]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
78
79 struct workqueue_struct *ata_aux_wq;
80
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
89 int libata_fua = 0;
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
109
110
111 /**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
114 * @pmp: Port multiplier port
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
125 {
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153 }
154
155 /**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
166 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
167 {
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182 }
183
184 static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
199 0,
200 0,
201 0,
202 0,
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
212 };
213
214 /**
215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
218 *
219 * Examine the device configuration and tf->flags to calculate
220 * the proper read/write commands and protocol to use.
221 *
222 * LOCKING:
223 * caller.
224 */
225 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
226 {
227 u8 cmd;
228
229 int index, fua, lba48, write;
230
231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
234
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
237 index = dev->multi_count ? 0 : 8;
238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
241 index = dev->multi_count ? 0 : 8;
242 } else {
243 tf->protocol = ATA_PROT_DMA;
244 index = 16;
245 }
246
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
253 }
254
255 /**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271 {
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296 }
297
298 /**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321 {
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419 }
420
421 /**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439 {
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443 }
444
445 /**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455 static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459 {
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466 }
467
468 static const struct ata_xfer_ent {
469 int shift, bits;
470 u8 base;
471 } ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476 };
477
478 /**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492 {
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500 }
501
502 /**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515 {
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522 }
523
524 /**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536 static int ata_xfer_mode2shift(unsigned int xfer_mode)
537 {
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544 }
545
546 /**
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
549 *
550 * Determine string which represents the highest speed
551 * (highest bit in @modemask).
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
558 * @mode_mask, or the constant C string "<n/a>".
559 */
560 static const char *ata_mode_string(unsigned int xfer_mask)
561 {
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
568 "PIO5",
569 "PIO6",
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
573 "MWDMA3",
574 "MWDMA4",
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
584 int highbit;
585
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
589 return "<n/a>";
590 }
591
592 static const char *sata_spd_string(unsigned int spd)
593 {
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602 }
603
604 void ata_dev_disable(struct ata_device *dev)
605 {
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
611 dev->class++;
612 }
613 }
614
615 /**
616 * ata_devchk - PATA device presence detection
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
633 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
634 {
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
642
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
645
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
648
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656 }
657
658 /**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
674 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
675 {
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695 }
696
697 /**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
701 * @r_err: Value of error register on completion
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
717 */
718
719 unsigned int
720 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
721 {
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
730 ap->ops->tf_read(ap, &tf);
731 err = tf.feature;
732 if (r_err)
733 *r_err = err;
734
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if (err == 1)
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
744 return ATA_DEV_NONE;
745
746 /* determine if device is ATA or ATAPI */
747 class = ata_dev_classify(&tf);
748
749 if (class == ATA_DEV_UNKNOWN)
750 return ATA_DEV_NONE;
751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
752 return ATA_DEV_NONE;
753 return class;
754 }
755
756 /**
757 * ata_id_string - Convert IDENTIFY DEVICE page into string
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
771 void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
773 {
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788 }
789
790 /**
791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
797 * This function is identical to ata_id_string except that it
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
804 void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
806 {
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
811 ata_id_string(id, s, ofs, len - 1);
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817 }
818
819 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820 {
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831 }
832
833 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834 {
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843 }
844
845 /**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854 {
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870 }
871
872 /**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880 static u64 ata_read_native_max_address(struct ata_device *dev)
881 {
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897 }
898
899 /**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
902 * @new_sectors: new max sectors value to set for the device
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909 {
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935 }
936
937 /**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
940 * @new_sectors: new max sectors value to set for the device
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947 {
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969 }
970
971 /**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980 static u64 ata_hpa_resize(struct ata_device *dev)
981 {
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
