577 return 0;
1578 }
1579
1580 /**
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * @adev: ATA device
1583 *
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1586 */
1587
1588 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1589 {
1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1593 /* Is the speed faster than the drive allows non IORDY ? */
1594 if (pio) {
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1599 }
1600 }
1601 return 3 << ATA_SHIFT_PIO;
1602 }
1603
1604 /**
1605 * ata_dev_read_id - Read ID data from the specified device
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
1608 * @flags: ATA_READID_* flags
1609 * @id: buffer to read IDENTIFY data into
1610 *
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1615 *
1616 * LOCKING:
1617 * Kernel thread context (may sleep)
1618 *
1619 * RETURNS:
1620 * 0 on success, -errno otherwise.
1621 */
1622 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1623 unsigned int flags, u16 *id)
1624 {
1625 struct ata_port *ap = dev->ap;
1626 unsigned int class = *p_class;
1627 struct ata_taskfile tf;
1628 unsigned int err_mask = 0;
1629 const char *reason;
1630 int may_fallback = 1, tried_spinup = 0;
1631 int rc;
1632
1633 if (ata_msg_ctl(ap))
1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1635
1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1637 retry:
1638 ata_tf_init(dev, &tf);
1639
1640 switch (class) {
1641 case ATA_DEV_ATA:
1642 tf.command = ATA_CMD_ID_ATA;
1643 break;
1644 case ATA_DEV_ATAPI:
1645 tf.command = ATA_CMD_ID_ATAPI;
1646 break;
1647 default:
1648 rc = -ENODEV;
1649 reason = "unsupported class";
1650 goto err_out;
1651 }
1652
1653 tf.protocol = ATA_PROT_PIO;
1654
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1657 */
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1659
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1662 */
1663 tf.flags |= ATA_TFLAG_POLLING;
1664
1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1666 id, sizeof(id[0]) * ATA_ID_WORDS);
1667 if (err_mask) {
1668 if (err_mask & AC_ERR_NODEV_HINT) {
1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1670 ap->print_id, dev->devno);
1671 return -ENOENT;
1672 }
1673
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1677 */
1678 if (may_fallback &&
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 may_fallback = 0;
1681
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1684 else
1685 class = ATA_DEV_ATA;
1686 goto retry;
1687 }
1688
1689 rc = -EIO;
1690 reason = "I/O error";
1691 goto err_out;
1692 }
1693
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1696 */
1697 may_fallback = 0;
1698
1699 swap_buf_le16(id, ATA_ID_WORDS);
1700
1701 /* sanity check */
1702 rc = -EINVAL;
1703 reason = "device reports invalid type";
1704
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 goto err_out;
1708 } else {
1709 if (ata_id_is_ata(id))
1710 goto err_out;
1711 }
1712
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 tried_spinup = 1;
1715 /*
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1719 */
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1726 if (err_mask && id[2] != 0x738c) {
1727 rc = -EIO;
1728 reason = "SPINUP failed";
1729 goto err_out;
1730 }
1731 /*
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1734 */
1735 if (id[2] == 0x37c8)
1736 goto retry;
1737 }
1738
1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1740 /*
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * SRST RESET
1743 * IDENTIFY
1744 * INITIALIZE DEVICE PARAMETERS
1745 * anything else..
1746 * Some drives were very specific about that exact sequence.
1747 */
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1750 if (err_mask) {
1751 rc = -EIO;
1752 reason = "INIT_DEV_PARAMS failed";
1753 goto err_out;
1754 }
1755
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1758 */
1759 flags &= ~ATA_READID_POSTRESET;
1760 goto retry;
1761 }
1762 }
1763
1764 *p_class = class;
1765
1766 return 0;
1767
1768 err_out:
1769 if (ata_msg_warn(ap))
1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
1772 return rc;
1773 }
1774
1775 static inline u8 ata_dev_knobble(struct ata_device *dev)
1776 {
1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1778 }
1779
1780 static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1782 {
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1785
1786 if (!ata_id_has_ncq(dev->id)) {
1787 desc[0] = '\0';
1788 return;
1789 }
1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1792 return;
1793 }
1794 if (ap->flags & ATA_FLAG_NCQ) {
1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1796 dev->flags |= ATA_DFLAG_NCQ;
1797 }
1798
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 else
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1803 }
1804
1805 /**
1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
1807 * @dev: Target device to configure
1808 *
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
1811 *
1812 * LOCKING:
1813 * Kernel thread context (may sleep)
1814 *
1815 * RETURNS:
1816 * 0 on success, -errno otherwise
1817 */
1818 int ata_dev_configure(struct ata_device *dev)
1819 {
1820 struct ata_port *ap = dev->ap;
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1823 const u16 *id = dev->id;
1824 unsigned int xfer_mask;
1825 char revbuf[7]; /* XYZ-99\0 */
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
1828 int rc;
1829
1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 __FUNCTION__);
1833 return 0;
1834 }
1835
1836 if (ata_msg_probe(ap))
1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1838
1839 /* set horkage */
1840 dev->horkage |= ata_dev_blacklisted(dev);
1841
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1844 if (rc)
1845 return rc;
1846
1847 /* print device capabilities */
1848 if (ata_msg_probe(ap))
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1852 __FUNCTION__,
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
1855
1856 /* initialize to-be-configured parameters */
1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1858 dev->max_sectors = 0;
1859 dev->cdb_len = 0;
1860 dev->n_sectors = 0;
1861 dev->cylinders = 0;
1862 dev->heads = 0;
1863 dev->sectors = 0;
1864
1865 /*
1866 * common ATA, ATAPI feature tests
1867 */
1868
1869 /* find max transfer mode; for printk only */
1870 xfer_mask = ata_id_xfermask(id);
1871
1872 if (ata_msg_probe(ap))
1873 ata_dump_id(id);
1874
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 sizeof(fwrevbuf));
1878
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 sizeof(modelbuf));
1881
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
1889 snprintf(revbuf, 7, "CFA");
1890 }
1891 else
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1893
1894 dev->n_sectors = ata_id_n_sectors(id);
1895
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1898
1899 if (ata_id_has_lba(id)) {
1900 const char *lba_desc;
1901 char ncq_desc[20];
1902
1903 lba_desc = "LBA";
1904 dev->flags |= ATA_DFLAG_LBA;
1905 if (ata_id_has_lba48(id)) {
1906 dev->flags |= ATA_DFLAG_LBA48;
1907 lba_desc = "LBA48";
1908
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1912 }
1913
1914 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1915 ata_id_hpa_enabled(dev->id))
1916 dev->n_sectors = ata_hpa_resize(dev);
1917
1918 /* config NCQ */
1919 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1920
1921 /* print device info to dmesg */
1922 if (ata_msg_drv(ap) && print_info) {
1923 ata_dev_printk(dev, KERN_INFO,
1924 "%s: %s, %s, max %s\n",
1925 revbuf, modelbuf, fwrevbuf,
1926 ata_mode_string(xfer_mask));
1927 ata_dev_printk(dev, KERN_INFO,
1928 "%Lu sectors, multi %u: %s %s\n",
1929 (unsigned long long)dev->n_sectors,
1930 dev->multi_count, lba_desc, ncq_desc);
1931 }
1932 } else {
1933 /* CHS */
1934
1935 /* Default translation */
1936 dev->cylinders = id[1];
1937 dev->heads = id[3];
1938 dev->sectors = id[6];
1939
1940 if (ata_id_current_chs_valid(id)) {
1941 /* Current CHS translation is valid. */
1942 dev->cylinders = id[54];
1943 dev->heads = id[55];
1944 dev->sectors = id[56];
1945 }
1946
1947 /* print device info to dmesg */
1948 if (ata_msg_drv(ap) && print_info) {
1949 ata_dev_printk(dev, KERN_INFO,
1950 "%s: %s, %s, max %s\n",
1951 revbuf, modelbuf, fwrevbuf,
1952 ata_mode_string(xfer_mask));
1953 ata_dev_printk(dev, KERN_INFO,
1954 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1955 (unsigned long long)dev->n_sectors,
1956 dev->multi_count, dev->cylinders,
1957 dev->heads, dev->sectors);
1958 }
1959 }
1960
1961 dev->cdb_len = 16;
1962 }
1963
1964 /* ATAPI-specific feature tests */
1965 else if (dev->class == ATA_DEV_ATAPI) {
1966 char *cdb_intr_string = "";
1967
1968 rc = atapi_cdb_len(id);
1969 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1970 if (ata_msg_warn(ap))
1971 ata_dev_printk(dev, KERN_WARNING,
1972 "unsupported CDB len\n");
1973 rc = -EINVAL;
1974 goto err_out_nosup;
1975 }
1976 dev->cdb_len = (unsigned int) rc;
1977
1978 if (ata_id_cdb_intr(dev->id)) {
1979 dev->flags |= ATA_DFLAG_CDB_INTR;
1980 cdb_intr_string = ", CDB intr";
1981 }
1982
1983 /* print device info to dmesg */
1984 if (ata_msg_drv(ap) && print_info)
1985 ata_dev_printk(dev, KERN_INFO,
1986 "ATAPI: %s, %s, max %s%s\n",
1987 modelbuf, fwrevbuf,
1988 ata_mode_string(xfer_mask),
1989 cdb_intr_string);
1990 }
1991
1992 /* determine max_sectors */
1993 dev->max_sectors = ATA_MAX_SECTORS;
1994 if (dev->flags & ATA_DFLAG_LBA48)
1995 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1996
1997 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1998 /* Let the user know. We don't want to disallow opens for
1999 rescue purposes, or in case the vendor is just a blithering
2000 idiot */
2001 if (print_info) {
2002 ata_dev_printk(dev, KERN_WARNING,
2003 "Drive reports diagnostics failure. This may indicate a drive\n");
2004 ata_dev_printk(dev, KERN_WARNING,
2005 "fault or invalid emulation. Contact drive vendor for information.\n");
2006 }
2007 }
2008
2009 /* limit bridge transfers to udma5, 200 sectors */
2010 if (ata_dev_knobble(dev)) {
2011 if (ata_msg_drv(ap) && print_info)
2012 ata_dev_printk(dev, KERN_INFO,
2013 "applying bridge limits\n");
2014 dev->udma_mask &= ATA_UDMA5;
2015 dev->max_sectors = ATA_MAX_SECTORS;
2016 }
2017
2018 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2019 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2020 dev->max_sectors);
2021
2022 if (ap->ops->dev_config)
2023 ap->ops->dev_config(dev);
2024
2025 if (ata_msg_probe(ap))
2026 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2027 __FUNCTION__, ata_chk_status(ap));
2028 return 0;
2029
2030 err_out_nosup:
2031 if (ata_msg_probe(ap))
2032 ata_dev_printk(dev, KERN_DEBUG,
2033 "%s: EXIT, err\n", __FUNCTION__);
2034 return rc;
2035 }
2036
2037 /**
2038 * ata_cable_40wire - return 40 wire cable type
2039 * @ap: port
2040 *
2041 * Helper method for drivers which want to hardwire 40 wire cable
2042 * detection.
2043 */
2044
2045 int ata_cable_40wire(struct ata_port *ap)
2046 {
2047 return ATA_CBL_PATA40;
2048 }
2049
2050 /**
2051 * ata_cable_80wire - return 80 wire cable type
2052 * @ap: port
2053 *
2054 * Helper method for drivers which want to hardwire 80 wire cable
2055 * detection.
2056 */
2057
2058 int ata_cable_80wire(struct ata_port *ap)
2059 {
2060 return ATA_CBL_PATA80;
2061 }
2062
2063 /**
2064 * ata_cable_unknown - return unknown PATA cable.
2065 * @ap: port
2066 *
2067 * Helper method for drivers which have no PATA cable detection.
2068 */
2069
2070 int ata_cable_unknown(struct ata_port *ap)
2071 {
2072 return ATA_CBL_PATA_UNK;
2073 }
2074
2075 /**
2076 * ata_cable_sata - return SATA cable type
2077 * @ap: port
2078 *
2079 * Helper method for drivers which have SATA cables
2080 */
2081
2082 int ata_cable_sata(struct ata_port *ap)
2083 {
2084 return ATA_CBL_SATA;
2085 }
2086
2087 /**
2088 * ata_bus_probe - Reset and probe ATA bus
2089 * @ap: Bus to probe
2090 *
2091 * Master ATA bus probing function. Initiates a hardware-dependent
2092 * bus reset, then attempts to identify any devices found on
2093 * the bus.
2094 *
2095 * LOCKING:
2096 * PCI/etc. bus probe sem.
2097 *
2098 * RETURNS:
2099 * Zero on success, negative errno otherwise.
2100 */
2101
2102 int ata_bus_probe(struct ata_port *ap)
2103 {
2104 unsigned int classes[ATA_MAX_DEVICES];
2105 int tries[ATA_MAX_DEVICES];
2106 int i, rc;
2107 struct ata_device *dev;
2108
2109 ata_port_probe(ap);
2110
2111 for (i = 0; i < ATA_MAX_DEVICES; i++)
2112 tries[i] = ATA_PROBE_MAX_TRIES;
2113
2114 retry:
2115 /* reset and determine device classes */
2116 ap->ops->phy_reset(ap);
2117
2118 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2119 dev = &ap->device[i];
2120
2121 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2122 dev->class != ATA_DEV_UNKNOWN)
2123 classes[dev->devno] = dev->class;
2124 else
2125 classes[dev->devno] = ATA_DEV_NONE;
2126
2127 dev->class = ATA_DEV_UNKNOWN;
2128 }
2129
2130 ata_port_probe(ap);
2131
2132 /* after the reset the device state is PIO 0 and the controller
2133 state is undefined. Record the mode */
2134
2135 for (i = 0; i < ATA_MAX_DEVICES; i++)
2136 ap->device[i].pio_mode = XFER_PIO_0;
2137
2138 /* read IDENTIFY page and configure devices. We have to do the identify
2139 specific sequence bass-ackwards so that PDIAG- is released by
2140 the slave device */
2141
2142 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2143 dev = &ap->device[i];
2144
2145 if (tries[i])
2146 dev->class = classes[i];
2147
2148 if (!ata_dev_enabled(dev))
2149 continue;
2150
2151 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2152 dev->id);
2153 if (rc)
2154 goto fail;
2155 }
2156
2157 /* Now ask for the cable type as PDIAG- should have been released */
2158 if (ap->ops->cable_detect)
2159 ap->cbl = ap->ops->cable_detect(ap);
2160
2161 /* After the identify sequence we can now set up the devices. We do
2162 this in the normal order so that the user doesn't get confused */
2163
2164 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2165 dev = &ap->device[i];
2166 if (!ata_dev_enabled(dev))
2167 continue;
2168
2169 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2170 rc = ata_dev_configure(dev);
2171 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2172 if (rc)
2173 goto fail;
2174 }
2175
2176 /* configure transfer mode */
2177 rc = ata_set_mode(ap, &dev);
2178 if (rc)
2179 goto fail;
2180
2181 for (i = 0; i < ATA_MAX_DEVICES; i++)
2182 if (ata_dev_enabled(&ap->device[i]))
2183 return 0;
2184
2185 /* no device present, disable port */
2186 ata_port_disable(ap);
2187 ap->ops->port_disable(ap);
2188 return -ENODEV;
2189
2190 fail:
2191 tries[dev->devno]--;
2192
2193 switch (rc) {
2194 case -EINVAL:
2195 /* eeek, something went very wrong, give up */
2196 tries[dev->devno] = 0;
2197 break;
2198
2199 case -ENODEV:
2200 /* give it just one more chance */
2201 tries[dev->devno] = min(tries[dev->devno], 1);
2202 case -EIO:
2203 if (tries[dev->devno] == 1) {
2204 /* This is the last chance, better to slow
2205 * down than lose it.
2206 */
2207 sata_down_spd_limit(ap);
2208 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2209 }
2210 }
2211
2212 if (!tries[dev->devno])
2213 ata_dev_disable(dev);
2214
2215 goto retry;
2216 }
2217
2218 /**
2219 * ata_port_probe - Mark port as enabled
2220 * @ap: Port for which we indicate enablement
2221 *
2222 * Modify @ap data structure such that the system
2223 * thinks that the entire port is enabled.
2224 *
2225 * LOCKING: host lock, or some other form of
2226 * serialization.
2227 */
2228
2229 void ata_port_probe(struct ata_port *ap)
2230 {
2231 ap->flags &= ~ATA_FLAG_DISABLED;
2232 }
2233
2234 /**
2235 * sata_print_link_status - Print SATA link status
2236 * @ap: SATA port to printk link status about
2237 *
2238 * This function prints link speed and status of a SATA link.
2239 *
2240 * LOCKING:
2241 * None.
2242 */
2243 void sata_print_link_status(struct ata_port *ap)
2244 {
2245 u32 sstatus, scontrol, tmp;
2246
2247 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2248 return;
2249 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2250
2251 if (ata_port_online(ap)) {
2252 tmp = (sstatus >> 4) & 0xf;
2253 ata_port_printk(ap, KERN_INFO,
2254 "SATA link up %s (SStatus %X SControl %X)\n",
2255 sata_spd_string(tmp), sstatus, scontrol);
2256 } else {
2257 ata_port_printk(ap, KERN_INFO,
2258 "SATA link down (SStatus %X SControl %X)\n",
2259 sstatus, scontrol);
2260 }
2261 }
2262
2263 /**
2264 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2265 * @ap: SATA port associated with target SATA PHY.
2266 *
2267 * This function issues commands to standard SATA Sxxx
2268 * PHY registers, to wake up the phy (and device), and
2269 * clear any reset condition.
2270 *
2271 * LOCKING:
2272 * PCI/etc. bus probe sem.
2273 *
2274 */
2275 void __sata_phy_reset(struct ata_port *ap)
2276 {
2277 u32 sstatus;
2278 unsigned long timeout = jiffies + (HZ * 5);
2279
2280 if (ap->flags & ATA_FLAG_SATA_RESET) {
2281 /* issue phy wake/reset */
2282 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2283 /* Couldn't find anything in SATA I/II specs, but
2284 * AHCI-1.1 10.4.2 says at least 1 ms. */
2285 mdelay(1);
2286 }
2287 /* phy wake/clear reset */
2288 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2289
2290 /* wait for phy to become ready, if necessary */
2291 do {
2292 msleep(200);
2293 sata_scr_read(ap, SCR_STATUS, &sstatus);
2294 if ((sstatus & 0xf) != 1)
2295 break;
2296 } while (time_before(jiffies, timeout));
2297
2298 /* print link status */
2299 sata_print_link_status(ap);
2300
2301 /* TODO: phy layer with polling, timeouts, etc. */
2302 if (!ata_port_offline(ap))
2303 ata_port_probe(ap);
2304 else
2305 ata_port_disable(ap);
2306
2307 if (ap->flags & ATA_FLAG_DISABLED)
2308 return;
2309
2310 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2311 ata_port_disable(ap);
2312 return;
2313 }
2314
2315 ap->cbl = ATA_CBL_SATA;
2316 }
2317
2318 /**
2319 * sata_phy_reset - Reset SATA bus.
2320 * @ap: SATA port associated with target SATA PHY.
2321 *
2322 * This function resets the SATA bus, and then probes
2323 * the bus for devices.
2324 *
2325 * LOCKING:
2326 * PCI/etc. bus probe sem.
