]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
78
79 struct workqueue_struct *ata_aux_wq;
80
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
89 int libata_fua = 0;
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
109
110
111 /**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
114 * @fis: Buffer into which data will output
115 * @pmp: Port multiplier port
116 *
117 * Converts a standard ATA taskfile to a Serial ATA
118 * FIS structure (Register - Host to Device).
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
123
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
125 {
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
128 bit 7 indicates Command FIS */
129 fis[2] = tf->command;
130 fis[3] = tf->feature;
131
132 fis[4] = tf->lbal;
133 fis[5] = tf->lbam;
134 fis[6] = tf->lbah;
135 fis[7] = tf->device;
136
137 fis[8] = tf->hob_lbal;
138 fis[9] = tf->hob_lbam;
139 fis[10] = tf->hob_lbah;
140 fis[11] = tf->hob_feature;
141
142 fis[12] = tf->nsect;
143 fis[13] = tf->hob_nsect;
144 fis[14] = 0;
145 fis[15] = tf->ctl;
146
147 fis[16] = 0;
148 fis[17] = 0;
149 fis[18] = 0;
150 fis[19] = 0;
151 }
152
153 /**
154 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
155 * @fis: Buffer from which data will be input
156 * @tf: Taskfile to output
157 *
158 * Converts a serial ATA FIS structure to a standard ATA taskfile.
159 *
160 * LOCKING:
161 * Inherited from caller.
162 */
163
164 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
165 {
166 tf->command = fis[2]; /* status */
167 tf->feature = fis[3]; /* error */
168
169 tf->lbal = fis[4];
170 tf->lbam = fis[5];
171 tf->lbah = fis[6];
172 tf->device = fis[7];
173
174 tf->hob_lbal = fis[8];
175 tf->hob_lbam = fis[9];
176 tf->hob_lbah = fis[10];
177
178 tf->nsect = fis[12];
179 tf->hob_nsect = fis[13];
180 }
181
182 static const u8 ata_rw_cmds[] = {
183 /* pio multi */
184 ATA_CMD_READ_MULTI,
185 ATA_CMD_WRITE_MULTI,
186 ATA_CMD_READ_MULTI_EXT,
187 ATA_CMD_WRITE_MULTI_EXT,
188 0,
189 0,
190 0,
191 ATA_CMD_WRITE_MULTI_FUA_EXT,
192 /* pio */
193 ATA_CMD_PIO_READ,
194 ATA_CMD_PIO_WRITE,
195 ATA_CMD_PIO_READ_EXT,
196 ATA_CMD_PIO_WRITE_EXT,
197 0,
198 0,
199 0,
200 0,
201 /* dma */
202 ATA_CMD_READ,
203 ATA_CMD_WRITE,
204 ATA_CMD_READ_EXT,
205 ATA_CMD_WRITE_EXT,
206 0,
207 0,
208 0,
209 ATA_CMD_WRITE_FUA_EXT
210 };
211
212 /**
213 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
214 * @tf: command to examine and configure
215 * @dev: device tf belongs to
216 *
217 * Examine the device configuration and tf->flags to calculate
218 * the proper read/write commands and protocol to use.
219 *
220 * LOCKING:
221 * caller.
222 */
223 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
224 {
225 u8 cmd;
226
227 int index, fua, lba48, write;
228
229 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
230 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
231 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
232
233 if (dev->flags & ATA_DFLAG_PIO) {
234 tf->protocol = ATA_PROT_PIO;
235 index = dev->multi_count ? 0 : 8;
236 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
237 /* Unable to use DMA due to host limitation */
238 tf->protocol = ATA_PROT_PIO;
239 index = dev->multi_count ? 0 : 8;
240 } else {
241 tf->protocol = ATA_PROT_DMA;
242 index = 16;
243 }
244
245 cmd = ata_rw_cmds[index + fua + lba48 + write];
246 if (cmd) {
247 tf->command = cmd;
248 return 0;
249 }
250 return -1;
251 }
252
253 /**
254 * ata_tf_read_block - Read block address from ATA taskfile
255 * @tf: ATA taskfile of interest
256 * @dev: ATA device @tf belongs to
257 *
258 * LOCKING:
259 * None.
260 *
261 * Read block address from @tf. This function can handle all
262 * three address formats - LBA, LBA48 and CHS. tf->protocol and
263 * flags select the address format to use.
264 *
265 * RETURNS:
266 * Block address read from @tf.
267 */
268 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
269 {
270 u64 block = 0;
271
272 if (tf->flags & ATA_TFLAG_LBA) {
273 if (tf->flags & ATA_TFLAG_LBA48) {
274 block |= (u64)tf->hob_lbah << 40;
275 block |= (u64)tf->hob_lbam << 32;
276 block |= tf->hob_lbal << 24;
277 } else
278 block |= (tf->device & 0xf) << 24;
279
280 block |= tf->lbah << 16;
281 block |= tf->lbam << 8;
282 block |= tf->lbal;
283 } else {
284 u32 cyl, head, sect;
285
286 cyl = tf->lbam | (tf->lbah << 8);
287 head = tf->device & 0xf;
288 sect = tf->lbal;
289
290 block = (cyl * dev->heads + head) * dev->sectors + sect;
291 }
292
293 return block;
294 }
295
296 /**
297 * ata_build_rw_tf - Build ATA taskfile for given read/write request
298 * @tf: Target ATA taskfile
299 * @dev: ATA device @tf belongs to
300 * @block: Block address
301 * @n_block: Number of blocks
302 * @tf_flags: RW/FUA etc...
303 * @tag: tag
304 *
305 * LOCKING:
306 * None.
307 *
308 * Build ATA taskfile @tf for read/write request described by
309 * @block, @n_block, @tf_flags and @tag on @dev.
310 *
311 * RETURNS:
312 *
313 * 0 on success, -ERANGE if the request is too large for @dev,
314 * -EINVAL if the request is invalid.
315 */
316 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
317 u64 block, u32 n_block, unsigned int tf_flags,
318 unsigned int tag)
319 {
320 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
321 tf->flags |= tf_flags;
322
323 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
324 /* yay, NCQ */
325 if (!lba_48_ok(block, n_block))
326 return -ERANGE;
327
328 tf->protocol = ATA_PROT_NCQ;
329 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
330
331 if (tf->flags & ATA_TFLAG_WRITE)
332 tf->command = ATA_CMD_FPDMA_WRITE;
333 else
334 tf->command = ATA_CMD_FPDMA_READ;
335
336 tf->nsect = tag << 3;
337 tf->hob_feature = (n_block >> 8) & 0xff;
338 tf->feature = n_block & 0xff;
339
340 tf->hob_lbah = (block >> 40) & 0xff;
341 tf->hob_lbam = (block >> 32) & 0xff;
342 tf->hob_lbal = (block >> 24) & 0xff;
343 tf->lbah = (block >> 16) & 0xff;
344 tf->lbam = (block >> 8) & 0xff;
345 tf->lbal = block & 0xff;
346
347 tf->device = 1 << 6;
348 if (tf->flags & ATA_TFLAG_FUA)
349 tf->device |= 1 << 7;
350 } else if (dev->flags & ATA_DFLAG_LBA) {
351 tf->flags |= ATA_TFLAG_LBA;
352
353 if (lba_28_ok(block, n_block)) {
354 /* use LBA28 */
355 tf->device |= (block >> 24) & 0xf;
356 } else if (lba_48_ok(block, n_block)) {
357 if (!(dev->flags & ATA_DFLAG_LBA48))
358 return -ERANGE;
359
360 /* use LBA48 */
361 tf->flags |= ATA_TFLAG_LBA48;
362
363 tf->hob_nsect = (n_block >> 8) & 0xff;
364
365 tf->hob_lbah = (block >> 40) & 0xff;
366 tf->hob_lbam = (block >> 32) & 0xff;
367 tf->hob_lbal = (block >> 24) & 0xff;
368 } else
369 /* request too large even for LBA48 */
370 return -ERANGE;
371
372 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
373 return -EINVAL;
374
375 tf->nsect = n_block & 0xff;
376
377 tf->lbah = (block >> 16) & 0xff;
378 tf->lbam = (block >> 8) & 0xff;
379 tf->lbal = block & 0xff;
380
381 tf->device |= ATA_LBA;
382 } else {
383 /* CHS */
384 u32 sect, head, cyl, track;
385
386 /* The request -may- be too large for CHS addressing. */
387 if (!lba_28_ok(block, n_block))
388 return -ERANGE;
389
390 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
391 return -EINVAL;
392
393 /* Convert LBA to CHS */
394 track = (u32)block / dev->sectors;
395 cyl = track / dev->heads;
396 head = track % dev->heads;
397 sect = (u32)block % dev->sectors + 1;
398
399 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
400 (u32)block, track, cyl, head, sect);
401
402 /* Check whether the converted CHS can fit.
403 Cylinder: 0-65535
404 Head: 0-15
405 Sector: 1-255*/
406 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
407 return -ERANGE;
408
409 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
410 tf->lbal = sect;
411 tf->lbam = cyl;
412 tf->lbah = cyl >> 8;
413 tf->device |= head;
414 }
415
416 return 0;
417 }
418
419 /**
420 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
421 * @pio_mask: pio_mask
422 * @mwdma_mask: mwdma_mask
423 * @udma_mask: udma_mask
424 *
425 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
426 * unsigned int xfer_mask.
427 *
428 * LOCKING:
429 * None.
430 *
431 * RETURNS:
432 * Packed xfer_mask.
433 */
434 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
435 unsigned int mwdma_mask,
436 unsigned int udma_mask)
437 {
438 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
439 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
440 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
441 }
442
443 /**
444 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
445 * @xfer_mask: xfer_mask to unpack
446 * @pio_mask: resulting pio_mask
447 * @mwdma_mask: resulting mwdma_mask
448 * @udma_mask: resulting udma_mask
449 *
450 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
451 * Any NULL distination masks will be ignored.
452 */
453 static void ata_unpack_xfermask(unsigned int xfer_mask,
454 unsigned int *pio_mask,
455 unsigned int *mwdma_mask,
456 unsigned int *udma_mask)
457 {
458 if (pio_mask)
459 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
460 if (mwdma_mask)
461 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
462 if (udma_mask)
463 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
464 }
465
466 static const struct ata_xfer_ent {
467 int shift, bits;
468 u8 base;
469 } ata_xfer_tbl[] = {
470 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
471 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
472 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
473 { -1, },
474 };
475
476 /**
477 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
478 * @xfer_mask: xfer_mask of interest
479 *
480 * Return matching XFER_* value for @xfer_mask. Only the highest
481 * bit of @xfer_mask is considered.
482 *
483 * LOCKING:
484 * None.
485 *
486 * RETURNS:
487 * Matching XFER_* value, 0 if no match found.
488 */
489 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
490 {
491 int highbit = fls(xfer_mask) - 1;
492 const struct ata_xfer_ent *ent;
493
494 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
495 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
496 return ent->base + highbit - ent->shift;
497 return 0;
498 }
499
500 /**
501 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
502 * @xfer_mode: XFER_* of interest
503 *
504 * Return matching xfer_mask for @xfer_mode.
505 *
506 * LOCKING:
507 * None.
508 *
509 * RETURNS:
510 * Matching xfer_mask, 0 if no match found.
511 */
512 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
513 {
514 const struct ata_xfer_ent *ent;
515
516 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
517 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
518 return 1 << (ent->shift + xfer_mode - ent->base);
519 return 0;
520 }
521
522 /**
523 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
524 * @xfer_mode: XFER_* of interest
525 *
526 * Return matching xfer_shift for @xfer_mode.
527 *
528 * LOCKING:
529 * None.
530 *
531 * RETURNS:
532 * Matching xfer_shift, -1 if no match found.
533 */
534 static int ata_xfer_mode2shift(unsigned int xfer_mode)
535 {
536 const struct ata_xfer_ent *ent;
537
538 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
539 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
540 return ent->shift;
541 return -1;
542 }
543
544 /**
545 * ata_mode_string - convert xfer_mask to string
546 * @xfer_mask: mask of bits supported; only highest bit counts.
547 *
548 * Determine string which represents the highest speed
549 * (highest bit in @modemask).
550 *
551 * LOCKING:
552 * None.
553 *
554 * RETURNS:
555 * Constant C string representing highest speed listed in
556 * @mode_mask, or the constant C string "<n/a>".
557 */
558 static const char *ata_mode_string(unsigned int xfer_mask)
559 {
560 static const char * const xfer_mode_str[] = {
561 "PIO0",
562 "PIO1",
563 "PIO2",
564 "PIO3",
565 "PIO4",
566 "PIO5",
567 "PIO6",
568 "MWDMA0",
569 "MWDMA1",
570 "MWDMA2",
571 "MWDMA3",
572 "MWDMA4",
573 "UDMA/16",
574 "UDMA/25",
575 "UDMA/33",
576 "UDMA/44",
577 "UDMA/66",
578 "UDMA/100",
579 "UDMA/133",
580 "UDMA7",
581 };
582 int highbit;
583
584 highbit = fls(xfer_mask) - 1;
585 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
586 return xfer_mode_str[highbit];
587 return "<n/a>";
588 }
589
590 static const char *sata_spd_string(unsigned int spd)
591 {
592 static const char * const spd_str[] = {
593 "1.5 Gbps",
594 "3.0 Gbps",
595 };
596
597 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
598 return "<unknown>";
599 return spd_str[spd - 1];
600 }
601
602 void ata_dev_disable(struct ata_device *dev)
603 {
604 if (ata_dev_enabled(dev)) {
605 if (ata_msg_drv(dev->ap))
606 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
607 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
608 ATA_DNXFER_QUIET);
609 dev->class++;
610 }
611 }
612
613 /**
614 * ata_devchk - PATA device presence detection
615 * @ap: ATA channel to examine
616 * @device: Device to examine (starting at zero)
617 *
618 * This technique was originally described in
619 * Hale Landis's ATADRVR (www.ata-atapi.com), and
620 * later found its way into the ATA/ATAPI spec.
621 *
622 * Write a pattern to the ATA shadow registers,
623 * and if a device is present, it will respond by
624 * correctly storing and echoing back the
625 * ATA shadow register contents.
626 *
627 * LOCKING:
628 * caller.
629 */
630
631 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
632 {
633 struct ata_ioports *ioaddr = &ap->ioaddr;
634 u8 nsect, lbal;
635
636 ap->ops->dev_select(ap, device);
637
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
640
641 iowrite8(0xaa, ioaddr->nsect_addr);
642 iowrite8(0x55, ioaddr->lbal_addr);
643
644 iowrite8(0x55, ioaddr->nsect_addr);
645 iowrite8(0xaa, ioaddr->lbal_addr);
646
647 nsect = ioread8(ioaddr->nsect_addr);
648 lbal = ioread8(ioaddr->lbal_addr);
649
650 if ((nsect == 0x55) && (lbal == 0xaa))
651 return 1; /* we found a device */
652
653 return 0; /* nothing found */
654 }
655
656 /**
657 * ata_dev_classify - determine device type based on ATA-spec signature
658 * @tf: ATA taskfile register set for device to be identified
659 *
660 * Determine from taskfile register contents whether a device is
661 * ATA or ATAPI, as per "Signature and persistence" section
662 * of ATA/PI spec (volume 1, sect 5.14).
663 *
664 * LOCKING:
665 * None.
666 *
667 * RETURNS:
668 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
669 * the event of failure.
670 */
671
672 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
673 {
674 /* Apple's open source Darwin code hints that some devices only
675 * put a proper signature into the LBA mid/high registers,
676 * So, we only check those. It's sufficient for uniqueness.
677 */
678
679 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
680 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
681 DPRINTK("found ATA device by sig\n");
682 return ATA_DEV_ATA;
683 }
684
685 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
686 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
687 DPRINTK("found ATAPI device by sig\n");
688 return ATA_DEV_ATAPI;
689 }
690
691 DPRINTK("unknown device\n");
692 return ATA_DEV_UNKNOWN;
693 }
694
695 /**
696 * ata_dev_try_classify - Parse returned ATA device signature
697 * @ap: ATA channel to examine
698 * @device: Device to examine (starting at zero)
699 * @r_err: Value of error register on completion
700 *
701 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
702 * an ATA/ATAPI-defined set of values is placed in the ATA
703 * shadow registers, indicating the results of device detection
704 * and diagnostics.
705 *
706 * Select the ATA device, and read the values from the ATA shadow
707 * registers. Then parse according to the Error register value,
708 * and the spec-defined values examined by ata_dev_classify().
709 *
710 * LOCKING:
711 * caller.
712 *
713 * RETURNS:
714 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
715 */
716
717 unsigned int
718 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
719 {
720 struct ata_taskfile tf;
721 unsigned int class;
722 u8 err;
723
724 ap->ops->dev_select(ap, device);
725
726 memset(&tf, 0, sizeof(tf));
727
728 ap->ops->tf_read(ap, &tf);
729 err = tf.feature;
730 if (r_err)
731 *r_err = err;
732
733 /* see if device passed diags: if master then continue and warn later */
734 if (err == 0 && device == 0)
735 /* diagnostic fail : do nothing _YET_ */
736 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
737 else if (err == 1)
738 /* do nothing */ ;
739 else if ((device == 0) && (err == 0x81))
740 /* do nothing */ ;
741 else
742 return ATA_DEV_NONE;
743
744 /* determine if device is ATA or ATAPI */
745 class = ata_dev_classify(&tf);
746
747 if (class == ATA_DEV_UNKNOWN)
748 return ATA_DEV_NONE;
749 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
750 return ATA_DEV_NONE;
751 return class;
752 }
753
754 /**
755 * ata_id_string - Convert IDENTIFY DEVICE page into string
756 * @id: IDENTIFY DEVICE results we will examine
757 * @s: string into which data is output
758 * @ofs: offset into identify device page
759 * @len: length of string to return. must be an even number.
760 *
761 * The strings in the IDENTIFY DEVICE page are broken up into
762 * 16-bit chunks. Run through the string, and output each
763 * 8-bit chunk linearly, regardless of platform.
764 *
765 * LOCKING:
766 * caller.
767 */
768
769 void ata_id_string(const u16 *id, unsigned char *s,
770 unsigned int ofs, unsigned int len)
771 {
772 unsigned int c;
773
774 while (len > 0) {
775 c = id[ofs] >> 8;
776 *s = c;
777 s++;
778
779 c = id[ofs] & 0xff;
780 *s = c;
781 s++;
782
783 ofs++;
784 len -= 2;
785 }
786 }
787
788 /**
789 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
790 * @id: IDENTIFY DEVICE results we will examine
791 * @s: string into which data is output
792 * @ofs: offset into identify device page
793 * @len: length of string to return. must be an odd number.
794 *
795 * This function is identical to ata_id_string except that it
796 * trims trailing spaces and terminates the resulting string with
797 * null. @len must be actual maximum length (even number) + 1.
798 *
799 * LOCKING:
800 * caller.
801 */
802 void ata_id_c_string(const u16 *id, unsigned char *s,
803 unsigned int ofs, unsigned int len)
804 {
805 unsigned char *p;
806
807 WARN_ON(!(len & 1));
808
809 ata_id_string(id, s, ofs, len - 1);
810
811 p = s + strnlen(s, len - 1);
812 while (p > s && p[-1] == ' ')
813 p--;
814 *p = '\0';
815 }
816
817 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
818 {
819 u64 sectors = 0;
820
821 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
822 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
823 sectors |= (tf->hob_lbal & 0xff) << 24;
824 sectors |= (tf->lbah & 0xff) << 16;
825 sectors |= (tf->lbam & 0xff) << 8;
826 sectors |= (tf->lbal & 0xff);
827
828 return ++sectors;
829 }
830
831 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
832 {
833 u64 sectors = 0;
834
835 sectors |= (tf->device & 0x0f) << 24;
836 sectors |= (tf->lbah & 0xff) << 16;
837 sectors |= (tf->lbam & 0xff) << 8;
838 sectors |= (tf->lbal & 0xff);
839
840 return ++sectors;
841 }
842
843 /**
844 * ata_read_native_max_address_ext - LBA48 native max query
845 * @dev: Device to query
846 *
847 * Perform an LBA48 size query upon the device in question. Return the
848 * actual LBA48 size or zero if the command fails.
849 */
850
851 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
852 {
853 unsigned int err;
854 struct ata_taskfile tf;
855
856 ata_tf_init(dev, &tf);
857
858 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
859 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
860 tf.protocol |= ATA_PROT_NODATA;
861 tf.device |= 0x40;
862
863 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
864 if (err)
865 return 0;
866
867 return ata_tf_to_lba48(&tf);
868 }
869
870 /**
871 * ata_read_native_max_address - LBA28 native max query
872 * @dev: Device to query
873 *
874 * Performa an LBA28 size query upon the device in question. Return the
875 * actual LBA28 size or zero if the command fails.
876 */
877
878 static u64 ata_read_native_max_address(struct ata_device *dev)
879 {
880 unsigned int err;
881 struct ata_taskfile tf;
882
883 ata_tf_init(dev, &tf);
884
885 tf.command = ATA_CMD_READ_NATIVE_MAX;
886 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
887 tf.protocol |= ATA_PROT_NODATA;
888 tf.device |= 0x40;
889
890 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
891 if (err)
892 return 0;
893
894 return ata_tf_to_lba(&tf);
895 }
896
897 /**
898 * ata_set_native_max_address_ext - LBA48 native max set
899 * @dev: Device to query
900 * @new_sectors: new max sectors value to set for the device
901 *
902 * Perform an LBA48 size set max upon the device in question. Return the
903 * actual LBA48 size or zero if the command fails.
904 */
905
906 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
907 {
908 unsigned int err;
909 struct ata_taskfile tf;
910
911 new_sectors--;
912
913 ata_tf_init(dev, &tf);
914
915 tf.command = ATA_CMD_SET_MAX_EXT;
916 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
917 tf.protocol |= ATA_PROT_NODATA;
918 tf.device |= 0x40;
919
920 tf.lbal = (new_sectors >> 0) & 0xff;
921 tf.lbam = (new_sectors >> 8) & 0xff;
922 tf.lbah = (new_sectors >> 16) & 0xff;
923
924 tf.hob_lbal = (new_sectors >> 24) & 0xff;
925 tf.hob_lbam = (new_sectors >> 32) & 0xff;
926 tf.hob_lbah = (new_sectors >> 40) & 0xff;
927
928 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
929 if (err)
930 return 0;
931
932 return ata_tf_to_lba48(&tf);
933 }
934
935 /**
936 * ata_set_native_max_address - LBA28 native max set
937 * @dev: Device to query
938 * @new_sectors: new max sectors value to set for the device
939 *
940 * Perform an LBA28 size set max upon the device in question. Return the
941 * actual LBA28 size or zero if the command fails.
942 */
943
944 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
945 {
946 unsigned int err;
947 struct ata_taskfile tf;
948
949 new_sectors--;
950
951 ata_tf_init(dev, &tf);
952
953 tf.command = ATA_CMD_SET_MAX;
954 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
955 tf.protocol |= ATA_PROT_NODATA;
956
957 tf.lbal = (new_sectors >> 0) & 0xff;
958 tf.lbam = (new_sectors >> 8) & 0xff;
959 tf.lbah = (new_sectors >> 16) & 0xff;
960 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
961
962 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
963 if (err)
964 return 0;
965
966 return ata_tf_to_lba(&tf);
967 }
968
969 /**
970 * ata_hpa_resize - Resize a device with an HPA set
971 * @dev: Device to resize
972 *
973 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
974 * it if required to the full size of the media. The caller must check
975 * the drive has the HPA feature set enabled.
976 */
977
978 static u64 ata_hpa_resize(struct ata_device *dev)
979 {
980 u64 sectors = dev->n_sectors;
981 u64 hpa_sectors;
982
983 if (ata_id_has_lba48(dev->id))
984 hpa_sectors = ata_read_native_max_address_ext(dev);
985 else
986 hpa_sectors = ata_read_native_max_address(dev);
987
988 if (hpa_sectors > sectors) {
989 ata_dev_printk(dev, KERN_INFO,
990 "Host Protected Area detected:\n"
991 "\tcurrent size: %lld sectors\n"
992 "\tnative size: %lld sectors\n",
993 (long long)sectors, (long long)hpa_sectors);
994
995 if (ata_ignore_hpa) {
996 if (ata_id_has_lba48(dev->id))
997 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
998 else
999 hpa_sectors = ata_set_native_max_address(dev,
1000 hpa_sectors);
1001
1002 if (hpa_sectors) {
1003 ata_dev_printk(dev, KERN_INFO, "native size "
1004 "increased to %lld sectors\n",
1005 (long long)hpa_sectors);
1006 return hpa_sectors;
1007 }
1008 }
1009 } else if (hpa_sectors < sectors)
1010 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1011 "is smaller than sectors (%lld)\n", __FUNCTION__,
1012 (long long)hpa_sectors, (long long)sectors);
1013
1014 return sectors;
1015 }
1016
1017 static u64 ata_id_n_sectors(const u16 *id)
1018 {
1019 if (ata_id_has_lba(id)) {
1020 if (ata_id_has_lba48(id))
1021 return ata_id_u64(id, 100);
1022 else
1023 return ata_id_u32(id, 60);
1024 } else {
1025 if (ata_id_current_chs_valid(id))
1026 return ata_id_u32(id, 57);
1027 else
1028 return id[1] * id[3] * id[6];
1029 }
1030 }
1031
1032 /**
1033 * ata_id_to_dma_mode - Identify DMA mode from id block
1034 * @dev: device to identify
1035 * @unknown: mode to assume if we cannot tell
1036 *
1037 * Set up the timing values for the device based upon the identify
1038 * reported values for the DMA mode. This function is used by drivers
1039 * which rely upon firmware configured modes, but wish to report the
1040 * mode correctly when possible.