984
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
995 (long long)sectors, (long long)hpa_sectors);
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1003
1004 if (hpa_sectors) {
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1008 return hpa_sectors;
1009 }
1010 }
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1016 return sectors;
1017 }
1018
1019 static u64 ata_id_n_sectors(const u16 *id)
1020 {
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032 }
1033
1034 /**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
1037 * @unknown: mode to assume if we cannot tell
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050 {
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074 }
1075
1076 /**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1088 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089 {
1090 }
1091
1092
1093 /**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109 {
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
1117 iowrite8(tmp, ap->ioaddr.device_addr);
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119 }
1120
1121 /**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140 void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142 {
1143 if (ata_msg_probe(ap))
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157 }
1158
1159 /**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
1161 * @id: IDENTIFY DEVICE page to dump
1162 *
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
1170 static inline void ata_dump_id(const u16 *id)
1171 {
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
1194 id[88],
1195 id[93]);
1196 }
1197
1198 /**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213 static unsigned int ata_id_xfermask(const u16 *id)
1214 {
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1242
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265 }
1266
1267 /**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
1270 * @fn: workqueue function to be scheduled
1271 * @data: data for @fn to use
1272 * @delay: delay time for workqueue function
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
1286 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1287 unsigned long delay)
1288 {
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
1291
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
1294 }
1295
1296 /**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306 void ata_port_flush_task(struct ata_port *ap)
1307 {
1308 DPRINTK("ENTER\n");
1309
1310 cancel_rearming_delayed_work(&ap->port_task);
1311
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1314 }
1315
1316 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1317 {
1318 struct completion *waiting = qc->private_data;
1319
1320 complete(waiting);
1321 }
1322
1323 /**
1324 * ata_exec_internal_sg - execute libata internal command
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
1327 * @cdb: CDB for packet command
1328 * @dma_dir: Data tranfer direction of the command
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
1343 */
1344 unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
1348 {
1349 struct ata_port *ap = dev->ap;
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
1352 unsigned int tag, preempted_tag;
1353 u32 preempted_sactive, preempted_qc_active;
1354 DECLARE_COMPLETION_ONSTACK(wait);
1355 unsigned long flags;
1356 unsigned int err_mask;
1357 int rc;
1358
1359 spin_lock_irqsave(ap->lock, flags);
1360
1361 /* no internal command while frozen */
1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
1363 spin_unlock_irqrestore(ap->lock, flags);
1364 return AC_ERR_SYSTEM;
1365 }
1366
1367 /* initialize internal qc */
1368
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1373 */
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1376 else
1377 tag = 0;
1378
1379 if (test_and_set_bit(tag, &ap->qc_allocated))
1380 BUG();
1381 qc = __ata_qc_from_tag(ap, tag);
1382
1383 qc->tag = tag;
1384 qc->scsicmd = NULL;
1385 qc->ap = ap;
1386 qc->dev = dev;
1387 ata_qc_reinit(qc);
1388
1389 preempted_tag = ap->active_tag;
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
1392 ap->active_tag = ATA_TAG_POISON;
1393 ap->sactive = 0;
1394 ap->qc_active = 0;
1395
1396 /* prepare & issue qc */
1397 qc->tf = *tf;
1398 if (cdb)
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
1403 unsigned int i, buflen = 0;
1404
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1407
1408 ata_sg_init(qc, sg, n_elem);
1409 qc->nbytes = buflen;
1410 }
1411
1412 qc->private_data = &wait;
1413 qc->complete_fn = ata_qc_complete_internal;
1414
1415 ata_qc_issue(qc);
1416
1417 spin_unlock_irqrestore(ap->lock, flags);
1418
1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1420
1421 ata_port_flush_task(ap);
1422
1423 if (!rc) {
1424 spin_lock_irqsave(ap->lock, flags);
1425
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
1430 */
1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1433
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1436 else
1437 ata_qc_complete(qc);
1438
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
1441 "qc timeout (cmd 0x%x)\n", command);
1442 }
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445 }
1446
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1450
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1455
1456 if (!qc->err_mask)
1457 qc->err_mask |= AC_ERR_OTHER;
1458
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
1461 }
1462
1463 /* finish up */
1464 spin_lock_irqsave(ap->lock, flags);
1465
1466 *tf = qc->result_tf;
1467 err_mask = qc->err_mask;
1468
1469 ata_qc_free(qc);
1470 ap->active_tag = preempted_tag;
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
1473
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * port.
1478 *
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1482 *
1483 * Kill the following code as soon as those drivers are fixed.
1484 */
1485 if (ap->flags & ATA_FLAG_DISABLED) {
1486 err_mask |= AC_ERR_SYSTEM;
1487 ata_port_probe(ap);
1488 }
1489
1490 spin_unlock_irqrestore(ap->lock, flags);
1491
1492 return err_mask;
1493 }
1494
1495 /**
1496 * ata_exec_internal - execute libata internal command
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1503 *
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1506 *
1507 * LOCKING:
1508 * None. Should be called with kernel context, might sleep.
1509 *
1510 * RETURNS:
1511 * Zero on success, AC_ERR_* mask on failure
1512 */
1513 unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1516 {
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
1519
1520 if (dma_dir != DMA_NONE) {
1521 WARN_ON(!buf);
1522 sg_init_one(&sg, buf, buflen);
1523 psg = &sg;
1524 n_elem++;
1525 }
1526
1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1528 }
1529
1530 /**
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1534 *
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1537 *
1538 * LOCKING:
1539 * Kernel thread context (may sleep).