2327 *
2328 */
2329 void sata_phy_reset(struct ata_port *ap)
2330 {
2331 __sata_phy_reset(ap);
2332 if (ap->flags & ATA_FLAG_DISABLED)
2333 return;
2334 ata_bus_reset(ap);
2335 }
2336
2337 /**
2338 * ata_dev_pair - return other device on cable
2339 * @adev: device
2340 *
2341 * Obtain the other device on the same cable, or if none is
2342 * present NULL is returned
2343 */
2344
2345 struct ata_device *ata_dev_pair(struct ata_device *adev)
2346 {
2347 struct ata_port *ap = adev->ap;
2348 struct ata_device *pair = &ap->device[1 - adev->devno];
2349 if (!ata_dev_enabled(pair))
2350 return NULL;
2351 return pair;
2352 }
2353
2354 /**
2355 * ata_port_disable - Disable port.
2356 * @ap: Port to be disabled.
2357 *
2358 * Modify @ap data structure such that the system
2359 * thinks that the entire port is disabled, and should
2360 * never attempt to probe or communicate with devices
2361 * on this port.
2362 *
2363 * LOCKING: host lock, or some other form of
2364 * serialization.
2365 */
2366
2367 void ata_port_disable(struct ata_port *ap)
2368 {
2369 ap->device[0].class = ATA_DEV_NONE;
2370 ap->device[1].class = ATA_DEV_NONE;
2371 ap->flags |= ATA_FLAG_DISABLED;
2372 }
2373
2374 /**
2375 * sata_down_spd_limit - adjust SATA spd limit downward
2376 * @ap: Port to adjust SATA spd limit for
2377 *
2378 * Adjust SATA spd limit of @ap downward. Note that this
2379 * function only adjusts the limit. The change must be applied
2380 * using sata_set_spd().
2381 *
2382 * LOCKING:
2383 * Inherited from caller.
2384 *
2385 * RETURNS:
2386 * 0 on success, negative errno on failure
2387 */
2388 int sata_down_spd_limit(struct ata_port *ap)
2389 {
2390 u32 sstatus, spd, mask;
2391 int rc, highbit;
2392
2393 if (!sata_scr_valid(ap))
2394 return -EOPNOTSUPP;
2395
2396 /* If SCR can be read, use it to determine the current SPD.
2397 * If not, use cached value in ap->sata_spd.
2398 */
2399 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2400 if (rc == 0)
2401 spd = (sstatus >> 4) & 0xf;
2402 else
2403 spd = ap->sata_spd;
2404
2405 mask = ap->sata_spd_limit;
2406 if (mask <= 1)
2407 return -EINVAL;
2408
2409 /* unconditionally mask off the highest bit */
2410 highbit = fls(mask) - 1;
2411 mask &= ~(1 << highbit);
2412
2413 /* Mask off all speeds higher than or equal to the current
2414 * one. Force 1.5Gbps if current SPD is not available.
2415 */
2416 if (spd > 1)
2417 mask &= (1 << (spd - 1)) - 1;
2418 else
2419 mask &= 1;
2420
2421 /* were we already at the bottom? */
2422 if (!mask)
2423 return -EINVAL;
2424
2425 ap->sata_spd_limit = mask;
2426
2427 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2428 sata_spd_string(fls(mask)));
2429
2430 return 0;
2431 }
2432
2433 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2434 {
2435 u32 spd, limit;
2436
2437 if (ap->sata_spd_limit == UINT_MAX)
2438 limit = 0;
2439 else
2440 limit = fls(ap->sata_spd_limit);
2441
2442 spd = (*scontrol >> 4) & 0xf;
2443 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2444
2445 return spd != limit;
2446 }
2447
2448 /**
2449 * sata_set_spd_needed - is SATA spd configuration needed
2450 * @ap: Port in question
2451 *
2452 * Test whether the spd limit in SControl matches
2453 * @ap->sata_spd_limit. This function is used to determine
2454 * whether hardreset is necessary to apply SATA spd
2455 * configuration.
2456 *
2457 * LOCKING:
2458 * Inherited from caller.
2459 *
2460 * RETURNS:
2461 * 1 if SATA spd configuration is needed, 0 otherwise.
2462 */
2463 int sata_set_spd_needed(struct ata_port *ap)
2464 {
2465 u32 scontrol;
2466
2467 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2468 return 0;
2469
2470 return __sata_set_spd_needed(ap, &scontrol);
2471 }
2472
2473 /**
2474 * sata_set_spd - set SATA spd according to spd limit
2475 * @ap: Port to set SATA spd for
2476 *
2477 * Set SATA spd of @ap according to sata_spd_limit.
2478 *
2479 * LOCKING:
2480 * Inherited from caller.
2481 *
2482 * RETURNS:
2483 * 0 if spd doesn't need to be changed, 1 if spd has been
2484 * changed. Negative errno if SCR registers are inaccessible.
2485 */
2486 int sata_set_spd(struct ata_port *ap)
2487 {
2488 u32 scontrol;
2489 int rc;
2490
2491 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2492 return rc;
2493
2494 if (!__sata_set_spd_needed(ap, &scontrol))
2495 return 0;
2496
2497 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2498 return rc;
2499
2500 return 1;
2501 }
2502
2503 /*
2504 * This mode timing computation functionality is ported over from
2505 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2506 */
2507 /*
2508 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2509 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2510 * for UDMA6, which is currently supported only by Maxtor drives.
2511 *
2512 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2513 */
2514
2515 static const struct ata_timing ata_timing[] = {
2516
2517 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2518 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2519 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2520 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2521
2522 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2523 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2524 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2525 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2526 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2527
2528 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2529
2530 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2531 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2532 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2533
2534 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2535 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2536 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2537
2538 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2539 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2540 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2541 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2542
2543 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2544 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2545 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2546
2547 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2548
2549 { 0xFF }
2550 };
2551
2552 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2553 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2554
2555 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2556 {
2557 q->setup = EZ(t->setup * 1000, T);
2558 q->act8b = EZ(t->act8b * 1000, T);
2559 q->rec8b = EZ(t->rec8b * 1000, T);
2560 q->cyc8b = EZ(t->cyc8b * 1000, T);
2561 q->active = EZ(t->active * 1000, T);
2562 q->recover = EZ(t->recover * 1000, T);
2563 q->cycle = EZ(t->cycle * 1000, T);
2564 q->udma = EZ(t->udma * 1000, UT);
2565 }
2566
2567 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2568 struct ata_timing *m, unsigned int what)
2569 {
2570 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2571 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2572 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2573 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2574 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2575 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2576 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2577 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2578 }
2579
2580 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2581 {
2582 const struct ata_timing *t;
2583
2584 for (t = ata_timing; t->mode != speed; t++)
2585 if (t->mode == 0xFF)
2586 return NULL;
2587 return t;
2588 }
2589
2590 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2591 struct ata_timing *t, int T, int UT)
2592 {
2593 const struct ata_timing *s;
2594 struct ata_timing p;
2595
2596 /*
2597 * Find the mode.
2598 */
2599
2600 if (!(s = ata_timing_find_mode(speed)))
2601 return -EINVAL;
2602
2603 memcpy(t, s, sizeof(*s));
2604
2605 /*
2606 * If the drive is an EIDE drive, it can tell us it needs extended
2607 * PIO/MW_DMA cycle timing.
2608 */
2609
2610 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2611 memset(&p, 0, sizeof(p));
2612 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2613 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2614 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2615 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2616 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2617 }
2618 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2619 }
2620
2621 /*
2622 * Convert the timing to bus clock counts.
2623 */
2624
2625 ata_timing_quantize(t, t, T, UT);
2626
2627 /*
2628 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2629 * S.M.A.R.T * and some other commands. We have to ensure that the
2630 * DMA cycle timing is slower/equal than the fastest PIO timing.
2631 */
2632
2633 if (speed > XFER_PIO_6) {
2634 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2635 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2636 }
2637
2638 /*
2639 * Lengthen active & recovery time so that cycle time is correct.
2640 */
2641
2642 if (t->act8b + t->rec8b < t->cyc8b) {
2643 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2644 t->rec8b = t->cyc8b - t->act8b;
2645 }
2646
2647 if (t->active + t->recover < t->cycle) {
2648 t->active += (t->cycle - (t->active + t->recover)) / 2;
2649 t->recover = t->cycle - t->active;
2650 }
2651
2652 /* In a few cases quantisation may produce enough errors to
2653 leave t->cycle too low for the sum of active and recovery
2654 if so we must correct this */
2655 if (t->active + t->recover > t->cycle)
2656 t->cycle = t->active + t->recover;
2657
2658 return 0;
2659 }
2660
2661 /**
2662 * ata_down_xfermask_limit - adjust dev xfer masks downward
2663 * @dev: Device to adjust xfer masks
2664 * @sel: ATA_DNXFER_* selector
2665 *
2666 * Adjust xfer masks of @dev downward. Note that this function
2667 * does not apply the change. Invoking ata_set_mode() afterwards
2668 * will apply the limit.
2669 *
2670 * LOCKING:
2671 * Inherited from caller.
2672 *
2673 * RETURNS:
2674 * 0 on success, negative errno on failure
2675 */
2676 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2677 {
2678 char buf[32];
2679 unsigned int orig_mask, xfer_mask;
2680 unsigned int pio_mask, mwdma_mask, udma_mask;
2681 int quiet, highbit;
2682
2683 quiet = !!(sel & ATA_DNXFER_QUIET);
2684 sel &= ~ATA_DNXFER_QUIET;
2685
2686 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2687 dev->mwdma_mask,
2688 dev->udma_mask);
2689 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2690
2691 switch (sel) {
2692 case ATA_DNXFER_PIO:
2693 highbit = fls(pio_mask) - 1;
2694 pio_mask &= ~(1 << highbit);
2695 break;
2696
2697 case ATA_DNXFER_DMA:
2698 if (udma_mask) {
2699 highbit = fls(udma_mask) - 1;
2700 udma_mask &= ~(1 << highbit);
2701 if (!udma_mask)
2702 return -ENOENT;
2703 } else if (mwdma_mask) {
2704 highbit = fls(mwdma_mask) - 1;
2705 mwdma_mask &= ~(1 << highbit);
2706 if (!mwdma_mask)
2707 return -ENOENT;
2708 }
2709 break;
2710
2711 case ATA_DNXFER_40C:
2712 udma_mask &= ATA_UDMA_MASK_40C;
2713 break;
2714
2715 case ATA_DNXFER_FORCE_PIO0:
2716 pio_mask &= 1;
2717 case ATA_DNXFER_FORCE_PIO:
2718 mwdma_mask = 0;
2719 udma_mask = 0;
2720 break;
2721
2722 default:
2723 BUG();
2724 }
2725
2726 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2727
2728 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2729 return -ENOENT;
2730
2731 if (!quiet) {
2732 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2733 snprintf(buf, sizeof(buf), "%s:%s",
2734 ata_mode_string(xfer_mask),
2735 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2736 else
2737 snprintf(buf, sizeof(buf), "%s",
2738 ata_mode_string(xfer_mask));
2739
2740 ata_dev_printk(dev, KERN_WARNING,
2741 "limiting speed to %s\n", buf);
2742 }
2743
2744 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2745 &dev->udma_mask);
2746
2747 return 0;
2748 }
2749
2750 static int ata_dev_set_mode(struct ata_device *dev)
2751 {
2752 struct ata_eh_context *ehc = &dev->ap->eh_context;
2753 unsigned int err_mask;
2754 int rc;
2755
2756 dev->flags &= ~ATA_DFLAG_PIO;
2757 if (dev->xfer_shift == ATA_SHIFT_PIO)
2758 dev->flags |= ATA_DFLAG_PIO;
2759
2760 err_mask = ata_dev_set_xfermode(dev);
2761 /* Old CFA may refuse this command, which is just fine */
2762 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2763 err_mask &= ~AC_ERR_DEV;
2764
2765 if (err_mask) {
2766 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2767 "(err_mask=0x%x)\n", err_mask);
2768 return -EIO;
2769 }
2770
2771 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2772 rc = ata_dev_revalidate(dev, 0);
2773 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2774 if (rc)
2775 return rc;
2776
2777 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2778 dev->xfer_shift, (int)dev->xfer_mode);
2779
2780 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2781 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2782 return 0;
2783 }
2784
2785 /**
2786 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2787 * @ap: port on which timings will be programmed
2788 * @r_failed_dev: out paramter for failed device
2789 *
2790 * Standard implementation of the function used to tune and set
2791 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2792 * ata_dev_set_mode() fails, pointer to the failing device is
2793 * returned in @r_failed_dev.
2794 *
2795 * LOCKING:
2796 * PCI/etc. bus probe sem.
2797 *
2798 * RETURNS:
2799 * 0 on success, negative errno otherwise
2800 */
2801
2802 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2803 {
2804 struct ata_device *dev;
2805 int i, rc = 0, used_dma = 0, found = 0;
2806
2807
2808 /* step 1: calculate xfer_mask */
2809 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2810 unsigned int pio_mask, dma_mask;
2811
2812 dev = &ap->device[i];
2813
2814 if (!ata_dev_enabled(dev))
2815 continue;
2816
2817 ata_dev_xfermask(dev);
2818
2819 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2820 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2821 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2822 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2823
2824 found = 1;
2825 if (dev->dma_mode)
2826 used_dma = 1;
2827 }
2828 if (!found)
2829 goto out;
2830
2831 /* step 2: always set host PIO timings */
2832 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2833 dev = &ap->device[i];
2834 if (!ata_dev_enabled(dev))
2835 continue;
2836
2837 if (!dev->pio_mode) {
2838 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2839 rc = -EINVAL;
2840 goto out;
2841 }
2842
2843 dev->xfer_mode = dev->pio_mode;
2844 dev->xfer_shift = ATA_SHIFT_PIO;
2845 if (ap->ops->set_piomode)
2846 ap->ops->set_piomode(ap, dev);
2847 }
2848
2849 /* step 3: set host DMA timings */
2850 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2851 dev = &ap->device[i];
2852
2853 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2854 continue;
2855
2856 dev->xfer_mode = dev->dma_mode;
2857 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2858 if (ap->ops->set_dmamode)
2859 ap->ops->set_dmamode(ap, dev);
2860 }
2861
2862 /* step 4: update devices' xfer mode */
2863 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2864 dev = &ap->device[i];
2865
2866 /* don't update suspended devices' xfer mode */
2867 if (!ata_dev_enabled(dev))
2868 continue;
2869
2870 rc = ata_dev_set_mode(dev);
2871 if (rc)
2872 goto out;
2873 }
2874
2875 /* Record simplex status. If we selected DMA then the other
2876 * host channels are not permitted to do so.
2877 */
2878 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2879 ap->host->simplex_claimed = ap;
2880
2881 out:
2882 if (rc)
2883 *r_failed_dev = dev;
2884 return rc;
2885 }
2886
2887 /**
2888 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2889 * @ap: port on which timings will be programmed
2890 * @r_failed_dev: out paramter for failed device
2891 *
2892 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2893 * ata_set_mode() fails, pointer to the failing device is
2894 * returned in @r_failed_dev.
2895 *
2896 * LOCKING:
2897 * PCI/etc. bus probe sem.
2898 *
2899 * RETURNS:
2900 * 0 on success, negative errno otherwise
2901 */
2902 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2903 {
2904 /* has private set_mode? */
2905 if (ap->ops->set_mode)
2906 return ap->ops->set_mode(ap, r_failed_dev);
2907 return ata_do_set_mode(ap, r_failed_dev);
2908 }
2909
2910 /**
2911 * ata_tf_to_host - issue ATA taskfile to host controller
2912 * @ap: port to which command is being issued
2913 * @tf: ATA taskfile register set
2914 *
2915 * Issues ATA taskfile register set to ATA host controller,
2916 * with proper synchronization with interrupt handler and
2917 * other threads.
2918 *
2919 * LOCKING:
2920 * spin_lock_irqsave(host lock)
2921 */
2922
2923 static inline void ata_tf_to_host(struct ata_port *ap,
2924 const struct ata_taskfile *tf)
2925 {
2926 ap->ops->tf_load(ap, tf);
2927 ap->ops->exec_command(ap, tf);
2928 }
2929
2930 /**
2931 * ata_busy_sleep - sleep until BSY clears, or timeout
2932 * @ap: port containing status register to be polled
2933 * @tmout_pat: impatience timeout
2934 * @tmout: overall timeout
2935 *
2936 * Sleep until ATA Status register bit BSY clears,
2937 * or a timeout occurs.
2938 *
2939 * LOCKING:
2940 * Kernel thread context (may sleep).
2941 *
2942 * RETURNS:
2943 * 0 on success, -errno otherwise.
2944 */
2945 int ata_busy_sleep(struct ata_port *ap,
2946 unsigned long tmout_pat, unsigned long tmout)
2947 {
2948 unsigned long timer_start, timeout;
2949 u8 status;
2950
2951 status = ata_busy_wait(ap, ATA_BUSY, 300);
2952 timer_start = jiffies;
2953 timeout = timer_start + tmout_pat;
2954 while (status != 0xff && (status & ATA_BUSY) &&
2955 time_before(jiffies, timeout)) {
2956 msleep(50);
2957 status = ata_busy_wait(ap, ATA_BUSY, 3);
2958 }
2959
2960 if (status != 0xff && (status & ATA_BUSY))
2961 ata_port_printk(ap, KERN_WARNING,
2962 "port is slow to respond, please be patient "
2963 "(Status 0x%x)\n", status);
2964
2965 timeout = timer_start + tmout;
2966 while (status != 0xff && (status & ATA_BUSY) &&
2967 time_before(jiffies, timeout)) {
2968 msleep(50);
2969 status = ata_chk_status(ap);
2970 }
2971
2972 if (status == 0xff)
2973 return -ENODEV;
2974
2975 if (status & ATA_BUSY) {
2976 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2977 "(%lu secs, Status 0x%x)\n",
2978 tmout / HZ, status);
2979 return -EBUSY;
2980 }
2981
2982 return 0;
2983 }
2984
2985 /**
2986 * ata_wait_ready - sleep until BSY clears, or timeout
2987 * @ap: port containing status register to be polled
2988 * @deadline: deadline jiffies for the operation
2989 *
2990 * Sleep until ATA Status register bit BSY clears, or timeout
2991 * occurs.
2992 *
2993 * LOCKING:
2994 * Kernel thread context (may sleep).
2995 *
2996 * RETURNS:
2997 * 0 on success, -errno otherwise.
2998 */
2999 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3000 {
3001 unsigned long start = jiffies;
3002 int warned = 0;
3003
3004 while (1) {
3005 u8 status = ata_chk_status(ap);
3006 unsigned long now = jiffies;
3007
3008 if (!(status & ATA_BUSY))
3009 return 0;
3010 if (!ata_port_online(ap) && status == 0xff)
3011 return -ENODEV;
3012 if (time_after(now, deadline))
3013 return -EBUSY;
3014
3015 if (!warned && time_after(now, start + 5 * HZ) &&
3016 (deadline - now > 3 * HZ)) {
3017 ata_port_printk(ap, KERN_WARNING,
3018 "port is slow to respond, please be patient "
3019 "(Status 0x%x)\n", status);
3020 warned = 1;
3021 }
3022
3023 msleep(50);
3024 }
3025 }
3026
3027 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3028 unsigned long deadline)
3029 {
3030 struct ata_ioports *ioaddr = &ap->ioaddr;
3031 unsigned int dev0 = devmask & (1 << 0);
3032 unsigned int dev1 = devmask & (1 << 1);
3033 int rc, ret = 0;
3034
3035 /* if device 0 was found in ata_devchk, wait for its
3036 * BSY bit to clear
3037 */
3038 if (dev0) {
3039 rc = ata_wait_ready(ap, deadline);
3040 if (rc) {
3041 if (rc != -ENODEV)
3042 return rc;
3043 ret = rc;
3044 }
3045 }
3046
3047 /* if device 1 was found in ata_devchk, wait for register
3048 * access briefly, then wait for BSY to clear.