1041 *
1042 * In addition we emit similarly formatted messages to the default
1043 * ata_dev_set_mode handler, in order to provide consistency of
1044 * presentation.
1045 */
1046
1047 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1048 {
1049 unsigned int mask;
1050 u8 mode;
1051
1052 /* Pack the DMA modes */
1053 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1054 if (dev->id[53] & 0x04)
1055 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1056
1057 /* Select the mode in use */
1058 mode = ata_xfer_mask2mode(mask);
1059
1060 if (mode != 0) {
1061 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1062 ata_mode_string(mask));
1063 } else {
1064 /* SWDMA perhaps ? */
1065 mode = unknown;
1066 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1067 }
1068
1069 /* Configure the device reporting */
1070 dev->xfer_mode = mode;
1071 dev->xfer_shift = ata_xfer_mode2shift(mode);
1072 }
1073
1074 /**
1075 * ata_noop_dev_select - Select device 0/1 on ATA bus
1076 * @ap: ATA channel to manipulate
1077 * @device: ATA device (numbered from zero) to select
1078 *
1079 * This function performs no actual function.
1080 *
1081 * May be used as the dev_select() entry in ata_port_operations.
1082 *
1083 * LOCKING:
1084 * caller.
1085 */
1086 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1087 {
1088 }
1089
1090
1091 /**
1092 * ata_std_dev_select - Select device 0/1 on ATA bus
1093 * @ap: ATA channel to manipulate
1094 * @device: ATA device (numbered from zero) to select
1095 *
1096 * Use the method defined in the ATA specification to
1097 * make either device 0, or device 1, active on the
1098 * ATA channel. Works with both PIO and MMIO.
1099 *
1100 * May be used as the dev_select() entry in ata_port_operations.
1101 *
1102 * LOCKING:
1103 * caller.
1104 */
1105
1106 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1107 {
1108 u8 tmp;
1109
1110 if (device == 0)
1111 tmp = ATA_DEVICE_OBS;
1112 else
1113 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1114
1115 iowrite8(tmp, ap->ioaddr.device_addr);
1116 ata_pause(ap); /* needed; also flushes, for mmio */
1117 }
1118
1119 /**
1120 * ata_dev_select - Select device 0/1 on ATA bus
1121 * @ap: ATA channel to manipulate
1122 * @device: ATA device (numbered from zero) to select
1123 * @wait: non-zero to wait for Status register BSY bit to clear
1124 * @can_sleep: non-zero if context allows sleeping
1125 *
1126 * Use the method defined in the ATA specification to
1127 * make either device 0, or device 1, active on the
1128 * ATA channel.
1129 *
1130 * This is a high-level version of ata_std_dev_select(),
1131 * which additionally provides the services of inserting
1132 * the proper pauses and status polling, where needed.
1133 *
1134 * LOCKING:
1135 * caller.
1136 */
1137
1138 void ata_dev_select(struct ata_port *ap, unsigned int device,
1139 unsigned int wait, unsigned int can_sleep)
1140 {
1141 if (ata_msg_probe(ap))
1142 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1143 "device %u, wait %u\n", device, wait);
1144
1145 if (wait)
1146 ata_wait_idle(ap);
1147
1148 ap->ops->dev_select(ap, device);
1149
1150 if (wait) {
1151 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1152 msleep(150);
1153 ata_wait_idle(ap);
1154 }
1155 }
1156
1157 /**
1158 * ata_dump_id - IDENTIFY DEVICE info debugging output
1159 * @id: IDENTIFY DEVICE page to dump
1160 *
1161 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1162 * page.
1163 *
1164 * LOCKING:
1165 * caller.
1166 */
1167
1168 static inline void ata_dump_id(const u16 *id)
1169 {
1170 DPRINTK("49==0x%04x "
1171 "53==0x%04x "
1172 "63==0x%04x "
1173 "64==0x%04x "
1174 "75==0x%04x \n",
1175 id[49],
1176 id[53],
1177 id[63],
1178 id[64],
1179 id[75]);
1180 DPRINTK("80==0x%04x "
1181 "81==0x%04x "
1182 "82==0x%04x "
1183 "83==0x%04x "
1184 "84==0x%04x \n",
1185 id[80],
1186 id[81],
1187 id[82],
1188 id[83],
1189 id[84]);
1190 DPRINTK("88==0x%04x "
1191 "93==0x%04x\n",
1192 id[88],
1193 id[93]);
1194 }
1195
1196 /**
1197 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1198 * @id: IDENTIFY data to compute xfer mask from
1199 *
1200 * Compute the xfermask for this device. This is not as trivial
1201 * as it seems if we must consider early devices correctly.
1202 *
1203 * FIXME: pre IDE drive timing (do we care ?).
1204 *
1205 * LOCKING:
1206 * None.
1207 *
1208 * RETURNS:
1209 * Computed xfermask
1210 */
1211 static unsigned int ata_id_xfermask(const u16 *id)
1212 {
1213 unsigned int pio_mask, mwdma_mask, udma_mask;
1214
1215 /* Usual case. Word 53 indicates word 64 is valid */
1216 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1217 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1218 pio_mask <<= 3;
1219 pio_mask |= 0x7;
1220 } else {
1221 /* If word 64 isn't valid then Word 51 high byte holds
1222 * the PIO timing number for the maximum. Turn it into
1223 * a mask.
1224 */
1225 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1226 if (mode < 5) /* Valid PIO range */
1227 pio_mask = (2 << mode) - 1;
1228 else
1229 pio_mask = 1;
1230
1231 /* But wait.. there's more. Design your standards by
1232 * committee and you too can get a free iordy field to
1233 * process. However its the speeds not the modes that
1234 * are supported... Note drivers using the timing API
1235 * will get this right anyway
1236 */
1237 }
1238
1239 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1240
1241 if (ata_id_is_cfa(id)) {
1242 /*
1243 * Process compact flash extended modes
1244 */
1245 int pio = id[163] & 0x7;
1246 int dma = (id[163] >> 3) & 7;
1247
1248 if (pio)
1249 pio_mask |= (1 << 5);
1250 if (pio > 1)
1251 pio_mask |= (1 << 6);
1252 if (dma)
1253 mwdma_mask |= (1 << 3);
1254 if (dma > 1)
1255 mwdma_mask |= (1 << 4);
1256 }
1257
1258 udma_mask = 0;
1259 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1260 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1261
1262 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1263 }
1264
1265 /**
1266 * ata_port_queue_task - Queue port_task
1267 * @ap: The ata_port to queue port_task for
1268 * @fn: workqueue function to be scheduled
1269 * @data: data for @fn to use
1270 * @delay: delay time for workqueue function
1271 *
1272 * Schedule @fn(@data) for execution after @delay jiffies using
1273 * port_task. There is one port_task per port and it's the
1274 * user(low level driver)'s responsibility to make sure that only
1275 * one task is active at any given time.
1276 *
1277 * libata core layer takes care of synchronization between
1278 * port_task and EH. ata_port_queue_task() may be ignored for EH
1279 * synchronization.
1280 *
1281 * LOCKING:
1282 * Inherited from caller.
1283 */
1284 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1285 unsigned long delay)
1286 {
1287 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1288 ap->port_task_data = data;
1289
1290 /* may fail if ata_port_flush_task() in progress */
1291 queue_delayed_work(ata_wq, &ap->port_task, delay);
1292 }
1293
1294 /**
1295 * ata_port_flush_task - Flush port_task
1296 * @ap: The ata_port to flush port_task for
1297 *
1298 * After this function completes, port_task is guranteed not to
1299 * be running or scheduled.
1300 *
1301 * LOCKING:
1302 * Kernel thread context (may sleep)
1303 */
1304 void ata_port_flush_task(struct ata_port *ap)
1305 {
1306 DPRINTK("ENTER\n");
1307
1308 cancel_rearming_delayed_work(&ap->port_task);
1309
1310 if (ata_msg_ctl(ap))
1311 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1312 }
1313
1314 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1315 {
1316 struct completion *waiting = qc->private_data;
1317
1318 complete(waiting);
1319 }
1320
1321 /**
1322 * ata_exec_internal_sg - execute libata internal command
1323 * @dev: Device to which the command is sent
1324 * @tf: Taskfile registers for the command and the result
1325 * @cdb: CDB for packet command
1326 * @dma_dir: Data tranfer direction of the command
1327 * @sg: sg list for the data buffer of the command
1328 * @n_elem: Number of sg entries
1329 *
1330 * Executes libata internal command with timeout. @tf contains
1331 * command on entry and result on return. Timeout and error
1332 * conditions are reported via return value. No recovery action
1333 * is taken after a command times out. It's caller's duty to
1334 * clean up after timeout.
1335 *
1336 * LOCKING:
1337 * None. Should be called with kernel context, might sleep.
1338 *
1339 * RETURNS:
1340 * Zero on success, AC_ERR_* mask on failure
1341 */
1342 unsigned ata_exec_internal_sg(struct ata_device *dev,
1343 struct ata_taskfile *tf, const u8 *cdb,
1344 int dma_dir, struct scatterlist *sg,
1345 unsigned int n_elem)
1346 {
1347 struct ata_port *ap = dev->ap;
1348 u8 command = tf->command;
1349 struct ata_queued_cmd *qc;
1350 unsigned int tag, preempted_tag;
1351 u32 preempted_sactive, preempted_qc_active;
1352 DECLARE_COMPLETION_ONSTACK(wait);
1353 unsigned long flags;
1354 unsigned int err_mask;
1355 int rc;
1356
1357 spin_lock_irqsave(ap->lock, flags);
1358
1359 /* no internal command while frozen */
1360 if (ap->pflags & ATA_PFLAG_FROZEN) {
1361 spin_unlock_irqrestore(ap->lock, flags);
1362 return AC_ERR_SYSTEM;
1363 }
1364
1365 /* initialize internal qc */
1366
1367 /* XXX: Tag 0 is used for drivers with legacy EH as some
1368 * drivers choke if any other tag is given. This breaks
1369 * ata_tag_internal() test for those drivers. Don't use new
1370 * EH stuff without converting to it.
1371 */
1372 if (ap->ops->error_handler)
1373 tag = ATA_TAG_INTERNAL;
1374 else
1375 tag = 0;
1376
1377 if (test_and_set_bit(tag, &ap->qc_allocated))
1378 BUG();
1379 qc = __ata_qc_from_tag(ap, tag);
1380
1381 qc->tag = tag;
1382 qc->scsicmd = NULL;
1383 qc->ap = ap;
1384 qc->dev = dev;
1385 ata_qc_reinit(qc);
1386
1387 preempted_tag = ap->active_tag;
1388 preempted_sactive = ap->sactive;
1389 preempted_qc_active = ap->qc_active;
1390 ap->active_tag = ATA_TAG_POISON;
1391 ap->sactive = 0;
1392 ap->qc_active = 0;
1393
1394 /* prepare & issue qc */
1395 qc->tf = *tf;
1396 if (cdb)
1397 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1398 qc->flags |= ATA_QCFLAG_RESULT_TF;
1399 qc->dma_dir = dma_dir;
1400 if (dma_dir != DMA_NONE) {
1401 unsigned int i, buflen = 0;
1402
1403 for (i = 0; i < n_elem; i++)
1404 buflen += sg[i].length;
1405
1406 ata_sg_init(qc, sg, n_elem);
1407 qc->nbytes = buflen;
1408 }
1409
1410 qc->private_data = &wait;
1411 qc->complete_fn = ata_qc_complete_internal;
1412
1413 ata_qc_issue(qc);
1414
1415 spin_unlock_irqrestore(ap->lock, flags);
1416
1417 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1418
1419 ata_port_flush_task(ap);
1420
1421 if (!rc) {
1422 spin_lock_irqsave(ap->lock, flags);
1423
1424 /* We're racing with irq here. If we lose, the
1425 * following test prevents us from completing the qc
1426 * twice. If we win, the port is frozen and will be
1427 * cleaned up by ->post_internal_cmd().
1428 */
1429 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1430 qc->err_mask |= AC_ERR_TIMEOUT;
1431
1432 if (ap->ops->error_handler)
1433 ata_port_freeze(ap);
1434 else
1435 ata_qc_complete(qc);
1436
1437 if (ata_msg_warn(ap))
1438 ata_dev_printk(dev, KERN_WARNING,
1439 "qc timeout (cmd 0x%x)\n", command);
1440 }
1441
1442 spin_unlock_irqrestore(ap->lock, flags);
1443 }
1444
1445 /* do post_internal_cmd */
1446 if (ap->ops->post_internal_cmd)
1447 ap->ops->post_internal_cmd(qc);
1448
1449 /* perform minimal error analysis */
1450 if (qc->flags & ATA_QCFLAG_FAILED) {
1451 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1452 qc->err_mask |= AC_ERR_DEV;
1453
1454 if (!qc->err_mask)
1455 qc->err_mask |= AC_ERR_OTHER;
1456
1457 if (qc->err_mask & ~AC_ERR_OTHER)
1458 qc->err_mask &= ~AC_ERR_OTHER;
1459 }
1460
1461 /* finish up */
1462 spin_lock_irqsave(ap->lock, flags);
1463
1464 *tf = qc->result_tf;
1465 err_mask = qc->err_mask;
1466
1467 ata_qc_free(qc);
1468 ap->active_tag = preempted_tag;
1469 ap->sactive = preempted_sactive;
1470 ap->qc_active = preempted_qc_active;
1471
1472 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1473 * Until those drivers are fixed, we detect the condition
1474 * here, fail the command with AC_ERR_SYSTEM and reenable the
1475 * port.
1476 *
1477 * Note that this doesn't change any behavior as internal
1478 * command failure results in disabling the device in the
1479 * higher layer for LLDDs without new reset/EH callbacks.
1480 *
1481 * Kill the following code as soon as those drivers are fixed.
1482 */
1483 if (ap->flags & ATA_FLAG_DISABLED) {
1484 err_mask |= AC_ERR_SYSTEM;
1485 ata_port_probe(ap);
1486 }
1487
1488 spin_unlock_irqrestore(ap->lock, flags);
1489
1490 return err_mask;
1491 }
1492
1493 /**
1494 * ata_exec_internal - execute libata internal command
1495 * @dev: Device to which the command is sent
1496 * @tf: Taskfile registers for the command and the result
1497 * @cdb: CDB for packet command
1498 * @dma_dir: Data tranfer direction of the command
1499 * @buf: Data buffer of the command
1500 * @buflen: Length of data buffer
1501 *
1502 * Wrapper around ata_exec_internal_sg() which takes simple
1503 * buffer instead of sg list.
1504 *
1505 * LOCKING:
1506 * None. Should be called with kernel context, might sleep.
1507 *
1508 * RETURNS:
1509 * Zero on success, AC_ERR_* mask on failure
1510 */
1511 unsigned ata_exec_internal(struct ata_device *dev,
1512 struct ata_taskfile *tf, const u8 *cdb,
1513 int dma_dir, void *buf, unsigned int buflen)
1514 {
1515 struct scatterlist *psg = NULL, sg;
1516 unsigned int n_elem = 0;
1517
1518 if (dma_dir != DMA_NONE) {
1519 WARN_ON(!buf);
1520 sg_init_one(&sg, buf, buflen);
1521 psg = &sg;
1522 n_elem++;
1523 }
1524
1525 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1526 }
1527
1528 /**
1529 * ata_do_simple_cmd - execute simple internal command
1530 * @dev: Device to which the command is sent
1531 * @cmd: Opcode to execute
1532 *
1533 * Execute a 'simple' command, that only consists of the opcode
1534 * 'cmd' itself, without filling any other registers
1535 *
1536 * LOCKING:
1537 * Kernel thread context (may sleep).
1538 *
1539 * RETURNS:
1540 * Zero on success, AC_ERR_* mask on failure
1541 */
1542 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1543 {
1544 struct ata_taskfile tf;
1545
1546 ata_tf_init(dev, &tf);
1547
1548 tf.command = cmd;
1549 tf.flags |= ATA_TFLAG_DEVICE;
1550 tf.protocol = ATA_PROT_NODATA;
1551
1552 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1553 }
1554
1555 /**
1556 * ata_pio_need_iordy - check if iordy needed
1557 * @adev: ATA device
1558 *
1559 * Check if the current speed of the device requires IORDY. Used
1560 * by various controllers for chip configuration.
1561 */
1562
1563 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1564 {
1565 /* Controller doesn't support IORDY. Probably a pointless check
1566 as the caller should know this */
1567 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1568 return 0;
1569 /* PIO3 and higher it is mandatory */
1570 if (adev->pio_mode > XFER_PIO_2)
1571 return 1;
1572 /* We turn it on when possible */
1573 if (ata_id_has_iordy(adev->id))
1574 return 1;
1575 return 0;
1576 }
1577
1578 /**
1579 * ata_pio_mask_no_iordy - Return the non IORDY mask
1580 * @adev: ATA device
1581 *
1582 * Compute the highest mode possible if we are not using iordy. Return
1583 * -1 if no iordy mode is available.
1584 */
1585
1586 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1587 {
1588 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1589 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1590 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1591 /* Is the speed faster than the drive allows non IORDY ? */
1592 if (pio) {
1593 /* This is cycle times not frequency - watch the logic! */
1594 if (pio > 240) /* PIO2 is 240nS per cycle */
1595 return 3 << ATA_SHIFT_PIO;
1596 return 7 << ATA_SHIFT_PIO;
1597 }
1598 }
1599 return 3 << ATA_SHIFT_PIO;
1600 }
1601
1602 /**
1603 * ata_dev_read_id - Read ID data from the specified device
1604 * @dev: target device
1605 * @p_class: pointer to class of the target device (may be changed)
1606 * @flags: ATA_READID_* flags
1607 * @id: buffer to read IDENTIFY data into
1608 *
1609 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1610 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1611 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1612 * for pre-ATA4 drives.
1613 *
1614 * LOCKING:
1615 * Kernel thread context (may sleep)
1616 *
1617 * RETURNS:
1618 * 0 on success, -errno otherwise.
1619 */
1620 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1621 unsigned int flags, u16 *id)
1622 {
1623 struct ata_port *ap = dev->ap;
1624 unsigned int class = *p_class;
1625 struct ata_taskfile tf;
1626 unsigned int err_mask = 0;
1627 const char *reason;
1628 int may_fallback = 1, tried_spinup = 0;
1629 int rc;
1630
1631 if (ata_msg_ctl(ap))
1632 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1633
1634 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1635 retry:
1636 ata_tf_init(dev, &tf);
1637
1638 switch (class) {
1639 case ATA_DEV_ATA:
1640 tf.command = ATA_CMD_ID_ATA;
1641 break;
1642 case ATA_DEV_ATAPI:
1643 tf.command = ATA_CMD_ID_ATAPI;
1644 break;
1645 default:
1646 rc = -ENODEV;
1647 reason = "unsupported class";
1648 goto err_out;
1649 }
1650
1651 tf.protocol = ATA_PROT_PIO;
1652
1653 /* Some devices choke if TF registers contain garbage. Make
1654 * sure those are properly initialized.
1655 */
1656 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1657
1658 /* Device presence detection is unreliable on some
1659 * controllers. Always poll IDENTIFY if available.
1660 */
1661 tf.flags |= ATA_TFLAG_POLLING;
1662
1663 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1664 id, sizeof(id[0]) * ATA_ID_WORDS);
1665 if (err_mask) {
1666 if (err_mask & AC_ERR_NODEV_HINT) {
1667 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1668 ap->print_id, dev->devno);
1669 return -ENOENT;
1670 }
1671
1672 /* Device or controller might have reported the wrong
1673 * device class. Give a shot at the other IDENTIFY if
1674 * the current one is aborted by the device.
1675 */
1676 if (may_fallback &&
1677 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1678 may_fallback = 0;
1679
1680 if (class == ATA_DEV_ATA)
1681 class = ATA_DEV_ATAPI;
1682 else
1683 class = ATA_DEV_ATA;
1684 goto retry;
1685 }
1686
1687 rc = -EIO;
1688 reason = "I/O error";
1689 goto err_out;
1690 }
1691
1692 /* Falling back doesn't make sense if ID data was read
1693 * successfully at least once.
1694 */
1695 may_fallback = 0;
1696
1697 swap_buf_le16(id, ATA_ID_WORDS);
1698
1699 /* sanity check */
1700 rc = -EINVAL;
1701 reason = "device reports invalid type";
1702
1703 if (class == ATA_DEV_ATA) {
1704 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1705 goto err_out;
1706 } else {
1707 if (ata_id_is_ata(id))
1708 goto err_out;
1709 }
1710
1711 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1712 tried_spinup = 1;
1713 /*
1714 * Drive powered-up in standby mode, and requires a specific
1715 * SET_FEATURES spin-up subcommand before it will accept
1716 * anything other than the original IDENTIFY command.
1717 */
1718 ata_tf_init(dev, &tf);
1719 tf.command = ATA_CMD_SET_FEATURES;
1720 tf.feature = SETFEATURES_SPINUP;
1721 tf.protocol = ATA_PROT_NODATA;
1722 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1723 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1724 if (err_mask) {
1725 rc = -EIO;
1726 reason = "SPINUP failed";
1727 goto err_out;
1728 }
1729 /*
1730 * If the drive initially returned incomplete IDENTIFY info,
1731 * we now must reissue the IDENTIFY command.
1732 */
1733 if (id[2] == 0x37c8)
1734 goto retry;
1735 }
1736
1737 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1738 /*
1739 * The exact sequence expected by certain pre-ATA4 drives is:
1740 * SRST RESET
1741 * IDENTIFY
1742 * INITIALIZE DEVICE PARAMETERS
1743 * anything else..
1744 * Some drives were very specific about that exact sequence.
1745 */
1746 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1747 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1748 if (err_mask) {
1749 rc = -EIO;
1750 reason = "INIT_DEV_PARAMS failed";
1751 goto err_out;
1752 }
1753
1754 /* current CHS translation info (id[53-58]) might be
1755 * changed. reread the identify device info.
1756 */
1757 flags &= ~ATA_READID_POSTRESET;
1758 goto retry;
1759 }
1760 }
1761
1762 *p_class = class;
1763
1764 return 0;
1765
1766 err_out:
1767 if (ata_msg_warn(ap))
1768 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1769 "(%s, err_mask=0x%x)\n", reason, err_mask);
1770 return rc;
1771 }
1772
1773 static inline u8 ata_dev_knobble(struct ata_device *dev)
1774 {
1775 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1776 }
1777
1778 static void ata_dev_config_ncq(struct ata_device *dev,
1779 char *desc, size_t desc_sz)
1780 {
1781 struct ata_port *ap = dev->ap;
1782 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1783
1784 if (!ata_id_has_ncq(dev->id)) {
1785 desc[0] = '\0';
1786 return;
1787 }
1788 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1789 snprintf(desc, desc_sz, "NCQ (not used)");
1790 return;
1791 }
1792 if (ap->flags & ATA_FLAG_NCQ) {
1793 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1794 dev->flags |= ATA_DFLAG_NCQ;
1795 }
1796
1797 if (hdepth >= ddepth)
1798 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1799 else
1800 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1801 }
1802
1803 /**
1804 * ata_dev_configure - Configure the specified ATA/ATAPI device
1805 * @dev: Target device to configure
1806 *
1807 * Configure @dev according to @dev->id. Generic and low-level
1808 * driver specific fixups are also applied.
