]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/ata/libata-core.c
Merge /spare/repo/linux-2.6 into upstream
[mirror_ubuntu-hirsute-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
66
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
71
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
74
75 struct workqueue_struct *ata_aux_wq;
76
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
97
98
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
113 {
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139 }
140
141 /**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
153 {
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168 }
169
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
185 0,
186 0,
187 0,
188 0,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
198 };
199
200 /**
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
203 *
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
206 *
207 * LOCKING:
208 * caller.
209 */
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
211 {
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
214 u8 cmd;
215
216 int index, fua, lba48, write;
217
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
221
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
229 } else {
230 tf->protocol = ATA_PROT_DMA;
231 index = 16;
232 }
233
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
238 }
239 return -1;
240 }
241
242 /**
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
247 *
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
250 *
251 * LOCKING:
252 * None.
253 *
254 * RETURNS:
255 * Packed xfer_mask.
256 */
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
260 {
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
264 }
265
266 /**
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
272 *
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
275 */
276 static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
280 {
281 if (pio_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
283 if (mwdma_mask)
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
285 if (udma_mask)
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287 }
288
289 static const struct ata_xfer_ent {
290 int shift, bits;
291 u8 base;
292 } ata_xfer_tbl[] = {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
296 { -1, },
297 };
298
299 /**
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
302 *
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
305 *
306 * LOCKING:
307 * None.
308 *
309 * RETURNS:
310 * Matching XFER_* value, 0 if no match found.
311 */
312 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
313 {
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
316
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
320 return 0;
321 }
322
323 /**
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
326 *
327 * Return matching xfer_mask for @xfer_mode.
328 *
329 * LOCKING:
330 * None.
331 *
332 * RETURNS:
333 * Matching xfer_mask, 0 if no match found.
334 */
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
336 {
337 const struct ata_xfer_ent *ent;
338
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
342 return 0;
343 }
344
345 /**
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
348 *
349 * Return matching xfer_shift for @xfer_mode.
350 *
351 * LOCKING:
352 * None.
353 *
354 * RETURNS:
355 * Matching xfer_shift, -1 if no match found.
356 */
357 static int ata_xfer_mode2shift(unsigned int xfer_mode)
358 {
359 const struct ata_xfer_ent *ent;
360
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
363 return ent->shift;
364 return -1;
365 }
366
367 /**
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
370 *
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
373 *
374 * LOCKING:
375 * None.
376 *
377 * RETURNS:
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
380 */
381 static const char *ata_mode_string(unsigned int xfer_mask)
382 {
383 static const char * const xfer_mode_str[] = {
384 "PIO0",
385 "PIO1",
386 "PIO2",
387 "PIO3",
388 "PIO4",
389 "PIO5",
390 "PIO6",
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
394 "MWDMA3",
395 "MWDMA4",
396 "UDMA/16",
397 "UDMA/25",
398 "UDMA/33",
399 "UDMA/44",
400 "UDMA/66",
401 "UDMA/100",
402 "UDMA/133",
403 "UDMA7",
404 };
405 int highbit;
406
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
410 return "<n/a>";
411 }
412
413 static const char *sata_spd_string(unsigned int spd)
414 {
415 static const char * const spd_str[] = {
416 "1.5 Gbps",
417 "3.0 Gbps",
418 };
419
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
421 return "<unknown>";
422 return spd_str[spd - 1];
423 }
424
425 void ata_dev_disable(struct ata_device *dev)
426 {
427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
429 dev->class++;
430 }
431 }
432
433 /**
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
437 *
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
441 *
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
446 *
447 * LOCKING:
448 * caller.
449 */
450
451 static unsigned int ata_pio_devchk(struct ata_port *ap,
452 unsigned int device)
453 {
454 struct ata_ioports *ioaddr = &ap->ioaddr;
455 u8 nsect, lbal;
456
457 ap->ops->dev_select(ap, device);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
464
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
467
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
470
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
473
474 return 0; /* nothing found */
475 }
476
477 /**
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
481 *
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
485 *
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
490 *
491 * LOCKING:
492 * caller.
493 */
494
495 static unsigned int ata_mmio_devchk(struct ata_port *ap,
496 unsigned int device)
497 {
498 struct ata_ioports *ioaddr = &ap->ioaddr;
499 u8 nsect, lbal;
500
501 ap->ops->dev_select(ap, device);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
508
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
511
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
514
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
517
518 return 0; /* nothing found */
519 }
520
521 /**
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
525 *
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
529 *
530 * LOCKING:
531 * caller.
532 */
533
534 static unsigned int ata_devchk(struct ata_port *ap,
535 unsigned int device)
536 {
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
540 }
541
542 /**
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
545 *
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
556 */
557
558 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
559 {
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
563 */
564
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
568 return ATA_DEV_ATA;
569 }
570
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
575 }
576
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
579 }
580
581 /**
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
586 *
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
590 * and diagnostics.
591 *
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
595 *
596 * LOCKING:
597 * caller.
598 *
599 * RETURNS:
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
601 */
602
603 static unsigned int
604 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
605 {
606 struct ata_taskfile tf;
607 unsigned int class;
608 u8 err;
609
610 ap->ops->dev_select(ap, device);
611
612 memset(&tf, 0, sizeof(tf));
613
614 ap->ops->tf_read(ap, &tf);
615 err = tf.feature;
616 if (r_err)
617 *r_err = err;
618
619 /* see if device passed diags */
620 if (err == 1)
621 /* do nothing */ ;
622 else if ((device == 0) && (err == 0x81))
623 /* do nothing */ ;
624 else
625 return ATA_DEV_NONE;
626
627 /* determine if device is ATA or ATAPI */
628 class = ata_dev_classify(&tf);
629
630 if (class == ATA_DEV_UNKNOWN)
631 return ATA_DEV_NONE;
632 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
633 return ATA_DEV_NONE;
634 return class;
635 }
636
637 /**
638 * ata_id_string - Convert IDENTIFY DEVICE page into string
639 * @id: IDENTIFY DEVICE results we will examine
640 * @s: string into which data is output
641 * @ofs: offset into identify device page
642 * @len: length of string to return. must be an even number.
643 *
644 * The strings in the IDENTIFY DEVICE page are broken up into
645 * 16-bit chunks. Run through the string, and output each
646 * 8-bit chunk linearly, regardless of platform.
647 *
648 * LOCKING:
649 * caller.
650 */
651
652 void ata_id_string(const u16 *id, unsigned char *s,
653 unsigned int ofs, unsigned int len)
654 {
655 unsigned int c;
656
657 while (len > 0) {
658 c = id[ofs] >> 8;
659 *s = c;
660 s++;
661
662 c = id[ofs] & 0xff;
663 *s = c;
664 s++;
665
666 ofs++;
667 len -= 2;
668 }
669 }
670
671 /**
672 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
673 * @id: IDENTIFY DEVICE results we will examine
674 * @s: string into which data is output
675 * @ofs: offset into identify device page
676 * @len: length of string to return. must be an odd number.
677 *
678 * This function is identical to ata_id_string except that it
679 * trims trailing spaces and terminates the resulting string with
680 * null. @len must be actual maximum length (even number) + 1.
681 *
682 * LOCKING:
683 * caller.
684 */
685 void ata_id_c_string(const u16 *id, unsigned char *s,
686 unsigned int ofs, unsigned int len)
687 {
688 unsigned char *p;
689
690 WARN_ON(!(len & 1));
691
692 ata_id_string(id, s, ofs, len - 1);
693
694 p = s + strnlen(s, len - 1);
695 while (p > s && p[-1] == ' ')
696 p--;
697 *p = '\0';
698 }
699
700 static u64 ata_id_n_sectors(const u16 *id)
701 {
702 if (ata_id_has_lba(id)) {
703 if (ata_id_has_lba48(id))
704 return ata_id_u64(id, 100);
705 else
706 return ata_id_u32(id, 60);
707 } else {
708 if (ata_id_current_chs_valid(id))
709 return ata_id_u32(id, 57);
710 else
711 return id[1] * id[3] * id[6];
712 }
713 }
714
715 /**
716 * ata_noop_dev_select - Select device 0/1 on ATA bus
717 * @ap: ATA channel to manipulate
718 * @device: ATA device (numbered from zero) to select
719 *
720 * This function performs no actual function.
721 *
722 * May be used as the dev_select() entry in ata_port_operations.
723 *
724 * LOCKING:
725 * caller.
726 */
727 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
728 {
729 }
730
731
732 /**
733 * ata_std_dev_select - Select device 0/1 on ATA bus
734 * @ap: ATA channel to manipulate
735 * @device: ATA device (numbered from zero) to select
736 *
737 * Use the method defined in the ATA specification to
738 * make either device 0, or device 1, active on the
739 * ATA channel. Works with both PIO and MMIO.
740 *
741 * May be used as the dev_select() entry in ata_port_operations.
742 *
743 * LOCKING:
744 * caller.
745 */
746
747 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
748 {
749 u8 tmp;
750
751 if (device == 0)
752 tmp = ATA_DEVICE_OBS;
753 else
754 tmp = ATA_DEVICE_OBS | ATA_DEV1;
755
756 if (ap->flags & ATA_FLAG_MMIO) {
757 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
758 } else {
759 outb(tmp, ap->ioaddr.device_addr);
760 }
761 ata_pause(ap); /* needed; also flushes, for mmio */
762 }
763
764 /**
765 * ata_dev_select - Select device 0/1 on ATA bus
766 * @ap: ATA channel to manipulate
767 * @device: ATA device (numbered from zero) to select
768 * @wait: non-zero to wait for Status register BSY bit to clear
769 * @can_sleep: non-zero if context allows sleeping
770 *
771 * Use the method defined in the ATA specification to
772 * make either device 0, or device 1, active on the
773 * ATA channel.
774 *
775 * This is a high-level version of ata_std_dev_select(),
776 * which additionally provides the services of inserting
777 * the proper pauses and status polling, where needed.
778 *
779 * LOCKING:
780 * caller.
781 */
782
783 void ata_dev_select(struct ata_port *ap, unsigned int device,
784 unsigned int wait, unsigned int can_sleep)
785 {
786 if (ata_msg_probe(ap))
787 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
788 "device %u, wait %u\n", ap->id, device, wait);
789
790 if (wait)
791 ata_wait_idle(ap);
792
793 ap->ops->dev_select(ap, device);
794
795 if (wait) {
796 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
797 msleep(150);
798 ata_wait_idle(ap);
799 }
800 }
801
802 /**
803 * ata_dump_id - IDENTIFY DEVICE info debugging output
804 * @id: IDENTIFY DEVICE page to dump
805 *
806 * Dump selected 16-bit words from the given IDENTIFY DEVICE
807 * page.
808 *
809 * LOCKING:
810 * caller.
811 */
812
813 static inline void ata_dump_id(const u16 *id)
814 {
815 DPRINTK("49==0x%04x "
816 "53==0x%04x "
817 "63==0x%04x "
818 "64==0x%04x "
819 "75==0x%04x \n",
820 id[49],
821 id[53],
822 id[63],
823 id[64],
824 id[75]);
825 DPRINTK("80==0x%04x "
826 "81==0x%04x "
827 "82==0x%04x "
828 "83==0x%04x "
829 "84==0x%04x \n",
830 id[80],
831 id[81],
832 id[82],
833 id[83],
834 id[84]);
835 DPRINTK("88==0x%04x "
836 "93==0x%04x\n",
837 id[88],
838 id[93]);
839 }
840
841 /**
842 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
843 * @id: IDENTIFY data to compute xfer mask from
844 *
845 * Compute the xfermask for this device. This is not as trivial
846 * as it seems if we must consider early devices correctly.
847 *
848 * FIXME: pre IDE drive timing (do we care ?).
849 *
850 * LOCKING:
851 * None.
852 *
853 * RETURNS:
854 * Computed xfermask
855 */
856 static unsigned int ata_id_xfermask(const u16 *id)
857 {
858 unsigned int pio_mask, mwdma_mask, udma_mask;
859
860 /* Usual case. Word 53 indicates word 64 is valid */
861 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
862 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
863 pio_mask <<= 3;
864 pio_mask |= 0x7;
865 } else {
866 /* If word 64 isn't valid then Word 51 high byte holds
867 * the PIO timing number for the maximum. Turn it into
868 * a mask.
869 */
870 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
871
872 /* But wait.. there's more. Design your standards by
873 * committee and you too can get a free iordy field to
874 * process. However its the speeds not the modes that
875 * are supported... Note drivers using the timing API
876 * will get this right anyway
877 */
878 }
879
880 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
881
882 if (ata_id_is_cfa(id)) {
883 /*
884 * Process compact flash extended modes
885 */
886 int pio = id[163] & 0x7;
887 int dma = (id[163] >> 3) & 7;
888
889 if (pio)
890 pio_mask |= (1 << 5);
891 if (pio > 1)
892 pio_mask |= (1 << 6);
893 if (dma)
894 mwdma_mask |= (1 << 3);
895 if (dma > 1)
896 mwdma_mask |= (1 << 4);
897 }
898
899 udma_mask = 0;
900 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
901 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
902
903 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
904 }
905
906 /**
907 * ata_port_queue_task - Queue port_task
908 * @ap: The ata_port to queue port_task for
909 * @fn: workqueue function to be scheduled
910 * @data: data value to pass to workqueue function
911 * @delay: delay time for workqueue function
912 *
913 * Schedule @fn(@data) for execution after @delay jiffies using
914 * port_task. There is one port_task per port and it's the
915 * user(low level driver)'s responsibility to make sure that only
916 * one task is active at any given time.
917 *
918 * libata core layer takes care of synchronization between
919 * port_task and EH. ata_port_queue_task() may be ignored for EH
920 * synchronization.
921 *
922 * LOCKING:
923 * Inherited from caller.
924 */
925 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
926 unsigned long delay)
927 {
928 int rc;
929
930 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
931 return;
932
933 PREPARE_WORK(&ap->port_task, fn, data);
934
935 if (!delay)
936 rc = queue_work(ata_wq, &ap->port_task);
937 else
938 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
939
940 /* rc == 0 means that another user is using port task */
941 WARN_ON(rc == 0);
942 }
943
944 /**
945 * ata_port_flush_task - Flush port_task
946 * @ap: The ata_port to flush port_task for
947 *
948 * After this function completes, port_task is guranteed not to
949 * be running or scheduled.
950 *
951 * LOCKING:
952 * Kernel thread context (may sleep)
953 */
954 void ata_port_flush_task(struct ata_port *ap)
955 {
956 unsigned long flags;
957
958 DPRINTK("ENTER\n");
959
960 spin_lock_irqsave(ap->lock, flags);
961 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
962 spin_unlock_irqrestore(ap->lock, flags);
963
964 DPRINTK("flush #1\n");
965 flush_workqueue(ata_wq);
966
967 /*
968 * At this point, if a task is running, it's guaranteed to see
969 * the FLUSH flag; thus, it will never queue pio tasks again.
970 * Cancel and flush.
971 */
972 if (!cancel_delayed_work(&ap->port_task)) {
973 if (ata_msg_ctl(ap))
974 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
975 __FUNCTION__);
976 flush_workqueue(ata_wq);
977 }
978
979 spin_lock_irqsave(ap->lock, flags);
980 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
981 spin_unlock_irqrestore(ap->lock, flags);
982
983 if (ata_msg_ctl(ap))
984 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
985 }
986
987 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
988 {
989 struct completion *waiting = qc->private_data;
990
991 complete(waiting);
992 }
993
994 /**
995 * ata_exec_internal - execute libata internal command
996 * @dev: Device to which the command is sent
997 * @tf: Taskfile registers for the command and the result
998 * @cdb: CDB for packet command
999 * @dma_dir: Data tranfer direction of the command
1000 * @buf: Data buffer of the command
1001 * @buflen: Length of data buffer
1002 *
1003 * Executes libata internal command with timeout. @tf contains
1004 * command on entry and result on return. Timeout and error
1005 * conditions are reported via return value. No recovery action
1006 * is taken after a command times out. It's caller's duty to
1007 * clean up after timeout.
1008 *
1009 * LOCKING:
1010 * None. Should be called with kernel context, might sleep.
1011 *
1012 * RETURNS:
1013 * Zero on success, AC_ERR_* mask on failure
1014 */
1015 unsigned ata_exec_internal(struct ata_device *dev,
1016 struct ata_taskfile *tf, const u8 *cdb,
1017 int dma_dir, void *buf, unsigned int buflen)
1018 {
1019 struct ata_port *ap = dev->ap;
1020 u8 command = tf->command;
1021 struct ata_queued_cmd *qc;
1022 unsigned int tag, preempted_tag;
1023 u32 preempted_sactive, preempted_qc_active;
1024 DECLARE_COMPLETION_ONSTACK(wait);
1025 unsigned long flags;
1026 unsigned int err_mask;
1027 int rc;
1028
1029 spin_lock_irqsave(ap->lock, flags);
1030
1031 /* no internal command while frozen */
1032 if (ap->pflags & ATA_PFLAG_FROZEN) {
1033 spin_unlock_irqrestore(ap->lock, flags);
1034 return AC_ERR_SYSTEM;
1035 }
1036
1037 /* initialize internal qc */
1038
1039 /* XXX: Tag 0 is used for drivers with legacy EH as some
1040 * drivers choke if any other tag is given. This breaks
1041 * ata_tag_internal() test for those drivers. Don't use new
1042 * EH stuff without converting to it.
1043 */
1044 if (ap->ops->error_handler)
1045 tag = ATA_TAG_INTERNAL;
1046 else
1047 tag = 0;
1048
1049 if (test_and_set_bit(tag, &ap->qc_allocated))
1050 BUG();
1051 qc = __ata_qc_from_tag(ap, tag);
1052
1053 qc->tag = tag;
1054 qc->scsicmd = NULL;
1055 qc->ap = ap;
1056 qc->dev = dev;
1057 ata_qc_reinit(qc);
1058
1059 preempted_tag = ap->active_tag;
1060 preempted_sactive = ap->sactive;
1061 preempted_qc_active = ap->qc_active;
1062 ap->active_tag = ATA_TAG_POISON;
1063 ap->sactive = 0;
1064 ap->qc_active = 0;
1065
1066 /* prepare & issue qc */
1067 qc->tf = *tf;
1068 if (cdb)
1069 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1070 qc->flags |= ATA_QCFLAG_RESULT_TF;
1071 qc->dma_dir = dma_dir;
1072 if (dma_dir != DMA_NONE) {
1073 ata_sg_init_one(qc, buf, buflen);
1074 qc->nsect = buflen / ATA_SECT_SIZE;
1075 }
1076
1077 qc->private_data = &wait;
1078 qc->complete_fn = ata_qc_complete_internal;
1079
1080 ata_qc_issue(qc);
1081
1082 spin_unlock_irqrestore(ap->lock, flags);
1083
1084 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1085
1086 ata_port_flush_task(ap);
1087
1088 if (!rc) {
1089 spin_lock_irqsave(ap->lock, flags);
1090
1091 /* We're racing with irq here. If we lose, the
1092 * following test prevents us from completing the qc
1093 * twice. If we win, the port is frozen and will be
1094 * cleaned up by ->post_internal_cmd().
1095 */
1096 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1097 qc->err_mask |= AC_ERR_TIMEOUT;
1098
1099 if (ap->ops->error_handler)
1100 ata_port_freeze(ap);
1101 else
1102 ata_qc_complete(qc);
1103
1104 if (ata_msg_warn(ap))
1105 ata_dev_printk(dev, KERN_WARNING,
1106 "qc timeout (cmd 0x%x)\n", command);
1107 }
1108
1109 spin_unlock_irqrestore(ap->lock, flags);
1110 }
1111
1112 /* do post_internal_cmd */
1113 if (ap->ops->post_internal_cmd)
1114 ap->ops->post_internal_cmd(qc);
1115
1116 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1117 if (ata_msg_warn(ap))
1118 ata_dev_printk(dev, KERN_WARNING,
1119 "zero err_mask for failed "
1120 "internal command, assuming AC_ERR_OTHER\n");
1121 qc->err_mask |= AC_ERR_OTHER;
1122 }
1123
1124 /* finish up */
1125 spin_lock_irqsave(ap->lock, flags);
1126
1127 *tf = qc->result_tf;
1128 err_mask = qc->err_mask;
1129
1130 ata_qc_free(qc);
1131 ap->active_tag = preempted_tag;
1132 ap->sactive = preempted_sactive;
1133 ap->qc_active = preempted_qc_active;
1134
1135 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1136 * Until those drivers are fixed, we detect the condition
1137 * here, fail the command with AC_ERR_SYSTEM and reenable the
1138 * port.
1139 *
1140 * Note that this doesn't change any behavior as internal
1141 * command failure results in disabling the device in the
1142 * higher layer for LLDDs without new reset/EH callbacks.
1143 *
1144 * Kill the following code as soon as those drivers are fixed.