3049 */
3050 if (dev1) {
3051 int i;
3052
3053 ap->ops->dev_select(ap, 1);
3054
3055 /* Wait for register access. Some ATAPI devices fail
3056 * to set nsect/lbal after reset, so don't waste too
3057 * much time on it. We're gonna wait for !BSY anyway.
3058 */
3059 for (i = 0; i < 2; i++) {
3060 u8 nsect, lbal;
3061
3062 nsect = ioread8(ioaddr->nsect_addr);
3063 lbal = ioread8(ioaddr->lbal_addr);
3064 if ((nsect == 1) && (lbal == 1))
3065 break;
3066 msleep(50); /* give drive a breather */
3067 }
3068
3069 rc = ata_wait_ready(ap, deadline);
3070 if (rc) {
3071 if (rc != -ENODEV)
3072 return rc;
3073 ret = rc;
3074 }
3075 }
3076
3077 /* is all this really necessary? */
3078 ap->ops->dev_select(ap, 0);
3079 if (dev1)
3080 ap->ops->dev_select(ap, 1);
3081 if (dev0)
3082 ap->ops->dev_select(ap, 0);
3083
3084 return ret;
3085 }
3086
3087 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3088 unsigned long deadline)
3089 {
3090 struct ata_ioports *ioaddr = &ap->ioaddr;
3091
3092 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3093
3094 /* software reset. causes dev0 to be selected */
3095 iowrite8(ap->ctl, ioaddr->ctl_addr);
3096 udelay(20); /* FIXME: flush */
3097 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3098 udelay(20); /* FIXME: flush */
3099 iowrite8(ap->ctl, ioaddr->ctl_addr);
3100
3101 /* spec mandates ">= 2ms" before checking status.
3102 * We wait 150ms, because that was the magic delay used for
3103 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3104 * between when the ATA command register is written, and then
3105 * status is checked. Because waiting for "a while" before
3106 * checking status is fine, post SRST, we perform this magic
3107 * delay here as well.
3108 *
3109 * Old drivers/ide uses the 2mS rule and then waits for ready
3110 */
3111 msleep(150);
3112
3113 /* Before we perform post reset processing we want to see if
3114 * the bus shows 0xFF because the odd clown forgets the D7
3115 * pulldown resistor.
3116 */
3117 if (ata_check_status(ap) == 0xFF)
3118 return -ENODEV;
3119
3120 return ata_bus_post_reset(ap, devmask, deadline);
3121 }
3122
3123 /**
3124 * ata_bus_reset - reset host port and associated ATA channel
3125 * @ap: port to reset
3126 *
3127 * This is typically the first time we actually start issuing
3128 * commands to the ATA channel. We wait for BSY to clear, then
3129 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3130 * result. Determine what devices, if any, are on the channel
3131 * by looking at the device 0/1 error register. Look at the signature
3132 * stored in each device's taskfile registers, to determine if
3133 * the device is ATA or ATAPI.
3134 *
3135 * LOCKING:
3136 * PCI/etc. bus probe sem.
3137 * Obtains host lock.
3138 *
3139 * SIDE EFFECTS:
3140 * Sets ATA_FLAG_DISABLED if bus reset fails.
3141 */
3142
3143 void ata_bus_reset(struct ata_port *ap)
3144 {
3145 struct ata_ioports *ioaddr = &ap->ioaddr;
3146 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3147 u8 err;
3148 unsigned int dev0, dev1 = 0, devmask = 0;
3149 int rc;
3150
3151 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3152
3153 /* determine if device 0/1 are present */
3154 if (ap->flags & ATA_FLAG_SATA_RESET)
3155 dev0 = 1;
3156 else {
3157 dev0 = ata_devchk(ap, 0);
3158 if (slave_possible)
3159 dev1 = ata_devchk(ap, 1);
3160 }
3161
3162 if (dev0)
3163 devmask |= (1 << 0);
3164 if (dev1)
3165 devmask |= (1 << 1);
3166
3167 /* select device 0 again */
3168 ap->ops->dev_select(ap, 0);
3169
3170 /* issue bus reset */
3171 if (ap->flags & ATA_FLAG_SRST) {
3172 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3173 if (rc && rc != -ENODEV)
3174 goto err_out;
3175 }
3176
3177 /*
3178 * determine by signature whether we have ATA or ATAPI devices
3179 */
3180 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3181 if ((slave_possible) && (err != 0x81))
3182 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3183
3184 /* is double-select really necessary? */
3185 if (ap->device[1].class != ATA_DEV_NONE)
3186 ap->ops->dev_select(ap, 1);
3187 if (ap->device[0].class != ATA_DEV_NONE)
3188 ap->ops->dev_select(ap, 0);
3189
3190 /* if no devices were detected, disable this port */
3191 if ((ap->device[0].class == ATA_DEV_NONE) &&
3192 (ap->device[1].class == ATA_DEV_NONE))
3193 goto err_out;
3194
3195 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3196 /* set up device control for ATA_FLAG_SATA_RESET */
3197 iowrite8(ap->ctl, ioaddr->ctl_addr);
3198 }
3199
3200 DPRINTK("EXIT\n");
3201 return;
3202
3203 err_out:
3204 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3205 ap->ops->port_disable(ap);
3206
3207 DPRINTK("EXIT\n");
3208 }
3209
3210 /**
3211 * sata_phy_debounce - debounce SATA phy status
3212 * @ap: ATA port to debounce SATA phy status for
3213 * @params: timing parameters { interval, duratinon, timeout } in msec
3214 * @deadline: deadline jiffies for the operation
3215 *
3216 * Make sure SStatus of @ap reaches stable state, determined by
3217 * holding the same value where DET is not 1 for @duration polled
3218 * every @interval, before @timeout. Timeout constraints the
3219 * beginning of the stable state. Because DET gets stuck at 1 on
3220 * some controllers after hot unplugging, this functions waits
3221 * until timeout then returns 0 if DET is stable at 1.
3222 *
3223 * @timeout is further limited by @deadline. The sooner of the
3224 * two is used.
3225 *
3226 * LOCKING:
3227 * Kernel thread context (may sleep)
3228 *
3229 * RETURNS:
3230 * 0 on success, -errno on failure.
3231 */
3232 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3233 unsigned long deadline)
3234 {
3235 unsigned long interval_msec = params[0];
3236 unsigned long duration = msecs_to_jiffies(params[1]);
3237 unsigned long last_jiffies, t;
3238 u32 last, cur;
3239 int rc;
3240
3241 t = jiffies + msecs_to_jiffies(params[2]);
3242 if (time_before(t, deadline))
3243 deadline = t;
3244
3245 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3246 return rc;
3247 cur &= 0xf;
3248
3249 last = cur;
3250 last_jiffies = jiffies;
3251
3252 while (1) {
3253 msleep(interval_msec);
3254 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3255 return rc;
3256 cur &= 0xf;
3257
3258 /* DET stable? */
3259 if (cur == last) {
3260 if (cur == 1 && time_before(jiffies, deadline))
3261 continue;
3262 if (time_after(jiffies, last_jiffies + duration))
3263 return 0;
3264 continue;
3265 }
3266
3267 /* unstable, start over */
3268 last = cur;
3269 last_jiffies = jiffies;
3270
3271 /* Check deadline. If debouncing failed, return
3272 * -EPIPE to tell upper layer to lower link speed.
3273 */
3274 if (time_after(jiffies, deadline))
3275 return -EPIPE;
3276 }
3277 }
3278
3279 /**
3280 * sata_phy_resume - resume SATA phy
3281 * @ap: ATA port to resume SATA phy for
3282 * @params: timing parameters { interval, duratinon, timeout } in msec
3283 * @deadline: deadline jiffies for the operation
3284 *
3285 * Resume SATA phy of @ap and debounce it.
3286 *
3287 * LOCKING:
3288 * Kernel thread context (may sleep)
3289 *
3290 * RETURNS:
3291 * 0 on success, -errno on failure.
3292 */
3293 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3294 unsigned long deadline)
3295 {
3296 u32 scontrol;
3297 int rc;
3298
3299 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3300 return rc;
3301
3302 scontrol = (scontrol & 0x0f0) | 0x300;
3303
3304 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3305 return rc;
3306
3307 /* Some PHYs react badly if SStatus is pounded immediately
3308 * after resuming. Delay 200ms before debouncing.
3309 */
3310 msleep(200);
3311
3312 return sata_phy_debounce(ap, params, deadline);
3313 }
3314
3315 /**
3316 * ata_std_prereset - prepare for reset
3317 * @ap: ATA port to be reset
3318 * @deadline: deadline jiffies for the operation
3319 *
3320 * @ap is about to be reset. Initialize it. Failure from
3321 * prereset makes libata abort whole reset sequence and give up
3322 * that port, so prereset should be best-effort. It does its
3323 * best to prepare for reset sequence but if things go wrong, it
3324 * should just whine, not fail.
3325 *
3326 * LOCKING:
3327 * Kernel thread context (may sleep)
3328 *
3329 * RETURNS:
3330 * 0 on success, -errno otherwise.
3331 */
3332 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3333 {
3334 struct ata_eh_context *ehc = &ap->eh_context;
3335 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3336 int rc;
3337
3338 /* handle link resume */
3339 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3340 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3341 ehc->i.action |= ATA_EH_HARDRESET;
3342
3343 /* if we're about to do hardreset, nothing more to do */
3344 if (ehc->i.action & ATA_EH_HARDRESET)
3345 return 0;
3346
3347 /* if SATA, resume phy */
3348 if (ap->flags & ATA_FLAG_SATA) {
3349 rc = sata_phy_resume(ap, timing, deadline);
3350 /* whine about phy resume failure but proceed */
3351 if (rc && rc != -EOPNOTSUPP)
3352 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3353 "link for reset (errno=%d)\n", rc);
3354 }
3355
3356 /* Wait for !BSY if the controller can wait for the first D2H
3357 * Reg FIS and we don't know that no device is attached.
3358 */
3359 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3360 rc = ata_wait_ready(ap, deadline);
3361 if (rc && rc != -ENODEV) {
3362 ata_port_printk(ap, KERN_WARNING, "device not ready "
3363 "(errno=%d), forcing hardreset\n", rc);
3364 ehc->i.action |= ATA_EH_HARDRESET;
3365 }
3366 }
3367
3368 return 0;
3369 }
3370
3371 /**
3372 * ata_std_softreset - reset host port via ATA SRST
3373 * @ap: port to reset
3374 * @classes: resulting classes of attached devices
3375 * @deadline: deadline jiffies for the operation
3376 *
3377 * Reset host port using ATA SRST.
3378 *
3379 * LOCKING:
3380 * Kernel thread context (may sleep)
3381 *
3382 * RETURNS:
3383 * 0 on success, -errno otherwise.
3384 */
3385 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3386 unsigned long deadline)
3387 {
3388 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3389 unsigned int devmask = 0;
3390 int rc;
3391 u8 err;
3392
3393 DPRINTK("ENTER\n");
3394
3395 if (ata_port_offline(ap)) {
3396 classes[0] = ATA_DEV_NONE;
3397 goto out;
3398 }
3399
3400 /* determine if device 0/1 are present */
3401 if (ata_devchk(ap, 0))
3402 devmask |= (1 << 0);
3403 if (slave_possible && ata_devchk(ap, 1))
3404 devmask |= (1 << 1);
3405
3406 /* select device 0 again */
3407 ap->ops->dev_select(ap, 0);
3408
3409 /* issue bus reset */
3410 DPRINTK("about to softreset, devmask=%x\n", devmask);
3411 rc = ata_bus_softreset(ap, devmask, deadline);
3412 /* if link is occupied, -ENODEV too is an error */
3413 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3414 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3415 return rc;
3416 }
3417
3418 /* determine by signature whether we have ATA or ATAPI devices */
3419 classes[0] = ata_dev_try_classify(ap, 0, &err);
3420 if (slave_possible && err != 0x81)
3421 classes[1] = ata_dev_try_classify(ap, 1, &err);
3422
3423 out:
3424 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3425 return 0;
3426 }
3427
3428 /**
3429 * sata_port_hardreset - reset port via SATA phy reset
3430 * @ap: port to reset
3431 * @timing: timing parameters { interval, duratinon, timeout } in msec
3432 * @deadline: deadline jiffies for the operation
3433 *
3434 * SATA phy-reset host port using DET bits of SControl register.
3435 *
3436 * LOCKING:
3437 * Kernel thread context (may sleep)
3438 *
3439 * RETURNS:
3440 * 0 on success, -errno otherwise.
3441 */
3442 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3443 unsigned long deadline)
3444 {
3445 u32 scontrol;
3446 int rc;
3447
3448 DPRINTK("ENTER\n");
3449
3450 if (sata_set_spd_needed(ap)) {
3451 /* SATA spec says nothing about how to reconfigure
3452 * spd. To be on the safe side, turn off phy during
3453 * reconfiguration. This works for at least ICH7 AHCI
3454 * and Sil3124.
3455 */
3456 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3457 goto out;
3458
3459 scontrol = (scontrol & 0x0f0) | 0x304;
3460
3461 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3462 goto out;
3463
3464 sata_set_spd(ap);
3465 }
3466
3467 /* issue phy wake/reset */
3468 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3469 goto out;
3470
3471 scontrol = (scontrol & 0x0f0) | 0x301;
3472
3473 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3474 goto out;
3475
3476 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3477 * 10.4.2 says at least 1 ms.
3478 */
3479 msleep(1);
3480
3481 /* bring phy back */
3482 rc = sata_phy_resume(ap, timing, deadline);
3483 out:
3484 DPRINTK("EXIT, rc=%d\n", rc);
3485 return rc;
3486 }
3487
3488 /**
3489 * sata_std_hardreset - reset host port via SATA phy reset
3490 * @ap: port to reset
3491 * @class: resulting class of attached device
3492 * @deadline: deadline jiffies for the operation
3493 *
3494 * SATA phy-reset host port using DET bits of SControl register,
3495 * wait for !BSY and classify the attached device.
3496 *
3497 * LOCKING:
3498 * Kernel thread context (may sleep)
3499 *
3500 * RETURNS:
3501 * 0 on success, -errno otherwise.
3502 */
3503 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3504 unsigned long deadline)
3505 {
3506 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3507 int rc;
3508
3509 DPRINTK("ENTER\n");
3510
3511 /* do hardreset */
3512 rc = sata_port_hardreset(ap, timing, deadline);
3513 if (rc) {
3514 ata_port_printk(ap, KERN_ERR,
3515 "COMRESET failed (errno=%d)\n", rc);
3516 return rc;
3517 }
3518
3519 /* TODO: phy layer with polling, timeouts, etc. */
3520 if (ata_port_offline(ap)) {
3521 *class = ATA_DEV_NONE;
3522 DPRINTK("EXIT, link offline\n");
3523 return 0;
3524 }
3525
3526 /* wait a while before checking status, see SRST for more info */
3527 msleep(150);
3528
3529 rc = ata_wait_ready(ap, deadline);
3530 /* link occupied, -ENODEV too is an error */
3531 if (rc) {
3532 ata_port_printk(ap, KERN_ERR,
3533 "COMRESET failed (errno=%d)\n", rc);
3534 return rc;
3535 }
3536
3537 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3538
3539 *class = ata_dev_try_classify(ap, 0, NULL);
3540
3541 DPRINTK("EXIT, class=%u\n", *class);
3542 return 0;
3543 }
3544
3545 /**
3546 * ata_std_postreset - standard postreset callback
3547 * @ap: the target ata_port
3548 * @classes: classes of attached devices
3549 *
3550 * This function is invoked after a successful reset. Note that
3551 * the device might have been reset more than once using
3552 * different reset methods before postreset is invoked.
3553 *
3554 * LOCKING:
3555 * Kernel thread context (may sleep)
3556 */
3557 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3558 {
3559 u32 serror;
3560
3561 DPRINTK("ENTER\n");
3562
3563 /* print link status */
3564 sata_print_link_status(ap);
3565
3566 /* clear SError */
3567 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3568 sata_scr_write(ap, SCR_ERROR, serror);
3569
3570 /* is double-select really necessary? */
3571 if (classes[0] != ATA_DEV_NONE)
3572 ap->ops->dev_select(ap, 1);
3573 if (classes[1] != ATA_DEV_NONE)
3574 ap->ops->dev_select(ap, 0);
3575
3576 /* bail out if no device is present */
3577 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3578 DPRINTK("EXIT, no device\n");
3579 return;
3580 }
3581
3582 /* set up device control */
3583 if (ap->ioaddr.ctl_addr)
3584 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3585
3586 DPRINTK("EXIT\n");
3587 }
3588
3589 /**
3590 * ata_dev_same_device - Determine whether new ID matches configured device
3591 * @dev: device to compare against
3592 * @new_class: class of the new device
3593 * @new_id: IDENTIFY page of the new device
3594 *
3595 * Compare @new_class and @new_id against @dev and determine
3596 * whether @dev is the device indicated by @new_class and
3597 * @new_id.
3598 *
3599 * LOCKING:
3600 * None.
3601 *
3602 * RETURNS:
3603 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3604 */
3605 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3606 const u16 *new_id)
3607 {
3608 const u16 *old_id = dev->id;
3609 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3610 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3611
3612 if (dev->class != new_class) {
3613 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3614 dev->class, new_class);
3615 return 0;
3616 }
3617
3618 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3619 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3620 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3621 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3622
3623 if (strcmp(model[0], model[1])) {
3624 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3625 "'%s' != '%s'\n", model[0], model[1]);
3626 return 0;
3627 }
3628
3629 if (strcmp(serial[0], serial[1])) {
3630 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3631 "'%s' != '%s'\n", serial[0], serial[1]);
3632 return 0;
3633 }
3634
3635 return 1;
3636 }
3637
3638 /**
3639 * ata_dev_reread_id - Re-read IDENTIFY data
3640 * @dev: target ATA device
3641 * @readid_flags: read ID flags
3642 *
3643 * Re-read IDENTIFY page and make sure @dev is still attached to
3644 * the port.
3645 *
3646 * LOCKING:
3647 * Kernel thread context (may sleep)
3648 *
3649 * RETURNS:
3650 * 0 on success, negative errno otherwise
3651 */
3652 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3653 {
3654 unsigned int class = dev->class;
3655 u16 *id = (void *)dev->ap->sector_buf;
3656 int rc;
3657
3658 /* read ID data */
3659 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3660 if (rc)
3661 return rc;
3662
3663 /* is the device still there? */
3664 if (!ata_dev_same_device(dev, class, id))
3665 return -ENODEV;
3666
3667 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3668 return 0;
3669 }
3670
3671 /**
3672 * ata_dev_revalidate - Revalidate ATA device
3673 * @dev: device to revalidate
3674 * @readid_flags: read ID flags
3675 *
3676 * Re-read IDENTIFY page, make sure @dev is still attached to the
3677 * port and reconfigure it according to the new IDENTIFY page.