1809 *
1810 * LOCKING:
1811 * Kernel thread context (may sleep)
1812 *
1813 * RETURNS:
1814 * 0 on success, -errno otherwise
1815 */
1816 int ata_dev_configure(struct ata_device *dev)
1817 {
1818 struct ata_port *ap = dev->ap;
1819 struct ata_eh_context *ehc = &ap->eh_context;
1820 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1821 const u16 *id = dev->id;
1822 unsigned int xfer_mask;
1823 char revbuf[7]; /* XYZ-99\0 */
1824 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1825 char modelbuf[ATA_ID_PROD_LEN+1];
1826 int rc;
1827
1828 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1829 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1830 __FUNCTION__);
1831 return 0;
1832 }
1833
1834 if (ata_msg_probe(ap))
1835 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1836
1837 /* set horkage */
1838 dev->horkage |= ata_dev_blacklisted(dev);
1839
1840 /* let ACPI work its magic */
1841 rc = ata_acpi_on_devcfg(dev);
1842 if (rc)
1843 return rc;
1844
1845 /* print device capabilities */
1846 if (ata_msg_probe(ap))
1847 ata_dev_printk(dev, KERN_DEBUG,
1848 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1849 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1850 __FUNCTION__,
1851 id[49], id[82], id[83], id[84],
1852 id[85], id[86], id[87], id[88]);
1853
1854 /* initialize to-be-configured parameters */
1855 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1856 dev->max_sectors = 0;
1857 dev->cdb_len = 0;
1858 dev->n_sectors = 0;
1859 dev->cylinders = 0;
1860 dev->heads = 0;
1861 dev->sectors = 0;
1862
1863 /*
1864 * common ATA, ATAPI feature tests
1865 */
1866
1867 /* find max transfer mode; for printk only */
1868 xfer_mask = ata_id_xfermask(id);
1869
1870 if (ata_msg_probe(ap))
1871 ata_dump_id(id);
1872
1873 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1874 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1875 sizeof(fwrevbuf));
1876
1877 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1878 sizeof(modelbuf));
1879
1880 /* ATA-specific feature tests */
1881 if (dev->class == ATA_DEV_ATA) {
1882 if (ata_id_is_cfa(id)) {
1883 if (id[162] & 1) /* CPRM may make this media unusable */
1884 ata_dev_printk(dev, KERN_WARNING,
1885 "supports DRM functions and may "
1886 "not be fully accessable.\n");
1887 snprintf(revbuf, 7, "CFA");
1888 }
1889 else
1890 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1891
1892 dev->n_sectors = ata_id_n_sectors(id);
1893
1894 if (dev->id[59] & 0x100)
1895 dev->multi_count = dev->id[59] & 0xff;
1896
1897 if (ata_id_has_lba(id)) {
1898 const char *lba_desc;
1899 char ncq_desc[20];
1900
1901 lba_desc = "LBA";
1902 dev->flags |= ATA_DFLAG_LBA;
1903 if (ata_id_has_lba48(id)) {
1904 dev->flags |= ATA_DFLAG_LBA48;
1905 lba_desc = "LBA48";
1906
1907 if (dev->n_sectors >= (1UL << 28) &&
1908 ata_id_has_flush_ext(id))
1909 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1910 }
1911
1912 if (ata_id_hpa_enabled(dev->id))
1913 dev->n_sectors = ata_hpa_resize(dev);
1914
1915 /* config NCQ */
1916 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1917
1918 /* print device info to dmesg */
1919 if (ata_msg_drv(ap) && print_info) {
1920 ata_dev_printk(dev, KERN_INFO,
1921 "%s: %s, %s, max %s\n",
1922 revbuf, modelbuf, fwrevbuf,
1923 ata_mode_string(xfer_mask));
1924 ata_dev_printk(dev, KERN_INFO,
1925 "%Lu sectors, multi %u: %s %s\n",
1926 (unsigned long long)dev->n_sectors,
1927 dev->multi_count, lba_desc, ncq_desc);
1928 }
1929 } else {
1930 /* CHS */
1931
1932 /* Default translation */
1933 dev->cylinders = id[1];
1934 dev->heads = id[3];
1935 dev->sectors = id[6];
1936
1937 if (ata_id_current_chs_valid(id)) {
1938 /* Current CHS translation is valid. */
1939 dev->cylinders = id[54];
1940 dev->heads = id[55];
1941 dev->sectors = id[56];
1942 }
1943
1944 /* print device info to dmesg */
1945 if (ata_msg_drv(ap) && print_info) {
1946 ata_dev_printk(dev, KERN_INFO,
1947 "%s: %s, %s, max %s\n",
1948 revbuf, modelbuf, fwrevbuf,
1949 ata_mode_string(xfer_mask));
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1952 (unsigned long long)dev->n_sectors,
1953 dev->multi_count, dev->cylinders,
1954 dev->heads, dev->sectors);
1955 }
1956 }
1957
1958 dev->cdb_len = 16;
1959 }
1960
1961 /* ATAPI-specific feature tests */
1962 else if (dev->class == ATA_DEV_ATAPI) {
1963 char *cdb_intr_string = "";
1964
1965 rc = atapi_cdb_len(id);
1966 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1967 if (ata_msg_warn(ap))
1968 ata_dev_printk(dev, KERN_WARNING,
1969 "unsupported CDB len\n");
1970 rc = -EINVAL;
1971 goto err_out_nosup;
1972 }
1973 dev->cdb_len = (unsigned int) rc;
1974
1975 if (ata_id_cdb_intr(dev->id)) {
1976 dev->flags |= ATA_DFLAG_CDB_INTR;
1977 cdb_intr_string = ", CDB intr";
1978 }
1979
1980 /* print device info to dmesg */
1981 if (ata_msg_drv(ap) && print_info)
1982 ata_dev_printk(dev, KERN_INFO,
1983 "ATAPI: %s, %s, max %s%s\n",
1984 modelbuf, fwrevbuf,
1985 ata_mode_string(xfer_mask),
1986 cdb_intr_string);
1987 }
1988
1989 /* determine max_sectors */
1990 dev->max_sectors = ATA_MAX_SECTORS;
1991 if (dev->flags & ATA_DFLAG_LBA48)
1992 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1993
1994 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1995 /* Let the user know. We don't want to disallow opens for
1996 rescue purposes, or in case the vendor is just a blithering
1997 idiot */
1998 if (print_info) {
1999 ata_dev_printk(dev, KERN_WARNING,
2000 "Drive reports diagnostics failure. This may indicate a drive\n");
2001 ata_dev_printk(dev, KERN_WARNING,
2002 "fault or invalid emulation. Contact drive vendor for information.\n");
2003 }
2004 }
2005
2006 /* limit bridge transfers to udma5, 200 sectors */
2007 if (ata_dev_knobble(dev)) {
2008 if (ata_msg_drv(ap) && print_info)
2009 ata_dev_printk(dev, KERN_INFO,
2010 "applying bridge limits\n");
2011 dev->udma_mask &= ATA_UDMA5;
2012 dev->max_sectors = ATA_MAX_SECTORS;
2013 }
2014
2015 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2016 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2017 dev->max_sectors);
2018
2019 if (ap->ops->dev_config)
2020 ap->ops->dev_config(dev);
2021
2022 if (ata_msg_probe(ap))
2023 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2024 __FUNCTION__, ata_chk_status(ap));
2025 return 0;
2026
2027 err_out_nosup:
2028 if (ata_msg_probe(ap))
2029 ata_dev_printk(dev, KERN_DEBUG,
2030 "%s: EXIT, err\n", __FUNCTION__);
2031 return rc;
2032 }
2033
2034 /**
2035 * ata_cable_40wire - return 40 wire cable type
2036 * @ap: port
2037 *
2038 * Helper method for drivers which want to hardwire 40 wire cable
2039 * detection.
2040 */
2041
2042 int ata_cable_40wire(struct ata_port *ap)
2043 {
2044 return ATA_CBL_PATA40;
2045 }
2046
2047 /**
2048 * ata_cable_80wire - return 80 wire cable type
2049 * @ap: port
2050 *
2051 * Helper method for drivers which want to hardwire 80 wire cable
2052 * detection.
2053 */
2054
2055 int ata_cable_80wire(struct ata_port *ap)
2056 {
2057 return ATA_CBL_PATA80;
2058 }
2059
2060 /**
2061 * ata_cable_unknown - return unknown PATA cable.
2062 * @ap: port
2063 *
2064 * Helper method for drivers which have no PATA cable detection.
2065 */
2066
2067 int ata_cable_unknown(struct ata_port *ap)
2068 {
2069 return ATA_CBL_PATA_UNK;
2070 }
2071
2072 /**
2073 * ata_cable_sata - return SATA cable type
2074 * @ap: port
2075 *
2076 * Helper method for drivers which have SATA cables
2077 */
2078
2079 int ata_cable_sata(struct ata_port *ap)
2080 {
2081 return ATA_CBL_SATA;
2082 }
2083
2084 /**
2085 * ata_bus_probe - Reset and probe ATA bus
2086 * @ap: Bus to probe
2087 *
2088 * Master ATA bus probing function. Initiates a hardware-dependent
2089 * bus reset, then attempts to identify any devices found on
2090 * the bus.
2091 *
2092 * LOCKING:
2093 * PCI/etc. bus probe sem.
2094 *
2095 * RETURNS:
2096 * Zero on success, negative errno otherwise.
2097 */
2098
2099 int ata_bus_probe(struct ata_port *ap)
2100 {
2101 unsigned int classes[ATA_MAX_DEVICES];
2102 int tries[ATA_MAX_DEVICES];
2103 int i, rc;
2104 struct ata_device *dev;
2105
2106 ata_port_probe(ap);
2107
2108 for (i = 0; i < ATA_MAX_DEVICES; i++)
2109 tries[i] = ATA_PROBE_MAX_TRIES;
2110
2111 retry:
2112 /* reset and determine device classes */
2113 ap->ops->phy_reset(ap);
2114
2115 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2116 dev = &ap->device[i];
2117
2118 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2119 dev->class != ATA_DEV_UNKNOWN)
2120 classes[dev->devno] = dev->class;
2121 else
2122 classes[dev->devno] = ATA_DEV_NONE;
2123
2124 dev->class = ATA_DEV_UNKNOWN;
2125 }
2126
2127 ata_port_probe(ap);
2128
2129 /* after the reset the device state is PIO 0 and the controller
2130 state is undefined. Record the mode */
2131
2132 for (i = 0; i < ATA_MAX_DEVICES; i++)
2133 ap->device[i].pio_mode = XFER_PIO_0;
2134
2135 /* read IDENTIFY page and configure devices. We have to do the identify
2136 specific sequence bass-ackwards so that PDIAG- is released by
2137 the slave device */
2138
2139 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2140 dev = &ap->device[i];
2141
2142 if (tries[i])
2143 dev->class = classes[i];
2144
2145 if (!ata_dev_enabled(dev))
2146 continue;
2147
2148 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2149 dev->id);
2150 if (rc)
2151 goto fail;
2152 }
2153
2154 /* Now ask for the cable type as PDIAG- should have been released */
2155 if (ap->ops->cable_detect)
2156 ap->cbl = ap->ops->cable_detect(ap);
2157
2158 /* After the identify sequence we can now set up the devices. We do
2159 this in the normal order so that the user doesn't get confused */
2160
2161 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2162 dev = &ap->device[i];
2163 if (!ata_dev_enabled(dev))
2164 continue;
2165
2166 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2167 rc = ata_dev_configure(dev);
2168 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2169 if (rc)
2170 goto fail;
2171 }
2172
2173 /* configure transfer mode */
2174 rc = ata_set_mode(ap, &dev);
2175 if (rc)
2176 goto fail;
2177
2178 for (i = 0; i < ATA_MAX_DEVICES; i++)
2179 if (ata_dev_enabled(&ap->device[i]))
2180 return 0;
2181
2182 /* no device present, disable port */
2183 ata_port_disable(ap);
2184 ap->ops->port_disable(ap);
2185 return -ENODEV;
2186
2187 fail:
2188 tries[dev->devno]--;
2189
2190 switch (rc) {
2191 case -EINVAL:
2192 /* eeek, something went very wrong, give up */
2193 tries[dev->devno] = 0;
2194 break;
2195
2196 case -ENODEV:
2197 /* give it just one more chance */
2198 tries[dev->devno] = min(tries[dev->devno], 1);
2199 case -EIO:
2200 if (tries[dev->devno] == 1) {
2201 /* This is the last chance, better to slow
2202 * down than lose it.
2203 */
2204 sata_down_spd_limit(ap);
2205 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2206 }
2207 }
2208
2209 if (!tries[dev->devno])
2210 ata_dev_disable(dev);
2211
2212 goto retry;
2213 }
2214
2215 /**
2216 * ata_port_probe - Mark port as enabled
2217 * @ap: Port for which we indicate enablement
2218 *
2219 * Modify @ap data structure such that the system
2220 * thinks that the entire port is enabled.
2221 *
2222 * LOCKING: host lock, or some other form of
2223 * serialization.
2224 */
2225
2226 void ata_port_probe(struct ata_port *ap)
2227 {
2228 ap->flags &= ~ATA_FLAG_DISABLED;
2229 }
2230
2231 /**
2232 * sata_print_link_status - Print SATA link status
2233 * @ap: SATA port to printk link status about
2234 *
2235 * This function prints link speed and status of a SATA link.
2236 *
2237 * LOCKING:
2238 * None.
2239 */
2240 void sata_print_link_status(struct ata_port *ap)
2241 {
2242 u32 sstatus, scontrol, tmp;
2243
2244 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2245 return;
2246 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2247
2248 if (ata_port_online(ap)) {
2249 tmp = (sstatus >> 4) & 0xf;
2250 ata_port_printk(ap, KERN_INFO,
2251 "SATA link up %s (SStatus %X SControl %X)\n",
2252 sata_spd_string(tmp), sstatus, scontrol);
2253 } else {
2254 ata_port_printk(ap, KERN_INFO,
2255 "SATA link down (SStatus %X SControl %X)\n",
2256 sstatus, scontrol);
2257 }
2258 }
2259
2260 /**
2261 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2262 * @ap: SATA port associated with target SATA PHY.
2263 *
2264 * This function issues commands to standard SATA Sxxx
2265 * PHY registers, to wake up the phy (and device), and
2266 * clear any reset condition.
2267 *
2268 * LOCKING:
2269 * PCI/etc. bus probe sem.
2270 *
2271 */
2272 void __sata_phy_reset(struct ata_port *ap)
2273 {
2274 u32 sstatus;
2275 unsigned long timeout = jiffies + (HZ * 5);
2276
2277 if (ap->flags & ATA_FLAG_SATA_RESET) {
2278 /* issue phy wake/reset */
2279 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2280 /* Couldn't find anything in SATA I/II specs, but
2281 * AHCI-1.1 10.4.2 says at least 1 ms. */
2282 mdelay(1);
2283 }
2284 /* phy wake/clear reset */
2285 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2286
2287 /* wait for phy to become ready, if necessary */
2288 do {
2289 msleep(200);
2290 sata_scr_read(ap, SCR_STATUS, &sstatus);
2291 if ((sstatus & 0xf) != 1)
2292 break;
2293 } while (time_before(jiffies, timeout));
2294
2295 /* print link status */
2296 sata_print_link_status(ap);
2297
2298 /* TODO: phy layer with polling, timeouts, etc. */
2299 if (!ata_port_offline(ap))
2300 ata_port_probe(ap);
2301 else
2302 ata_port_disable(ap);
2303
2304 if (ap->flags & ATA_FLAG_DISABLED)
2305 return;
2306
2307 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2308 ata_port_disable(ap);
2309 return;
2310 }
2311
2312 ap->cbl = ATA_CBL_SATA;
2313 }
2314
2315 /**
2316 * sata_phy_reset - Reset SATA bus.
2317 * @ap: SATA port associated with target SATA PHY.
2318 *
2319 * This function resets the SATA bus, and then probes
2320 * the bus for devices.
2321 *
2322 * LOCKING:
2323 * PCI/etc. bus probe sem.
2324 *
2325 */
2326 void sata_phy_reset(struct ata_port *ap)
2327 {
2328 __sata_phy_reset(ap);
2329 if (ap->flags & ATA_FLAG_DISABLED)
2330 return;
2331 ata_bus_reset(ap);
2332 }
2333
2334 /**
2335 * ata_dev_pair - return other device on cable
2336 * @adev: device
2337 *
2338 * Obtain the other device on the same cable, or if none is
2339 * present NULL is returned
2340 */
2341
2342 struct ata_device *ata_dev_pair(struct ata_device *adev)
2343 {
2344 struct ata_port *ap = adev->ap;
2345 struct ata_device *pair = &ap->device[1 - adev->devno];
2346 if (!ata_dev_enabled(pair))
2347 return NULL;
2348 return pair;
2349 }
2350
2351 /**
2352 * ata_port_disable - Disable port.
2353 * @ap: Port to be disabled.
2354 *
2355 * Modify @ap data structure such that the system
2356 * thinks that the entire port is disabled, and should
2357 * never attempt to probe or communicate with devices
2358 * on this port.
2359 *
2360 * LOCKING: host lock, or some other form of
2361 * serialization.
2362 */
2363
2364 void ata_port_disable(struct ata_port *ap)
2365 {
2366 ap->device[0].class = ATA_DEV_NONE;
2367 ap->device[1].class = ATA_DEV_NONE;
2368 ap->flags |= ATA_FLAG_DISABLED;
2369 }
2370
2371 /**
2372 * sata_down_spd_limit - adjust SATA spd limit downward
2373 * @ap: Port to adjust SATA spd limit for
2374 *
2375 * Adjust SATA spd limit of @ap downward. Note that this
2376 * function only adjusts the limit. The change must be applied
2377 * using sata_set_spd().
2378 *
2379 * LOCKING:
2380 * Inherited from caller.
2381 *
2382 * RETURNS:
2383 * 0 on success, negative errno on failure
2384 */
2385 int sata_down_spd_limit(struct ata_port *ap)
2386 {
2387 u32 sstatus, spd, mask;
2388 int rc, highbit;
2389
2390 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2391 if (rc)
2392 return rc;
2393
2394 mask = ap->sata_spd_limit;
2395 if (mask <= 1)
2396 return -EINVAL;
2397 highbit = fls(mask) - 1;
2398 mask &= ~(1 << highbit);
2399
2400 spd = (sstatus >> 4) & 0xf;
2401 if (spd <= 1)
2402 return -EINVAL;
2403 spd--;
2404 mask &= (1 << spd) - 1;
2405 if (!mask)
2406 return -EINVAL;
2407
2408 ap->sata_spd_limit = mask;
2409
2410 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2411 sata_spd_string(fls(mask)));
2412
2413 return 0;
2414 }
2415
2416 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2417 {
2418 u32 spd, limit;
2419
2420 if (ap->sata_spd_limit == UINT_MAX)
2421 limit = 0;
2422 else
2423 limit = fls(ap->sata_spd_limit);
2424
2425 spd = (*scontrol >> 4) & 0xf;
2426 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2427
2428 return spd != limit;
2429 }
2430
2431 /**
2432 * sata_set_spd_needed - is SATA spd configuration needed
2433 * @ap: Port in question
2434 *
2435 * Test whether the spd limit in SControl matches
2436 * @ap->sata_spd_limit. This function is used to determine
2437 * whether hardreset is necessary to apply SATA spd
2438 * configuration.
2439 *
2440 * LOCKING:
2441 * Inherited from caller.
2442 *
2443 * RETURNS:
2444 * 1 if SATA spd configuration is needed, 0 otherwise.
2445 */
2446 int sata_set_spd_needed(struct ata_port *ap)
2447 {
2448 u32 scontrol;
2449
2450 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2451 return 0;
2452
2453 return __sata_set_spd_needed(ap, &scontrol);
2454 }
2455
2456 /**
2457 * sata_set_spd - set SATA spd according to spd limit
2458 * @ap: Port to set SATA spd for
2459 *
2460 * Set SATA spd of @ap according to sata_spd_limit.
2461 *
2462 * LOCKING:
2463 * Inherited from caller.
2464 *
2465 * RETURNS:
2466 * 0 if spd doesn't need to be changed, 1 if spd has been
2467 * changed. Negative errno if SCR registers are inaccessible.
2468 */
2469 int sata_set_spd(struct ata_port *ap)
2470 {
2471 u32 scontrol;
2472 int rc;
2473
2474 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2475 return rc;
2476
2477 if (!__sata_set_spd_needed(ap, &scontrol))
2478 return 0;
2479
2480 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2481 return rc;
2482
2483 return 1;
2484 }
2485
2486 /*
2487 * This mode timing computation functionality is ported over from
2488 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2489 */
2490 /*
2491 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2492 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2493 * for UDMA6, which is currently supported only by Maxtor drives.
2494 *
2495 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2496 */
2497
2498 static const struct ata_timing ata_timing[] = {
2499
2500 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2501 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2502 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2503 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2504
2505 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2506 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2507 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2508 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2509 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2510
2511 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2512
2513 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2514 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2515 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2516
2517 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2518 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2519 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2520
2521 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2522 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2523 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2524 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2525
2526 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2527 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2528 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2529
2530 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2531
2532 { 0xFF }
2533 };
2534
2535 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2536 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2537
2538 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2539 {
2540 q->setup = EZ(t->setup * 1000, T);
2541 q->act8b = EZ(t->act8b * 1000, T);
2542 q->rec8b = EZ(t->rec8b * 1000, T);
2543 q->cyc8b = EZ(t->cyc8b * 1000, T);
2544 q->active = EZ(t->active * 1000, T);
2545 q->recover = EZ(t->recover * 1000, T);
2546 q->cycle = EZ(t->cycle * 1000, T);
2547 q->udma = EZ(t->udma * 1000, UT);
2548 }
2549
2550 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2551 struct ata_timing *m, unsigned int what)
2552 {
2553 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2554 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2555 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2556 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2557 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2558 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2559 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2560 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2561 }
2562
2563 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2564 {
2565 const struct ata_timing *t;
2566
2567 for (t = ata_timing; t->mode != speed; t++)
2568 if (t->mode == 0xFF)
2569 return NULL;
2570 return t;
2571 }
2572
2573 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2574 struct ata_timing *t, int T, int UT)
2575 {
2576 const struct ata_timing *s;
2577 struct ata_timing p;
2578
2579 /*
2580 * Find the mode.
2581 */
2582
2583 if (!(s = ata_timing_find_mode(speed)))
2584 return -EINVAL;
2585
2586 memcpy(t, s, sizeof(*s));
2587
2588 /*
2589 * If the drive is an EIDE drive, it can tell us it needs extended
2590 * PIO/MW_DMA cycle timing.
2591 */
2592
2593 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2594 memset(&p, 0, sizeof(p));
2595 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2596 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2597 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2598 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2599 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2600 }
2601 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2602 }
2603
2604 /*
2605 * Convert the timing to bus clock counts.
2606 */
2607
2608 ata_timing_quantize(t, t, T, UT);
2609
2610 /*
2611 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2612 * S.M.A.R.T * and some other commands. We have to ensure that the
2613 * DMA cycle timing is slower/equal than the fastest PIO timing.
2614 */
2615
2616 if (speed > XFER_PIO_6) {
2617 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2618 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2619 }
2620
2621 /*
2622 * Lengthen active & recovery time so that cycle time is correct.
2623 */
2624
2625 if (t->act8b + t->rec8b < t->cyc8b) {
2626 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2627 t->rec8b = t->cyc8b - t->act8b;
2628 }
2629
2630 if (t->active + t->recover < t->cycle) {
2631 t->active += (t->cycle - (t->active + t->recover)) / 2;
2632 t->recover = t->cycle - t->active;
2633 }
2634
2635 /* In a few cases quantisation may produce enough errors to
2636 leave t->cycle too low for the sum of active and recovery
2637 if so we must correct this */
2638 if (t->active + t->recover > t->cycle)
2639 t->cycle = t->active + t->recover;
2640
2641 return 0;
2642 }
2643
2644 /**
2645 * ata_down_xfermask_limit - adjust dev xfer masks downward
2646 * @dev: Device to adjust xfer masks
2647 * @sel: ATA_DNXFER_* selector
2648 *
2649 * Adjust xfer masks of @dev downward. Note that this function
2650 * does not apply the change. Invoking ata_set_mode() afterwards
2651 * will apply the limit.
2652 *
2653 * LOCKING:
2654 * Inherited from caller.
2655 *
2656 * RETURNS:
2657 * 0 on success, negative errno on failure
2658 */
2659 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2660 {
2661 char buf[32];
2662 unsigned int orig_mask, xfer_mask;
2663 unsigned int pio_mask, mwdma_mask, udma_mask;
2664 int quiet, highbit;
2665
2666 quiet = !!(sel & ATA_DNXFER_QUIET);
2667 sel &= ~ATA_DNXFER_QUIET;
2668
2669 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2670 dev->mwdma_mask,
2671 dev->udma_mask);
2672 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2673
2674 switch (sel) {
2675 case ATA_DNXFER_PIO:
2676 highbit = fls(pio_mask) - 1;
2677 pio_mask &= ~(1 << highbit);
2678 break;
2679
2680 case ATA_DNXFER_DMA:
2681 if (udma_mask) {
2682 highbit = fls(udma_mask) - 1;
2683 udma_mask &= ~(1 << highbit);
2684 if (!udma_mask)
2685 return -ENOENT;
2686 } else if (mwdma_mask) {
2687 highbit = fls(mwdma_mask) - 1;
2688 mwdma_mask &= ~(1 << highbit);
2689 if (!mwdma_mask)
2690 return -ENOENT;
2691 }
2692 break;
2693
2694 case ATA_DNXFER_40C:
2695 udma_mask &= ATA_UDMA_MASK_40C;
2696 break;
2697
2698 case ATA_DNXFER_FORCE_PIO0:
2699 pio_mask &= 1;
2700 case ATA_DNXFER_FORCE_PIO:
2701 mwdma_mask = 0;
2702 udma_mask = 0;
2703 break;
2704
2705 default:
2706 BUG();
2707 }
2708
2709 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2710
2711 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2712 return -ENOENT;
2713
2714 if (!quiet) {
2715 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2716 snprintf(buf, sizeof(buf), "%s:%s",
2717 ata_mode_string(xfer_mask),
2718 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2719 else
2720 snprintf(buf, sizeof(buf), "%s",
2721 ata_mode_string(xfer_mask));
2722
2723 ata_dev_printk(dev, KERN_WARNING,
2724 "limiting speed to %s\n", buf);
2725 }
2726
2727 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2728 &dev->udma_mask);
2729
2730 return 0;
2731 }
2732
2733 static int ata_dev_set_mode(struct ata_device *dev)
2734 {
2735 struct ata_eh_context *ehc = &dev->ap->eh_context;
2736 unsigned int err_mask;
2737 int rc;
2738
2739 dev->flags &= ~ATA_DFLAG_PIO;
2740 if (dev->xfer_shift == ATA_SHIFT_PIO)
2741 dev->flags |= ATA_DFLAG_PIO;
2742
2743 err_mask = ata_dev_set_xfermode(dev);
2744 /* Old CFA may refuse this command, which is just fine */
2745 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2746 err_mask &= ~AC_ERR_DEV;
2747
2748 if (err_mask) {
2749 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2750 "(err_mask=0x%x)\n", err_mask);
2751 return -EIO;
2752 }
2753
2754 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2755 rc = ata_dev_revalidate(dev, 0);
2756 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2757 if (rc)
2758 return rc;
2759
2760 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2761 dev->xfer_shift, (int)dev->xfer_mode);
2762
2763 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2764 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2765 return 0;
2766 }
2767
2768 /**
2769 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2770 * @ap: port on which timings will be programmed
2771 * @r_failed_dev: out paramter for failed device
2772 *
2773 * Standard implementation of the function used to tune and set
2774 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2775 * ata_dev_set_mode() fails, pointer to the failing device is
2776 * returned in @r_failed_dev.
