]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
libata: improve EH report formatting
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
78
79 struct workqueue_struct *ata_aux_wq;
80
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
89 int libata_fua = 0;
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
109
110
111 /**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
114 * @pmp: Port multiplier port
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
125 {
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153 }
154
155 /**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
166 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
167 {
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182 }
183
184 static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
199 0,
200 0,
201 0,
202 0,
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
212 };
213
214 /**
215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
218 *
219 * Examine the device configuration and tf->flags to calculate
220 * the proper read/write commands and protocol to use.
221 *
222 * LOCKING:
223 * caller.
224 */
225 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
226 {
227 u8 cmd;
228
229 int index, fua, lba48, write;
230
231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
234
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
237 index = dev->multi_count ? 0 : 8;
238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
241 index = dev->multi_count ? 0 : 8;
242 } else {
243 tf->protocol = ATA_PROT_DMA;
244 index = 16;
245 }
246
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
253 }
254
255 /**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271 {
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296 }
297
298 /**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321 {
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419 }
420
421 /**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439 {
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443 }
444
445 /**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455 static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459 {
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466 }
467
468 static const struct ata_xfer_ent {
469 int shift, bits;
470 u8 base;
471 } ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476 };
477
478 /**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492 {
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500 }
501
502 /**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515 {
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522 }
523
524 /**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536 static int ata_xfer_mode2shift(unsigned int xfer_mode)
537 {
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544 }
545
546 /**
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
549 *
550 * Determine string which represents the highest speed
551 * (highest bit in @modemask).
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
558 * @mode_mask, or the constant C string "<n/a>".
559 */
560 static const char *ata_mode_string(unsigned int xfer_mask)
561 {
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
568 "PIO5",
569 "PIO6",
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
573 "MWDMA3",
574 "MWDMA4",
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
584 int highbit;
585
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
589 return "<n/a>";
590 }
591
592 static const char *sata_spd_string(unsigned int spd)
593 {
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602 }
603
604 void ata_dev_disable(struct ata_device *dev)
605 {
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
611 dev->class++;
612 }
613 }
614
615 /**
616 * ata_devchk - PATA device presence detection
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
633 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
634 {
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
642
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
645
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
648
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656 }
657
658 /**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
674 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
675 {
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695 }
696
697 /**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
701 * @r_err: Value of error register on completion
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
717 */
718
719 unsigned int
720 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
721 {
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
730 ap->ops->tf_read(ap, &tf);
731 err = tf.feature;
732 if (r_err)
733 *r_err = err;
734
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if (err == 1)
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
744 return ATA_DEV_NONE;
745
746 /* determine if device is ATA or ATAPI */
747 class = ata_dev_classify(&tf);
748
749 if (class == ATA_DEV_UNKNOWN)
750 return ATA_DEV_NONE;
751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
752 return ATA_DEV_NONE;
753 return class;
754 }
755
756 /**
757 * ata_id_string - Convert IDENTIFY DEVICE page into string
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
771 void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
773 {
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788 }
789
790 /**
791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
797 * This function is identical to ata_id_string except that it
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
804 void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
806 {
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
811 ata_id_string(id, s, ofs, len - 1);
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817 }
818
819 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820 {
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831 }
832
833 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834 {
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843 }
844
845 /**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854 {
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870 }
871
872 /**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880 static u64 ata_read_native_max_address(struct ata_device *dev)
881 {
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897 }
898
899 /**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
902 * @new_sectors: new max sectors value to set for the device
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909 {
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935 }
936
937 /**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
940 * @new_sectors: new max sectors value to set for the device
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947 {
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969 }
970
971 /**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980 static u64 ata_hpa_resize(struct ata_device *dev)
981 {
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
984
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
995 (long long)sectors, (long long)hpa_sectors);
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1003
1004 if (hpa_sectors) {
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1008 return hpa_sectors;
1009 }
1010 }
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1016 return sectors;
1017 }
1018
1019 static u64 ata_id_n_sectors(const u16 *id)
1020 {
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032 }
1033
1034 /**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
1037 * @unknown: mode to assume if we cannot tell
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050 {
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074 }
1075
1076 /**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1088 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089 {
1090 }
1091
1092
1093 /**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109 {
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
1117 iowrite8(tmp, ap->ioaddr.device_addr);
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119 }
1120
1121 /**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140 void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142 {
1143 if (ata_msg_probe(ap))
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157 }
1158
1159 /**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
1161 * @id: IDENTIFY DEVICE page to dump
1162 *
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
1170 static inline void ata_dump_id(const u16 *id)
1171 {
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
1194 id[88],
1195 id[93]);
1196 }
1197
1198 /**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213 static unsigned int ata_id_xfermask(const u16 *id)
1214 {
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1242
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265 }
1266
1267 /**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
1270 * @fn: workqueue function to be scheduled
1271 * @data: data for @fn to use
1272 * @delay: delay time for workqueue function
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
1286 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1287 unsigned long delay)
1288 {
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
1291
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
1294 }
1295
1296 /**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306 void ata_port_flush_task(struct ata_port *ap)
1307 {
1308 DPRINTK("ENTER\n");
1309
1310 cancel_rearming_delayed_work(&ap->port_task);
1311
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1314 }
1315
1316 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1317 {
1318 struct completion *waiting = qc->private_data;
1319
1320 complete(waiting);
1321 }
1322
1323 /**
1324 * ata_exec_internal_sg - execute libata internal command
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
1327 * @cdb: CDB for packet command
1328 * @dma_dir: Data tranfer direction of the command
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
1343 */
1344 unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
1348 {
1349 struct ata_port *ap = dev->ap;
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
1352 unsigned int tag, preempted_tag;
1353 u32 preempted_sactive, preempted_qc_active;
1354 DECLARE_COMPLETION_ONSTACK(wait);
1355 unsigned long flags;
1356 unsigned int err_mask;
1357 int rc;
1358
1359 spin_lock_irqsave(ap->lock, flags);
1360
1361 /* no internal command while frozen */
1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
1363 spin_unlock_irqrestore(ap->lock, flags);
1364 return AC_ERR_SYSTEM;
1365 }
1366
1367 /* initialize internal qc */
1368
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1373 */
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1376 else
1377 tag = 0;
1378
1379 if (test_and_set_bit(tag, &ap->qc_allocated))
1380 BUG();
1381 qc = __ata_qc_from_tag(ap, tag);
1382
1383 qc->tag = tag;
1384 qc->scsicmd = NULL;
1385 qc->ap = ap;
1386 qc->dev = dev;
1387 ata_qc_reinit(qc);
1388
1389 preempted_tag = ap->active_tag;
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
1392 ap->active_tag = ATA_TAG_POISON;
1393 ap->sactive = 0;
1394 ap->qc_active = 0;
1395
1396 /* prepare & issue qc */
1397 qc->tf = *tf;
1398 if (cdb)
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
1403 unsigned int i, buflen = 0;
1404
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1407
1408 ata_sg_init(qc, sg, n_elem);
1409 qc->nbytes = buflen;
1410 }
1411
1412 qc->private_data = &wait;
1413 qc->complete_fn = ata_qc_complete_internal;
1414
1415 ata_qc_issue(qc);
1416
1417 spin_unlock_irqrestore(ap->lock, flags);
1418
1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1420
1421 ata_port_flush_task(ap);
1422
1423 if (!rc) {
1424 spin_lock_irqsave(ap->lock, flags);
1425
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
1430 */
1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1433
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1436 else
1437 ata_qc_complete(qc);
1438
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
1441 "qc timeout (cmd 0x%x)\n", command);
1442 }
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445 }
1446
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1450
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1455
1456 if (!qc->err_mask)
1457 qc->err_mask |= AC_ERR_OTHER;
1458
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
1461 }
1462
1463 /* finish up */
1464 spin_lock_irqsave(ap->lock, flags);
1465
1466 *tf = qc->result_tf;
1467 err_mask = qc->err_mask;
1468
1469 ata_qc_free(qc);
1470 ap->active_tag = preempted_tag;
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
1473
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * port.
1478 *
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1482 *
1483 * Kill the following code as soon as those drivers are fixed.
1484 */
1485 if (ap->flags & ATA_FLAG_DISABLED) {
1486 err_mask |= AC_ERR_SYSTEM;
1487 ata_port_probe(ap);
1488 }
1489
1490 spin_unlock_irqrestore(ap->lock, flags);
1491
1492 return err_mask;
1493 }
1494
1495 /**
1496 * ata_exec_internal - execute libata internal command
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1503 *
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1506 *
1507 * LOCKING:
1508 * None. Should be called with kernel context, might sleep.
1509 *
1510 * RETURNS:
1511 * Zero on success, AC_ERR_* mask on failure
1512 */
1513 unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1516 {
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
1519
1520 if (dma_dir != DMA_NONE) {
1521 WARN_ON(!buf);
1522 sg_init_one(&sg, buf, buflen);
1523 psg = &sg;
1524 n_elem++;
1525 }
1526
1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1528 }
1529
1530 /**
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1534 *
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1537 *
1538 * LOCKING:
1539 * Kernel thread context (may sleep).
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1543 */
1544 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1545 {
1546 struct ata_taskfile tf;
1547
1548 ata_tf_init(dev, &tf);
1549
1550 tf.command = cmd;
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1553
1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1555 }
1556
1557 /**
1558 * ata_pio_need_iordy - check if iordy needed
1559 * @adev: ATA device
1560 *
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1563 */
1564
1565 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1566 {
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1570 return 0;
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1573 return 1;
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1576 return 1;
1577 return 0;
1578 }
1579
1580 /**
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * @adev: ATA device
1583 *
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1586 */
1587
1588 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1589 {
1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1593 /* Is the speed faster than the drive allows non IORDY ? */
1594 if (pio) {
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1599 }
1600 }
1601 return 3 << ATA_SHIFT_PIO;
1602 }
1603
1604 /**
1605 * ata_dev_read_id - Read ID data from the specified device
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
1608 * @flags: ATA_READID_* flags
1609 * @id: buffer to read IDENTIFY data into
1610 *
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1615 *
1616 * LOCKING:
1617 * Kernel thread context (may sleep)
1618 *
1619 * RETURNS:
1620 * 0 on success, -errno otherwise.
1621 */
1622 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1623 unsigned int flags, u16 *id)
1624 {
1625 struct ata_port *ap = dev->ap;
1626 unsigned int class = *p_class;
1627 struct ata_taskfile tf;
1628 unsigned int err_mask = 0;
1629 const char *reason;
1630 int may_fallback = 1, tried_spinup = 0;
1631 int rc;
1632
1633 if (ata_msg_ctl(ap))
1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1635
1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1637 retry:
1638 ata_tf_init(dev, &tf);
1639
1640 switch (class) {
1641 case ATA_DEV_ATA:
1642 tf.command = ATA_CMD_ID_ATA;
1643 break;
1644 case ATA_DEV_ATAPI:
1645 tf.command = ATA_CMD_ID_ATAPI;
1646 break;
1647 default:
1648 rc = -ENODEV;
1649 reason = "unsupported class";
1650 goto err_out;
1651 }
1652
1653 tf.protocol = ATA_PROT_PIO;
1654
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1657 */
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1659
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1662 */
1663 tf.flags |= ATA_TFLAG_POLLING;
1664
1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1666 id, sizeof(id[0]) * ATA_ID_WORDS);
1667 if (err_mask) {
1668 if (err_mask & AC_ERR_NODEV_HINT) {
1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1670 ap->print_id, dev->devno);
1671 return -ENOENT;
1672 }
1673
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1677 */
1678 if (may_fallback &&
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 may_fallback = 0;
1681
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1684 else
1685 class = ATA_DEV_ATA;
1686 goto retry;
1687 }
1688
1689 rc = -EIO;
1690 reason = "I/O error";
1691 goto err_out;
1692 }
1693
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1696 */
1697 may_fallback = 0;
1698
1699 swap_buf_le16(id, ATA_ID_WORDS);
1700
1701 /* sanity check */
1702 rc = -EINVAL;
1703 reason = "device reports invalid type";
1704
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 goto err_out;
1708 } else {
1709 if (ata_id_is_ata(id))
1710 goto err_out;
1711 }
1712
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 tried_spinup = 1;
1715 /*
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1719 */
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1726 if (err_mask) {
1727 rc = -EIO;
1728 reason = "SPINUP failed";
1729 goto err_out;
1730 }
1731 /*
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1734 */
1735 if (id[2] == 0x37c8)
1736 goto retry;
1737 }
1738
1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1740 /*
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * SRST RESET
1743 * IDENTIFY
1744 * INITIALIZE DEVICE PARAMETERS
1745 * anything else..
1746 * Some drives were very specific about that exact sequence.
1747 */
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1750 if (err_mask) {
1751 rc = -EIO;
1752 reason = "INIT_DEV_PARAMS failed";
1753 goto err_out;
1754 }
1755
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1758 */
1759 flags &= ~ATA_READID_POSTRESET;
1760 goto retry;
1761 }
1762 }
1763
1764 *p_class = class;
1765
1766 return 0;
1767
1768 err_out:
1769 if (ata_msg_warn(ap))
1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
1772 return rc;
1773 }
1774
1775 static inline u8 ata_dev_knobble(struct ata_device *dev)
1776 {
1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1778 }
1779
1780 static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1782 {
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1785
1786 if (!ata_id_has_ncq(dev->id)) {
1787 desc[0] = '\0';
1788 return;
1789 }
1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1792 return;
1793 }
1794 if (ap->flags & ATA_FLAG_NCQ) {
1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1796 dev->flags |= ATA_DFLAG_NCQ;
1797 }
1798
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 else
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1803 }
1804
1805 /**
1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
1807 * @dev: Target device to configure
1808 *
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
1811 *
1812 * LOCKING:
1813 * Kernel thread context (may sleep)
1814 *
1815 * RETURNS:
1816 * 0 on success, -errno otherwise
1817 */
1818 int ata_dev_configure(struct ata_device *dev)
1819 {
1820 struct ata_port *ap = dev->ap;
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1823 const u16 *id = dev->id;
1824 unsigned int xfer_mask;
1825 char revbuf[7]; /* XYZ-99\0 */
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
1828 int rc;
1829
1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 __FUNCTION__);
1833 return 0;
1834 }
1835
1836 if (ata_msg_probe(ap))
1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1838
1839 /* set horkage */
1840 dev->horkage |= ata_dev_blacklisted(dev);
1841
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1844 if (rc)
1845 return rc;
1846
1847 /* print device capabilities */
1848 if (ata_msg_probe(ap))
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1852 __FUNCTION__,
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
1855
1856 /* initialize to-be-configured parameters */
1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1858 dev->max_sectors = 0;
1859 dev->cdb_len = 0;
1860 dev->n_sectors = 0;
1861 dev->cylinders = 0;
1862 dev->heads = 0;
1863 dev->sectors = 0;
1864
1865 /*
1866 * common ATA, ATAPI feature tests
1867 */
1868
1869 /* find max transfer mode; for printk only */
1870 xfer_mask = ata_id_xfermask(id);
1871
1872 if (ata_msg_probe(ap))
1873 ata_dump_id(id);
1874
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 sizeof(fwrevbuf));
1878
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 sizeof(modelbuf));
1881
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
1889 snprintf(revbuf, 7, "CFA");
1890 }
1891 else
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1893
1894 dev->n_sectors = ata_id_n_sectors(id);
1895
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1898
1899 if (ata_id_has_lba(id)) {
1900 const char *lba_desc;
1901 char ncq_desc[20];
1902
1903 lba_desc = "LBA";
1904 dev->flags |= ATA_DFLAG_LBA;
1905 if (ata_id_has_lba48(id)) {
1906 dev->flags |= ATA_DFLAG_LBA48;
1907 lba_desc = "LBA48";
1908
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1912 }
1913
1914 if (ata_id_hpa_enabled(dev->id))
1915 dev->n_sectors = ata_hpa_resize(dev);
1916
1917 /* config NCQ */
1918 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1919
1920 /* print device info to dmesg */
1921 if (ata_msg_drv(ap) && print_info) {
1922 ata_dev_printk(dev, KERN_INFO,
1923 "%s: %s, %s, max %s\n",
1924 revbuf, modelbuf, fwrevbuf,
1925 ata_mode_string(xfer_mask));
1926 ata_dev_printk(dev, KERN_INFO,
1927 "%Lu sectors, multi %u: %s %s\n",
1928 (unsigned long long)dev->n_sectors,
1929 dev->multi_count, lba_desc, ncq_desc);
1930 }
1931 } else {
1932 /* CHS */
1933
1934 /* Default translation */
1935 dev->cylinders = id[1];
1936 dev->heads = id[3];
1937 dev->sectors = id[6];
1938
1939 if (ata_id_current_chs_valid(id)) {
1940 /* Current CHS translation is valid. */
1941 dev->cylinders = id[54];
1942 dev->heads = id[55];
1943 dev->sectors = id[56];
1944 }
1945
1946 /* print device info to dmesg */
1947 if (ata_msg_drv(ap) && print_info) {
1948 ata_dev_printk(dev, KERN_INFO,
1949 "%s: %s, %s, max %s\n",
1950 revbuf, modelbuf, fwrevbuf,
1951 ata_mode_string(xfer_mask));
1952 ata_dev_printk(dev, KERN_INFO,
1953 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1954 (unsigned long long)dev->n_sectors,
1955 dev->multi_count, dev->cylinders,
1956 dev->heads, dev->sectors);
1957 }
1958 }
1959
1960 dev->cdb_len = 16;
1961 }
1962
1963 /* ATAPI-specific feature tests */
1964 else if (dev->class == ATA_DEV_ATAPI) {
1965 char *cdb_intr_string = "";
1966
1967 rc = atapi_cdb_len(id);
1968 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1969 if (ata_msg_warn(ap))
1970 ata_dev_printk(dev, KERN_WARNING,
1971 "unsupported CDB len\n");
1972 rc = -EINVAL;
1973 goto err_out_nosup;
1974 }
1975 dev->cdb_len = (unsigned int) rc;
1976
1977 if (ata_id_cdb_intr(dev->id)) {
1978 dev->flags |= ATA_DFLAG_CDB_INTR;
1979 cdb_intr_string = ", CDB intr";
1980 }
1981
1982 /* print device info to dmesg */
1983 if (ata_msg_drv(ap) && print_info)
1984 ata_dev_printk(dev, KERN_INFO,
1985 "ATAPI: %s, %s, max %s%s\n",
1986 modelbuf, fwrevbuf,
1987 ata_mode_string(xfer_mask),
1988 cdb_intr_string);
1989 }
1990
1991 /* determine max_sectors */
1992 dev->max_sectors = ATA_MAX_SECTORS;
1993 if (dev->flags & ATA_DFLAG_LBA48)
1994 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1995
1996 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1997 /* Let the user know. We don't want to disallow opens for
1998 rescue purposes, or in case the vendor is just a blithering
1999 idiot */
2000 if (print_info) {
2001 ata_dev_printk(dev, KERN_WARNING,
2002 "Drive reports diagnostics failure. This may indicate a drive\n");
2003 ata_dev_printk(dev, KERN_WARNING,
2004 "fault or invalid emulation. Contact drive vendor for information.\n");
2005 }
2006 }
2007
2008 /* limit bridge transfers to udma5, 200 sectors */
2009 if (ata_dev_knobble(dev)) {
2010 if (ata_msg_drv(ap) && print_info)
2011 ata_dev_printk(dev, KERN_INFO,
2012 "applying bridge limits\n");
2013 dev->udma_mask &= ATA_UDMA5;
2014 dev->max_sectors = ATA_MAX_SECTORS;
2015 }
2016
2017 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2018 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2019 dev->max_sectors);
2020
2021 if (ap->ops->dev_config)
2022 ap->ops->dev_config(dev);
2023
2024 if (ata_msg_probe(ap))
2025 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2026 __FUNCTION__, ata_chk_status(ap));
2027 return 0;
2028
2029 err_out_nosup:
2030 if (ata_msg_probe(ap))
2031 ata_dev_printk(dev, KERN_DEBUG,
2032 "%s: EXIT, err\n", __FUNCTION__);
2033 return rc;
2034 }
2035
2036 /**
2037 * ata_cable_40wire - return 40 wire cable type
2038 * @ap: port
2039 *
2040 * Helper method for drivers which want to hardwire 40 wire cable
2041 * detection.
2042 */
2043
2044 int ata_cable_40wire(struct ata_port *ap)
2045 {
2046 return ATA_CBL_PATA40;
2047 }
2048
2049 /**
2050 * ata_cable_80wire - return 80 wire cable type
2051 * @ap: port
2052 *
2053 * Helper method for drivers which want to hardwire 80 wire cable
2054 * detection.