3678 *
3679 * LOCKING:
3680 * Kernel thread context (may sleep)
3681 *
3682 * RETURNS:
3683 * 0 on success, negative errno otherwise
3684 */
3685 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3686 {
3687 u64 n_sectors = dev->n_sectors;
3688 int rc;
3689
3690 if (!ata_dev_enabled(dev))
3691 return -ENODEV;
3692
3693 /* re-read ID */
3694 rc = ata_dev_reread_id(dev, readid_flags);
3695 if (rc)
3696 goto fail;
3697
3698 /* configure device according to the new ID */
3699 rc = ata_dev_configure(dev);
3700 if (rc)
3701 goto fail;
3702
3703 /* verify n_sectors hasn't changed */
3704 if (dev->class == ATA_DEV_ATA && n_sectors &&
3705 dev->n_sectors != n_sectors) {
3706 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3707 "%llu != %llu\n",
3708 (unsigned long long)n_sectors,
3709 (unsigned long long)dev->n_sectors);
3710
3711 /* restore original n_sectors */
3712 dev->n_sectors = n_sectors;
3713
3714 rc = -ENODEV;
3715 goto fail;
3716 }
3717
3718 return 0;
3719
3720 fail:
3721 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3722 return rc;
3723 }
3724
3725 struct ata_blacklist_entry {
3726 const char *model_num;
3727 const char *model_rev;
3728 unsigned long horkage;
3729 };
3730
3731 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3732 /* Devices with DMA related problems under Linux */
3733 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3734 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3735 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3736 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3737 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3738 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3739 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3740 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3741 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3742 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3743 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3744 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3745 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3746 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3747 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3748 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3749 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3750 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3751 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3752 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3753 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3754 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3755 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3756 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3757 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3758 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3759 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3760 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3761 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3762 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3763 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3764 { "IOMEGA ZIP 250 ATAPI Floppy",
3765 NULL, ATA_HORKAGE_NODMA },
3766
3767 /* Weird ATAPI devices */
3768 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3769
3770 /* Devices we expect to fail diagnostics */
3771
3772 /* Devices where NCQ should be avoided */
3773 /* NCQ is slow */
3774 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3775 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3776 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3777 /* NCQ is broken */
3778 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3779 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3780 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3781 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3782 ATA_HORKAGE_NONCQ },
3783 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3784 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3785 /* Blacklist entries taken from Silicon Image 3124/3132
3786 Windows driver .inf file - also several Linux problem reports */
3787 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3788 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3789 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3790 /* Drives which do spurious command completion */
3791 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3792 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3793 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3794 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3795 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3796 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3797 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3798
3799 /* devices which puke on READ_NATIVE_MAX */
3800 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3801 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3802 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3803 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3804
3805 /* End Marker */
3806 { }
3807 };
3808
3809 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3810 {
3811 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3812 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3813 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3814
3815 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3816 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3817
3818 while (ad->model_num) {
3819 if (!strcmp(ad->model_num, model_num)) {
3820 if (ad->model_rev == NULL)
3821 return ad->horkage;
3822 if (!strcmp(ad->model_rev, model_rev))
3823 return ad->horkage;
3824 }
3825 ad++;
3826 }
3827 return 0;
3828 }
3829
3830 static int ata_dma_blacklisted(const struct ata_device *dev)
3831 {
3832 /* We don't support polling DMA.
3833 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3834 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3835 */
3836 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3837 (dev->flags & ATA_DFLAG_CDB_INTR))
3838 return 1;
3839 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3840 }
3841
3842 /**
3843 * ata_dev_xfermask - Compute supported xfermask of the given device
3844 * @dev: Device to compute xfermask for
3845 *
3846 * Compute supported xfermask of @dev and store it in
3847 * dev->*_mask. This function is responsible for applying all
3848 * known limits including host controller limits, device
3849 * blacklist, etc...
3850 *
3851 * LOCKING:
3852 * None.
3853 */
3854 static void ata_dev_xfermask(struct ata_device *dev)
3855 {
3856 struct ata_port *ap = dev->ap;
3857 struct ata_host *host = ap->host;
3858 unsigned long xfer_mask;
3859
3860 /* controller modes available */
3861 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3862 ap->mwdma_mask, ap->udma_mask);
3863
3864 /* drive modes available */
3865 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3866 dev->mwdma_mask, dev->udma_mask);
3867 xfer_mask &= ata_id_xfermask(dev->id);
3868
3869 /*
3870 * CFA Advanced TrueIDE timings are not allowed on a shared
3871 * cable
3872 */
3873 if (ata_dev_pair(dev)) {
3874 /* No PIO5 or PIO6 */
3875 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3876 /* No MWDMA3 or MWDMA 4 */
3877 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3878 }
3879
3880 if (ata_dma_blacklisted(dev)) {
3881 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3882 ata_dev_printk(dev, KERN_WARNING,
3883 "device is on DMA blacklist, disabling DMA\n");
3884 }
3885
3886 if ((host->flags & ATA_HOST_SIMPLEX) &&
3887 host->simplex_claimed && host->simplex_claimed != ap) {
3888 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3889 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3890 "other device, disabling DMA\n");
3891 }
3892
3893 if (ap->flags & ATA_FLAG_NO_IORDY)
3894 xfer_mask &= ata_pio_mask_no_iordy(dev);
3895
3896 if (ap->ops->mode_filter)
3897 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3898
3899 /* Apply cable rule here. Don't apply it early because when
3900 * we handle hot plug the cable type can itself change.
3901 * Check this last so that we know if the transfer rate was
3902 * solely limited by the cable.
3903 * Unknown or 80 wire cables reported host side are checked
3904 * drive side as well. Cases where we know a 40wire cable
3905 * is used safely for 80 are not checked here.
3906 */
3907 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3908 /* UDMA/44 or higher would be available */
3909 if((ap->cbl == ATA_CBL_PATA40) ||
3910 (ata_drive_40wire(dev->id) &&
3911 (ap->cbl == ATA_CBL_PATA_UNK ||
3912 ap->cbl == ATA_CBL_PATA80))) {
3913 ata_dev_printk(dev, KERN_WARNING,
3914 "limited to UDMA/33 due to 40-wire cable\n");
3915 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3916 }
3917
3918 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3919 &dev->mwdma_mask, &dev->udma_mask);
3920 }
3921
3922 /**
3923 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3924 * @dev: Device to which command will be sent
3925 *
3926 * Issue SET FEATURES - XFER MODE command to device @dev
3927 * on port @ap.
3928 *
3929 * LOCKING:
3930 * PCI/etc. bus probe sem.
3931 *
3932 * RETURNS:
3933 * 0 on success, AC_ERR_* mask otherwise.
3934 */
3935
3936 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3937 {
3938 struct ata_taskfile tf;
3939 unsigned int err_mask;
3940
3941 /* set up set-features taskfile */
3942 DPRINTK("set features - xfer mode\n");
3943
3944 /* Some controllers and ATAPI devices show flaky interrupt
3945 * behavior after setting xfer mode. Use polling instead.
3946 */
3947 ata_tf_init(dev, &tf);
3948 tf.command = ATA_CMD_SET_FEATURES;
3949 tf.feature = SETFEATURES_XFER;
3950 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3951 tf.protocol = ATA_PROT_NODATA;
3952 tf.nsect = dev->xfer_mode;
3953
3954 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3955
3956 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3957 return err_mask;
3958 }
3959
3960 /**
3961 * ata_dev_init_params - Issue INIT DEV PARAMS command
3962 * @dev: Device to which command will be sent
3963 * @heads: Number of heads (taskfile parameter)
3964 * @sectors: Number of sectors (taskfile parameter)
3965 *
3966 * LOCKING:
3967 * Kernel thread context (may sleep)
3968 *
3969 * RETURNS:
3970 * 0 on success, AC_ERR_* mask otherwise.
3971 */
3972 static unsigned int ata_dev_init_params(struct ata_device *dev,
3973 u16 heads, u16 sectors)
3974 {
3975 struct ata_taskfile tf;
3976 unsigned int err_mask;
3977
3978 /* Number of sectors per track 1-255. Number of heads 1-16 */
3979 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3980 return AC_ERR_INVALID;
3981
3982 /* set up init dev params taskfile */
3983 DPRINTK("init dev params \n");
3984
3985 ata_tf_init(dev, &tf);
3986 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3987 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3988 tf.protocol = ATA_PROT_NODATA;
3989 tf.nsect = sectors;
3990 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3991
3992 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3993 /* A clean abort indicates an original or just out of spec drive
3994 and we should continue as we issue the setup based on the
3995 drive reported working geometry */
3996 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
3997 err_mask = 0;
3998
3999 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4000 return err_mask;
4001 }
4002
4003 /**
4004 * ata_sg_clean - Unmap DMA memory associated with command
4005 * @qc: Command containing DMA memory to be released
4006 *
4007 * Unmap all mapped DMA memory associated with this command.
4008 *
4009 * LOCKING:
4010 * spin_lock_irqsave(host lock)
4011 */
4012 void ata_sg_clean(struct ata_queued_cmd *qc)
4013 {
4014 struct ata_port *ap = qc->ap;
4015 struct scatterlist *sg = qc->__sg;
4016 int dir = qc->dma_dir;
4017 void *pad_buf = NULL;
4018
4019 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4020 WARN_ON(sg == NULL);
4021
4022 if (qc->flags & ATA_QCFLAG_SINGLE)
4023 WARN_ON(qc->n_elem > 1);
4024
4025 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4026
4027 /* if we padded the buffer out to 32-bit bound, and data
4028 * xfer direction is from-device, we must copy from the
4029 * pad buffer back into the supplied buffer
4030 */
4031 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4032 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4033
4034 if (qc->flags & ATA_QCFLAG_SG) {
4035 if (qc->n_elem)
4036 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4037 /* restore last sg */
4038 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4039 if (pad_buf) {
4040 struct scatterlist *psg = &qc->pad_sgent;
4041 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4042 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4043 kunmap_atomic(addr, KM_IRQ0);
4044 }
4045 } else {
4046 if (qc->n_elem)
4047 dma_unmap_single(ap->dev,
4048 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4049 dir);
4050 /* restore sg */
4051 sg->length += qc->pad_len;
4052 if (pad_buf)
4053 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4054 pad_buf, qc->pad_len);
4055 }
4056
4057 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4058 qc->__sg = NULL;
4059 }
4060
4061 /**
4062 * ata_fill_sg - Fill PCI IDE PRD table
4063 * @qc: Metadata associated with taskfile to be transferred
4064 *
4065 * Fill PCI IDE PRD (scatter-gather) table with segments
4066 * associated with the current disk command.
4067 *
4068 * LOCKING:
4069 * spin_lock_irqsave(host lock)
4070 *
4071 */
4072 static void ata_fill_sg(struct ata_queued_cmd *qc)
4073 {
4074 struct ata_port *ap = qc->ap;
4075 struct scatterlist *sg;
4076 unsigned int idx;
4077
4078 WARN_ON(qc->__sg == NULL);
4079 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4080
4081 idx = 0;
4082 ata_for_each_sg(sg, qc) {
4083 u32 addr, offset;
4084 u32 sg_len, len;
4085
4086 /* determine if physical DMA addr spans 64K boundary.
4087 * Note h/w doesn't support 64-bit, so we unconditionally
4088 * truncate dma_addr_t to u32.
4089 */
4090 addr = (u32) sg_dma_address(sg);
4091 sg_len = sg_dma_len(sg);
4092
4093 while (sg_len) {
4094 offset = addr & 0xffff;
4095 len = sg_len;
4096 if ((offset + sg_len) > 0x10000)
4097 len = 0x10000 - offset;
4098
4099 ap->prd[idx].addr = cpu_to_le32(addr);
4100 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4101 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4102
4103 idx++;
4104 sg_len -= len;
4105 addr += len;
4106 }
4107 }
4108
4109 if (idx)
4110 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4111 }
4112
4113 /**
4114 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4115 * @qc: Metadata associated with taskfile to be transferred
4116 *
4117 * Fill PCI IDE PRD (scatter-gather) table with segments
4118 * associated with the current disk command. Perform the fill
4119 * so that we avoid writing any length 64K records for
4120 * controllers that don't follow the spec.
4121 *
4122 * LOCKING:
4123 * spin_lock_irqsave(host lock)
4124 *
4125 */
4126 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4127 {
4128 struct ata_port *ap = qc->ap;
4129 struct scatterlist *sg;
4130 unsigned int idx;
4131
4132 WARN_ON(qc->__sg == NULL);
4133 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4134
4135 idx = 0;
4136 ata_for_each_sg(sg, qc) {
4137 u32 addr, offset;
4138 u32 sg_len, len, blen;
4139
4140 /* determine if physical DMA addr spans 64K boundary.
4141 * Note h/w doesn't support 64-bit, so we unconditionally
4142 * truncate dma_addr_t to u32.
4143 */
4144 addr = (u32) sg_dma_address(sg);
4145 sg_len = sg_dma_len(sg);
4146
4147 while (sg_len) {
4148 offset = addr & 0xffff;
4149 len = sg_len;
4150 if ((offset + sg_len) > 0x10000)
4151 len = 0x10000 - offset;
4152
4153 blen = len & 0xffff;
4154 ap->prd[idx].addr = cpu_to_le32(addr);
4155 if (blen == 0) {
4156 /* Some PATA chipsets like the CS5530 can't
4157 cope with 0x0000 meaning 64K as the spec says */
4158 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4159 blen = 0x8000;
4160 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4161 }
4162 ap->prd[idx].flags_len = cpu_to_le32(blen);
4163 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4164
4165 idx++;
4166 sg_len -= len;
4167 addr += len;
4168 }
4169 }
4170
4171 if (idx)
4172 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4173 }
4174
4175 /**
4176 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4177 * @qc: Metadata associated with taskfile to check
4178 *
4179 * Allow low-level driver to filter ATA PACKET commands, returning
4180 * a status indicating whether or not it is OK to use DMA for the
4181 * supplied PACKET command.
4182 *
4183 * LOCKING:
4184 * spin_lock_irqsave(host lock)
4185 *
4186 * RETURNS: 0 when ATAPI DMA can be used
4187 * nonzero otherwise
4188 */
4189 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4190 {
4191 struct ata_port *ap = qc->ap;
4192
4193 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4194 * few ATAPI devices choke on such DMA requests.
4195 */
4196 if (unlikely(qc->nbytes & 15))
4197 return 1;
4198
4199 if (ap->ops->check_atapi_dma)
4200 return ap->ops->check_atapi_dma(qc);
4201
4202 return 0;
4203 }
4204
4205 /**
4206 * ata_qc_prep - Prepare taskfile for submission
4207 * @qc: Metadata associated with taskfile to be prepared
4208 *
4209 * Prepare ATA taskfile for submission.
4210 *
4211 * LOCKING:
4212 * spin_lock_irqsave(host lock)
4213 */
4214 void ata_qc_prep(struct ata_queued_cmd *qc)
4215 {
4216 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4217 return;
4218
4219 ata_fill_sg(qc);
4220 }
4221
4222 /**
4223 * ata_dumb_qc_prep - Prepare taskfile for submission
4224 * @qc: Metadata associated with taskfile to be prepared
4225 *
4226 * Prepare ATA taskfile for submission.
4227 *
4228 * LOCKING:
4229 * spin_lock_irqsave(host lock)
4230 */
4231 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4232 {
4233 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4234 return;
4235
4236 ata_fill_sg_dumb(qc);
4237 }
4238
4239 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4240
4241 /**
4242 * ata_sg_init_one - Associate command with memory buffer
4243 * @qc: Command to be associated
4244 * @buf: Memory buffer
4245 * @buflen: Length of memory buffer, in bytes.
4246 *
4247 * Initialize the data-related elements of queued_cmd @qc
4248 * to point to a single memory buffer, @buf of byte length @buflen.
4249 *
4250 * LOCKING:
4251 * spin_lock_irqsave(host lock)
4252 */
4253
4254 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4255 {
4256 qc->flags |= ATA_QCFLAG_SINGLE;
4257
4258 qc->__sg = &qc->sgent;
4259 qc->n_elem = 1;
4260 qc->orig_n_elem = 1;
4261 qc->buf_virt = buf;
4262 qc->nbytes = buflen;
4263
4264 sg_init_one(&qc->sgent, buf, buflen);
4265 }
4266
4267 /**
4268 * ata_sg_init - Associate command with scatter-gather table.
4269 * @qc: Command to be associated
4270 * @sg: Scatter-gather table.
4271 * @n_elem: Number of elements in s/g table.
4272 *
4273 * Initialize the data-related elements of queued_cmd @qc
4274 * to point to a scatter-gather table @sg, containing @n_elem
4275 * elements.
4276 *
4277 * LOCKING:
4278 * spin_lock_irqsave(host lock)
4279 */
4280
4281 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4282 unsigned int n_elem)
4283 {
4284 qc->flags |= ATA_QCFLAG_SG;
4285 qc->__sg = sg;
4286 qc->n_elem = n_elem;
4287 qc->orig_n_elem = n_elem;
4288 }
4289
4290 /**
4291 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4292 * @qc: Command with memory buffer to be mapped.
4293 *
4294 * DMA-map the memory buffer associated with queued_cmd @qc.
4295 *
4296 * LOCKING:
4297 * spin_lock_irqsave(host lock)
4298 *
4299 * RETURNS:
4300 * Zero on success, negative on error.
4301 */
4302
4303 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4304 {
4305 struct ata_port *ap = qc->ap;
4306 int dir = qc->dma_dir;
4307 struct scatterlist *sg = qc->__sg;
4308 dma_addr_t dma_address;
4309 int trim_sg = 0;
4310
4311 /* we must lengthen transfers to end on a 32-bit boundary */
4312 qc->pad_len = sg->length & 3;
4313 if (qc->pad_len) {
4314 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4315 struct scatterlist *psg = &qc->pad_sgent;
4316
4317 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4318
4319 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4320
4321 if (qc->tf.flags & ATA_TFLAG_WRITE)
4322 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4323 qc->pad_len);
4324
4325 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4326 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4327 /* trim sg */
4328 sg->length -= qc->pad_len;
4329 if (sg->length == 0)
4330 trim_sg = 1;
4331
4332 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4333 sg->length, qc->pad_len);
4334 }
4335
4336 if (trim_sg) {
4337 qc->n_elem--;
4338 goto skip_map;
4339 }
4340
4341 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4342 sg->length, dir);
4343 if (dma_mapping_error(dma_address)) {
4344 /* restore sg */
4345 sg->length += qc->pad_len;
4346 return -1;
4347 }
4348
4349 sg_dma_address(sg) = dma_address;
4350 sg_dma_len(sg) = sg->length;
4351
4352 skip_map:
4353 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4354 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4355
4356 return 0;
4357 }
4358
4359 /**
4360 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4361 * @qc: Command with scatter-gather table to be mapped.
4362 *
4363 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4364 *
4365 * LOCKING:
4366 * spin_lock_irqsave(host lock)
4367 *
4368 * RETURNS:
4369 * Zero on success, negative on error.
4370 *
4371 */
4372
4373 static int ata_sg_setup(struct ata_queued_cmd *qc)
4374 {
4375 struct ata_port *ap = qc->ap;
4376 struct scatterlist *sg = qc->__sg;
4377 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4378 int n_elem, pre_n_elem, dir, trim_sg = 0;
4379
4380 VPRINTK("ENTER, ata%u\n", ap->print_id);
4381 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4382
4383 /* we must lengthen transfers to end on a 32-bit boundary */
4384 qc->pad_len = lsg->length & 3;
4385 if (qc->pad_len) {
4386 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4387 struct scatterlist *psg = &qc->pad_sgent;
4388 unsigned int offset;
4389
4390 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4391
4392 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4393
4394 /*
4395 * psg->page/offset are used to copy to-be-written
4396 * data in this function or read data in ata_sg_clean.