2777 *
2778 * LOCKING:
2779 * PCI/etc. bus probe sem.
2780 *
2781 * RETURNS:
2782 * 0 on success, negative errno otherwise
2783 */
2784
2785 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2786 {
2787 struct ata_device *dev;
2788 int i, rc = 0, used_dma = 0, found = 0;
2789
2790
2791 /* step 1: calculate xfer_mask */
2792 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2793 unsigned int pio_mask, dma_mask;
2794
2795 dev = &ap->device[i];
2796
2797 if (!ata_dev_enabled(dev))
2798 continue;
2799
2800 ata_dev_xfermask(dev);
2801
2802 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2803 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2804 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2805 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2806
2807 found = 1;
2808 if (dev->dma_mode)
2809 used_dma = 1;
2810 }
2811 if (!found)
2812 goto out;
2813
2814 /* step 2: always set host PIO timings */
2815 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2816 dev = &ap->device[i];
2817 if (!ata_dev_enabled(dev))
2818 continue;
2819
2820 if (!dev->pio_mode) {
2821 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2822 rc = -EINVAL;
2823 goto out;
2824 }
2825
2826 dev->xfer_mode = dev->pio_mode;
2827 dev->xfer_shift = ATA_SHIFT_PIO;
2828 if (ap->ops->set_piomode)
2829 ap->ops->set_piomode(ap, dev);
2830 }
2831
2832 /* step 3: set host DMA timings */
2833 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2834 dev = &ap->device[i];
2835
2836 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2837 continue;
2838
2839 dev->xfer_mode = dev->dma_mode;
2840 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2841 if (ap->ops->set_dmamode)
2842 ap->ops->set_dmamode(ap, dev);
2843 }
2844
2845 /* step 4: update devices' xfer mode */
2846 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2847 dev = &ap->device[i];
2848
2849 /* don't update suspended devices' xfer mode */
2850 if (!ata_dev_enabled(dev))
2851 continue;
2852
2853 rc = ata_dev_set_mode(dev);
2854 if (rc)
2855 goto out;
2856 }
2857
2858 /* Record simplex status. If we selected DMA then the other
2859 * host channels are not permitted to do so.
2860 */
2861 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2862 ap->host->simplex_claimed = ap;
2863
2864 out:
2865 if (rc)
2866 *r_failed_dev = dev;
2867 return rc;
2868 }
2869
2870 /**
2871 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2872 * @ap: port on which timings will be programmed
2873 * @r_failed_dev: out paramter for failed device
2874 *
2875 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2876 * ata_set_mode() fails, pointer to the failing device is
2877 * returned in @r_failed_dev.
2878 *
2879 * LOCKING:
2880 * PCI/etc. bus probe sem.
2881 *
2882 * RETURNS:
2883 * 0 on success, negative errno otherwise
2884 */
2885 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2886 {
2887 /* has private set_mode? */
2888 if (ap->ops->set_mode)
2889 return ap->ops->set_mode(ap, r_failed_dev);
2890 return ata_do_set_mode(ap, r_failed_dev);
2891 }
2892
2893 /**
2894 * ata_tf_to_host - issue ATA taskfile to host controller
2895 * @ap: port to which command is being issued
2896 * @tf: ATA taskfile register set
2897 *
2898 * Issues ATA taskfile register set to ATA host controller,
2899 * with proper synchronization with interrupt handler and
2900 * other threads.
2901 *
2902 * LOCKING:
2903 * spin_lock_irqsave(host lock)
2904 */
2905
2906 static inline void ata_tf_to_host(struct ata_port *ap,
2907 const struct ata_taskfile *tf)
2908 {
2909 ap->ops->tf_load(ap, tf);
2910 ap->ops->exec_command(ap, tf);
2911 }
2912
2913 /**
2914 * ata_busy_sleep - sleep until BSY clears, or timeout
2915 * @ap: port containing status register to be polled
2916 * @tmout_pat: impatience timeout
2917 * @tmout: overall timeout
2918 *
2919 * Sleep until ATA Status register bit BSY clears,
2920 * or a timeout occurs.
2921 *
2922 * LOCKING:
2923 * Kernel thread context (may sleep).
2924 *
2925 * RETURNS:
2926 * 0 on success, -errno otherwise.
2927 */
2928 int ata_busy_sleep(struct ata_port *ap,
2929 unsigned long tmout_pat, unsigned long tmout)
2930 {
2931 unsigned long timer_start, timeout;
2932 u8 status;
2933
2934 status = ata_busy_wait(ap, ATA_BUSY, 300);
2935 timer_start = jiffies;
2936 timeout = timer_start + tmout_pat;
2937 while (status != 0xff && (status & ATA_BUSY) &&
2938 time_before(jiffies, timeout)) {
2939 msleep(50);
2940 status = ata_busy_wait(ap, ATA_BUSY, 3);
2941 }
2942
2943 if (status != 0xff && (status & ATA_BUSY))
2944 ata_port_printk(ap, KERN_WARNING,
2945 "port is slow to respond, please be patient "
2946 "(Status 0x%x)\n", status);
2947
2948 timeout = timer_start + tmout;
2949 while (status != 0xff && (status & ATA_BUSY) &&
2950 time_before(jiffies, timeout)) {
2951 msleep(50);
2952 status = ata_chk_status(ap);
2953 }
2954
2955 if (status == 0xff)
2956 return -ENODEV;
2957
2958 if (status & ATA_BUSY) {
2959 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2960 "(%lu secs, Status 0x%x)\n",
2961 tmout / HZ, status);
2962 return -EBUSY;
2963 }
2964
2965 return 0;
2966 }
2967
2968 /**
2969 * ata_wait_ready - sleep until BSY clears, or timeout
2970 * @ap: port containing status register to be polled
2971 * @deadline: deadline jiffies for the operation
2972 *
2973 * Sleep until ATA Status register bit BSY clears, or timeout
2974 * occurs.
2975 *
2976 * LOCKING:
2977 * Kernel thread context (may sleep).
2978 *
2979 * RETURNS:
2980 * 0 on success, -errno otherwise.
2981 */
2982 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2983 {
2984 unsigned long start = jiffies;
2985 int warned = 0;
2986
2987 while (1) {
2988 u8 status = ata_chk_status(ap);
2989 unsigned long now = jiffies;
2990
2991 if (!(status & ATA_BUSY))
2992 return 0;
2993 if (!ata_port_online(ap) && status == 0xff)
2994 return -ENODEV;
2995 if (time_after(now, deadline))
2996 return -EBUSY;
2997
2998 if (!warned && time_after(now, start + 5 * HZ) &&
2999 (deadline - now > 3 * HZ)) {
3000 ata_port_printk(ap, KERN_WARNING,
3001 "port is slow to respond, please be patient "
3002 "(Status 0x%x)\n", status);
3003 warned = 1;
3004 }
3005
3006 msleep(50);
3007 }
3008 }
3009
3010 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3011 unsigned long deadline)
3012 {
3013 struct ata_ioports *ioaddr = &ap->ioaddr;
3014 unsigned int dev0 = devmask & (1 << 0);
3015 unsigned int dev1 = devmask & (1 << 1);
3016 int rc, ret = 0;
3017
3018 /* if device 0 was found in ata_devchk, wait for its
3019 * BSY bit to clear
3020 */
3021 if (dev0) {
3022 rc = ata_wait_ready(ap, deadline);
3023 if (rc) {
3024 if (rc != -ENODEV)
3025 return rc;
3026 ret = rc;
3027 }
3028 }
3029
3030 /* if device 1 was found in ata_devchk, wait for register
3031 * access briefly, then wait for BSY to clear.
3032 */
3033 if (dev1) {
3034 int i;
3035
3036 ap->ops->dev_select(ap, 1);
3037
3038 /* Wait for register access. Some ATAPI devices fail
3039 * to set nsect/lbal after reset, so don't waste too
3040 * much time on it. We're gonna wait for !BSY anyway.
3041 */
3042 for (i = 0; i < 2; i++) {
3043 u8 nsect, lbal;
3044
3045 nsect = ioread8(ioaddr->nsect_addr);
3046 lbal = ioread8(ioaddr->lbal_addr);
3047 if ((nsect == 1) && (lbal == 1))
3048 break;
3049 msleep(50); /* give drive a breather */
3050 }
3051
3052 rc = ata_wait_ready(ap, deadline);
3053 if (rc) {
3054 if (rc != -ENODEV)
3055 return rc;
3056 ret = rc;
3057 }
3058 }
3059
3060 /* is all this really necessary? */
3061 ap->ops->dev_select(ap, 0);
3062 if (dev1)
3063 ap->ops->dev_select(ap, 1);
3064 if (dev0)
3065 ap->ops->dev_select(ap, 0);
3066
3067 return ret;
3068 }
3069
3070 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3071 unsigned long deadline)
3072 {
3073 struct ata_ioports *ioaddr = &ap->ioaddr;
3074
3075 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3076
3077 /* software reset. causes dev0 to be selected */
3078 iowrite8(ap->ctl, ioaddr->ctl_addr);
3079 udelay(20); /* FIXME: flush */
3080 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3081 udelay(20); /* FIXME: flush */
3082 iowrite8(ap->ctl, ioaddr->ctl_addr);
3083
3084 /* spec mandates ">= 2ms" before checking status.
3085 * We wait 150ms, because that was the magic delay used for
3086 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3087 * between when the ATA command register is written, and then
3088 * status is checked. Because waiting for "a while" before
3089 * checking status is fine, post SRST, we perform this magic
3090 * delay here as well.
3091 *
3092 * Old drivers/ide uses the 2mS rule and then waits for ready
3093 */
3094 msleep(150);
3095
3096 /* Before we perform post reset processing we want to see if
3097 * the bus shows 0xFF because the odd clown forgets the D7
3098 * pulldown resistor.
3099 */
3100 if (ata_check_status(ap) == 0xFF)
3101 return -ENODEV;
3102
3103 return ata_bus_post_reset(ap, devmask, deadline);
3104 }
3105
3106 /**
3107 * ata_bus_reset - reset host port and associated ATA channel
3108 * @ap: port to reset
3109 *
3110 * This is typically the first time we actually start issuing
3111 * commands to the ATA channel. We wait for BSY to clear, then
3112 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3113 * result. Determine what devices, if any, are on the channel
3114 * by looking at the device 0/1 error register. Look at the signature
3115 * stored in each device's taskfile registers, to determine if
3116 * the device is ATA or ATAPI.
3117 *
3118 * LOCKING:
3119 * PCI/etc. bus probe sem.
3120 * Obtains host lock.
3121 *
3122 * SIDE EFFECTS:
3123 * Sets ATA_FLAG_DISABLED if bus reset fails.
3124 */
3125
3126 void ata_bus_reset(struct ata_port *ap)
3127 {
3128 struct ata_ioports *ioaddr = &ap->ioaddr;
3129 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3130 u8 err;
3131 unsigned int dev0, dev1 = 0, devmask = 0;
3132 int rc;
3133
3134 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3135
3136 /* determine if device 0/1 are present */
3137 if (ap->flags & ATA_FLAG_SATA_RESET)
3138 dev0 = 1;
3139 else {
3140 dev0 = ata_devchk(ap, 0);
3141 if (slave_possible)
3142 dev1 = ata_devchk(ap, 1);
3143 }
3144
3145 if (dev0)
3146 devmask |= (1 << 0);
3147 if (dev1)
3148 devmask |= (1 << 1);
3149
3150 /* select device 0 again */
3151 ap->ops->dev_select(ap, 0);
3152
3153 /* issue bus reset */
3154 if (ap->flags & ATA_FLAG_SRST) {
3155 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3156 if (rc && rc != -ENODEV)
3157 goto err_out;
3158 }
3159
3160 /*
3161 * determine by signature whether we have ATA or ATAPI devices
3162 */
3163 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3164 if ((slave_possible) && (err != 0x81))
3165 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3166
3167 /* is double-select really necessary? */
3168 if (ap->device[1].class != ATA_DEV_NONE)
3169 ap->ops->dev_select(ap, 1);
3170 if (ap->device[0].class != ATA_DEV_NONE)
3171 ap->ops->dev_select(ap, 0);
3172
3173 /* if no devices were detected, disable this port */
3174 if ((ap->device[0].class == ATA_DEV_NONE) &&
3175 (ap->device[1].class == ATA_DEV_NONE))
3176 goto err_out;
3177
3178 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3179 /* set up device control for ATA_FLAG_SATA_RESET */
3180 iowrite8(ap->ctl, ioaddr->ctl_addr);
3181 }
3182
3183 DPRINTK("EXIT\n");
3184 return;
3185
3186 err_out:
3187 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3188 ap->ops->port_disable(ap);
3189
3190 DPRINTK("EXIT\n");
3191 }
3192
3193 /**
3194 * sata_phy_debounce - debounce SATA phy status
3195 * @ap: ATA port to debounce SATA phy status for
3196 * @params: timing parameters { interval, duratinon, timeout } in msec
3197 * @deadline: deadline jiffies for the operation
3198 *
3199 * Make sure SStatus of @ap reaches stable state, determined by
3200 * holding the same value where DET is not 1 for @duration polled
3201 * every @interval, before @timeout. Timeout constraints the
3202 * beginning of the stable state. Because DET gets stuck at 1 on
3203 * some controllers after hot unplugging, this functions waits
3204 * until timeout then returns 0 if DET is stable at 1.
3205 *
3206 * @timeout is further limited by @deadline. The sooner of the
3207 * two is used.
3208 *
3209 * LOCKING:
3210 * Kernel thread context (may sleep)
3211 *
3212 * RETURNS:
3213 * 0 on success, -errno on failure.
3214 */
3215 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3216 unsigned long deadline)
3217 {
3218 unsigned long interval_msec = params[0];
3219 unsigned long duration = msecs_to_jiffies(params[1]);
3220 unsigned long last_jiffies, t;
3221 u32 last, cur;
3222 int rc;
3223
3224 t = jiffies + msecs_to_jiffies(params[2]);
3225 if (time_before(t, deadline))
3226 deadline = t;
3227
3228 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3229 return rc;
3230 cur &= 0xf;
3231
3232 last = cur;
3233 last_jiffies = jiffies;
3234
3235 while (1) {
3236 msleep(interval_msec);
3237 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3238 return rc;
3239 cur &= 0xf;
3240
3241 /* DET stable? */
3242 if (cur == last) {
3243 if (cur == 1 && time_before(jiffies, deadline))
3244 continue;
3245 if (time_after(jiffies, last_jiffies + duration))
3246 return 0;
3247 continue;
3248 }
3249
3250 /* unstable, start over */
3251 last = cur;
3252 last_jiffies = jiffies;
3253
3254 /* check deadline */
3255 if (time_after(jiffies, deadline))
3256 return -EBUSY;
3257 }
3258 }
3259
3260 /**
3261 * sata_phy_resume - resume SATA phy
3262 * @ap: ATA port to resume SATA phy for
3263 * @params: timing parameters { interval, duratinon, timeout } in msec
3264 * @deadline: deadline jiffies for the operation
3265 *
3266 * Resume SATA phy of @ap and debounce it.
3267 *
3268 * LOCKING:
3269 * Kernel thread context (may sleep)
3270 *
3271 * RETURNS:
3272 * 0 on success, -errno on failure.
3273 */
3274 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3275 unsigned long deadline)
3276 {
3277 u32 scontrol;
3278 int rc;
3279
3280 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3281 return rc;
3282
3283 scontrol = (scontrol & 0x0f0) | 0x300;
3284
3285 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3286 return rc;
3287
3288 /* Some PHYs react badly if SStatus is pounded immediately
3289 * after resuming. Delay 200ms before debouncing.
3290 */
3291 msleep(200);
3292
3293 return sata_phy_debounce(ap, params, deadline);
3294 }
3295
3296 /**
3297 * ata_std_prereset - prepare for reset
3298 * @ap: ATA port to be reset
3299 * @deadline: deadline jiffies for the operation
3300 *
3301 * @ap is about to be reset. Initialize it. Failure from
3302 * prereset makes libata abort whole reset sequence and give up
3303 * that port, so prereset should be best-effort. It does its
3304 * best to prepare for reset sequence but if things go wrong, it
3305 * should just whine, not fail.
3306 *
3307 * LOCKING:
3308 * Kernel thread context (may sleep)
3309 *
3310 * RETURNS:
3311 * 0 on success, -errno otherwise.
3312 */
3313 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3314 {
3315 struct ata_eh_context *ehc = &ap->eh_context;
3316 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3317 int rc;
3318
3319 /* handle link resume */
3320 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3321 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3322 ehc->i.action |= ATA_EH_HARDRESET;
3323
3324 /* if we're about to do hardreset, nothing more to do */
3325 if (ehc->i.action & ATA_EH_HARDRESET)
3326 return 0;
3327
3328 /* if SATA, resume phy */
3329 if (ap->flags & ATA_FLAG_SATA) {
3330 rc = sata_phy_resume(ap, timing, deadline);
3331 /* whine about phy resume failure but proceed */
3332 if (rc && rc != -EOPNOTSUPP)
3333 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3334 "link for reset (errno=%d)\n", rc);
3335 }
3336
3337 /* Wait for !BSY if the controller can wait for the first D2H
3338 * Reg FIS and we don't know that no device is attached.
3339 */
3340 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3341 rc = ata_wait_ready(ap, deadline);
3342 if (rc && rc != -ENODEV) {
3343 ata_port_printk(ap, KERN_WARNING, "device not ready "
3344 "(errno=%d), forcing hardreset\n", rc);
3345 ehc->i.action |= ATA_EH_HARDRESET;
3346 }
3347 }
3348
3349 return 0;
3350 }
3351
3352 /**
3353 * ata_std_softreset - reset host port via ATA SRST
3354 * @ap: port to reset
3355 * @classes: resulting classes of attached devices
3356 * @deadline: deadline jiffies for the operation
3357 *
3358 * Reset host port using ATA SRST.
3359 *
3360 * LOCKING:
3361 * Kernel thread context (may sleep)
3362 *
3363 * RETURNS:
3364 * 0 on success, -errno otherwise.
3365 */
3366 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3367 unsigned long deadline)
3368 {
3369 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3370 unsigned int devmask = 0;
3371 int rc;
3372 u8 err;
3373
3374 DPRINTK("ENTER\n");
3375
3376 if (ata_port_offline(ap)) {
3377 classes[0] = ATA_DEV_NONE;
3378 goto out;
3379 }
3380
3381 /* determine if device 0/1 are present */
3382 if (ata_devchk(ap, 0))
3383 devmask |= (1 << 0);
3384 if (slave_possible && ata_devchk(ap, 1))
3385 devmask |= (1 << 1);
3386
3387 /* select device 0 again */
3388 ap->ops->dev_select(ap, 0);
3389
3390 /* issue bus reset */
3391 DPRINTK("about to softreset, devmask=%x\n", devmask);
3392 rc = ata_bus_softreset(ap, devmask, deadline);
3393 /* if link is occupied, -ENODEV too is an error */
3394 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3395 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3396 return rc;
3397 }
3398
3399 /* determine by signature whether we have ATA or ATAPI devices */
3400 classes[0] = ata_dev_try_classify(ap, 0, &err);
3401 if (slave_possible && err != 0x81)
3402 classes[1] = ata_dev_try_classify(ap, 1, &err);
3403
3404 out:
3405 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3406 return 0;
3407 }
3408
3409 /**
3410 * sata_port_hardreset - reset port via SATA phy reset
3411 * @ap: port to reset
3412 * @timing: timing parameters { interval, duratinon, timeout } in msec
3413 * @deadline: deadline jiffies for the operation
3414 *
3415 * SATA phy-reset host port using DET bits of SControl register.
3416 *
3417 * LOCKING:
3418 * Kernel thread context (may sleep)
3419 *
3420 * RETURNS:
3421 * 0 on success, -errno otherwise.
3422 */
3423 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3424 unsigned long deadline)
3425 {
3426 u32 scontrol;
3427 int rc;
3428
3429 DPRINTK("ENTER\n");
3430
3431 if (sata_set_spd_needed(ap)) {
3432 /* SATA spec says nothing about how to reconfigure
3433 * spd. To be on the safe side, turn off phy during
3434 * reconfiguration. This works for at least ICH7 AHCI
3435 * and Sil3124.
3436 */
3437 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3438 goto out;
3439
3440 scontrol = (scontrol & 0x0f0) | 0x304;
3441
3442 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3443 goto out;
3444
3445 sata_set_spd(ap);
3446 }
3447
3448 /* issue phy wake/reset */
3449 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3450 goto out;
3451
3452 scontrol = (scontrol & 0x0f0) | 0x301;
3453
3454 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3455 goto out;
3456
3457 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3458 * 10.4.2 says at least 1 ms.
3459 */
3460 msleep(1);
3461
3462 /* bring phy back */
3463 rc = sata_phy_resume(ap, timing, deadline);
3464 out:
3465 DPRINTK("EXIT, rc=%d\n", rc);
3466 return rc;
3467 }
3468
3469 /**
3470 * sata_std_hardreset - reset host port via SATA phy reset
3471 * @ap: port to reset
3472 * @class: resulting class of attached device
3473 * @deadline: deadline jiffies for the operation
3474 *
3475 * SATA phy-reset host port using DET bits of SControl register,
3476 * wait for !BSY and classify the attached device.
3477 *
3478 * LOCKING:
3479 * Kernel thread context (may sleep)
3480 *
3481 * RETURNS:
3482 * 0 on success, -errno otherwise.
3483 */
3484 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3485 unsigned long deadline)
3486 {
3487 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3488 int rc;
3489
3490 DPRINTK("ENTER\n");
3491
3492 /* do hardreset */
3493 rc = sata_port_hardreset(ap, timing, deadline);
3494 if (rc) {
3495 ata_port_printk(ap, KERN_ERR,
3496 "COMRESET failed (errno=%d)\n", rc);
3497 return rc;
3498 }
3499
3500 /* TODO: phy layer with polling, timeouts, etc. */
3501 if (ata_port_offline(ap)) {
3502 *class = ATA_DEV_NONE;
3503 DPRINTK("EXIT, link offline\n");
3504 return 0;
3505 }
3506
3507 /* wait a while before checking status, see SRST for more info */
3508 msleep(150);
3509
3510 rc = ata_wait_ready(ap, deadline);
3511 /* link occupied, -ENODEV too is an error */
3512 if (rc) {
3513 ata_port_printk(ap, KERN_ERR,
3514 "COMRESET failed (errno=%d)\n", rc);
3515 return rc;
3516 }
3517
3518 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3519
3520 *class = ata_dev_try_classify(ap, 0, NULL);
3521
3522 DPRINTK("EXIT, class=%u\n", *class);
3523 return 0;
3524 }
3525
3526 /**
3527 * ata_std_postreset - standard postreset callback
3528 * @ap: the target ata_port
3529 * @classes: classes of attached devices
3530 *
3531 * This function is invoked after a successful reset. Note that
3532 * the device might have been reset more than once using
3533 * different reset methods before postreset is invoked.