2055 */
2056
2057 int ata_cable_80wire(struct ata_port *ap)
2058 {
2059 return ATA_CBL_PATA80;
2060 }
2061
2062 /**
2063 * ata_cable_unknown - return unknown PATA cable.
2064 * @ap: port
2065 *
2066 * Helper method for drivers which have no PATA cable detection.
2067 */
2068
2069 int ata_cable_unknown(struct ata_port *ap)
2070 {
2071 return ATA_CBL_PATA_UNK;
2072 }
2073
2074 /**
2075 * ata_cable_sata - return SATA cable type
2076 * @ap: port
2077 *
2078 * Helper method for drivers which have SATA cables
2079 */
2080
2081 int ata_cable_sata(struct ata_port *ap)
2082 {
2083 return ATA_CBL_SATA;
2084 }
2085
2086 /**
2087 * ata_bus_probe - Reset and probe ATA bus
2088 * @ap: Bus to probe
2089 *
2090 * Master ATA bus probing function. Initiates a hardware-dependent
2091 * bus reset, then attempts to identify any devices found on
2092 * the bus.
2093 *
2094 * LOCKING:
2095 * PCI/etc. bus probe sem.
2096 *
2097 * RETURNS:
2098 * Zero on success, negative errno otherwise.
2099 */
2100
2101 int ata_bus_probe(struct ata_port *ap)
2102 {
2103 unsigned int classes[ATA_MAX_DEVICES];
2104 int tries[ATA_MAX_DEVICES];
2105 int i, rc;
2106 struct ata_device *dev;
2107
2108 ata_port_probe(ap);
2109
2110 for (i = 0; i < ATA_MAX_DEVICES; i++)
2111 tries[i] = ATA_PROBE_MAX_TRIES;
2112
2113 retry:
2114 /* reset and determine device classes */
2115 ap->ops->phy_reset(ap);
2116
2117 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2118 dev = &ap->device[i];
2119
2120 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2121 dev->class != ATA_DEV_UNKNOWN)
2122 classes[dev->devno] = dev->class;
2123 else
2124 classes[dev->devno] = ATA_DEV_NONE;
2125
2126 dev->class = ATA_DEV_UNKNOWN;
2127 }
2128
2129 ata_port_probe(ap);
2130
2131 /* after the reset the device state is PIO 0 and the controller
2132 state is undefined. Record the mode */
2133
2134 for (i = 0; i < ATA_MAX_DEVICES; i++)
2135 ap->device[i].pio_mode = XFER_PIO_0;
2136
2137 /* read IDENTIFY page and configure devices. We have to do the identify
2138 specific sequence bass-ackwards so that PDIAG- is released by
2139 the slave device */
2140
2141 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2142 dev = &ap->device[i];
2143
2144 if (tries[i])
2145 dev->class = classes[i];
2146
2147 if (!ata_dev_enabled(dev))
2148 continue;
2149
2150 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2151 dev->id);
2152 if (rc)
2153 goto fail;
2154 }
2155
2156 /* Now ask for the cable type as PDIAG- should have been released */
2157 if (ap->ops->cable_detect)
2158 ap->cbl = ap->ops->cable_detect(ap);
2159
2160 /* After the identify sequence we can now set up the devices. We do
2161 this in the normal order so that the user doesn't get confused */
2162
2163 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2164 dev = &ap->device[i];
2165 if (!ata_dev_enabled(dev))
2166 continue;
2167
2168 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2169 rc = ata_dev_configure(dev);
2170 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2171 if (rc)
2172 goto fail;
2173 }
2174
2175 /* configure transfer mode */
2176 rc = ata_set_mode(ap, &dev);
2177 if (rc)
2178 goto fail;
2179
2180 for (i = 0; i < ATA_MAX_DEVICES; i++)
2181 if (ata_dev_enabled(&ap->device[i]))
2182 return 0;
2183
2184 /* no device present, disable port */
2185 ata_port_disable(ap);
2186 ap->ops->port_disable(ap);
2187 return -ENODEV;
2188
2189 fail:
2190 tries[dev->devno]--;
2191
2192 switch (rc) {
2193 case -EINVAL:
2194 /* eeek, something went very wrong, give up */
2195 tries[dev->devno] = 0;
2196 break;
2197
2198 case -ENODEV:
2199 /* give it just one more chance */
2200 tries[dev->devno] = min(tries[dev->devno], 1);
2201 case -EIO:
2202 if (tries[dev->devno] == 1) {
2203 /* This is the last chance, better to slow
2204 * down than lose it.
2205 */
2206 sata_down_spd_limit(ap);
2207 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2208 }
2209 }
2210
2211 if (!tries[dev->devno])
2212 ata_dev_disable(dev);
2213
2214 goto retry;
2215 }
2216
2217 /**
2218 * ata_port_probe - Mark port as enabled
2219 * @ap: Port for which we indicate enablement
2220 *
2221 * Modify @ap data structure such that the system
2222 * thinks that the entire port is enabled.
2223 *
2224 * LOCKING: host lock, or some other form of
2225 * serialization.
2226 */
2227
2228 void ata_port_probe(struct ata_port *ap)
2229 {
2230 ap->flags &= ~ATA_FLAG_DISABLED;
2231 }
2232
2233 /**
2234 * sata_print_link_status - Print SATA link status
2235 * @ap: SATA port to printk link status about
2236 *
2237 * This function prints link speed and status of a SATA link.
2238 *
2239 * LOCKING:
2240 * None.
2241 */
2242 void sata_print_link_status(struct ata_port *ap)
2243 {
2244 u32 sstatus, scontrol, tmp;
2245
2246 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2247 return;
2248 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2249
2250 if (ata_port_online(ap)) {
2251 tmp = (sstatus >> 4) & 0xf;
2252 ata_port_printk(ap, KERN_INFO,
2253 "SATA link up %s (SStatus %X SControl %X)\n",
2254 sata_spd_string(tmp), sstatus, scontrol);
2255 } else {
2256 ata_port_printk(ap, KERN_INFO,
2257 "SATA link down (SStatus %X SControl %X)\n",
2258 sstatus, scontrol);
2259 }
2260 }
2261
2262 /**
2263 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2264 * @ap: SATA port associated with target SATA PHY.
2265 *
2266 * This function issues commands to standard SATA Sxxx
2267 * PHY registers, to wake up the phy (and device), and
2268 * clear any reset condition.
2269 *
2270 * LOCKING:
2271 * PCI/etc. bus probe sem.
2272 *
2273 */
2274 void __sata_phy_reset(struct ata_port *ap)
2275 {
2276 u32 sstatus;
2277 unsigned long timeout = jiffies + (HZ * 5);
2278
2279 if (ap->flags & ATA_FLAG_SATA_RESET) {
2280 /* issue phy wake/reset */
2281 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2282 /* Couldn't find anything in SATA I/II specs, but
2283 * AHCI-1.1 10.4.2 says at least 1 ms. */
2284 mdelay(1);
2285 }
2286 /* phy wake/clear reset */
2287 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2288
2289 /* wait for phy to become ready, if necessary */
2290 do {
2291 msleep(200);
2292 sata_scr_read(ap, SCR_STATUS, &sstatus);
2293 if ((sstatus & 0xf) != 1)
2294 break;
2295 } while (time_before(jiffies, timeout));
2296
2297 /* print link status */
2298 sata_print_link_status(ap);
2299
2300 /* TODO: phy layer with polling, timeouts, etc. */
2301 if (!ata_port_offline(ap))
2302 ata_port_probe(ap);
2303 else
2304 ata_port_disable(ap);
2305
2306 if (ap->flags & ATA_FLAG_DISABLED)
2307 return;
2308
2309 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2310 ata_port_disable(ap);
2311 return;
2312 }
2313
2314 ap->cbl = ATA_CBL_SATA;
2315 }
2316
2317 /**
2318 * sata_phy_reset - Reset SATA bus.
2319 * @ap: SATA port associated with target SATA PHY.
2320 *
2321 * This function resets the SATA bus, and then probes
2322 * the bus for devices.
2323 *
2324 * LOCKING:
2325 * PCI/etc. bus probe sem.
2326 *
2327 */
2328 void sata_phy_reset(struct ata_port *ap)
2329 {
2330 __sata_phy_reset(ap);
2331 if (ap->flags & ATA_FLAG_DISABLED)
2332 return;
2333 ata_bus_reset(ap);
2334 }
2335
2336 /**
2337 * ata_dev_pair - return other device on cable
2338 * @adev: device
2339 *
2340 * Obtain the other device on the same cable, or if none is
2341 * present NULL is returned
2342 */
2343
2344 struct ata_device *ata_dev_pair(struct ata_device *adev)
2345 {
2346 struct ata_port *ap = adev->ap;
2347 struct ata_device *pair = &ap->device[1 - adev->devno];
2348 if (!ata_dev_enabled(pair))
2349 return NULL;
2350 return pair;
2351 }
2352
2353 /**
2354 * ata_port_disable - Disable port.
2355 * @ap: Port to be disabled.
2356 *
2357 * Modify @ap data structure such that the system
2358 * thinks that the entire port is disabled, and should
2359 * never attempt to probe or communicate with devices
2360 * on this port.
2361 *
2362 * LOCKING: host lock, or some other form of
2363 * serialization.
2364 */
2365
2366 void ata_port_disable(struct ata_port *ap)
2367 {
2368 ap->device[0].class = ATA_DEV_NONE;
2369 ap->device[1].class = ATA_DEV_NONE;
2370 ap->flags |= ATA_FLAG_DISABLED;
2371 }
2372
2373 /**
2374 * sata_down_spd_limit - adjust SATA spd limit downward
2375 * @ap: Port to adjust SATA spd limit for
2376 *
2377 * Adjust SATA spd limit of @ap downward. Note that this
2378 * function only adjusts the limit. The change must be applied
2379 * using sata_set_spd().
2380 *
2381 * LOCKING:
2382 * Inherited from caller.
2383 *
2384 * RETURNS:
2385 * 0 on success, negative errno on failure
2386 */
2387 int sata_down_spd_limit(struct ata_port *ap)
2388 {
2389 u32 sstatus, spd, mask;
2390 int rc, highbit;
2391
2392 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2393 if (rc)
2394 return rc;
2395
2396 mask = ap->sata_spd_limit;
2397 if (mask <= 1)
2398 return -EINVAL;
2399 highbit = fls(mask) - 1;
2400 mask &= ~(1 << highbit);
2401
2402 spd = (sstatus >> 4) & 0xf;
2403 if (spd <= 1)
2404 return -EINVAL;
2405 spd--;
2406 mask &= (1 << spd) - 1;
2407 if (!mask)
2408 return -EINVAL;
2409
2410 ap->sata_spd_limit = mask;
2411
2412 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2413 sata_spd_string(fls(mask)));
2414
2415 return 0;
2416 }
2417
2418 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2419 {
2420 u32 spd, limit;
2421
2422 if (ap->sata_spd_limit == UINT_MAX)
2423 limit = 0;
2424 else
2425 limit = fls(ap->sata_spd_limit);
2426
2427 spd = (*scontrol >> 4) & 0xf;
2428 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2429
2430 return spd != limit;
2431 }
2432
2433 /**
2434 * sata_set_spd_needed - is SATA spd configuration needed
2435 * @ap: Port in question
2436 *
2437 * Test whether the spd limit in SControl matches
2438 * @ap->sata_spd_limit. This function is used to determine
2439 * whether hardreset is necessary to apply SATA spd
2440 * configuration.
2441 *
2442 * LOCKING:
2443 * Inherited from caller.
2444 *
2445 * RETURNS:
2446 * 1 if SATA spd configuration is needed, 0 otherwise.
2447 */
2448 int sata_set_spd_needed(struct ata_port *ap)
2449 {
2450 u32 scontrol;
2451
2452 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2453 return 0;
2454
2455 return __sata_set_spd_needed(ap, &scontrol);
2456 }
2457
2458 /**
2459 * sata_set_spd - set SATA spd according to spd limit
2460 * @ap: Port to set SATA spd for
2461 *
2462 * Set SATA spd of @ap according to sata_spd_limit.
2463 *
2464 * LOCKING:
2465 * Inherited from caller.
2466 *
2467 * RETURNS:
2468 * 0 if spd doesn't need to be changed, 1 if spd has been
2469 * changed. Negative errno if SCR registers are inaccessible.
2470 */
2471 int sata_set_spd(struct ata_port *ap)
2472 {
2473 u32 scontrol;
2474 int rc;
2475
2476 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2477 return rc;
2478
2479 if (!__sata_set_spd_needed(ap, &scontrol))
2480 return 0;
2481
2482 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2483 return rc;
2484
2485 return 1;
2486 }
2487
2488 /*
2489 * This mode timing computation functionality is ported over from
2490 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2491 */
2492 /*
2493 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2494 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2495 * for UDMA6, which is currently supported only by Maxtor drives.
2496 *
2497 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2498 */
2499
2500 static const struct ata_timing ata_timing[] = {
2501
2502 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2503 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2504 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2505 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2506
2507 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2508 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2509 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2510 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2511 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2512
2513 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2514
2515 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2516 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2517 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2518
2519 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2520 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2521 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2522
2523 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2524 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2525 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2526 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2527
2528 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2529 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2530 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2531
2532 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2533
2534 { 0xFF }
2535 };
2536
2537 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2538 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2539
2540 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2541 {
2542 q->setup = EZ(t->setup * 1000, T);
2543 q->act8b = EZ(t->act8b * 1000, T);
2544 q->rec8b = EZ(t->rec8b * 1000, T);
2545 q->cyc8b = EZ(t->cyc8b * 1000, T);
2546 q->active = EZ(t->active * 1000, T);
2547 q->recover = EZ(t->recover * 1000, T);
2548 q->cycle = EZ(t->cycle * 1000, T);
2549 q->udma = EZ(t->udma * 1000, UT);
2550 }
2551
2552 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2553 struct ata_timing *m, unsigned int what)
2554 {
2555 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2556 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2557 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2558 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2559 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2560 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2561 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2562 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2563 }
2564
2565 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2566 {
2567 const struct ata_timing *t;
2568
2569 for (t = ata_timing; t->mode != speed; t++)
2570 if (t->mode == 0xFF)
2571 return NULL;
2572 return t;
2573 }
2574
2575 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2576 struct ata_timing *t, int T, int UT)
2577 {
2578 const struct ata_timing *s;
2579 struct ata_timing p;
2580
2581 /*
2582 * Find the mode.
2583 */
2584
2585 if (!(s = ata_timing_find_mode(speed)))
2586 return -EINVAL;
2587
2588 memcpy(t, s, sizeof(*s));
2589
2590 /*
2591 * If the drive is an EIDE drive, it can tell us it needs extended
2592 * PIO/MW_DMA cycle timing.
2593 */
2594
2595 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2596 memset(&p, 0, sizeof(p));
2597 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2598 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2599 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2600 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2601 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2602 }
2603 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2604 }
2605
2606 /*
2607 * Convert the timing to bus clock counts.
2608 */
2609
2610 ata_timing_quantize(t, t, T, UT);
2611
2612 /*
2613 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2614 * S.M.A.R.T * and some other commands. We have to ensure that the
2615 * DMA cycle timing is slower/equal than the fastest PIO timing.
2616 */
2617
2618 if (speed > XFER_PIO_6) {
2619 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2620 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2621 }
2622
2623 /*
2624 * Lengthen active & recovery time so that cycle time is correct.
2625 */
2626
2627 if (t->act8b + t->rec8b < t->cyc8b) {
2628 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2629 t->rec8b = t->cyc8b - t->act8b;
2630 }
2631
2632 if (t->active + t->recover < t->cycle) {
2633 t->active += (t->cycle - (t->active + t->recover)) / 2;
2634 t->recover = t->cycle - t->active;
2635 }
2636
2637 /* In a few cases quantisation may produce enough errors to
2638 leave t->cycle too low for the sum of active and recovery
2639 if so we must correct this */
2640 if (t->active + t->recover > t->cycle)
2641 t->cycle = t->active + t->recover;
2642
2643 return 0;
2644 }
2645
2646 /**
2647 * ata_down_xfermask_limit - adjust dev xfer masks downward
2648 * @dev: Device to adjust xfer masks
2649 * @sel: ATA_DNXFER_* selector
2650 *
2651 * Adjust xfer masks of @dev downward. Note that this function
2652 * does not apply the change. Invoking ata_set_mode() afterwards
2653 * will apply the limit.
2654 *
2655 * LOCKING:
2656 * Inherited from caller.
2657 *
2658 * RETURNS:
2659 * 0 on success, negative errno on failure
2660 */
2661 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2662 {
2663 char buf[32];
2664 unsigned int orig_mask, xfer_mask;
2665 unsigned int pio_mask, mwdma_mask, udma_mask;
2666 int quiet, highbit;
2667
2668 quiet = !!(sel & ATA_DNXFER_QUIET);
2669 sel &= ~ATA_DNXFER_QUIET;
2670
2671 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2672 dev->mwdma_mask,
2673 dev->udma_mask);
2674 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2675
2676 switch (sel) {
2677 case ATA_DNXFER_PIO:
2678 highbit = fls(pio_mask) - 1;
2679 pio_mask &= ~(1 << highbit);
2680 break;
2681
2682 case ATA_DNXFER_DMA:
2683 if (udma_mask) {
2684 highbit = fls(udma_mask) - 1;
2685 udma_mask &= ~(1 << highbit);
2686 if (!udma_mask)
2687 return -ENOENT;
2688 } else if (mwdma_mask) {
2689 highbit = fls(mwdma_mask) - 1;
2690 mwdma_mask &= ~(1 << highbit);
2691 if (!mwdma_mask)
2692 return -ENOENT;
2693 }
2694 break;
2695
2696 case ATA_DNXFER_40C:
2697 udma_mask &= ATA_UDMA_MASK_40C;
2698 break;
2699
2700 case ATA_DNXFER_FORCE_PIO0:
2701 pio_mask &= 1;
2702 case ATA_DNXFER_FORCE_PIO:
2703 mwdma_mask = 0;
2704 udma_mask = 0;
2705 break;
2706
2707 default:
2708 BUG();
2709 }
2710
2711 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2712
2713 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2714 return -ENOENT;
2715
2716 if (!quiet) {
2717 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2718 snprintf(buf, sizeof(buf), "%s:%s",
2719 ata_mode_string(xfer_mask),
2720 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2721 else
2722 snprintf(buf, sizeof(buf), "%s",
2723 ata_mode_string(xfer_mask));
2724
2725 ata_dev_printk(dev, KERN_WARNING,
2726 "limiting speed to %s\n", buf);
2727 }
2728
2729 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2730 &dev->udma_mask);
2731
2732 return 0;
2733 }
2734
2735 static int ata_dev_set_mode(struct ata_device *dev)
2736 {
2737 struct ata_eh_context *ehc = &dev->ap->eh_context;
2738 unsigned int err_mask;
2739 int rc;
2740
2741 dev->flags &= ~ATA_DFLAG_PIO;
2742 if (dev->xfer_shift == ATA_SHIFT_PIO)
2743 dev->flags |= ATA_DFLAG_PIO;
2744
2745 err_mask = ata_dev_set_xfermode(dev);
2746 /* Old CFA may refuse this command, which is just fine */
2747 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2748 err_mask &= ~AC_ERR_DEV;
2749
2750 if (err_mask) {
2751 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2752 "(err_mask=0x%x)\n", err_mask);
2753 return -EIO;
2754 }
2755
2756 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2757 rc = ata_dev_revalidate(dev, 0);
2758 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2759 if (rc)
2760 return rc;
2761
2762 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2763 dev->xfer_shift, (int)dev->xfer_mode);
2764
2765 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2766 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2767 return 0;
2768 }
2769
2770 /**
2771 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2772 * @ap: port on which timings will be programmed
2773 * @r_failed_dev: out paramter for failed device
2774 *
2775 * Standard implementation of the function used to tune and set
2776 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2777 * ata_dev_set_mode() fails, pointer to the failing device is
2778 * returned in @r_failed_dev.
2779 *
2780 * LOCKING:
2781 * PCI/etc. bus probe sem.