1145 */
1146 if (ap->flags & ATA_FLAG_DISABLED) {
1147 err_mask |= AC_ERR_SYSTEM;
1148 ata_port_probe(ap);
1149 }
1150
1151 spin_unlock_irqrestore(ap->lock, flags);
1152
1153 return err_mask;
1154 }
1155
1156 /**
1157 * ata_do_simple_cmd - execute simple internal command
1158 * @dev: Device to which the command is sent
1159 * @cmd: Opcode to execute
1160 *
1161 * Execute a 'simple' command, that only consists of the opcode
1162 * 'cmd' itself, without filling any other registers
1163 *
1164 * LOCKING:
1165 * Kernel thread context (may sleep).
1166 *
1167 * RETURNS:
1168 * Zero on success, AC_ERR_* mask on failure
1169 */
1170 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1171 {
1172 struct ata_taskfile tf;
1173
1174 ata_tf_init(dev, &tf);
1175
1176 tf.command = cmd;
1177 tf.flags |= ATA_TFLAG_DEVICE;
1178 tf.protocol = ATA_PROT_NODATA;
1179
1180 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1181 }
1182
1183 /**
1184 * ata_pio_need_iordy - check if iordy needed
1185 * @adev: ATA device
1186 *
1187 * Check if the current speed of the device requires IORDY. Used
1188 * by various controllers for chip configuration.
1189 */
1190
1191 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1192 {
1193 int pio;
1194 int speed = adev->pio_mode - XFER_PIO_0;
1195
1196 if (speed < 2)
1197 return 0;
1198 if (speed > 2)
1199 return 1;
1200
1201 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1202
1203 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1204 pio = adev->id[ATA_ID_EIDE_PIO];
1205 /* Is the speed faster than the drive allows non IORDY ? */
1206 if (pio) {
1207 /* This is cycle times not frequency - watch the logic! */
1208 if (pio > 240) /* PIO2 is 240nS per cycle */
1209 return 1;
1210 return 0;
1211 }
1212 }
1213 return 0;
1214 }
1215
1216 /**
1217 * ata_dev_read_id - Read ID data from the specified device
1218 * @dev: target device
1219 * @p_class: pointer to class of the target device (may be changed)
1220 * @post_reset: is this read ID post-reset?
1221 * @id: buffer to read IDENTIFY data into
1222 *
1223 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1224 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1225 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1226 * for pre-ATA4 drives.
1227 *
1228 * LOCKING:
1229 * Kernel thread context (may sleep)
1230 *
1231 * RETURNS:
1232 * 0 on success, -errno otherwise.
1233 */
1234 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1235 int post_reset, u16 *id)
1236 {
1237 struct ata_port *ap = dev->ap;
1238 unsigned int class = *p_class;
1239 struct ata_taskfile tf;
1240 unsigned int err_mask = 0;
1241 const char *reason;
1242 int rc;
1243
1244 if (ata_msg_ctl(ap))
1245 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1246 __FUNCTION__, ap->id, dev->devno);
1247
1248 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1249
1250 retry:
1251 ata_tf_init(dev, &tf);
1252
1253 switch (class) {
1254 case ATA_DEV_ATA:
1255 tf.command = ATA_CMD_ID_ATA;
1256 break;
1257 case ATA_DEV_ATAPI:
1258 tf.command = ATA_CMD_ID_ATAPI;
1259 break;
1260 default:
1261 rc = -ENODEV;
1262 reason = "unsupported class";
1263 goto err_out;
1264 }
1265
1266 tf.protocol = ATA_PROT_PIO;
1267
1268 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1269 id, sizeof(id[0]) * ATA_ID_WORDS);
1270 if (err_mask) {
1271 rc = -EIO;
1272 reason = "I/O error";
1273 goto err_out;
1274 }
1275
1276 swap_buf_le16(id, ATA_ID_WORDS);
1277
1278 /* sanity check */
1279 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1280 rc = -EINVAL;
1281 reason = "device reports illegal type";
1282 goto err_out;
1283 }
1284
1285 if (post_reset && class == ATA_DEV_ATA) {
1286 /*
1287 * The exact sequence expected by certain pre-ATA4 drives is:
1288 * SRST RESET
1289 * IDENTIFY
1290 * INITIALIZE DEVICE PARAMETERS
1291 * anything else..
1292 * Some drives were very specific about that exact sequence.
1293 */
1294 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1295 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1296 if (err_mask) {
1297 rc = -EIO;
1298 reason = "INIT_DEV_PARAMS failed";
1299 goto err_out;
1300 }
1301
1302 /* current CHS translation info (id[53-58]) might be
1303 * changed. reread the identify device info.
1304 */
1305 post_reset = 0;
1306 goto retry;
1307 }
1308 }
1309
1310 *p_class = class;
1311
1312 return 0;
1313
1314 err_out:
1315 if (ata_msg_warn(ap))
1316 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1317 "(%s, err_mask=0x%x)\n", reason, err_mask);
1318 return rc;
1319 }
1320
1321 static inline u8 ata_dev_knobble(struct ata_device *dev)
1322 {
1323 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1324 }
1325
1326 static void ata_dev_config_ncq(struct ata_device *dev,
1327 char *desc, size_t desc_sz)
1328 {
1329 struct ata_port *ap = dev->ap;
1330 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1331
1332 if (!ata_id_has_ncq(dev->id)) {
1333 desc[0] = '\0';
1334 return;
1335 }
1336
1337 if (ap->flags & ATA_FLAG_NCQ) {
1338 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1339 dev->flags |= ATA_DFLAG_NCQ;
1340 }
1341
1342 if (hdepth >= ddepth)
1343 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1344 else
1345 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1346 }
1347
1348 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1349 {
1350 int i;
1351
1352 if (ap->scsi_host) {
1353 unsigned int len = 0;
1354
1355 for (i = 0; i < ATA_MAX_DEVICES; i++)
1356 len = max(len, ap->device[i].cdb_len);
1357
1358 ap->scsi_host->max_cmd_len = len;
1359 }
1360 }
1361
1362 /**
1363 * ata_dev_configure - Configure the specified ATA/ATAPI device
1364 * @dev: Target device to configure
1365 * @print_info: Enable device info printout
1366 *
1367 * Configure @dev according to @dev->id. Generic and low-level
1368 * driver specific fixups are also applied.
1369 *
1370 * LOCKING:
1371 * Kernel thread context (may sleep)
1372 *
1373 * RETURNS:
1374 * 0 on success, -errno otherwise
1375 */
1376 int ata_dev_configure(struct ata_device *dev, int print_info)
1377 {
1378 struct ata_port *ap = dev->ap;
1379 const u16 *id = dev->id;
1380 unsigned int xfer_mask;
1381 char revbuf[7]; /* XYZ-99\0 */
1382 int rc;
1383
1384 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1385 ata_dev_printk(dev, KERN_INFO,
1386 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1387 __FUNCTION__, ap->id, dev->devno);
1388 return 0;
1389 }
1390
1391 if (ata_msg_probe(ap))
1392 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1393 __FUNCTION__, ap->id, dev->devno);
1394
1395 /* print device capabilities */
1396 if (ata_msg_probe(ap))
1397 ata_dev_printk(dev, KERN_DEBUG,
1398 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1399 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1400 __FUNCTION__,
1401 id[49], id[82], id[83], id[84],
1402 id[85], id[86], id[87], id[88]);
1403
1404 /* initialize to-be-configured parameters */
1405 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1406 dev->max_sectors = 0;
1407 dev->cdb_len = 0;
1408 dev->n_sectors = 0;
1409 dev->cylinders = 0;
1410 dev->heads = 0;
1411 dev->sectors = 0;
1412
1413 /*
1414 * common ATA, ATAPI feature tests
1415 */
1416
1417 /* find max transfer mode; for printk only */
1418 xfer_mask = ata_id_xfermask(id);
1419
1420 if (ata_msg_probe(ap))
1421 ata_dump_id(id);
1422
1423 /* ATA-specific feature tests */
1424 if (dev->class == ATA_DEV_ATA) {
1425 if (ata_id_is_cfa(id)) {
1426 if (id[162] & 1) /* CPRM may make this media unusable */
1427 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1428 ap->id, dev->devno);
1429 snprintf(revbuf, 7, "CFA");
1430 }
1431 else
1432 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1433
1434 dev->n_sectors = ata_id_n_sectors(id);
1435
1436 if (ata_id_has_lba(id)) {
1437 const char *lba_desc;
1438 char ncq_desc[20];
1439
1440 lba_desc = "LBA";
1441 dev->flags |= ATA_DFLAG_LBA;
1442 if (ata_id_has_lba48(id)) {
1443 dev->flags |= ATA_DFLAG_LBA48;
1444 lba_desc = "LBA48";
1445 }
1446
1447 /* config NCQ */
1448 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1449
1450 /* print device info to dmesg */
1451 if (ata_msg_drv(ap) && print_info)
1452 ata_dev_printk(dev, KERN_INFO, "%s, "
1453 "max %s, %Lu sectors: %s %s\n",
1454 revbuf,
1455 ata_mode_string(xfer_mask),
1456 (unsigned long long)dev->n_sectors,
1457 lba_desc, ncq_desc);
1458 } else {
1459 /* CHS */
1460
1461 /* Default translation */
1462 dev->cylinders = id[1];
1463 dev->heads = id[3];
1464 dev->sectors = id[6];
1465
1466 if (ata_id_current_chs_valid(id)) {
1467 /* Current CHS translation is valid. */
1468 dev->cylinders = id[54];
1469 dev->heads = id[55];
1470 dev->sectors = id[56];
1471 }
1472
1473 /* print device info to dmesg */
1474 if (ata_msg_drv(ap) && print_info)
1475 ata_dev_printk(dev, KERN_INFO, "%s, "
1476 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1477 revbuf,
1478 ata_mode_string(xfer_mask),
1479 (unsigned long long)dev->n_sectors,
1480 dev->cylinders, dev->heads,
1481 dev->sectors);
1482 }
1483
1484 if (dev->id[59] & 0x100) {
1485 dev->multi_count = dev->id[59] & 0xff;
1486 if (ata_msg_drv(ap) && print_info)
1487 ata_dev_printk(dev, KERN_INFO,
1488 "ata%u: dev %u multi count %u\n",
1489 ap->id, dev->devno, dev->multi_count);
1490 }
1491
1492 dev->cdb_len = 16;
1493 }
1494
1495 /* ATAPI-specific feature tests */
1496 else if (dev->class == ATA_DEV_ATAPI) {
1497 char *cdb_intr_string = "";
1498
1499 rc = atapi_cdb_len(id);
1500 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1501 if (ata_msg_warn(ap))
1502 ata_dev_printk(dev, KERN_WARNING,
1503 "unsupported CDB len\n");
1504 rc = -EINVAL;
1505 goto err_out_nosup;
1506 }
1507 dev->cdb_len = (unsigned int) rc;
1508
1509 if (ata_id_cdb_intr(dev->id)) {
1510 dev->flags |= ATA_DFLAG_CDB_INTR;
1511 cdb_intr_string = ", CDB intr";
1512 }
1513
1514 /* print device info to dmesg */
1515 if (ata_msg_drv(ap) && print_info)
1516 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1517 ata_mode_string(xfer_mask),
1518 cdb_intr_string);
1519 }
1520
1521 ata_set_port_max_cmd_len(ap);
1522
1523 /* limit bridge transfers to udma5, 200 sectors */
1524 if (ata_dev_knobble(dev)) {
1525 if (ata_msg_drv(ap) && print_info)
1526 ata_dev_printk(dev, KERN_INFO,
1527 "applying bridge limits\n");
1528 dev->udma_mask &= ATA_UDMA5;
1529 dev->max_sectors = ATA_MAX_SECTORS;
1530 }
1531
1532 if (ap->ops->dev_config)
1533 ap->ops->dev_config(ap, dev);
1534
1535 if (ata_msg_probe(ap))
1536 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1537 __FUNCTION__, ata_chk_status(ap));
1538 return 0;
1539
1540 err_out_nosup:
1541 if (ata_msg_probe(ap))
1542 ata_dev_printk(dev, KERN_DEBUG,
1543 "%s: EXIT, err\n", __FUNCTION__);
1544 return rc;
1545 }
1546
1547 /**
1548 * ata_bus_probe - Reset and probe ATA bus
1549 * @ap: Bus to probe
1550 *
1551 * Master ATA bus probing function. Initiates a hardware-dependent
1552 * bus reset, then attempts to identify any devices found on
1553 * the bus.
1554 *
1555 * LOCKING:
1556 * PCI/etc. bus probe sem.
1557 *
1558 * RETURNS:
1559 * Zero on success, negative errno otherwise.
1560 */
1561
1562 int ata_bus_probe(struct ata_port *ap)
1563 {
1564 unsigned int classes[ATA_MAX_DEVICES];
1565 int tries[ATA_MAX_DEVICES];
1566 int i, rc, down_xfermask;
1567 struct ata_device *dev;
1568
1569 ata_port_probe(ap);
1570
1571 for (i = 0; i < ATA_MAX_DEVICES; i++)
1572 tries[i] = ATA_PROBE_MAX_TRIES;
1573
1574 retry:
1575 down_xfermask = 0;
1576
1577 /* reset and determine device classes */
1578 ap->ops->phy_reset(ap);
1579
1580 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1581 dev = &ap->device[i];
1582
1583 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1584 dev->class != ATA_DEV_UNKNOWN)
1585 classes[dev->devno] = dev->class;
1586 else
1587 classes[dev->devno] = ATA_DEV_NONE;
1588
1589 dev->class = ATA_DEV_UNKNOWN;
1590 }
1591
1592 ata_port_probe(ap);
1593
1594 /* after the reset the device state is PIO 0 and the controller
1595 state is undefined. Record the mode */
1596
1597 for (i = 0; i < ATA_MAX_DEVICES; i++)
1598 ap->device[i].pio_mode = XFER_PIO_0;
1599
1600 /* read IDENTIFY page and configure devices */
1601 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1602 dev = &ap->device[i];
1603
1604 if (tries[i])
1605 dev->class = classes[i];
1606
1607 if (!ata_dev_enabled(dev))
1608 continue;
1609
1610 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1611 if (rc)
1612 goto fail;
1613
1614 rc = ata_dev_configure(dev, 1);
1615 if (rc)
1616 goto fail;
1617 }
1618
1619 /* configure transfer mode */
1620 rc = ata_set_mode(ap, &dev);
1621 if (rc) {
1622 down_xfermask = 1;
1623 goto fail;
1624 }
1625
1626 for (i = 0; i < ATA_MAX_DEVICES; i++)
1627 if (ata_dev_enabled(&ap->device[i]))
1628 return 0;
1629
1630 /* no device present, disable port */
1631 ata_port_disable(ap);
1632 ap->ops->port_disable(ap);
1633 return -ENODEV;
1634
1635 fail:
1636 switch (rc) {
1637 case -EINVAL:
1638 case -ENODEV:
1639 tries[dev->devno] = 0;
1640 break;
1641 case -EIO:
1642 sata_down_spd_limit(ap);
1643 /* fall through */
1644 default:
1645 tries[dev->devno]--;
1646 if (down_xfermask &&
1647 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1648 tries[dev->devno] = 0;
1649 }
1650
1651 if (!tries[dev->devno]) {
1652 ata_down_xfermask_limit(dev, 1);
1653 ata_dev_disable(dev);
1654 }
1655
1656 goto retry;
1657 }
1658
1659 /**
1660 * ata_port_probe - Mark port as enabled
1661 * @ap: Port for which we indicate enablement
1662 *
1663 * Modify @ap data structure such that the system
1664 * thinks that the entire port is enabled.
1665 *
1666 * LOCKING: host lock, or some other form of
1667 * serialization.
1668 */
1669
1670 void ata_port_probe(struct ata_port *ap)
1671 {
1672 ap->flags &= ~ATA_FLAG_DISABLED;
1673 }
1674
1675 /**
1676 * sata_print_link_status - Print SATA link status
1677 * @ap: SATA port to printk link status about
1678 *
1679 * This function prints link speed and status of a SATA link.
1680 *
1681 * LOCKING:
1682 * None.
1683 */
1684 static void sata_print_link_status(struct ata_port *ap)
1685 {
1686 u32 sstatus, scontrol, tmp;
1687
1688 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1689 return;
1690 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1691
1692 if (ata_port_online(ap)) {
1693 tmp = (sstatus >> 4) & 0xf;
1694 ata_port_printk(ap, KERN_INFO,
1695 "SATA link up %s (SStatus %X SControl %X)\n",
1696 sata_spd_string(tmp), sstatus, scontrol);
1697 } else {
1698 ata_port_printk(ap, KERN_INFO,
1699 "SATA link down (SStatus %X SControl %X)\n",
1700 sstatus, scontrol);
1701 }
1702 }
1703
1704 /**
1705 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1706 * @ap: SATA port associated with target SATA PHY.
1707 *
1708 * This function issues commands to standard SATA Sxxx
1709 * PHY registers, to wake up the phy (and device), and
1710 * clear any reset condition.
1711 *
1712 * LOCKING:
1713 * PCI/etc. bus probe sem.
1714 *
1715 */
1716 void __sata_phy_reset(struct ata_port *ap)
1717 {
1718 u32 sstatus;
1719 unsigned long timeout = jiffies + (HZ * 5);
1720
1721 if (ap->flags & ATA_FLAG_SATA_RESET) {
1722 /* issue phy wake/reset */
1723 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1724 /* Couldn't find anything in SATA I/II specs, but
1725 * AHCI-1.1 10.4.2 says at least 1 ms. */
1726 mdelay(1);
1727 }
1728 /* phy wake/clear reset */
1729 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1730
1731 /* wait for phy to become ready, if necessary */
1732 do {
1733 msleep(200);
1734 sata_scr_read(ap, SCR_STATUS, &sstatus);
1735 if ((sstatus & 0xf) != 1)
1736 break;
1737 } while (time_before(jiffies, timeout));
1738
1739 /* print link status */
1740 sata_print_link_status(ap);
1741
1742 /* TODO: phy layer with polling, timeouts, etc. */
1743 if (!ata_port_offline(ap))
1744 ata_port_probe(ap);
1745 else
1746 ata_port_disable(ap);
1747
1748 if (ap->flags & ATA_FLAG_DISABLED)
1749 return;
1750
1751 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1752 ata_port_disable(ap);
1753 return;
1754 }
1755
1756 ap->cbl = ATA_CBL_SATA;
1757 }
1758
1759 /**
1760 * sata_phy_reset - Reset SATA bus.
1761 * @ap: SATA port associated with target SATA PHY.
1762 *
1763 * This function resets the SATA bus, and then probes
1764 * the bus for devices.
1765 *
1766 * LOCKING:
1767 * PCI/etc. bus probe sem.
1768 *
1769 */
1770 void sata_phy_reset(struct ata_port *ap)
1771 {
1772 __sata_phy_reset(ap);
1773 if (ap->flags & ATA_FLAG_DISABLED)
1774 return;
1775 ata_bus_reset(ap);
1776 }
1777
1778 /**
1779 * ata_dev_pair - return other device on cable
1780 * @adev: device
1781 *
1782 * Obtain the other device on the same cable, or if none is
1783 * present NULL is returned
1784 */
1785
1786 struct ata_device *ata_dev_pair(struct ata_device *adev)
1787 {
1788 struct ata_port *ap = adev->ap;
1789 struct ata_device *pair = &ap->device[1 - adev->devno];
1790 if (!ata_dev_enabled(pair))
1791 return NULL;
1792 return pair;
1793 }
1794
1795 /**
1796 * ata_port_disable - Disable port.
1797 * @ap: Port to be disabled.
1798 *
1799 * Modify @ap data structure such that the system
1800 * thinks that the entire port is disabled, and should
1801 * never attempt to probe or communicate with devices
1802 * on this port.
1803 *
1804 * LOCKING: host lock, or some other form of
1805 * serialization.
1806 */
1807
1808 void ata_port_disable(struct ata_port *ap)
1809 {
1810 ap->device[0].class = ATA_DEV_NONE;
1811 ap->device[1].class = ATA_DEV_NONE;
1812 ap->flags |= ATA_FLAG_DISABLED;
1813 }
1814
1815 /**
1816 * sata_down_spd_limit - adjust SATA spd limit downward
1817 * @ap: Port to adjust SATA spd limit for
1818 *
1819 * Adjust SATA spd limit of @ap downward. Note that this
1820 * function only adjusts the limit. The change must be applied
1821 * using sata_set_spd().
1822 *
1823 * LOCKING:
1824 * Inherited from caller.