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1543 */
1544 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1545 {
1546 struct ata_taskfile tf;
1547
1548 ata_tf_init(dev, &tf);
1549
1550 tf.command = cmd;
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1553
1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1555 }
1556
1557 /**
1558 * ata_pio_need_iordy - check if iordy needed
1559 * @adev: ATA device
1560 *
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1563 */
1564
1565 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1566 {
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1570 return 0;
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1573 return 1;
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1576 return 1;
1577 return 0;
1578 }
1579
1580 /**
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * @adev: ATA device
1583 *
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1586 */
1587
1588 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1589 {
1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1593 /* Is the speed faster than the drive allows non IORDY ? */
1594 if (pio) {
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1599 }
1600 }
1601 return 3 << ATA_SHIFT_PIO;
1602 }
1603
1604 /**
1605 * ata_dev_read_id - Read ID data from the specified device
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
1608 * @flags: ATA_READID_* flags
1609 * @id: buffer to read IDENTIFY data into
1610 *
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1615 *
1616 * LOCKING:
1617 * Kernel thread context (may sleep)
1618 *
1619 * RETURNS:
1620 * 0 on success, -errno otherwise.
1621 */
1622 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1623 unsigned int flags, u16 *id)
1624 {
1625 struct ata_port *ap = dev->ap;
1626 unsigned int class = *p_class;
1627 struct ata_taskfile tf;
1628 unsigned int err_mask = 0;
1629 const char *reason;
1630 int may_fallback = 1, tried_spinup = 0;
1631 int rc;
1632
1633 if (ata_msg_ctl(ap))
1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1635
1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1637 retry:
1638 ata_tf_init(dev, &tf);
1639
1640 switch (class) {
1641 case ATA_DEV_ATA:
1642 tf.command = ATA_CMD_ID_ATA;
1643 break;
1644 case ATA_DEV_ATAPI:
1645 tf.command = ATA_CMD_ID_ATAPI;
1646 break;
1647 default:
1648 rc = -ENODEV;
1649 reason = "unsupported class";
1650 goto err_out;
1651 }
1652
1653 tf.protocol = ATA_PROT_PIO;
1654
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1657 */
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1659
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1662 */
1663 tf.flags |= ATA_TFLAG_POLLING;
1664
1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1666 id, sizeof(id[0]) * ATA_ID_WORDS);
1667 if (err_mask) {
1668 if (err_mask & AC_ERR_NODEV_HINT) {
1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1670 ap->print_id, dev->devno);
1671 return -ENOENT;
1672 }
1673
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1677 */
1678 if (may_fallback &&
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 may_fallback = 0;
1681
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1684 else
1685 class = ATA_DEV_ATA;
1686 goto retry;
1687 }
1688
1689 rc = -EIO;
1690 reason = "I/O error";
1691 goto err_out;
1692 }
1693
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1696 */
1697 may_fallback = 0;
1698
1699 swap_buf_le16(id, ATA_ID_WORDS);
1700
1701 /* sanity check */
1702 rc = -EINVAL;
1703 reason = "device reports invalid type";
1704
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 goto err_out;
1708 } else {
1709 if (ata_id_is_ata(id))
1710 goto err_out;
1711 }
1712
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 tried_spinup = 1;
1715 /*
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1719 */
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1726 if (err_mask && id[2] != 0x738c) {
1727 rc = -EIO;
1728 reason = "SPINUP failed";
1729 goto err_out;
1730 }
1731 /*
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1734 */
1735 if (id[2] == 0x37c8)
1736 goto retry;
1737 }
1738
1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1740 /*
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * SRST RESET
1743 * IDENTIFY
1744 * INITIALIZE DEVICE PARAMETERS
1745 * anything else..
1746 * Some drives were very specific about that exact sequence.