2782 *
2783 * RETURNS:
2784 * 0 on success, negative errno otherwise
2785 */
2786
2787 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2788 {
2789 struct ata_device *dev;
2790 int i, rc = 0, used_dma = 0, found = 0;
2791
2792
2793 /* step 1: calculate xfer_mask */
2794 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2795 unsigned int pio_mask, dma_mask;
2796
2797 dev = &ap->device[i];
2798
2799 if (!ata_dev_enabled(dev))
2800 continue;
2801
2802 ata_dev_xfermask(dev);
2803
2804 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2805 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2806 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2807 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2808
2809 found = 1;
2810 if (dev->dma_mode)
2811 used_dma = 1;
2812 }
2813 if (!found)
2814 goto out;
2815
2816 /* step 2: always set host PIO timings */
2817 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2818 dev = &ap->device[i];
2819 if (!ata_dev_enabled(dev))
2820 continue;
2821
2822 if (!dev->pio_mode) {
2823 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2824 rc = -EINVAL;
2825 goto out;
2826 }
2827
2828 dev->xfer_mode = dev->pio_mode;
2829 dev->xfer_shift = ATA_SHIFT_PIO;
2830 if (ap->ops->set_piomode)
2831 ap->ops->set_piomode(ap, dev);
2832 }
2833
2834 /* step 3: set host DMA timings */
2835 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2836 dev = &ap->device[i];
2837
2838 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2839 continue;
2840
2841 dev->xfer_mode = dev->dma_mode;
2842 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2843 if (ap->ops->set_dmamode)
2844 ap->ops->set_dmamode(ap, dev);
2845 }
2846
2847 /* step 4: update devices' xfer mode */
2848 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2849 dev = &ap->device[i];
2850
2851 /* don't update suspended devices' xfer mode */
2852 if (!ata_dev_enabled(dev))
2853 continue;
2854
2855 rc = ata_dev_set_mode(dev);
2856 if (rc)
2857 goto out;
2858 }
2859
2860 /* Record simplex status. If we selected DMA then the other
2861 * host channels are not permitted to do so.
2862 */
2863 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2864 ap->host->simplex_claimed = ap;
2865
2866 out:
2867 if (rc)
2868 *r_failed_dev = dev;
2869 return rc;
2870 }
2871
2872 /**
2873 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2874 * @ap: port on which timings will be programmed
2875 * @r_failed_dev: out paramter for failed device
2876 *
2877 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2878 * ata_set_mode() fails, pointer to the failing device is
2879 * returned in @r_failed_dev.
2880 *
2881 * LOCKING:
2882 * PCI/etc. bus probe sem.
2883 *
2884 * RETURNS:
2885 * 0 on success, negative errno otherwise
2886 */
2887 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2888 {
2889 /* has private set_mode? */
2890 if (ap->ops->set_mode)
2891 return ap->ops->set_mode(ap, r_failed_dev);
2892 return ata_do_set_mode(ap, r_failed_dev);
2893 }
2894
2895 /**
2896 * ata_tf_to_host - issue ATA taskfile to host controller
2897 * @ap: port to which command is being issued
2898 * @tf: ATA taskfile register set
2899 *
2900 * Issues ATA taskfile register set to ATA host controller,
2901 * with proper synchronization with interrupt handler and
2902 * other threads.
2903 *
2904 * LOCKING:
2905 * spin_lock_irqsave(host lock)
2906 */
2907
2908 static inline void ata_tf_to_host(struct ata_port *ap,
2909 const struct ata_taskfile *tf)
2910 {
2911 ap->ops->tf_load(ap, tf);
2912 ap->ops->exec_command(ap, tf);
2913 }
2914
2915 /**
2916 * ata_busy_sleep - sleep until BSY clears, or timeout
2917 * @ap: port containing status register to be polled
2918 * @tmout_pat: impatience timeout
2919 * @tmout: overall timeout
2920 *
2921 * Sleep until ATA Status register bit BSY clears,
2922 * or a timeout occurs.
2923 *
2924 * LOCKING:
2925 * Kernel thread context (may sleep).
2926 *
2927 * RETURNS:
2928 * 0 on success, -errno otherwise.
2929 */
2930 int ata_busy_sleep(struct ata_port *ap,
2931 unsigned long tmout_pat, unsigned long tmout)
2932 {
2933 unsigned long timer_start, timeout;
2934 u8 status;
2935
2936 status = ata_busy_wait(ap, ATA_BUSY, 300);
2937 timer_start = jiffies;
2938 timeout = timer_start + tmout_pat;
2939 while (status != 0xff && (status & ATA_BUSY) &&
2940 time_before(jiffies, timeout)) {
2941 msleep(50);
2942 status = ata_busy_wait(ap, ATA_BUSY, 3);
2943 }
2944
2945 if (status != 0xff && (status & ATA_BUSY))
2946 ata_port_printk(ap, KERN_WARNING,
2947 "port is slow to respond, please be patient "
2948 "(Status 0x%x)\n", status);
2949
2950 timeout = timer_start + tmout;
2951 while (status != 0xff && (status & ATA_BUSY) &&
2952 time_before(jiffies, timeout)) {
2953 msleep(50);
2954 status = ata_chk_status(ap);
2955 }
2956
2957 if (status == 0xff)
2958 return -ENODEV;
2959
2960 if (status & ATA_BUSY) {
2961 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2962 "(%lu secs, Status 0x%x)\n",
2963 tmout / HZ, status);
2964 return -EBUSY;
2965 }
2966
2967 return 0;
2968 }
2969
2970 /**
2971 * ata_wait_ready - sleep until BSY clears, or timeout
2972 * @ap: port containing status register to be polled
2973 * @deadline: deadline jiffies for the operation
2974 *
2975 * Sleep until ATA Status register bit BSY clears, or timeout
2976 * occurs.
2977 *
2978 * LOCKING:
2979 * Kernel thread context (may sleep).
2980 *
2981 * RETURNS:
2982 * 0 on success, -errno otherwise.
2983 */
2984 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2985 {
2986 unsigned long start = jiffies;
2987 int warned = 0;
2988
2989 while (1) {
2990 u8 status = ata_chk_status(ap);
2991 unsigned long now = jiffies;
2992
2993 if (!(status & ATA_BUSY))
2994 return 0;
2995 if (!ata_port_online(ap) && status == 0xff)
2996 return -ENODEV;
2997 if (time_after(now, deadline))
2998 return -EBUSY;
2999
3000 if (!warned && time_after(now, start + 5 * HZ) &&
3001 (deadline - now > 3 * HZ)) {
3002 ata_port_printk(ap, KERN_WARNING,
3003 "port is slow to respond, please be patient "
3004 "(Status 0x%x)\n", status);
3005 warned = 1;
3006 }
3007
3008 msleep(50);
3009 }
3010 }
3011
3012 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3013 unsigned long deadline)
3014 {
3015 struct ata_ioports *ioaddr = &ap->ioaddr;
3016 unsigned int dev0 = devmask & (1 << 0);
3017 unsigned int dev1 = devmask & (1 << 1);
3018 int rc, ret = 0;
3019
3020 /* if device 0 was found in ata_devchk, wait for its
3021 * BSY bit to clear
3022 */
3023 if (dev0) {
3024 rc = ata_wait_ready(ap, deadline);
3025 if (rc) {
3026 if (rc != -ENODEV)
3027 return rc;
3028 ret = rc;
3029 }
3030 }
3031
3032 /* if device 1 was found in ata_devchk, wait for register
3033 * access briefly, then wait for BSY to clear.
3034 */
3035 if (dev1) {
3036 int i;
3037
3038 ap->ops->dev_select(ap, 1);
3039
3040 /* Wait for register access. Some ATAPI devices fail
3041 * to set nsect/lbal after reset, so don't waste too
3042 * much time on it. We're gonna wait for !BSY anyway.
3043 */
3044 for (i = 0; i < 2; i++) {
3045 u8 nsect, lbal;
3046
3047 nsect = ioread8(ioaddr->nsect_addr);
3048 lbal = ioread8(ioaddr->lbal_addr);
3049 if ((nsect == 1) && (lbal == 1))
3050 break;
3051 msleep(50); /* give drive a breather */
3052 }
3053
3054 rc = ata_wait_ready(ap, deadline);
3055 if (rc) {
3056 if (rc != -ENODEV)
3057 return rc;
3058 ret = rc;
3059 }
3060 }
3061
3062 /* is all this really necessary? */
3063 ap->ops->dev_select(ap, 0);
3064 if (dev1)
3065 ap->ops->dev_select(ap, 1);
3066 if (dev0)
3067 ap->ops->dev_select(ap, 0);
3068
3069 return ret;
3070 }
3071
3072 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3073 unsigned long deadline)
3074 {
3075 struct ata_ioports *ioaddr = &ap->ioaddr;
3076
3077 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3078
3079 /* software reset. causes dev0 to be selected */
3080 iowrite8(ap->ctl, ioaddr->ctl_addr);
3081 udelay(20); /* FIXME: flush */
3082 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3083 udelay(20); /* FIXME: flush */
3084 iowrite8(ap->ctl, ioaddr->ctl_addr);
3085
3086 /* spec mandates ">= 2ms" before checking status.
3087 * We wait 150ms, because that was the magic delay used for
3088 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3089 * between when the ATA command register is written, and then
3090 * status is checked. Because waiting for "a while" before
3091 * checking status is fine, post SRST, we perform this magic
3092 * delay here as well.
3093 *
3094 * Old drivers/ide uses the 2mS rule and then waits for ready
3095 */
3096 msleep(150);
3097
3098 /* Before we perform post reset processing we want to see if
3099 * the bus shows 0xFF because the odd clown forgets the D7
3100 * pulldown resistor.
3101 */
3102 if (ata_check_status(ap) == 0xFF)
3103 return -ENODEV;
3104
3105 return ata_bus_post_reset(ap, devmask, deadline);
3106 }
3107
3108 /**
3109 * ata_bus_reset - reset host port and associated ATA channel
3110 * @ap: port to reset
3111 *
3112 * This is typically the first time we actually start issuing
3113 * commands to the ATA channel. We wait for BSY to clear, then
3114 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3115 * result. Determine what devices, if any, are on the channel
3116 * by looking at the device 0/1 error register. Look at the signature
3117 * stored in each device's taskfile registers, to determine if
3118 * the device is ATA or ATAPI.
3119 *
3120 * LOCKING:
3121 * PCI/etc. bus probe sem.
3122 * Obtains host lock.
3123 *
3124 * SIDE EFFECTS:
3125 * Sets ATA_FLAG_DISABLED if bus reset fails.
3126 */
3127
3128 void ata_bus_reset(struct ata_port *ap)
3129 {
3130 struct ata_ioports *ioaddr = &ap->ioaddr;
3131 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3132 u8 err;
3133 unsigned int dev0, dev1 = 0, devmask = 0;
3134 int rc;
3135
3136 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3137
3138 /* determine if device 0/1 are present */
3139 if (ap->flags & ATA_FLAG_SATA_RESET)
3140 dev0 = 1;
3141 else {
3142 dev0 = ata_devchk(ap, 0);
3143 if (slave_possible)
3144 dev1 = ata_devchk(ap, 1);
3145 }
3146
3147 if (dev0)
3148 devmask |= (1 << 0);
3149 if (dev1)
3150 devmask |= (1 << 1);
3151
3152 /* select device 0 again */
3153 ap->ops->dev_select(ap, 0);
3154
3155 /* issue bus reset */
3156 if (ap->flags & ATA_FLAG_SRST) {
3157 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3158 if (rc && rc != -ENODEV)
3159 goto err_out;
3160 }
3161
3162 /*
3163 * determine by signature whether we have ATA or ATAPI devices
3164 */
3165 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3166 if ((slave_possible) && (err != 0x81))
3167 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3168
3169 /* is double-select really necessary? */
3170 if (ap->device[1].class != ATA_DEV_NONE)
3171 ap->ops->dev_select(ap, 1);
3172 if (ap->device[0].class != ATA_DEV_NONE)
3173 ap->ops->dev_select(ap, 0);
3174
3175 /* if no devices were detected, disable this port */
3176 if ((ap->device[0].class == ATA_DEV_NONE) &&
3177 (ap->device[1].class == ATA_DEV_NONE))
3178 goto err_out;
3179
3180 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3181 /* set up device control for ATA_FLAG_SATA_RESET */
3182 iowrite8(ap->ctl, ioaddr->ctl_addr);
3183 }
3184
3185 DPRINTK("EXIT\n");
3186 return;
3187
3188 err_out:
3189 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3190 ap->ops->port_disable(ap);
3191
3192 DPRINTK("EXIT\n");
3193 }
3194
3195 /**
3196 * sata_phy_debounce - debounce SATA phy status
3197 * @ap: ATA port to debounce SATA phy status for
3198 * @params: timing parameters { interval, duratinon, timeout } in msec
3199 * @deadline: deadline jiffies for the operation
3200 *
3201 * Make sure SStatus of @ap reaches stable state, determined by
3202 * holding the same value where DET is not 1 for @duration polled
3203 * every @interval, before @timeout. Timeout constraints the
3204 * beginning of the stable state. Because DET gets stuck at 1 on
3205 * some controllers after hot unplugging, this functions waits
3206 * until timeout then returns 0 if DET is stable at 1.
3207 *
3208 * @timeout is further limited by @deadline. The sooner of the
3209 * two is used.
3210 *
3211 * LOCKING:
3212 * Kernel thread context (may sleep)
3213 *
3214 * RETURNS:
3215 * 0 on success, -errno on failure.
3216 */
3217 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3218 unsigned long deadline)
3219 {
3220 unsigned long interval_msec = params[0];
3221 unsigned long duration = msecs_to_jiffies(params[1]);
3222 unsigned long last_jiffies, t;
3223 u32 last, cur;
3224 int rc;
3225
3226 t = jiffies + msecs_to_jiffies(params[2]);
3227 if (time_before(t, deadline))
3228 deadline = t;
3229
3230 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3231 return rc;
3232 cur &= 0xf;
3233
3234 last = cur;
3235 last_jiffies = jiffies;
3236
3237 while (1) {
3238 msleep(interval_msec);
3239 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3240 return rc;
3241 cur &= 0xf;
3242
3243 /* DET stable? */
3244 if (cur == last) {
3245 if (cur == 1 && time_before(jiffies, deadline))
3246 continue;
3247 if (time_after(jiffies, last_jiffies + duration))
3248 return 0;
3249 continue;
3250 }
3251
3252 /* unstable, start over */
3253 last = cur;
3254 last_jiffies = jiffies;
3255
3256 /* check deadline */
3257 if (time_after(jiffies, deadline))
3258 return -EBUSY;
3259 }
3260 }
3261
3262 /**
3263 * sata_phy_resume - resume SATA phy
3264 * @ap: ATA port to resume SATA phy for
3265 * @params: timing parameters { interval, duratinon, timeout } in msec
3266 * @deadline: deadline jiffies for the operation
3267 *
3268 * Resume SATA phy of @ap and debounce it.
3269 *
3270 * LOCKING:
3271 * Kernel thread context (may sleep)
3272 *
3273 * RETURNS:
3274 * 0 on success, -errno on failure.
3275 */
3276 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3277 unsigned long deadline)
3278 {
3279 u32 scontrol;
3280 int rc;
3281
3282 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3283 return rc;
3284
3285 scontrol = (scontrol & 0x0f0) | 0x300;
3286
3287 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3288 return rc;
3289
3290 /* Some PHYs react badly if SStatus is pounded immediately
3291 * after resuming. Delay 200ms before debouncing.
3292 */
3293 msleep(200);
3294
3295 return sata_phy_debounce(ap, params, deadline);
3296 }
3297
3298 /**
3299 * ata_std_prereset - prepare for reset
3300 * @ap: ATA port to be reset
3301 * @deadline: deadline jiffies for the operation
3302 *
3303 * @ap is about to be reset. Initialize it. Failure from
3304 * prereset makes libata abort whole reset sequence and give up
3305 * that port, so prereset should be best-effort. It does its
3306 * best to prepare for reset sequence but if things go wrong, it
3307 * should just whine, not fail.
3308 *
3309 * LOCKING:
3310 * Kernel thread context (may sleep)
3311 *
3312 * RETURNS:
3313 * 0 on success, -errno otherwise.
3314 */
3315 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3316 {
3317 struct ata_eh_context *ehc = &ap->eh_context;
3318 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3319 int rc;
3320
3321 /* handle link resume */
3322 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3323 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3324 ehc->i.action |= ATA_EH_HARDRESET;
3325
3326 /* if we're about to do hardreset, nothing more to do */
3327 if (ehc->i.action & ATA_EH_HARDRESET)
3328 return 0;
3329
3330 /* if SATA, resume phy */
3331 if (ap->flags & ATA_FLAG_SATA) {
3332 rc = sata_phy_resume(ap, timing, deadline);
3333 /* whine about phy resume failure but proceed */
3334 if (rc && rc != -EOPNOTSUPP)
3335 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3336 "link for reset (errno=%d)\n", rc);
3337 }
3338
3339 /* Wait for !BSY if the controller can wait for the first D2H
3340 * Reg FIS and we don't know that no device is attached.
3341 */
3342 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3343 rc = ata_wait_ready(ap, deadline);
3344 if (rc && rc != -ENODEV) {
3345 ata_port_printk(ap, KERN_WARNING, "device not ready "
3346 "(errno=%d), forcing hardreset\n", rc);
3347 ehc->i.action |= ATA_EH_HARDRESET;
3348 }
3349 }
3350
3351 return 0;
3352 }
3353
3354 /**
3355 * ata_std_softreset - reset host port via ATA SRST
3356 * @ap: port to reset
3357 * @classes: resulting classes of attached devices
3358 * @deadline: deadline jiffies for the operation
3359 *
3360 * Reset host port using ATA SRST.
3361 *
3362 * LOCKING:
3363 * Kernel thread context (may sleep)
3364 *
3365 * RETURNS:
3366 * 0 on success, -errno otherwise.
3367 */
3368 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3369 unsigned long deadline)
3370 {
3371 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3372 unsigned int devmask = 0;
3373 int rc;
3374 u8 err;
3375
3376 DPRINTK("ENTER\n");
3377
3378 if (ata_port_offline(ap)) {
3379 classes[0] = ATA_DEV_NONE;
3380 goto out;
3381 }
3382
3383 /* determine if device 0/1 are present */
3384 if (ata_devchk(ap, 0))
3385 devmask |= (1 << 0);
3386 if (slave_possible && ata_devchk(ap, 1))
3387 devmask |= (1 << 1);
3388
3389 /* select device 0 again */
3390 ap->ops->dev_select(ap, 0);
3391
3392 /* issue bus reset */
3393 DPRINTK("about to softreset, devmask=%x\n", devmask);
3394 rc = ata_bus_softreset(ap, devmask, deadline);
3395 /* if link is occupied, -ENODEV too is an error */
3396 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3397 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3398 return rc;
3399 }
3400
3401 /* determine by signature whether we have ATA or ATAPI devices */
3402 classes[0] = ata_dev_try_classify(ap, 0, &err);
3403 if (slave_possible && err != 0x81)
3404 classes[1] = ata_dev_try_classify(ap, 1, &err);
3405
3406 out:
3407 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3408 return 0;
3409 }
3410
3411 /**
3412 * sata_port_hardreset - reset port via SATA phy reset
3413 * @ap: port to reset
3414 * @timing: timing parameters { interval, duratinon, timeout } in msec
3415 * @deadline: deadline jiffies for the operation
3416 *
3417 * SATA phy-reset host port using DET bits of SControl register.
3418 *
3419 * LOCKING:
3420 * Kernel thread context (may sleep)
3421 *
3422 * RETURNS:
3423 * 0 on success, -errno otherwise.
3424 */
3425 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3426 unsigned long deadline)
3427 {
3428 u32 scontrol;
3429 int rc;
3430
3431 DPRINTK("ENTER\n");
3432
3433 if (sata_set_spd_needed(ap)) {
3434 /* SATA spec says nothing about how to reconfigure
3435 * spd. To be on the safe side, turn off phy during
3436 * reconfiguration. This works for at least ICH7 AHCI
3437 * and Sil3124.
3438 */
3439 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3440 goto out;
3441
3442 scontrol = (scontrol & 0x0f0) | 0x304;
3443
3444 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3445 goto out;
3446
3447 sata_set_spd(ap);
3448 }
3449
3450 /* issue phy wake/reset */
3451 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3452 goto out;
3453
3454 scontrol = (scontrol & 0x0f0) | 0x301;
3455
3456 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3457 goto out;
3458
3459 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3460 * 10.4.2 says at least 1 ms.
3461 */
3462 msleep(1);
3463
3464 /* bring phy back */
3465 rc = sata_phy_resume(ap, timing, deadline);
3466 out:
3467 DPRINTK("EXIT, rc=%d\n", rc);
3468 return rc;
3469 }
3470
3471 /**
3472 * sata_std_hardreset - reset host port via SATA phy reset
3473 * @ap: port to reset
3474 * @class: resulting class of attached device
3475 * @deadline: deadline jiffies for the operation
3476 *
3477 * SATA phy-reset host port using DET bits of SControl register,
3478 * wait for !BSY and classify the attached device.