1825 *
1826 * RETURNS:
1827 * 0 on success, negative errno on failure
1828 */
1829 int sata_down_spd_limit(struct ata_port *ap)
1830 {
1831 u32 sstatus, spd, mask;
1832 int rc, highbit;
1833
1834 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1835 if (rc)
1836 return rc;
1837
1838 mask = ap->sata_spd_limit;
1839 if (mask <= 1)
1840 return -EINVAL;
1841 highbit = fls(mask) - 1;
1842 mask &= ~(1 << highbit);
1843
1844 spd = (sstatus >> 4) & 0xf;
1845 if (spd <= 1)
1846 return -EINVAL;
1847 spd--;
1848 mask &= (1 << spd) - 1;
1849 if (!mask)
1850 return -EINVAL;
1851
1852 ap->sata_spd_limit = mask;
1853
1854 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1855 sata_spd_string(fls(mask)));
1856
1857 return 0;
1858 }
1859
1860 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1861 {
1862 u32 spd, limit;
1863
1864 if (ap->sata_spd_limit == UINT_MAX)
1865 limit = 0;
1866 else
1867 limit = fls(ap->sata_spd_limit);
1868
1869 spd = (*scontrol >> 4) & 0xf;
1870 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1871
1872 return spd != limit;
1873 }
1874
1875 /**
1876 * sata_set_spd_needed - is SATA spd configuration needed
1877 * @ap: Port in question
1878 *
1879 * Test whether the spd limit in SControl matches
1880 * @ap->sata_spd_limit. This function is used to determine
1881 * whether hardreset is necessary to apply SATA spd
1882 * configuration.
1883 *
1884 * LOCKING:
1885 * Inherited from caller.
1886 *
1887 * RETURNS:
1888 * 1 if SATA spd configuration is needed, 0 otherwise.
1889 */
1890 int sata_set_spd_needed(struct ata_port *ap)
1891 {
1892 u32 scontrol;
1893
1894 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1895 return 0;
1896
1897 return __sata_set_spd_needed(ap, &scontrol);
1898 }
1899
1900 /**
1901 * sata_set_spd - set SATA spd according to spd limit
1902 * @ap: Port to set SATA spd for
1903 *
1904 * Set SATA spd of @ap according to sata_spd_limit.
1905 *
1906 * LOCKING:
1907 * Inherited from caller.
1908 *
1909 * RETURNS:
1910 * 0 if spd doesn't need to be changed, 1 if spd has been
1911 * changed. Negative errno if SCR registers are inaccessible.
1912 */
1913 int sata_set_spd(struct ata_port *ap)
1914 {
1915 u32 scontrol;
1916 int rc;
1917
1918 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1919 return rc;
1920
1921 if (!__sata_set_spd_needed(ap, &scontrol))
1922 return 0;
1923
1924 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1925 return rc;
1926
1927 return 1;
1928 }
1929
1930 /*
1931 * This mode timing computation functionality is ported over from
1932 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1933 */
1934 /*
1935 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1936 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1937 * for UDMA6, which is currently supported only by Maxtor drives.
1938 *
1939 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1940 */
1941
1942 static const struct ata_timing ata_timing[] = {
1943
1944 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1945 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1946 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1947 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1948
1949 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1950 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
1951 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1952 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1953 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1954
1955 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1956
1957 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1958 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1959 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1960
1961 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1962 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1963 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1964
1965 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1966 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
1967 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1968 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1969
1970 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1971 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1972 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1973
1974 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1975
1976 { 0xFF }
1977 };
1978
1979 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1980 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1981
1982 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1983 {
1984 q->setup = EZ(t->setup * 1000, T);
1985 q->act8b = EZ(t->act8b * 1000, T);
1986 q->rec8b = EZ(t->rec8b * 1000, T);
1987 q->cyc8b = EZ(t->cyc8b * 1000, T);
1988 q->active = EZ(t->active * 1000, T);
1989 q->recover = EZ(t->recover * 1000, T);
1990 q->cycle = EZ(t->cycle * 1000, T);
1991 q->udma = EZ(t->udma * 1000, UT);
1992 }
1993
1994 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1995 struct ata_timing *m, unsigned int what)
1996 {
1997 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1998 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1999 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2000 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2001 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2002 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2003 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2004 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2005 }
2006
2007 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2008 {
2009 const struct ata_timing *t;
2010
2011 for (t = ata_timing; t->mode != speed; t++)
2012 if (t->mode == 0xFF)
2013 return NULL;
2014 return t;
2015 }
2016
2017 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2018 struct ata_timing *t, int T, int UT)
2019 {
2020 const struct ata_timing *s;
2021 struct ata_timing p;
2022
2023 /*
2024 * Find the mode.
2025 */
2026
2027 if (!(s = ata_timing_find_mode(speed)))
2028 return -EINVAL;
2029
2030 memcpy(t, s, sizeof(*s));
2031
2032 /*
2033 * If the drive is an EIDE drive, it can tell us it needs extended
2034 * PIO/MW_DMA cycle timing.
2035 */
2036
2037 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2038 memset(&p, 0, sizeof(p));
2039 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2040 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2041 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2042 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2043 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2044 }
2045 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2046 }
2047
2048 /*
2049 * Convert the timing to bus clock counts.
2050 */
2051
2052 ata_timing_quantize(t, t, T, UT);
2053
2054 /*
2055 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2056 * S.M.A.R.T * and some other commands. We have to ensure that the
2057 * DMA cycle timing is slower/equal than the fastest PIO timing.
2058 */
2059
2060 if (speed > XFER_PIO_4) {
2061 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2062 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2063 }
2064
2065 /*
2066 * Lengthen active & recovery time so that cycle time is correct.
2067 */
2068
2069 if (t->act8b + t->rec8b < t->cyc8b) {
2070 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2071 t->rec8b = t->cyc8b - t->act8b;
2072 }
2073
2074 if (t->active + t->recover < t->cycle) {
2075 t->active += (t->cycle - (t->active + t->recover)) / 2;
2076 t->recover = t->cycle - t->active;
2077 }
2078
2079 return 0;
2080 }
2081
2082 /**
2083 * ata_down_xfermask_limit - adjust dev xfer masks downward
2084 * @dev: Device to adjust xfer masks
2085 * @force_pio0: Force PIO0
2086 *
2087 * Adjust xfer masks of @dev downward. Note that this function
2088 * does not apply the change. Invoking ata_set_mode() afterwards
2089 * will apply the limit.
2090 *
2091 * LOCKING:
2092 * Inherited from caller.
2093 *
2094 * RETURNS:
2095 * 0 on success, negative errno on failure
2096 */
2097 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2098 {
2099 unsigned long xfer_mask;
2100 int highbit;
2101
2102 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2103 dev->udma_mask);
2104
2105 if (!xfer_mask)
2106 goto fail;
2107 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2108 if (xfer_mask & ATA_MASK_UDMA)
2109 xfer_mask &= ~ATA_MASK_MWDMA;
2110
2111 highbit = fls(xfer_mask) - 1;
2112 xfer_mask &= ~(1 << highbit);
2113 if (force_pio0)
2114 xfer_mask &= 1 << ATA_SHIFT_PIO;
2115 if (!xfer_mask)
2116 goto fail;
2117
2118 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2119 &dev->udma_mask);
2120
2121 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2122 ata_mode_string(xfer_mask));
2123
2124 return 0;
2125
2126 fail:
2127 return -EINVAL;
2128 }
2129
2130 static int ata_dev_set_mode(struct ata_device *dev)
2131 {
2132 unsigned int err_mask;
2133 int rc;
2134
2135 dev->flags &= ~ATA_DFLAG_PIO;
2136 if (dev->xfer_shift == ATA_SHIFT_PIO)
2137 dev->flags |= ATA_DFLAG_PIO;
2138
2139 err_mask = ata_dev_set_xfermode(dev);
2140 if (err_mask) {
2141 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2142 "(err_mask=0x%x)\n", err_mask);
2143 return -EIO;
2144 }
2145
2146 rc = ata_dev_revalidate(dev, 0);
2147 if (rc)
2148 return rc;
2149
2150 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2151 dev->xfer_shift, (int)dev->xfer_mode);
2152
2153 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2154 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2155 return 0;
2156 }
2157
2158 /**
2159 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2160 * @ap: port on which timings will be programmed
2161 * @r_failed_dev: out paramter for failed device
2162 *
2163 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2164 * ata_set_mode() fails, pointer to the failing device is
2165 * returned in @r_failed_dev.
2166 *
2167 * LOCKING:
2168 * PCI/etc. bus probe sem.
2169 *
2170 * RETURNS:
2171 * 0 on success, negative errno otherwise
2172 */
2173 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2174 {
2175 struct ata_device *dev;
2176 int i, rc = 0, used_dma = 0, found = 0;
2177
2178 /* has private set_mode? */
2179 if (ap->ops->set_mode) {
2180 /* FIXME: make ->set_mode handle no device case and
2181 * return error code and failing device on failure.
2182 */
2183 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2184 if (ata_dev_ready(&ap->device[i])) {
2185 ap->ops->set_mode(ap);
2186 break;
2187 }
2188 }
2189 return 0;
2190 }
2191
2192 /* step 1: calculate xfer_mask */
2193 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2194 unsigned int pio_mask, dma_mask;
2195
2196 dev = &ap->device[i];
2197
2198 if (!ata_dev_enabled(dev))
2199 continue;
2200
2201 ata_dev_xfermask(dev);
2202
2203 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2204 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2205 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2206 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2207
2208 found = 1;
2209 if (dev->dma_mode)
2210 used_dma = 1;
2211 }
2212 if (!found)
2213 goto out;
2214
2215 /* step 2: always set host PIO timings */
2216 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2217 dev = &ap->device[i];
2218 if (!ata_dev_enabled(dev))
2219 continue;
2220
2221 if (!dev->pio_mode) {
2222 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2223 rc = -EINVAL;
2224 goto out;
2225 }
2226
2227 dev->xfer_mode = dev->pio_mode;
2228 dev->xfer_shift = ATA_SHIFT_PIO;
2229 if (ap->ops->set_piomode)
2230 ap->ops->set_piomode(ap, dev);
2231 }
2232
2233 /* step 3: set host DMA timings */
2234 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2235 dev = &ap->device[i];
2236
2237 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2238 continue;
2239
2240 dev->xfer_mode = dev->dma_mode;
2241 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2242 if (ap->ops->set_dmamode)
2243 ap->ops->set_dmamode(ap, dev);
2244 }
2245
2246 /* step 4: update devices' xfer mode */
2247 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2248 dev = &ap->device[i];
2249
2250 /* don't udpate suspended devices' xfer mode */
2251 if (!ata_dev_ready(dev))
2252 continue;
2253
2254 rc = ata_dev_set_mode(dev);
2255 if (rc)
2256 goto out;
2257 }
2258
2259 /* Record simplex status. If we selected DMA then the other
2260 * host channels are not permitted to do so.
2261 */
2262 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2263 ap->host->simplex_claimed = 1;
2264
2265 /* step5: chip specific finalisation */
2266 if (ap->ops->post_set_mode)
2267 ap->ops->post_set_mode(ap);
2268
2269 out:
2270 if (rc)
2271 *r_failed_dev = dev;
2272 return rc;
2273 }
2274
2275 /**
2276 * ata_tf_to_host - issue ATA taskfile to host controller
2277 * @ap: port to which command is being issued
2278 * @tf: ATA taskfile register set
2279 *
2280 * Issues ATA taskfile register set to ATA host controller,
2281 * with proper synchronization with interrupt handler and
2282 * other threads.
2283 *
2284 * LOCKING:
2285 * spin_lock_irqsave(host lock)
2286 */
2287
2288 static inline void ata_tf_to_host(struct ata_port *ap,
2289 const struct ata_taskfile *tf)
2290 {
2291 ap->ops->tf_load(ap, tf);
2292 ap->ops->exec_command(ap, tf);
2293 }
2294
2295 /**
2296 * ata_busy_sleep - sleep until BSY clears, or timeout
2297 * @ap: port containing status register to be polled
2298 * @tmout_pat: impatience timeout
2299 * @tmout: overall timeout
2300 *
2301 * Sleep until ATA Status register bit BSY clears,
2302 * or a timeout occurs.
2303 *
2304 * LOCKING: None.
2305 */
2306
2307 unsigned int ata_busy_sleep (struct ata_port *ap,
2308 unsigned long tmout_pat, unsigned long tmout)
2309 {
2310 unsigned long timer_start, timeout;
2311 u8 status;
2312
2313 status = ata_busy_wait(ap, ATA_BUSY, 300);
2314 timer_start = jiffies;
2315 timeout = timer_start + tmout_pat;
2316 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2317 msleep(50);
2318 status = ata_busy_wait(ap, ATA_BUSY, 3);
2319 }
2320
2321 if (status & ATA_BUSY)
2322 ata_port_printk(ap, KERN_WARNING,
2323 "port is slow to respond, please be patient\n");
2324
2325 timeout = timer_start + tmout;
2326 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2327 msleep(50);
2328 status = ata_chk_status(ap);
2329 }
2330
2331 if (status & ATA_BUSY) {
2332 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2333 "(%lu secs)\n", tmout / HZ);
2334 return 1;
2335 }
2336
2337 return 0;
2338 }
2339
2340 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2341 {
2342 struct ata_ioports *ioaddr = &ap->ioaddr;
2343 unsigned int dev0 = devmask & (1 << 0);
2344 unsigned int dev1 = devmask & (1 << 1);
2345 unsigned long timeout;
2346
2347 /* if device 0 was found in ata_devchk, wait for its
2348 * BSY bit to clear
2349 */
2350 if (dev0)
2351 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2352
2353 /* if device 1 was found in ata_devchk, wait for
2354 * register access, then wait for BSY to clear
2355 */
2356 timeout = jiffies + ATA_TMOUT_BOOT;
2357 while (dev1) {
2358 u8 nsect, lbal;
2359
2360 ap->ops->dev_select(ap, 1);
2361 if (ap->flags & ATA_FLAG_MMIO) {
2362 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2363 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2364 } else {
2365 nsect = inb(ioaddr->nsect_addr);
2366 lbal = inb(ioaddr->lbal_addr);
2367 }
2368 if ((nsect == 1) && (lbal == 1))
2369 break;
2370 if (time_after(jiffies, timeout)) {
2371 dev1 = 0;
2372 break;
2373 }
2374 msleep(50); /* give drive a breather */
2375 }
2376 if (dev1)
2377 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2378
2379 /* is all this really necessary? */
2380 ap->ops->dev_select(ap, 0);
2381 if (dev1)
2382 ap->ops->dev_select(ap, 1);
2383 if (dev0)
2384 ap->ops->dev_select(ap, 0);
2385 }
2386
2387 static unsigned int ata_bus_softreset(struct ata_port *ap,
2388 unsigned int devmask)
2389 {
2390 struct ata_ioports *ioaddr = &ap->ioaddr;
2391
2392 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2393
2394 /* software reset. causes dev0 to be selected */
2395 if (ap->flags & ATA_FLAG_MMIO) {
2396 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2397 udelay(20); /* FIXME: flush */
2398 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2399 udelay(20); /* FIXME: flush */
2400 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2401 } else {
2402 outb(ap->ctl, ioaddr->ctl_addr);
2403 udelay(10);
2404 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2405 udelay(10);
2406 outb(ap->ctl, ioaddr->ctl_addr);
2407 }
2408
2409 /* spec mandates ">= 2ms" before checking status.
2410 * We wait 150ms, because that was the magic delay used for
2411 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2412 * between when the ATA command register is written, and then
2413 * status is checked. Because waiting for "a while" before
2414 * checking status is fine, post SRST, we perform this magic
2415 * delay here as well.
2416 *
2417 * Old drivers/ide uses the 2mS rule and then waits for ready
2418 */
2419 msleep(150);
2420
2421 /* Before we perform post reset processing we want to see if
2422 * the bus shows 0xFF because the odd clown forgets the D7
2423 * pulldown resistor.
2424 */
2425 if (ata_check_status(ap) == 0xFF) {
2426 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2427 return AC_ERR_OTHER;
2428 }
2429
2430 ata_bus_post_reset(ap, devmask);
2431
2432 return 0;
2433 }
2434
2435 /**
2436 * ata_bus_reset - reset host port and associated ATA channel
2437 * @ap: port to reset
2438 *
2439 * This is typically the first time we actually start issuing
2440 * commands to the ATA channel. We wait for BSY to clear, then
2441 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2442 * result. Determine what devices, if any, are on the channel
2443 * by looking at the device 0/1 error register. Look at the signature
2444 * stored in each device's taskfile registers, to determine if
2445 * the device is ATA or ATAPI.
2446 *
2447 * LOCKING:
2448 * PCI/etc. bus probe sem.
2449 * Obtains host lock.
2450 *
2451 * SIDE EFFECTS:
2452 * Sets ATA_FLAG_DISABLED if bus reset fails.
2453 */
2454
2455 void ata_bus_reset(struct ata_port *ap)
2456 {
2457 struct ata_ioports *ioaddr = &ap->ioaddr;
2458 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2459 u8 err;
2460 unsigned int dev0, dev1 = 0, devmask = 0;
2461
2462 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2463
2464 /* determine if device 0/1 are present */
2465 if (ap->flags & ATA_FLAG_SATA_RESET)
2466 dev0 = 1;
2467 else {
2468 dev0 = ata_devchk(ap, 0);
2469 if (slave_possible)
2470 dev1 = ata_devchk(ap, 1);
2471 }
2472
2473 if (dev0)
2474 devmask |= (1 << 0);
2475 if (dev1)
2476 devmask |= (1 << 1);
2477
2478 /* select device 0 again */
2479 ap->ops->dev_select(ap, 0);
2480
2481 /* issue bus reset */
2482 if (ap->flags & ATA_FLAG_SRST)
2483 if (ata_bus_softreset(ap, devmask))
2484 goto err_out;
2485
2486 /*
2487 * determine by signature whether we have ATA or ATAPI devices
2488 */
2489 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2490 if ((slave_possible) && (err != 0x81))
2491 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2492
2493 /* re-enable interrupts */
2494 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2495 ata_irq_on(ap);
2496
2497 /* is double-select really necessary? */
2498 if (ap->device[1].class != ATA_DEV_NONE)
2499 ap->ops->dev_select(ap, 1);
2500 if (ap->device[0].class != ATA_DEV_NONE)
2501 ap->ops->dev_select(ap, 0);
2502
2503 /* if no devices were detected, disable this port */
2504 if ((ap->device[0].class == ATA_DEV_NONE) &&
2505 (ap->device[1].class == ATA_DEV_NONE))
2506 goto err_out;
2507
2508 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2509 /* set up device control for ATA_FLAG_SATA_RESET */
2510 if (ap->flags & ATA_FLAG_MMIO)
2511 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2512 else
2513 outb(ap->ctl, ioaddr->ctl_addr);
2514 }
2515
2516 DPRINTK("EXIT\n");
2517 return;
2518
2519 err_out:
2520 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2521 ap->ops->port_disable(ap);
2522
2523 DPRINTK("EXIT\n");
2524 }
2525
2526 /**
2527 * sata_phy_debounce - debounce SATA phy status
2528 * @ap: ATA port to debounce SATA phy status for
2529 * @params: timing parameters { interval, duratinon, timeout } in msec
2530 *
2531 * Make sure SStatus of @ap reaches stable state, determined by
2532 * holding the same value where DET is not 1 for @duration polled
2533 * every @interval, before @timeout. Timeout constraints the
2534 * beginning of the stable state. Because, after hot unplugging,
2535 * DET gets stuck at 1 on some controllers, this functions waits
2536 * until timeout then returns 0 if DET is stable at 1.
2537 *
2538 * LOCKING:
2539 * Kernel thread context (may sleep)
2540 *
2541 * RETURNS:
2542 * 0 on success, -errno on failure.
2543 */
2544 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2545 {
2546 unsigned long interval_msec = params[0];
2547 unsigned long duration = params[1] * HZ / 1000;
2548 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2549 unsigned long last_jiffies;
2550 u32 last, cur;
2551 int rc;
2552
2553 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2554 return rc;
2555 cur &= 0xf;
2556
2557 last = cur;
2558 last_jiffies = jiffies;
2559
2560 while (1) {
2561 msleep(interval_msec);
2562 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2563 return rc;
2564 cur &= 0xf;
2565
2566 /* DET stable? */
2567 if (cur == last) {
2568 if (cur == 1 && time_before(jiffies, timeout))
2569 continue;
2570 if (time_after(jiffies, last_jiffies + duration))
2571 return 0;
2572 continue;
2573 }
2574
2575 /* unstable, start over */
2576 last = cur;
2577 last_jiffies = jiffies;
2578
2579 /* check timeout */
2580 if (time_after(jiffies, timeout))
2581 return -EBUSY;
2582 }
2583 }
2584
2585 /**
2586 * sata_phy_resume - resume SATA phy
2587 * @ap: ATA port to resume SATA phy for
2588 * @params: timing parameters { interval, duratinon, timeout } in msec
2589 *
2590 * Resume SATA phy of @ap and debounce it.
2591 *
2592 * LOCKING:
2593 * Kernel thread context (may sleep)
2594 *
2595 * RETURNS:
2596 * 0 on success, -errno on failure.
2597 */
2598 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2599 {
2600 u32 scontrol;
2601 int rc;
2602
2603 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2604 return rc;
2605
2606 scontrol = (scontrol & 0x0f0) | 0x300;
2607
2608 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2609 return rc;
2610
2611 /* Some PHYs react badly if SStatus is pounded immediately
2612 * after resuming. Delay 200ms before debouncing.