1747 */
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1750 if (err_mask) {
1751 rc = -EIO;
1752 reason = "INIT_DEV_PARAMS failed";
1753 goto err_out;
1754 }
1755
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1758 */
1759 flags &= ~ATA_READID_POSTRESET;
1760 goto retry;
1761 }
1762 }
1763
1764 *p_class = class;
1765
1766 return 0;
1767
1768 err_out:
1769 if (ata_msg_warn(ap))
1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
1772 return rc;
1773 }
1774
1775 static inline u8 ata_dev_knobble(struct ata_device *dev)
1776 {
1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1778 }
1779
1780 static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1782 {
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1785
1786 if (!ata_id_has_ncq(dev->id)) {
1787 desc[0] = '\0';
1788 return;
1789 }
1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1792 return;
1793 }
1794 if (ap->flags & ATA_FLAG_NCQ) {
1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1796 dev->flags |= ATA_DFLAG_NCQ;
1797 }
1798
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 else
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1803 }
1804
1805 /**
1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
1807 * @dev: Target device to configure
1808 *
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
1811 *
1812 * LOCKING:
1813 * Kernel thread context (may sleep)
1814 *
1815 * RETURNS:
1816 * 0 on success, -errno otherwise
1817 */
1818 int ata_dev_configure(struct ata_device *dev)
1819 {
1820 struct ata_port *ap = dev->ap;
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1823 const u16 *id = dev->id;
1824 unsigned int xfer_mask;
1825 char revbuf[7]; /* XYZ-99\0 */
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
1828 int rc;
1829
1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 __FUNCTION__);
1833 return 0;
1834 }
1835
1836 if (ata_msg_probe(ap))
1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1838
1839 /* set horkage */
1840 dev->horkage |= ata_dev_blacklisted(dev);
1841
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1844 if (rc)
1845 return rc;
1846
1847 /* print device capabilities */
1848 if (ata_msg_probe(ap))
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1852 __FUNCTION__,
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
1855
1856 /* initialize to-be-configured parameters */
1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1858 dev->max_sectors = 0;
1859 dev->cdb_len = 0;
1860 dev->n_sectors = 0;
1861 dev->cylinders = 0;
1862 dev->heads = 0;
1863 dev->sectors = 0;
1864
1865 /*
1866 * common ATA, ATAPI feature tests
1867 */
1868
1869 /* find max transfer mode; for printk only */
1870 xfer_mask = ata_id_xfermask(id);
1871
1872 if (ata_msg_probe(ap))
1873 ata_dump_id(id);
1874
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 sizeof(fwrevbuf));
1878
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 sizeof(modelbuf));
1881
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
1889 snprintf(revbuf, 7, "CFA");
1890 }
1891 else
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1893
1894 dev->n_sectors = ata_id_n_sectors(id);
1895
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1898
1899 if (ata_id_has_lba(id)) {
1900 const char *lba_desc;
1901 char ncq_desc[20];
1902
1903 lba_desc = "LBA";
1904 dev->flags |= ATA_DFLAG_LBA;
1905 if (ata_id_has_lba48(id)) {
1906 dev->flags |= ATA_DFLAG_LBA48;
1907 lba_desc = "LBA48";
1908
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1912 }
1913
1914 if (ata_id_hpa_enabled(dev->id))
1915 dev->n_sectors = ata_hpa_resize(dev);
1916
1917 /* config NCQ */
1918 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1919
1920 /* print device info to dmesg */
1921 if (ata_msg_drv(ap) && print_info) {
1922 ata_dev_printk(dev, KERN_INFO,
1923 "%s: %s, %s, max %s\n",
1924 revbuf, modelbuf, fwrevbuf,
1925 ata_mode_string(xfer_mask));
1926 ata_dev_printk(dev, KERN_INFO,
1927 "%Lu sectors, multi %u: %s %s\n",
1928 (unsigned long long)dev->n_sectors,
1929 dev->multi_count, lba_desc, ncq_desc);
1930 }
1931 } else {
1932 /* CHS */
1933
1934 /* Default translation */
1935 dev->cylinders = id[1];
1936 dev->heads = id[3];
1937 dev->sectors = id[6];