3479 *
3480 * LOCKING:
3481 * Kernel thread context (may sleep)
3482 *
3483 * RETURNS:
3484 * 0 on success, -errno otherwise.
3485 */
3486 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3487 unsigned long deadline)
3488 {
3489 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3490 int rc;
3491
3492 DPRINTK("ENTER\n");
3493
3494 /* do hardreset */
3495 rc = sata_port_hardreset(ap, timing, deadline);
3496 if (rc) {
3497 ata_port_printk(ap, KERN_ERR,
3498 "COMRESET failed (errno=%d)\n", rc);
3499 return rc;
3500 }
3501
3502 /* TODO: phy layer with polling, timeouts, etc. */
3503 if (ata_port_offline(ap)) {
3504 *class = ATA_DEV_NONE;
3505 DPRINTK("EXIT, link offline\n");
3506 return 0;
3507 }
3508
3509 /* wait a while before checking status, see SRST for more info */
3510 msleep(150);
3511
3512 rc = ata_wait_ready(ap, deadline);
3513 /* link occupied, -ENODEV too is an error */
3514 if (rc) {
3515 ata_port_printk(ap, KERN_ERR,
3516 "COMRESET failed (errno=%d)\n", rc);
3517 return rc;
3518 }
3519
3520 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3521
3522 *class = ata_dev_try_classify(ap, 0, NULL);
3523
3524 DPRINTK("EXIT, class=%u\n", *class);
3525 return 0;
3526 }
3527
3528 /**
3529 * ata_std_postreset - standard postreset callback
3530 * @ap: the target ata_port
3531 * @classes: classes of attached devices
3532 *
3533 * This function is invoked after a successful reset. Note that
3534 * the device might have been reset more than once using
3535 * different reset methods before postreset is invoked.
3536 *
3537 * LOCKING:
3538 * Kernel thread context (may sleep)
3539 */
3540 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3541 {
3542 u32 serror;
3543
3544 DPRINTK("ENTER\n");
3545
3546 /* print link status */
3547 sata_print_link_status(ap);
3548
3549 /* clear SError */
3550 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3551 sata_scr_write(ap, SCR_ERROR, serror);
3552
3553 /* is double-select really necessary? */
3554 if (classes[0] != ATA_DEV_NONE)
3555 ap->ops->dev_select(ap, 1);
3556 if (classes[1] != ATA_DEV_NONE)
3557 ap->ops->dev_select(ap, 0);
3558
3559 /* bail out if no device is present */
3560 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3561 DPRINTK("EXIT, no device\n");
3562 return;
3563 }
3564
3565 /* set up device control */
3566 if (ap->ioaddr.ctl_addr)
3567 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3568
3569 DPRINTK("EXIT\n");
3570 }
3571
3572 /**
3573 * ata_dev_same_device - Determine whether new ID matches configured device
3574 * @dev: device to compare against
3575 * @new_class: class of the new device
3576 * @new_id: IDENTIFY page of the new device
3577 *
3578 * Compare @new_class and @new_id against @dev and determine
3579 * whether @dev is the device indicated by @new_class and
3580 * @new_id.
3581 *
3582 * LOCKING:
3583 * None.
3584 *
3585 * RETURNS:
3586 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3587 */
3588 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3589 const u16 *new_id)
3590 {
3591 const u16 *old_id = dev->id;
3592 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3593 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3594
3595 if (dev->class != new_class) {
3596 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3597 dev->class, new_class);
3598 return 0;
3599 }
3600
3601 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3602 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3603 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3604 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3605
3606 if (strcmp(model[0], model[1])) {
3607 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3608 "'%s' != '%s'\n", model[0], model[1]);
3609 return 0;
3610 }
3611
3612 if (strcmp(serial[0], serial[1])) {
3613 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3614 "'%s' != '%s'\n", serial[0], serial[1]);
3615 return 0;
3616 }
3617
3618 return 1;
3619 }
3620
3621 /**
3622 * ata_dev_reread_id - Re-read IDENTIFY data
3623 * @dev: target ATA device
3624 * @readid_flags: read ID flags
3625 *
3626 * Re-read IDENTIFY page and make sure @dev is still attached to
3627 * the port.
3628 *
3629 * LOCKING:
3630 * Kernel thread context (may sleep)
3631 *
3632 * RETURNS:
3633 * 0 on success, negative errno otherwise
3634 */
3635 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3636 {
3637 unsigned int class = dev->class;
3638 u16 *id = (void *)dev->ap->sector_buf;
3639 int rc;
3640
3641 /* read ID data */
3642 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3643 if (rc)
3644 return rc;
3645
3646 /* is the device still there? */
3647 if (!ata_dev_same_device(dev, class, id))
3648 return -ENODEV;
3649
3650 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3651 return 0;
3652 }
3653
3654 /**
3655 * ata_dev_revalidate - Revalidate ATA device
3656 * @dev: device to revalidate
3657 * @readid_flags: read ID flags
3658 *
3659 * Re-read IDENTIFY page, make sure @dev is still attached to the
3660 * port and reconfigure it according to the new IDENTIFY page.
3661 *
3662 * LOCKING:
3663 * Kernel thread context (may sleep)
3664 *
3665 * RETURNS:
3666 * 0 on success, negative errno otherwise
3667 */
3668 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3669 {
3670 u64 n_sectors = dev->n_sectors;
3671 int rc;
3672
3673 if (!ata_dev_enabled(dev))
3674 return -ENODEV;
3675
3676 /* re-read ID */
3677 rc = ata_dev_reread_id(dev, readid_flags);
3678 if (rc)
3679 goto fail;
3680
3681 /* configure device according to the new ID */
3682 rc = ata_dev_configure(dev);
3683 if (rc)
3684 goto fail;
3685
3686 /* verify n_sectors hasn't changed */
3687 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3688 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3689 "%llu != %llu\n",
3690 (unsigned long long)n_sectors,
3691 (unsigned long long)dev->n_sectors);
3692 rc = -ENODEV;
3693 goto fail;
3694 }
3695
3696 return 0;
3697
3698 fail:
3699 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3700 return rc;
3701 }
3702
3703 struct ata_blacklist_entry {
3704 const char *model_num;
3705 const char *model_rev;
3706 unsigned long horkage;
3707 };
3708
3709 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3710 /* Devices with DMA related problems under Linux */
3711 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3712 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3713 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3714 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3715 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3716 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3717 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3718 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3719 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3720 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3721 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3722 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3723 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3724 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3725 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3726 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3727 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3728 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3729 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3730 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3731 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3732 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3733 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3734 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3735 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3736 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3737 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3738 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3739 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3740 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3741 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3742 { "IOMEGA ZIP 250 ATAPI Floppy",
3743 NULL, ATA_HORKAGE_NODMA },
3744
3745 /* Weird ATAPI devices */
3746 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3747
3748 /* Devices we expect to fail diagnostics */
3749
3750 /* Devices where NCQ should be avoided */
3751 /* NCQ is slow */
3752 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3753 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3754 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3755 /* NCQ is broken */
3756 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3757 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3758 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3759 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3760 ATA_HORKAGE_NONCQ },
3761 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3762 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3763 /* Blacklist entries taken from Silicon Image 3124/3132
3764 Windows driver .inf file - also several Linux problem reports */
3765 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3766 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3767 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3768 /* Drives which do spurious command completion */
3769 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3770 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3771 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3772 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3773 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3774 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3775
3776 /* Devices with NCQ limits */
3777
3778 /* End Marker */
3779 { }
3780 };
3781
3782 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3783 {
3784 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3785 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3786 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3787
3788 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3789 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3790
3791 while (ad->model_num) {
3792 if (!strcmp(ad->model_num, model_num)) {
3793 if (ad->model_rev == NULL)
3794 return ad->horkage;
3795 if (!strcmp(ad->model_rev, model_rev))
3796 return ad->horkage;
3797 }
3798 ad++;
3799 }
3800 return 0;
3801 }
3802
3803 static int ata_dma_blacklisted(const struct ata_device *dev)
3804 {
3805 /* We don't support polling DMA.
3806 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3807 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3808 */
3809 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3810 (dev->flags & ATA_DFLAG_CDB_INTR))
3811 return 1;
3812 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3813 }
3814
3815 /**
3816 * ata_dev_xfermask - Compute supported xfermask of the given device
3817 * @dev: Device to compute xfermask for
3818 *
3819 * Compute supported xfermask of @dev and store it in
3820 * dev->*_mask. This function is responsible for applying all
3821 * known limits including host controller limits, device
3822 * blacklist, etc...
3823 *
3824 * LOCKING:
3825 * None.
3826 */
3827 static void ata_dev_xfermask(struct ata_device *dev)
3828 {
3829 struct ata_port *ap = dev->ap;
3830 struct ata_host *host = ap->host;
3831 unsigned long xfer_mask;
3832
3833 /* controller modes available */
3834 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3835 ap->mwdma_mask, ap->udma_mask);
3836
3837 /* drive modes available */
3838 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3839 dev->mwdma_mask, dev->udma_mask);
3840 xfer_mask &= ata_id_xfermask(dev->id);
3841
3842 /*
3843 * CFA Advanced TrueIDE timings are not allowed on a shared
3844 * cable
3845 */
3846 if (ata_dev_pair(dev)) {
3847 /* No PIO5 or PIO6 */
3848 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3849 /* No MWDMA3 or MWDMA 4 */
3850 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3851 }
3852
3853 if (ata_dma_blacklisted(dev)) {
3854 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3855 ata_dev_printk(dev, KERN_WARNING,
3856 "device is on DMA blacklist, disabling DMA\n");
3857 }
3858
3859 if ((host->flags & ATA_HOST_SIMPLEX) &&
3860 host->simplex_claimed && host->simplex_claimed != ap) {
3861 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3862 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3863 "other device, disabling DMA\n");
3864 }
3865
3866 if (ap->flags & ATA_FLAG_NO_IORDY)
3867 xfer_mask &= ata_pio_mask_no_iordy(dev);
3868
3869 if (ap->ops->mode_filter)
3870 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3871
3872 /* Apply cable rule here. Don't apply it early because when
3873 * we handle hot plug the cable type can itself change.
3874 * Check this last so that we know if the transfer rate was
3875 * solely limited by the cable.
3876 * Unknown or 80 wire cables reported host side are checked
3877 * drive side as well. Cases where we know a 40wire cable
3878 * is used safely for 80 are not checked here.
3879 */
3880 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3881 /* UDMA/44 or higher would be available */
3882 if((ap->cbl == ATA_CBL_PATA40) ||
3883 (ata_drive_40wire(dev->id) &&
3884 (ap->cbl == ATA_CBL_PATA_UNK ||
3885 ap->cbl == ATA_CBL_PATA80))) {
3886 ata_dev_printk(dev, KERN_WARNING,
3887 "limited to UDMA/33 due to 40-wire cable\n");
3888 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3889 }
3890
3891 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3892 &dev->mwdma_mask, &dev->udma_mask);
3893 }
3894
3895 /**
3896 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3897 * @dev: Device to which command will be sent
3898 *
3899 * Issue SET FEATURES - XFER MODE command to device @dev
3900 * on port @ap.
3901 *
3902 * LOCKING:
3903 * PCI/etc. bus probe sem.
3904 *
3905 * RETURNS:
3906 * 0 on success, AC_ERR_* mask otherwise.
3907 */
3908
3909 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3910 {
3911 struct ata_taskfile tf;
3912 unsigned int err_mask;
3913
3914 /* set up set-features taskfile */
3915 DPRINTK("set features - xfer mode\n");
3916
3917 /* Some controllers and ATAPI devices show flaky interrupt
3918 * behavior after setting xfer mode. Use polling instead.
3919 */
3920 ata_tf_init(dev, &tf);
3921 tf.command = ATA_CMD_SET_FEATURES;
3922 tf.feature = SETFEATURES_XFER;
3923 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3924 tf.protocol = ATA_PROT_NODATA;
3925 tf.nsect = dev->xfer_mode;
3926
3927 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3928
3929 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3930 return err_mask;
3931 }
3932
3933 /**
3934 * ata_dev_init_params - Issue INIT DEV PARAMS command
3935 * @dev: Device to which command will be sent
3936 * @heads: Number of heads (taskfile parameter)
3937 * @sectors: Number of sectors (taskfile parameter)
3938 *
3939 * LOCKING:
3940 * Kernel thread context (may sleep)
3941 *
3942 * RETURNS:
3943 * 0 on success, AC_ERR_* mask otherwise.
3944 */
3945 static unsigned int ata_dev_init_params(struct ata_device *dev,
3946 u16 heads, u16 sectors)
3947 {
3948 struct ata_taskfile tf;
3949 unsigned int err_mask;
3950
3951 /* Number of sectors per track 1-255. Number of heads 1-16 */
3952 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3953 return AC_ERR_INVALID;
3954
3955 /* set up init dev params taskfile */
3956 DPRINTK("init dev params \n");
3957
3958 ata_tf_init(dev, &tf);
3959 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3960 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3961 tf.protocol = ATA_PROT_NODATA;
3962 tf.nsect = sectors;
3963 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3964
3965 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3966
3967 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3968 return err_mask;
3969 }
3970
3971 /**
3972 * ata_sg_clean - Unmap DMA memory associated with command
3973 * @qc: Command containing DMA memory to be released
3974 *
3975 * Unmap all mapped DMA memory associated with this command.
3976 *
3977 * LOCKING:
3978 * spin_lock_irqsave(host lock)
3979 */
3980 void ata_sg_clean(struct ata_queued_cmd *qc)
3981 {
3982 struct ata_port *ap = qc->ap;
3983 struct scatterlist *sg = qc->__sg;
3984 int dir = qc->dma_dir;
3985 void *pad_buf = NULL;
3986
3987 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3988 WARN_ON(sg == NULL);
3989
3990 if (qc->flags & ATA_QCFLAG_SINGLE)
3991 WARN_ON(qc->n_elem > 1);
3992
3993 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3994
3995 /* if we padded the buffer out to 32-bit bound, and data
3996 * xfer direction is from-device, we must copy from the
3997 * pad buffer back into the supplied buffer
3998 */
3999 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4000 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4001
4002 if (qc->flags & ATA_QCFLAG_SG) {
4003 if (qc->n_elem)
4004 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4005 /* restore last sg */
4006 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4007 if (pad_buf) {
4008 struct scatterlist *psg = &qc->pad_sgent;
4009 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4010 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4011 kunmap_atomic(addr, KM_IRQ0);
4012 }
4013 } else {
4014 if (qc->n_elem)
4015 dma_unmap_single(ap->dev,
4016 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4017 dir);
4018 /* restore sg */
4019 sg->length += qc->pad_len;
4020 if (pad_buf)
4021 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4022 pad_buf, qc->pad_len);
4023 }
4024
4025 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4026 qc->__sg = NULL;
4027 }
4028
4029 /**
4030 * ata_fill_sg - Fill PCI IDE PRD table
4031 * @qc: Metadata associated with taskfile to be transferred
4032 *
4033 * Fill PCI IDE PRD (scatter-gather) table with segments
4034 * associated with the current disk command.
4035 *
4036 * LOCKING:
4037 * spin_lock_irqsave(host lock)
4038 *
4039 */
4040 static void ata_fill_sg(struct ata_queued_cmd *qc)
4041 {
4042 struct ata_port *ap = qc->ap;
4043 struct scatterlist *sg;
4044 unsigned int idx;
4045
4046 WARN_ON(qc->__sg == NULL);
4047 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4048
4049 idx = 0;
4050 ata_for_each_sg(sg, qc) {
4051 u32 addr, offset;
4052 u32 sg_len, len;
4053
4054 /* determine if physical DMA addr spans 64K boundary.
4055 * Note h/w doesn't support 64-bit, so we unconditionally
4056 * truncate dma_addr_t to u32.
4057 */
4058 addr = (u32) sg_dma_address(sg);
4059 sg_len = sg_dma_len(sg);
4060
4061 while (sg_len) {
4062 offset = addr & 0xffff;
4063 len = sg_len;
4064 if ((offset + sg_len) > 0x10000)
4065 len = 0x10000 - offset;
4066
4067 ap->prd[idx].addr = cpu_to_le32(addr);
4068 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4069 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4070
4071 idx++;
4072 sg_len -= len;
4073 addr += len;
4074 }
4075 }
4076
4077 if (idx)
4078 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4079 }
4080
4081 /**
4082 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4083 * @qc: Metadata associated with taskfile to be transferred
4084 *
4085 * Fill PCI IDE PRD (scatter-gather) table with segments
4086 * associated with the current disk command. Perform the fill
4087 * so that we avoid writing any length 64K records for
4088 * controllers that don't follow the spec.
4089 *
4090 * LOCKING:
4091 * spin_lock_irqsave(host lock)
4092 *
4093 */
4094 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4095 {
4096 struct ata_port *ap = qc->ap;
4097 struct scatterlist *sg;
4098 unsigned int idx;
4099
4100 WARN_ON(qc->__sg == NULL);
4101 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4102
4103 idx = 0;
4104 ata_for_each_sg(sg, qc) {
4105 u32 addr, offset;
4106 u32 sg_len, len, blen;
4107
4108 /* determine if physical DMA addr spans 64K boundary.
4109 * Note h/w doesn't support 64-bit, so we unconditionally
4110 * truncate dma_addr_t to u32.
4111 */
4112 addr = (u32) sg_dma_address(sg);
4113 sg_len = sg_dma_len(sg);
4114
4115 while (sg_len) {
4116 offset = addr & 0xffff;
4117 len = sg_len;
4118 if ((offset + sg_len) > 0x10000)
4119 len = 0x10000 - offset;
4120
4121 blen = len & 0xffff;
4122 ap->prd[idx].addr = cpu_to_le32(addr);
4123 if (blen == 0) {
4124 /* Some PATA chipsets like the CS5530 can't
4125 cope with 0x0000 meaning 64K as the spec says */
4126 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4127 blen = 0x8000;
4128 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4129 }
4130 ap->prd[idx].flags_len = cpu_to_le32(blen);
4131 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4132
4133 idx++;
4134 sg_len -= len;
4135 addr += len;
4136 }
4137 }
4138
4139 if (idx)
4140 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4141 }
4142
4143 /**
4144 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4145 * @qc: Metadata associated with taskfile to check
4146 *
4147 * Allow low-level driver to filter ATA PACKET commands, returning
4148 * a status indicating whether or not it is OK to use DMA for the
4149 * supplied PACKET command.
4150 *
4151 * LOCKING:
4152 * spin_lock_irqsave(host lock)
4153 *
4154 * RETURNS: 0 when ATAPI DMA can be used
4155 * nonzero otherwise
4156 */
4157 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4158 {
4159 struct ata_port *ap = qc->ap;
4160
4161 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4162 * few ATAPI devices choke on such DMA requests.
4163 */
4164 if (unlikely(qc->nbytes & 15))
4165 return 1;
4166
4167 if (ap->ops->check_atapi_dma)
4168 return ap->ops->check_atapi_dma(qc);
4169
4170 return 0;
4171 }
4172
4173 /**
4174 * ata_qc_prep - Prepare taskfile for submission
4175 * @qc: Metadata associated with taskfile to be prepared
4176 *
4177 * Prepare ATA taskfile for submission.
4178 *
4179 * LOCKING:
4180 * spin_lock_irqsave(host lock)
4181 */
4182 void ata_qc_prep(struct ata_queued_cmd *qc)
4183 {
4184 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4185 return;
4186
4187 ata_fill_sg(qc);
4188 }
4189
4190 /**
4191 * ata_dumb_qc_prep - Prepare taskfile for submission
4192 * @qc: Metadata associated with taskfile to be prepared
4193 *
4194 * Prepare ATA taskfile for submission.
4195 *
4196 * LOCKING:
4197 * spin_lock_irqsave(host lock)
4198 */
4199 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4200 {
4201 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4202 return;
4203
4204 ata_fill_sg_dumb(qc);
4205 }
4206
4207 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4208
4209 /**
4210 * ata_sg_init_one - Associate command with memory buffer
4211 * @qc: Command to be associated
4212 * @buf: Memory buffer
4213 * @buflen: Length of memory buffer, in bytes.
4214 *
4215 * Initialize the data-related elements of queued_cmd @qc
4216 * to point to a single memory buffer, @buf of byte length @buflen.