4397 */
4398 offset = lsg->offset + lsg->length - qc->pad_len;
4399 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4400 psg->offset = offset_in_page(offset);
4401
4402 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4403 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4404 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4405 kunmap_atomic(addr, KM_IRQ0);
4406 }
4407
4408 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4409 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4410 /* trim last sg */
4411 lsg->length -= qc->pad_len;
4412 if (lsg->length == 0)
4413 trim_sg = 1;
4414
4415 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4416 qc->n_elem - 1, lsg->length, qc->pad_len);
4417 }
4418
4419 pre_n_elem = qc->n_elem;
4420 if (trim_sg && pre_n_elem)
4421 pre_n_elem--;
4422
4423 if (!pre_n_elem) {
4424 n_elem = 0;
4425 goto skip_map;
4426 }
4427
4428 dir = qc->dma_dir;
4429 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4430 if (n_elem < 1) {
4431 /* restore last sg */
4432 lsg->length += qc->pad_len;
4433 return -1;
4434 }
4435
4436 DPRINTK("%d sg elements mapped\n", n_elem);
4437
4438 skip_map:
4439 qc->n_elem = n_elem;
4440
4441 return 0;
4442 }
4443
4444 /**
4445 * swap_buf_le16 - swap halves of 16-bit words in place
4446 * @buf: Buffer to swap
4447 * @buf_words: Number of 16-bit words in buffer.
4448 *
4449 * Swap halves of 16-bit words if needed to convert from
4450 * little-endian byte order to native cpu byte order, or
4451 * vice-versa.
4452 *
4453 * LOCKING:
4454 * Inherited from caller.
4455 */
4456 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4457 {
4458 #ifdef __BIG_ENDIAN
4459 unsigned int i;
4460
4461 for (i = 0; i < buf_words; i++)
4462 buf[i] = le16_to_cpu(buf[i]);
4463 #endif /* __BIG_ENDIAN */
4464 }
4465
4466 /**
4467 * ata_data_xfer - Transfer data by PIO
4468 * @adev: device to target
4469 * @buf: data buffer
4470 * @buflen: buffer length
4471 * @write_data: read/write
4472 *
4473 * Transfer data from/to the device data register by PIO.
4474 *
4475 * LOCKING:
4476 * Inherited from caller.
4477 */
4478 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4479 unsigned int buflen, int write_data)
4480 {
4481 struct ata_port *ap = adev->ap;
4482 unsigned int words = buflen >> 1;
4483
4484 /* Transfer multiple of 2 bytes */
4485 if (write_data)
4486 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4487 else
4488 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4489
4490 /* Transfer trailing 1 byte, if any. */
4491 if (unlikely(buflen & 0x01)) {
4492 u16 align_buf[1] = { 0 };
4493 unsigned char *trailing_buf = buf + buflen - 1;
4494
4495 if (write_data) {
4496 memcpy(align_buf, trailing_buf, 1);
4497 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4498 } else {
4499 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4500 memcpy(trailing_buf, align_buf, 1);
4501 }
4502 }
4503 }
4504
4505 /**
4506 * ata_data_xfer_noirq - Transfer data by PIO
4507 * @adev: device to target
4508 * @buf: data buffer
4509 * @buflen: buffer length
4510 * @write_data: read/write
4511 *
4512 * Transfer data from/to the device data register by PIO. Do the
4513 * transfer with interrupts disabled.
4514 *
4515 * LOCKING:
4516 * Inherited from caller.
4517 */
4518 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4519 unsigned int buflen, int write_data)
4520 {
4521 unsigned long flags;
4522 local_irq_save(flags);
4523 ata_data_xfer(adev, buf, buflen, write_data);
4524 local_irq_restore(flags);
4525 }
4526
4527
4528 /**
4529 * ata_pio_sector - Transfer a sector of data.
4530 * @qc: Command on going
4531 *
4532 * Transfer qc->sect_size bytes of data from/to the ATA device.
4533 *
4534 * LOCKING:
4535 * Inherited from caller.
4536 */
4537
4538 static void ata_pio_sector(struct ata_queued_cmd *qc)
4539 {
4540 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4541 struct scatterlist *sg = qc->__sg;
4542 struct ata_port *ap = qc->ap;
4543 struct page *page;
4544 unsigned int offset;
4545 unsigned char *buf;
4546
4547 if (qc->curbytes == qc->nbytes - qc->sect_size)
4548 ap->hsm_task_state = HSM_ST_LAST;
4549
4550 page = sg[qc->cursg].page;
4551 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4552
4553 /* get the current page and offset */
4554 page = nth_page(page, (offset >> PAGE_SHIFT));
4555 offset %= PAGE_SIZE;
4556
4557 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4558
4559 if (PageHighMem(page)) {
4560 unsigned long flags;
4561
4562 /* FIXME: use a bounce buffer */
4563 local_irq_save(flags);
4564 buf = kmap_atomic(page, KM_IRQ0);
4565
4566 /* do the actual data transfer */
4567 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4568
4569 kunmap_atomic(buf, KM_IRQ0);
4570 local_irq_restore(flags);
4571 } else {
4572 buf = page_address(page);
4573 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4574 }
4575
4576 qc->curbytes += qc->sect_size;
4577 qc->cursg_ofs += qc->sect_size;
4578
4579 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4580 qc->cursg++;
4581 qc->cursg_ofs = 0;
4582 }
4583 }
4584
4585 /**
4586 * ata_pio_sectors - Transfer one or many sectors.
4587 * @qc: Command on going
4588 *
4589 * Transfer one or many sectors of data from/to the
4590 * ATA device for the DRQ request.
4591 *
4592 * LOCKING:
4593 * Inherited from caller.
4594 */
4595
4596 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4597 {
4598 if (is_multi_taskfile(&qc->tf)) {
4599 /* READ/WRITE MULTIPLE */
4600 unsigned int nsect;
4601
4602 WARN_ON(qc->dev->multi_count == 0);
4603
4604 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4605 qc->dev->multi_count);
4606 while (nsect--)
4607 ata_pio_sector(qc);
4608 } else
4609 ata_pio_sector(qc);
4610 }
4611
4612 /**
4613 * atapi_send_cdb - Write CDB bytes to hardware
4614 * @ap: Port to which ATAPI device is attached.
4615 * @qc: Taskfile currently active
4616 *
4617 * When device has indicated its readiness to accept
4618 * a CDB, this function is called. Send the CDB.
4619 *
4620 * LOCKING:
4621 * caller.
4622 */
4623
4624 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4625 {
4626 /* send SCSI cdb */
4627 DPRINTK("send cdb\n");
4628 WARN_ON(qc->dev->cdb_len < 12);
4629
4630 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4631 ata_altstatus(ap); /* flush */
4632
4633 switch (qc->tf.protocol) {
4634 case ATA_PROT_ATAPI:
4635 ap->hsm_task_state = HSM_ST;
4636 break;
4637 case ATA_PROT_ATAPI_NODATA:
4638 ap->hsm_task_state = HSM_ST_LAST;
4639 break;
4640 case ATA_PROT_ATAPI_DMA:
4641 ap->hsm_task_state = HSM_ST_LAST;
4642 /* initiate bmdma */
4643 ap->ops->bmdma_start(qc);
4644 break;
4645 }
4646 }
4647
4648 /**
4649 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4650 * @qc: Command on going
4651 * @bytes: number of bytes
4652 *
4653 * Transfer Transfer data from/to the ATAPI device.
4654 *
4655 * LOCKING:
4656 * Inherited from caller.
4657 *
4658 */
4659
4660 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4661 {
4662 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4663 struct scatterlist *sg = qc->__sg;
4664 struct ata_port *ap = qc->ap;
4665 struct page *page;
4666 unsigned char *buf;
4667 unsigned int offset, count;
4668
4669 if (qc->curbytes + bytes >= qc->nbytes)
4670 ap->hsm_task_state = HSM_ST_LAST;
4671
4672 next_sg:
4673 if (unlikely(qc->cursg >= qc->n_elem)) {
4674 /*
4675 * The end of qc->sg is reached and the device expects
4676 * more data to transfer. In order not to overrun qc->sg
4677 * and fulfill length specified in the byte count register,
4678 * - for read case, discard trailing data from the device
4679 * - for write case, padding zero data to the device
4680 */
4681 u16 pad_buf[1] = { 0 };
4682 unsigned int words = bytes >> 1;
4683 unsigned int i;
4684
4685 if (words) /* warning if bytes > 1 */
4686 ata_dev_printk(qc->dev, KERN_WARNING,
4687 "%u bytes trailing data\n", bytes);
4688
4689 for (i = 0; i < words; i++)
4690 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4691
4692 ap->hsm_task_state = HSM_ST_LAST;
4693 return;
4694 }
4695
4696 sg = &qc->__sg[qc->cursg];
4697
4698 page = sg->page;
4699 offset = sg->offset + qc->cursg_ofs;
4700
4701 /* get the current page and offset */
4702 page = nth_page(page, (offset >> PAGE_SHIFT));
4703 offset %= PAGE_SIZE;
4704
4705 /* don't overrun current sg */
4706 count = min(sg->length - qc->cursg_ofs, bytes);
4707
4708 /* don't cross page boundaries */
4709 count = min(count, (unsigned int)PAGE_SIZE - offset);
4710
4711 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4712
4713 if (PageHighMem(page)) {
4714 unsigned long flags;
4715
4716 /* FIXME: use bounce buffer */
4717 local_irq_save(flags);
4718 buf = kmap_atomic(page, KM_IRQ0);
4719
4720 /* do the actual data transfer */
4721 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4722
4723 kunmap_atomic(buf, KM_IRQ0);
4724 local_irq_restore(flags);
4725 } else {
4726 buf = page_address(page);
4727 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4728 }
4729
4730 bytes -= count;
4731 qc->curbytes += count;
4732 qc->cursg_ofs += count;
4733
4734 if (qc->cursg_ofs == sg->length) {
4735 qc->cursg++;
4736 qc->cursg_ofs = 0;
4737 }
4738
4739 if (bytes)
4740 goto next_sg;
4741 }
4742
4743 /**
4744 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4745 * @qc: Command on going
4746 *
4747 * Transfer Transfer data from/to the ATAPI device.
4748 *
4749 * LOCKING:
4750 * Inherited from caller.
4751 */
4752
4753 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4754 {
4755 struct ata_port *ap = qc->ap;
4756 struct ata_device *dev = qc->dev;
4757 unsigned int ireason, bc_lo, bc_hi, bytes;
4758 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4759
4760 /* Abuse qc->result_tf for temp storage of intermediate TF
4761 * here to save some kernel stack usage.
4762 * For normal completion, qc->result_tf is not relevant. For
4763 * error, qc->result_tf is later overwritten by ata_qc_complete().
4764 * So, the correctness of qc->result_tf is not affected.
4765 */
4766 ap->ops->tf_read(ap, &qc->result_tf);
4767 ireason = qc->result_tf.nsect;
4768 bc_lo = qc->result_tf.lbam;
4769 bc_hi = qc->result_tf.lbah;
4770 bytes = (bc_hi << 8) | bc_lo;
4771
4772 /* shall be cleared to zero, indicating xfer of data */
4773 if (ireason & (1 << 0))
4774 goto err_out;
4775
4776 /* make sure transfer direction matches expected */
4777 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4778 if (do_write != i_write)
4779 goto err_out;
4780
4781 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4782
4783 __atapi_pio_bytes(qc, bytes);
4784
4785 return;
4786
4787 err_out:
4788 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4789 qc->err_mask |= AC_ERR_HSM;
4790 ap->hsm_task_state = HSM_ST_ERR;
4791 }
4792
4793 /**
4794 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4795 * @ap: the target ata_port
4796 * @qc: qc on going
4797 *
4798 * RETURNS:
4799 * 1 if ok in workqueue, 0 otherwise.
4800 */
4801
4802 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4803 {
4804 if (qc->tf.flags & ATA_TFLAG_POLLING)
4805 return 1;
4806
4807 if (ap->hsm_task_state == HSM_ST_FIRST) {
4808 if (qc->tf.protocol == ATA_PROT_PIO &&
4809 (qc->tf.flags & ATA_TFLAG_WRITE))
4810 return 1;
4811
4812 if (is_atapi_taskfile(&qc->tf) &&
4813 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4814 return 1;
4815 }
4816
4817 return 0;
4818 }
4819
4820 /**
4821 * ata_hsm_qc_complete - finish a qc running on standard HSM
4822 * @qc: Command to complete
4823 * @in_wq: 1 if called from workqueue, 0 otherwise
4824 *
4825 * Finish @qc which is running on standard HSM.
4826 *
4827 * LOCKING:
4828 * If @in_wq is zero, spin_lock_irqsave(host lock).
4829 * Otherwise, none on entry and grabs host lock.
4830 */
4831 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4832 {
4833 struct ata_port *ap = qc->ap;
4834 unsigned long flags;
4835
4836 if (ap->ops->error_handler) {
4837 if (in_wq) {
4838 spin_lock_irqsave(ap->lock, flags);
4839
4840 /* EH might have kicked in while host lock is
4841 * released.
4842 */
4843 qc = ata_qc_from_tag(ap, qc->tag);
4844 if (qc) {
4845 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4846 ap->ops->irq_on(ap);
4847 ata_qc_complete(qc);
4848 } else
4849 ata_port_freeze(ap);
4850 }
4851
4852 spin_unlock_irqrestore(ap->lock, flags);
4853 } else {
4854 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4855 ata_qc_complete(qc);
4856 else
4857 ata_port_freeze(ap);
4858 }
4859 } else {
4860 if (in_wq) {
4861 spin_lock_irqsave(ap->lock, flags);
4862 ap->ops->irq_on(ap);
4863 ata_qc_complete(qc);
4864 spin_unlock_irqrestore(ap->lock, flags);
4865 } else
4866 ata_qc_complete(qc);
4867 }
4868 }
4869
4870 /**
4871 * ata_hsm_move - move the HSM to the next state.
4872 * @ap: the target ata_port
4873 * @qc: qc on going
4874 * @status: current device status
4875 * @in_wq: 1 if called from workqueue, 0 otherwise
4876 *
4877 * RETURNS:
4878 * 1 when poll next status needed, 0 otherwise.
4879 */
4880 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4881 u8 status, int in_wq)
4882 {
4883 unsigned long flags = 0;
4884 int poll_next;
4885
4886 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4887
4888 /* Make sure ata_qc_issue_prot() does not throw things
4889 * like DMA polling into the workqueue. Notice that
4890 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4891 */
4892 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4893
4894 fsm_start:
4895 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4896 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4897
4898 switch (ap->hsm_task_state) {
4899 case HSM_ST_FIRST:
4900 /* Send first data block or PACKET CDB */
4901
4902 /* If polling, we will stay in the work queue after
4903 * sending the data. Otherwise, interrupt handler
4904 * takes over after sending the data.
4905 */
4906 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4907
4908 /* check device status */
4909 if (unlikely((status & ATA_DRQ) == 0)) {
4910 /* handle BSY=0, DRQ=0 as error */
4911 if (likely(status & (ATA_ERR | ATA_DF)))
4912 /* device stops HSM for abort/error */
4913 qc->err_mask |= AC_ERR_DEV;
4914 else
4915 /* HSM violation. Let EH handle this */
4916 qc->err_mask |= AC_ERR_HSM;
4917
4918 ap->hsm_task_state = HSM_ST_ERR;
4919 goto fsm_start;
4920 }
4921
4922 /* Device should not ask for data transfer (DRQ=1)
4923 * when it finds something wrong.
4924 * We ignore DRQ here and stop the HSM by
4925 * changing hsm_task_state to HSM_ST_ERR and
4926 * let the EH abort the command or reset the device.
4927 */
4928 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4929 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4930 "error, dev_stat 0x%X\n", status);
4931 qc->err_mask |= AC_ERR_HSM;
4932 ap->hsm_task_state = HSM_ST_ERR;
4933 goto fsm_start;
4934 }
4935
4936 /* Send the CDB (atapi) or the first data block (ata pio out).
4937 * During the state transition, interrupt handler shouldn't
4938 * be invoked before the data transfer is complete and
4939 * hsm_task_state is changed. Hence, the following locking.
4940 */
4941 if (in_wq)
4942 spin_lock_irqsave(ap->lock, flags);
4943
4944 if (qc->tf.protocol == ATA_PROT_PIO) {
4945 /* PIO data out protocol.
4946 * send first data block.
4947 */
4948
4949 /* ata_pio_sectors() might change the state
4950 * to HSM_ST_LAST. so, the state is changed here
4951 * before ata_pio_sectors().
4952 */
4953 ap->hsm_task_state = HSM_ST;
4954 ata_pio_sectors(qc);
4955 ata_altstatus(ap); /* flush */
4956 } else
4957 /* send CDB */
4958 atapi_send_cdb(ap, qc);
4959
4960 if (in_wq)
4961 spin_unlock_irqrestore(ap->lock, flags);
4962
4963 /* if polling, ata_pio_task() handles the rest.
4964 * otherwise, interrupt handler takes over from here.
4965 */
4966 break;
4967
4968 case HSM_ST:
4969 /* complete command or read/write the data register */
4970 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4971 /* ATAPI PIO protocol */
4972 if ((status & ATA_DRQ) == 0) {
4973 /* No more data to transfer or device error.
4974 * Device error will be tagged in HSM_ST_LAST.
4975 */
4976 ap->hsm_task_state = HSM_ST_LAST;
4977 goto fsm_start;
4978 }
4979
4980 /* Device should not ask for data transfer (DRQ=1)
4981 * when it finds something wrong.
4982 * We ignore DRQ here and stop the HSM by
4983 * changing hsm_task_state to HSM_ST_ERR and
4984 * let the EH abort the command or reset the device.
4985 */
4986 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4987 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4988 "device error, dev_stat 0x%X\n",
4989 status);
4990 qc->err_mask |= AC_ERR_HSM;
4991 ap->hsm_task_state = HSM_ST_ERR;
4992 goto fsm_start;
4993 }
4994
4995 atapi_pio_bytes(qc);
4996
4997 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4998 /* bad ireason reported by device */
4999 goto fsm_start;
5000
5001 } else {
5002 /* ATA PIO protocol */
5003 if (unlikely((status & ATA_DRQ) == 0)) {
5004 /* handle BSY=0, DRQ=0 as error */
5005 if (likely(status & (ATA_ERR | ATA_DF)))
5006 /* device stops HSM for abort/error */
5007 qc->err_mask |= AC_ERR_DEV;
5008 else
5009 /* HSM violation. Let EH handle this.
5010 * Phantom devices also trigger this
5011 * condition. Mark hint.
5012 */
5013 qc->err_mask |= AC_ERR_HSM |
5014 AC_ERR_NODEV_HINT;
5015
5016 ap->hsm_task_state = HSM_ST_ERR;
5017 goto fsm_start;
5018 }
5019
5020 /* For PIO reads, some devices may ask for
5021 * data transfer (DRQ=1) alone with ERR=1.
5022 * We respect DRQ here and transfer one
5023 * block of junk data before changing the
5024 * hsm_task_state to HSM_ST_ERR.
5025 *
5026 * For PIO writes, ERR=1 DRQ=1 doesn't make
5027 * sense since the data block has been
5028 * transferred to the device.
5029 */
5030 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5031 /* data might be corrputed */
5032 qc->err_mask |= AC_ERR_DEV;
5033
5034 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5035 ata_pio_sectors(qc);
5036 ata_altstatus(ap);
5037 status = ata_wait_idle(ap);
5038 }
5039
5040 if (status & (ATA_BUSY | ATA_DRQ))
5041 qc->err_mask |= AC_ERR_HSM;
5042
5043 /* ata_pio_sectors() might change the
5044 * state to HSM_ST_LAST. so, the state
5045 * is changed after ata_pio_sectors().