1938
1939 if (ata_id_current_chs_valid(id)) {
1940 /* Current CHS translation is valid. */
1941 dev->cylinders = id[54];
1942 dev->heads = id[55];
1943 dev->sectors = id[56];
1944 }
1945
1946 /* print device info to dmesg */
1947 if (ata_msg_drv(ap) && print_info) {
1948 ata_dev_printk(dev, KERN_INFO,
1949 "%s: %s, %s, max %s\n",
1950 revbuf, modelbuf, fwrevbuf,
1951 ata_mode_string(xfer_mask));
1952 ata_dev_printk(dev, KERN_INFO,
1953 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1954 (unsigned long long)dev->n_sectors,
1955 dev->multi_count, dev->cylinders,
1956 dev->heads, dev->sectors);
1957 }
1958 }
1959
1960 dev->cdb_len = 16;
1961 }
1962
1963 /* ATAPI-specific feature tests */
1964 else if (dev->class == ATA_DEV_ATAPI) {
1965 char *cdb_intr_string = "";
1966
1967 rc = atapi_cdb_len(id);
1968 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1969 if (ata_msg_warn(ap))
1970 ata_dev_printk(dev, KERN_WARNING,
1971 "unsupported CDB len\n");
1972 rc = -EINVAL;
1973 goto err_out_nosup;
1974 }
1975 dev->cdb_len = (unsigned int) rc;
1976
1977 if (ata_id_cdb_intr(dev->id)) {
1978 dev->flags |= ATA_DFLAG_CDB_INTR;
1979 cdb_intr_string = ", CDB intr";
1980 }
1981
1982 /* print device info to dmesg */
1983 if (ata_msg_drv(ap) && print_info)
1984 ata_dev_printk(dev, KERN_INFO,
1985 "ATAPI: %s, %s, max %s%s\n",
1986 modelbuf, fwrevbuf,
1987 ata_mode_string(xfer_mask),
1988 cdb_intr_string);
1989 }
1990
1991 /* determine max_sectors */
1992 dev->max_sectors = ATA_MAX_SECTORS;
1993 if (dev->flags & ATA_DFLAG_LBA48)
1994 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1995
1996 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1997 /* Let the user know. We don't want to disallow opens for
1998 rescue purposes, or in case the vendor is just a blithering
1999 idiot */
2000 if (print_info) {
2001 ata_dev_printk(dev, KERN_WARNING,
2002 "Drive reports diagnostics failure. This may indicate a drive\n");
2003 ata_dev_printk(dev, KERN_WARNING,
2004 "fault or invalid emulation. Contact drive vendor for information.\n");
2005 }
2006 }
2007
2008 /* limit bridge transfers to udma5, 200 sectors */
2009 if (ata_dev_knobble(dev)) {
2010 if (ata_msg_drv(ap) && print_info)
2011 ata_dev_printk(dev, KERN_INFO,
2012 "applying bridge limits\n");
2013 dev->udma_mask &= ATA_UDMA5;
2014 dev->max_sectors = ATA_MAX_SECTORS;
2015 }
2016
2017 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2018 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2019 dev->max_sectors);
2020
2021 if (ap->ops->dev_config)
2022 ap->ops->dev_config(dev);
2023
2024 if (ata_msg_probe(ap))
2025 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2026 __FUNCTION__, ata_chk_status(ap));
2027 return 0;
2028
2029 err_out_nosup:
2030 if (ata_msg_probe(ap))
2031 ata_dev_printk(dev, KERN_DEBUG,
2032 "%s: EXIT, err\n", __FUNCTION__);
2033 return rc;
2034 }
2035
2036 /**
2037 * ata_cable_40wire - return 40 wire cable type
2038 * @ap: port
2039 *
2040 * Helper method for drivers which want to hardwire 40 wire cable
2041 * detection.
2042 */
2043
2044 int ata_cable_40wire(struct ata_port *ap)
2045 {
2046 return ATA_CBL_PATA40;
2047 }
2048
2049 /**
2050 * ata_cable_80wire - return 80 wire cable type
2051 * @ap: port
2052 *
2053 * Helper method for drivers which want to hardwire 80 wire cable
2054 * detection.
2055 */
2056
2057 int ata_cable_80wire(struct ata_port *ap)
2058 {
2059 return ATA_CBL_PATA80;
2060 }
2061
2062 /**
2063 * ata_cable_unknown - return unknown PATA cable.
2064 * @ap: port
2065 *
2066 * Helper method for drivers which have no PATA cable detection.
2067 */
2068
2069 int ata_cable_unknown(struct ata_port *ap)
2070 {
2071 return ATA_CBL_PATA_UNK;
2072 }
2073
2074 /**
2075 * ata_cable_sata - return SATA cable type
2076 * @ap: port
2077 *
2078 * Helper method for drivers which have SATA cables
2079 */
2080
2081 int ata_cable_sata(struct ata_port *ap)
2082 {
2083 return ATA_CBL_SATA;
2084 }
2085
2086 /**
2087 * ata_bus_probe - Reset and probe ATA bus
2088 * @ap: Bus to probe
2089 *
2090 * Master ATA bus probing function. Initiates a hardware-dependent
2091 * bus reset, then attempts to identify any devices found on
2092 * the bus.