4217 *
4218 * LOCKING:
4219 * spin_lock_irqsave(host lock)
4220 */
4221
4222 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4223 {
4224 qc->flags |= ATA_QCFLAG_SINGLE;
4225
4226 qc->__sg = &qc->sgent;
4227 qc->n_elem = 1;
4228 qc->orig_n_elem = 1;
4229 qc->buf_virt = buf;
4230 qc->nbytes = buflen;
4231
4232 sg_init_one(&qc->sgent, buf, buflen);
4233 }
4234
4235 /**
4236 * ata_sg_init - Associate command with scatter-gather table.
4237 * @qc: Command to be associated
4238 * @sg: Scatter-gather table.
4239 * @n_elem: Number of elements in s/g table.
4240 *
4241 * Initialize the data-related elements of queued_cmd @qc
4242 * to point to a scatter-gather table @sg, containing @n_elem
4243 * elements.
4244 *
4245 * LOCKING:
4246 * spin_lock_irqsave(host lock)
4247 */
4248
4249 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4250 unsigned int n_elem)
4251 {
4252 qc->flags |= ATA_QCFLAG_SG;
4253 qc->__sg = sg;
4254 qc->n_elem = n_elem;
4255 qc->orig_n_elem = n_elem;
4256 }
4257
4258 /**
4259 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4260 * @qc: Command with memory buffer to be mapped.
4261 *
4262 * DMA-map the memory buffer associated with queued_cmd @qc.
4263 *
4264 * LOCKING:
4265 * spin_lock_irqsave(host lock)
4266 *
4267 * RETURNS:
4268 * Zero on success, negative on error.
4269 */
4270
4271 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4272 {
4273 struct ata_port *ap = qc->ap;
4274 int dir = qc->dma_dir;
4275 struct scatterlist *sg = qc->__sg;
4276 dma_addr_t dma_address;
4277 int trim_sg = 0;
4278
4279 /* we must lengthen transfers to end on a 32-bit boundary */
4280 qc->pad_len = sg->length & 3;
4281 if (qc->pad_len) {
4282 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4283 struct scatterlist *psg = &qc->pad_sgent;
4284
4285 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4286
4287 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4288
4289 if (qc->tf.flags & ATA_TFLAG_WRITE)
4290 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4291 qc->pad_len);
4292
4293 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4294 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4295 /* trim sg */
4296 sg->length -= qc->pad_len;
4297 if (sg->length == 0)
4298 trim_sg = 1;
4299
4300 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4301 sg->length, qc->pad_len);
4302 }
4303
4304 if (trim_sg) {
4305 qc->n_elem--;
4306 goto skip_map;
4307 }
4308
4309 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4310 sg->length, dir);
4311 if (dma_mapping_error(dma_address)) {
4312 /* restore sg */
4313 sg->length += qc->pad_len;
4314 return -1;
4315 }
4316
4317 sg_dma_address(sg) = dma_address;
4318 sg_dma_len(sg) = sg->length;
4319
4320 skip_map:
4321 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4322 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4323
4324 return 0;
4325 }
4326
4327 /**
4328 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4329 * @qc: Command with scatter-gather table to be mapped.
4330 *
4331 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4332 *
4333 * LOCKING:
4334 * spin_lock_irqsave(host lock)
4335 *
4336 * RETURNS:
4337 * Zero on success, negative on error.
4338 *
4339 */
4340
4341 static int ata_sg_setup(struct ata_queued_cmd *qc)
4342 {
4343 struct ata_port *ap = qc->ap;
4344 struct scatterlist *sg = qc->__sg;
4345 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4346 int n_elem, pre_n_elem, dir, trim_sg = 0;
4347
4348 VPRINTK("ENTER, ata%u\n", ap->print_id);
4349 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4350
4351 /* we must lengthen transfers to end on a 32-bit boundary */
4352 qc->pad_len = lsg->length & 3;
4353 if (qc->pad_len) {
4354 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4355 struct scatterlist *psg = &qc->pad_sgent;
4356 unsigned int offset;
4357
4358 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4359
4360 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4361
4362 /*
4363 * psg->page/offset are used to copy to-be-written
4364 * data in this function or read data in ata_sg_clean.
4365 */
4366 offset = lsg->offset + lsg->length - qc->pad_len;
4367 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4368 psg->offset = offset_in_page(offset);
4369
4370 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4371 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4372 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4373 kunmap_atomic(addr, KM_IRQ0);
4374 }
4375
4376 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4377 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4378 /* trim last sg */
4379 lsg->length -= qc->pad_len;
4380 if (lsg->length == 0)
4381 trim_sg = 1;
4382
4383 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4384 qc->n_elem - 1, lsg->length, qc->pad_len);
4385 }
4386
4387 pre_n_elem = qc->n_elem;
4388 if (trim_sg && pre_n_elem)
4389 pre_n_elem--;
4390
4391 if (!pre_n_elem) {
4392 n_elem = 0;
4393 goto skip_map;
4394 }
4395
4396 dir = qc->dma_dir;
4397 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4398 if (n_elem < 1) {
4399 /* restore last sg */
4400 lsg->length += qc->pad_len;
4401 return -1;
4402 }
4403
4404 DPRINTK("%d sg elements mapped\n", n_elem);
4405
4406 skip_map:
4407 qc->n_elem = n_elem;
4408
4409 return 0;
4410 }
4411
4412 /**
4413 * swap_buf_le16 - swap halves of 16-bit words in place
4414 * @buf: Buffer to swap
4415 * @buf_words: Number of 16-bit words in buffer.
4416 *
4417 * Swap halves of 16-bit words if needed to convert from
4418 * little-endian byte order to native cpu byte order, or
4419 * vice-versa.
4420 *
4421 * LOCKING:
4422 * Inherited from caller.
4423 */
4424 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4425 {
4426 #ifdef __BIG_ENDIAN
4427 unsigned int i;
4428
4429 for (i = 0; i < buf_words; i++)
4430 buf[i] = le16_to_cpu(buf[i]);
4431 #endif /* __BIG_ENDIAN */
4432 }
4433
4434 /**
4435 * ata_data_xfer - Transfer data by PIO
4436 * @adev: device to target
4437 * @buf: data buffer
4438 * @buflen: buffer length
4439 * @write_data: read/write
4440 *
4441 * Transfer data from/to the device data register by PIO.
4442 *
4443 * LOCKING:
4444 * Inherited from caller.
4445 */
4446 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4447 unsigned int buflen, int write_data)
4448 {
4449 struct ata_port *ap = adev->ap;
4450 unsigned int words = buflen >> 1;
4451
4452 /* Transfer multiple of 2 bytes */
4453 if (write_data)
4454 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4455 else
4456 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4457
4458 /* Transfer trailing 1 byte, if any. */
4459 if (unlikely(buflen & 0x01)) {
4460 u16 align_buf[1] = { 0 };
4461 unsigned char *trailing_buf = buf + buflen - 1;
4462
4463 if (write_data) {
4464 memcpy(align_buf, trailing_buf, 1);
4465 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4466 } else {
4467 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4468 memcpy(trailing_buf, align_buf, 1);
4469 }
4470 }
4471 }
4472
4473 /**
4474 * ata_data_xfer_noirq - Transfer data by PIO
4475 * @adev: device to target
4476 * @buf: data buffer
4477 * @buflen: buffer length
4478 * @write_data: read/write
4479 *
4480 * Transfer data from/to the device data register by PIO. Do the
4481 * transfer with interrupts disabled.
4482 *
4483 * LOCKING:
4484 * Inherited from caller.
4485 */
4486 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4487 unsigned int buflen, int write_data)
4488 {
4489 unsigned long flags;
4490 local_irq_save(flags);
4491 ata_data_xfer(adev, buf, buflen, write_data);
4492 local_irq_restore(flags);
4493 }
4494
4495
4496 /**
4497 * ata_pio_sector - Transfer a sector of data.
4498 * @qc: Command on going
4499 *
4500 * Transfer qc->sect_size bytes of data from/to the ATA device.
4501 *
4502 * LOCKING:
4503 * Inherited from caller.
4504 */
4505
4506 static void ata_pio_sector(struct ata_queued_cmd *qc)
4507 {
4508 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4509 struct scatterlist *sg = qc->__sg;
4510 struct ata_port *ap = qc->ap;
4511 struct page *page;
4512 unsigned int offset;
4513 unsigned char *buf;
4514
4515 if (qc->curbytes == qc->nbytes - qc->sect_size)
4516 ap->hsm_task_state = HSM_ST_LAST;
4517
4518 page = sg[qc->cursg].page;
4519 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4520
4521 /* get the current page and offset */
4522 page = nth_page(page, (offset >> PAGE_SHIFT));
4523 offset %= PAGE_SIZE;
4524
4525 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4526
4527 if (PageHighMem(page)) {
4528 unsigned long flags;
4529
4530 /* FIXME: use a bounce buffer */
4531 local_irq_save(flags);
4532 buf = kmap_atomic(page, KM_IRQ0);
4533
4534 /* do the actual data transfer */
4535 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4536
4537 kunmap_atomic(buf, KM_IRQ0);
4538 local_irq_restore(flags);
4539 } else {
4540 buf = page_address(page);
4541 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4542 }
4543
4544 qc->curbytes += qc->sect_size;
4545 qc->cursg_ofs += qc->sect_size;
4546
4547 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4548 qc->cursg++;
4549 qc->cursg_ofs = 0;
4550 }
4551 }
4552
4553 /**
4554 * ata_pio_sectors - Transfer one or many sectors.
4555 * @qc: Command on going
4556 *
4557 * Transfer one or many sectors of data from/to the
4558 * ATA device for the DRQ request.
4559 *
4560 * LOCKING:
4561 * Inherited from caller.
4562 */
4563
4564 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4565 {
4566 if (is_multi_taskfile(&qc->tf)) {
4567 /* READ/WRITE MULTIPLE */
4568 unsigned int nsect;
4569
4570 WARN_ON(qc->dev->multi_count == 0);
4571
4572 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4573 qc->dev->multi_count);
4574 while (nsect--)
4575 ata_pio_sector(qc);
4576 } else
4577 ata_pio_sector(qc);
4578 }
4579
4580 /**
4581 * atapi_send_cdb - Write CDB bytes to hardware
4582 * @ap: Port to which ATAPI device is attached.
4583 * @qc: Taskfile currently active
4584 *
4585 * When device has indicated its readiness to accept
4586 * a CDB, this function is called. Send the CDB.
4587 *
4588 * LOCKING:
4589 * caller.
4590 */
4591
4592 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4593 {
4594 /* send SCSI cdb */
4595 DPRINTK("send cdb\n");
4596 WARN_ON(qc->dev->cdb_len < 12);
4597
4598 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4599 ata_altstatus(ap); /* flush */
4600
4601 switch (qc->tf.protocol) {
4602 case ATA_PROT_ATAPI:
4603 ap->hsm_task_state = HSM_ST;
4604 break;
4605 case ATA_PROT_ATAPI_NODATA:
4606 ap->hsm_task_state = HSM_ST_LAST;
4607 break;
4608 case ATA_PROT_ATAPI_DMA:
4609 ap->hsm_task_state = HSM_ST_LAST;
4610 /* initiate bmdma */
4611 ap->ops->bmdma_start(qc);
4612 break;
4613 }
4614 }
4615
4616 /**
4617 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4618 * @qc: Command on going
4619 * @bytes: number of bytes
4620 *
4621 * Transfer Transfer data from/to the ATAPI device.
4622 *
4623 * LOCKING:
4624 * Inherited from caller.
4625 *
4626 */
4627
4628 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4629 {
4630 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4631 struct scatterlist *sg = qc->__sg;
4632 struct ata_port *ap = qc->ap;
4633 struct page *page;
4634 unsigned char *buf;
4635 unsigned int offset, count;
4636
4637 if (qc->curbytes + bytes >= qc->nbytes)
4638 ap->hsm_task_state = HSM_ST_LAST;
4639
4640 next_sg:
4641 if (unlikely(qc->cursg >= qc->n_elem)) {
4642 /*
4643 * The end of qc->sg is reached and the device expects
4644 * more data to transfer. In order not to overrun qc->sg
4645 * and fulfill length specified in the byte count register,
4646 * - for read case, discard trailing data from the device
4647 * - for write case, padding zero data to the device
4648 */
4649 u16 pad_buf[1] = { 0 };
4650 unsigned int words = bytes >> 1;
4651 unsigned int i;
4652
4653 if (words) /* warning if bytes > 1 */
4654 ata_dev_printk(qc->dev, KERN_WARNING,
4655 "%u bytes trailing data\n", bytes);
4656
4657 for (i = 0; i < words; i++)
4658 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4659
4660 ap->hsm_task_state = HSM_ST_LAST;
4661 return;
4662 }
4663
4664 sg = &qc->__sg[qc->cursg];
4665
4666 page = sg->page;
4667 offset = sg->offset + qc->cursg_ofs;
4668
4669 /* get the current page and offset */
4670 page = nth_page(page, (offset >> PAGE_SHIFT));
4671 offset %= PAGE_SIZE;
4672
4673 /* don't overrun current sg */
4674 count = min(sg->length - qc->cursg_ofs, bytes);
4675
4676 /* don't cross page boundaries */
4677 count = min(count, (unsigned int)PAGE_SIZE - offset);
4678
4679 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4680
4681 if (PageHighMem(page)) {
4682 unsigned long flags;
4683
4684 /* FIXME: use bounce buffer */
4685 local_irq_save(flags);
4686 buf = kmap_atomic(page, KM_IRQ0);
4687
4688 /* do the actual data transfer */
4689 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4690
4691 kunmap_atomic(buf, KM_IRQ0);
4692 local_irq_restore(flags);
4693 } else {
4694 buf = page_address(page);
4695 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4696 }
4697
4698 bytes -= count;
4699 qc->curbytes += count;
4700 qc->cursg_ofs += count;
4701
4702 if (qc->cursg_ofs == sg->length) {
4703 qc->cursg++;
4704 qc->cursg_ofs = 0;
4705 }
4706
4707 if (bytes)
4708 goto next_sg;
4709 }
4710
4711 /**
4712 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4713 * @qc: Command on going
4714 *
4715 * Transfer Transfer data from/to the ATAPI device.
4716 *
4717 * LOCKING:
4718 * Inherited from caller.
4719 */
4720
4721 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4722 {
4723 struct ata_port *ap = qc->ap;
4724 struct ata_device *dev = qc->dev;
4725 unsigned int ireason, bc_lo, bc_hi, bytes;
4726 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4727
4728 /* Abuse qc->result_tf for temp storage of intermediate TF
4729 * here to save some kernel stack usage.
4730 * For normal completion, qc->result_tf is not relevant. For
4731 * error, qc->result_tf is later overwritten by ata_qc_complete().
4732 * So, the correctness of qc->result_tf is not affected.
4733 */
4734 ap->ops->tf_read(ap, &qc->result_tf);
4735 ireason = qc->result_tf.nsect;
4736 bc_lo = qc->result_tf.lbam;
4737 bc_hi = qc->result_tf.lbah;
4738 bytes = (bc_hi << 8) | bc_lo;
4739
4740 /* shall be cleared to zero, indicating xfer of data */
4741 if (ireason & (1 << 0))
4742 goto err_out;
4743
4744 /* make sure transfer direction matches expected */
4745 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4746 if (do_write != i_write)
4747 goto err_out;
4748
4749 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4750
4751 __atapi_pio_bytes(qc, bytes);
4752
4753 return;
4754
4755 err_out:
4756 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4757 qc->err_mask |= AC_ERR_HSM;
4758 ap->hsm_task_state = HSM_ST_ERR;
4759 }
4760
4761 /**
4762 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4763 * @ap: the target ata_port
4764 * @qc: qc on going
4765 *
4766 * RETURNS:
4767 * 1 if ok in workqueue, 0 otherwise.
4768 */
4769
4770 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4771 {
4772 if (qc->tf.flags & ATA_TFLAG_POLLING)
4773 return 1;
4774
4775 if (ap->hsm_task_state == HSM_ST_FIRST) {
4776 if (qc->tf.protocol == ATA_PROT_PIO &&
4777 (qc->tf.flags & ATA_TFLAG_WRITE))
4778 return 1;
4779
4780 if (is_atapi_taskfile(&qc->tf) &&
4781 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4782 return 1;
4783 }
4784
4785 return 0;
4786 }
4787
4788 /**
4789 * ata_hsm_qc_complete - finish a qc running on standard HSM
4790 * @qc: Command to complete
4791 * @in_wq: 1 if called from workqueue, 0 otherwise
4792 *
4793 * Finish @qc which is running on standard HSM.
4794 *
4795 * LOCKING:
4796 * If @in_wq is zero, spin_lock_irqsave(host lock).
4797 * Otherwise, none on entry and grabs host lock.
4798 */
4799 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4800 {
4801 struct ata_port *ap = qc->ap;
4802 unsigned long flags;
4803
4804 if (ap->ops->error_handler) {
4805 if (in_wq) {
4806 spin_lock_irqsave(ap->lock, flags);
4807
4808 /* EH might have kicked in while host lock is
4809 * released.
4810 */
4811 qc = ata_qc_from_tag(ap, qc->tag);
4812 if (qc) {
4813 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4814 ap->ops->irq_on(ap);
4815 ata_qc_complete(qc);
4816 } else
4817 ata_port_freeze(ap);
4818 }
4819
4820 spin_unlock_irqrestore(ap->lock, flags);
4821 } else {
4822 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4823 ata_qc_complete(qc);
4824 else
4825 ata_port_freeze(ap);
4826 }
4827 } else {
4828 if (in_wq) {
4829 spin_lock_irqsave(ap->lock, flags);
4830 ap->ops->irq_on(ap);
4831 ata_qc_complete(qc);
4832 spin_unlock_irqrestore(ap->lock, flags);
4833 } else
4834 ata_qc_complete(qc);
4835 }
4836 }
4837
4838 /**
4839 * ata_hsm_move - move the HSM to the next state.
4840 * @ap: the target ata_port
4841 * @qc: qc on going
4842 * @status: current device status
4843 * @in_wq: 1 if called from workqueue, 0 otherwise
4844 *
4845 * RETURNS:
4846 * 1 when poll next status needed, 0 otherwise.
4847 */
4848 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4849 u8 status, int in_wq)
4850 {
4851 unsigned long flags = 0;
4852 int poll_next;
4853
4854 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4855
4856 /* Make sure ata_qc_issue_prot() does not throw things
4857 * like DMA polling into the workqueue. Notice that
4858 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4859 */
4860 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4861
4862 fsm_start:
4863 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4864 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4865
4866 switch (ap->hsm_task_state) {
4867 case HSM_ST_FIRST:
4868 /* Send first data block or PACKET CDB */
4869
4870 /* If polling, we will stay in the work queue after
4871 * sending the data. Otherwise, interrupt handler
4872 * takes over after sending the data.
4873 */
4874 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4875
4876 /* check device status */
4877 if (unlikely((status & ATA_DRQ) == 0)) {
4878 /* handle BSY=0, DRQ=0 as error */
4879 if (likely(status & (ATA_ERR | ATA_DF)))
4880 /* device stops HSM for abort/error */
4881 qc->err_mask |= AC_ERR_DEV;
4882 else
4883 /* HSM violation. Let EH handle this */
4884 qc->err_mask |= AC_ERR_HSM;
4885
4886 ap->hsm_task_state = HSM_ST_ERR;
4887 goto fsm_start;
4888 }
4889
4890 /* Device should not ask for data transfer (DRQ=1)
4891 * when it finds something wrong.
4892 * We ignore DRQ here and stop the HSM by
4893 * changing hsm_task_state to HSM_ST_ERR and
4894 * let the EH abort the command or reset the device.
4895 */
4896 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4897 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4898 "error, dev_stat 0x%X\n", status);
4899 qc->err_mask |= AC_ERR_HSM;
4900 ap->hsm_task_state = HSM_ST_ERR;
4901 goto fsm_start;
4902 }
4903
4904 /* Send the CDB (atapi) or the first data block (ata pio out).
4905 * During the state transition, interrupt handler shouldn't
4906 * be invoked before the data transfer is complete and
4907 * hsm_task_state is changed. Hence, the following locking.
4908 */
4909 if (in_wq)
4910 spin_lock_irqsave(ap->lock, flags);
4911
4912 if (qc->tf.protocol == ATA_PROT_PIO) {
4913 /* PIO data out protocol.
4914 * send first data block.
4915 */
4916
4917 /* ata_pio_sectors() might change the state
4918 * to HSM_ST_LAST. so, the state is changed here
4919 * before ata_pio_sectors().