5046 */
5047 ap->hsm_task_state = HSM_ST_ERR;
5048 goto fsm_start;
5049 }
5050
5051 ata_pio_sectors(qc);
5052
5053 if (ap->hsm_task_state == HSM_ST_LAST &&
5054 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5055 /* all data read */
5056 ata_altstatus(ap);
5057 status = ata_wait_idle(ap);
5058 goto fsm_start;
5059 }
5060 }
5061
5062 ata_altstatus(ap); /* flush */
5063 poll_next = 1;
5064 break;
5065
5066 case HSM_ST_LAST:
5067 if (unlikely(!ata_ok(status))) {
5068 qc->err_mask |= __ac_err_mask(status);
5069 ap->hsm_task_state = HSM_ST_ERR;
5070 goto fsm_start;
5071 }
5072
5073 /* no more data to transfer */
5074 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5075 ap->print_id, qc->dev->devno, status);
5076
5077 WARN_ON(qc->err_mask);
5078
5079 ap->hsm_task_state = HSM_ST_IDLE;
5080
5081 /* complete taskfile transaction */
5082 ata_hsm_qc_complete(qc, in_wq);
5083
5084 poll_next = 0;
5085 break;
5086
5087 case HSM_ST_ERR:
5088 /* make sure qc->err_mask is available to
5089 * know what's wrong and recover
5090 */
5091 WARN_ON(qc->err_mask == 0);
5092
5093 ap->hsm_task_state = HSM_ST_IDLE;
5094
5095 /* complete taskfile transaction */
5096 ata_hsm_qc_complete(qc, in_wq);
5097
5098 poll_next = 0;
5099 break;
5100 default:
5101 poll_next = 0;
5102 BUG();
5103 }
5104
5105 return poll_next;
5106 }
5107
5108 static void ata_pio_task(struct work_struct *work)
5109 {
5110 struct ata_port *ap =
5111 container_of(work, struct ata_port, port_task.work);
5112 struct ata_queued_cmd *qc = ap->port_task_data;
5113 u8 status;
5114 int poll_next;
5115
5116 fsm_start:
5117 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5118
5119 /*
5120 * This is purely heuristic. This is a fast path.
5121 * Sometimes when we enter, BSY will be cleared in
5122 * a chk-status or two. If not, the drive is probably seeking
5123 * or something. Snooze for a couple msecs, then
5124 * chk-status again. If still busy, queue delayed work.
5125 */
5126 status = ata_busy_wait(ap, ATA_BUSY, 5);
5127 if (status & ATA_BUSY) {
5128 msleep(2);
5129 status = ata_busy_wait(ap, ATA_BUSY, 10);
5130 if (status & ATA_BUSY) {
5131 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5132 return;
5133 }
5134 }
5135
5136 /* move the HSM */
5137 poll_next = ata_hsm_move(ap, qc, status, 1);
5138
5139 /* another command or interrupt handler
5140 * may be running at this point.
5141 */
5142 if (poll_next)
5143 goto fsm_start;
5144 }
5145
5146 /**
5147 * ata_qc_new - Request an available ATA command, for queueing
5148 * @ap: Port associated with device @dev
5149 * @dev: Device from whom we request an available command structure
5150 *
5151 * LOCKING:
5152 * None.
5153 */
5154
5155 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5156 {
5157 struct ata_queued_cmd *qc = NULL;
5158 unsigned int i;
5159
5160 /* no command while frozen */
5161 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5162 return NULL;
5163
5164 /* the last tag is reserved for internal command. */
5165 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5166 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5167 qc = __ata_qc_from_tag(ap, i);
5168 break;
5169 }
5170
5171 if (qc)
5172 qc->tag = i;
5173
5174 return qc;
5175 }
5176
5177 /**
5178 * ata_qc_new_init - Request an available ATA command, and initialize it
5179 * @dev: Device from whom we request an available command structure
5180 *
5181 * LOCKING:
5182 * None.
5183 */
5184
5185 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5186 {
5187 struct ata_port *ap = dev->ap;
5188 struct ata_queued_cmd *qc;
5189
5190 qc = ata_qc_new(ap);
5191 if (qc) {
5192 qc->scsicmd = NULL;
5193 qc->ap = ap;
5194 qc->dev = dev;
5195
5196 ata_qc_reinit(qc);
5197 }
5198
5199 return qc;
5200 }
5201
5202 /**
5203 * ata_qc_free - free unused ata_queued_cmd
5204 * @qc: Command to complete
5205 *
5206 * Designed to free unused ata_queued_cmd object
5207 * in case something prevents using it.
5208 *
5209 * LOCKING:
5210 * spin_lock_irqsave(host lock)
5211 */
5212 void ata_qc_free(struct ata_queued_cmd *qc)
5213 {
5214 struct ata_port *ap = qc->ap;
5215 unsigned int tag;
5216
5217 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5218
5219 qc->flags = 0;
5220 tag = qc->tag;
5221 if (likely(ata_tag_valid(tag))) {
5222 qc->tag = ATA_TAG_POISON;
5223 clear_bit(tag, &ap->qc_allocated);
5224 }
5225 }
5226
5227 void __ata_qc_complete(struct ata_queued_cmd *qc)
5228 {
5229 struct ata_port *ap = qc->ap;
5230
5231 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5232 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5233
5234 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5235 ata_sg_clean(qc);
5236
5237 /* command should be marked inactive atomically with qc completion */
5238 if (qc->tf.protocol == ATA_PROT_NCQ)
5239 ap->sactive &= ~(1 << qc->tag);
5240 else
5241 ap->active_tag = ATA_TAG_POISON;
5242
5243 /* atapi: mark qc as inactive to prevent the interrupt handler
5244 * from completing the command twice later, before the error handler
5245 * is called. (when rc != 0 and atapi request sense is needed)
5246 */
5247 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5248 ap->qc_active &= ~(1 << qc->tag);
5249
5250 /* call completion callback */
5251 qc->complete_fn(qc);
5252 }
5253
5254 static void fill_result_tf(struct ata_queued_cmd *qc)
5255 {
5256 struct ata_port *ap = qc->ap;
5257
5258 qc->result_tf.flags = qc->tf.flags;
5259 ap->ops->tf_read(ap, &qc->result_tf);
5260 }
5261
5262 /**
5263 * ata_qc_complete - Complete an active ATA command
5264 * @qc: Command to complete
5265 * @err_mask: ATA Status register contents
5266 *
5267 * Indicate to the mid and upper layers that an ATA
5268 * command has completed, with either an ok or not-ok status.
5269 *
5270 * LOCKING:
5271 * spin_lock_irqsave(host lock)
5272 */
5273 void ata_qc_complete(struct ata_queued_cmd *qc)
5274 {
5275 struct ata_port *ap = qc->ap;
5276
5277 /* XXX: New EH and old EH use different mechanisms to
5278 * synchronize EH with regular execution path.
5279 *
5280 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5281 * Normal execution path is responsible for not accessing a
5282 * failed qc. libata core enforces the rule by returning NULL
5283 * from ata_qc_from_tag() for failed qcs.
5284 *
5285 * Old EH depends on ata_qc_complete() nullifying completion
5286 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5287 * not synchronize with interrupt handler. Only PIO task is
5288 * taken care of.
5289 */
5290 if (ap->ops->error_handler) {
5291 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5292
5293 if (unlikely(qc->err_mask))
5294 qc->flags |= ATA_QCFLAG_FAILED;
5295
5296 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5297 if (!ata_tag_internal(qc->tag)) {
5298 /* always fill result TF for failed qc */
5299 fill_result_tf(qc);
5300 ata_qc_schedule_eh(qc);
5301 return;
5302 }
5303 }
5304
5305 /* read result TF if requested */
5306 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5307 fill_result_tf(qc);
5308
5309 __ata_qc_complete(qc);
5310 } else {
5311 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5312 return;
5313
5314 /* read result TF if failed or requested */
5315 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5316 fill_result_tf(qc);
5317
5318 __ata_qc_complete(qc);
5319 }
5320 }
5321
5322 /**
5323 * ata_qc_complete_multiple - Complete multiple qcs successfully
5324 * @ap: port in question
5325 * @qc_active: new qc_active mask
5326 * @finish_qc: LLDD callback invoked before completing a qc
5327 *
5328 * Complete in-flight commands. This functions is meant to be
5329 * called from low-level driver's interrupt routine to complete
5330 * requests normally. ap->qc_active and @qc_active is compared
5331 * and commands are completed accordingly.
5332 *
5333 * LOCKING:
5334 * spin_lock_irqsave(host lock)
5335 *
5336 * RETURNS:
5337 * Number of completed commands on success, -errno otherwise.
5338 */
5339 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5340 void (*finish_qc)(struct ata_queued_cmd *))
5341 {
5342 int nr_done = 0;
5343 u32 done_mask;
5344 int i;
5345
5346 done_mask = ap->qc_active ^ qc_active;
5347
5348 if (unlikely(done_mask & qc_active)) {
5349 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5350 "(%08x->%08x)\n", ap->qc_active, qc_active);
5351 return -EINVAL;
5352 }
5353
5354 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5355 struct ata_queued_cmd *qc;
5356
5357 if (!(done_mask & (1 << i)))
5358 continue;
5359
5360 if ((qc = ata_qc_from_tag(ap, i))) {
5361 if (finish_qc)
5362 finish_qc(qc);
5363 ata_qc_complete(qc);
5364 nr_done++;
5365 }
5366 }
5367
5368 return nr_done;
5369 }
5370
5371 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5372 {
5373 struct ata_port *ap = qc->ap;
5374
5375 switch (qc->tf.protocol) {
5376 case ATA_PROT_NCQ:
5377 case ATA_PROT_DMA:
5378 case ATA_PROT_ATAPI_DMA:
5379 return 1;
5380
5381 case ATA_PROT_ATAPI:
5382 case ATA_PROT_PIO:
5383 if (ap->flags & ATA_FLAG_PIO_DMA)
5384 return 1;
5385
5386 /* fall through */
5387
5388 default:
5389 return 0;
5390 }
5391
5392 /* never reached */
5393 }
5394
5395 /**
5396 * ata_qc_issue - issue taskfile to device
5397 * @qc: command to issue to device
5398 *
5399 * Prepare an ATA command to submission to device.
5400 * This includes mapping the data into a DMA-able
5401 * area, filling in the S/G table, and finally
5402 * writing the taskfile to hardware, starting the command.
5403 *
5404 * LOCKING:
5405 * spin_lock_irqsave(host lock)
5406 */
5407 void ata_qc_issue(struct ata_queued_cmd *qc)
5408 {
5409 struct ata_port *ap = qc->ap;
5410
5411 /* Make sure only one non-NCQ command is outstanding. The
5412 * check is skipped for old EH because it reuses active qc to
5413 * request ATAPI sense.
5414 */
5415 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5416
5417 if (qc->tf.protocol == ATA_PROT_NCQ) {
5418 WARN_ON(ap->sactive & (1 << qc->tag));
5419 ap->sactive |= 1 << qc->tag;
5420 } else {
5421 WARN_ON(ap->sactive);
5422 ap->active_tag = qc->tag;
5423 }
5424
5425 qc->flags |= ATA_QCFLAG_ACTIVE;
5426 ap->qc_active |= 1 << qc->tag;
5427
5428 if (ata_should_dma_map(qc)) {
5429 if (qc->flags & ATA_QCFLAG_SG) {
5430 if (ata_sg_setup(qc))
5431 goto sg_err;
5432 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5433 if (ata_sg_setup_one(qc))
5434 goto sg_err;
5435 }
5436 } else {
5437 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5438 }
5439
5440 ap->ops->qc_prep(qc);
5441
5442 qc->err_mask |= ap->ops->qc_issue(qc);
5443 if (unlikely(qc->err_mask))
5444 goto err;
5445 return;
5446
5447 sg_err:
5448 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5449 qc->err_mask |= AC_ERR_SYSTEM;
5450 err:
5451 ata_qc_complete(qc);
5452 }
5453
5454 /**
5455 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5456 * @qc: command to issue to device
5457 *
5458 * Using various libata functions and hooks, this function
5459 * starts an ATA command. ATA commands are grouped into
5460 * classes called "protocols", and issuing each type of protocol
5461 * is slightly different.
5462 *
5463 * May be used as the qc_issue() entry in ata_port_operations.
5464 *
5465 * LOCKING:
5466 * spin_lock_irqsave(host lock)
5467 *
5468 * RETURNS:
5469 * Zero on success, AC_ERR_* mask on failure
5470 */
5471
5472 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5473 {
5474 struct ata_port *ap = qc->ap;
5475
5476 /* Use polling pio if the LLD doesn't handle
5477 * interrupt driven pio and atapi CDB interrupt.
5478 */
5479 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5480 switch (qc->tf.protocol) {
5481 case ATA_PROT_PIO:
5482 case ATA_PROT_NODATA:
5483 case ATA_PROT_ATAPI:
5484 case ATA_PROT_ATAPI_NODATA:
5485 qc->tf.flags |= ATA_TFLAG_POLLING;
5486 break;
5487 case ATA_PROT_ATAPI_DMA:
5488 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5489 /* see ata_dma_blacklisted() */
5490 BUG();
5491 break;
5492 default:
5493 break;
5494 }
5495 }
5496
5497 /* select the device */
5498 ata_dev_select(ap, qc->dev->devno, 1, 0);
5499
5500 /* start the command */
5501 switch (qc->tf.protocol) {
5502 case ATA_PROT_NODATA:
5503 if (qc->tf.flags & ATA_TFLAG_POLLING)
5504 ata_qc_set_polling(qc);
5505
5506 ata_tf_to_host(ap, &qc->tf);
5507 ap->hsm_task_state = HSM_ST_LAST;
5508
5509 if (qc->tf.flags & ATA_TFLAG_POLLING)
5510 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5511
5512 break;
5513
5514 case ATA_PROT_DMA:
5515 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5516
5517 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5518 ap->ops->bmdma_setup(qc); /* set up bmdma */
5519 ap->ops->bmdma_start(qc); /* initiate bmdma */
5520 ap->hsm_task_state = HSM_ST_LAST;
5521 break;
5522
5523 case ATA_PROT_PIO:
5524 if (qc->tf.flags & ATA_TFLAG_POLLING)
5525 ata_qc_set_polling(qc);
5526
5527 ata_tf_to_host(ap, &qc->tf);
5528
5529 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5530 /* PIO data out protocol */
5531 ap->hsm_task_state = HSM_ST_FIRST;
5532 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5533
5534 /* always send first data block using
5535 * the ata_pio_task() codepath.
5536 */
5537 } else {
5538 /* PIO data in protocol */
5539 ap->hsm_task_state = HSM_ST;
5540
5541 if (qc->tf.flags & ATA_TFLAG_POLLING)
5542 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5543
5544 /* if polling, ata_pio_task() handles the rest.
5545 * otherwise, interrupt handler takes over from here.
5546 */
5547 }
5548
5549 break;
5550
5551 case ATA_PROT_ATAPI:
5552 case ATA_PROT_ATAPI_NODATA:
5553 if (qc->tf.flags & ATA_TFLAG_POLLING)
5554 ata_qc_set_polling(qc);
5555
5556 ata_tf_to_host(ap, &qc->tf);
5557
5558 ap->hsm_task_state = HSM_ST_FIRST;
5559
5560 /* send cdb by polling if no cdb interrupt */
5561 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5562 (qc->tf.flags & ATA_TFLAG_POLLING))
5563 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5564 break;
5565
5566 case ATA_PROT_ATAPI_DMA:
5567 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5568
5569 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5570 ap->ops->bmdma_setup(qc); /* set up bmdma */
5571 ap->hsm_task_state = HSM_ST_FIRST;
5572
5573 /* send cdb by polling if no cdb interrupt */
5574 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5575 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5576 break;
5577
5578 default:
5579 WARN_ON(1);
5580 return AC_ERR_SYSTEM;
5581 }
5582
5583 return 0;
5584 }
5585
5586 /**
5587 * ata_host_intr - Handle host interrupt for given (port, task)
5588 * @ap: Port on which interrupt arrived (possibly...)
5589 * @qc: Taskfile currently active in engine
5590 *
5591 * Handle host interrupt for given queued command. Currently,
5592 * only DMA interrupts are handled. All other commands are
5593 * handled via polling with interrupts disabled (nIEN bit).
5594 *
5595 * LOCKING:
5596 * spin_lock_irqsave(host lock)
5597 *
5598 * RETURNS:
5599 * One if interrupt was handled, zero if not (shared irq).
5600 */
5601
5602 inline unsigned int ata_host_intr (struct ata_port *ap,
5603 struct ata_queued_cmd *qc)
5604 {
5605 struct ata_eh_info *ehi = &ap->eh_info;
5606 u8 status, host_stat = 0;
5607
5608 VPRINTK("ata%u: protocol %d task_state %d\n",
5609 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5610
5611 /* Check whether we are expecting interrupt in this state */
5612 switch (ap->hsm_task_state) {
5613 case HSM_ST_FIRST:
5614 /* Some pre-ATAPI-4 devices assert INTRQ
5615 * at this state when ready to receive CDB.
5616 */
5617
5618 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5619 * The flag was turned on only for atapi devices.
5620 * No need to check is_atapi_taskfile(&qc->tf) again.
5621 */
5622 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5623 goto idle_irq;
5624 break;
5625 case HSM_ST_LAST:
5626 if (qc->tf.protocol == ATA_PROT_DMA ||
5627 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5628 /* check status of DMA engine */
5629 host_stat = ap->ops->bmdma_status(ap);
5630 VPRINTK("ata%u: host_stat 0x%X\n",
5631 ap->print_id, host_stat);
5632
5633 /* if it's not our irq... */
5634 if (!(host_stat & ATA_DMA_INTR))
5635 goto idle_irq;
5636
5637 /* before we do anything else, clear DMA-Start bit */
5638 ap->ops->bmdma_stop(qc);
5639
5640 if (unlikely(host_stat & ATA_DMA_ERR)) {
5641 /* error when transfering data to/from memory */
5642 qc->err_mask |= AC_ERR_HOST_BUS;
5643 ap->hsm_task_state = HSM_ST_ERR;
5644 }
5645 }
5646 break;
5647 case HSM_ST:
5648 break;
5649 default:
5650 goto idle_irq;
5651 }
5652
5653 /* check altstatus */
5654 status = ata_altstatus(ap);
5655 if (status & ATA_BUSY)
5656 goto idle_irq;
5657
5658 /* check main status, clearing INTRQ */
5659 status = ata_chk_status(ap);
5660 if (unlikely(status & ATA_BUSY))
5661 goto idle_irq;
5662
5663 /* ack bmdma irq events */
5664 ap->ops->irq_clear(ap);
5665
5666 ata_hsm_move(ap, qc, status, 0);
5667
5668 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5669 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5670 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5671
5672 return 1; /* irq handled */
5673
5674 idle_irq:
5675 ap->stats.idle_irq++;
5676
5677 #ifdef ATA_IRQ_TRAP
5678 if ((ap->stats.idle_irq % 1000) == 0) {
5679 ap->ops->irq_ack(ap, 0); /* debug trap */
5680 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5681 return 1;
5682 }
5683 #endif
5684 return 0; /* irq not handled */
5685 }
5686
5687 /**
5688 * ata_interrupt - Default ATA host interrupt handler
5689 * @irq: irq line (unused)
5690 * @dev_instance: pointer to our ata_host information structure
5691 *
5692 * Default interrupt handler for PCI IDE devices. Calls
5693 * ata_host_intr() for each port that is not disabled.
5694 *
5695 * LOCKING:
5696 * Obtains host lock during operation.
5697 *
5698 * RETURNS:
5699 * IRQ_NONE or IRQ_HANDLED.