3534 *
3535 * LOCKING:
3536 * Kernel thread context (may sleep)
3537 */
3538 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3539 {
3540 u32 serror;
3541
3542 DPRINTK("ENTER\n");
3543
3544 /* print link status */
3545 sata_print_link_status(ap);
3546
3547 /* clear SError */
3548 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3549 sata_scr_write(ap, SCR_ERROR, serror);
3550
3551 /* is double-select really necessary? */
3552 if (classes[0] != ATA_DEV_NONE)
3553 ap->ops->dev_select(ap, 1);
3554 if (classes[1] != ATA_DEV_NONE)
3555 ap->ops->dev_select(ap, 0);
3556
3557 /* bail out if no device is present */
3558 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3559 DPRINTK("EXIT, no device\n");
3560 return;
3561 }
3562
3563 /* set up device control */
3564 if (ap->ioaddr.ctl_addr)
3565 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3566
3567 DPRINTK("EXIT\n");
3568 }
3569
3570 /**
3571 * ata_dev_same_device - Determine whether new ID matches configured device
3572 * @dev: device to compare against
3573 * @new_class: class of the new device
3574 * @new_id: IDENTIFY page of the new device
3575 *
3576 * Compare @new_class and @new_id against @dev and determine
3577 * whether @dev is the device indicated by @new_class and
3578 * @new_id.
3579 *
3580 * LOCKING:
3581 * None.
3582 *
3583 * RETURNS:
3584 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3585 */
3586 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3587 const u16 *new_id)
3588 {
3589 const u16 *old_id = dev->id;
3590 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3591 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3592
3593 if (dev->class != new_class) {
3594 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3595 dev->class, new_class);
3596 return 0;
3597 }
3598
3599 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3600 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3601 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3602 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3603
3604 if (strcmp(model[0], model[1])) {
3605 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3606 "'%s' != '%s'\n", model[0], model[1]);
3607 return 0;
3608 }
3609
3610 if (strcmp(serial[0], serial[1])) {
3611 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3612 "'%s' != '%s'\n", serial[0], serial[1]);
3613 return 0;
3614 }
3615
3616 return 1;
3617 }
3618
3619 /**
3620 * ata_dev_reread_id - Re-read IDENTIFY data
3621 * @dev: target ATA device
3622 * @readid_flags: read ID flags
3623 *
3624 * Re-read IDENTIFY page and make sure @dev is still attached to
3625 * the port.
3626 *
3627 * LOCKING:
3628 * Kernel thread context (may sleep)
3629 *
3630 * RETURNS:
3631 * 0 on success, negative errno otherwise
3632 */
3633 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3634 {
3635 unsigned int class = dev->class;
3636 u16 *id = (void *)dev->ap->sector_buf;
3637 int rc;
3638
3639 /* read ID data */
3640 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3641 if (rc)
3642 return rc;
3643
3644 /* is the device still there? */
3645 if (!ata_dev_same_device(dev, class, id))
3646 return -ENODEV;
3647
3648 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3649 return 0;
3650 }
3651
3652 /**
3653 * ata_dev_revalidate - Revalidate ATA device
3654 * @dev: device to revalidate
3655 * @readid_flags: read ID flags
3656 *
3657 * Re-read IDENTIFY page, make sure @dev is still attached to the
3658 * port and reconfigure it according to the new IDENTIFY page.
3659 *
3660 * LOCKING:
3661 * Kernel thread context (may sleep)
3662 *
3663 * RETURNS:
3664 * 0 on success, negative errno otherwise
3665 */
3666 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3667 {
3668 u64 n_sectors = dev->n_sectors;
3669 int rc;
3670
3671 if (!ata_dev_enabled(dev))
3672 return -ENODEV;
3673
3674 /* re-read ID */
3675 rc = ata_dev_reread_id(dev, readid_flags);
3676 if (rc)
3677 goto fail;
3678
3679 /* configure device according to the new ID */
3680 rc = ata_dev_configure(dev);
3681 if (rc)
3682 goto fail;
3683
3684 /* verify n_sectors hasn't changed */
3685 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3686 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3687 "%llu != %llu\n",
3688 (unsigned long long)n_sectors,
3689 (unsigned long long)dev->n_sectors);
3690 rc = -ENODEV;
3691 goto fail;
3692 }
3693
3694 return 0;
3695
3696 fail:
3697 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3698 return rc;
3699 }
3700
3701 struct ata_blacklist_entry {
3702 const char *model_num;
3703 const char *model_rev;
3704 unsigned long horkage;
3705 };
3706
3707 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3708 /* Devices with DMA related problems under Linux */
3709 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3710 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3711 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3712 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3713 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3714 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3715 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3716 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3717 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3718 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3719 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3720 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3721 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3722 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3723 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3724 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3725 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3726 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3727 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3728 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3729 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3730 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3731 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3732 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3733 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3734 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3735 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3736 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3737 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3738 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3739 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3740 { "IOMEGA ZIP 250 ATAPI Floppy",
3741 NULL, ATA_HORKAGE_NODMA },
3742
3743 /* Weird ATAPI devices */
3744 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3745
3746 /* Devices we expect to fail diagnostics */
3747
3748 /* Devices where NCQ should be avoided */
3749 /* NCQ is slow */
3750 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3751 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3752 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3753 /* NCQ is broken */
3754 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3755 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3756 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3757 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3758 ATA_HORKAGE_NONCQ },
3759 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3760 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3761 /* Blacklist entries taken from Silicon Image 3124/3132
3762 Windows driver .inf file - also several Linux problem reports */
3763 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3764 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3765 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3766 /* Drives which do spurious command completion */
3767 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3768 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3769 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3770 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3771 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3772
3773 /* Devices with NCQ limits */
3774
3775 /* End Marker */
3776 { }
3777 };
3778
3779 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3780 {
3781 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3782 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3783 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3784
3785 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3786 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3787
3788 while (ad->model_num) {
3789 if (!strcmp(ad->model_num, model_num)) {
3790 if (ad->model_rev == NULL)
3791 return ad->horkage;
3792 if (!strcmp(ad->model_rev, model_rev))
3793 return ad->horkage;
3794 }
3795 ad++;
3796 }
3797 return 0;
3798 }
3799
3800 static int ata_dma_blacklisted(const struct ata_device *dev)
3801 {
3802 /* We don't support polling DMA.
3803 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3804 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3805 */
3806 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3807 (dev->flags & ATA_DFLAG_CDB_INTR))
3808 return 1;
3809 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3810 }
3811
3812 /**
3813 * ata_dev_xfermask - Compute supported xfermask of the given device
3814 * @dev: Device to compute xfermask for
3815 *
3816 * Compute supported xfermask of @dev and store it in
3817 * dev->*_mask. This function is responsible for applying all
3818 * known limits including host controller limits, device
3819 * blacklist, etc...
3820 *
3821 * LOCKING:
3822 * None.
3823 */
3824 static void ata_dev_xfermask(struct ata_device *dev)
3825 {
3826 struct ata_port *ap = dev->ap;
3827 struct ata_host *host = ap->host;
3828 unsigned long xfer_mask;
3829
3830 /* controller modes available */
3831 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3832 ap->mwdma_mask, ap->udma_mask);
3833
3834 /* drive modes available */
3835 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3836 dev->mwdma_mask, dev->udma_mask);
3837 xfer_mask &= ata_id_xfermask(dev->id);
3838
3839 /*
3840 * CFA Advanced TrueIDE timings are not allowed on a shared
3841 * cable
3842 */
3843 if (ata_dev_pair(dev)) {
3844 /* No PIO5 or PIO6 */
3845 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3846 /* No MWDMA3 or MWDMA 4 */
3847 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3848 }
3849
3850 if (ata_dma_blacklisted(dev)) {
3851 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3852 ata_dev_printk(dev, KERN_WARNING,
3853 "device is on DMA blacklist, disabling DMA\n");
3854 }
3855
3856 if ((host->flags & ATA_HOST_SIMPLEX) &&
3857 host->simplex_claimed && host->simplex_claimed != ap) {
3858 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3859 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3860 "other device, disabling DMA\n");
3861 }
3862
3863 if (ap->flags & ATA_FLAG_NO_IORDY)
3864 xfer_mask &= ata_pio_mask_no_iordy(dev);
3865
3866 if (ap->ops->mode_filter)
3867 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3868
3869 /* Apply cable rule here. Don't apply it early because when
3870 * we handle hot plug the cable type can itself change.
3871 * Check this last so that we know if the transfer rate was
3872 * solely limited by the cable.
3873 * Unknown or 80 wire cables reported host side are checked
3874 * drive side as well. Cases where we know a 40wire cable
3875 * is used safely for 80 are not checked here.
3876 */
3877 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3878 /* UDMA/44 or higher would be available */
3879 if((ap->cbl == ATA_CBL_PATA40) ||
3880 (ata_drive_40wire(dev->id) &&
3881 (ap->cbl == ATA_CBL_PATA_UNK ||
3882 ap->cbl == ATA_CBL_PATA80))) {
3883 ata_dev_printk(dev, KERN_WARNING,
3884 "limited to UDMA/33 due to 40-wire cable\n");
3885 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3886 }
3887
3888 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3889 &dev->mwdma_mask, &dev->udma_mask);
3890 }
3891
3892 /**
3893 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3894 * @dev: Device to which command will be sent
3895 *
3896 * Issue SET FEATURES - XFER MODE command to device @dev
3897 * on port @ap.
3898 *
3899 * LOCKING:
3900 * PCI/etc. bus probe sem.
3901 *
3902 * RETURNS:
3903 * 0 on success, AC_ERR_* mask otherwise.
3904 */
3905
3906 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3907 {
3908 struct ata_taskfile tf;
3909 unsigned int err_mask;
3910
3911 /* set up set-features taskfile */
3912 DPRINTK("set features - xfer mode\n");
3913
3914 /* Some controllers and ATAPI devices show flaky interrupt
3915 * behavior after setting xfer mode. Use polling instead.
3916 */
3917 ata_tf_init(dev, &tf);
3918 tf.command = ATA_CMD_SET_FEATURES;
3919 tf.feature = SETFEATURES_XFER;
3920 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3921 tf.protocol = ATA_PROT_NODATA;
3922 tf.nsect = dev->xfer_mode;
3923
3924 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3925
3926 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3927 return err_mask;
3928 }
3929
3930 /**
3931 * ata_dev_init_params - Issue INIT DEV PARAMS command
3932 * @dev: Device to which command will be sent
3933 * @heads: Number of heads (taskfile parameter)
3934 * @sectors: Number of sectors (taskfile parameter)
3935 *
3936 * LOCKING:
3937 * Kernel thread context (may sleep)
3938 *
3939 * RETURNS:
3940 * 0 on success, AC_ERR_* mask otherwise.
3941 */
3942 static unsigned int ata_dev_init_params(struct ata_device *dev,
3943 u16 heads, u16 sectors)
3944 {
3945 struct ata_taskfile tf;
3946 unsigned int err_mask;
3947
3948 /* Number of sectors per track 1-255. Number of heads 1-16 */
3949 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3950 return AC_ERR_INVALID;
3951
3952 /* set up init dev params taskfile */
3953 DPRINTK("init dev params \n");
3954
3955 ata_tf_init(dev, &tf);
3956 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3957 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3958 tf.protocol = ATA_PROT_NODATA;
3959 tf.nsect = sectors;
3960 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3961
3962 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3963
3964 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3965 return err_mask;
3966 }
3967
3968 /**
3969 * ata_sg_clean - Unmap DMA memory associated with command
3970 * @qc: Command containing DMA memory to be released
3971 *
3972 * Unmap all mapped DMA memory associated with this command.
3973 *
3974 * LOCKING:
3975 * spin_lock_irqsave(host lock)
3976 */
3977 void ata_sg_clean(struct ata_queued_cmd *qc)
3978 {
3979 struct ata_port *ap = qc->ap;
3980 struct scatterlist *sg = qc->__sg;
3981 int dir = qc->dma_dir;
3982 void *pad_buf = NULL;
3983
3984 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3985 WARN_ON(sg == NULL);
3986
3987 if (qc->flags & ATA_QCFLAG_SINGLE)
3988 WARN_ON(qc->n_elem > 1);
3989
3990 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3991
3992 /* if we padded the buffer out to 32-bit bound, and data
3993 * xfer direction is from-device, we must copy from the
3994 * pad buffer back into the supplied buffer
3995 */
3996 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3997 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3998
3999 if (qc->flags & ATA_QCFLAG_SG) {
4000 if (qc->n_elem)
4001 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4002 /* restore last sg */
4003 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4004 if (pad_buf) {
4005 struct scatterlist *psg = &qc->pad_sgent;
4006 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4007 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4008 kunmap_atomic(addr, KM_IRQ0);
4009 }
4010 } else {
4011 if (qc->n_elem)
4012 dma_unmap_single(ap->dev,
4013 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4014 dir);
4015 /* restore sg */
4016 sg->length += qc->pad_len;
4017 if (pad_buf)
4018 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4019 pad_buf, qc->pad_len);
4020 }
4021
4022 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4023 qc->__sg = NULL;
4024 }
4025
4026 /**
4027 * ata_fill_sg - Fill PCI IDE PRD table
4028 * @qc: Metadata associated with taskfile to be transferred
4029 *
4030 * Fill PCI IDE PRD (scatter-gather) table with segments
4031 * associated with the current disk command.
4032 *
4033 * LOCKING:
4034 * spin_lock_irqsave(host lock)
4035 *
4036 */
4037 static void ata_fill_sg(struct ata_queued_cmd *qc)
4038 {
4039 struct ata_port *ap = qc->ap;
4040 struct scatterlist *sg;
4041 unsigned int idx;
4042
4043 WARN_ON(qc->__sg == NULL);
4044 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4045
4046 idx = 0;
4047 ata_for_each_sg(sg, qc) {
4048 u32 addr, offset;
4049 u32 sg_len, len;
4050
4051 /* determine if physical DMA addr spans 64K boundary.
4052 * Note h/w doesn't support 64-bit, so we unconditionally
4053 * truncate dma_addr_t to u32.
4054 */
4055 addr = (u32) sg_dma_address(sg);
4056 sg_len = sg_dma_len(sg);
4057
4058 while (sg_len) {
4059 offset = addr & 0xffff;
4060 len = sg_len;
4061 if ((offset + sg_len) > 0x10000)
4062 len = 0x10000 - offset;
4063
4064 ap->prd[idx].addr = cpu_to_le32(addr);
4065 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4066 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4067
4068 idx++;
4069 sg_len -= len;
4070 addr += len;
4071 }
4072 }
4073
4074 if (idx)
4075 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4076 }
4077
4078 /**
4079 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4080 * @qc: Metadata associated with taskfile to be transferred
4081 *
4082 * Fill PCI IDE PRD (scatter-gather) table with segments
4083 * associated with the current disk command. Perform the fill
4084 * so that we avoid writing any length 64K records for
4085 * controllers that don't follow the spec.
4086 *
4087 * LOCKING:
4088 * spin_lock_irqsave(host lock)
4089 *
4090 */
4091 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4092 {
4093 struct ata_port *ap = qc->ap;
4094 struct scatterlist *sg;
4095 unsigned int idx;
4096
4097 WARN_ON(qc->__sg == NULL);
4098 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4099
4100 idx = 0;
4101 ata_for_each_sg(sg, qc) {
4102 u32 addr, offset;
4103 u32 sg_len, len, blen;
4104
4105 /* determine if physical DMA addr spans 64K boundary.
4106 * Note h/w doesn't support 64-bit, so we unconditionally
4107 * truncate dma_addr_t to u32.
4108 */
4109 addr = (u32) sg_dma_address(sg);
4110 sg_len = sg_dma_len(sg);
4111
4112 while (sg_len) {
4113 offset = addr & 0xffff;
4114 len = sg_len;
4115 if ((offset + sg_len) > 0x10000)
4116 len = 0x10000 - offset;
4117
4118 blen = len & 0xffff;
4119 ap->prd[idx].addr = cpu_to_le32(addr);
4120 if (blen == 0) {
4121 /* Some PATA chipsets like the CS5530 can't
4122 cope with 0x0000 meaning 64K as the spec says */
4123 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4124 blen = 0x8000;
4125 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4126 }
4127 ap->prd[idx].flags_len = cpu_to_le32(blen);
4128 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4129
4130 idx++;
4131 sg_len -= len;
4132 addr += len;
4133 }
4134 }
4135
4136 if (idx)
4137 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4138 }
4139
4140 /**
4141 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4142 * @qc: Metadata associated with taskfile to check
4143 *
4144 * Allow low-level driver to filter ATA PACKET commands, returning
4145 * a status indicating whether or not it is OK to use DMA for the
4146 * supplied PACKET command.
4147 *
4148 * LOCKING:
4149 * spin_lock_irqsave(host lock)
4150 *
4151 * RETURNS: 0 when ATAPI DMA can be used
4152 * nonzero otherwise
4153 */
4154 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4155 {
4156 struct ata_port *ap = qc->ap;
4157
4158 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4159 * few ATAPI devices choke on such DMA requests.
4160 */
4161 if (unlikely(qc->nbytes & 15))
4162 return 1;
4163
4164 if (ap->ops->check_atapi_dma)
4165 return ap->ops->check_atapi_dma(qc);
4166
4167 return 0;
4168 }
4169
4170 /**
4171 * ata_qc_prep - Prepare taskfile for submission
4172 * @qc: Metadata associated with taskfile to be prepared
4173 *
4174 * Prepare ATA taskfile for submission.
4175 *
4176 * LOCKING:
4177 * spin_lock_irqsave(host lock)
4178 */
4179 void ata_qc_prep(struct ata_queued_cmd *qc)
4180 {
4181 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4182 return;
4183
4184 ata_fill_sg(qc);
4185 }
4186
4187 /**
4188 * ata_dumb_qc_prep - Prepare taskfile for submission
4189 * @qc: Metadata associated with taskfile to be prepared
4190 *
4191 * Prepare ATA taskfile for submission.
4192 *
4193 * LOCKING:
4194 * spin_lock_irqsave(host lock)
4195 */
4196 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4197 {
4198 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4199 return;
4200
4201 ata_fill_sg_dumb(qc);
4202 }
4203
4204 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4205
4206 /**
4207 * ata_sg_init_one - Associate command with memory buffer
4208 * @qc: Command to be associated
4209 * @buf: Memory buffer
4210 * @buflen: Length of memory buffer, in bytes.
4211 *
4212 * Initialize the data-related elements of queued_cmd @qc
4213 * to point to a single memory buffer, @buf of byte length @buflen.
4214 *
4215 * LOCKING:
4216 * spin_lock_irqsave(host lock)
4217 */
4218
4219 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4220 {
4221 qc->flags |= ATA_QCFLAG_SINGLE;
4222
4223 qc->__sg = &qc->sgent;
4224 qc->n_elem = 1;
4225 qc->orig_n_elem = 1;
4226 qc->buf_virt = buf;
4227 qc->nbytes = buflen;
4228
4229 sg_init_one(&qc->sgent, buf, buflen);
4230 }
4231
4232 /**
4233 * ata_sg_init - Associate command with scatter-gather table.
4234 * @qc: Command to be associated
4235 * @sg: Scatter-gather table.
4236 * @n_elem: Number of elements in s/g table.
4237 *
4238 * Initialize the data-related elements of queued_cmd @qc
4239 * to point to a scatter-gather table @sg, containing @n_elem
4240 * elements.
4241 *
4242 * LOCKING:
4243 * spin_lock_irqsave(host lock)
4244 */
4245
4246 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4247 unsigned int n_elem)
4248 {
4249 qc->flags |= ATA_QCFLAG_SG;
4250 qc->__sg = sg;
4251 qc->n_elem = n_elem;
4252 qc->orig_n_elem = n_elem;
4253 }
4254
4255 /**
4256 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4257 * @qc: Command with memory buffer to be mapped.
4258 *
4259 * DMA-map the memory buffer associated with queued_cmd @qc.
4260 *
4261 * LOCKING:
4262 * spin_lock_irqsave(host lock)
4263 *
4264 * RETURNS:
4265 * Zero on success, negative on error.
4266 */
4267
4268 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4269 {
4270 struct ata_port *ap = qc->ap;
4271 int dir = qc->dma_dir;
4272 struct scatterlist *sg = qc->__sg;
4273 dma_addr_t dma_address;
4274 int trim_sg = 0;
4275
4276 /* we must lengthen transfers to end on a 32-bit boundary */
4277 qc->pad_len = sg->length & 3;
4278 if (qc->pad_len) {
4279 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4280 struct scatterlist *psg = &qc->pad_sgent;
4281
4282 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4283
4284 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4285
4286 if (qc->tf.flags & ATA_TFLAG_WRITE)
4287 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4288 qc->pad_len);
4289
4290 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4291 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4292 /* trim sg */
4293 sg->length -= qc->pad_len;
4294 if (sg->length == 0)
4295 trim_sg = 1;
4296
4297 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4298 sg->length, qc->pad_len);
4299 }
4300
4301 if (trim_sg) {
4302 qc->n_elem--;
4303 goto skip_map;
4304 }
4305
4306 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4307 sg->length, dir);
4308 if (dma_mapping_error(dma_address)) {
4309 /* restore sg */
4310 sg->length += qc->pad_len;
4311 return -1;
4312 }
4313
4314 sg_dma_address(sg) = dma_address;
4315 sg_dma_len(sg) = sg->length;
4316
4317 skip_map:
4318 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4319 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4320
4321 return 0;
4322 }
4323
4324 /**
4325 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4326 * @qc: Command with scatter-gather table to be mapped.
4327 *
4328 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4329 *
4330 * LOCKING:
4331 * spin_lock_irqsave(host lock)
4332 *
4333 * RETURNS:
4334 * Zero on success, negative on error.
4335 *
4336 */
4337
4338 static int ata_sg_setup(struct ata_queued_cmd *qc)
4339 {
4340 struct ata_port *ap = qc->ap;
4341 struct scatterlist *sg = qc->__sg;
4342 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4343 int n_elem, pre_n_elem, dir, trim_sg = 0;
4344
4345 VPRINTK("ENTER, ata%u\n", ap->print_id);
4346 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4347
4348 /* we must lengthen transfers to end on a 32-bit boundary */
4349 qc->pad_len = lsg->length & 3;
4350 if (qc->pad_len) {
4351 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4352 struct scatterlist *psg = &qc->pad_sgent;
4353 unsigned int offset;
4354
4355 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4356
4357 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4358
4359 /*
4360 * psg->page/offset are used to copy to-be-written
4361 * data in this function or read data in ata_sg_clean.
4362 */
4363 offset = lsg->offset + lsg->length - qc->pad_len;
4364 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4365 psg->offset = offset_in_page(offset);
4366
4367 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4368 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4369 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4370 kunmap_atomic(addr, KM_IRQ0);
4371 }
4372
4373 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4374 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4375 /* trim last sg */
4376 lsg->length -= qc->pad_len;
4377 if (lsg->length == 0)
4378 trim_sg = 1;
4379
4380 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4381 qc->n_elem - 1, lsg->length, qc->pad_len);
4382 }
4383
4384 pre_n_elem = qc->n_elem;
4385 if (trim_sg && pre_n_elem)
4386 pre_n_elem--;
4387
4388 if (!pre_n_elem) {
4389 n_elem = 0;
4390 goto skip_map;
4391 }
4392
4393 dir = qc->dma_dir;
4394 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4395 if (n_elem < 1) {
4396 /* restore last sg */
4397 lsg->length += qc->pad_len;
4398 return -1;
4399 }
4400
4401 DPRINTK("%d sg elements mapped\n", n_elem);
4402
4403 skip_map:
4404 qc->n_elem = n_elem;
4405
4406 return 0;
4407 }
4408
4409 /**
4410 * swap_buf_le16 - swap halves of 16-bit words in place
4411 * @buf: Buffer to swap
4412 * @buf_words: Number of 16-bit words in buffer.
4413 *
4414 * Swap halves of 16-bit words if needed to convert from
4415 * little-endian byte order to native cpu byte order, or
4416 * vice-versa.
4417 *
4418 * LOCKING:
4419 * Inherited from caller.
4420 */
4421 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4422 {
4423 #ifdef __BIG_ENDIAN
4424 unsigned int i;
4425
4426 for (i = 0; i < buf_words; i++)
4427 buf[i] = le16_to_cpu(buf[i]);
4428 #endif /* __BIG_ENDIAN */
4429 }
4430
4431 /**
4432 * ata_data_xfer - Transfer data by PIO
4433 * @adev: device to target
4434 * @buf: data buffer
4435 * @buflen: buffer length
4436 * @write_data: read/write
4437 *
4438 * Transfer data from/to the device data register by PIO.
4439 *
4440 * LOCKING:
4441 * Inherited from caller.
4442 */
4443 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4444 unsigned int buflen, int write_data)
4445 {
4446 struct ata_port *ap = adev->ap;
4447 unsigned int words = buflen >> 1;
4448
4449 /* Transfer multiple of 2 bytes */
4450 if (write_data)
4451 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4452 else
4453 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4454
4455 /* Transfer trailing 1 byte, if any. */
4456 if (unlikely(buflen & 0x01)) {
4457 u16 align_buf[1] = { 0 };
4458 unsigned char *trailing_buf = buf + buflen - 1;
4459
4460 if (write_data) {
4461 memcpy(align_buf, trailing_buf, 1);
4462 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4463 } else {
4464 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4465 memcpy(trailing_buf, align_buf, 1);
4466 }
4467 }
4468 }
4469
4470 /**
4471 * ata_data_xfer_noirq - Transfer data by PIO
4472 * @adev: device to target
4473 * @buf: data buffer
4474 * @buflen: buffer length
4475 * @write_data: read/write
4476 *
4477 * Transfer data from/to the device data register by PIO. Do the
4478 * transfer with interrupts disabled.