4920 */
4921 ap->hsm_task_state = HSM_ST;
4922 ata_pio_sectors(qc);
4923 ata_altstatus(ap); /* flush */
4924 } else
4925 /* send CDB */
4926 atapi_send_cdb(ap, qc);
4927
4928 if (in_wq)
4929 spin_unlock_irqrestore(ap->lock, flags);
4930
4931 /* if polling, ata_pio_task() handles the rest.
4932 * otherwise, interrupt handler takes over from here.
4933 */
4934 break;
4935
4936 case HSM_ST:
4937 /* complete command or read/write the data register */
4938 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4939 /* ATAPI PIO protocol */
4940 if ((status & ATA_DRQ) == 0) {
4941 /* No more data to transfer or device error.
4942 * Device error will be tagged in HSM_ST_LAST.
4943 */
4944 ap->hsm_task_state = HSM_ST_LAST;
4945 goto fsm_start;
4946 }
4947
4948 /* Device should not ask for data transfer (DRQ=1)
4949 * when it finds something wrong.
4950 * We ignore DRQ here and stop the HSM by
4951 * changing hsm_task_state to HSM_ST_ERR and
4952 * let the EH abort the command or reset the device.
4953 */
4954 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4955 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4956 "device error, dev_stat 0x%X\n",
4957 status);
4958 qc->err_mask |= AC_ERR_HSM;
4959 ap->hsm_task_state = HSM_ST_ERR;
4960 goto fsm_start;
4961 }
4962
4963 atapi_pio_bytes(qc);
4964
4965 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4966 /* bad ireason reported by device */
4967 goto fsm_start;
4968
4969 } else {
4970 /* ATA PIO protocol */
4971 if (unlikely((status & ATA_DRQ) == 0)) {
4972 /* handle BSY=0, DRQ=0 as error */
4973 if (likely(status & (ATA_ERR | ATA_DF)))
4974 /* device stops HSM for abort/error */
4975 qc->err_mask |= AC_ERR_DEV;
4976 else
4977 /* HSM violation. Let EH handle this.
4978 * Phantom devices also trigger this
4979 * condition. Mark hint.
4980 */
4981 qc->err_mask |= AC_ERR_HSM |
4982 AC_ERR_NODEV_HINT;
4983
4984 ap->hsm_task_state = HSM_ST_ERR;
4985 goto fsm_start;
4986 }
4987
4988 /* For PIO reads, some devices may ask for
4989 * data transfer (DRQ=1) alone with ERR=1.
4990 * We respect DRQ here and transfer one
4991 * block of junk data before changing the
4992 * hsm_task_state to HSM_ST_ERR.
4993 *
4994 * For PIO writes, ERR=1 DRQ=1 doesn't make
4995 * sense since the data block has been
4996 * transferred to the device.
4997 */
4998 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4999 /* data might be corrputed */
5000 qc->err_mask |= AC_ERR_DEV;
5001
5002 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5003 ata_pio_sectors(qc);
5004 ata_altstatus(ap);
5005 status = ata_wait_idle(ap);
5006 }
5007
5008 if (status & (ATA_BUSY | ATA_DRQ))
5009 qc->err_mask |= AC_ERR_HSM;
5010
5011 /* ata_pio_sectors() might change the
5012 * state to HSM_ST_LAST. so, the state
5013 * is changed after ata_pio_sectors().
5014 */
5015 ap->hsm_task_state = HSM_ST_ERR;
5016 goto fsm_start;
5017 }
5018
5019 ata_pio_sectors(qc);
5020
5021 if (ap->hsm_task_state == HSM_ST_LAST &&
5022 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5023 /* all data read */
5024 ata_altstatus(ap);
5025 status = ata_wait_idle(ap);
5026 goto fsm_start;
5027 }
5028 }
5029
5030 ata_altstatus(ap); /* flush */
5031 poll_next = 1;
5032 break;
5033
5034 case HSM_ST_LAST:
5035 if (unlikely(!ata_ok(status))) {
5036 qc->err_mask |= __ac_err_mask(status);
5037 ap->hsm_task_state = HSM_ST_ERR;
5038 goto fsm_start;
5039 }
5040
5041 /* no more data to transfer */
5042 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5043 ap->print_id, qc->dev->devno, status);
5044
5045 WARN_ON(qc->err_mask);
5046
5047 ap->hsm_task_state = HSM_ST_IDLE;
5048
5049 /* complete taskfile transaction */
5050 ata_hsm_qc_complete(qc, in_wq);
5051
5052 poll_next = 0;
5053 break;
5054
5055 case HSM_ST_ERR:
5056 /* make sure qc->err_mask is available to
5057 * know what's wrong and recover
5058 */
5059 WARN_ON(qc->err_mask == 0);
5060
5061 ap->hsm_task_state = HSM_ST_IDLE;
5062
5063 /* complete taskfile transaction */
5064 ata_hsm_qc_complete(qc, in_wq);
5065
5066 poll_next = 0;
5067 break;
5068 default:
5069 poll_next = 0;
5070 BUG();
5071 }
5072
5073 return poll_next;
5074 }
5075
5076 static void ata_pio_task(struct work_struct *work)
5077 {
5078 struct ata_port *ap =
5079 container_of(work, struct ata_port, port_task.work);
5080 struct ata_queued_cmd *qc = ap->port_task_data;
5081 u8 status;
5082 int poll_next;
5083
5084 fsm_start:
5085 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5086
5087 /*
5088 * This is purely heuristic. This is a fast path.
5089 * Sometimes when we enter, BSY will be cleared in
5090 * a chk-status or two. If not, the drive is probably seeking
5091 * or something. Snooze for a couple msecs, then
5092 * chk-status again. If still busy, queue delayed work.
5093 */
5094 status = ata_busy_wait(ap, ATA_BUSY, 5);
5095 if (status & ATA_BUSY) {
5096 msleep(2);
5097 status = ata_busy_wait(ap, ATA_BUSY, 10);
5098 if (status & ATA_BUSY) {
5099 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5100 return;
5101 }
5102 }
5103
5104 /* move the HSM */
5105 poll_next = ata_hsm_move(ap, qc, status, 1);
5106
5107 /* another command or interrupt handler
5108 * may be running at this point.
5109 */
5110 if (poll_next)
5111 goto fsm_start;
5112 }
5113
5114 /**
5115 * ata_qc_new - Request an available ATA command, for queueing
5116 * @ap: Port associated with device @dev
5117 * @dev: Device from whom we request an available command structure
5118 *
5119 * LOCKING:
5120 * None.
5121 */
5122
5123 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5124 {
5125 struct ata_queued_cmd *qc = NULL;
5126 unsigned int i;
5127
5128 /* no command while frozen */
5129 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5130 return NULL;
5131
5132 /* the last tag is reserved for internal command. */
5133 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5134 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5135 qc = __ata_qc_from_tag(ap, i);
5136 break;
5137 }
5138
5139 if (qc)
5140 qc->tag = i;
5141
5142 return qc;
5143 }
5144
5145 /**
5146 * ata_qc_new_init - Request an available ATA command, and initialize it
5147 * @dev: Device from whom we request an available command structure
5148 *
5149 * LOCKING:
5150 * None.
5151 */
5152
5153 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5154 {
5155 struct ata_port *ap = dev->ap;
5156 struct ata_queued_cmd *qc;
5157
5158 qc = ata_qc_new(ap);
5159 if (qc) {
5160 qc->scsicmd = NULL;
5161 qc->ap = ap;
5162 qc->dev = dev;
5163
5164 ata_qc_reinit(qc);
5165 }
5166
5167 return qc;
5168 }
5169
5170 /**
5171 * ata_qc_free - free unused ata_queued_cmd
5172 * @qc: Command to complete
5173 *
5174 * Designed to free unused ata_queued_cmd object
5175 * in case something prevents using it.
5176 *
5177 * LOCKING:
5178 * spin_lock_irqsave(host lock)
5179 */
5180 void ata_qc_free(struct ata_queued_cmd *qc)
5181 {
5182 struct ata_port *ap = qc->ap;
5183 unsigned int tag;
5184
5185 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5186
5187 qc->flags = 0;
5188 tag = qc->tag;
5189 if (likely(ata_tag_valid(tag))) {
5190 qc->tag = ATA_TAG_POISON;
5191 clear_bit(tag, &ap->qc_allocated);
5192 }
5193 }
5194
5195 void __ata_qc_complete(struct ata_queued_cmd *qc)
5196 {
5197 struct ata_port *ap = qc->ap;
5198
5199 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5200 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5201
5202 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5203 ata_sg_clean(qc);
5204
5205 /* command should be marked inactive atomically with qc completion */
5206 if (qc->tf.protocol == ATA_PROT_NCQ)
5207 ap->sactive &= ~(1 << qc->tag);
5208 else
5209 ap->active_tag = ATA_TAG_POISON;
5210
5211 /* atapi: mark qc as inactive to prevent the interrupt handler
5212 * from completing the command twice later, before the error handler
5213 * is called. (when rc != 0 and atapi request sense is needed)
5214 */
5215 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5216 ap->qc_active &= ~(1 << qc->tag);
5217
5218 /* call completion callback */
5219 qc->complete_fn(qc);
5220 }
5221
5222 static void fill_result_tf(struct ata_queued_cmd *qc)
5223 {
5224 struct ata_port *ap = qc->ap;
5225
5226 qc->result_tf.flags = qc->tf.flags;
5227 ap->ops->tf_read(ap, &qc->result_tf);
5228 }
5229
5230 /**
5231 * ata_qc_complete - Complete an active ATA command
5232 * @qc: Command to complete
5233 * @err_mask: ATA Status register contents
5234 *
5235 * Indicate to the mid and upper layers that an ATA
5236 * command has completed, with either an ok or not-ok status.
5237 *
5238 * LOCKING:
5239 * spin_lock_irqsave(host lock)
5240 */
5241 void ata_qc_complete(struct ata_queued_cmd *qc)
5242 {
5243 struct ata_port *ap = qc->ap;
5244
5245 /* XXX: New EH and old EH use different mechanisms to
5246 * synchronize EH with regular execution path.
5247 *
5248 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5249 * Normal execution path is responsible for not accessing a
5250 * failed qc. libata core enforces the rule by returning NULL
5251 * from ata_qc_from_tag() for failed qcs.
5252 *
5253 * Old EH depends on ata_qc_complete() nullifying completion
5254 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5255 * not synchronize with interrupt handler. Only PIO task is
5256 * taken care of.
5257 */
5258 if (ap->ops->error_handler) {
5259 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5260
5261 if (unlikely(qc->err_mask))
5262 qc->flags |= ATA_QCFLAG_FAILED;
5263
5264 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5265 if (!ata_tag_internal(qc->tag)) {
5266 /* always fill result TF for failed qc */
5267 fill_result_tf(qc);
5268 ata_qc_schedule_eh(qc);
5269 return;
5270 }
5271 }
5272
5273 /* read result TF if requested */
5274 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5275 fill_result_tf(qc);
5276
5277 __ata_qc_complete(qc);
5278 } else {
5279 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5280 return;
5281
5282 /* read result TF if failed or requested */
5283 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5284 fill_result_tf(qc);
5285
5286 __ata_qc_complete(qc);
5287 }
5288 }
5289
5290 /**
5291 * ata_qc_complete_multiple - Complete multiple qcs successfully
5292 * @ap: port in question
5293 * @qc_active: new qc_active mask
5294 * @finish_qc: LLDD callback invoked before completing a qc
5295 *
5296 * Complete in-flight commands. This functions is meant to be
5297 * called from low-level driver's interrupt routine to complete
5298 * requests normally. ap->qc_active and @qc_active is compared
5299 * and commands are completed accordingly.
5300 *
5301 * LOCKING:
5302 * spin_lock_irqsave(host lock)
5303 *
5304 * RETURNS:
5305 * Number of completed commands on success, -errno otherwise.
5306 */
5307 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5308 void (*finish_qc)(struct ata_queued_cmd *))
5309 {
5310 int nr_done = 0;
5311 u32 done_mask;
5312 int i;
5313
5314 done_mask = ap->qc_active ^ qc_active;
5315
5316 if (unlikely(done_mask & qc_active)) {
5317 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5318 "(%08x->%08x)\n", ap->qc_active, qc_active);
5319 return -EINVAL;
5320 }
5321
5322 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5323 struct ata_queued_cmd *qc;
5324
5325 if (!(done_mask & (1 << i)))
5326 continue;
5327
5328 if ((qc = ata_qc_from_tag(ap, i))) {
5329 if (finish_qc)
5330 finish_qc(qc);
5331 ata_qc_complete(qc);
5332 nr_done++;
5333 }
5334 }
5335
5336 return nr_done;
5337 }
5338
5339 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5340 {
5341 struct ata_port *ap = qc->ap;
5342
5343 switch (qc->tf.protocol) {
5344 case ATA_PROT_NCQ:
5345 case ATA_PROT_DMA:
5346 case ATA_PROT_ATAPI_DMA:
5347 return 1;
5348
5349 case ATA_PROT_ATAPI:
5350 case ATA_PROT_PIO:
5351 if (ap->flags & ATA_FLAG_PIO_DMA)
5352 return 1;
5353
5354 /* fall through */
5355
5356 default:
5357 return 0;
5358 }
5359
5360 /* never reached */
5361 }
5362
5363 /**
5364 * ata_qc_issue - issue taskfile to device
5365 * @qc: command to issue to device
5366 *
5367 * Prepare an ATA command to submission to device.
5368 * This includes mapping the data into a DMA-able
5369 * area, filling in the S/G table, and finally
5370 * writing the taskfile to hardware, starting the command.
5371 *
5372 * LOCKING:
5373 * spin_lock_irqsave(host lock)
5374 */
5375 void ata_qc_issue(struct ata_queued_cmd *qc)
5376 {
5377 struct ata_port *ap = qc->ap;
5378
5379 /* Make sure only one non-NCQ command is outstanding. The
5380 * check is skipped for old EH because it reuses active qc to
5381 * request ATAPI sense.
5382 */
5383 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5384
5385 if (qc->tf.protocol == ATA_PROT_NCQ) {
5386 WARN_ON(ap->sactive & (1 << qc->tag));
5387 ap->sactive |= 1 << qc->tag;
5388 } else {
5389 WARN_ON(ap->sactive);
5390 ap->active_tag = qc->tag;
5391 }
5392
5393 qc->flags |= ATA_QCFLAG_ACTIVE;
5394 ap->qc_active |= 1 << qc->tag;
5395
5396 if (ata_should_dma_map(qc)) {
5397 if (qc->flags & ATA_QCFLAG_SG) {
5398 if (ata_sg_setup(qc))
5399 goto sg_err;
5400 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5401 if (ata_sg_setup_one(qc))
5402 goto sg_err;
5403 }
5404 } else {
5405 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5406 }
5407
5408 ap->ops->qc_prep(qc);
5409
5410 qc->err_mask |= ap->ops->qc_issue(qc);
5411 if (unlikely(qc->err_mask))
5412 goto err;
5413 return;
5414
5415 sg_err:
5416 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5417 qc->err_mask |= AC_ERR_SYSTEM;
5418 err:
5419 ata_qc_complete(qc);
5420 }
5421
5422 /**
5423 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5424 * @qc: command to issue to device
5425 *
5426 * Using various libata functions and hooks, this function
5427 * starts an ATA command. ATA commands are grouped into
5428 * classes called "protocols", and issuing each type of protocol
5429 * is slightly different.
5430 *
5431 * May be used as the qc_issue() entry in ata_port_operations.
5432 *
5433 * LOCKING:
5434 * spin_lock_irqsave(host lock)
5435 *
5436 * RETURNS:
5437 * Zero on success, AC_ERR_* mask on failure
5438 */
5439
5440 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5441 {
5442 struct ata_port *ap = qc->ap;
5443
5444 /* Use polling pio if the LLD doesn't handle
5445 * interrupt driven pio and atapi CDB interrupt.
5446 */
5447 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5448 switch (qc->tf.protocol) {
5449 case ATA_PROT_PIO:
5450 case ATA_PROT_NODATA:
5451 case ATA_PROT_ATAPI:
5452 case ATA_PROT_ATAPI_NODATA:
5453 qc->tf.flags |= ATA_TFLAG_POLLING;
5454 break;
5455 case ATA_PROT_ATAPI_DMA:
5456 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5457 /* see ata_dma_blacklisted() */
5458 BUG();
5459 break;
5460 default:
5461 break;
5462 }
5463 }
5464
5465 /* select the device */
5466 ata_dev_select(ap, qc->dev->devno, 1, 0);
5467
5468 /* start the command */
5469 switch (qc->tf.protocol) {
5470 case ATA_PROT_NODATA:
5471 if (qc->tf.flags & ATA_TFLAG_POLLING)
5472 ata_qc_set_polling(qc);
5473
5474 ata_tf_to_host(ap, &qc->tf);
5475 ap->hsm_task_state = HSM_ST_LAST;
5476
5477 if (qc->tf.flags & ATA_TFLAG_POLLING)
5478 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5479
5480 break;
5481
5482 case ATA_PROT_DMA:
5483 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5484
5485 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5486 ap->ops->bmdma_setup(qc); /* set up bmdma */
5487 ap->ops->bmdma_start(qc); /* initiate bmdma */
5488 ap->hsm_task_state = HSM_ST_LAST;
5489 break;
5490
5491 case ATA_PROT_PIO:
5492 if (qc->tf.flags & ATA_TFLAG_POLLING)
5493 ata_qc_set_polling(qc);
5494
5495 ata_tf_to_host(ap, &qc->tf);
5496
5497 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5498 /* PIO data out protocol */
5499 ap->hsm_task_state = HSM_ST_FIRST;
5500 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5501
5502 /* always send first data block using
5503 * the ata_pio_task() codepath.
5504 */
5505 } else {
5506 /* PIO data in protocol */
5507 ap->hsm_task_state = HSM_ST;
5508
5509 if (qc->tf.flags & ATA_TFLAG_POLLING)
5510 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5511
5512 /* if polling, ata_pio_task() handles the rest.
5513 * otherwise, interrupt handler takes over from here.
5514 */
5515 }
5516
5517 break;
5518
5519 case ATA_PROT_ATAPI:
5520 case ATA_PROT_ATAPI_NODATA:
5521 if (qc->tf.flags & ATA_TFLAG_POLLING)
5522 ata_qc_set_polling(qc);
5523
5524 ata_tf_to_host(ap, &qc->tf);
5525
5526 ap->hsm_task_state = HSM_ST_FIRST;
5527
5528 /* send cdb by polling if no cdb interrupt */
5529 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5530 (qc->tf.flags & ATA_TFLAG_POLLING))
5531 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5532 break;
5533
5534 case ATA_PROT_ATAPI_DMA:
5535 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5536
5537 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5538 ap->ops->bmdma_setup(qc); /* set up bmdma */
5539 ap->hsm_task_state = HSM_ST_FIRST;
5540
5541 /* send cdb by polling if no cdb interrupt */
5542 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5543 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5544 break;
5545
5546 default:
5547 WARN_ON(1);
5548 return AC_ERR_SYSTEM;
5549 }
5550
5551 return 0;
5552 }
5553
5554 /**
5555 * ata_host_intr - Handle host interrupt for given (port, task)
5556 * @ap: Port on which interrupt arrived (possibly...)
5557 * @qc: Taskfile currently active in engine
5558 *
5559 * Handle host interrupt for given queued command. Currently,
5560 * only DMA interrupts are handled. All other commands are
5561 * handled via polling with interrupts disabled (nIEN bit).
5562 *
5563 * LOCKING:
5564 * spin_lock_irqsave(host lock)
5565 *
5566 * RETURNS:
5567 * One if interrupt was handled, zero if not (shared irq).
5568 */
5569
5570 inline unsigned int ata_host_intr (struct ata_port *ap,
5571 struct ata_queued_cmd *qc)
5572 {
5573 struct ata_eh_info *ehi = &ap->eh_info;
5574 u8 status, host_stat = 0;
5575
5576 VPRINTK("ata%u: protocol %d task_state %d\n",
5577 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5578
5579 /* Check whether we are expecting interrupt in this state */
5580 switch (ap->hsm_task_state) {
5581 case HSM_ST_FIRST:
5582 /* Some pre-ATAPI-4 devices assert INTRQ
5583 * at this state when ready to receive CDB.
5584 */
5585
5586 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5587 * The flag was turned on only for atapi devices.
5588 * No need to check is_atapi_taskfile(&qc->tf) again.