5700 */
5701
5702 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5703 {
5704 struct ata_host *host = dev_instance;
5705 unsigned int i;
5706 unsigned int handled = 0;
5707 unsigned long flags;
5708
5709 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5710 spin_lock_irqsave(&host->lock, flags);
5711
5712 for (i = 0; i < host->n_ports; i++) {
5713 struct ata_port *ap;
5714
5715 ap = host->ports[i];
5716 if (ap &&
5717 !(ap->flags & ATA_FLAG_DISABLED)) {
5718 struct ata_queued_cmd *qc;
5719
5720 qc = ata_qc_from_tag(ap, ap->active_tag);
5721 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5722 (qc->flags & ATA_QCFLAG_ACTIVE))
5723 handled |= ata_host_intr(ap, qc);
5724 }
5725 }
5726
5727 spin_unlock_irqrestore(&host->lock, flags);
5728
5729 return IRQ_RETVAL(handled);
5730 }
5731
5732 /**
5733 * sata_scr_valid - test whether SCRs are accessible
5734 * @ap: ATA port to test SCR accessibility for
5735 *
5736 * Test whether SCRs are accessible for @ap.
5737 *
5738 * LOCKING:
5739 * None.
5740 *
5741 * RETURNS:
5742 * 1 if SCRs are accessible, 0 otherwise.
5743 */
5744 int sata_scr_valid(struct ata_port *ap)
5745 {
5746 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5747 }
5748
5749 /**
5750 * sata_scr_read - read SCR register of the specified port
5751 * @ap: ATA port to read SCR for
5752 * @reg: SCR to read
5753 * @val: Place to store read value
5754 *
5755 * Read SCR register @reg of @ap into *@val. This function is
5756 * guaranteed to succeed if the cable type of the port is SATA
5757 * and the port implements ->scr_read.
5758 *
5759 * LOCKING:
5760 * None.
5761 *
5762 * RETURNS:
5763 * 0 on success, negative errno on failure.
5764 */
5765 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5766 {
5767 if (sata_scr_valid(ap))
5768 return ap->ops->scr_read(ap, reg, val);
5769 return -EOPNOTSUPP;
5770 }
5771
5772 /**
5773 * sata_scr_write - write SCR register of the specified port
5774 * @ap: ATA port to write SCR for
5775 * @reg: SCR to write
5776 * @val: value to write
5777 *
5778 * Write @val to SCR register @reg of @ap. This function is
5779 * guaranteed to succeed if the cable type of the port is SATA
5780 * and the port implements ->scr_read.
5781 *
5782 * LOCKING:
5783 * None.
5784 *
5785 * RETURNS:
5786 * 0 on success, negative errno on failure.
5787 */
5788 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5789 {
5790 if (sata_scr_valid(ap))
5791 return ap->ops->scr_write(ap, reg, val);
5792 return -EOPNOTSUPP;
5793 }
5794
5795 /**
5796 * sata_scr_write_flush - write SCR register of the specified port and flush
5797 * @ap: ATA port to write SCR for
5798 * @reg: SCR to write
5799 * @val: value to write
5800 *
5801 * This function is identical to sata_scr_write() except that this
5802 * function performs flush after writing to the register.
5803 *
5804 * LOCKING:
5805 * None.
5806 *
5807 * RETURNS:
5808 * 0 on success, negative errno on failure.
5809 */
5810 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5811 {
5812 int rc;
5813
5814 if (sata_scr_valid(ap)) {
5815 rc = ap->ops->scr_write(ap, reg, val);
5816 if (rc == 0)
5817 rc = ap->ops->scr_read(ap, reg, &val);
5818 return rc;
5819 }
5820 return -EOPNOTSUPP;
5821 }
5822
5823 /**
5824 * ata_port_online - test whether the given port is online
5825 * @ap: ATA port to test
5826 *
5827 * Test whether @ap is online. Note that this function returns 0
5828 * if online status of @ap cannot be obtained, so
5829 * ata_port_online(ap) != !ata_port_offline(ap).
5830 *
5831 * LOCKING:
5832 * None.
5833 *
5834 * RETURNS:
5835 * 1 if the port online status is available and online.
5836 */
5837 int ata_port_online(struct ata_port *ap)
5838 {
5839 u32 sstatus;
5840
5841 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5842 return 1;
5843 return 0;
5844 }
5845
5846 /**
5847 * ata_port_offline - test whether the given port is offline
5848 * @ap: ATA port to test
5849 *
5850 * Test whether @ap is offline. Note that this function returns
5851 * 0 if offline status of @ap cannot be obtained, so
5852 * ata_port_online(ap) != !ata_port_offline(ap).
5853 *
5854 * LOCKING:
5855 * None.
5856 *
5857 * RETURNS:
5858 * 1 if the port offline status is available and offline.
5859 */
5860 int ata_port_offline(struct ata_port *ap)
5861 {
5862 u32 sstatus;
5863
5864 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5865 return 1;
5866 return 0;
5867 }
5868
5869 int ata_flush_cache(struct ata_device *dev)
5870 {
5871 unsigned int err_mask;
5872 u8 cmd;
5873
5874 if (!ata_try_flush_cache(dev))
5875 return 0;
5876
5877 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5878 cmd = ATA_CMD_FLUSH_EXT;
5879 else
5880 cmd = ATA_CMD_FLUSH;
5881
5882 err_mask = ata_do_simple_cmd(dev, cmd);
5883 if (err_mask) {
5884 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5885 return -EIO;
5886 }
5887
5888 return 0;
5889 }
5890
5891 #ifdef CONFIG_PM
5892 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5893 unsigned int action, unsigned int ehi_flags,
5894 int wait)
5895 {
5896 unsigned long flags;
5897 int i, rc;
5898
5899 for (i = 0; i < host->n_ports; i++) {
5900 struct ata_port *ap = host->ports[i];
5901
5902 /* Previous resume operation might still be in
5903 * progress. Wait for PM_PENDING to clear.
5904 */
5905 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5906 ata_port_wait_eh(ap);
5907 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5908 }
5909
5910 /* request PM ops to EH */
5911 spin_lock_irqsave(ap->lock, flags);
5912
5913 ap->pm_mesg = mesg;
5914 if (wait) {
5915 rc = 0;
5916 ap->pm_result = &rc;
5917 }
5918
5919 ap->pflags |= ATA_PFLAG_PM_PENDING;
5920 ap->eh_info.action |= action;
5921 ap->eh_info.flags |= ehi_flags;
5922
5923 ata_port_schedule_eh(ap);
5924
5925 spin_unlock_irqrestore(ap->lock, flags);
5926
5927 /* wait and check result */
5928 if (wait) {
5929 ata_port_wait_eh(ap);
5930 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5931 if (rc)
5932 return rc;
5933 }
5934 }
5935
5936 return 0;
5937 }
5938
5939 /**
5940 * ata_host_suspend - suspend host
5941 * @host: host to suspend
5942 * @mesg: PM message
5943 *
5944 * Suspend @host. Actual operation is performed by EH. This
5945 * function requests EH to perform PM operations and waits for EH
5946 * to finish.
5947 *
5948 * LOCKING:
5949 * Kernel thread context (may sleep).
5950 *
5951 * RETURNS:
5952 * 0 on success, -errno on failure.
5953 */
5954 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5955 {
5956 int rc;
5957
5958 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5959 if (rc == 0)
5960 host->dev->power.power_state = mesg;
5961 return rc;
5962 }
5963
5964 /**
5965 * ata_host_resume - resume host
5966 * @host: host to resume
5967 *
5968 * Resume @host. Actual operation is performed by EH. This
5969 * function requests EH to perform PM operations and returns.
5970 * Note that all resume operations are performed parallely.
5971 *
5972 * LOCKING:
5973 * Kernel thread context (may sleep).
5974 */
5975 void ata_host_resume(struct ata_host *host)
5976 {
5977 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5978 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5979 host->dev->power.power_state = PMSG_ON;
5980 }
5981 #endif
5982
5983 /**
5984 * ata_port_start - Set port up for dma.
5985 * @ap: Port to initialize
5986 *
5987 * Called just after data structures for each port are
5988 * initialized. Allocates space for PRD table.
5989 *
5990 * May be used as the port_start() entry in ata_port_operations.
5991 *
5992 * LOCKING:
5993 * Inherited from caller.
5994 */
5995 int ata_port_start(struct ata_port *ap)
5996 {
5997 struct device *dev = ap->dev;
5998 int rc;
5999
6000 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6001 GFP_KERNEL);
6002 if (!ap->prd)
6003 return -ENOMEM;
6004
6005 rc = ata_pad_alloc(ap, dev);
6006 if (rc)
6007 return rc;
6008
6009 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6010 (unsigned long long)ap->prd_dma);
6011 return 0;
6012 }
6013
6014 /**
6015 * ata_dev_init - Initialize an ata_device structure
6016 * @dev: Device structure to initialize
6017 *
6018 * Initialize @dev in preparation for probing.
6019 *
6020 * LOCKING:
6021 * Inherited from caller.
6022 */
6023 void ata_dev_init(struct ata_device *dev)
6024 {
6025 struct ata_port *ap = dev->ap;
6026 unsigned long flags;
6027
6028 /* SATA spd limit is bound to the first device */
6029 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6030 ap->sata_spd = 0;
6031
6032 /* High bits of dev->flags are used to record warm plug
6033 * requests which occur asynchronously. Synchronize using
6034 * host lock.
6035 */
6036 spin_lock_irqsave(ap->lock, flags);
6037 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6038 spin_unlock_irqrestore(ap->lock, flags);
6039
6040 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6041 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6042 dev->pio_mask = UINT_MAX;
6043 dev->mwdma_mask = UINT_MAX;
6044 dev->udma_mask = UINT_MAX;
6045 }
6046
6047 /**
6048 * ata_port_alloc - allocate and initialize basic ATA port resources
6049 * @host: ATA host this allocated port belongs to
6050 *
6051 * Allocate and initialize basic ATA port resources.
6052 *
6053 * RETURNS:
6054 * Allocate ATA port on success, NULL on failure.
6055 *
6056 * LOCKING:
6057 * Inherited from calling layer (may sleep).
6058 */
6059 struct ata_port *ata_port_alloc(struct ata_host *host)
6060 {
6061 struct ata_port *ap;
6062 unsigned int i;
6063
6064 DPRINTK("ENTER\n");
6065
6066 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6067 if (!ap)
6068 return NULL;
6069
6070 ap->pflags |= ATA_PFLAG_INITIALIZING;
6071 ap->lock = &host->lock;
6072 ap->flags = ATA_FLAG_DISABLED;
6073 ap->print_id = -1;
6074 ap->ctl = ATA_DEVCTL_OBS;
6075 ap->host = host;
6076 ap->dev = host->dev;
6077
6078 ap->hw_sata_spd_limit = UINT_MAX;
6079 ap->active_tag = ATA_TAG_POISON;
6080 ap->last_ctl = 0xFF;
6081
6082 #if defined(ATA_VERBOSE_DEBUG)
6083 /* turn on all debugging levels */
6084 ap->msg_enable = 0x00FF;
6085 #elif defined(ATA_DEBUG)
6086 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6087 #else
6088 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6089 #endif
6090
6091 INIT_DELAYED_WORK(&ap->port_task, NULL);
6092 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6093 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6094 INIT_LIST_HEAD(&ap->eh_done_q);
6095 init_waitqueue_head(&ap->eh_wait_q);
6096 init_timer_deferrable(&ap->fastdrain_timer);
6097 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6098 ap->fastdrain_timer.data = (unsigned long)ap;
6099
6100 ap->cbl = ATA_CBL_NONE;
6101
6102 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6103 struct ata_device *dev = &ap->device[i];
6104 dev->ap = ap;
6105 dev->devno = i;
6106 ata_dev_init(dev);
6107 }
6108
6109 #ifdef ATA_IRQ_TRAP
6110 ap->stats.unhandled_irq = 1;
6111 ap->stats.idle_irq = 1;
6112 #endif
6113 return ap;
6114 }
6115
6116 static void ata_host_release(struct device *gendev, void *res)
6117 {
6118 struct ata_host *host = dev_get_drvdata(gendev);
6119 int i;
6120
6121 for (i = 0; i < host->n_ports; i++) {
6122 struct ata_port *ap = host->ports[i];
6123
6124 if (!ap)
6125 continue;
6126
6127 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6128 ap->ops->port_stop(ap);
6129 }
6130
6131 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6132 host->ops->host_stop(host);
6133
6134 for (i = 0; i < host->n_ports; i++) {
6135 struct ata_port *ap = host->ports[i];
6136
6137 if (!ap)
6138 continue;
6139
6140 if (ap->scsi_host)
6141 scsi_host_put(ap->scsi_host);
6142
6143 kfree(ap);
6144 host->ports[i] = NULL;
6145 }
6146
6147 dev_set_drvdata(gendev, NULL);
6148 }
6149
6150 /**
6151 * ata_host_alloc - allocate and init basic ATA host resources
6152 * @dev: generic device this host is associated with
6153 * @max_ports: maximum number of ATA ports associated with this host
6154 *
6155 * Allocate and initialize basic ATA host resources. LLD calls
6156 * this function to allocate a host, initializes it fully and
6157 * attaches it using ata_host_register().
6158 *
6159 * @max_ports ports are allocated and host->n_ports is
6160 * initialized to @max_ports. The caller is allowed to decrease
6161 * host->n_ports before calling ata_host_register(). The unused
6162 * ports will be automatically freed on registration.
6163 *
6164 * RETURNS:
6165 * Allocate ATA host on success, NULL on failure.
6166 *
6167 * LOCKING:
6168 * Inherited from calling layer (may sleep).
6169 */
6170 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6171 {
6172 struct ata_host *host;
6173 size_t sz;
6174 int i;
6175
6176 DPRINTK("ENTER\n");
6177
6178 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6179 return NULL;
6180
6181 /* alloc a container for our list of ATA ports (buses) */
6182 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6183 /* alloc a container for our list of ATA ports (buses) */
6184 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6185 if (!host)
6186 goto err_out;
6187
6188 devres_add(dev, host);
6189 dev_set_drvdata(dev, host);
6190
6191 spin_lock_init(&host->lock);
6192 host->dev = dev;
6193 host->n_ports = max_ports;
6194
6195 /* allocate ports bound to this host */
6196 for (i = 0; i < max_ports; i++) {
6197 struct ata_port *ap;
6198
6199 ap = ata_port_alloc(host);
6200 if (!ap)
6201 goto err_out;
6202
6203 ap->port_no = i;
6204 host->ports[i] = ap;
6205 }
6206
6207 devres_remove_group(dev, NULL);
6208 return host;
6209
6210 err_out:
6211 devres_release_group(dev, NULL);
6212 return NULL;
6213 }
6214
6215 /**
6216 * ata_host_alloc_pinfo - alloc host and init with port_info array
6217 * @dev: generic device this host is associated with
6218 * @ppi: array of ATA port_info to initialize host with
6219 * @n_ports: number of ATA ports attached to this host
6220 *
6221 * Allocate ATA host and initialize with info from @ppi. If NULL
6222 * terminated, @ppi may contain fewer entries than @n_ports. The
6223 * last entry will be used for the remaining ports.
6224 *
6225 * RETURNS:
6226 * Allocate ATA host on success, NULL on failure.
6227 *
6228 * LOCKING:
6229 * Inherited from calling layer (may sleep).
6230 */
6231 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6232 const struct ata_port_info * const * ppi,
6233 int n_ports)
6234 {
6235 const struct ata_port_info *pi;
6236 struct ata_host *host;
6237 int i, j;
6238
6239 host = ata_host_alloc(dev, n_ports);
6240 if (!host)
6241 return NULL;
6242
6243 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6244 struct ata_port *ap = host->ports[i];
6245
6246 if (ppi[j])
6247 pi = ppi[j++];
6248
6249 ap->pio_mask = pi->pio_mask;
6250 ap->mwdma_mask = pi->mwdma_mask;
6251 ap->udma_mask = pi->udma_mask;
6252 ap->flags |= pi->flags;
6253 ap->ops = pi->port_ops;
6254
6255 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6256 host->ops = pi->port_ops;
6257 if (!host->private_data && pi->private_data)
6258 host->private_data = pi->private_data;
6259 }
6260
6261 return host;
6262 }
6263
6264 /**
6265 * ata_host_start - start and freeze ports of an ATA host
6266 * @host: ATA host to start ports for
6267 *
6268 * Start and then freeze ports of @host. Started status is
6269 * recorded in host->flags, so this function can be called
6270 * multiple times. Ports are guaranteed to get started only
6271 * once. If host->ops isn't initialized yet, its set to the
6272 * first non-dummy port ops.
6273 *
6274 * LOCKING:
6275 * Inherited from calling layer (may sleep).
6276 *
6277 * RETURNS:
6278 * 0 if all ports are started successfully, -errno otherwise.
6279 */
6280 int ata_host_start(struct ata_host *host)
6281 {
6282 int i, rc;
6283
6284 if (host->flags & ATA_HOST_STARTED)
6285 return 0;
6286
6287 for (i = 0; i < host->n_ports; i++) {
6288 struct ata_port *ap = host->ports[i];
6289
6290 if (!host->ops && !ata_port_is_dummy(ap))
6291 host->ops = ap->ops;
6292
6293 if (ap->ops->port_start) {
6294 rc = ap->ops->port_start(ap);
6295 if (rc) {
6296 ata_port_printk(ap, KERN_ERR, "failed to "
6297 "start port (errno=%d)\n", rc);
6298 goto err_out;
6299 }
6300 }
6301
6302 ata_eh_freeze_port(ap);
6303 }
6304
6305 host->flags |= ATA_HOST_STARTED;
6306 return 0;
6307
6308 err_out:
6309 while (--i >= 0) {
6310 struct ata_port *ap = host->ports[i];
6311
6312 if (ap->ops->port_stop)
6313 ap->ops->port_stop(ap);
6314 }
6315 return rc;
6316 }
6317
6318 /**
6319 * ata_sas_host_init - Initialize a host struct
6320 * @host: host to initialize
6321 * @dev: device host is attached to
6322 * @flags: host flags
6323 * @ops: port_ops
6324 *
6325 * LOCKING:
6326 * PCI/etc. bus probe sem.
6327 *
6328 */
6329 /* KILLME - the only user left is ipr */
6330 void ata_host_init(struct ata_host *host, struct device *dev,
6331 unsigned long flags, const struct ata_port_operations *ops)
6332 {
6333 spin_lock_init(&host->lock);
6334 host->dev = dev;
6335 host->flags = flags;
6336 host->ops = ops;
6337 }
6338
6339 /**
6340 * ata_host_register - register initialized ATA host
6341 * @host: ATA host to register
6342 * @sht: template for SCSI host
6343 *
6344 * Register initialized ATA host. @host is allocated using
6345 * ata_host_alloc() and fully initialized by LLD. This function
6346 * starts ports, registers @host with ATA and SCSI layers and
6347 * probe registered devices.
6348 *
6349 * LOCKING:
6350 * Inherited from calling layer (may sleep).
6351 *
6352 * RETURNS:
6353 * 0 on success, -errno otherwise.
6354 */
6355 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6356 {
6357 int i, rc;
6358
6359 /* host must have been started */
6360 if (!(host->flags & ATA_HOST_STARTED)) {
6361 dev_printk(KERN_ERR, host->dev,
6362 "BUG: trying to register unstarted host\n");
6363 WARN_ON(1);
6364 return -EINVAL;
6365 }
6366
6367 /* Blow away unused ports. This happens when LLD can't
6368 * determine the exact number of ports to allocate at
6369 * allocation time.