2613 */
2614 msleep(200);
2615
2616 return sata_phy_debounce(ap, params);
2617 }
2618
2619 static void ata_wait_spinup(struct ata_port *ap)
2620 {
2621 struct ata_eh_context *ehc = &ap->eh_context;
2622 unsigned long end, secs;
2623 int rc;
2624
2625 /* first, debounce phy if SATA */
2626 if (ap->cbl == ATA_CBL_SATA) {
2627 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2628
2629 /* if debounced successfully and offline, no need to wait */
2630 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2631 return;
2632 }
2633
2634 /* okay, let's give the drive time to spin up */
2635 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2636 secs = ((end - jiffies) + HZ - 1) / HZ;
2637
2638 if (time_after(jiffies, end))
2639 return;
2640
2641 if (secs > 5)
2642 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2643 "(%lu secs)\n", secs);
2644
2645 schedule_timeout_uninterruptible(end - jiffies);
2646 }
2647
2648 /**
2649 * ata_std_prereset - prepare for reset
2650 * @ap: ATA port to be reset
2651 *
2652 * @ap is about to be reset. Initialize it.
2653 *
2654 * LOCKING:
2655 * Kernel thread context (may sleep)
2656 *
2657 * RETURNS:
2658 * 0 on success, -errno otherwise.
2659 */
2660 int ata_std_prereset(struct ata_port *ap)
2661 {
2662 struct ata_eh_context *ehc = &ap->eh_context;
2663 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2664 int rc;
2665
2666 /* handle link resume & hotplug spinup */
2667 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2668 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2669 ehc->i.action |= ATA_EH_HARDRESET;
2670
2671 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2672 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2673 ata_wait_spinup(ap);
2674
2675 /* if we're about to do hardreset, nothing more to do */
2676 if (ehc->i.action & ATA_EH_HARDRESET)
2677 return 0;
2678
2679 /* if SATA, resume phy */
2680 if (ap->cbl == ATA_CBL_SATA) {
2681 rc = sata_phy_resume(ap, timing);
2682 if (rc && rc != -EOPNOTSUPP) {
2683 /* phy resume failed */
2684 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2685 "link for reset (errno=%d)\n", rc);
2686 return rc;
2687 }
2688 }
2689
2690 /* Wait for !BSY if the controller can wait for the first D2H
2691 * Reg FIS and we don't know that no device is attached.
2692 */
2693 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2694 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2695
2696 return 0;
2697 }
2698
2699 /**
2700 * ata_std_softreset - reset host port via ATA SRST
2701 * @ap: port to reset
2702 * @classes: resulting classes of attached devices
2703 *
2704 * Reset host port using ATA SRST.
2705 *
2706 * LOCKING:
2707 * Kernel thread context (may sleep)
2708 *
2709 * RETURNS:
2710 * 0 on success, -errno otherwise.
2711 */
2712 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2713 {
2714 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2715 unsigned int devmask = 0, err_mask;
2716 u8 err;
2717
2718 DPRINTK("ENTER\n");
2719
2720 if (ata_port_offline(ap)) {
2721 classes[0] = ATA_DEV_NONE;
2722 goto out;
2723 }
2724
2725 /* determine if device 0/1 are present */
2726 if (ata_devchk(ap, 0))
2727 devmask |= (1 << 0);
2728 if (slave_possible && ata_devchk(ap, 1))
2729 devmask |= (1 << 1);
2730
2731 /* select device 0 again */
2732 ap->ops->dev_select(ap, 0);
2733
2734 /* issue bus reset */
2735 DPRINTK("about to softreset, devmask=%x\n", devmask);
2736 err_mask = ata_bus_softreset(ap, devmask);
2737 if (err_mask) {
2738 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2739 err_mask);
2740 return -EIO;
2741 }
2742
2743 /* determine by signature whether we have ATA or ATAPI devices */
2744 classes[0] = ata_dev_try_classify(ap, 0, &err);
2745 if (slave_possible && err != 0x81)
2746 classes[1] = ata_dev_try_classify(ap, 1, &err);
2747
2748 out:
2749 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2750 return 0;
2751 }
2752
2753 /**
2754 * sata_std_hardreset - reset host port via SATA phy reset
2755 * @ap: port to reset
2756 * @class: resulting class of attached device
2757 *
2758 * SATA phy-reset host port using DET bits of SControl register.
2759 *
2760 * LOCKING:
2761 * Kernel thread context (may sleep)
2762 *
2763 * RETURNS:
2764 * 0 on success, -errno otherwise.
2765 */
2766 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2767 {
2768 struct ata_eh_context *ehc = &ap->eh_context;
2769 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2770 u32 scontrol;
2771 int rc;
2772
2773 DPRINTK("ENTER\n");
2774
2775 if (sata_set_spd_needed(ap)) {
2776 /* SATA spec says nothing about how to reconfigure
2777 * spd. To be on the safe side, turn off phy during
2778 * reconfiguration. This works for at least ICH7 AHCI
2779 * and Sil3124.
2780 */
2781 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2782 return rc;
2783
2784 scontrol = (scontrol & 0x0f0) | 0x304;
2785
2786 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2787 return rc;
2788
2789 sata_set_spd(ap);
2790 }
2791
2792 /* issue phy wake/reset */
2793 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2794 return rc;
2795
2796 scontrol = (scontrol & 0x0f0) | 0x301;
2797
2798 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2799 return rc;
2800
2801 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2802 * 10.4.2 says at least 1 ms.
2803 */
2804 msleep(1);
2805
2806 /* bring phy back */
2807 sata_phy_resume(ap, timing);
2808
2809 /* TODO: phy layer with polling, timeouts, etc. */
2810 if (ata_port_offline(ap)) {
2811 *class = ATA_DEV_NONE;
2812 DPRINTK("EXIT, link offline\n");
2813 return 0;
2814 }
2815
2816 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2817 ata_port_printk(ap, KERN_ERR,
2818 "COMRESET failed (device not ready)\n");
2819 return -EIO;
2820 }
2821
2822 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2823
2824 *class = ata_dev_try_classify(ap, 0, NULL);
2825
2826 DPRINTK("EXIT, class=%u\n", *class);
2827 return 0;
2828 }
2829
2830 /**
2831 * ata_std_postreset - standard postreset callback
2832 * @ap: the target ata_port
2833 * @classes: classes of attached devices
2834 *
2835 * This function is invoked after a successful reset. Note that
2836 * the device might have been reset more than once using
2837 * different reset methods before postreset is invoked.
2838 *
2839 * LOCKING:
2840 * Kernel thread context (may sleep)
2841 */
2842 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2843 {
2844 u32 serror;
2845
2846 DPRINTK("ENTER\n");
2847
2848 /* print link status */
2849 sata_print_link_status(ap);
2850
2851 /* clear SError */
2852 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2853 sata_scr_write(ap, SCR_ERROR, serror);
2854
2855 /* re-enable interrupts */
2856 if (!ap->ops->error_handler) {
2857 /* FIXME: hack. create a hook instead */
2858 if (ap->ioaddr.ctl_addr)
2859 ata_irq_on(ap);
2860 }
2861
2862 /* is double-select really necessary? */
2863 if (classes[0] != ATA_DEV_NONE)
2864 ap->ops->dev_select(ap, 1);
2865 if (classes[1] != ATA_DEV_NONE)
2866 ap->ops->dev_select(ap, 0);
2867
2868 /* bail out if no device is present */
2869 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2870 DPRINTK("EXIT, no device\n");
2871 return;
2872 }
2873
2874 /* set up device control */
2875 if (ap->ioaddr.ctl_addr) {
2876 if (ap->flags & ATA_FLAG_MMIO)
2877 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2878 else
2879 outb(ap->ctl, ap->ioaddr.ctl_addr);
2880 }
2881
2882 DPRINTK("EXIT\n");
2883 }
2884
2885 /**
2886 * ata_dev_same_device - Determine whether new ID matches configured device
2887 * @dev: device to compare against
2888 * @new_class: class of the new device
2889 * @new_id: IDENTIFY page of the new device
2890 *
2891 * Compare @new_class and @new_id against @dev and determine
2892 * whether @dev is the device indicated by @new_class and
2893 * @new_id.
2894 *
2895 * LOCKING:
2896 * None.
2897 *
2898 * RETURNS:
2899 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2900 */
2901 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2902 const u16 *new_id)
2903 {
2904 const u16 *old_id = dev->id;
2905 unsigned char model[2][41], serial[2][21];
2906 u64 new_n_sectors;
2907
2908 if (dev->class != new_class) {
2909 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2910 dev->class, new_class);
2911 return 0;
2912 }
2913
2914 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2915 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2916 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2917 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2918 new_n_sectors = ata_id_n_sectors(new_id);
2919
2920 if (strcmp(model[0], model[1])) {
2921 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2922 "'%s' != '%s'\n", model[0], model[1]);
2923 return 0;
2924 }
2925
2926 if (strcmp(serial[0], serial[1])) {
2927 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2928 "'%s' != '%s'\n", serial[0], serial[1]);
2929 return 0;
2930 }
2931
2932 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2933 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2934 "%llu != %llu\n",
2935 (unsigned long long)dev->n_sectors,
2936 (unsigned long long)new_n_sectors);
2937 return 0;
2938 }
2939
2940 return 1;
2941 }
2942
2943 /**
2944 * ata_dev_revalidate - Revalidate ATA device
2945 * @dev: device to revalidate
2946 * @post_reset: is this revalidation after reset?
2947 *
2948 * Re-read IDENTIFY page and make sure @dev is still attached to
2949 * the port.
2950 *
2951 * LOCKING:
2952 * Kernel thread context (may sleep)
2953 *
2954 * RETURNS:
2955 * 0 on success, negative errno otherwise
2956 */
2957 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2958 {
2959 unsigned int class = dev->class;
2960 u16 *id = (void *)dev->ap->sector_buf;
2961 int rc;
2962
2963 if (!ata_dev_enabled(dev)) {
2964 rc = -ENODEV;
2965 goto fail;
2966 }
2967
2968 /* read ID data */
2969 rc = ata_dev_read_id(dev, &class, post_reset, id);
2970 if (rc)
2971 goto fail;
2972
2973 /* is the device still there? */
2974 if (!ata_dev_same_device(dev, class, id)) {
2975 rc = -ENODEV;
2976 goto fail;
2977 }
2978
2979 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2980
2981 /* configure device according to the new ID */
2982 rc = ata_dev_configure(dev, 0);
2983 if (rc == 0)
2984 return 0;
2985
2986 fail:
2987 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2988 return rc;
2989 }
2990
2991 static const char * const ata_dma_blacklist [] = {
2992 "WDC AC11000H", NULL,
2993 "WDC AC22100H", NULL,
2994 "WDC AC32500H", NULL,
2995 "WDC AC33100H", NULL,
2996 "WDC AC31600H", NULL,
2997 "WDC AC32100H", "24.09P07",
2998 "WDC AC23200L", "21.10N21",
2999 "Compaq CRD-8241B", NULL,
3000 "CRD-8400B", NULL,
3001 "CRD-8480B", NULL,
3002 "CRD-8482B", NULL,
3003 "CRD-84", NULL,
3004 "SanDisk SDP3B", NULL,
3005 "SanDisk SDP3B-64", NULL,
3006 "SANYO CD-ROM CRD", NULL,
3007 "HITACHI CDR-8", NULL,
3008 "HITACHI CDR-8335", NULL,
3009 "HITACHI CDR-8435", NULL,
3010 "Toshiba CD-ROM XM-6202B", NULL,
3011 "TOSHIBA CD-ROM XM-1702BC", NULL,
3012 "CD-532E-A", NULL,
3013 "E-IDE CD-ROM CR-840", NULL,
3014 "CD-ROM Drive/F5A", NULL,
3015 "WPI CDD-820", NULL,
3016 "SAMSUNG CD-ROM SC-148C", NULL,
3017 "SAMSUNG CD-ROM SC", NULL,
3018 "SanDisk SDP3B-64", NULL,
3019 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3020 "_NEC DV5800A", NULL,
3021 "SAMSUNG CD-ROM SN-124", "N001"
3022 };
3023
3024 static int ata_strim(char *s, size_t len)
3025 {
3026 len = strnlen(s, len);
3027
3028 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3029 while ((len > 0) && (s[len - 1] == ' ')) {
3030 len--;
3031 s[len] = 0;
3032 }
3033 return len;
3034 }
3035
3036 static int ata_dma_blacklisted(const struct ata_device *dev)
3037 {
3038 unsigned char model_num[40];
3039 unsigned char model_rev[16];
3040 unsigned int nlen, rlen;
3041 int i;
3042
3043 /* We don't support polling DMA.
3044 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3045 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3046 */
3047 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3048 (dev->flags & ATA_DFLAG_CDB_INTR))
3049 return 1;
3050
3051 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3052 sizeof(model_num));
3053 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3054 sizeof(model_rev));
3055 nlen = ata_strim(model_num, sizeof(model_num));
3056 rlen = ata_strim(model_rev, sizeof(model_rev));
3057
3058 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3059 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3060 if (ata_dma_blacklist[i+1] == NULL)
3061 return 1;
3062 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3063 return 1;
3064 }
3065 }
3066 return 0;
3067 }
3068
3069 /**
3070 * ata_dev_xfermask - Compute supported xfermask of the given device
3071 * @dev: Device to compute xfermask for
3072 *
3073 * Compute supported xfermask of @dev and store it in
3074 * dev->*_mask. This function is responsible for applying all
3075 * known limits including host controller limits, device
3076 * blacklist, etc...
3077 *
3078 * LOCKING:
3079 * None.
3080 */
3081 static void ata_dev_xfermask(struct ata_device *dev)
3082 {
3083 struct ata_port *ap = dev->ap;
3084 struct ata_host *host = ap->host;
3085 unsigned long xfer_mask;
3086
3087 /* controller modes available */
3088 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3089 ap->mwdma_mask, ap->udma_mask);
3090
3091 /* Apply cable rule here. Don't apply it early because when
3092 * we handle hot plug the cable type can itself change.
3093 */
3094 if (ap->cbl == ATA_CBL_PATA40)
3095 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3096
3097 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3098 dev->mwdma_mask, dev->udma_mask);
3099 xfer_mask &= ata_id_xfermask(dev->id);
3100
3101 /*
3102 * CFA Advanced TrueIDE timings are not allowed on a shared
3103 * cable
3104 */
3105 if (ata_dev_pair(dev)) {
3106 /* No PIO5 or PIO6 */
3107 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3108 /* No MWDMA3 or MWDMA 4 */
3109 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3110 }
3111
3112 if (ata_dma_blacklisted(dev)) {
3113 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3114 ata_dev_printk(dev, KERN_WARNING,
3115 "device is on DMA blacklist, disabling DMA\n");
3116 }
3117
3118 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3119 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3120 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3121 "other device, disabling DMA\n");
3122 }
3123
3124 if (ap->ops->mode_filter)
3125 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3126
3127 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3128 &dev->mwdma_mask, &dev->udma_mask);
3129 }
3130
3131 /**
3132 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3133 * @dev: Device to which command will be sent
3134 *
3135 * Issue SET FEATURES - XFER MODE command to device @dev
3136 * on port @ap.
3137 *
3138 * LOCKING:
3139 * PCI/etc. bus probe sem.
3140 *
3141 * RETURNS:
3142 * 0 on success, AC_ERR_* mask otherwise.
3143 */
3144
3145 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3146 {
3147 struct ata_taskfile tf;
3148 unsigned int err_mask;
3149
3150 /* set up set-features taskfile */
3151 DPRINTK("set features - xfer mode\n");
3152
3153 ata_tf_init(dev, &tf);
3154 tf.command = ATA_CMD_SET_FEATURES;
3155 tf.feature = SETFEATURES_XFER;
3156 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3157 tf.protocol = ATA_PROT_NODATA;
3158 tf.nsect = dev->xfer_mode;
3159
3160 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3161
3162 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3163 return err_mask;
3164 }
3165
3166 /**
3167 * ata_dev_init_params - Issue INIT DEV PARAMS command
3168 * @dev: Device to which command will be sent
3169 * @heads: Number of heads (taskfile parameter)
3170 * @sectors: Number of sectors (taskfile parameter)
3171 *
3172 * LOCKING:
3173 * Kernel thread context (may sleep)
3174 *
3175 * RETURNS:
3176 * 0 on success, AC_ERR_* mask otherwise.
3177 */
3178 static unsigned int ata_dev_init_params(struct ata_device *dev,
3179 u16 heads, u16 sectors)
3180 {
3181 struct ata_taskfile tf;
3182 unsigned int err_mask;
3183
3184 /* Number of sectors per track 1-255. Number of heads 1-16 */
3185 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3186 return AC_ERR_INVALID;
3187
3188 /* set up init dev params taskfile */
3189 DPRINTK("init dev params \n");
3190
3191 ata_tf_init(dev, &tf);
3192 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3193 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3194 tf.protocol = ATA_PROT_NODATA;
3195 tf.nsect = sectors;
3196 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3197
3198 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3199
3200 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3201 return err_mask;
3202 }
3203
3204 /**
3205 * ata_sg_clean - Unmap DMA memory associated with command
3206 * @qc: Command containing DMA memory to be released
3207 *
3208 * Unmap all mapped DMA memory associated with this command.
3209 *
3210 * LOCKING:
3211 * spin_lock_irqsave(host lock)
3212 */
3213
3214 static void ata_sg_clean(struct ata_queued_cmd *qc)
3215 {
3216 struct ata_port *ap = qc->ap;
3217 struct scatterlist *sg = qc->__sg;
3218 int dir = qc->dma_dir;
3219 void *pad_buf = NULL;
3220
3221 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3222 WARN_ON(sg == NULL);
3223
3224 if (qc->flags & ATA_QCFLAG_SINGLE)
3225 WARN_ON(qc->n_elem > 1);
3226
3227 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3228
3229 /* if we padded the buffer out to 32-bit bound, and data
3230 * xfer direction is from-device, we must copy from the
3231 * pad buffer back into the supplied buffer
3232 */
3233 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3234 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3235
3236 if (qc->flags & ATA_QCFLAG_SG) {
3237 if (qc->n_elem)
3238 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3239 /* restore last sg */
3240 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3241 if (pad_buf) {
3242 struct scatterlist *psg = &qc->pad_sgent;
3243 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3244 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3245 kunmap_atomic(addr, KM_IRQ0);
3246 }
3247 } else {
3248 if (qc->n_elem)
3249 dma_unmap_single(ap->dev,
3250 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3251 dir);
3252 /* restore sg */
3253 sg->length += qc->pad_len;
3254 if (pad_buf)
3255 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3256 pad_buf, qc->pad_len);
3257 }
3258
3259 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3260 qc->__sg = NULL;
3261 }
3262
3263 /**
3264 * ata_fill_sg - Fill PCI IDE PRD table
3265 * @qc: Metadata associated with taskfile to be transferred
3266 *
3267 * Fill PCI IDE PRD (scatter-gather) table with segments
3268 * associated with the current disk command.
3269 *
3270 * LOCKING:
3271 * spin_lock_irqsave(host lock)
3272 *
3273 */
3274 static void ata_fill_sg(struct ata_queued_cmd *qc)
3275 {
3276 struct ata_port *ap = qc->ap;
3277 struct scatterlist *sg;
3278 unsigned int idx;
3279
3280 WARN_ON(qc->__sg == NULL);
3281 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3282
3283 idx = 0;
3284 ata_for_each_sg(sg, qc) {
3285 u32 addr, offset;
3286 u32 sg_len, len;
3287
3288 /* determine if physical DMA addr spans 64K boundary.
3289 * Note h/w doesn't support 64-bit, so we unconditionally
3290 * truncate dma_addr_t to u32.
3291 */
3292 addr = (u32) sg_dma_address(sg);
3293 sg_len = sg_dma_len(sg);
3294
3295 while (sg_len) {
3296 offset = addr & 0xffff;
3297 len = sg_len;
3298 if ((offset + sg_len) > 0x10000)
3299 len = 0x10000 - offset;
3300
3301 ap->prd[idx].addr = cpu_to_le32(addr);
3302 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3303 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3304
3305 idx++;
3306 sg_len -= len;
3307 addr += len;
3308 }
3309 }
3310
3311 if (idx)
3312 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3313 }
3314 /**
3315 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3316 * @qc: Metadata associated with taskfile to check
3317 *
3318 * Allow low-level driver to filter ATA PACKET commands, returning
3319 * a status indicating whether or not it is OK to use DMA for the
3320 * supplied PACKET command.