5589 */
5590 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5591 goto idle_irq;
5592 break;
5593 case HSM_ST_LAST:
5594 if (qc->tf.protocol == ATA_PROT_DMA ||
5595 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5596 /* check status of DMA engine */
5597 host_stat = ap->ops->bmdma_status(ap);
5598 VPRINTK("ata%u: host_stat 0x%X\n",
5599 ap->print_id, host_stat);
5600
5601 /* if it's not our irq... */
5602 if (!(host_stat & ATA_DMA_INTR))
5603 goto idle_irq;
5604
5605 /* before we do anything else, clear DMA-Start bit */
5606 ap->ops->bmdma_stop(qc);
5607
5608 if (unlikely(host_stat & ATA_DMA_ERR)) {
5609 /* error when transfering data to/from memory */
5610 qc->err_mask |= AC_ERR_HOST_BUS;
5611 ap->hsm_task_state = HSM_ST_ERR;
5612 }
5613 }
5614 break;
5615 case HSM_ST:
5616 break;
5617 default:
5618 goto idle_irq;
5619 }
5620
5621 /* check altstatus */
5622 status = ata_altstatus(ap);
5623 if (status & ATA_BUSY)
5624 goto idle_irq;
5625
5626 /* check main status, clearing INTRQ */
5627 status = ata_chk_status(ap);
5628 if (unlikely(status & ATA_BUSY))
5629 goto idle_irq;
5630
5631 /* ack bmdma irq events */
5632 ap->ops->irq_clear(ap);
5633
5634 ata_hsm_move(ap, qc, status, 0);
5635
5636 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5637 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5638 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5639
5640 return 1; /* irq handled */
5641
5642 idle_irq:
5643 ap->stats.idle_irq++;
5644
5645 #ifdef ATA_IRQ_TRAP
5646 if ((ap->stats.idle_irq % 1000) == 0) {
5647 ap->ops->irq_ack(ap, 0); /* debug trap */
5648 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5649 return 1;
5650 }
5651 #endif
5652 return 0; /* irq not handled */
5653 }
5654
5655 /**
5656 * ata_interrupt - Default ATA host interrupt handler
5657 * @irq: irq line (unused)
5658 * @dev_instance: pointer to our ata_host information structure
5659 *
5660 * Default interrupt handler for PCI IDE devices. Calls
5661 * ata_host_intr() for each port that is not disabled.
5662 *
5663 * LOCKING:
5664 * Obtains host lock during operation.
5665 *
5666 * RETURNS:
5667 * IRQ_NONE or IRQ_HANDLED.
5668 */
5669
5670 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5671 {
5672 struct ata_host *host = dev_instance;
5673 unsigned int i;
5674 unsigned int handled = 0;
5675 unsigned long flags;
5676
5677 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5678 spin_lock_irqsave(&host->lock, flags);
5679
5680 for (i = 0; i < host->n_ports; i++) {
5681 struct ata_port *ap;
5682
5683 ap = host->ports[i];
5684 if (ap &&
5685 !(ap->flags & ATA_FLAG_DISABLED)) {
5686 struct ata_queued_cmd *qc;
5687
5688 qc = ata_qc_from_tag(ap, ap->active_tag);
5689 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5690 (qc->flags & ATA_QCFLAG_ACTIVE))
5691 handled |= ata_host_intr(ap, qc);
5692 }
5693 }
5694
5695 spin_unlock_irqrestore(&host->lock, flags);
5696
5697 return IRQ_RETVAL(handled);
5698 }
5699
5700 /**
5701 * sata_scr_valid - test whether SCRs are accessible
5702 * @ap: ATA port to test SCR accessibility for
5703 *
5704 * Test whether SCRs are accessible for @ap.
5705 *
5706 * LOCKING:
5707 * None.
5708 *
5709 * RETURNS:
5710 * 1 if SCRs are accessible, 0 otherwise.
5711 */
5712 int sata_scr_valid(struct ata_port *ap)
5713 {
5714 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5715 }
5716
5717 /**
5718 * sata_scr_read - read SCR register of the specified port
5719 * @ap: ATA port to read SCR for
5720 * @reg: SCR to read
5721 * @val: Place to store read value
5722 *
5723 * Read SCR register @reg of @ap into *@val. This function is
5724 * guaranteed to succeed if the cable type of the port is SATA
5725 * and the port implements ->scr_read.
5726 *
5727 * LOCKING:
5728 * None.
5729 *
5730 * RETURNS:
5731 * 0 on success, negative errno on failure.
5732 */
5733 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5734 {
5735 if (sata_scr_valid(ap)) {
5736 *val = ap->ops->scr_read(ap, reg);
5737 return 0;
5738 }
5739 return -EOPNOTSUPP;
5740 }
5741
5742 /**
5743 * sata_scr_write - write SCR register of the specified port
5744 * @ap: ATA port to write SCR for
5745 * @reg: SCR to write
5746 * @val: value to write
5747 *
5748 * Write @val to SCR register @reg of @ap. This function is
5749 * guaranteed to succeed if the cable type of the port is SATA
5750 * and the port implements ->scr_read.
5751 *
5752 * LOCKING:
5753 * None.
5754 *
5755 * RETURNS:
5756 * 0 on success, negative errno on failure.
5757 */
5758 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5759 {
5760 if (sata_scr_valid(ap)) {
5761 ap->ops->scr_write(ap, reg, val);
5762 return 0;
5763 }
5764 return -EOPNOTSUPP;
5765 }
5766
5767 /**
5768 * sata_scr_write_flush - write SCR register of the specified port and flush
5769 * @ap: ATA port to write SCR for
5770 * @reg: SCR to write
5771 * @val: value to write
5772 *
5773 * This function is identical to sata_scr_write() except that this
5774 * function performs flush after writing to the register.
5775 *
5776 * LOCKING:
5777 * None.
5778 *
5779 * RETURNS:
5780 * 0 on success, negative errno on failure.
5781 */
5782 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5783 {
5784 if (sata_scr_valid(ap)) {
5785 ap->ops->scr_write(ap, reg, val);
5786 ap->ops->scr_read(ap, reg);
5787 return 0;
5788 }
5789 return -EOPNOTSUPP;
5790 }
5791
5792 /**
5793 * ata_port_online - test whether the given port is online
5794 * @ap: ATA port to test
5795 *
5796 * Test whether @ap is online. Note that this function returns 0
5797 * if online status of @ap cannot be obtained, so
5798 * ata_port_online(ap) != !ata_port_offline(ap).
5799 *
5800 * LOCKING:
5801 * None.
5802 *
5803 * RETURNS:
5804 * 1 if the port online status is available and online.
5805 */
5806 int ata_port_online(struct ata_port *ap)
5807 {
5808 u32 sstatus;
5809
5810 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5811 return 1;
5812 return 0;
5813 }
5814
5815 /**
5816 * ata_port_offline - test whether the given port is offline
5817 * @ap: ATA port to test
5818 *
5819 * Test whether @ap is offline. Note that this function returns
5820 * 0 if offline status of @ap cannot be obtained, so
5821 * ata_port_online(ap) != !ata_port_offline(ap).
5822 *
5823 * LOCKING:
5824 * None.
5825 *
5826 * RETURNS:
5827 * 1 if the port offline status is available and offline.
5828 */
5829 int ata_port_offline(struct ata_port *ap)
5830 {
5831 u32 sstatus;
5832
5833 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5834 return 1;
5835 return 0;
5836 }
5837
5838 int ata_flush_cache(struct ata_device *dev)
5839 {
5840 unsigned int err_mask;
5841 u8 cmd;
5842
5843 if (!ata_try_flush_cache(dev))
5844 return 0;
5845
5846 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5847 cmd = ATA_CMD_FLUSH_EXT;
5848 else
5849 cmd = ATA_CMD_FLUSH;
5850
5851 err_mask = ata_do_simple_cmd(dev, cmd);
5852 if (err_mask) {
5853 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5854 return -EIO;
5855 }
5856
5857 return 0;
5858 }
5859
5860 #ifdef CONFIG_PM
5861 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5862 unsigned int action, unsigned int ehi_flags,
5863 int wait)
5864 {
5865 unsigned long flags;
5866 int i, rc;
5867
5868 for (i = 0; i < host->n_ports; i++) {
5869 struct ata_port *ap = host->ports[i];
5870
5871 /* Previous resume operation might still be in
5872 * progress. Wait for PM_PENDING to clear.
5873 */
5874 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5875 ata_port_wait_eh(ap);
5876 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5877 }
5878
5879 /* request PM ops to EH */
5880 spin_lock_irqsave(ap->lock, flags);
5881
5882 ap->pm_mesg = mesg;
5883 if (wait) {
5884 rc = 0;
5885 ap->pm_result = &rc;
5886 }
5887
5888 ap->pflags |= ATA_PFLAG_PM_PENDING;
5889 ap->eh_info.action |= action;
5890 ap->eh_info.flags |= ehi_flags;
5891
5892 ata_port_schedule_eh(ap);
5893
5894 spin_unlock_irqrestore(ap->lock, flags);
5895
5896 /* wait and check result */
5897 if (wait) {
5898 ata_port_wait_eh(ap);
5899 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5900 if (rc)
5901 return rc;
5902 }
5903 }
5904
5905 return 0;
5906 }
5907
5908 /**
5909 * ata_host_suspend - suspend host
5910 * @host: host to suspend
5911 * @mesg: PM message
5912 *
5913 * Suspend @host. Actual operation is performed by EH. This
5914 * function requests EH to perform PM operations and waits for EH
5915 * to finish.
5916 *
5917 * LOCKING:
5918 * Kernel thread context (may sleep).
5919 *
5920 * RETURNS:
5921 * 0 on success, -errno on failure.
5922 */
5923 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5924 {
5925 int rc;
5926
5927 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5928 if (rc == 0)
5929 host->dev->power.power_state = mesg;
5930 return rc;
5931 }
5932
5933 /**
5934 * ata_host_resume - resume host
5935 * @host: host to resume
5936 *
5937 * Resume @host. Actual operation is performed by EH. This
5938 * function requests EH to perform PM operations and returns.
5939 * Note that all resume operations are performed parallely.
5940 *
5941 * LOCKING:
5942 * Kernel thread context (may sleep).
5943 */
5944 void ata_host_resume(struct ata_host *host)
5945 {
5946 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5947 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5948 host->dev->power.power_state = PMSG_ON;
5949 }
5950 #endif
5951
5952 /**
5953 * ata_port_start - Set port up for dma.
5954 * @ap: Port to initialize
5955 *
5956 * Called just after data structures for each port are
5957 * initialized. Allocates space for PRD table.
5958 *
5959 * May be used as the port_start() entry in ata_port_operations.
5960 *
5961 * LOCKING:
5962 * Inherited from caller.
5963 */
5964 int ata_port_start(struct ata_port *ap)
5965 {
5966 struct device *dev = ap->dev;
5967 int rc;
5968
5969 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5970 GFP_KERNEL);
5971 if (!ap->prd)
5972 return -ENOMEM;
5973
5974 rc = ata_pad_alloc(ap, dev);
5975 if (rc)
5976 return rc;
5977
5978 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5979 (unsigned long long)ap->prd_dma);
5980 return 0;
5981 }
5982
5983 /**
5984 * ata_dev_init - Initialize an ata_device structure
5985 * @dev: Device structure to initialize
5986 *
5987 * Initialize @dev in preparation for probing.
5988 *
5989 * LOCKING:
5990 * Inherited from caller.
5991 */
5992 void ata_dev_init(struct ata_device *dev)
5993 {
5994 struct ata_port *ap = dev->ap;
5995 unsigned long flags;
5996
5997 /* SATA spd limit is bound to the first device */
5998 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5999
6000 /* High bits of dev->flags are used to record warm plug
6001 * requests which occur asynchronously. Synchronize using
6002 * host lock.
6003 */
6004 spin_lock_irqsave(ap->lock, flags);
6005 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6006 spin_unlock_irqrestore(ap->lock, flags);
6007
6008 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6009 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6010 dev->pio_mask = UINT_MAX;
6011 dev->mwdma_mask = UINT_MAX;
6012 dev->udma_mask = UINT_MAX;
6013 }
6014
6015 /**
6016 * ata_port_alloc - allocate and initialize basic ATA port resources
6017 * @host: ATA host this allocated port belongs to
6018 *
6019 * Allocate and initialize basic ATA port resources.
6020 *
6021 * RETURNS:
6022 * Allocate ATA port on success, NULL on failure.
6023 *
6024 * LOCKING:
6025 * Inherited from calling layer (may sleep).
6026 */
6027 struct ata_port *ata_port_alloc(struct ata_host *host)
6028 {
6029 struct ata_port *ap;
6030 unsigned int i;
6031
6032 DPRINTK("ENTER\n");
6033
6034 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6035 if (!ap)
6036 return NULL;
6037
6038 ap->pflags |= ATA_PFLAG_INITIALIZING;
6039 ap->lock = &host->lock;
6040 ap->flags = ATA_FLAG_DISABLED;
6041 ap->print_id = -1;
6042 ap->ctl = ATA_DEVCTL_OBS;
6043 ap->host = host;
6044 ap->dev = host->dev;
6045
6046 ap->hw_sata_spd_limit = UINT_MAX;
6047 ap->active_tag = ATA_TAG_POISON;
6048 ap->last_ctl = 0xFF;
6049
6050 #if defined(ATA_VERBOSE_DEBUG)
6051 /* turn on all debugging levels */
6052 ap->msg_enable = 0x00FF;
6053 #elif defined(ATA_DEBUG)
6054 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6055 #else
6056 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6057 #endif
6058
6059 INIT_DELAYED_WORK(&ap->port_task, NULL);
6060 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6061 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6062 INIT_LIST_HEAD(&ap->eh_done_q);
6063 init_waitqueue_head(&ap->eh_wait_q);
6064
6065 ap->cbl = ATA_CBL_NONE;
6066
6067 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6068 struct ata_device *dev = &ap->device[i];
6069 dev->ap = ap;
6070 dev->devno = i;
6071 ata_dev_init(dev);
6072 }
6073
6074 #ifdef ATA_IRQ_TRAP
6075 ap->stats.unhandled_irq = 1;
6076 ap->stats.idle_irq = 1;
6077 #endif
6078 return ap;
6079 }
6080
6081 static void ata_host_release(struct device *gendev, void *res)
6082 {
6083 struct ata_host *host = dev_get_drvdata(gendev);
6084 int i;
6085
6086 for (i = 0; i < host->n_ports; i++) {
6087 struct ata_port *ap = host->ports[i];
6088
6089 if (!ap)
6090 continue;
6091
6092 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6093 ap->ops->port_stop(ap);
6094 }
6095
6096 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6097 host->ops->host_stop(host);
6098
6099 for (i = 0; i < host->n_ports; i++) {
6100 struct ata_port *ap = host->ports[i];
6101
6102 if (!ap)
6103 continue;
6104
6105 if (ap->scsi_host)
6106 scsi_host_put(ap->scsi_host);
6107
6108 kfree(ap);
6109 host->ports[i] = NULL;
6110 }
6111
6112 dev_set_drvdata(gendev, NULL);
6113 }
6114
6115 /**
6116 * ata_host_alloc - allocate and init basic ATA host resources
6117 * @dev: generic device this host is associated with
6118 * @max_ports: maximum number of ATA ports associated with this host
6119 *
6120 * Allocate and initialize basic ATA host resources. LLD calls
6121 * this function to allocate a host, initializes it fully and
6122 * attaches it using ata_host_register().
6123 *
6124 * @max_ports ports are allocated and host->n_ports is
6125 * initialized to @max_ports. The caller is allowed to decrease
6126 * host->n_ports before calling ata_host_register(). The unused
6127 * ports will be automatically freed on registration.
6128 *
6129 * RETURNS:
6130 * Allocate ATA host on success, NULL on failure.
6131 *
6132 * LOCKING:
6133 * Inherited from calling layer (may sleep).
6134 */
6135 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6136 {
6137 struct ata_host *host;
6138 size_t sz;
6139 int i;
6140
6141 DPRINTK("ENTER\n");
6142
6143 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6144 return NULL;
6145
6146 /* alloc a container for our list of ATA ports (buses) */
6147 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6148 /* alloc a container for our list of ATA ports (buses) */
6149 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6150 if (!host)
6151 goto err_out;
6152
6153 devres_add(dev, host);
6154 dev_set_drvdata(dev, host);
6155
6156 spin_lock_init(&host->lock);
6157 host->dev = dev;
6158 host->n_ports = max_ports;
6159
6160 /* allocate ports bound to this host */
6161 for (i = 0; i < max_ports; i++) {
6162 struct ata_port *ap;
6163
6164 ap = ata_port_alloc(host);
6165 if (!ap)
6166 goto err_out;
6167
6168 ap->port_no = i;
6169 host->ports[i] = ap;
6170 }
6171
6172 devres_remove_group(dev, NULL);
6173 return host;
6174
6175 err_out:
6176 devres_release_group(dev, NULL);
6177 return NULL;
6178 }
6179
6180 /**
6181 * ata_host_alloc_pinfo - alloc host and init with port_info array
6182 * @dev: generic device this host is associated with
6183 * @ppi: array of ATA port_info to initialize host with
6184 * @n_ports: number of ATA ports attached to this host
6185 *
6186 * Allocate ATA host and initialize with info from @ppi. If NULL
6187 * terminated, @ppi may contain fewer entries than @n_ports. The
6188 * last entry will be used for the remaining ports.
6189 *
6190 * RETURNS:
6191 * Allocate ATA host on success, NULL on failure.
6192 *
6193 * LOCKING:
6194 * Inherited from calling layer (may sleep).
6195 */
6196 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6197 const struct ata_port_info * const * ppi,
6198 int n_ports)
6199 {
6200 const struct ata_port_info *pi;
6201 struct ata_host *host;
6202 int i, j;
6203
6204 host = ata_host_alloc(dev, n_ports);
6205 if (!host)
6206 return NULL;
6207
6208 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6209 struct ata_port *ap = host->ports[i];
6210
6211 if (ppi[j])
6212 pi = ppi[j++];
6213
6214 ap->pio_mask = pi->pio_mask;
6215 ap->mwdma_mask = pi->mwdma_mask;
6216 ap->udma_mask = pi->udma_mask;
6217 ap->flags |= pi->flags;
6218 ap->ops = pi->port_ops;
6219
6220 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6221 host->ops = pi->port_ops;
6222 if (!host->private_data && pi->private_data)
6223 host->private_data = pi->private_data;
6224 }
6225
6226 return host;
6227 }
6228
6229 /**
6230 * ata_host_start - start and freeze ports of an ATA host
6231 * @host: ATA host to start ports for
6232 *
6233 * Start and then freeze ports of @host. Started status is
6234 * recorded in host->flags, so this function can be called
6235 * multiple times. Ports are guaranteed to get started only
6236 * once. If host->ops isn't initialized yet, its set to the
6237 * first non-dummy port ops.
6238 *
6239 * LOCKING:
6240 * Inherited from calling layer (may sleep).
6241 *
6242 * RETURNS:
6243 * 0 if all ports are started successfully, -errno otherwise.
6244 */
6245 int ata_host_start(struct ata_host *host)
6246 {
6247 int i, rc;
6248
6249 if (host->flags & ATA_HOST_STARTED)
6250 return 0;
6251
6252 for (i = 0; i < host->n_ports; i++) {
6253 struct ata_port *ap = host->ports[i];
6254
6255 if (!host->ops && !ata_port_is_dummy(ap))
6256 host->ops = ap->ops;
6257
6258 if (ap->ops->port_start) {
6259 rc = ap->ops->port_start(ap);
6260 if (rc) {
6261 ata_port_printk(ap, KERN_ERR, "failed to "
6262 "start port (errno=%d)\n", rc);
6263 goto err_out;
6264 }
6265 }
6266
6267 ata_eh_freeze_port(ap);
6268 }
6269
6270 host->flags |= ATA_HOST_STARTED;
6271 return 0;
6272
6273 err_out:
6274 while (--i >= 0) {
6275 struct ata_port *ap = host->ports[i];
6276
6277 if (ap->ops->port_stop)
6278 ap->ops->port_stop(ap);
6279 }
6280 return rc;
6281 }
6282
6283 /**
6284 * ata_sas_host_init - Initialize a host struct
6285 * @host: host to initialize
6286 * @dev: device host is attached to
6287 * @flags: host flags
6288 * @ops: port_ops
6289 *
6290 * LOCKING:
6291 * PCI/etc. bus probe sem.
6292 *
6293 */
6294 /* KILLME - the only user left is ipr */
6295 void ata_host_init(struct ata_host *host, struct device *dev,
6296 unsigned long flags, const struct ata_port_operations *ops)
6297 {
6298 spin_lock_init(&host->lock);
6299 host->dev = dev;
6300 host->flags = flags;
6301 host->ops = ops;
6302 }
6303
6304 /**
6305 * ata_host_register - register initialized ATA host
6306 * @host: ATA host to register
6307 * @sht: template for SCSI host
6308 *
6309 * Register initialized ATA host. @host is allocated using
6310 * ata_host_alloc() and fully initialized by LLD. This function
6311 * starts ports, registers @host with ATA and SCSI layers and
6312 * probe registered devices.