4479 *
4480 * LOCKING:
4481 * Inherited from caller.
4482 */
4483 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4484 unsigned int buflen, int write_data)
4485 {
4486 unsigned long flags;
4487 local_irq_save(flags);
4488 ata_data_xfer(adev, buf, buflen, write_data);
4489 local_irq_restore(flags);
4490 }
4491
4492
4493 /**
4494 * ata_pio_sector - Transfer a sector of data.
4495 * @qc: Command on going
4496 *
4497 * Transfer qc->sect_size bytes of data from/to the ATA device.
4498 *
4499 * LOCKING:
4500 * Inherited from caller.
4501 */
4502
4503 static void ata_pio_sector(struct ata_queued_cmd *qc)
4504 {
4505 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4506 struct scatterlist *sg = qc->__sg;
4507 struct ata_port *ap = qc->ap;
4508 struct page *page;
4509 unsigned int offset;
4510 unsigned char *buf;
4511
4512 if (qc->curbytes == qc->nbytes - qc->sect_size)
4513 ap->hsm_task_state = HSM_ST_LAST;
4514
4515 page = sg[qc->cursg].page;
4516 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4517
4518 /* get the current page and offset */
4519 page = nth_page(page, (offset >> PAGE_SHIFT));
4520 offset %= PAGE_SIZE;
4521
4522 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4523
4524 if (PageHighMem(page)) {
4525 unsigned long flags;
4526
4527 /* FIXME: use a bounce buffer */
4528 local_irq_save(flags);
4529 buf = kmap_atomic(page, KM_IRQ0);
4530
4531 /* do the actual data transfer */
4532 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4533
4534 kunmap_atomic(buf, KM_IRQ0);
4535 local_irq_restore(flags);
4536 } else {
4537 buf = page_address(page);
4538 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4539 }
4540
4541 qc->curbytes += qc->sect_size;
4542 qc->cursg_ofs += qc->sect_size;
4543
4544 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4545 qc->cursg++;
4546 qc->cursg_ofs = 0;
4547 }
4548 }
4549
4550 /**
4551 * ata_pio_sectors - Transfer one or many sectors.
4552 * @qc: Command on going
4553 *
4554 * Transfer one or many sectors of data from/to the
4555 * ATA device for the DRQ request.
4556 *
4557 * LOCKING:
4558 * Inherited from caller.
4559 */
4560
4561 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4562 {
4563 if (is_multi_taskfile(&qc->tf)) {
4564 /* READ/WRITE MULTIPLE */
4565 unsigned int nsect;
4566
4567 WARN_ON(qc->dev->multi_count == 0);
4568
4569 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4570 qc->dev->multi_count);
4571 while (nsect--)
4572 ata_pio_sector(qc);
4573 } else
4574 ata_pio_sector(qc);
4575 }
4576
4577 /**
4578 * atapi_send_cdb - Write CDB bytes to hardware
4579 * @ap: Port to which ATAPI device is attached.
4580 * @qc: Taskfile currently active
4581 *
4582 * When device has indicated its readiness to accept
4583 * a CDB, this function is called. Send the CDB.
4584 *
4585 * LOCKING:
4586 * caller.
4587 */
4588
4589 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4590 {
4591 /* send SCSI cdb */
4592 DPRINTK("send cdb\n");
4593 WARN_ON(qc->dev->cdb_len < 12);
4594
4595 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4596 ata_altstatus(ap); /* flush */
4597
4598 switch (qc->tf.protocol) {
4599 case ATA_PROT_ATAPI:
4600 ap->hsm_task_state = HSM_ST;
4601 break;
4602 case ATA_PROT_ATAPI_NODATA:
4603 ap->hsm_task_state = HSM_ST_LAST;
4604 break;
4605 case ATA_PROT_ATAPI_DMA:
4606 ap->hsm_task_state = HSM_ST_LAST;
4607 /* initiate bmdma */
4608 ap->ops->bmdma_start(qc);
4609 break;
4610 }
4611 }
4612
4613 /**
4614 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4615 * @qc: Command on going
4616 * @bytes: number of bytes
4617 *
4618 * Transfer Transfer data from/to the ATAPI device.
4619 *
4620 * LOCKING:
4621 * Inherited from caller.
4622 *
4623 */
4624
4625 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4626 {
4627 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4628 struct scatterlist *sg = qc->__sg;
4629 struct ata_port *ap = qc->ap;
4630 struct page *page;
4631 unsigned char *buf;
4632 unsigned int offset, count;
4633
4634 if (qc->curbytes + bytes >= qc->nbytes)
4635 ap->hsm_task_state = HSM_ST_LAST;
4636
4637 next_sg:
4638 if (unlikely(qc->cursg >= qc->n_elem)) {
4639 /*
4640 * The end of qc->sg is reached and the device expects
4641 * more data to transfer. In order not to overrun qc->sg
4642 * and fulfill length specified in the byte count register,
4643 * - for read case, discard trailing data from the device
4644 * - for write case, padding zero data to the device
4645 */
4646 u16 pad_buf[1] = { 0 };
4647 unsigned int words = bytes >> 1;
4648 unsigned int i;
4649
4650 if (words) /* warning if bytes > 1 */
4651 ata_dev_printk(qc->dev, KERN_WARNING,
4652 "%u bytes trailing data\n", bytes);
4653
4654 for (i = 0; i < words; i++)
4655 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4656
4657 ap->hsm_task_state = HSM_ST_LAST;
4658 return;
4659 }
4660
4661 sg = &qc->__sg[qc->cursg];
4662
4663 page = sg->page;
4664 offset = sg->offset + qc->cursg_ofs;
4665
4666 /* get the current page and offset */
4667 page = nth_page(page, (offset >> PAGE_SHIFT));
4668 offset %= PAGE_SIZE;
4669
4670 /* don't overrun current sg */
4671 count = min(sg->length - qc->cursg_ofs, bytes);
4672
4673 /* don't cross page boundaries */
4674 count = min(count, (unsigned int)PAGE_SIZE - offset);
4675
4676 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4677
4678 if (PageHighMem(page)) {
4679 unsigned long flags;
4680
4681 /* FIXME: use bounce buffer */
4682 local_irq_save(flags);
4683 buf = kmap_atomic(page, KM_IRQ0);
4684
4685 /* do the actual data transfer */
4686 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4687
4688 kunmap_atomic(buf, KM_IRQ0);
4689 local_irq_restore(flags);
4690 } else {
4691 buf = page_address(page);
4692 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4693 }
4694
4695 bytes -= count;
4696 qc->curbytes += count;
4697 qc->cursg_ofs += count;
4698
4699 if (qc->cursg_ofs == sg->length) {
4700 qc->cursg++;
4701 qc->cursg_ofs = 0;
4702 }
4703
4704 if (bytes)
4705 goto next_sg;
4706 }
4707
4708 /**
4709 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4710 * @qc: Command on going
4711 *
4712 * Transfer Transfer data from/to the ATAPI device.
4713 *
4714 * LOCKING:
4715 * Inherited from caller.
4716 */
4717
4718 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4719 {
4720 struct ata_port *ap = qc->ap;
4721 struct ata_device *dev = qc->dev;
4722 unsigned int ireason, bc_lo, bc_hi, bytes;
4723 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4724
4725 /* Abuse qc->result_tf for temp storage of intermediate TF
4726 * here to save some kernel stack usage.
4727 * For normal completion, qc->result_tf is not relevant. For
4728 * error, qc->result_tf is later overwritten by ata_qc_complete().
4729 * So, the correctness of qc->result_tf is not affected.
4730 */
4731 ap->ops->tf_read(ap, &qc->result_tf);
4732 ireason = qc->result_tf.nsect;
4733 bc_lo = qc->result_tf.lbam;
4734 bc_hi = qc->result_tf.lbah;
4735 bytes = (bc_hi << 8) | bc_lo;
4736
4737 /* shall be cleared to zero, indicating xfer of data */
4738 if (ireason & (1 << 0))
4739 goto err_out;
4740
4741 /* make sure transfer direction matches expected */
4742 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4743 if (do_write != i_write)
4744 goto err_out;
4745
4746 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4747
4748 __atapi_pio_bytes(qc, bytes);
4749
4750 return;
4751
4752 err_out:
4753 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4754 qc->err_mask |= AC_ERR_HSM;
4755 ap->hsm_task_state = HSM_ST_ERR;
4756 }
4757
4758 /**
4759 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4760 * @ap: the target ata_port
4761 * @qc: qc on going
4762 *
4763 * RETURNS:
4764 * 1 if ok in workqueue, 0 otherwise.
4765 */
4766
4767 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4768 {
4769 if (qc->tf.flags & ATA_TFLAG_POLLING)
4770 return 1;
4771
4772 if (ap->hsm_task_state == HSM_ST_FIRST) {
4773 if (qc->tf.protocol == ATA_PROT_PIO &&
4774 (qc->tf.flags & ATA_TFLAG_WRITE))
4775 return 1;
4776
4777 if (is_atapi_taskfile(&qc->tf) &&
4778 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4779 return 1;
4780 }
4781
4782 return 0;
4783 }
4784
4785 /**
4786 * ata_hsm_qc_complete - finish a qc running on standard HSM
4787 * @qc: Command to complete
4788 * @in_wq: 1 if called from workqueue, 0 otherwise
4789 *
4790 * Finish @qc which is running on standard HSM.
4791 *
4792 * LOCKING:
4793 * If @in_wq is zero, spin_lock_irqsave(host lock).
4794 * Otherwise, none on entry and grabs host lock.
4795 */
4796 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4797 {
4798 struct ata_port *ap = qc->ap;
4799 unsigned long flags;
4800
4801 if (ap->ops->error_handler) {
4802 if (in_wq) {
4803 spin_lock_irqsave(ap->lock, flags);
4804
4805 /* EH might have kicked in while host lock is
4806 * released.
4807 */
4808 qc = ata_qc_from_tag(ap, qc->tag);
4809 if (qc) {
4810 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4811 ap->ops->irq_on(ap);
4812 ata_qc_complete(qc);
4813 } else
4814 ata_port_freeze(ap);
4815 }
4816
4817 spin_unlock_irqrestore(ap->lock, flags);
4818 } else {
4819 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4820 ata_qc_complete(qc);
4821 else
4822 ata_port_freeze(ap);
4823 }
4824 } else {
4825 if (in_wq) {
4826 spin_lock_irqsave(ap->lock, flags);
4827 ap->ops->irq_on(ap);
4828 ata_qc_complete(qc);
4829 spin_unlock_irqrestore(ap->lock, flags);
4830 } else
4831 ata_qc_complete(qc);
4832 }
4833 }
4834
4835 /**
4836 * ata_hsm_move - move the HSM to the next state.
4837 * @ap: the target ata_port
4838 * @qc: qc on going
4839 * @status: current device status
4840 * @in_wq: 1 if called from workqueue, 0 otherwise
4841 *
4842 * RETURNS:
4843 * 1 when poll next status needed, 0 otherwise.
4844 */
4845 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4846 u8 status, int in_wq)
4847 {
4848 unsigned long flags = 0;
4849 int poll_next;
4850
4851 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4852
4853 /* Make sure ata_qc_issue_prot() does not throw things
4854 * like DMA polling into the workqueue. Notice that
4855 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4856 */
4857 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4858
4859 fsm_start:
4860 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4861 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4862
4863 switch (ap->hsm_task_state) {
4864 case HSM_ST_FIRST:
4865 /* Send first data block or PACKET CDB */
4866
4867 /* If polling, we will stay in the work queue after
4868 * sending the data. Otherwise, interrupt handler
4869 * takes over after sending the data.
4870 */
4871 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4872
4873 /* check device status */
4874 if (unlikely((status & ATA_DRQ) == 0)) {
4875 /* handle BSY=0, DRQ=0 as error */
4876 if (likely(status & (ATA_ERR | ATA_DF)))
4877 /* device stops HSM for abort/error */
4878 qc->err_mask |= AC_ERR_DEV;
4879 else
4880 /* HSM violation. Let EH handle this */
4881 qc->err_mask |= AC_ERR_HSM;
4882
4883 ap->hsm_task_state = HSM_ST_ERR;
4884 goto fsm_start;
4885 }
4886
4887 /* Device should not ask for data transfer (DRQ=1)
4888 * when it finds something wrong.
4889 * We ignore DRQ here and stop the HSM by
4890 * changing hsm_task_state to HSM_ST_ERR and
4891 * let the EH abort the command or reset the device.
4892 */
4893 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4894 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4895 "error, dev_stat 0x%X\n", status);
4896 qc->err_mask |= AC_ERR_HSM;
4897 ap->hsm_task_state = HSM_ST_ERR;
4898 goto fsm_start;
4899 }
4900
4901 /* Send the CDB (atapi) or the first data block (ata pio out).
4902 * During the state transition, interrupt handler shouldn't
4903 * be invoked before the data transfer is complete and
4904 * hsm_task_state is changed. Hence, the following locking.
4905 */
4906 if (in_wq)
4907 spin_lock_irqsave(ap->lock, flags);
4908
4909 if (qc->tf.protocol == ATA_PROT_PIO) {
4910 /* PIO data out protocol.
4911 * send first data block.
4912 */
4913
4914 /* ata_pio_sectors() might change the state
4915 * to HSM_ST_LAST. so, the state is changed here
4916 * before ata_pio_sectors().
4917 */
4918 ap->hsm_task_state = HSM_ST;
4919 ata_pio_sectors(qc);
4920 ata_altstatus(ap); /* flush */
4921 } else
4922 /* send CDB */
4923 atapi_send_cdb(ap, qc);
4924
4925 if (in_wq)
4926 spin_unlock_irqrestore(ap->lock, flags);
4927
4928 /* if polling, ata_pio_task() handles the rest.
4929 * otherwise, interrupt handler takes over from here.
4930 */
4931 break;
4932
4933 case HSM_ST:
4934 /* complete command or read/write the data register */
4935 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4936 /* ATAPI PIO protocol */
4937 if ((status & ATA_DRQ) == 0) {
4938 /* No more data to transfer or device error.
4939 * Device error will be tagged in HSM_ST_LAST.
4940 */
4941 ap->hsm_task_state = HSM_ST_LAST;
4942 goto fsm_start;
4943 }
4944
4945 /* Device should not ask for data transfer (DRQ=1)
4946 * when it finds something wrong.
4947 * We ignore DRQ here and stop the HSM by
4948 * changing hsm_task_state to HSM_ST_ERR and
4949 * let the EH abort the command or reset the device.
4950 */
4951 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4952 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4953 "device error, dev_stat 0x%X\n",
4954 status);
4955 qc->err_mask |= AC_ERR_HSM;
4956 ap->hsm_task_state = HSM_ST_ERR;
4957 goto fsm_start;
4958 }
4959
4960 atapi_pio_bytes(qc);
4961
4962 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4963 /* bad ireason reported by device */
4964 goto fsm_start;
4965
4966 } else {
4967 /* ATA PIO protocol */
4968 if (unlikely((status & ATA_DRQ) == 0)) {
4969 /* handle BSY=0, DRQ=0 as error */
4970 if (likely(status & (ATA_ERR | ATA_DF)))
4971 /* device stops HSM for abort/error */
4972 qc->err_mask |= AC_ERR_DEV;
4973 else
4974 /* HSM violation. Let EH handle this.
4975 * Phantom devices also trigger this
4976 * condition. Mark hint.
4977 */
4978 qc->err_mask |= AC_ERR_HSM |
4979 AC_ERR_NODEV_HINT;
4980
4981 ap->hsm_task_state = HSM_ST_ERR;
4982 goto fsm_start;
4983 }
4984
4985 /* For PIO reads, some devices may ask for
4986 * data transfer (DRQ=1) alone with ERR=1.
4987 * We respect DRQ here and transfer one
4988 * block of junk data before changing the
4989 * hsm_task_state to HSM_ST_ERR.
4990 *
4991 * For PIO writes, ERR=1 DRQ=1 doesn't make
4992 * sense since the data block has been
4993 * transferred to the device.
4994 */
4995 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4996 /* data might be corrputed */
4997 qc->err_mask |= AC_ERR_DEV;
4998
4999 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5000 ata_pio_sectors(qc);
5001 ata_altstatus(ap);
5002 status = ata_wait_idle(ap);
5003 }
5004
5005 if (status & (ATA_BUSY | ATA_DRQ))
5006 qc->err_mask |= AC_ERR_HSM;
5007
5008 /* ata_pio_sectors() might change the
5009 * state to HSM_ST_LAST. so, the state
5010 * is changed after ata_pio_sectors().
5011 */
5012 ap->hsm_task_state = HSM_ST_ERR;
5013 goto fsm_start;
5014 }
5015
5016 ata_pio_sectors(qc);
5017
5018 if (ap->hsm_task_state == HSM_ST_LAST &&
5019 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5020 /* all data read */
5021 ata_altstatus(ap);
5022 status = ata_wait_idle(ap);
5023 goto fsm_start;
5024 }
5025 }
5026
5027 ata_altstatus(ap); /* flush */
5028 poll_next = 1;
5029 break;
5030
5031 case HSM_ST_LAST:
5032 if (unlikely(!ata_ok(status))) {
5033 qc->err_mask |= __ac_err_mask(status);
5034 ap->hsm_task_state = HSM_ST_ERR;
5035 goto fsm_start;
5036 }
5037
5038 /* no more data to transfer */
5039 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5040 ap->print_id, qc->dev->devno, status);
5041
5042 WARN_ON(qc->err_mask);
5043
5044 ap->hsm_task_state = HSM_ST_IDLE;
5045
5046 /* complete taskfile transaction */
5047 ata_hsm_qc_complete(qc, in_wq);
5048
5049 poll_next = 0;
5050 break;
5051
5052 case HSM_ST_ERR:
5053 /* make sure qc->err_mask is available to
5054 * know what's wrong and recover
5055 */
5056 WARN_ON(qc->err_mask == 0);
5057
5058 ap->hsm_task_state = HSM_ST_IDLE;
5059
5060 /* complete taskfile transaction */
5061 ata_hsm_qc_complete(qc, in_wq);
5062
5063 poll_next = 0;
5064 break;
5065 default:
5066 poll_next = 0;
5067 BUG();
5068 }
5069
5070 return poll_next;
5071 }
5072
5073 static void ata_pio_task(struct work_struct *work)
5074 {
5075 struct ata_port *ap =
5076 container_of(work, struct ata_port, port_task.work);
5077 struct ata_queued_cmd *qc = ap->port_task_data;
5078 u8 status;
5079 int poll_next;
5080
5081 fsm_start:
5082 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5083
5084 /*
5085 * This is purely heuristic. This is a fast path.
5086 * Sometimes when we enter, BSY will be cleared in
5087 * a chk-status or two. If not, the drive is probably seeking
5088 * or something. Snooze for a couple msecs, then
5089 * chk-status again. If still busy, queue delayed work.
5090 */
5091 status = ata_busy_wait(ap, ATA_BUSY, 5);
5092 if (status & ATA_BUSY) {
5093 msleep(2);
5094 status = ata_busy_wait(ap, ATA_BUSY, 10);
5095 if (status & ATA_BUSY) {
5096 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5097 return;
5098 }
5099 }
5100
5101 /* move the HSM */
5102 poll_next = ata_hsm_move(ap, qc, status, 1);
5103
5104 /* another command or interrupt handler
5105 * may be running at this point.
5106 */
5107 if (poll_next)
5108 goto fsm_start;
5109 }
5110
5111 /**
5112 * ata_qc_new - Request an available ATA command, for queueing
5113 * @ap: Port associated with device @dev
5114 * @dev: Device from whom we request an available command structure
5115 *
5116 * LOCKING:
5117 * None.
5118 */
5119
5120 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5121 {
5122 struct ata_queued_cmd *qc = NULL;
5123 unsigned int i;
5124
5125 /* no command while frozen */
5126 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5127 return NULL;
5128
5129 /* the last tag is reserved for internal command. */
5130 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5131 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5132 qc = __ata_qc_from_tag(ap, i);
5133 break;
5134 }
5135
5136 if (qc)
5137 qc->tag = i;
5138
5139 return qc;
5140 }
5141
5142 /**
5143 * ata_qc_new_init - Request an available ATA command, and initialize it
5144 * @dev: Device from whom we request an available command structure
5145 *
5146 * LOCKING:
5147 * None.
5148 */
5149
5150 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5151 {
5152 struct ata_port *ap = dev->ap;
5153 struct ata_queued_cmd *qc;
5154
5155 qc = ata_qc_new(ap);
5156 if (qc) {
5157 qc->scsicmd = NULL;
5158 qc->ap = ap;
5159 qc->dev = dev;
5160
5161 ata_qc_reinit(qc);
5162 }
5163
5164 return qc;
5165 }
5166
5167 /**
5168 * ata_qc_free - free unused ata_queued_cmd
5169 * @qc: Command to complete
5170 *
5171 * Designed to free unused ata_queued_cmd object
5172 * in case something prevents using it.
5173 *
5174 * LOCKING:
5175 * spin_lock_irqsave(host lock)
5176 */
5177 void ata_qc_free(struct ata_queued_cmd *qc)
5178 {
5179 struct ata_port *ap = qc->ap;
5180 unsigned int tag;
5181
5182 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5183
5184 qc->flags = 0;
5185 tag = qc->tag;
5186 if (likely(ata_tag_valid(tag))) {
5187 qc->tag = ATA_TAG_POISON;
5188 clear_bit(tag, &ap->qc_allocated);
5189 }
5190 }
5191
5192 void __ata_qc_complete(struct ata_queued_cmd *qc)
5193 {
5194 struct ata_port *ap = qc->ap;
5195
5196 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5197 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5198
5199 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5200 ata_sg_clean(qc);
5201
5202 /* command should be marked inactive atomically with qc completion */
5203 if (qc->tf.protocol == ATA_PROT_NCQ)
5204 ap->sactive &= ~(1 << qc->tag);
5205 else
5206 ap->active_tag = ATA_TAG_POISON;
5207
5208 /* atapi: mark qc as inactive to prevent the interrupt handler
5209 * from completing the command twice later, before the error handler
5210 * is called. (when rc != 0 and atapi request sense is needed)
5211 */
5212 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5213 ap->qc_active &= ~(1 << qc->tag);
5214
5215 /* call completion callback */
5216 qc->complete_fn(qc);
5217 }
5218
5219 static void fill_result_tf(struct ata_queued_cmd *qc)
5220 {
5221 struct ata_port *ap = qc->ap;
5222
5223 qc->result_tf.flags = qc->tf.flags;
5224 ap->ops->tf_read(ap, &qc->result_tf);
5225 }
5226
5227 /**
5228 * ata_qc_complete - Complete an active ATA command
5229 * @qc: Command to complete
5230 * @err_mask: ATA Status register contents
5231 *
5232 * Indicate to the mid and upper layers that an ATA
5233 * command has completed, with either an ok or not-ok status.
5234 *
5235 * LOCKING:
5236 * spin_lock_irqsave(host lock)
5237 */
5238 void ata_qc_complete(struct ata_queued_cmd *qc)
5239 {
5240 struct ata_port *ap = qc->ap;
5241
5242 /* XXX: New EH and old EH use different mechanisms to
5243 * synchronize EH with regular execution path.
5244 *
5245 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5246 * Normal execution path is responsible for not accessing a
5247 * failed qc. libata core enforces the rule by returning NULL
5248 * from ata_qc_from_tag() for failed qcs.
5249 *
5250 * Old EH depends on ata_qc_complete() nullifying completion
5251 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5252 * not synchronize with interrupt handler. Only PIO task is
5253 * taken care of.
5254 */
5255 if (ap->ops->error_handler) {
5256 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5257
5258 if (unlikely(qc->err_mask))
5259 qc->flags |= ATA_QCFLAG_FAILED;
5260
5261 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5262 if (!ata_tag_internal(qc->tag)) {
5263 /* always fill result TF for failed qc */
5264 fill_result_tf(qc);
5265 ata_qc_schedule_eh(qc);
5266 return;
5267 }
5268 }
5269
5270 /* read result TF if requested */
5271 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5272 fill_result_tf(qc);
5273
5274 __ata_qc_complete(qc);
5275 } else {
5276 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5277 return;
5278
5279 /* read result TF if failed or requested */
5280 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5281 fill_result_tf(qc);
5282
5283 __ata_qc_complete(qc);
5284 }
5285 }
5286
5287 /**
5288 * ata_qc_complete_multiple - Complete multiple qcs successfully
5289 * @ap: port in question
5290 * @qc_active: new qc_active mask
5291 * @finish_qc: LLDD callback invoked before completing a qc
5292 *
5293 * Complete in-flight commands. This functions is meant to be
5294 * called from low-level driver's interrupt routine to complete
5295 * requests normally. ap->qc_active and @qc_active is compared
5296 * and commands are completed accordingly.