3321 *
3322 * LOCKING:
3323 * spin_lock_irqsave(host lock)
3324 *
3325 * RETURNS: 0 when ATAPI DMA can be used
3326 * nonzero otherwise
3327 */
3328 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3329 {
3330 struct ata_port *ap = qc->ap;
3331 int rc = 0; /* Assume ATAPI DMA is OK by default */
3332
3333 if (ap->ops->check_atapi_dma)
3334 rc = ap->ops->check_atapi_dma(qc);
3335
3336 return rc;
3337 }
3338 /**
3339 * ata_qc_prep - Prepare taskfile for submission
3340 * @qc: Metadata associated with taskfile to be prepared
3341 *
3342 * Prepare ATA taskfile for submission.
3343 *
3344 * LOCKING:
3345 * spin_lock_irqsave(host lock)
3346 */
3347 void ata_qc_prep(struct ata_queued_cmd *qc)
3348 {
3349 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3350 return;
3351
3352 ata_fill_sg(qc);
3353 }
3354
3355 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3356
3357 /**
3358 * ata_sg_init_one - Associate command with memory buffer
3359 * @qc: Command to be associated
3360 * @buf: Memory buffer
3361 * @buflen: Length of memory buffer, in bytes.
3362 *
3363 * Initialize the data-related elements of queued_cmd @qc
3364 * to point to a single memory buffer, @buf of byte length @buflen.
3365 *
3366 * LOCKING:
3367 * spin_lock_irqsave(host lock)
3368 */
3369
3370 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3371 {
3372 struct scatterlist *sg;
3373
3374 qc->flags |= ATA_QCFLAG_SINGLE;
3375
3376 memset(&qc->sgent, 0, sizeof(qc->sgent));
3377 qc->__sg = &qc->sgent;
3378 qc->n_elem = 1;
3379 qc->orig_n_elem = 1;
3380 qc->buf_virt = buf;
3381 qc->nbytes = buflen;
3382
3383 sg = qc->__sg;
3384 sg_init_one(sg, buf, buflen);
3385 }
3386
3387 /**
3388 * ata_sg_init - Associate command with scatter-gather table.
3389 * @qc: Command to be associated
3390 * @sg: Scatter-gather table.
3391 * @n_elem: Number of elements in s/g table.
3392 *
3393 * Initialize the data-related elements of queued_cmd @qc
3394 * to point to a scatter-gather table @sg, containing @n_elem
3395 * elements.
3396 *
3397 * LOCKING:
3398 * spin_lock_irqsave(host lock)
3399 */
3400
3401 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3402 unsigned int n_elem)
3403 {
3404 qc->flags |= ATA_QCFLAG_SG;
3405 qc->__sg = sg;
3406 qc->n_elem = n_elem;
3407 qc->orig_n_elem = n_elem;
3408 }
3409
3410 /**
3411 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3412 * @qc: Command with memory buffer to be mapped.
3413 *
3414 * DMA-map the memory buffer associated with queued_cmd @qc.
3415 *
3416 * LOCKING:
3417 * spin_lock_irqsave(host lock)
3418 *
3419 * RETURNS:
3420 * Zero on success, negative on error.
3421 */
3422
3423 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3424 {
3425 struct ata_port *ap = qc->ap;
3426 int dir = qc->dma_dir;
3427 struct scatterlist *sg = qc->__sg;
3428 dma_addr_t dma_address;
3429 int trim_sg = 0;
3430
3431 /* we must lengthen transfers to end on a 32-bit boundary */
3432 qc->pad_len = sg->length & 3;
3433 if (qc->pad_len) {
3434 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3435 struct scatterlist *psg = &qc->pad_sgent;
3436
3437 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3438
3439 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3440
3441 if (qc->tf.flags & ATA_TFLAG_WRITE)
3442 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3443 qc->pad_len);
3444
3445 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3446 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3447 /* trim sg */
3448 sg->length -= qc->pad_len;
3449 if (sg->length == 0)
3450 trim_sg = 1;
3451
3452 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3453 sg->length, qc->pad_len);
3454 }
3455
3456 if (trim_sg) {
3457 qc->n_elem--;
3458 goto skip_map;
3459 }
3460
3461 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3462 sg->length, dir);
3463 if (dma_mapping_error(dma_address)) {
3464 /* restore sg */
3465 sg->length += qc->pad_len;
3466 return -1;
3467 }
3468
3469 sg_dma_address(sg) = dma_address;
3470 sg_dma_len(sg) = sg->length;
3471
3472 skip_map:
3473 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3474 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3475
3476 return 0;
3477 }
3478
3479 /**
3480 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3481 * @qc: Command with scatter-gather table to be mapped.
3482 *
3483 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3484 *
3485 * LOCKING:
3486 * spin_lock_irqsave(host lock)
3487 *
3488 * RETURNS:
3489 * Zero on success, negative on error.
3490 *
3491 */
3492
3493 static int ata_sg_setup(struct ata_queued_cmd *qc)
3494 {
3495 struct ata_port *ap = qc->ap;
3496 struct scatterlist *sg = qc->__sg;
3497 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3498 int n_elem, pre_n_elem, dir, trim_sg = 0;
3499
3500 VPRINTK("ENTER, ata%u\n", ap->id);
3501 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3502
3503 /* we must lengthen transfers to end on a 32-bit boundary */
3504 qc->pad_len = lsg->length & 3;
3505 if (qc->pad_len) {
3506 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3507 struct scatterlist *psg = &qc->pad_sgent;
3508 unsigned int offset;
3509
3510 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3511
3512 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3513
3514 /*
3515 * psg->page/offset are used to copy to-be-written
3516 * data in this function or read data in ata_sg_clean.
3517 */
3518 offset = lsg->offset + lsg->length - qc->pad_len;
3519 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3520 psg->offset = offset_in_page(offset);
3521
3522 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3523 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3524 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3525 kunmap_atomic(addr, KM_IRQ0);
3526 }
3527
3528 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3529 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3530 /* trim last sg */
3531 lsg->length -= qc->pad_len;
3532 if (lsg->length == 0)
3533 trim_sg = 1;
3534
3535 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3536 qc->n_elem - 1, lsg->length, qc->pad_len);
3537 }
3538
3539 pre_n_elem = qc->n_elem;
3540 if (trim_sg && pre_n_elem)
3541 pre_n_elem--;
3542
3543 if (!pre_n_elem) {
3544 n_elem = 0;
3545 goto skip_map;
3546 }
3547
3548 dir = qc->dma_dir;
3549 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3550 if (n_elem < 1) {
3551 /* restore last sg */
3552 lsg->length += qc->pad_len;
3553 return -1;
3554 }
3555
3556 DPRINTK("%d sg elements mapped\n", n_elem);
3557
3558 skip_map:
3559 qc->n_elem = n_elem;
3560
3561 return 0;
3562 }
3563
3564 /**
3565 * swap_buf_le16 - swap halves of 16-bit words in place
3566 * @buf: Buffer to swap
3567 * @buf_words: Number of 16-bit words in buffer.
3568 *
3569 * Swap halves of 16-bit words if needed to convert from
3570 * little-endian byte order to native cpu byte order, or
3571 * vice-versa.
3572 *
3573 * LOCKING:
3574 * Inherited from caller.
3575 */
3576 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3577 {
3578 #ifdef __BIG_ENDIAN
3579 unsigned int i;
3580
3581 for (i = 0; i < buf_words; i++)
3582 buf[i] = le16_to_cpu(buf[i]);
3583 #endif /* __BIG_ENDIAN */
3584 }
3585
3586 /**
3587 * ata_mmio_data_xfer - Transfer data by MMIO
3588 * @adev: device for this I/O
3589 * @buf: data buffer
3590 * @buflen: buffer length
3591 * @write_data: read/write
3592 *
3593 * Transfer data from/to the device data register by MMIO.
3594 *
3595 * LOCKING:
3596 * Inherited from caller.
3597 */
3598
3599 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3600 unsigned int buflen, int write_data)
3601 {
3602 struct ata_port *ap = adev->ap;
3603 unsigned int i;
3604 unsigned int words = buflen >> 1;
3605 u16 *buf16 = (u16 *) buf;
3606 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3607
3608 /* Transfer multiple of 2 bytes */
3609 if (write_data) {
3610 for (i = 0; i < words; i++)
3611 writew(le16_to_cpu(buf16[i]), mmio);
3612 } else {
3613 for (i = 0; i < words; i++)
3614 buf16[i] = cpu_to_le16(readw(mmio));
3615 }
3616
3617 /* Transfer trailing 1 byte, if any. */
3618 if (unlikely(buflen & 0x01)) {
3619 u16 align_buf[1] = { 0 };
3620 unsigned char *trailing_buf = buf + buflen - 1;
3621
3622 if (write_data) {
3623 memcpy(align_buf, trailing_buf, 1);
3624 writew(le16_to_cpu(align_buf[0]), mmio);
3625 } else {
3626 align_buf[0] = cpu_to_le16(readw(mmio));
3627 memcpy(trailing_buf, align_buf, 1);
3628 }
3629 }
3630 }
3631
3632 /**
3633 * ata_pio_data_xfer - Transfer data by PIO
3634 * @adev: device to target
3635 * @buf: data buffer
3636 * @buflen: buffer length
3637 * @write_data: read/write
3638 *
3639 * Transfer data from/to the device data register by PIO.
3640 *
3641 * LOCKING:
3642 * Inherited from caller.
3643 */
3644
3645 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3646 unsigned int buflen, int write_data)
3647 {
3648 struct ata_port *ap = adev->ap;
3649 unsigned int words = buflen >> 1;
3650
3651 /* Transfer multiple of 2 bytes */
3652 if (write_data)
3653 outsw(ap->ioaddr.data_addr, buf, words);
3654 else
3655 insw(ap->ioaddr.data_addr, buf, words);
3656
3657 /* Transfer trailing 1 byte, if any. */
3658 if (unlikely(buflen & 0x01)) {
3659 u16 align_buf[1] = { 0 };
3660 unsigned char *trailing_buf = buf + buflen - 1;
3661
3662 if (write_data) {
3663 memcpy(align_buf, trailing_buf, 1);
3664 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3665 } else {
3666 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3667 memcpy(trailing_buf, align_buf, 1);
3668 }
3669 }
3670 }
3671
3672 /**
3673 * ata_pio_data_xfer_noirq - Transfer data by PIO
3674 * @adev: device to target
3675 * @buf: data buffer
3676 * @buflen: buffer length
3677 * @write_data: read/write
3678 *
3679 * Transfer data from/to the device data register by PIO. Do the
3680 * transfer with interrupts disabled.
3681 *
3682 * LOCKING:
3683 * Inherited from caller.
3684 */
3685
3686 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3687 unsigned int buflen, int write_data)
3688 {
3689 unsigned long flags;
3690 local_irq_save(flags);
3691 ata_pio_data_xfer(adev, buf, buflen, write_data);
3692 local_irq_restore(flags);
3693 }
3694
3695
3696 /**
3697 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3698 * @qc: Command on going
3699 *
3700 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3701 *
3702 * LOCKING:
3703 * Inherited from caller.
3704 */
3705
3706 static void ata_pio_sector(struct ata_queued_cmd *qc)
3707 {
3708 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3709 struct scatterlist *sg = qc->__sg;
3710 struct ata_port *ap = qc->ap;
3711 struct page *page;
3712 unsigned int offset;
3713 unsigned char *buf;
3714
3715 if (qc->cursect == (qc->nsect - 1))
3716 ap->hsm_task_state = HSM_ST_LAST;
3717
3718 page = sg[qc->cursg].page;
3719 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3720
3721 /* get the current page and offset */
3722 page = nth_page(page, (offset >> PAGE_SHIFT));
3723 offset %= PAGE_SIZE;
3724
3725 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3726
3727 if (PageHighMem(page)) {
3728 unsigned long flags;
3729
3730 /* FIXME: use a bounce buffer */
3731 local_irq_save(flags);
3732 buf = kmap_atomic(page, KM_IRQ0);
3733
3734 /* do the actual data transfer */
3735 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3736
3737 kunmap_atomic(buf, KM_IRQ0);
3738 local_irq_restore(flags);
3739 } else {
3740 buf = page_address(page);
3741 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3742 }
3743
3744 qc->cursect++;
3745 qc->cursg_ofs++;
3746
3747 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3748 qc->cursg++;
3749 qc->cursg_ofs = 0;
3750 }
3751 }
3752
3753 /**
3754 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3755 * @qc: Command on going
3756 *
3757 * Transfer one or many ATA_SECT_SIZE of data from/to the
3758 * ATA device for the DRQ request.
3759 *
3760 * LOCKING:
3761 * Inherited from caller.
3762 */
3763
3764 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3765 {
3766 if (is_multi_taskfile(&qc->tf)) {
3767 /* READ/WRITE MULTIPLE */
3768 unsigned int nsect;
3769
3770 WARN_ON(qc->dev->multi_count == 0);
3771
3772 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3773 while (nsect--)
3774 ata_pio_sector(qc);
3775 } else
3776 ata_pio_sector(qc);
3777 }
3778
3779 /**
3780 * atapi_send_cdb - Write CDB bytes to hardware
3781 * @ap: Port to which ATAPI device is attached.
3782 * @qc: Taskfile currently active
3783 *
3784 * When device has indicated its readiness to accept
3785 * a CDB, this function is called. Send the CDB.
3786 *
3787 * LOCKING:
3788 * caller.
3789 */
3790
3791 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3792 {
3793 /* send SCSI cdb */
3794 DPRINTK("send cdb\n");
3795 WARN_ON(qc->dev->cdb_len < 12);
3796
3797 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3798 ata_altstatus(ap); /* flush */
3799
3800 switch (qc->tf.protocol) {
3801 case ATA_PROT_ATAPI:
3802 ap->hsm_task_state = HSM_ST;
3803 break;
3804 case ATA_PROT_ATAPI_NODATA:
3805 ap->hsm_task_state = HSM_ST_LAST;
3806 break;
3807 case ATA_PROT_ATAPI_DMA:
3808 ap->hsm_task_state = HSM_ST_LAST;
3809 /* initiate bmdma */
3810 ap->ops->bmdma_start(qc);
3811 break;
3812 }
3813 }
3814
3815 /**
3816 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3817 * @qc: Command on going
3818 * @bytes: number of bytes
3819 *
3820 * Transfer Transfer data from/to the ATAPI device.
3821 *
3822 * LOCKING:
3823 * Inherited from caller.
3824 *
3825 */
3826
3827 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3828 {
3829 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3830 struct scatterlist *sg = qc->__sg;
3831 struct ata_port *ap = qc->ap;
3832 struct page *page;
3833 unsigned char *buf;
3834 unsigned int offset, count;
3835
3836 if (qc->curbytes + bytes >= qc->nbytes)
3837 ap->hsm_task_state = HSM_ST_LAST;
3838
3839 next_sg:
3840 if (unlikely(qc->cursg >= qc->n_elem)) {
3841 /*
3842 * The end of qc->sg is reached and the device expects
3843 * more data to transfer. In order not to overrun qc->sg
3844 * and fulfill length specified in the byte count register,
3845 * - for read case, discard trailing data from the device
3846 * - for write case, padding zero data to the device
3847 */
3848 u16 pad_buf[1] = { 0 };
3849 unsigned int words = bytes >> 1;
3850 unsigned int i;
3851
3852 if (words) /* warning if bytes > 1 */
3853 ata_dev_printk(qc->dev, KERN_WARNING,
3854 "%u bytes trailing data\n", bytes);
3855
3856 for (i = 0; i < words; i++)
3857 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3858
3859 ap->hsm_task_state = HSM_ST_LAST;
3860 return;
3861 }
3862
3863 sg = &qc->__sg[qc->cursg];
3864
3865 page = sg->page;
3866 offset = sg->offset + qc->cursg_ofs;
3867
3868 /* get the current page and offset */
3869 page = nth_page(page, (offset >> PAGE_SHIFT));
3870 offset %= PAGE_SIZE;
3871
3872 /* don't overrun current sg */
3873 count = min(sg->length - qc->cursg_ofs, bytes);
3874
3875 /* don't cross page boundaries */
3876 count = min(count, (unsigned int)PAGE_SIZE - offset);
3877
3878 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3879
3880 if (PageHighMem(page)) {
3881 unsigned long flags;
3882
3883 /* FIXME: use bounce buffer */
3884 local_irq_save(flags);
3885 buf = kmap_atomic(page, KM_IRQ0);
3886
3887 /* do the actual data transfer */
3888 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3889
3890 kunmap_atomic(buf, KM_IRQ0);
3891 local_irq_restore(flags);
3892 } else {
3893 buf = page_address(page);
3894 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3895 }
3896
3897 bytes -= count;
3898 qc->curbytes += count;
3899 qc->cursg_ofs += count;
3900
3901 if (qc->cursg_ofs == sg->length) {
3902 qc->cursg++;
3903 qc->cursg_ofs = 0;
3904 }
3905
3906 if (bytes)
3907 goto next_sg;
3908 }
3909
3910 /**
3911 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3912 * @qc: Command on going
3913 *
3914 * Transfer Transfer data from/to the ATAPI device.
3915 *
3916 * LOCKING:
3917 * Inherited from caller.
3918 */
3919
3920 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3921 {
3922 struct ata_port *ap = qc->ap;
3923 struct ata_device *dev = qc->dev;
3924 unsigned int ireason, bc_lo, bc_hi, bytes;
3925 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3926
3927 /* Abuse qc->result_tf for temp storage of intermediate TF
3928 * here to save some kernel stack usage.
3929 * For normal completion, qc->result_tf is not relevant. For
3930 * error, qc->result_tf is later overwritten by ata_qc_complete().
3931 * So, the correctness of qc->result_tf is not affected.
3932 */
3933 ap->ops->tf_read(ap, &qc->result_tf);
3934 ireason = qc->result_tf.nsect;
3935 bc_lo = qc->result_tf.lbam;
3936 bc_hi = qc->result_tf.lbah;
3937 bytes = (bc_hi << 8) | bc_lo;
3938
3939 /* shall be cleared to zero, indicating xfer of data */
3940 if (ireason & (1 << 0))
3941 goto err_out;
3942
3943 /* make sure transfer direction matches expected */
3944 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3945 if (do_write != i_write)
3946 goto err_out;
3947
3948 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3949
3950 __atapi_pio_bytes(qc, bytes);
3951
3952 return;
3953
3954 err_out:
3955 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3956 qc->err_mask |= AC_ERR_HSM;
3957 ap->hsm_task_state = HSM_ST_ERR;
3958 }
3959
3960 /**
3961 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3962 * @ap: the target ata_port
3963 * @qc: qc on going
3964 *
3965 * RETURNS:
3966 * 1 if ok in workqueue, 0 otherwise.
3967 */
3968
3969 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3970 {
3971 if (qc->tf.flags & ATA_TFLAG_POLLING)
3972 return 1;
3973
3974 if (ap->hsm_task_state == HSM_ST_FIRST) {
3975 if (qc->tf.protocol == ATA_PROT_PIO &&
3976 (qc->tf.flags & ATA_TFLAG_WRITE))
3977 return 1;
3978
3979 if (is_atapi_taskfile(&qc->tf) &&
3980 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3981 return 1;
3982 }
3983
3984 return 0;
3985 }
3986
3987 /**
3988 * ata_hsm_qc_complete - finish a qc running on standard HSM
3989 * @qc: Command to complete
3990 * @in_wq: 1 if called from workqueue, 0 otherwise
3991 *
3992 * Finish @qc which is running on standard HSM.
3993 *
3994 * LOCKING:
3995 * If @in_wq is zero, spin_lock_irqsave(host lock).
3996 * Otherwise, none on entry and grabs host lock.
3997 */
3998 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3999 {
4000 struct ata_port *ap = qc->ap;
4001 unsigned long flags;
4002
4003 if (ap->ops->error_handler) {
4004 if (in_wq) {
4005 spin_lock_irqsave(ap->lock, flags);
4006
4007 /* EH might have kicked in while host lock is
4008 * released.
4009 */
4010 qc = ata_qc_from_tag(ap, qc->tag);
4011 if (qc) {
4012 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4013 ata_irq_on(ap);
4014 ata_qc_complete(qc);
4015 } else
4016 ata_port_freeze(ap);
4017 }
4018
4019 spin_unlock_irqrestore(ap->lock, flags);
4020 } else {
4021 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4022 ata_qc_complete(qc);
4023 else
4024 ata_port_freeze(ap);
4025 }
4026 } else {
4027 if (in_wq) {
4028 spin_lock_irqsave(ap->lock, flags);
4029 ata_irq_on(ap);
4030 ata_qc_complete(qc);
4031 spin_unlock_irqrestore(ap->lock, flags);
4032 } else
4033 ata_qc_complete(qc);
4034 }
4035
4036 ata_altstatus(ap); /* flush */
4037 }
4038
4039 /**
4040 * ata_hsm_move - move the HSM to the next state.
4041 * @ap: the target ata_port
4042 * @qc: qc on going
4043 * @status: current device status
4044 * @in_wq: 1 if called from workqueue, 0 otherwise
4045 *
4046 * RETURNS:
4047 * 1 when poll next status needed, 0 otherwise.