6370 */
6371 for (i = host->n_ports; host->ports[i]; i++)
6372 kfree(host->ports[i]);
6373
6374 /* give ports names and add SCSI hosts */
6375 for (i = 0; i < host->n_ports; i++)
6376 host->ports[i]->print_id = ata_print_id++;
6377
6378 rc = ata_scsi_add_hosts(host, sht);
6379 if (rc)
6380 return rc;
6381
6382 /* associate with ACPI nodes */
6383 ata_acpi_associate(host);
6384
6385 /* set cable, sata_spd_limit and report */
6386 for (i = 0; i < host->n_ports; i++) {
6387 struct ata_port *ap = host->ports[i];
6388 int irq_line;
6389 u32 scontrol;
6390 unsigned long xfer_mask;
6391
6392 /* set SATA cable type if still unset */
6393 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6394 ap->cbl = ATA_CBL_SATA;
6395
6396 /* init sata_spd_limit to the current value */
6397 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6398 int spd = (scontrol >> 4) & 0xf;
6399 if (spd)
6400 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6401 }
6402 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6403
6404 /* report the secondary IRQ for second channel legacy */
6405 irq_line = host->irq;
6406 if (i == 1 && host->irq2)
6407 irq_line = host->irq2;
6408
6409 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6410 ap->udma_mask);
6411
6412 /* print per-port info to dmesg */
6413 if (!ata_port_is_dummy(ap))
6414 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6415 "ctl 0x%p bmdma 0x%p irq %d\n",
6416 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6417 ata_mode_string(xfer_mask),
6418 ap->ioaddr.cmd_addr,
6419 ap->ioaddr.ctl_addr,
6420 ap->ioaddr.bmdma_addr,
6421 irq_line);
6422 else
6423 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6424 }
6425
6426 /* perform each probe synchronously */
6427 DPRINTK("probe begin\n");
6428 for (i = 0; i < host->n_ports; i++) {
6429 struct ata_port *ap = host->ports[i];
6430 int rc;
6431
6432 /* probe */
6433 if (ap->ops->error_handler) {
6434 struct ata_eh_info *ehi = &ap->eh_info;
6435 unsigned long flags;
6436
6437 ata_port_probe(ap);
6438
6439 /* kick EH for boot probing */
6440 spin_lock_irqsave(ap->lock, flags);
6441
6442 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6443 ehi->action |= ATA_EH_SOFTRESET;
6444 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6445
6446 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6447 ap->pflags |= ATA_PFLAG_LOADING;
6448 ata_port_schedule_eh(ap);
6449
6450 spin_unlock_irqrestore(ap->lock, flags);
6451
6452 /* wait for EH to finish */
6453 ata_port_wait_eh(ap);
6454 } else {
6455 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6456 rc = ata_bus_probe(ap);
6457 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6458
6459 if (rc) {
6460 /* FIXME: do something useful here?
6461 * Current libata behavior will
6462 * tear down everything when
6463 * the module is removed
6464 * or the h/w is unplugged.
6465 */
6466 }
6467 }
6468 }
6469
6470 /* probes are done, now scan each port's disk(s) */
6471 DPRINTK("host probe begin\n");
6472 for (i = 0; i < host->n_ports; i++) {
6473 struct ata_port *ap = host->ports[i];
6474
6475 ata_scsi_scan_host(ap, 1);
6476 }
6477
6478 return 0;
6479 }
6480
6481 /**
6482 * ata_host_activate - start host, request IRQ and register it
6483 * @host: target ATA host
6484 * @irq: IRQ to request
6485 * @irq_handler: irq_handler used when requesting IRQ
6486 * @irq_flags: irq_flags used when requesting IRQ
6487 * @sht: scsi_host_template to use when registering the host
6488 *
6489 * After allocating an ATA host and initializing it, most libata
6490 * LLDs perform three steps to activate the host - start host,
6491 * request IRQ and register it. This helper takes necessasry
6492 * arguments and performs the three steps in one go.
6493 *
6494 * LOCKING:
6495 * Inherited from calling layer (may sleep).
6496 *
6497 * RETURNS:
6498 * 0 on success, -errno otherwise.
6499 */
6500 int ata_host_activate(struct ata_host *host, int irq,
6501 irq_handler_t irq_handler, unsigned long irq_flags,
6502 struct scsi_host_template *sht)
6503 {
6504 int rc;
6505
6506 rc = ata_host_start(host);
6507 if (rc)
6508 return rc;
6509
6510 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6511 dev_driver_string(host->dev), host);
6512 if (rc)
6513 return rc;
6514
6515 /* Used to print device info at probe */
6516 host->irq = irq;
6517
6518 rc = ata_host_register(host, sht);
6519 /* if failed, just free the IRQ and leave ports alone */
6520 if (rc)
6521 devm_free_irq(host->dev, irq, host);
6522
6523 return rc;
6524 }
6525
6526 /**
6527 * ata_port_detach - Detach ATA port in prepration of device removal
6528 * @ap: ATA port to be detached
6529 *
6530 * Detach all ATA devices and the associated SCSI devices of @ap;
6531 * then, remove the associated SCSI host. @ap is guaranteed to
6532 * be quiescent on return from this function.
6533 *
6534 * LOCKING:
6535 * Kernel thread context (may sleep).
6536 */
6537 void ata_port_detach(struct ata_port *ap)
6538 {
6539 unsigned long flags;
6540 int i;
6541
6542 if (!ap->ops->error_handler)
6543 goto skip_eh;
6544
6545 /* tell EH we're leaving & flush EH */
6546 spin_lock_irqsave(ap->lock, flags);
6547 ap->pflags |= ATA_PFLAG_UNLOADING;
6548 spin_unlock_irqrestore(ap->lock, flags);
6549
6550 ata_port_wait_eh(ap);
6551
6552 /* EH is now guaranteed to see UNLOADING, so no new device
6553 * will be attached. Disable all existing devices.
6554 */
6555 spin_lock_irqsave(ap->lock, flags);
6556
6557 for (i = 0; i < ATA_MAX_DEVICES; i++)
6558 ata_dev_disable(&ap->device[i]);
6559
6560 spin_unlock_irqrestore(ap->lock, flags);
6561
6562 /* Final freeze & EH. All in-flight commands are aborted. EH
6563 * will be skipped and retrials will be terminated with bad
6564 * target.
6565 */
6566 spin_lock_irqsave(ap->lock, flags);
6567 ata_port_freeze(ap); /* won't be thawed */
6568 spin_unlock_irqrestore(ap->lock, flags);
6569
6570 ata_port_wait_eh(ap);
6571 cancel_rearming_delayed_work(&ap->hotplug_task);
6572
6573 skip_eh:
6574 /* remove the associated SCSI host */
6575 scsi_remove_host(ap->scsi_host);
6576 }
6577
6578 /**
6579 * ata_host_detach - Detach all ports of an ATA host
6580 * @host: Host to detach
6581 *
6582 * Detach all ports of @host.
6583 *
6584 * LOCKING:
6585 * Kernel thread context (may sleep).
6586 */
6587 void ata_host_detach(struct ata_host *host)
6588 {
6589 int i;
6590
6591 for (i = 0; i < host->n_ports; i++)
6592 ata_port_detach(host->ports[i]);
6593 }
6594
6595 /**
6596 * ata_std_ports - initialize ioaddr with standard port offsets.
6597 * @ioaddr: IO address structure to be initialized
6598 *
6599 * Utility function which initializes data_addr, error_addr,
6600 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6601 * device_addr, status_addr, and command_addr to standard offsets
6602 * relative to cmd_addr.
6603 *
6604 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6605 */
6606
6607 void ata_std_ports(struct ata_ioports *ioaddr)
6608 {
6609 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6610 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6611 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6612 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6613 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6614 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6615 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6616 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6617 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6618 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6619 }
6620
6621
6622 #ifdef CONFIG_PCI
6623
6624 /**
6625 * ata_pci_remove_one - PCI layer callback for device removal
6626 * @pdev: PCI device that was removed
6627 *
6628 * PCI layer indicates to libata via this hook that hot-unplug or
6629 * module unload event has occurred. Detach all ports. Resource
6630 * release is handled via devres.
6631 *
6632 * LOCKING:
6633 * Inherited from PCI layer (may sleep).
6634 */
6635 void ata_pci_remove_one(struct pci_dev *pdev)
6636 {
6637 struct device *dev = pci_dev_to_dev(pdev);
6638 struct ata_host *host = dev_get_drvdata(dev);
6639
6640 ata_host_detach(host);
6641 }
6642
6643 /* move to PCI subsystem */
6644 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6645 {
6646 unsigned long tmp = 0;
6647
6648 switch (bits->width) {
6649 case 1: {
6650 u8 tmp8 = 0;
6651 pci_read_config_byte(pdev, bits->reg, &tmp8);
6652 tmp = tmp8;
6653 break;
6654 }
6655 case 2: {
6656 u16 tmp16 = 0;
6657 pci_read_config_word(pdev, bits->reg, &tmp16);
6658 tmp = tmp16;
6659 break;
6660 }
6661 case 4: {
6662 u32 tmp32 = 0;
6663 pci_read_config_dword(pdev, bits->reg, &tmp32);
6664 tmp = tmp32;
6665 break;
6666 }
6667
6668 default:
6669 return -EINVAL;
6670 }
6671
6672 tmp &= bits->mask;
6673
6674 return (tmp == bits->val) ? 1 : 0;
6675 }
6676
6677 #ifdef CONFIG_PM
6678 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6679 {
6680 pci_save_state(pdev);
6681 pci_disable_device(pdev);
6682
6683 if (mesg.event == PM_EVENT_SUSPEND)
6684 pci_set_power_state(pdev, PCI_D3hot);
6685 }
6686
6687 int ata_pci_device_do_resume(struct pci_dev *pdev)
6688 {
6689 int rc;
6690
6691 pci_set_power_state(pdev, PCI_D0);
6692 pci_restore_state(pdev);
6693
6694 rc = pcim_enable_device(pdev);
6695 if (rc) {
6696 dev_printk(KERN_ERR, &pdev->dev,
6697 "failed to enable device after resume (%d)\n", rc);
6698 return rc;
6699 }
6700
6701 pci_set_master(pdev);
6702 return 0;
6703 }
6704
6705 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6706 {
6707 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6708 int rc = 0;
6709
6710 rc = ata_host_suspend(host, mesg);
6711 if (rc)
6712 return rc;
6713
6714 ata_pci_device_do_suspend(pdev, mesg);
6715
6716 return 0;
6717 }
6718
6719 int ata_pci_device_resume(struct pci_dev *pdev)
6720 {
6721 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6722 int rc;
6723
6724 rc = ata_pci_device_do_resume(pdev);
6725 if (rc == 0)
6726 ata_host_resume(host);
6727 return rc;
6728 }
6729 #endif /* CONFIG_PM */
6730
6731 #endif /* CONFIG_PCI */
6732
6733
6734 static int __init ata_init(void)
6735 {
6736 ata_probe_timeout *= HZ;
6737 ata_wq = create_workqueue("ata");
6738 if (!ata_wq)
6739 return -ENOMEM;
6740
6741 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6742 if (!ata_aux_wq) {
6743 destroy_workqueue(ata_wq);
6744 return -ENOMEM;
6745 }
6746
6747 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6748 return 0;
6749 }
6750
6751 static void __exit ata_exit(void)
6752 {
6753 destroy_workqueue(ata_wq);
6754 destroy_workqueue(ata_aux_wq);
6755 }
6756
6757 subsys_initcall(ata_init);
6758 module_exit(ata_exit);
6759
6760 static unsigned long ratelimit_time;
6761 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6762
6763 int ata_ratelimit(void)
6764 {
6765 int rc;
6766 unsigned long flags;
6767
6768 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6769
6770 if (time_after(jiffies, ratelimit_time)) {
6771 rc = 1;
6772 ratelimit_time = jiffies + (HZ/5);
6773 } else
6774 rc = 0;
6775
6776 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6777
6778 return rc;
6779 }
6780
6781 /**
6782 * ata_wait_register - wait until register value changes
6783 * @reg: IO-mapped register
6784 * @mask: Mask to apply to read register value
6785 * @val: Wait condition
6786 * @interval_msec: polling interval in milliseconds
6787 * @timeout_msec: timeout in milliseconds
6788 *
6789 * Waiting for some bits of register to change is a common
6790 * operation for ATA controllers. This function reads 32bit LE
6791 * IO-mapped register @reg and tests for the following condition.
6792 *
6793 * (*@reg & mask) != val
6794 *
6795 * If the condition is met, it returns; otherwise, the process is
6796 * repeated after @interval_msec until timeout.
6797 *
6798 * LOCKING:
6799 * Kernel thread context (may sleep)
6800 *
6801 * RETURNS:
6802 * The final register value.
6803 */
6804 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6805 unsigned long interval_msec,
6806 unsigned long timeout_msec)
6807 {
6808 unsigned long timeout;
6809 u32 tmp;
6810
6811 tmp = ioread32(reg);
6812
6813 /* Calculate timeout _after_ the first read to make sure
6814 * preceding writes reach the controller before starting to
6815 * eat away the timeout.
6816 */
6817 timeout = jiffies + (timeout_msec * HZ) / 1000;
6818
6819 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6820 msleep(interval_msec);
6821 tmp = ioread32(reg);
6822 }
6823
6824 return tmp;
6825 }
6826
6827 /*
6828 * Dummy port_ops
6829 */
6830 static void ata_dummy_noret(struct ata_port *ap) { }
6831 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6832 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6833
6834 static u8 ata_dummy_check_status(struct ata_port *ap)
6835 {
6836 return ATA_DRDY;
6837 }
6838
6839 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6840 {
6841 return AC_ERR_SYSTEM;
6842 }
6843
6844 const struct ata_port_operations ata_dummy_port_ops = {
6845 .port_disable = ata_port_disable,
6846 .check_status = ata_dummy_check_status,
6847 .check_altstatus = ata_dummy_check_status,
6848 .dev_select = ata_noop_dev_select,
6849 .qc_prep = ata_noop_qc_prep,
6850 .qc_issue = ata_dummy_qc_issue,
6851 .freeze = ata_dummy_noret,
6852 .thaw = ata_dummy_noret,
6853 .error_handler = ata_dummy_noret,
6854 .post_internal_cmd = ata_dummy_qc_noret,
6855 .irq_clear = ata_dummy_noret,
6856 .port_start = ata_dummy_ret0,
6857 .port_stop = ata_dummy_noret,
6858 };
6859
6860 const struct ata_port_info ata_dummy_port_info = {
6861 .port_ops = &ata_dummy_port_ops,
6862 };
6863
6864 /*
6865 * libata is essentially a library of internal helper functions for
6866 * low-level ATA host controller drivers. As such, the API/ABI is
6867 * likely to change as new drivers are added and updated.
6868 * Do not depend on ABI/API stability.
6869 */
6870
6871 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6872 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6873 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6874 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6875 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6876 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6877 EXPORT_SYMBOL_GPL(ata_std_ports);
6878 EXPORT_SYMBOL_GPL(ata_host_init);
6879 EXPORT_SYMBOL_GPL(ata_host_alloc);
6880 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6881 EXPORT_SYMBOL_GPL(ata_host_start);
6882 EXPORT_SYMBOL_GPL(ata_host_register);
6883 EXPORT_SYMBOL_GPL(ata_host_activate);
6884 EXPORT_SYMBOL_GPL(ata_host_detach);
6885 EXPORT_SYMBOL_GPL(ata_sg_init);
6886 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6887 EXPORT_SYMBOL_GPL(ata_hsm_move);
6888 EXPORT_SYMBOL_GPL(ata_qc_complete);
6889 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6890 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6891 EXPORT_SYMBOL_GPL(ata_tf_load);
6892 EXPORT_SYMBOL_GPL(ata_tf_read);
6893 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6894 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6895 EXPORT_SYMBOL_GPL(sata_print_link_status);
6896 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6897 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6898 EXPORT_SYMBOL_GPL(ata_check_status);
6899 EXPORT_SYMBOL_GPL(ata_altstatus);
6900 EXPORT_SYMBOL_GPL(ata_exec_command);
6901 EXPORT_SYMBOL_GPL(ata_port_start);
6902 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6903 EXPORT_SYMBOL_GPL(ata_interrupt);
6904 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6905 EXPORT_SYMBOL_GPL(ata_data_xfer);
6906 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6907 EXPORT_SYMBOL_GPL(ata_qc_prep);
6908 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6909 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6910 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6911 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6912 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6913 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6914 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6915 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6916 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6917 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6918 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6919 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6920 EXPORT_SYMBOL_GPL(ata_port_probe);
6921 EXPORT_SYMBOL_GPL(ata_dev_disable);
6922 EXPORT_SYMBOL_GPL(sata_set_spd);
6923 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6924 EXPORT_SYMBOL_GPL(sata_phy_resume);
6925 EXPORT_SYMBOL_GPL(sata_phy_reset);
6926 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6927 EXPORT_SYMBOL_GPL(ata_bus_reset);
6928 EXPORT_SYMBOL_GPL(ata_std_prereset);
6929 EXPORT_SYMBOL_GPL(ata_std_softreset);
6930 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6931 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6932 EXPORT_SYMBOL_GPL(ata_std_postreset);
6933 EXPORT_SYMBOL_GPL(ata_dev_classify);
6934 EXPORT_SYMBOL_GPL(ata_dev_pair);
6935 EXPORT_SYMBOL_GPL(ata_port_disable);
6936 EXPORT_SYMBOL_GPL(ata_ratelimit);
6937 EXPORT_SYMBOL_GPL(ata_wait_register);
6938 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6939 EXPORT_SYMBOL_GPL(ata_wait_ready);
6940 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6941 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6942 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6943 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6944 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6945 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6946 EXPORT_SYMBOL_GPL(ata_host_intr);
6947 EXPORT_SYMBOL_GPL(sata_scr_valid);
6948 EXPORT_SYMBOL_GPL(sata_scr_read);
6949 EXPORT_SYMBOL_GPL(sata_scr_write);
6950 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6951 EXPORT_SYMBOL_GPL(ata_port_online);
6952 EXPORT_SYMBOL_GPL(ata_port_offline);
6953 #ifdef CONFIG_PM
6954 EXPORT_SYMBOL_GPL(ata_host_suspend);
6955 EXPORT_SYMBOL_GPL(ata_host_resume);
6956 #endif /* CONFIG_PM */
6957 EXPORT_SYMBOL_GPL(ata_id_string);
6958 EXPORT_SYMBOL_GPL(ata_id_c_string);
6959 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6960 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6961
6962 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6963 EXPORT_SYMBOL_GPL(ata_timing_compute);
6964 EXPORT_SYMBOL_GPL(ata_timing_merge);
6965
6966 #ifdef CONFIG_PCI
6967 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6968 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
6969 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6970 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
6971 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6972 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6973 #ifdef CONFIG_PM
6974 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6975 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6976 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6977 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6978 #endif /* CONFIG_PM */
6979 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6980 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6981 #endif /* CONFIG_PCI */
6982
6983 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6984 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6985 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6986 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6987 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6988 EXPORT_SYMBOL_GPL(ata_port_abort);
6989 EXPORT_SYMBOL_GPL(ata_port_freeze);
6990 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6991 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6992 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6993 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6994 EXPORT_SYMBOL_GPL(ata_do_eh);
6995 EXPORT_SYMBOL_GPL(ata_irq_on);
6996 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6997 EXPORT_SYMBOL_GPL(ata_irq_ack);
6998 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6999 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7000
7001 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7002 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7003 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7004 EXPORT_SYMBOL_GPL(ata_cable_sata);