5297 *
5298 * LOCKING:
5299 * spin_lock_irqsave(host lock)
5300 *
5301 * RETURNS:
5302 * Number of completed commands on success, -errno otherwise.
5303 */
5304 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5305 void (*finish_qc)(struct ata_queued_cmd *))
5306 {
5307 int nr_done = 0;
5308 u32 done_mask;
5309 int i;
5310
5311 done_mask = ap->qc_active ^ qc_active;
5312
5313 if (unlikely(done_mask & qc_active)) {
5314 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5315 "(%08x->%08x)\n", ap->qc_active, qc_active);
5316 return -EINVAL;
5317 }
5318
5319 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5320 struct ata_queued_cmd *qc;
5321
5322 if (!(done_mask & (1 << i)))
5323 continue;
5324
5325 if ((qc = ata_qc_from_tag(ap, i))) {
5326 if (finish_qc)
5327 finish_qc(qc);
5328 ata_qc_complete(qc);
5329 nr_done++;
5330 }
5331 }
5332
5333 return nr_done;
5334 }
5335
5336 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5337 {
5338 struct ata_port *ap = qc->ap;
5339
5340 switch (qc->tf.protocol) {
5341 case ATA_PROT_NCQ:
5342 case ATA_PROT_DMA:
5343 case ATA_PROT_ATAPI_DMA:
5344 return 1;
5345
5346 case ATA_PROT_ATAPI:
5347 case ATA_PROT_PIO:
5348 if (ap->flags & ATA_FLAG_PIO_DMA)
5349 return 1;
5350
5351 /* fall through */
5352
5353 default:
5354 return 0;
5355 }
5356
5357 /* never reached */
5358 }
5359
5360 /**
5361 * ata_qc_issue - issue taskfile to device
5362 * @qc: command to issue to device
5363 *
5364 * Prepare an ATA command to submission to device.
5365 * This includes mapping the data into a DMA-able
5366 * area, filling in the S/G table, and finally
5367 * writing the taskfile to hardware, starting the command.
5368 *
5369 * LOCKING:
5370 * spin_lock_irqsave(host lock)
5371 */
5372 void ata_qc_issue(struct ata_queued_cmd *qc)
5373 {
5374 struct ata_port *ap = qc->ap;
5375
5376 /* Make sure only one non-NCQ command is outstanding. The
5377 * check is skipped for old EH because it reuses active qc to
5378 * request ATAPI sense.
5379 */
5380 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5381
5382 if (qc->tf.protocol == ATA_PROT_NCQ) {
5383 WARN_ON(ap->sactive & (1 << qc->tag));
5384 ap->sactive |= 1 << qc->tag;
5385 } else {
5386 WARN_ON(ap->sactive);
5387 ap->active_tag = qc->tag;
5388 }
5389
5390 qc->flags |= ATA_QCFLAG_ACTIVE;
5391 ap->qc_active |= 1 << qc->tag;
5392
5393 if (ata_should_dma_map(qc)) {
5394 if (qc->flags & ATA_QCFLAG_SG) {
5395 if (ata_sg_setup(qc))
5396 goto sg_err;
5397 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5398 if (ata_sg_setup_one(qc))
5399 goto sg_err;
5400 }
5401 } else {
5402 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5403 }
5404
5405 ap->ops->qc_prep(qc);
5406
5407 qc->err_mask |= ap->ops->qc_issue(qc);
5408 if (unlikely(qc->err_mask))
5409 goto err;
5410 return;
5411
5412 sg_err:
5413 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5414 qc->err_mask |= AC_ERR_SYSTEM;
5415 err:
5416 ata_qc_complete(qc);
5417 }
5418
5419 /**
5420 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5421 * @qc: command to issue to device
5422 *
5423 * Using various libata functions and hooks, this function
5424 * starts an ATA command. ATA commands are grouped into
5425 * classes called "protocols", and issuing each type of protocol
5426 * is slightly different.
5427 *
5428 * May be used as the qc_issue() entry in ata_port_operations.
5429 *
5430 * LOCKING:
5431 * spin_lock_irqsave(host lock)
5432 *
5433 * RETURNS:
5434 * Zero on success, AC_ERR_* mask on failure
5435 */
5436
5437 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5438 {
5439 struct ata_port *ap = qc->ap;
5440
5441 /* Use polling pio if the LLD doesn't handle
5442 * interrupt driven pio and atapi CDB interrupt.
5443 */
5444 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5445 switch (qc->tf.protocol) {
5446 case ATA_PROT_PIO:
5447 case ATA_PROT_NODATA:
5448 case ATA_PROT_ATAPI:
5449 case ATA_PROT_ATAPI_NODATA:
5450 qc->tf.flags |= ATA_TFLAG_POLLING;
5451 break;
5452 case ATA_PROT_ATAPI_DMA:
5453 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5454 /* see ata_dma_blacklisted() */
5455 BUG();
5456 break;
5457 default:
5458 break;
5459 }
5460 }
5461
5462 /* select the device */
5463 ata_dev_select(ap, qc->dev->devno, 1, 0);
5464
5465 /* start the command */
5466 switch (qc->tf.protocol) {
5467 case ATA_PROT_NODATA:
5468 if (qc->tf.flags & ATA_TFLAG_POLLING)
5469 ata_qc_set_polling(qc);
5470
5471 ata_tf_to_host(ap, &qc->tf);
5472 ap->hsm_task_state = HSM_ST_LAST;
5473
5474 if (qc->tf.flags & ATA_TFLAG_POLLING)
5475 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5476
5477 break;
5478
5479 case ATA_PROT_DMA:
5480 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5481
5482 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5483 ap->ops->bmdma_setup(qc); /* set up bmdma */
5484 ap->ops->bmdma_start(qc); /* initiate bmdma */
5485 ap->hsm_task_state = HSM_ST_LAST;
5486 break;
5487
5488 case ATA_PROT_PIO:
5489 if (qc->tf.flags & ATA_TFLAG_POLLING)
5490 ata_qc_set_polling(qc);
5491
5492 ata_tf_to_host(ap, &qc->tf);
5493
5494 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5495 /* PIO data out protocol */
5496 ap->hsm_task_state = HSM_ST_FIRST;
5497 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5498
5499 /* always send first data block using
5500 * the ata_pio_task() codepath.
5501 */
5502 } else {
5503 /* PIO data in protocol */
5504 ap->hsm_task_state = HSM_ST;
5505
5506 if (qc->tf.flags & ATA_TFLAG_POLLING)
5507 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5508
5509 /* if polling, ata_pio_task() handles the rest.
5510 * otherwise, interrupt handler takes over from here.
5511 */
5512 }
5513
5514 break;
5515
5516 case ATA_PROT_ATAPI:
5517 case ATA_PROT_ATAPI_NODATA:
5518 if (qc->tf.flags & ATA_TFLAG_POLLING)
5519 ata_qc_set_polling(qc);
5520
5521 ata_tf_to_host(ap, &qc->tf);
5522
5523 ap->hsm_task_state = HSM_ST_FIRST;
5524
5525 /* send cdb by polling if no cdb interrupt */
5526 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5527 (qc->tf.flags & ATA_TFLAG_POLLING))
5528 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5529 break;
5530
5531 case ATA_PROT_ATAPI_DMA:
5532 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5533
5534 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5535 ap->ops->bmdma_setup(qc); /* set up bmdma */
5536 ap->hsm_task_state = HSM_ST_FIRST;
5537
5538 /* send cdb by polling if no cdb interrupt */
5539 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5540 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5541 break;
5542
5543 default:
5544 WARN_ON(1);
5545 return AC_ERR_SYSTEM;
5546 }
5547
5548 return 0;
5549 }
5550
5551 /**
5552 * ata_host_intr - Handle host interrupt for given (port, task)
5553 * @ap: Port on which interrupt arrived (possibly...)
5554 * @qc: Taskfile currently active in engine
5555 *
5556 * Handle host interrupt for given queued command. Currently,
5557 * only DMA interrupts are handled. All other commands are
5558 * handled via polling with interrupts disabled (nIEN bit).
5559 *
5560 * LOCKING:
5561 * spin_lock_irqsave(host lock)
5562 *
5563 * RETURNS:
5564 * One if interrupt was handled, zero if not (shared irq).
5565 */
5566
5567 inline unsigned int ata_host_intr (struct ata_port *ap,
5568 struct ata_queued_cmd *qc)
5569 {
5570 struct ata_eh_info *ehi = &ap->eh_info;
5571 u8 status, host_stat = 0;
5572
5573 VPRINTK("ata%u: protocol %d task_state %d\n",
5574 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5575
5576 /* Check whether we are expecting interrupt in this state */
5577 switch (ap->hsm_task_state) {
5578 case HSM_ST_FIRST:
5579 /* Some pre-ATAPI-4 devices assert INTRQ
5580 * at this state when ready to receive CDB.
5581 */
5582
5583 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5584 * The flag was turned on only for atapi devices.
5585 * No need to check is_atapi_taskfile(&qc->tf) again.
5586 */
5587 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5588 goto idle_irq;
5589 break;
5590 case HSM_ST_LAST:
5591 if (qc->tf.protocol == ATA_PROT_DMA ||
5592 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5593 /* check status of DMA engine */
5594 host_stat = ap->ops->bmdma_status(ap);
5595 VPRINTK("ata%u: host_stat 0x%X\n",
5596 ap->print_id, host_stat);
5597
5598 /* if it's not our irq... */
5599 if (!(host_stat & ATA_DMA_INTR))
5600 goto idle_irq;
5601
5602 /* before we do anything else, clear DMA-Start bit */
5603 ap->ops->bmdma_stop(qc);
5604
5605 if (unlikely(host_stat & ATA_DMA_ERR)) {
5606 /* error when transfering data to/from memory */
5607 qc->err_mask |= AC_ERR_HOST_BUS;
5608 ap->hsm_task_state = HSM_ST_ERR;
5609 }
5610 }
5611 break;
5612 case HSM_ST:
5613 break;
5614 default:
5615 goto idle_irq;
5616 }
5617
5618 /* check altstatus */
5619 status = ata_altstatus(ap);
5620 if (status & ATA_BUSY)
5621 goto idle_irq;
5622
5623 /* check main status, clearing INTRQ */
5624 status = ata_chk_status(ap);
5625 if (unlikely(status & ATA_BUSY))
5626 goto idle_irq;
5627
5628 /* ack bmdma irq events */
5629 ap->ops->irq_clear(ap);
5630
5631 ata_hsm_move(ap, qc, status, 0);
5632
5633 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5634 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5635 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5636
5637 return 1; /* irq handled */
5638
5639 idle_irq:
5640 ap->stats.idle_irq++;
5641
5642 #ifdef ATA_IRQ_TRAP
5643 if ((ap->stats.idle_irq % 1000) == 0) {
5644 ap->ops->irq_ack(ap, 0); /* debug trap */
5645 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5646 return 1;
5647 }
5648 #endif
5649 return 0; /* irq not handled */
5650 }
5651
5652 /**
5653 * ata_interrupt - Default ATA host interrupt handler
5654 * @irq: irq line (unused)
5655 * @dev_instance: pointer to our ata_host information structure
5656 *
5657 * Default interrupt handler for PCI IDE devices. Calls
5658 * ata_host_intr() for each port that is not disabled.
5659 *
5660 * LOCKING:
5661 * Obtains host lock during operation.
5662 *
5663 * RETURNS:
5664 * IRQ_NONE or IRQ_HANDLED.
5665 */
5666
5667 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5668 {
5669 struct ata_host *host = dev_instance;
5670 unsigned int i;
5671 unsigned int handled = 0;
5672 unsigned long flags;
5673
5674 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5675 spin_lock_irqsave(&host->lock, flags);
5676
5677 for (i = 0; i < host->n_ports; i++) {
5678 struct ata_port *ap;
5679
5680 ap = host->ports[i];
5681 if (ap &&
5682 !(ap->flags & ATA_FLAG_DISABLED)) {
5683 struct ata_queued_cmd *qc;
5684
5685 qc = ata_qc_from_tag(ap, ap->active_tag);
5686 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5687 (qc->flags & ATA_QCFLAG_ACTIVE))
5688 handled |= ata_host_intr(ap, qc);
5689 }
5690 }
5691
5692 spin_unlock_irqrestore(&host->lock, flags);
5693
5694 return IRQ_RETVAL(handled);
5695 }
5696
5697 /**
5698 * sata_scr_valid - test whether SCRs are accessible
5699 * @ap: ATA port to test SCR accessibility for
5700 *
5701 * Test whether SCRs are accessible for @ap.
5702 *
5703 * LOCKING:
5704 * None.
5705 *
5706 * RETURNS:
5707 * 1 if SCRs are accessible, 0 otherwise.
5708 */
5709 int sata_scr_valid(struct ata_port *ap)
5710 {
5711 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5712 }
5713
5714 /**
5715 * sata_scr_read - read SCR register of the specified port
5716 * @ap: ATA port to read SCR for
5717 * @reg: SCR to read
5718 * @val: Place to store read value
5719 *
5720 * Read SCR register @reg of @ap into *@val. This function is
5721 * guaranteed to succeed if the cable type of the port is SATA
5722 * and the port implements ->scr_read.
5723 *
5724 * LOCKING:
5725 * None.
5726 *
5727 * RETURNS:
5728 * 0 on success, negative errno on failure.
5729 */
5730 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5731 {
5732 if (sata_scr_valid(ap)) {
5733 *val = ap->ops->scr_read(ap, reg);
5734 return 0;
5735 }
5736 return -EOPNOTSUPP;
5737 }
5738
5739 /**
5740 * sata_scr_write - write SCR register of the specified port
5741 * @ap: ATA port to write SCR for
5742 * @reg: SCR to write
5743 * @val: value to write
5744 *
5745 * Write @val to SCR register @reg of @ap. This function is
5746 * guaranteed to succeed if the cable type of the port is SATA
5747 * and the port implements ->scr_read.
5748 *
5749 * LOCKING:
5750 * None.
5751 *
5752 * RETURNS:
5753 * 0 on success, negative errno on failure.
5754 */
5755 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5756 {
5757 if (sata_scr_valid(ap)) {
5758 ap->ops->scr_write(ap, reg, val);
5759 return 0;
5760 }
5761 return -EOPNOTSUPP;
5762 }
5763
5764 /**
5765 * sata_scr_write_flush - write SCR register of the specified port and flush
5766 * @ap: ATA port to write SCR for
5767 * @reg: SCR to write
5768 * @val: value to write
5769 *
5770 * This function is identical to sata_scr_write() except that this
5771 * function performs flush after writing to the register.
5772 *
5773 * LOCKING:
5774 * None.
5775 *
5776 * RETURNS:
5777 * 0 on success, negative errno on failure.
5778 */
5779 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5780 {
5781 if (sata_scr_valid(ap)) {
5782 ap->ops->scr_write(ap, reg, val);
5783 ap->ops->scr_read(ap, reg);
5784 return 0;
5785 }
5786 return -EOPNOTSUPP;
5787 }
5788
5789 /**
5790 * ata_port_online - test whether the given port is online
5791 * @ap: ATA port to test
5792 *
5793 * Test whether @ap is online. Note that this function returns 0
5794 * if online status of @ap cannot be obtained, so
5795 * ata_port_online(ap) != !ata_port_offline(ap).
5796 *
5797 * LOCKING:
5798 * None.
5799 *
5800 * RETURNS:
5801 * 1 if the port online status is available and online.
5802 */
5803 int ata_port_online(struct ata_port *ap)
5804 {
5805 u32 sstatus;
5806
5807 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5808 return 1;
5809 return 0;
5810 }
5811
5812 /**
5813 * ata_port_offline - test whether the given port is offline
5814 * @ap: ATA port to test
5815 *
5816 * Test whether @ap is offline. Note that this function returns
5817 * 0 if offline status of @ap cannot be obtained, so
5818 * ata_port_online(ap) != !ata_port_offline(ap).
5819 *
5820 * LOCKING:
5821 * None.
5822 *
5823 * RETURNS:
5824 * 1 if the port offline status is available and offline.
5825 */
5826 int ata_port_offline(struct ata_port *ap)
5827 {
5828 u32 sstatus;
5829
5830 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5831 return 1;
5832 return 0;
5833 }
5834
5835 int ata_flush_cache(struct ata_device *dev)
5836 {
5837 unsigned int err_mask;
5838 u8 cmd;
5839
5840 if (!ata_try_flush_cache(dev))
5841 return 0;
5842
5843 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5844 cmd = ATA_CMD_FLUSH_EXT;
5845 else
5846 cmd = ATA_CMD_FLUSH;
5847
5848 err_mask = ata_do_simple_cmd(dev, cmd);
5849 if (err_mask) {
5850 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5851 return -EIO;
5852 }
5853
5854 return 0;
5855 }
5856
5857 #ifdef CONFIG_PM
5858 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5859 unsigned int action, unsigned int ehi_flags,
5860 int wait)
5861 {
5862 unsigned long flags;
5863 int i, rc;
5864
5865 for (i = 0; i < host->n_ports; i++) {
5866 struct ata_port *ap = host->ports[i];
5867
5868 /* Previous resume operation might still be in
5869 * progress. Wait for PM_PENDING to clear.
5870 */
5871 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5872 ata_port_wait_eh(ap);
5873 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5874 }
5875
5876 /* request PM ops to EH */
5877 spin_lock_irqsave(ap->lock, flags);
5878
5879 ap->pm_mesg = mesg;
5880 if (wait) {
5881 rc = 0;
5882 ap->pm_result = &rc;
5883 }
5884
5885 ap->pflags |= ATA_PFLAG_PM_PENDING;
5886 ap->eh_info.action |= action;
5887 ap->eh_info.flags |= ehi_flags;
5888
5889 ata_port_schedule_eh(ap);
5890
5891 spin_unlock_irqrestore(ap->lock, flags);
5892
5893 /* wait and check result */
5894 if (wait) {
5895 ata_port_wait_eh(ap);
5896 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5897 if (rc)
5898 return rc;
5899 }
5900 }
5901
5902 return 0;
5903 }
5904
5905 /**
5906 * ata_host_suspend - suspend host
5907 * @host: host to suspend
5908 * @mesg: PM message
5909 *
5910 * Suspend @host. Actual operation is performed by EH. This
5911 * function requests EH to perform PM operations and waits for EH
5912 * to finish.
5913 *
5914 * LOCKING:
5915 * Kernel thread context (may sleep).
5916 *
5917 * RETURNS:
5918 * 0 on success, -errno on failure.
5919 */
5920 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5921 {
5922 int rc;
5923
5924 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5925 if (rc == 0)
5926 host->dev->power.power_state = mesg;
5927 return rc;
5928 }
5929
5930 /**
5931 * ata_host_resume - resume host
5932 * @host: host to resume
5933 *
5934 * Resume @host. Actual operation is performed by EH. This
5935 * function requests EH to perform PM operations and returns.
5936 * Note that all resume operations are performed parallely.
5937 *
5938 * LOCKING:
5939 * Kernel thread context (may sleep).
5940 */
5941 void ata_host_resume(struct ata_host *host)
5942 {
5943 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5944 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5945 host->dev->power.power_state = PMSG_ON;
5946 }
5947 #endif
5948
5949 /**
5950 * ata_port_start - Set port up for dma.
5951 * @ap: Port to initialize
5952 *
5953 * Called just after data structures for each port are
5954 * initialized. Allocates space for PRD table.
5955 *
5956 * May be used as the port_start() entry in ata_port_operations.
5957 *
5958 * LOCKING:
5959 * Inherited from caller.
5960 */
5961 int ata_port_start(struct ata_port *ap)
5962 {
5963 struct device *dev = ap->dev;
5964 int rc;
5965
5966 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5967 GFP_KERNEL);
5968 if (!ap->prd)
5969 return -ENOMEM;
5970
5971 rc = ata_pad_alloc(ap, dev);
5972 if (rc)
5973 return rc;
5974
5975 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5976 (unsigned long long)ap->prd_dma);
5977 return 0;
5978 }
5979
5980 /**
5981 * ata_dev_init - Initialize an ata_device structure
5982 * @dev: Device structure to initialize
5983 *
5984 * Initialize @dev in preparation for probing.
5985 *
5986 * LOCKING:
5987 * Inherited from caller.
5988 */
5989 void ata_dev_init(struct ata_device *dev)
5990 {
5991 struct ata_port *ap = dev->ap;
5992 unsigned long flags;
5993
5994 /* SATA spd limit is bound to the first device */
5995 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5996
5997 /* High bits of dev->flags are used to record warm plug
5998 * requests which occur asynchronously. Synchronize using
5999 * host lock.
6000 */
6001 spin_lock_irqsave(ap->lock, flags);
6002 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6003 spin_unlock_irqrestore(ap->lock, flags);
6004
6005 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6006 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6007 dev->pio_mask = UINT_MAX;
6008 dev->mwdma_mask = UINT_MAX;
6009 dev->udma_mask = UINT_MAX;
6010 }
6011
6012 /**
6013 * ata_port_alloc - allocate and initialize basic ATA port resources
6014 * @host: ATA host this allocated port belongs to
6015 *
6016 * Allocate and initialize basic ATA port resources.
6017 *
6018 * RETURNS:
6019 * Allocate ATA port on success, NULL on failure.
6020 *
6021 * LOCKING:
6022 * Inherited from calling layer (may sleep).
6023 */
6024 struct ata_port *ata_port_alloc(struct ata_host *host)
6025 {
6026 struct ata_port *ap;
6027 unsigned int i;
6028
6029 DPRINTK("ENTER\n");
6030
6031 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6032 if (!ap)
6033 return NULL;
6034
6035 ap->pflags |= ATA_PFLAG_INITIALIZING;
6036 ap->lock = &host->lock;
6037 ap->flags = ATA_FLAG_DISABLED;
6038 ap->print_id = -1;
6039 ap->ctl = ATA_DEVCTL_OBS;
6040 ap->host = host;
6041 ap->dev = host->dev;
6042
6043 ap->hw_sata_spd_limit = UINT_MAX;
6044 ap->active_tag = ATA_TAG_POISON;
6045 ap->last_ctl = 0xFF;
6046
6047 #if defined(ATA_VERBOSE_DEBUG)
6048 /* turn on all debugging levels */
6049 ap->msg_enable = 0x00FF;
6050 #elif defined(ATA_DEBUG)
6051 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6052 #else
6053 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6054 #endif
6055
6056 INIT_DELAYED_WORK(&ap->port_task, NULL);
6057 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6058 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6059 INIT_LIST_HEAD(&ap->eh_done_q);
6060 init_waitqueue_head(&ap->eh_wait_q);
6061
6062 ap->cbl = ATA_CBL_NONE;
6063
6064 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6065 struct ata_device *dev = &ap->device[i];
6066 dev->ap = ap;
6067 dev->devno = i;
6068 ata_dev_init(dev);
6069 }
6070
6071 #ifdef ATA_IRQ_TRAP
6072 ap->stats.unhandled_irq = 1;
6073 ap->stats.idle_irq = 1;
6074 #endif
6075 return ap;
6076 }
6077
6078 static void ata_host_release(struct device *gendev, void *res)
6079 {
6080 struct ata_host *host = dev_get_drvdata(gendev);
6081 int i;
6082
6083 for (i = 0; i < host->n_ports; i++) {
6084 struct ata_port *ap = host->ports[i];
6085
6086 if (!ap)
6087 continue;
6088
6089 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6090 ap->ops->port_stop(ap);
6091 }
6092
6093 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6094 host->ops->host_stop(host);
6095
6096 for (i = 0; i < host->n_ports; i++) {
6097 struct ata_port *ap = host->ports[i];
6098
6099 if (!ap)
6100 continue;
6101
6102 if (ap->scsi_host)
6103 scsi_host_put(ap->scsi_host);
6104
6105 kfree(ap);
6106 host->ports[i] = NULL;
6107 }
6108
6109 dev_set_drvdata(gendev, NULL);
6110 }
6111
6112 /**
6113 * ata_host_alloc - allocate and init basic ATA host resources
6114 * @dev: generic device this host is associated with
6115 * @max_ports: maximum number of ATA ports associated with this host
6116 *
6117 * Allocate and initialize basic ATA host resources. LLD calls
6118 * this function to allocate a host, initializes it fully and
6119 * attaches it using ata_host_register().
6120 *
6121 * @max_ports ports are allocated and host->n_ports is
6122 * initialized to @max_ports. The caller is allowed to decrease
6123 * host->n_ports before calling ata_host_register(). The unused
6124 * ports will be automatically freed on registration.
6125 *
6126 * RETURNS:
6127 * Allocate ATA host on success, NULL on failure.
6128 *
6129 * LOCKING:
6130 * Inherited from calling layer (may sleep).