4048 */
4049 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4050 u8 status, int in_wq)
4051 {
4052 unsigned long flags = 0;
4053 int poll_next;
4054
4055 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4056
4057 /* Make sure ata_qc_issue_prot() does not throw things
4058 * like DMA polling into the workqueue. Notice that
4059 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4060 */
4061 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4062
4063 fsm_start:
4064 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4065 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4066
4067 switch (ap->hsm_task_state) {
4068 case HSM_ST_FIRST:
4069 /* Send first data block or PACKET CDB */
4070
4071 /* If polling, we will stay in the work queue after
4072 * sending the data. Otherwise, interrupt handler
4073 * takes over after sending the data.
4074 */
4075 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4076
4077 /* check device status */
4078 if (unlikely((status & ATA_DRQ) == 0)) {
4079 /* handle BSY=0, DRQ=0 as error */
4080 if (likely(status & (ATA_ERR | ATA_DF)))
4081 /* device stops HSM for abort/error */
4082 qc->err_mask |= AC_ERR_DEV;
4083 else
4084 /* HSM violation. Let EH handle this */
4085 qc->err_mask |= AC_ERR_HSM;
4086
4087 ap->hsm_task_state = HSM_ST_ERR;
4088 goto fsm_start;
4089 }
4090
4091 /* Device should not ask for data transfer (DRQ=1)
4092 * when it finds something wrong.
4093 * We ignore DRQ here and stop the HSM by
4094 * changing hsm_task_state to HSM_ST_ERR and
4095 * let the EH abort the command or reset the device.
4096 */
4097 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4098 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4099 ap->id, status);
4100 qc->err_mask |= AC_ERR_HSM;
4101 ap->hsm_task_state = HSM_ST_ERR;
4102 goto fsm_start;
4103 }
4104
4105 /* Send the CDB (atapi) or the first data block (ata pio out).
4106 * During the state transition, interrupt handler shouldn't
4107 * be invoked before the data transfer is complete and
4108 * hsm_task_state is changed. Hence, the following locking.
4109 */
4110 if (in_wq)
4111 spin_lock_irqsave(ap->lock, flags);
4112
4113 if (qc->tf.protocol == ATA_PROT_PIO) {
4114 /* PIO data out protocol.
4115 * send first data block.
4116 */
4117
4118 /* ata_pio_sectors() might change the state
4119 * to HSM_ST_LAST. so, the state is changed here
4120 * before ata_pio_sectors().
4121 */
4122 ap->hsm_task_state = HSM_ST;
4123 ata_pio_sectors(qc);
4124 ata_altstatus(ap); /* flush */
4125 } else
4126 /* send CDB */
4127 atapi_send_cdb(ap, qc);
4128
4129 if (in_wq)
4130 spin_unlock_irqrestore(ap->lock, flags);
4131
4132 /* if polling, ata_pio_task() handles the rest.
4133 * otherwise, interrupt handler takes over from here.
4134 */
4135 break;
4136
4137 case HSM_ST:
4138 /* complete command or read/write the data register */
4139 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4140 /* ATAPI PIO protocol */
4141 if ((status & ATA_DRQ) == 0) {
4142 /* No more data to transfer or device error.
4143 * Device error will be tagged in HSM_ST_LAST.
4144 */
4145 ap->hsm_task_state = HSM_ST_LAST;
4146 goto fsm_start;
4147 }
4148
4149 /* Device should not ask for data transfer (DRQ=1)
4150 * when it finds something wrong.
4151 * We ignore DRQ here and stop the HSM by
4152 * changing hsm_task_state to HSM_ST_ERR and
4153 * let the EH abort the command or reset the device.
4154 */
4155 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4156 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4157 ap->id, status);
4158 qc->err_mask |= AC_ERR_HSM;
4159 ap->hsm_task_state = HSM_ST_ERR;
4160 goto fsm_start;
4161 }
4162
4163 atapi_pio_bytes(qc);
4164
4165 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4166 /* bad ireason reported by device */
4167 goto fsm_start;
4168
4169 } else {
4170 /* ATA PIO protocol */
4171 if (unlikely((status & ATA_DRQ) == 0)) {
4172 /* handle BSY=0, DRQ=0 as error */
4173 if (likely(status & (ATA_ERR | ATA_DF)))
4174 /* device stops HSM for abort/error */
4175 qc->err_mask |= AC_ERR_DEV;
4176 else
4177 /* HSM violation. Let EH handle this */
4178 qc->err_mask |= AC_ERR_HSM;
4179
4180 ap->hsm_task_state = HSM_ST_ERR;
4181 goto fsm_start;
4182 }
4183
4184 /* For PIO reads, some devices may ask for
4185 * data transfer (DRQ=1) alone with ERR=1.
4186 * We respect DRQ here and transfer one
4187 * block of junk data before changing the
4188 * hsm_task_state to HSM_ST_ERR.
4189 *
4190 * For PIO writes, ERR=1 DRQ=1 doesn't make
4191 * sense since the data block has been
4192 * transferred to the device.
4193 */
4194 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4195 /* data might be corrputed */
4196 qc->err_mask |= AC_ERR_DEV;
4197
4198 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4199 ata_pio_sectors(qc);
4200 ata_altstatus(ap);
4201 status = ata_wait_idle(ap);
4202 }
4203
4204 if (status & (ATA_BUSY | ATA_DRQ))
4205 qc->err_mask |= AC_ERR_HSM;
4206
4207 /* ata_pio_sectors() might change the
4208 * state to HSM_ST_LAST. so, the state
4209 * is changed after ata_pio_sectors().
4210 */
4211 ap->hsm_task_state = HSM_ST_ERR;
4212 goto fsm_start;
4213 }
4214
4215 ata_pio_sectors(qc);
4216
4217 if (ap->hsm_task_state == HSM_ST_LAST &&
4218 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4219 /* all data read */
4220 ata_altstatus(ap);
4221 status = ata_wait_idle(ap);
4222 goto fsm_start;
4223 }
4224 }
4225
4226 ata_altstatus(ap); /* flush */
4227 poll_next = 1;
4228 break;
4229
4230 case HSM_ST_LAST:
4231 if (unlikely(!ata_ok(status))) {
4232 qc->err_mask |= __ac_err_mask(status);
4233 ap->hsm_task_state = HSM_ST_ERR;
4234 goto fsm_start;
4235 }
4236
4237 /* no more data to transfer */
4238 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4239 ap->id, qc->dev->devno, status);
4240
4241 WARN_ON(qc->err_mask);
4242
4243 ap->hsm_task_state = HSM_ST_IDLE;
4244
4245 /* complete taskfile transaction */
4246 ata_hsm_qc_complete(qc, in_wq);
4247
4248 poll_next = 0;
4249 break;
4250
4251 case HSM_ST_ERR:
4252 /* make sure qc->err_mask is available to
4253 * know what's wrong and recover
4254 */
4255 WARN_ON(qc->err_mask == 0);
4256
4257 ap->hsm_task_state = HSM_ST_IDLE;
4258
4259 /* complete taskfile transaction */
4260 ata_hsm_qc_complete(qc, in_wq);
4261
4262 poll_next = 0;
4263 break;
4264 default:
4265 poll_next = 0;
4266 BUG();
4267 }
4268
4269 return poll_next;
4270 }
4271
4272 static void ata_pio_task(void *_data)
4273 {
4274 struct ata_queued_cmd *qc = _data;
4275 struct ata_port *ap = qc->ap;
4276 u8 status;
4277 int poll_next;
4278
4279 fsm_start:
4280 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4281
4282 /*
4283 * This is purely heuristic. This is a fast path.
4284 * Sometimes when we enter, BSY will be cleared in
4285 * a chk-status or two. If not, the drive is probably seeking
4286 * or something. Snooze for a couple msecs, then
4287 * chk-status again. If still busy, queue delayed work.
4288 */
4289 status = ata_busy_wait(ap, ATA_BUSY, 5);
4290 if (status & ATA_BUSY) {
4291 msleep(2);
4292 status = ata_busy_wait(ap, ATA_BUSY, 10);
4293 if (status & ATA_BUSY) {
4294 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4295 return;
4296 }
4297 }
4298
4299 /* move the HSM */
4300 poll_next = ata_hsm_move(ap, qc, status, 1);
4301
4302 /* another command or interrupt handler
4303 * may be running at this point.
4304 */
4305 if (poll_next)
4306 goto fsm_start;
4307 }
4308
4309 /**
4310 * ata_qc_new - Request an available ATA command, for queueing
4311 * @ap: Port associated with device @dev
4312 * @dev: Device from whom we request an available command structure
4313 *
4314 * LOCKING:
4315 * None.
4316 */
4317
4318 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4319 {
4320 struct ata_queued_cmd *qc = NULL;
4321 unsigned int i;
4322
4323 /* no command while frozen */
4324 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4325 return NULL;
4326
4327 /* the last tag is reserved for internal command. */
4328 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4329 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4330 qc = __ata_qc_from_tag(ap, i);
4331 break;
4332 }
4333
4334 if (qc)
4335 qc->tag = i;
4336
4337 return qc;
4338 }
4339
4340 /**
4341 * ata_qc_new_init - Request an available ATA command, and initialize it
4342 * @dev: Device from whom we request an available command structure
4343 *
4344 * LOCKING:
4345 * None.
4346 */
4347
4348 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4349 {
4350 struct ata_port *ap = dev->ap;
4351 struct ata_queued_cmd *qc;
4352
4353 qc = ata_qc_new(ap);
4354 if (qc) {
4355 qc->scsicmd = NULL;
4356 qc->ap = ap;
4357 qc->dev = dev;
4358
4359 ata_qc_reinit(qc);
4360 }
4361
4362 return qc;
4363 }
4364
4365 /**
4366 * ata_qc_free - free unused ata_queued_cmd
4367 * @qc: Command to complete
4368 *
4369 * Designed to free unused ata_queued_cmd object
4370 * in case something prevents using it.
4371 *
4372 * LOCKING:
4373 * spin_lock_irqsave(host lock)
4374 */
4375 void ata_qc_free(struct ata_queued_cmd *qc)
4376 {
4377 struct ata_port *ap = qc->ap;
4378 unsigned int tag;
4379
4380 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4381
4382 qc->flags = 0;
4383 tag = qc->tag;
4384 if (likely(ata_tag_valid(tag))) {
4385 qc->tag = ATA_TAG_POISON;
4386 clear_bit(tag, &ap->qc_allocated);
4387 }
4388 }
4389
4390 void __ata_qc_complete(struct ata_queued_cmd *qc)
4391 {
4392 struct ata_port *ap = qc->ap;
4393
4394 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4395 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4396
4397 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4398 ata_sg_clean(qc);
4399
4400 /* command should be marked inactive atomically with qc completion */
4401 if (qc->tf.protocol == ATA_PROT_NCQ)
4402 ap->sactive &= ~(1 << qc->tag);
4403 else
4404 ap->active_tag = ATA_TAG_POISON;
4405
4406 /* atapi: mark qc as inactive to prevent the interrupt handler
4407 * from completing the command twice later, before the error handler
4408 * is called. (when rc != 0 and atapi request sense is needed)
4409 */
4410 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4411 ap->qc_active &= ~(1 << qc->tag);
4412
4413 /* call completion callback */
4414 qc->complete_fn(qc);
4415 }
4416
4417 /**
4418 * ata_qc_complete - Complete an active ATA command
4419 * @qc: Command to complete
4420 * @err_mask: ATA Status register contents
4421 *
4422 * Indicate to the mid and upper layers that an ATA
4423 * command has completed, with either an ok or not-ok status.
4424 *
4425 * LOCKING:
4426 * spin_lock_irqsave(host lock)
4427 */
4428 void ata_qc_complete(struct ata_queued_cmd *qc)
4429 {
4430 struct ata_port *ap = qc->ap;
4431
4432 /* XXX: New EH and old EH use different mechanisms to
4433 * synchronize EH with regular execution path.
4434 *
4435 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4436 * Normal execution path is responsible for not accessing a
4437 * failed qc. libata core enforces the rule by returning NULL
4438 * from ata_qc_from_tag() for failed qcs.
4439 *
4440 * Old EH depends on ata_qc_complete() nullifying completion
4441 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4442 * not synchronize with interrupt handler. Only PIO task is
4443 * taken care of.
4444 */
4445 if (ap->ops->error_handler) {
4446 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4447
4448 if (unlikely(qc->err_mask))
4449 qc->flags |= ATA_QCFLAG_FAILED;
4450
4451 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4452 if (!ata_tag_internal(qc->tag)) {
4453 /* always fill result TF for failed qc */
4454 ap->ops->tf_read(ap, &qc->result_tf);
4455 ata_qc_schedule_eh(qc);
4456 return;
4457 }
4458 }
4459
4460 /* read result TF if requested */
4461 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4462 ap->ops->tf_read(ap, &qc->result_tf);
4463
4464 __ata_qc_complete(qc);
4465 } else {
4466 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4467 return;
4468
4469 /* read result TF if failed or requested */
4470 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4471 ap->ops->tf_read(ap, &qc->result_tf);
4472
4473 __ata_qc_complete(qc);
4474 }
4475 }
4476
4477 /**
4478 * ata_qc_complete_multiple - Complete multiple qcs successfully
4479 * @ap: port in question
4480 * @qc_active: new qc_active mask
4481 * @finish_qc: LLDD callback invoked before completing a qc
4482 *
4483 * Complete in-flight commands. This functions is meant to be
4484 * called from low-level driver's interrupt routine to complete
4485 * requests normally. ap->qc_active and @qc_active is compared
4486 * and commands are completed accordingly.
4487 *
4488 * LOCKING:
4489 * spin_lock_irqsave(host lock)
4490 *
4491 * RETURNS:
4492 * Number of completed commands on success, -errno otherwise.
4493 */
4494 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4495 void (*finish_qc)(struct ata_queued_cmd *))
4496 {
4497 int nr_done = 0;
4498 u32 done_mask;
4499 int i;
4500
4501 done_mask = ap->qc_active ^ qc_active;
4502
4503 if (unlikely(done_mask & qc_active)) {
4504 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4505 "(%08x->%08x)\n", ap->qc_active, qc_active);
4506 return -EINVAL;
4507 }
4508
4509 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4510 struct ata_queued_cmd *qc;
4511
4512 if (!(done_mask & (1 << i)))
4513 continue;
4514
4515 if ((qc = ata_qc_from_tag(ap, i))) {
4516 if (finish_qc)
4517 finish_qc(qc);
4518 ata_qc_complete(qc);
4519 nr_done++;
4520 }
4521 }
4522
4523 return nr_done;
4524 }
4525
4526 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4527 {
4528 struct ata_port *ap = qc->ap;
4529
4530 switch (qc->tf.protocol) {
4531 case ATA_PROT_NCQ:
4532 case ATA_PROT_DMA:
4533 case ATA_PROT_ATAPI_DMA:
4534 return 1;
4535
4536 case ATA_PROT_ATAPI:
4537 case ATA_PROT_PIO:
4538 if (ap->flags & ATA_FLAG_PIO_DMA)
4539 return 1;
4540
4541 /* fall through */
4542
4543 default:
4544 return 0;
4545 }
4546
4547 /* never reached */
4548 }
4549
4550 /**
4551 * ata_qc_issue - issue taskfile to device
4552 * @qc: command to issue to device
4553 *
4554 * Prepare an ATA command to submission to device.
4555 * This includes mapping the data into a DMA-able
4556 * area, filling in the S/G table, and finally
4557 * writing the taskfile to hardware, starting the command.
4558 *
4559 * LOCKING:
4560 * spin_lock_irqsave(host lock)
4561 */
4562 void ata_qc_issue(struct ata_queued_cmd *qc)
4563 {
4564 struct ata_port *ap = qc->ap;
4565
4566 /* Make sure only one non-NCQ command is outstanding. The
4567 * check is skipped for old EH because it reuses active qc to
4568 * request ATAPI sense.
4569 */
4570 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4571
4572 if (qc->tf.protocol == ATA_PROT_NCQ) {
4573 WARN_ON(ap->sactive & (1 << qc->tag));
4574 ap->sactive |= 1 << qc->tag;
4575 } else {
4576 WARN_ON(ap->sactive);
4577 ap->active_tag = qc->tag;
4578 }
4579
4580 qc->flags |= ATA_QCFLAG_ACTIVE;
4581 ap->qc_active |= 1 << qc->tag;
4582
4583 if (ata_should_dma_map(qc)) {
4584 if (qc->flags & ATA_QCFLAG_SG) {
4585 if (ata_sg_setup(qc))
4586 goto sg_err;
4587 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4588 if (ata_sg_setup_one(qc))
4589 goto sg_err;
4590 }
4591 } else {
4592 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4593 }
4594
4595 ap->ops->qc_prep(qc);
4596
4597 qc->err_mask |= ap->ops->qc_issue(qc);
4598 if (unlikely(qc->err_mask))
4599 goto err;
4600 return;
4601
4602 sg_err:
4603 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4604 qc->err_mask |= AC_ERR_SYSTEM;
4605 err:
4606 ata_qc_complete(qc);
4607 }
4608
4609 /**
4610 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4611 * @qc: command to issue to device
4612 *
4613 * Using various libata functions and hooks, this function
4614 * starts an ATA command. ATA commands are grouped into
4615 * classes called "protocols", and issuing each type of protocol
4616 * is slightly different.
4617 *
4618 * May be used as the qc_issue() entry in ata_port_operations.
4619 *
4620 * LOCKING:
4621 * spin_lock_irqsave(host lock)
4622 *
4623 * RETURNS:
4624 * Zero on success, AC_ERR_* mask on failure
4625 */
4626
4627 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4628 {
4629 struct ata_port *ap = qc->ap;
4630
4631 /* Use polling pio if the LLD doesn't handle
4632 * interrupt driven pio and atapi CDB interrupt.
4633 */
4634 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4635 switch (qc->tf.protocol) {
4636 case ATA_PROT_PIO:
4637 case ATA_PROT_ATAPI:
4638 case ATA_PROT_ATAPI_NODATA:
4639 qc->tf.flags |= ATA_TFLAG_POLLING;
4640 break;
4641 case ATA_PROT_ATAPI_DMA:
4642 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4643 /* see ata_dma_blacklisted() */
4644 BUG();
4645 break;
4646 default:
4647 break;
4648 }
4649 }
4650
4651 /* select the device */
4652 ata_dev_select(ap, qc->dev->devno, 1, 0);
4653
4654 /* start the command */
4655 switch (qc->tf.protocol) {
4656 case ATA_PROT_NODATA:
4657 if (qc->tf.flags & ATA_TFLAG_POLLING)
4658 ata_qc_set_polling(qc);
4659
4660 ata_tf_to_host(ap, &qc->tf);
4661 ap->hsm_task_state = HSM_ST_LAST;
4662
4663 if (qc->tf.flags & ATA_TFLAG_POLLING)
4664 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4665
4666 break;
4667
4668 case ATA_PROT_DMA:
4669 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4670
4671 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4672 ap->ops->bmdma_setup(qc); /* set up bmdma */
4673 ap->ops->bmdma_start(qc); /* initiate bmdma */
4674 ap->hsm_task_state = HSM_ST_LAST;
4675 break;
4676
4677 case ATA_PROT_PIO:
4678 if (qc->tf.flags & ATA_TFLAG_POLLING)
4679 ata_qc_set_polling(qc);
4680
4681 ata_tf_to_host(ap, &qc->tf);
4682
4683 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4684 /* PIO data out protocol */
4685 ap->hsm_task_state = HSM_ST_FIRST;
4686 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4687
4688 /* always send first data block using
4689 * the ata_pio_task() codepath.
4690 */
4691 } else {
4692 /* PIO data in protocol */
4693 ap->hsm_task_state = HSM_ST;
4694
4695 if (qc->tf.flags & ATA_TFLAG_POLLING)
4696 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4697
4698 /* if polling, ata_pio_task() handles the rest.
4699 * otherwise, interrupt handler takes over from here.
4700 */
4701 }
4702
4703 break;
4704
4705 case ATA_PROT_ATAPI:
4706 case ATA_PROT_ATAPI_NODATA:
4707 if (qc->tf.flags & ATA_TFLAG_POLLING)
4708 ata_qc_set_polling(qc);
4709
4710 ata_tf_to_host(ap, &qc->tf);
4711
4712 ap->hsm_task_state = HSM_ST_FIRST;
4713
4714 /* send cdb by polling if no cdb interrupt */
4715 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4716 (qc->tf.flags & ATA_TFLAG_POLLING))
4717 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4718 break;
4719
4720 case ATA_PROT_ATAPI_DMA:
4721 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4722
4723 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4724 ap->ops->bmdma_setup(qc); /* set up bmdma */
4725 ap->hsm_task_state = HSM_ST_FIRST;
4726
4727 /* send cdb by polling if no cdb interrupt */
4728 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4729 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4730 break;
4731
4732 default:
4733 WARN_ON(1);
4734 return AC_ERR_SYSTEM;
4735 }
4736
4737 return 0;
4738 }
4739
4740 /**
4741 * ata_host_intr - Handle host interrupt for given (port, task)
4742 * @ap: Port on which interrupt arrived (possibly...)