6313 *
6314 * LOCKING:
6315 * Inherited from calling layer (may sleep).
6316 *
6317 * RETURNS:
6318 * 0 on success, -errno otherwise.
6319 */
6320 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6321 {
6322 int i, rc;
6323
6324 /* host must have been started */
6325 if (!(host->flags & ATA_HOST_STARTED)) {
6326 dev_printk(KERN_ERR, host->dev,
6327 "BUG: trying to register unstarted host\n");
6328 WARN_ON(1);
6329 return -EINVAL;
6330 }
6331
6332 /* Blow away unused ports. This happens when LLD can't
6333 * determine the exact number of ports to allocate at
6334 * allocation time.
6335 */
6336 for (i = host->n_ports; host->ports[i]; i++)
6337 kfree(host->ports[i]);
6338
6339 /* give ports names and add SCSI hosts */
6340 for (i = 0; i < host->n_ports; i++)
6341 host->ports[i]->print_id = ata_print_id++;
6342
6343 rc = ata_scsi_add_hosts(host, sht);
6344 if (rc)
6345 return rc;
6346
6347 /* associate with ACPI nodes */
6348 ata_acpi_associate(host);
6349
6350 /* set cable, sata_spd_limit and report */
6351 for (i = 0; i < host->n_ports; i++) {
6352 struct ata_port *ap = host->ports[i];
6353 int irq_line;
6354 u32 scontrol;
6355 unsigned long xfer_mask;
6356
6357 /* set SATA cable type if still unset */
6358 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6359 ap->cbl = ATA_CBL_SATA;
6360
6361 /* init sata_spd_limit to the current value */
6362 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6363 int spd = (scontrol >> 4) & 0xf;
6364 if (spd)
6365 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6366 }
6367 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6368
6369 /* report the secondary IRQ for second channel legacy */
6370 irq_line = host->irq;
6371 if (i == 1 && host->irq2)
6372 irq_line = host->irq2;
6373
6374 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6375 ap->udma_mask);
6376
6377 /* print per-port info to dmesg */
6378 if (!ata_port_is_dummy(ap))
6379 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6380 "ctl 0x%p bmdma 0x%p irq %d\n",
6381 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6382 ata_mode_string(xfer_mask),
6383 ap->ioaddr.cmd_addr,
6384 ap->ioaddr.ctl_addr,
6385 ap->ioaddr.bmdma_addr,
6386 irq_line);
6387 else
6388 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6389 }
6390
6391 /* perform each probe synchronously */
6392 DPRINTK("probe begin\n");
6393 for (i = 0; i < host->n_ports; i++) {
6394 struct ata_port *ap = host->ports[i];
6395 int rc;
6396
6397 /* probe */
6398 if (ap->ops->error_handler) {
6399 struct ata_eh_info *ehi = &ap->eh_info;
6400 unsigned long flags;
6401
6402 ata_port_probe(ap);
6403
6404 /* kick EH for boot probing */
6405 spin_lock_irqsave(ap->lock, flags);
6406
6407 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6408 ehi->action |= ATA_EH_SOFTRESET;
6409 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6410
6411 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6412 ap->pflags |= ATA_PFLAG_LOADING;
6413 ata_port_schedule_eh(ap);
6414
6415 spin_unlock_irqrestore(ap->lock, flags);
6416
6417 /* wait for EH to finish */
6418 ata_port_wait_eh(ap);
6419 } else {
6420 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6421 rc = ata_bus_probe(ap);
6422 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6423
6424 if (rc) {
6425 /* FIXME: do something useful here?
6426 * Current libata behavior will
6427 * tear down everything when
6428 * the module is removed
6429 * or the h/w is unplugged.
6430 */
6431 }
6432 }
6433 }
6434
6435 /* probes are done, now scan each port's disk(s) */
6436 DPRINTK("host probe begin\n");
6437 for (i = 0; i < host->n_ports; i++) {
6438 struct ata_port *ap = host->ports[i];
6439
6440 ata_scsi_scan_host(ap);
6441 }
6442
6443 return 0;
6444 }
6445
6446 /**
6447 * ata_host_activate - start host, request IRQ and register it
6448 * @host: target ATA host
6449 * @irq: IRQ to request
6450 * @irq_handler: irq_handler used when requesting IRQ
6451 * @irq_flags: irq_flags used when requesting IRQ
6452 * @sht: scsi_host_template to use when registering the host
6453 *
6454 * After allocating an ATA host and initializing it, most libata
6455 * LLDs perform three steps to activate the host - start host,
6456 * request IRQ and register it. This helper takes necessasry
6457 * arguments and performs the three steps in one go.
6458 *
6459 * LOCKING:
6460 * Inherited from calling layer (may sleep).
6461 *
6462 * RETURNS:
6463 * 0 on success, -errno otherwise.
6464 */
6465 int ata_host_activate(struct ata_host *host, int irq,
6466 irq_handler_t irq_handler, unsigned long irq_flags,
6467 struct scsi_host_template *sht)
6468 {
6469 int rc;
6470
6471 rc = ata_host_start(host);
6472 if (rc)
6473 return rc;
6474
6475 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6476 dev_driver_string(host->dev), host);
6477 if (rc)
6478 return rc;
6479
6480 /* Used to print device info at probe */
6481 host->irq = irq;
6482
6483 rc = ata_host_register(host, sht);
6484 /* if failed, just free the IRQ and leave ports alone */
6485 if (rc)
6486 devm_free_irq(host->dev, irq, host);
6487
6488 return rc;
6489 }
6490
6491 /**
6492 * ata_port_detach - Detach ATA port in prepration of device removal
6493 * @ap: ATA port to be detached
6494 *
6495 * Detach all ATA devices and the associated SCSI devices of @ap;
6496 * then, remove the associated SCSI host. @ap is guaranteed to
6497 * be quiescent on return from this function.
6498 *
6499 * LOCKING:
6500 * Kernel thread context (may sleep).
6501 */
6502 void ata_port_detach(struct ata_port *ap)
6503 {
6504 unsigned long flags;
6505 int i;
6506
6507 if (!ap->ops->error_handler)
6508 goto skip_eh;
6509
6510 /* tell EH we're leaving & flush EH */
6511 spin_lock_irqsave(ap->lock, flags);
6512 ap->pflags |= ATA_PFLAG_UNLOADING;
6513 spin_unlock_irqrestore(ap->lock, flags);
6514
6515 ata_port_wait_eh(ap);
6516
6517 /* EH is now guaranteed to see UNLOADING, so no new device
6518 * will be attached. Disable all existing devices.
6519 */
6520 spin_lock_irqsave(ap->lock, flags);
6521
6522 for (i = 0; i < ATA_MAX_DEVICES; i++)
6523 ata_dev_disable(&ap->device[i]);
6524
6525 spin_unlock_irqrestore(ap->lock, flags);
6526
6527 /* Final freeze & EH. All in-flight commands are aborted. EH
6528 * will be skipped and retrials will be terminated with bad
6529 * target.
6530 */
6531 spin_lock_irqsave(ap->lock, flags);
6532 ata_port_freeze(ap); /* won't be thawed */
6533 spin_unlock_irqrestore(ap->lock, flags);
6534
6535 ata_port_wait_eh(ap);
6536 cancel_rearming_delayed_work(&ap->hotplug_task);
6537
6538 skip_eh:
6539 /* remove the associated SCSI host */
6540 scsi_remove_host(ap->scsi_host);
6541 }
6542
6543 /**
6544 * ata_host_detach - Detach all ports of an ATA host
6545 * @host: Host to detach
6546 *
6547 * Detach all ports of @host.
6548 *
6549 * LOCKING:
6550 * Kernel thread context (may sleep).
6551 */
6552 void ata_host_detach(struct ata_host *host)
6553 {
6554 int i;
6555
6556 for (i = 0; i < host->n_ports; i++)
6557 ata_port_detach(host->ports[i]);
6558 }
6559
6560 /**
6561 * ata_std_ports - initialize ioaddr with standard port offsets.
6562 * @ioaddr: IO address structure to be initialized
6563 *
6564 * Utility function which initializes data_addr, error_addr,
6565 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6566 * device_addr, status_addr, and command_addr to standard offsets
6567 * relative to cmd_addr.
6568 *
6569 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6570 */
6571
6572 void ata_std_ports(struct ata_ioports *ioaddr)
6573 {
6574 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6575 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6576 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6577 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6578 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6579 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6580 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6581 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6582 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6583 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6584 }
6585
6586
6587 #ifdef CONFIG_PCI
6588
6589 /**
6590 * ata_pci_remove_one - PCI layer callback for device removal
6591 * @pdev: PCI device that was removed
6592 *
6593 * PCI layer indicates to libata via this hook that hot-unplug or
6594 * module unload event has occurred. Detach all ports. Resource
6595 * release is handled via devres.
6596 *
6597 * LOCKING:
6598 * Inherited from PCI layer (may sleep).
6599 */
6600 void ata_pci_remove_one(struct pci_dev *pdev)
6601 {
6602 struct device *dev = pci_dev_to_dev(pdev);
6603 struct ata_host *host = dev_get_drvdata(dev);
6604
6605 ata_host_detach(host);
6606 }
6607
6608 /* move to PCI subsystem */
6609 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6610 {
6611 unsigned long tmp = 0;
6612
6613 switch (bits->width) {
6614 case 1: {
6615 u8 tmp8 = 0;
6616 pci_read_config_byte(pdev, bits->reg, &tmp8);
6617 tmp = tmp8;
6618 break;
6619 }
6620 case 2: {
6621 u16 tmp16 = 0;
6622 pci_read_config_word(pdev, bits->reg, &tmp16);
6623 tmp = tmp16;
6624 break;
6625 }
6626 case 4: {
6627 u32 tmp32 = 0;
6628 pci_read_config_dword(pdev, bits->reg, &tmp32);
6629 tmp = tmp32;
6630 break;
6631 }
6632
6633 default:
6634 return -EINVAL;
6635 }
6636
6637 tmp &= bits->mask;
6638
6639 return (tmp == bits->val) ? 1 : 0;
6640 }
6641
6642 #ifdef CONFIG_PM
6643 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6644 {
6645 pci_save_state(pdev);
6646 pci_disable_device(pdev);
6647
6648 if (mesg.event == PM_EVENT_SUSPEND)
6649 pci_set_power_state(pdev, PCI_D3hot);
6650 }
6651
6652 int ata_pci_device_do_resume(struct pci_dev *pdev)
6653 {
6654 int rc;
6655
6656 pci_set_power_state(pdev, PCI_D0);
6657 pci_restore_state(pdev);
6658
6659 rc = pcim_enable_device(pdev);
6660 if (rc) {
6661 dev_printk(KERN_ERR, &pdev->dev,
6662 "failed to enable device after resume (%d)\n", rc);
6663 return rc;
6664 }
6665
6666 pci_set_master(pdev);
6667 return 0;
6668 }
6669
6670 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6671 {
6672 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6673 int rc = 0;
6674
6675 rc = ata_host_suspend(host, mesg);
6676 if (rc)
6677 return rc;
6678
6679 ata_pci_device_do_suspend(pdev, mesg);
6680
6681 return 0;
6682 }
6683
6684 int ata_pci_device_resume(struct pci_dev *pdev)
6685 {
6686 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6687 int rc;
6688
6689 rc = ata_pci_device_do_resume(pdev);
6690 if (rc == 0)
6691 ata_host_resume(host);
6692 return rc;
6693 }
6694 #endif /* CONFIG_PM */
6695
6696 #endif /* CONFIG_PCI */
6697
6698
6699 static int __init ata_init(void)
6700 {
6701 ata_probe_timeout *= HZ;
6702 ata_wq = create_workqueue("ata");
6703 if (!ata_wq)
6704 return -ENOMEM;
6705
6706 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6707 if (!ata_aux_wq) {
6708 destroy_workqueue(ata_wq);
6709 return -ENOMEM;
6710 }
6711
6712 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6713 return 0;
6714 }
6715
6716 static void __exit ata_exit(void)
6717 {
6718 destroy_workqueue(ata_wq);
6719 destroy_workqueue(ata_aux_wq);
6720 }
6721
6722 subsys_initcall(ata_init);
6723 module_exit(ata_exit);
6724
6725 static unsigned long ratelimit_time;
6726 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6727
6728 int ata_ratelimit(void)
6729 {
6730 int rc;
6731 unsigned long flags;
6732
6733 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6734
6735 if (time_after(jiffies, ratelimit_time)) {
6736 rc = 1;
6737 ratelimit_time = jiffies + (HZ/5);
6738 } else
6739 rc = 0;
6740
6741 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6742
6743 return rc;
6744 }
6745
6746 /**
6747 * ata_wait_register - wait until register value changes
6748 * @reg: IO-mapped register
6749 * @mask: Mask to apply to read register value
6750 * @val: Wait condition
6751 * @interval_msec: polling interval in milliseconds
6752 * @timeout_msec: timeout in milliseconds
6753 *
6754 * Waiting for some bits of register to change is a common
6755 * operation for ATA controllers. This function reads 32bit LE
6756 * IO-mapped register @reg and tests for the following condition.
6757 *
6758 * (*@reg & mask) != val
6759 *
6760 * If the condition is met, it returns; otherwise, the process is
6761 * repeated after @interval_msec until timeout.
6762 *
6763 * LOCKING:
6764 * Kernel thread context (may sleep)
6765 *
6766 * RETURNS:
6767 * The final register value.
6768 */
6769 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6770 unsigned long interval_msec,
6771 unsigned long timeout_msec)
6772 {
6773 unsigned long timeout;
6774 u32 tmp;
6775
6776 tmp = ioread32(reg);
6777
6778 /* Calculate timeout _after_ the first read to make sure
6779 * preceding writes reach the controller before starting to
6780 * eat away the timeout.
6781 */
6782 timeout = jiffies + (timeout_msec * HZ) / 1000;
6783
6784 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6785 msleep(interval_msec);
6786 tmp = ioread32(reg);
6787 }
6788
6789 return tmp;
6790 }
6791
6792 /*
6793 * Dummy port_ops
6794 */
6795 static void ata_dummy_noret(struct ata_port *ap) { }
6796 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6797 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6798
6799 static u8 ata_dummy_check_status(struct ata_port *ap)
6800 {
6801 return ATA_DRDY;
6802 }
6803
6804 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6805 {
6806 return AC_ERR_SYSTEM;
6807 }
6808
6809 const struct ata_port_operations ata_dummy_port_ops = {
6810 .port_disable = ata_port_disable,
6811 .check_status = ata_dummy_check_status,
6812 .check_altstatus = ata_dummy_check_status,
6813 .dev_select = ata_noop_dev_select,
6814 .qc_prep = ata_noop_qc_prep,
6815 .qc_issue = ata_dummy_qc_issue,
6816 .freeze = ata_dummy_noret,
6817 .thaw = ata_dummy_noret,
6818 .error_handler = ata_dummy_noret,
6819 .post_internal_cmd = ata_dummy_qc_noret,
6820 .irq_clear = ata_dummy_noret,
6821 .port_start = ata_dummy_ret0,
6822 .port_stop = ata_dummy_noret,
6823 };
6824
6825 const struct ata_port_info ata_dummy_port_info = {
6826 .port_ops = &ata_dummy_port_ops,
6827 };
6828
6829 /*
6830 * libata is essentially a library of internal helper functions for
6831 * low-level ATA host controller drivers. As such, the API/ABI is
6832 * likely to change as new drivers are added and updated.
6833 * Do not depend on ABI/API stability.
6834 */
6835
6836 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6837 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6838 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6839 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6840 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6841 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6842 EXPORT_SYMBOL_GPL(ata_std_ports);
6843 EXPORT_SYMBOL_GPL(ata_host_init);
6844 EXPORT_SYMBOL_GPL(ata_host_alloc);
6845 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6846 EXPORT_SYMBOL_GPL(ata_host_start);
6847 EXPORT_SYMBOL_GPL(ata_host_register);
6848 EXPORT_SYMBOL_GPL(ata_host_activate);
6849 EXPORT_SYMBOL_GPL(ata_host_detach);
6850 EXPORT_SYMBOL_GPL(ata_sg_init);
6851 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6852 EXPORT_SYMBOL_GPL(ata_hsm_move);
6853 EXPORT_SYMBOL_GPL(ata_qc_complete);
6854 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6855 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6856 EXPORT_SYMBOL_GPL(ata_tf_load);
6857 EXPORT_SYMBOL_GPL(ata_tf_read);
6858 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6859 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6860 EXPORT_SYMBOL_GPL(sata_print_link_status);
6861 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6862 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6863 EXPORT_SYMBOL_GPL(ata_check_status);
6864 EXPORT_SYMBOL_GPL(ata_altstatus);
6865 EXPORT_SYMBOL_GPL(ata_exec_command);
6866 EXPORT_SYMBOL_GPL(ata_port_start);
6867 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6868 EXPORT_SYMBOL_GPL(ata_interrupt);
6869 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6870 EXPORT_SYMBOL_GPL(ata_data_xfer);
6871 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6872 EXPORT_SYMBOL_GPL(ata_qc_prep);
6873 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6874 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6875 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6876 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6877 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6878 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6879 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6880 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6881 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6882 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6883 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6884 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6885 EXPORT_SYMBOL_GPL(ata_port_probe);
6886 EXPORT_SYMBOL_GPL(ata_dev_disable);
6887 EXPORT_SYMBOL_GPL(sata_set_spd);
6888 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6889 EXPORT_SYMBOL_GPL(sata_phy_resume);
6890 EXPORT_SYMBOL_GPL(sata_phy_reset);
6891 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6892 EXPORT_SYMBOL_GPL(ata_bus_reset);
6893 EXPORT_SYMBOL_GPL(ata_std_prereset);
6894 EXPORT_SYMBOL_GPL(ata_std_softreset);
6895 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6896 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6897 EXPORT_SYMBOL_GPL(ata_std_postreset);
6898 EXPORT_SYMBOL_GPL(ata_dev_classify);
6899 EXPORT_SYMBOL_GPL(ata_dev_pair);
6900 EXPORT_SYMBOL_GPL(ata_port_disable);
6901 EXPORT_SYMBOL_GPL(ata_ratelimit);
6902 EXPORT_SYMBOL_GPL(ata_wait_register);
6903 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6904 EXPORT_SYMBOL_GPL(ata_wait_ready);
6905 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6906 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6907 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6908 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6909 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6910 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6911 EXPORT_SYMBOL_GPL(ata_host_intr);
6912 EXPORT_SYMBOL_GPL(sata_scr_valid);
6913 EXPORT_SYMBOL_GPL(sata_scr_read);
6914 EXPORT_SYMBOL_GPL(sata_scr_write);
6915 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6916 EXPORT_SYMBOL_GPL(ata_port_online);
6917 EXPORT_SYMBOL_GPL(ata_port_offline);
6918 #ifdef CONFIG_PM
6919 EXPORT_SYMBOL_GPL(ata_host_suspend);
6920 EXPORT_SYMBOL_GPL(ata_host_resume);
6921 #endif /* CONFIG_PM */
6922 EXPORT_SYMBOL_GPL(ata_id_string);
6923 EXPORT_SYMBOL_GPL(ata_id_c_string);
6924 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6925 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6926
6927 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6928 EXPORT_SYMBOL_GPL(ata_timing_compute);
6929 EXPORT_SYMBOL_GPL(ata_timing_merge);
6930
6931 #ifdef CONFIG_PCI
6932 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6933 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
6934 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6935 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
6936 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6937 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6938 #ifdef CONFIG_PM
6939 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6940 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6941 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6942 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6943 #endif /* CONFIG_PM */
6944 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6945 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6946 #endif /* CONFIG_PCI */
6947
6948 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6949 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6950 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6951 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6952 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6953 EXPORT_SYMBOL_GPL(ata_port_abort);
6954 EXPORT_SYMBOL_GPL(ata_port_freeze);
6955 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6956 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6957 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6958 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6959 EXPORT_SYMBOL_GPL(ata_do_eh);
6960 EXPORT_SYMBOL_GPL(ata_irq_on);
6961 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6962 EXPORT_SYMBOL_GPL(ata_irq_ack);
6963 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6964 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6965
6966 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6967 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6968 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6969 EXPORT_SYMBOL_GPL(ata_cable_sata);