6131 */
6132 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6133 {
6134 struct ata_host *host;
6135 size_t sz;
6136 int i;
6137
6138 DPRINTK("ENTER\n");
6139
6140 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6141 return NULL;
6142
6143 /* alloc a container for our list of ATA ports (buses) */
6144 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6145 /* alloc a container for our list of ATA ports (buses) */
6146 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6147 if (!host)
6148 goto err_out;
6149
6150 devres_add(dev, host);
6151 dev_set_drvdata(dev, host);
6152
6153 spin_lock_init(&host->lock);
6154 host->dev = dev;
6155 host->n_ports = max_ports;
6156
6157 /* allocate ports bound to this host */
6158 for (i = 0; i < max_ports; i++) {
6159 struct ata_port *ap;
6160
6161 ap = ata_port_alloc(host);
6162 if (!ap)
6163 goto err_out;
6164
6165 ap->port_no = i;
6166 host->ports[i] = ap;
6167 }
6168
6169 devres_remove_group(dev, NULL);
6170 return host;
6171
6172 err_out:
6173 devres_release_group(dev, NULL);
6174 return NULL;
6175 }
6176
6177 /**
6178 * ata_host_alloc_pinfo - alloc host and init with port_info array
6179 * @dev: generic device this host is associated with
6180 * @ppi: array of ATA port_info to initialize host with
6181 * @n_ports: number of ATA ports attached to this host
6182 *
6183 * Allocate ATA host and initialize with info from @ppi. If NULL
6184 * terminated, @ppi may contain fewer entries than @n_ports. The
6185 * last entry will be used for the remaining ports.
6186 *
6187 * RETURNS:
6188 * Allocate ATA host on success, NULL on failure.
6189 *
6190 * LOCKING:
6191 * Inherited from calling layer (may sleep).
6192 */
6193 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6194 const struct ata_port_info * const * ppi,
6195 int n_ports)
6196 {
6197 const struct ata_port_info *pi;
6198 struct ata_host *host;
6199 int i, j;
6200
6201 host = ata_host_alloc(dev, n_ports);
6202 if (!host)
6203 return NULL;
6204
6205 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6206 struct ata_port *ap = host->ports[i];
6207
6208 if (ppi[j])
6209 pi = ppi[j++];
6210
6211 ap->pio_mask = pi->pio_mask;
6212 ap->mwdma_mask = pi->mwdma_mask;
6213 ap->udma_mask = pi->udma_mask;
6214 ap->flags |= pi->flags;
6215 ap->ops = pi->port_ops;
6216
6217 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6218 host->ops = pi->port_ops;
6219 if (!host->private_data && pi->private_data)
6220 host->private_data = pi->private_data;
6221 }
6222
6223 return host;
6224 }
6225
6226 /**
6227 * ata_host_start - start and freeze ports of an ATA host
6228 * @host: ATA host to start ports for
6229 *
6230 * Start and then freeze ports of @host. Started status is
6231 * recorded in host->flags, so this function can be called
6232 * multiple times. Ports are guaranteed to get started only
6233 * once. If host->ops isn't initialized yet, its set to the
6234 * first non-dummy port ops.
6235 *
6236 * LOCKING:
6237 * Inherited from calling layer (may sleep).
6238 *
6239 * RETURNS:
6240 * 0 if all ports are started successfully, -errno otherwise.
6241 */
6242 int ata_host_start(struct ata_host *host)
6243 {
6244 int i, rc;
6245
6246 if (host->flags & ATA_HOST_STARTED)
6247 return 0;
6248
6249 for (i = 0; i < host->n_ports; i++) {
6250 struct ata_port *ap = host->ports[i];
6251
6252 if (!host->ops && !ata_port_is_dummy(ap))
6253 host->ops = ap->ops;
6254
6255 if (ap->ops->port_start) {
6256 rc = ap->ops->port_start(ap);
6257 if (rc) {
6258 ata_port_printk(ap, KERN_ERR, "failed to "
6259 "start port (errno=%d)\n", rc);
6260 goto err_out;
6261 }
6262 }
6263
6264 ata_eh_freeze_port(ap);
6265 }
6266
6267 host->flags |= ATA_HOST_STARTED;
6268 return 0;
6269
6270 err_out:
6271 while (--i >= 0) {
6272 struct ata_port *ap = host->ports[i];
6273
6274 if (ap->ops->port_stop)
6275 ap->ops->port_stop(ap);
6276 }
6277 return rc;
6278 }
6279
6280 /**
6281 * ata_sas_host_init - Initialize a host struct
6282 * @host: host to initialize
6283 * @dev: device host is attached to
6284 * @flags: host flags
6285 * @ops: port_ops
6286 *
6287 * LOCKING:
6288 * PCI/etc. bus probe sem.
6289 *
6290 */
6291 /* KILLME - the only user left is ipr */
6292 void ata_host_init(struct ata_host *host, struct device *dev,
6293 unsigned long flags, const struct ata_port_operations *ops)
6294 {
6295 spin_lock_init(&host->lock);
6296 host->dev = dev;
6297 host->flags = flags;
6298 host->ops = ops;
6299 }
6300
6301 /**
6302 * ata_host_register - register initialized ATA host
6303 * @host: ATA host to register
6304 * @sht: template for SCSI host
6305 *
6306 * Register initialized ATA host. @host is allocated using
6307 * ata_host_alloc() and fully initialized by LLD. This function
6308 * starts ports, registers @host with ATA and SCSI layers and
6309 * probe registered devices.
6310 *
6311 * LOCKING:
6312 * Inherited from calling layer (may sleep).
6313 *
6314 * RETURNS:
6315 * 0 on success, -errno otherwise.
6316 */
6317 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6318 {
6319 int i, rc;
6320
6321 /* host must have been started */
6322 if (!(host->flags & ATA_HOST_STARTED)) {
6323 dev_printk(KERN_ERR, host->dev,
6324 "BUG: trying to register unstarted host\n");
6325 WARN_ON(1);
6326 return -EINVAL;
6327 }
6328
6329 /* Blow away unused ports. This happens when LLD can't
6330 * determine the exact number of ports to allocate at
6331 * allocation time.
6332 */
6333 for (i = host->n_ports; host->ports[i]; i++)
6334 kfree(host->ports[i]);
6335
6336 /* give ports names and add SCSI hosts */
6337 for (i = 0; i < host->n_ports; i++)
6338 host->ports[i]->print_id = ata_print_id++;
6339
6340 rc = ata_scsi_add_hosts(host, sht);
6341 if (rc)
6342 return rc;
6343
6344 /* associate with ACPI nodes */
6345 ata_acpi_associate(host);
6346
6347 /* set cable, sata_spd_limit and report */
6348 for (i = 0; i < host->n_ports; i++) {
6349 struct ata_port *ap = host->ports[i];
6350 int irq_line;
6351 u32 scontrol;
6352 unsigned long xfer_mask;
6353
6354 /* set SATA cable type if still unset */
6355 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6356 ap->cbl = ATA_CBL_SATA;
6357
6358 /* init sata_spd_limit to the current value */
6359 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6360 int spd = (scontrol >> 4) & 0xf;
6361 if (spd)
6362 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6363 }
6364 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6365
6366 /* report the secondary IRQ for second channel legacy */
6367 irq_line = host->irq;
6368 if (i == 1 && host->irq2)
6369 irq_line = host->irq2;
6370
6371 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6372 ap->udma_mask);
6373
6374 /* print per-port info to dmesg */
6375 if (!ata_port_is_dummy(ap))
6376 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6377 "ctl 0x%p bmdma 0x%p irq %d\n",
6378 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6379 ata_mode_string(xfer_mask),
6380 ap->ioaddr.cmd_addr,
6381 ap->ioaddr.ctl_addr,
6382 ap->ioaddr.bmdma_addr,
6383 irq_line);
6384 else
6385 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6386 }
6387
6388 /* perform each probe synchronously */
6389 DPRINTK("probe begin\n");
6390 for (i = 0; i < host->n_ports; i++) {
6391 struct ata_port *ap = host->ports[i];
6392 int rc;
6393
6394 /* probe */
6395 if (ap->ops->error_handler) {
6396 struct ata_eh_info *ehi = &ap->eh_info;
6397 unsigned long flags;
6398
6399 ata_port_probe(ap);
6400
6401 /* kick EH for boot probing */
6402 spin_lock_irqsave(ap->lock, flags);
6403
6404 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6405 ehi->action |= ATA_EH_SOFTRESET;
6406 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6407
6408 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6409 ap->pflags |= ATA_PFLAG_LOADING;
6410 ata_port_schedule_eh(ap);
6411
6412 spin_unlock_irqrestore(ap->lock, flags);
6413
6414 /* wait for EH to finish */
6415 ata_port_wait_eh(ap);
6416 } else {
6417 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6418 rc = ata_bus_probe(ap);
6419 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6420
6421 if (rc) {
6422 /* FIXME: do something useful here?
6423 * Current libata behavior will
6424 * tear down everything when
6425 * the module is removed
6426 * or the h/w is unplugged.
6427 */
6428 }
6429 }
6430 }
6431
6432 /* probes are done, now scan each port's disk(s) */
6433 DPRINTK("host probe begin\n");
6434 for (i = 0; i < host->n_ports; i++) {
6435 struct ata_port *ap = host->ports[i];
6436
6437 ata_scsi_scan_host(ap);
6438 }
6439
6440 return 0;
6441 }
6442
6443 /**
6444 * ata_host_activate - start host, request IRQ and register it
6445 * @host: target ATA host
6446 * @irq: IRQ to request
6447 * @irq_handler: irq_handler used when requesting IRQ
6448 * @irq_flags: irq_flags used when requesting IRQ
6449 * @sht: scsi_host_template to use when registering the host
6450 *
6451 * After allocating an ATA host and initializing it, most libata
6452 * LLDs perform three steps to activate the host - start host,
6453 * request IRQ and register it. This helper takes necessasry
6454 * arguments and performs the three steps in one go.
6455 *
6456 * LOCKING:
6457 * Inherited from calling layer (may sleep).
6458 *
6459 * RETURNS:
6460 * 0 on success, -errno otherwise.
6461 */
6462 int ata_host_activate(struct ata_host *host, int irq,
6463 irq_handler_t irq_handler, unsigned long irq_flags,
6464 struct scsi_host_template *sht)
6465 {
6466 int rc;
6467
6468 rc = ata_host_start(host);
6469 if (rc)
6470 return rc;
6471
6472 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6473 dev_driver_string(host->dev), host);
6474 if (rc)
6475 return rc;
6476
6477 /* Used to print device info at probe */
6478 host->irq = irq;
6479
6480 rc = ata_host_register(host, sht);
6481 /* if failed, just free the IRQ and leave ports alone */
6482 if (rc)
6483 devm_free_irq(host->dev, irq, host);
6484
6485 return rc;
6486 }
6487
6488 /**
6489 * ata_port_detach - Detach ATA port in prepration of device removal
6490 * @ap: ATA port to be detached
6491 *
6492 * Detach all ATA devices and the associated SCSI devices of @ap;
6493 * then, remove the associated SCSI host. @ap is guaranteed to
6494 * be quiescent on return from this function.
6495 *
6496 * LOCKING:
6497 * Kernel thread context (may sleep).
6498 */
6499 void ata_port_detach(struct ata_port *ap)
6500 {
6501 unsigned long flags;
6502 int i;
6503
6504 if (!ap->ops->error_handler)
6505 goto skip_eh;
6506
6507 /* tell EH we're leaving & flush EH */
6508 spin_lock_irqsave(ap->lock, flags);
6509 ap->pflags |= ATA_PFLAG_UNLOADING;
6510 spin_unlock_irqrestore(ap->lock, flags);
6511
6512 ata_port_wait_eh(ap);
6513
6514 /* EH is now guaranteed to see UNLOADING, so no new device
6515 * will be attached. Disable all existing devices.
6516 */
6517 spin_lock_irqsave(ap->lock, flags);
6518
6519 for (i = 0; i < ATA_MAX_DEVICES; i++)
6520 ata_dev_disable(&ap->device[i]);
6521
6522 spin_unlock_irqrestore(ap->lock, flags);
6523
6524 /* Final freeze & EH. All in-flight commands are aborted. EH
6525 * will be skipped and retrials will be terminated with bad
6526 * target.
6527 */
6528 spin_lock_irqsave(ap->lock, flags);
6529 ata_port_freeze(ap); /* won't be thawed */
6530 spin_unlock_irqrestore(ap->lock, flags);
6531
6532 ata_port_wait_eh(ap);
6533 cancel_rearming_delayed_work(&ap->hotplug_task);
6534
6535 skip_eh:
6536 /* remove the associated SCSI host */
6537 scsi_remove_host(ap->scsi_host);
6538 }
6539
6540 /**
6541 * ata_host_detach - Detach all ports of an ATA host
6542 * @host: Host to detach
6543 *
6544 * Detach all ports of @host.
6545 *
6546 * LOCKING:
6547 * Kernel thread context (may sleep).
6548 */
6549 void ata_host_detach(struct ata_host *host)
6550 {
6551 int i;
6552
6553 for (i = 0; i < host->n_ports; i++)
6554 ata_port_detach(host->ports[i]);
6555 }
6556
6557 /**
6558 * ata_std_ports - initialize ioaddr with standard port offsets.
6559 * @ioaddr: IO address structure to be initialized
6560 *
6561 * Utility function which initializes data_addr, error_addr,
6562 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6563 * device_addr, status_addr, and command_addr to standard offsets
6564 * relative to cmd_addr.
6565 *
6566 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6567 */
6568
6569 void ata_std_ports(struct ata_ioports *ioaddr)
6570 {
6571 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6572 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6573 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6574 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6575 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6576 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6577 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6578 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6579 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6580 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6581 }
6582
6583
6584 #ifdef CONFIG_PCI
6585
6586 /**
6587 * ata_pci_remove_one - PCI layer callback for device removal
6588 * @pdev: PCI device that was removed
6589 *
6590 * PCI layer indicates to libata via this hook that hot-unplug or
6591 * module unload event has occurred. Detach all ports. Resource
6592 * release is handled via devres.
6593 *
6594 * LOCKING:
6595 * Inherited from PCI layer (may sleep).
6596 */
6597 void ata_pci_remove_one(struct pci_dev *pdev)
6598 {
6599 struct device *dev = pci_dev_to_dev(pdev);
6600 struct ata_host *host = dev_get_drvdata(dev);
6601
6602 ata_host_detach(host);
6603 }
6604
6605 /* move to PCI subsystem */
6606 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6607 {
6608 unsigned long tmp = 0;
6609
6610 switch (bits->width) {
6611 case 1: {
6612 u8 tmp8 = 0;
6613 pci_read_config_byte(pdev, bits->reg, &tmp8);
6614 tmp = tmp8;
6615 break;
6616 }
6617 case 2: {
6618 u16 tmp16 = 0;
6619 pci_read_config_word(pdev, bits->reg, &tmp16);
6620 tmp = tmp16;
6621 break;
6622 }
6623 case 4: {
6624 u32 tmp32 = 0;
6625 pci_read_config_dword(pdev, bits->reg, &tmp32);
6626 tmp = tmp32;
6627 break;
6628 }
6629
6630 default:
6631 return -EINVAL;
6632 }
6633
6634 tmp &= bits->mask;
6635
6636 return (tmp == bits->val) ? 1 : 0;
6637 }
6638
6639 #ifdef CONFIG_PM
6640 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6641 {
6642 pci_save_state(pdev);
6643 pci_disable_device(pdev);
6644
6645 if (mesg.event == PM_EVENT_SUSPEND)
6646 pci_set_power_state(pdev, PCI_D3hot);
6647 }
6648
6649 int ata_pci_device_do_resume(struct pci_dev *pdev)
6650 {
6651 int rc;
6652
6653 pci_set_power_state(pdev, PCI_D0);
6654 pci_restore_state(pdev);
6655
6656 rc = pcim_enable_device(pdev);
6657 if (rc) {
6658 dev_printk(KERN_ERR, &pdev->dev,
6659 "failed to enable device after resume (%d)\n", rc);
6660 return rc;
6661 }
6662
6663 pci_set_master(pdev);
6664 return 0;
6665 }
6666
6667 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6668 {
6669 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6670 int rc = 0;
6671
6672 rc = ata_host_suspend(host, mesg);
6673 if (rc)
6674 return rc;
6675
6676 ata_pci_device_do_suspend(pdev, mesg);
6677
6678 return 0;
6679 }
6680
6681 int ata_pci_device_resume(struct pci_dev *pdev)
6682 {
6683 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6684 int rc;
6685
6686 rc = ata_pci_device_do_resume(pdev);
6687 if (rc == 0)
6688 ata_host_resume(host);
6689 return rc;
6690 }
6691 #endif /* CONFIG_PM */
6692
6693 #endif /* CONFIG_PCI */
6694
6695
6696 static int __init ata_init(void)
6697 {
6698 ata_probe_timeout *= HZ;
6699 ata_wq = create_workqueue("ata");
6700 if (!ata_wq)
6701 return -ENOMEM;
6702
6703 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6704 if (!ata_aux_wq) {
6705 destroy_workqueue(ata_wq);
6706 return -ENOMEM;
6707 }
6708
6709 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6710 return 0;
6711 }
6712
6713 static void __exit ata_exit(void)
6714 {
6715 destroy_workqueue(ata_wq);
6716 destroy_workqueue(ata_aux_wq);
6717 }
6718
6719 subsys_initcall(ata_init);
6720 module_exit(ata_exit);
6721
6722 static unsigned long ratelimit_time;
6723 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6724
6725 int ata_ratelimit(void)
6726 {
6727 int rc;
6728 unsigned long flags;
6729
6730 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6731
6732 if (time_after(jiffies, ratelimit_time)) {
6733 rc = 1;
6734 ratelimit_time = jiffies + (HZ/5);
6735 } else
6736 rc = 0;
6737
6738 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6739
6740 return rc;
6741 }
6742
6743 /**
6744 * ata_wait_register - wait until register value changes
6745 * @reg: IO-mapped register
6746 * @mask: Mask to apply to read register value
6747 * @val: Wait condition
6748 * @interval_msec: polling interval in milliseconds
6749 * @timeout_msec: timeout in milliseconds
6750 *
6751 * Waiting for some bits of register to change is a common
6752 * operation for ATA controllers. This function reads 32bit LE
6753 * IO-mapped register @reg and tests for the following condition.
6754 *
6755 * (*@reg & mask) != val
6756 *
6757 * If the condition is met, it returns; otherwise, the process is
6758 * repeated after @interval_msec until timeout.
6759 *
6760 * LOCKING:
6761 * Kernel thread context (may sleep)
6762 *
6763 * RETURNS:
6764 * The final register value.
6765 */
6766 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6767 unsigned long interval_msec,
6768 unsigned long timeout_msec)
6769 {
6770 unsigned long timeout;
6771 u32 tmp;
6772
6773 tmp = ioread32(reg);
6774
6775 /* Calculate timeout _after_ the first read to make sure
6776 * preceding writes reach the controller before starting to
6777 * eat away the timeout.
6778 */
6779 timeout = jiffies + (timeout_msec * HZ) / 1000;
6780
6781 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6782 msleep(interval_msec);
6783 tmp = ioread32(reg);
6784 }
6785
6786 return tmp;
6787 }
6788
6789 /*
6790 * Dummy port_ops
6791 */
6792 static void ata_dummy_noret(struct ata_port *ap) { }
6793 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6794 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6795
6796 static u8 ata_dummy_check_status(struct ata_port *ap)
6797 {
6798 return ATA_DRDY;
6799 }
6800
6801 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6802 {
6803 return AC_ERR_SYSTEM;
6804 }
6805
6806 const struct ata_port_operations ata_dummy_port_ops = {
6807 .port_disable = ata_port_disable,
6808 .check_status = ata_dummy_check_status,
6809 .check_altstatus = ata_dummy_check_status,
6810 .dev_select = ata_noop_dev_select,
6811 .qc_prep = ata_noop_qc_prep,
6812 .qc_issue = ata_dummy_qc_issue,
6813 .freeze = ata_dummy_noret,
6814 .thaw = ata_dummy_noret,
6815 .error_handler = ata_dummy_noret,
6816 .post_internal_cmd = ata_dummy_qc_noret,
6817 .irq_clear = ata_dummy_noret,
6818 .port_start = ata_dummy_ret0,
6819 .port_stop = ata_dummy_noret,
6820 };
6821
6822 const struct ata_port_info ata_dummy_port_info = {
6823 .port_ops = &ata_dummy_port_ops,
6824 };
6825
6826 /*
6827 * libata is essentially a library of internal helper functions for
6828 * low-level ATA host controller drivers. As such, the API/ABI is
6829 * likely to change as new drivers are added and updated.
6830 * Do not depend on ABI/API stability.
6831 */
6832
6833 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6834 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6835 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6836 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6837 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6838 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6839 EXPORT_SYMBOL_GPL(ata_std_ports);
6840 EXPORT_SYMBOL_GPL(ata_host_init);
6841 EXPORT_SYMBOL_GPL(ata_host_alloc);
6842 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6843 EXPORT_SYMBOL_GPL(ata_host_start);
6844 EXPORT_SYMBOL_GPL(ata_host_register);
6845 EXPORT_SYMBOL_GPL(ata_host_activate);
6846 EXPORT_SYMBOL_GPL(ata_host_detach);
6847 EXPORT_SYMBOL_GPL(ata_sg_init);
6848 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6849 EXPORT_SYMBOL_GPL(ata_hsm_move);
6850 EXPORT_SYMBOL_GPL(ata_qc_complete);
6851 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6852 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6853 EXPORT_SYMBOL_GPL(ata_tf_load);
6854 EXPORT_SYMBOL_GPL(ata_tf_read);
6855 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6856 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6857 EXPORT_SYMBOL_GPL(sata_print_link_status);
6858 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6859 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6860 EXPORT_SYMBOL_GPL(ata_check_status);
6861 EXPORT_SYMBOL_GPL(ata_altstatus);
6862 EXPORT_SYMBOL_GPL(ata_exec_command);
6863 EXPORT_SYMBOL_GPL(ata_port_start);
6864 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6865 EXPORT_SYMBOL_GPL(ata_interrupt);
6866 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6867 EXPORT_SYMBOL_GPL(ata_data_xfer);
6868 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6869 EXPORT_SYMBOL_GPL(ata_qc_prep);
6870 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6871 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6872 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6873 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6874 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6875 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6876 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6877 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6878 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6879 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6880 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6881 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6882 EXPORT_SYMBOL_GPL(ata_port_probe);
6883 EXPORT_SYMBOL_GPL(ata_dev_disable);
6884 EXPORT_SYMBOL_GPL(sata_set_spd);
6885 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6886 EXPORT_SYMBOL_GPL(sata_phy_resume);
6887 EXPORT_SYMBOL_GPL(sata_phy_reset);
6888 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6889 EXPORT_SYMBOL_GPL(ata_bus_reset);
6890 EXPORT_SYMBOL_GPL(ata_std_prereset);
6891 EXPORT_SYMBOL_GPL(ata_std_softreset);
6892 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6893 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6894 EXPORT_SYMBOL_GPL(ata_std_postreset);
6895 EXPORT_SYMBOL_GPL(ata_dev_classify);
6896 EXPORT_SYMBOL_GPL(ata_dev_pair);
6897 EXPORT_SYMBOL_GPL(ata_port_disable);
6898 EXPORT_SYMBOL_GPL(ata_ratelimit);
6899 EXPORT_SYMBOL_GPL(ata_wait_register);
6900 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6901 EXPORT_SYMBOL_GPL(ata_wait_ready);
6902 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6903 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6904 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6905 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6906 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6907 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6908 EXPORT_SYMBOL_GPL(ata_host_intr);
6909 EXPORT_SYMBOL_GPL(sata_scr_valid);
6910 EXPORT_SYMBOL_GPL(sata_scr_read);
6911 EXPORT_SYMBOL_GPL(sata_scr_write);
6912 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6913 EXPORT_SYMBOL_GPL(ata_port_online);
6914 EXPORT_SYMBOL_GPL(ata_port_offline);
6915 #ifdef CONFIG_PM
6916 EXPORT_SYMBOL_GPL(ata_host_suspend);
6917 EXPORT_SYMBOL_GPL(ata_host_resume);
6918 #endif /* CONFIG_PM */
6919 EXPORT_SYMBOL_GPL(ata_id_string);
6920 EXPORT_SYMBOL_GPL(ata_id_c_string);
6921 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6922 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6923
6924 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6925 EXPORT_SYMBOL_GPL(ata_timing_compute);
6926 EXPORT_SYMBOL_GPL(ata_timing_merge);
6927
6928 #ifdef CONFIG_PCI
6929 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6930 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
6931 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6932 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
6933 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6934 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6935 #ifdef CONFIG_PM
6936 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6937 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6938 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6939 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6940 #endif /* CONFIG_PM */
6941 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6942 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6943 #endif /* CONFIG_PCI */
6944
6945 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6946 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6947 EXPORT_SYMBOL_GPL(ata_port_abort);
6948 EXPORT_SYMBOL_GPL(ata_port_freeze);
6949 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6950 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6951 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6952 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6953 EXPORT_SYMBOL_GPL(ata_do_eh);
6954 EXPORT_SYMBOL_GPL(ata_irq_on);
6955 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6956 EXPORT_SYMBOL_GPL(ata_irq_ack);
6957 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6958 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6959
6960 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6961 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6962 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6963 EXPORT_SYMBOL_GPL(ata_cable_sata);