4743 * @qc: Taskfile currently active in engine
4744 *
4745 * Handle host interrupt for given queued command. Currently,
4746 * only DMA interrupts are handled. All other commands are
4747 * handled via polling with interrupts disabled (nIEN bit).
4748 *
4749 * LOCKING:
4750 * spin_lock_irqsave(host lock)
4751 *
4752 * RETURNS:
4753 * One if interrupt was handled, zero if not (shared irq).
4754 */
4755
4756 inline unsigned int ata_host_intr (struct ata_port *ap,
4757 struct ata_queued_cmd *qc)
4758 {
4759 u8 status, host_stat = 0;
4760
4761 VPRINTK("ata%u: protocol %d task_state %d\n",
4762 ap->id, qc->tf.protocol, ap->hsm_task_state);
4763
4764 /* Check whether we are expecting interrupt in this state */
4765 switch (ap->hsm_task_state) {
4766 case HSM_ST_FIRST:
4767 /* Some pre-ATAPI-4 devices assert INTRQ
4768 * at this state when ready to receive CDB.
4769 */
4770
4771 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4772 * The flag was turned on only for atapi devices.
4773 * No need to check is_atapi_taskfile(&qc->tf) again.
4774 */
4775 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4776 goto idle_irq;
4777 break;
4778 case HSM_ST_LAST:
4779 if (qc->tf.protocol == ATA_PROT_DMA ||
4780 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4781 /* check status of DMA engine */
4782 host_stat = ap->ops->bmdma_status(ap);
4783 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4784
4785 /* if it's not our irq... */
4786 if (!(host_stat & ATA_DMA_INTR))
4787 goto idle_irq;
4788
4789 /* before we do anything else, clear DMA-Start bit */
4790 ap->ops->bmdma_stop(qc);
4791
4792 if (unlikely(host_stat & ATA_DMA_ERR)) {
4793 /* error when transfering data to/from memory */
4794 qc->err_mask |= AC_ERR_HOST_BUS;
4795 ap->hsm_task_state = HSM_ST_ERR;
4796 }
4797 }
4798 break;
4799 case HSM_ST:
4800 break;
4801 default:
4802 goto idle_irq;
4803 }
4804
4805 /* check altstatus */
4806 status = ata_altstatus(ap);
4807 if (status & ATA_BUSY)
4808 goto idle_irq;
4809
4810 /* check main status, clearing INTRQ */
4811 status = ata_chk_status(ap);
4812 if (unlikely(status & ATA_BUSY))
4813 goto idle_irq;
4814
4815 /* ack bmdma irq events */
4816 ap->ops->irq_clear(ap);
4817
4818 ata_hsm_move(ap, qc, status, 0);
4819 return 1; /* irq handled */
4820
4821 idle_irq:
4822 ap->stats.idle_irq++;
4823
4824 #ifdef ATA_IRQ_TRAP
4825 if ((ap->stats.idle_irq % 1000) == 0) {
4826 ata_irq_ack(ap, 0); /* debug trap */
4827 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4828 return 1;
4829 }
4830 #endif
4831 return 0; /* irq not handled */
4832 }
4833
4834 /**
4835 * ata_interrupt - Default ATA host interrupt handler
4836 * @irq: irq line (unused)
4837 * @dev_instance: pointer to our ata_host information structure
4838 * @regs: unused
4839 *
4840 * Default interrupt handler for PCI IDE devices. Calls
4841 * ata_host_intr() for each port that is not disabled.
4842 *
4843 * LOCKING:
4844 * Obtains host lock during operation.
4845 *
4846 * RETURNS:
4847 * IRQ_NONE or IRQ_HANDLED.
4848 */
4849
4850 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4851 {
4852 struct ata_host *host = dev_instance;
4853 unsigned int i;
4854 unsigned int handled = 0;
4855 unsigned long flags;
4856
4857 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4858 spin_lock_irqsave(&host->lock, flags);
4859
4860 for (i = 0; i < host->n_ports; i++) {
4861 struct ata_port *ap;
4862
4863 ap = host->ports[i];
4864 if (ap &&
4865 !(ap->flags & ATA_FLAG_DISABLED)) {
4866 struct ata_queued_cmd *qc;
4867
4868 qc = ata_qc_from_tag(ap, ap->active_tag);
4869 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4870 (qc->flags & ATA_QCFLAG_ACTIVE))
4871 handled |= ata_host_intr(ap, qc);
4872 }
4873 }
4874
4875 spin_unlock_irqrestore(&host->lock, flags);
4876
4877 return IRQ_RETVAL(handled);
4878 }
4879
4880 /**
4881 * sata_scr_valid - test whether SCRs are accessible
4882 * @ap: ATA port to test SCR accessibility for
4883 *
4884 * Test whether SCRs are accessible for @ap.
4885 *
4886 * LOCKING:
4887 * None.
4888 *
4889 * RETURNS:
4890 * 1 if SCRs are accessible, 0 otherwise.
4891 */
4892 int sata_scr_valid(struct ata_port *ap)
4893 {
4894 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4895 }
4896
4897 /**
4898 * sata_scr_read - read SCR register of the specified port
4899 * @ap: ATA port to read SCR for
4900 * @reg: SCR to read
4901 * @val: Place to store read value
4902 *
4903 * Read SCR register @reg of @ap into *@val. This function is
4904 * guaranteed to succeed if the cable type of the port is SATA
4905 * and the port implements ->scr_read.
4906 *
4907 * LOCKING:
4908 * None.
4909 *
4910 * RETURNS:
4911 * 0 on success, negative errno on failure.
4912 */
4913 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4914 {
4915 if (sata_scr_valid(ap)) {
4916 *val = ap->ops->scr_read(ap, reg);
4917 return 0;
4918 }
4919 return -EOPNOTSUPP;
4920 }
4921
4922 /**
4923 * sata_scr_write - write SCR register of the specified port
4924 * @ap: ATA port to write SCR for
4925 * @reg: SCR to write
4926 * @val: value to write
4927 *
4928 * Write @val to SCR register @reg of @ap. This function is
4929 * guaranteed to succeed if the cable type of the port is SATA
4930 * and the port implements ->scr_read.
4931 *
4932 * LOCKING:
4933 * None.
4934 *
4935 * RETURNS:
4936 * 0 on success, negative errno on failure.
4937 */
4938 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4939 {
4940 if (sata_scr_valid(ap)) {
4941 ap->ops->scr_write(ap, reg, val);
4942 return 0;
4943 }
4944 return -EOPNOTSUPP;
4945 }
4946
4947 /**
4948 * sata_scr_write_flush - write SCR register of the specified port and flush
4949 * @ap: ATA port to write SCR for
4950 * @reg: SCR to write
4951 * @val: value to write
4952 *
4953 * This function is identical to sata_scr_write() except that this
4954 * function performs flush after writing to the register.
4955 *
4956 * LOCKING:
4957 * None.
4958 *
4959 * RETURNS:
4960 * 0 on success, negative errno on failure.
4961 */
4962 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4963 {
4964 if (sata_scr_valid(ap)) {
4965 ap->ops->scr_write(ap, reg, val);
4966 ap->ops->scr_read(ap, reg);
4967 return 0;
4968 }
4969 return -EOPNOTSUPP;
4970 }
4971
4972 /**
4973 * ata_port_online - test whether the given port is online
4974 * @ap: ATA port to test
4975 *
4976 * Test whether @ap is online. Note that this function returns 0
4977 * if online status of @ap cannot be obtained, so
4978 * ata_port_online(ap) != !ata_port_offline(ap).
4979 *
4980 * LOCKING:
4981 * None.
4982 *
4983 * RETURNS:
4984 * 1 if the port online status is available and online.
4985 */
4986 int ata_port_online(struct ata_port *ap)
4987 {
4988 u32 sstatus;
4989
4990 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4991 return 1;
4992 return 0;
4993 }
4994
4995 /**
4996 * ata_port_offline - test whether the given port is offline
4997 * @ap: ATA port to test
4998 *
4999 * Test whether @ap is offline. Note that this function returns
5000 * 0 if offline status of @ap cannot be obtained, so
5001 * ata_port_online(ap) != !ata_port_offline(ap).
5002 *
5003 * LOCKING:
5004 * None.
5005 *
5006 * RETURNS:
5007 * 1 if the port offline status is available and offline.
5008 */
5009 int ata_port_offline(struct ata_port *ap)
5010 {
5011 u32 sstatus;
5012
5013 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5014 return 1;
5015 return 0;
5016 }
5017
5018 int ata_flush_cache(struct ata_device *dev)
5019 {
5020 unsigned int err_mask;
5021 u8 cmd;
5022
5023 if (!ata_try_flush_cache(dev))
5024 return 0;
5025
5026 if (ata_id_has_flush_ext(dev->id))
5027 cmd = ATA_CMD_FLUSH_EXT;
5028 else
5029 cmd = ATA_CMD_FLUSH;
5030
5031 err_mask = ata_do_simple_cmd(dev, cmd);
5032 if (err_mask) {
5033 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5034 return -EIO;
5035 }
5036
5037 return 0;
5038 }
5039
5040 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5041 unsigned int action, unsigned int ehi_flags,
5042 int wait)
5043 {
5044 unsigned long flags;
5045 int i, rc;
5046
5047 for (i = 0; i < host->n_ports; i++) {
5048 struct ata_port *ap = host->ports[i];
5049
5050 /* Previous resume operation might still be in
5051 * progress. Wait for PM_PENDING to clear.
5052 */
5053 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5054 ata_port_wait_eh(ap);
5055 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5056 }
5057
5058 /* request PM ops to EH */
5059 spin_lock_irqsave(ap->lock, flags);
5060
5061 ap->pm_mesg = mesg;
5062 if (wait) {
5063 rc = 0;
5064 ap->pm_result = &rc;
5065 }
5066
5067 ap->pflags |= ATA_PFLAG_PM_PENDING;
5068 ap->eh_info.action |= action;
5069 ap->eh_info.flags |= ehi_flags;
5070
5071 ata_port_schedule_eh(ap);
5072
5073 spin_unlock_irqrestore(ap->lock, flags);
5074
5075 /* wait and check result */
5076 if (wait) {
5077 ata_port_wait_eh(ap);
5078 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5079 if (rc)
5080 return rc;
5081 }
5082 }
5083
5084 return 0;
5085 }
5086
5087 /**
5088 * ata_host_suspend - suspend host
5089 * @host: host to suspend
5090 * @mesg: PM message
5091 *
5092 * Suspend @host. Actual operation is performed by EH. This
5093 * function requests EH to perform PM operations and waits for EH
5094 * to finish.
5095 *
5096 * LOCKING:
5097 * Kernel thread context (may sleep).
5098 *
5099 * RETURNS:
5100 * 0 on success, -errno on failure.
5101 */
5102 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5103 {
5104 int i, j, rc;
5105
5106 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5107 if (rc)
5108 goto fail;
5109
5110 /* EH is quiescent now. Fail if we have any ready device.
5111 * This happens if hotplug occurs between completion of device
5112 * suspension and here.
5113 */
5114 for (i = 0; i < host->n_ports; i++) {
5115 struct ata_port *ap = host->ports[i];
5116
5117 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5118 struct ata_device *dev = &ap->device[j];
5119
5120 if (ata_dev_ready(dev)) {
5121 ata_port_printk(ap, KERN_WARNING,
5122 "suspend failed, device %d "
5123 "still active\n", dev->devno);
5124 rc = -EBUSY;
5125 goto fail;
5126 }
5127 }
5128 }
5129
5130 host->dev->power.power_state = mesg;
5131 return 0;
5132
5133 fail:
5134 ata_host_resume(host);
5135 return rc;
5136 }
5137
5138 /**
5139 * ata_host_resume - resume host
5140 * @host: host to resume
5141 *
5142 * Resume @host. Actual operation is performed by EH. This
5143 * function requests EH to perform PM operations and returns.
5144 * Note that all resume operations are performed parallely.
5145 *
5146 * LOCKING:
5147 * Kernel thread context (may sleep).
5148 */
5149 void ata_host_resume(struct ata_host *host)
5150 {
5151 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5152 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5153 host->dev->power.power_state = PMSG_ON;
5154 }
5155
5156 /**
5157 * ata_port_start - Set port up for dma.
5158 * @ap: Port to initialize
5159 *
5160 * Called just after data structures for each port are
5161 * initialized. Allocates space for PRD table.
5162 *
5163 * May be used as the port_start() entry in ata_port_operations.
5164 *
5165 * LOCKING:
5166 * Inherited from caller.
5167 */
5168
5169 int ata_port_start (struct ata_port *ap)
5170 {
5171 struct device *dev = ap->dev;
5172 int rc;
5173
5174 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5175 if (!ap->prd)
5176 return -ENOMEM;
5177
5178 rc = ata_pad_alloc(ap, dev);
5179 if (rc) {
5180 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5181 return rc;
5182 }
5183
5184 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5185
5186 return 0;
5187 }
5188
5189
5190 /**
5191 * ata_port_stop - Undo ata_port_start()
5192 * @ap: Port to shut down
5193 *
5194 * Frees the PRD table.
5195 *
5196 * May be used as the port_stop() entry in ata_port_operations.
5197 *
5198 * LOCKING:
5199 * Inherited from caller.
5200 */
5201
5202 void ata_port_stop (struct ata_port *ap)
5203 {
5204 struct device *dev = ap->dev;
5205
5206 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5207 ata_pad_free(ap, dev);
5208 }
5209
5210 void ata_host_stop (struct ata_host *host)
5211 {
5212 if (host->mmio_base)
5213 iounmap(host->mmio_base);
5214 }
5215
5216 /**
5217 * ata_dev_init - Initialize an ata_device structure
5218 * @dev: Device structure to initialize
5219 *
5220 * Initialize @dev in preparation for probing.
5221 *
5222 * LOCKING:
5223 * Inherited from caller.
5224 */
5225 void ata_dev_init(struct ata_device *dev)
5226 {
5227 struct ata_port *ap = dev->ap;
5228 unsigned long flags;
5229
5230 /* SATA spd limit is bound to the first device */
5231 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5232
5233 /* High bits of dev->flags are used to record warm plug
5234 * requests which occur asynchronously. Synchronize using
5235 * host lock.
5236 */
5237 spin_lock_irqsave(ap->lock, flags);
5238 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5239 spin_unlock_irqrestore(ap->lock, flags);
5240
5241 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5242 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5243 dev->pio_mask = UINT_MAX;
5244 dev->mwdma_mask = UINT_MAX;
5245 dev->udma_mask = UINT_MAX;
5246 }
5247
5248 /**
5249 * ata_port_init - Initialize an ata_port structure
5250 * @ap: Structure to initialize
5251 * @host: Collection of hosts to which @ap belongs
5252 * @ent: Probe information provided by low-level driver
5253 * @port_no: Port number associated with this ata_port
5254 *
5255 * Initialize a new ata_port structure.
5256 *
5257 * LOCKING:
5258 * Inherited from caller.
5259 */
5260 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5261 const struct ata_probe_ent *ent, unsigned int port_no)
5262 {
5263 unsigned int i;
5264
5265 ap->lock = &host->lock;
5266 ap->flags = ATA_FLAG_DISABLED;
5267 ap->id = ata_unique_id++;
5268 ap->ctl = ATA_DEVCTL_OBS;
5269 ap->host = host;
5270 ap->dev = ent->dev;
5271 ap->port_no = port_no;
5272 ap->pio_mask = ent->pio_mask;
5273 ap->mwdma_mask = ent->mwdma_mask;
5274 ap->udma_mask = ent->udma_mask;
5275 ap->flags |= ent->port_flags;
5276 ap->ops = ent->port_ops;
5277 ap->hw_sata_spd_limit = UINT_MAX;
5278 ap->active_tag = ATA_TAG_POISON;
5279 ap->last_ctl = 0xFF;
5280
5281 #if defined(ATA_VERBOSE_DEBUG)
5282 /* turn on all debugging levels */
5283 ap->msg_enable = 0x00FF;
5284 #elif defined(ATA_DEBUG)
5285 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5286 #else
5287 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5288 #endif
5289
5290 INIT_WORK(&ap->port_task, NULL, NULL);
5291 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5292 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5293 INIT_LIST_HEAD(&ap->eh_done_q);
5294 init_waitqueue_head(&ap->eh_wait_q);
5295
5296 /* set cable type */
5297 ap->cbl = ATA_CBL_NONE;
5298 if (ap->flags & ATA_FLAG_SATA)
5299 ap->cbl = ATA_CBL_SATA;
5300
5301 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5302 struct ata_device *dev = &ap->device[i];
5303 dev->ap = ap;
5304 dev->devno = i;
5305 ata_dev_init(dev);
5306 }
5307
5308 #ifdef ATA_IRQ_TRAP
5309 ap->stats.unhandled_irq = 1;
5310 ap->stats.idle_irq = 1;
5311 #endif
5312
5313 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5314 }
5315
5316 /**
5317 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5318 * @ap: ATA port to initialize SCSI host for
5319 * @shost: SCSI host associated with @ap
5320 *
5321 * Initialize SCSI host @shost associated with ATA port @ap.
5322 *
5323 * LOCKING:
5324 * Inherited from caller.
5325 */
5326 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5327 {
5328 ap->scsi_host = shost;
5329
5330 shost->unique_id = ap->id;
5331 shost->max_id = 16;
5332 shost->max_lun = 1;
5333 shost->max_channel = 1;
5334 shost->max_cmd_len = 12;
5335 }
5336
5337 /**
5338 * ata_port_add - Attach low-level ATA driver to system
5339 * @ent: Information provided by low-level driver
5340 * @host: Collections of ports to which we add
5341 * @port_no: Port number associated with this host
5342 *
5343 * Attach low-level ATA driver to system.
5344 *
5345 * LOCKING:
5346 * PCI/etc. bus probe sem.
5347 *
5348 * RETURNS:
5349 * New ata_port on success, for NULL on error.
5350 */
5351 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5352 struct ata_host *host,
5353 unsigned int port_no)
5354 {
5355 struct Scsi_Host *shost;
5356 struct ata_port *ap;
5357
5358 DPRINTK("ENTER\n");
5359
5360 if (!ent->port_ops->error_handler &&
5361 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5362 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5363 port_no);
5364 return NULL;
5365 }
5366
5367 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5368 if (!shost)
5369 return NULL;
5370
5371 shost->transportt = &ata_scsi_transport_template;
5372
5373 ap = ata_shost_to_port(shost);
5374
5375 ata_port_init(ap, host, ent, port_no);
5376 ata_port_init_shost(ap, shost);
5377
5378 return ap;
5379 }
5380
5381 /**
5382 * ata_sas_host_init - Initialize a host struct
5383 * @host: host to initialize
5384 * @dev: device host is attached to
5385 * @flags: host flags
5386 * @ops: port_ops
5387 *
5388 * LOCKING:
5389 * PCI/etc. bus probe sem.
5390 *
5391 */
5392
5393 void ata_host_init(struct ata_host *host, struct device *dev,
5394 unsigned long flags, const struct ata_port_operations *ops)
5395 {
5396 spin_lock_init(&host->lock);
5397 host->dev = dev;
5398 host->flags = flags;
5399 host->ops = ops;
5400 }
5401
5402 /**
5403 * ata_device_add - Register hardware device with ATA and SCSI layers
5404 * @ent: Probe information describing hardware device to be registered
5405 *
5406 * This function processes the information provided in the probe
5407 * information struct @ent, allocates the necessary ATA and SCSI
5408 * host information structures, initializes them, and registers
5409 * everything with requisite kernel subsystems.
5410 *
5411 * This function requests irqs, probes the ATA bus, and probes
5412 * the SCSI bus.
5413 *
5414 * LOCKING:
5415 * PCI/etc. bus probe sem.
5416 *
5417 * RETURNS:
5418 * Number of ports registered. Zero on error (no ports registered).
5419 */
5420 int ata_device_add(const struct ata_probe_ent *ent)
5421 {
5422 unsigned int i;
5423 struct device *dev = ent->dev;
5424 struct ata_host *host;
5425 int rc;
5426
5427 DPRINTK("ENTER\n");
5428 /* alloc a container for our list of ATA ports (buses) */
5429 host = kzalloc(sizeof(struct ata_host) +
5430 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5431 if (!host)
5432 return 0;
5433
5434 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5435 host->n_ports = ent->n_ports;
5436 host->irq = ent->irq;
5437 host->irq2 = ent->irq2;
5438 host->mmio_base = ent->mmio_base;
5439 host->private_data = ent->private_data;
5440
5441 /* register each port bound to this device */
5442 for (i = 0; i < host->n_ports; i++) {
5443 struct ata_port *ap;
5444 unsigned long xfer_mode_mask;
5445 int irq_line = ent->irq;
5446
5447 ap = ata_port_add(ent, host, i);
5448 if (!ap)
5449 goto err_out;
5450
5451 host->ports[i] = ap;
5452
5453 /* dummy? */
5454 if (ent->dummy_port_mask & (1 << i)) {
5455 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5456 ap->ops = &ata_dummy_port_ops;
5457 continue;
5458 }
5459
5460 /* start port */
5461 rc = ap->ops->port_start(ap);
5462 if (rc) {
5463 host->ports[i] = NULL;
5464 scsi_host_put(ap->scsi_host);
5465 goto err_out;
5466 }
5467
5468 /* Report the secondary IRQ for second channel legacy */
5469 if (i == 1 && ent->irq2)
5470 irq_line = ent->irq2;
5471
5472 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5473 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5474 (ap->pio_mask << ATA_SHIFT_PIO);
5475
5476 /* print per-port info to dmesg */
5477 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5478 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5479 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5480 ata_mode_string(xfer_mode_mask),
5481 ap->ioaddr.cmd_addr,
5482 ap->ioaddr.ctl_addr,
5483 ap->ioaddr.bmdma_addr,
5484 irq_line);
5485
5486 ata_chk_status(ap);
5487 host->ops->irq_clear(ap);
5488 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5489 }
5490
5491 /* obtain irq, that may be shared between channels */
5492 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5493 DRV_NAME, host);
5494 if (rc) {
5495 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5496 ent->irq, rc);
5497 goto err_out;
5498 }
5499
5500 /* do we have a second IRQ for the other channel, eg legacy mode */
5501 if (ent->irq2) {
5502 /* We will get weird core code crashes later if this is true
5503 so trap it now */
5504 BUG_ON(ent->irq == ent->irq2);
5505
5506 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5507 DRV_NAME, host);
5508 if (rc) {
5509 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5510 ent->irq2, rc);
5511 goto err_out_free_irq;
5512 }
5513 }
5514
5515 /* perform each probe synchronously */
5516 DPRINTK("probe begin\n");
5517 for (i = 0; i < host->n_ports; i++) {
5518 struct ata_port *ap = host->ports[i];
5519 u32 scontrol;
5520 int rc;
5521
5522 /* init sata_spd_limit to the current value */
5523 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5524 int spd = (scontrol >> 4) & 0xf;
5525 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5526 }
5527 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5528
5529 rc = scsi_add_host(ap->scsi_host, dev);
5530 if (rc) {
5531 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5532 /* FIXME: do something useful here */
5533 /* FIXME: handle unconditional calls to
5534 * scsi_scan_host and ata_host_remove, below,
5535 * at the very least
5536 */
5537 }
5538
5539 if (ap->ops->error_handler) {
5540 struct ata_eh_info *ehi = &ap->eh_info;
5541 unsigned long flags;
5542
5543 ata_port_probe(ap);
5544
5545 /* kick EH for boot probing */
5546 spin_lock_irqsave(ap->lock, flags);
5547
5548 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5549 ehi->action |= ATA_EH_SOFTRESET;
5550 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5551
5552 ap->pflags |= ATA_PFLAG_LOADING;
5553 ata_port_schedule_eh(ap);
5554
5555 spin_unlock_irqrestore(ap->lock, flags);
5556
5557 /* wait for EH to finish */
5558 ata_port_wait_eh(ap);
5559 } else {
5560 DPRINTK("ata%u: bus probe begin\n", ap->id);
5561 rc = ata_bus_probe(ap);
5562 DPRINTK("ata%u: bus probe end\n", ap->id);
5563
5564 if (rc) {
5565 /* FIXME: do something useful here?
5566 * Current libata behavior will
5567 * tear down everything when
5568 * the module is removed
5569 * or the h/w is unplugged.
5570 */
5571 }
5572 }
5573 }
5574
5575 /* probes are done, now scan each port's disk(s) */
5576 DPRINTK("host probe begin\n");
5577 for (i = 0; i < host->n_ports; i++) {
5578 struct ata_port *ap = host->ports[i];
5579
5580 ata_scsi_scan_host(ap);
5581 }
5582
5583 dev_set_drvdata(dev, host);
5584
5585 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5586 return ent->n_ports; /* success */
5587
5588 err_out_free_irq:
5589 free_irq(ent->irq, host);
5590 err_out:
5591 for (i = 0; i < host->n_ports; i++) {
5592 struct ata_port *ap = host->ports[i];
5593 if (ap) {
5594 ap->ops->port_stop(ap);
5595 scsi_host_put(ap->scsi_host);
5596 }
5597 }
5598
5599 kfree(host);
5600 VPRINTK("EXIT, returning 0\n");
5601 return 0;
5602 }
5603
5604 /**
5605 * ata_port_detach - Detach ATA port in prepration of device removal
5606 * @ap: ATA port to be detached
5607 *
5608 * Detach all ATA devices and the associated SCSI devices of @ap;
5609 * then, remove the associated SCSI host. @ap is guaranteed to
5610 * be quiescent on return from this function.
5611 *
5612 * LOCKING:
5613 * Kernel thread context (may sleep).
5614 */
5615 void ata_port_detach(struct ata_port *ap)
5616 {
5617 unsigned long flags;
5618 int i;
5619
5620 if (!ap->ops->error_handler)
5621 goto skip_eh;
5622
5623 /* tell EH we're leaving & flush EH */
5624 spin_lock_irqsave(ap->lock, flags);
5625 ap->pflags |= ATA_PFLAG_UNLOADING;
5626 spin_unlock_irqrestore(ap->lock, flags);
5627
5628 ata_port_wait_eh(ap);
5629
5630 /* EH is now guaranteed to see UNLOADING, so no new device
5631 * will be attached. Disable all existing devices.
5632 */
5633 spin_lock_irqsave(ap->lock, flags);
5634
5635 for (i = 0; i < ATA_MAX_DEVICES; i++)
5636 ata_dev_disable(&ap->device[i]);
5637
5638 spin_unlock_irqrestore(ap->lock, flags);
5639
5640 /* Final freeze & EH. All in-flight commands are aborted. EH
5641 * will be skipped and retrials will be terminated with bad
5642 * target.
5643 */
5644 spin_lock_irqsave(ap->lock, flags);
5645 ata_port_freeze(ap); /* won't be thawed */
5646 spin_unlock_irqrestore(ap->lock, flags);
5647
5648 ata_port_wait_eh(ap);
5649
5650 /* Flush hotplug task. The sequence is similar to
5651 * ata_port_flush_task().
5652 */
5653 flush_workqueue(ata_aux_wq);
5654 cancel_delayed_work(&ap->hotplug_task);
5655 flush_workqueue(ata_aux_wq);
5656
5657 skip_eh:
5658 /* remove the associated SCSI host */
5659 scsi_remove_host(ap->scsi_host);
5660 }
5661
5662 /**
5663 * ata_host_remove - PCI layer callback for device removal
5664 * @host: ATA host set that was removed
5665 *
5666 * Unregister all objects associated with this host set. Free those
5667 * objects.
5668 *
5669 * LOCKING:
5670 * Inherited from calling layer (may sleep).
5671 */
5672
5673 void ata_host_remove(struct ata_host *host)
5674 {
5675 unsigned int i;
5676
5677 for (i = 0; i < host->n_ports; i++)
5678 ata_port_detach(host->ports[i]);
5679
5680 free_irq(host->irq, host);
5681 if (host->irq2)
5682 free_irq(host->irq2, host);
5683
5684 for (i = 0; i < host->n_ports; i++) {
5685 struct ata_port *ap = host->ports[i];
5686
5687 ata_scsi_release(ap->scsi_host);
5688
5689 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5690 struct ata_ioports *ioaddr = &ap->ioaddr;
5691
5692 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5693 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5694 release_region(ATA_PRIMARY_CMD, 8);
5695 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5696 release_region(ATA_SECONDARY_CMD, 8);
5697 }
5698
5699 scsi_host_put(ap->scsi_host);
5700 }
5701
5702 if (host->ops->host_stop)
5703 host->ops->host_stop(host);
5704
5705 kfree(host);
5706 }
5707
5708 /**
5709 * ata_scsi_release - SCSI layer callback hook for host unload
5710 * @host: libata host to be unloaded
5711 *
5712 * Performs all duties necessary to shut down a libata port...
5713 * Kill port kthread, disable port, and release resources.
5714 *
5715 * LOCKING:
5716 * Inherited from SCSI layer.
5717 *
5718 * RETURNS:
5719 * One.
5720 */
5721
5722 int ata_scsi_release(struct Scsi_Host *shost)
5723 {
5724 struct ata_port *ap = ata_shost_to_port(shost);
5725
5726 DPRINTK("ENTER\n");
5727
5728 ap->ops->port_disable(ap);
5729 ap->ops->port_stop(ap);
5730
5731 DPRINTK("EXIT\n");
5732 return 1;
5733 }
5734
5735 struct ata_probe_ent *
5736 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5737 {
5738 struct ata_probe_ent *probe_ent;
5739
5740 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5741 if (!probe_ent) {
5742 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5743 kobject_name(&(dev->kobj)));
5744 return NULL;
5745 }
5746
5747 INIT_LIST_HEAD(&probe_ent->node);
5748 probe_ent->dev = dev;
5749
5750 probe_ent->sht = port->sht;
5751 probe_ent->port_flags = port->flags;
5752 probe_ent->pio_mask = port->pio_mask;
5753 probe_ent->mwdma_mask = port->mwdma_mask;
5754 probe_ent->udma_mask = port->udma_mask;
5755 probe_ent->port_ops = port->port_ops;
5756
5757 return probe_ent;
5758 }
5759
5760 /**
5761 * ata_std_ports - initialize ioaddr with standard port offsets.
5762 * @ioaddr: IO address structure to be initialized
5763 *
5764 * Utility function which initializes data_addr, error_addr,
5765 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5766 * device_addr, status_addr, and command_addr to standard offsets
5767 * relative to cmd_addr.
5768 *
5769 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5770 */
5771
5772 void ata_std_ports(struct ata_ioports *ioaddr)
5773 {
5774 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5775 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5776 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5777 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5778 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5779 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5780 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5781 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5782 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5783 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5784 }
5785
5786
5787 #ifdef CONFIG_PCI
5788
5789 void ata_pci_host_stop (struct ata_host *host)
5790 {
5791 struct pci_dev *pdev = to_pci_dev(host->dev);
5792
5793 pci_iounmap(pdev, host->mmio_base);
5794 }
5795
5796 /**
5797 * ata_pci_remove_one - PCI layer callback for device removal
5798 * @pdev: PCI device that was removed
5799 *
5800 * PCI layer indicates to libata via this hook that
5801 * hot-unplug or module unload event has occurred.
5802 * Handle this by unregistering all objects associated
5803 * with this PCI device. Free those objects. Then finally
5804 * release PCI resources and disable device.
5805 *
5806 * LOCKING:
5807 * Inherited from PCI layer (may sleep).
5808 */
5809
5810 void ata_pci_remove_one (struct pci_dev *pdev)
5811 {
5812 struct device *dev = pci_dev_to_dev(pdev);
5813 struct ata_host *host = dev_get_drvdata(dev);
5814
5815 ata_host_remove(host);
5816
5817 pci_release_regions(pdev);
5818 pci_disable_device(pdev);
5819 dev_set_drvdata(dev, NULL);
5820 }
5821
5822 /* move to PCI subsystem */
5823 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5824 {
5825 unsigned long tmp = 0;
5826
5827 switch (bits->width) {
5828 case 1: {
5829 u8 tmp8 = 0;
5830 pci_read_config_byte(pdev, bits->reg, &tmp8);
5831 tmp = tmp8;
5832 break;
5833 }
5834 case 2: {
5835 u16 tmp16 = 0;
5836 pci_read_config_word(pdev, bits->reg, &tmp16);
5837 tmp = tmp16;
5838 break;
5839 }
5840 case 4: {
5841 u32 tmp32 = 0;
5842 pci_read_config_dword(pdev, bits->reg, &tmp32);
5843 tmp = tmp32;
5844 break;
5845 }
5846
5847 default:
5848 return -EINVAL;
5849 }
5850
5851 tmp &= bits->mask;
5852
5853 return (tmp == bits->val) ? 1 : 0;
5854 }
5855
5856 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5857 {
5858 pci_save_state(pdev);
5859
5860 if (mesg.event == PM_EVENT_SUSPEND) {
5861 pci_disable_device(pdev);
5862 pci_set_power_state(pdev, PCI_D3hot);
5863 }
5864 }
5865
5866 void ata_pci_device_do_resume(struct pci_dev *pdev)
5867 {
5868 pci_set_power_state(pdev, PCI_D0);
5869 pci_restore_state(pdev);
5870 pci_enable_device(pdev);
5871 pci_set_master(pdev);
5872 }
5873
5874 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5875 {
5876 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5877 int rc = 0;
5878
5879 rc = ata_host_suspend(host, mesg);
5880 if (rc)
5881 return rc;
5882
5883 ata_pci_device_do_suspend(pdev, mesg);
5884
5885 return 0;
5886 }
5887
5888 int ata_pci_device_resume(struct pci_dev *pdev)
5889 {
5890 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5891
5892 ata_pci_device_do_resume(pdev);
5893 ata_host_resume(host);
5894 return 0;
5895 }
5896 #endif /* CONFIG_PCI */
5897
5898
5899 static int __init ata_init(void)
5900 {
5901 ata_probe_timeout *= HZ;
5902 ata_wq = create_workqueue("ata");
5903 if (!ata_wq)
5904 return -ENOMEM;
5905
5906 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5907 if (!ata_aux_wq) {
5908 destroy_workqueue(ata_wq);
5909 return -ENOMEM;
5910 }
5911
5912 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5913 return 0;
5914 }
5915
5916 static void __exit ata_exit(void)
5917 {
5918 destroy_workqueue(ata_wq);
5919 destroy_workqueue(ata_aux_wq);
5920 }
5921
5922 module_init(ata_init);
5923 module_exit(ata_exit);
5924
5925 static unsigned long ratelimit_time;
5926 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5927
5928 int ata_ratelimit(void)
5929 {
5930 int rc;
5931 unsigned long flags;
5932
5933 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5934
5935 if (time_after(jiffies, ratelimit_time)) {
5936 rc = 1;
5937 ratelimit_time = jiffies + (HZ/5);
5938 } else
5939 rc = 0;
5940
5941 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5942
5943 return rc;
5944 }
5945
5946 /**
5947 * ata_wait_register - wait until register value changes
5948 * @reg: IO-mapped register
5949 * @mask: Mask to apply to read register value
5950 * @val: Wait condition
5951 * @interval_msec: polling interval in milliseconds
5952 * @timeout_msec: timeout in milliseconds
5953 *
5954 * Waiting for some bits of register to change is a common
5955 * operation for ATA controllers. This function reads 32bit LE
5956 * IO-mapped register @reg and tests for the following condition.
5957 *
5958 * (*@reg & mask) != val
5959 *
5960 * If the condition is met, it returns; otherwise, the process is
5961 * repeated after @interval_msec until timeout.
5962 *
5963 * LOCKING:
5964 * Kernel thread context (may sleep)
5965 *
5966 * RETURNS:
5967 * The final register value.
5968 */
5969 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5970 unsigned long interval_msec,
5971 unsigned long timeout_msec)
5972 {
5973 unsigned long timeout;
5974 u32 tmp;
5975
5976 tmp = ioread32(reg);
5977
5978 /* Calculate timeout _after_ the first read to make sure
5979 * preceding writes reach the controller before starting to
5980 * eat away the timeout.
5981 */
5982 timeout = jiffies + (timeout_msec * HZ) / 1000;
5983
5984 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5985 msleep(interval_msec);
5986 tmp = ioread32(reg);
5987 }
5988
5989 return tmp;
5990 }
5991
5992 /*
5993 * Dummy port_ops
5994 */
5995 static void ata_dummy_noret(struct ata_port *ap) { }
5996 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
5997 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
5998
5999 static u8 ata_dummy_check_status(struct ata_port *ap)
6000 {
6001 return ATA_DRDY;
6002 }
6003
6004 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6005 {
6006 return AC_ERR_SYSTEM;
6007 }
6008
6009 const struct ata_port_operations ata_dummy_port_ops = {
6010 .port_disable = ata_port_disable,
6011 .check_status = ata_dummy_check_status,
6012 .check_altstatus = ata_dummy_check_status,
6013 .dev_select = ata_noop_dev_select,
6014 .qc_prep = ata_noop_qc_prep,
6015 .qc_issue = ata_dummy_qc_issue,
6016 .freeze = ata_dummy_noret,
6017 .thaw = ata_dummy_noret,
6018 .error_handler = ata_dummy_noret,
6019 .post_internal_cmd = ata_dummy_qc_noret,
6020 .irq_clear = ata_dummy_noret,
6021 .port_start = ata_dummy_ret0,
6022 .port_stop = ata_dummy_noret,
6023 };
6024
6025 /*
6026 * libata is essentially a library of internal helper functions for
6027 * low-level ATA host controller drivers. As such, the API/ABI is
6028 * likely to change as new drivers are added and updated.
6029 * Do not depend on ABI/API stability.
6030 */
6031
6032 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6033 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6034 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6035 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6036 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6037 EXPORT_SYMBOL_GPL(ata_std_ports);
6038 EXPORT_SYMBOL_GPL(ata_host_init);
6039 EXPORT_SYMBOL_GPL(ata_device_add);
6040 EXPORT_SYMBOL_GPL(ata_port_detach);
6041 EXPORT_SYMBOL_GPL(ata_host_remove);
6042 EXPORT_SYMBOL_GPL(ata_sg_init);
6043 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6044 EXPORT_SYMBOL_GPL(ata_hsm_move);
6045 EXPORT_SYMBOL_GPL(ata_qc_complete);
6046 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6047 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6048 EXPORT_SYMBOL_GPL(ata_tf_load);
6049 EXPORT_SYMBOL_GPL(ata_tf_read);
6050 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6051 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6052 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6053 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6054 EXPORT_SYMBOL_GPL(ata_check_status);
6055 EXPORT_SYMBOL_GPL(ata_altstatus);
6056 EXPORT_SYMBOL_GPL(ata_exec_command);
6057 EXPORT_SYMBOL_GPL(ata_port_start);
6058 EXPORT_SYMBOL_GPL(ata_port_stop);
6059 EXPORT_SYMBOL_GPL(ata_host_stop);
6060 EXPORT_SYMBOL_GPL(ata_interrupt);
6061 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6062 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6063 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6064 EXPORT_SYMBOL_GPL(ata_qc_prep);
6065 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6066 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6067 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6068 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6069 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6070 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6071 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6072 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6073 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6074 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6075 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6076 EXPORT_SYMBOL_GPL(ata_port_probe);
6077 EXPORT_SYMBOL_GPL(sata_set_spd);
6078 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6079 EXPORT_SYMBOL_GPL(sata_phy_resume);
6080 EXPORT_SYMBOL_GPL(sata_phy_reset);
6081 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6082 EXPORT_SYMBOL_GPL(ata_bus_reset);
6083 EXPORT_SYMBOL_GPL(ata_std_prereset);
6084 EXPORT_SYMBOL_GPL(ata_std_softreset);
6085 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6086 EXPORT_SYMBOL_GPL(ata_std_postreset);
6087 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
6088 EXPORT_SYMBOL_GPL(ata_dev_classify);
6089 EXPORT_SYMBOL_GPL(ata_dev_pair);
6090 EXPORT_SYMBOL_GPL(ata_port_disable);
6091 EXPORT_SYMBOL_GPL(ata_ratelimit);
6092 EXPORT_SYMBOL_GPL(ata_wait_register);
6093 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6094 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6095 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6096 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6097 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6098 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6099 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6100 EXPORT_SYMBOL_GPL(ata_scsi_release);
6101 EXPORT_SYMBOL_GPL(ata_host_intr);
6102 EXPORT_SYMBOL_GPL(sata_scr_valid);
6103 EXPORT_SYMBOL_GPL(sata_scr_read);
6104 EXPORT_SYMBOL_GPL(sata_scr_write);
6105 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6106 EXPORT_SYMBOL_GPL(ata_port_online);
6107 EXPORT_SYMBOL_GPL(ata_port_offline);
6108 EXPORT_SYMBOL_GPL(ata_host_suspend);
6109 EXPORT_SYMBOL_GPL(ata_host_resume);
6110 EXPORT_SYMBOL_GPL(ata_id_string);
6111 EXPORT_SYMBOL_GPL(ata_id_c_string);
6112 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6113
6114 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6115 EXPORT_SYMBOL_GPL(ata_timing_compute);
6116 EXPORT_SYMBOL_GPL(ata_timing_merge);
6117
6118 #ifdef CONFIG_PCI
6119 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6120 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6121 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6122 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6123 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6124 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6125 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6126 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6127 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6128 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6129 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6130 #endif /* CONFIG_PCI */
6131
6132 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6133 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6134
6135 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6136 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6137 EXPORT_SYMBOL_GPL(ata_port_abort);
6138 EXPORT_SYMBOL_GPL(ata_port_freeze);
6139 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6140 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6141 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6142 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6143 EXPORT_SYMBOL_GPL(ata_do_eh);