2093 *
2094 * LOCKING:
2095 * PCI/etc. bus probe sem.
2096 *
2097 * RETURNS:
2098 * Zero on success, negative errno otherwise.
2099 */
2100
2101 int ata_bus_probe(struct ata_port *ap)
2102 {
2103 unsigned int classes[ATA_MAX_DEVICES];
2104 int tries[ATA_MAX_DEVICES];
2105 int i, rc;
2106 struct ata_device *dev;
2107
2108 ata_port_probe(ap);
2109
2110 for (i = 0; i < ATA_MAX_DEVICES; i++)
2111 tries[i] = ATA_PROBE_MAX_TRIES;
2112
2113 retry:
2114 /* reset and determine device classes */
2115 ap->ops->phy_reset(ap);
2116
2117 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2118 dev = &ap->device[i];
2119
2120 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2121 dev->class != ATA_DEV_UNKNOWN)
2122 classes[dev->devno] = dev->class;
2123 else
2124 classes[dev->devno] = ATA_DEV_NONE;
2125
2126 dev->class = ATA_DEV_UNKNOWN;
2127 }
2128
2129 ata_port_probe(ap);
2130
2131 /* after the reset the device state is PIO 0 and the controller
2132 state is undefined. Record the mode */
2133
2134 for (i = 0; i < ATA_MAX_DEVICES; i++)
2135 ap->device[i].pio_mode = XFER_PIO_0;
2136
2137 /* read IDENTIFY page and configure devices. We have to do the identify
2138 specific sequence bass-ackwards so that PDIAG- is released by
2139 the slave device */
2140
2141 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2142 dev = &ap->device[i];
2143
2144 if (tries[i])
2145 dev->class = classes[i];
2146
2147 if (!ata_dev_enabled(dev))
2148 continue;
2149
2150 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2151 dev->id);
2152 if (rc)
2153 goto fail;
2154 }
2155
2156 /* Now ask for the cable type as PDIAG- should have been released */
2157 if (ap->ops->cable_detect)
2158 ap->cbl = ap->ops->cable_detect(ap);
2159
2160 /* After the identify sequence we can now set up the devices. We do
2161 this in the normal order so that the user doesn't get confused */
2162
2163 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2164 dev = &ap->device[i];
2165 if (!ata_dev_enabled(dev))
2166 continue;
2167
2168 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2169 rc = ata_dev_configure(dev);
2170 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2171 if (rc)
2172 goto fail;
2173 }
2174
2175 /* configure transfer mode */
2176 rc = ata_set_mode(ap, &dev);
2177 if (rc)
2178 goto fail;
2179
2180 for (i = 0; i < ATA_MAX_DEVICES; i++)
2181 if (ata_dev_enabled(&ap->device[i]))
2182 return 0;
2183
2184 /* no device present, disable port */
2185 ata_port_disable(ap);
2186 ap->ops->port_disable(ap);
2187 return -ENODEV;
2188
2189 fail:
2190 tries[dev->devno]--;
2191
2192 switch (rc) {
2193 case -EINVAL:
2194 /* eeek, something went very wrong, give up */
2195 tries[dev->devno] = 0;
2196 break;
2197
2198 case -ENODEV:
2199 /* give it just one more chance */
2200 tries[dev->devno] = min(tries[dev->devno], 1);
2201 case -EIO:
2202 if (tries[dev->devno] == 1) {
2203 /* This is the last chance, better to slow
2204 * down than lose it.
2205 */
2206 sata_down_spd_limit(ap);
2207 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2208 }
2209 }
2210
2211 if (!tries[dev->devno])
2212 ata_dev_disable(dev);
2213
2214 goto retry;
2215 }
2216
2217 /**
2218 * ata_port_probe - Mark port as enabled
2219 * @ap: Port for which we indicate enablement
2220 *
2221 * Modify @ap data structure such that the system
2222 * thinks that the entire port is enabled.
2223 *
2224 * LOCKING: host lock, or some other form of
2225 * serialization.
2226 */
2227
2228 void ata_port_probe(struct ata_port *ap)
2229 {
2230 ap->flags &= ~ATA_FLAG_DISABLED;
2231 }
2232
2233 /**
2234 * sata_print_link_status - Print SATA link status
2235 * @ap: SATA port to printk link status about
2236 *
2237 * This function prints link speed and status of a SATA link.
2238 *
2239 * LOCKING:
2240 * None.
2241 */
2242 void sata_print_link_status(struct ata_port *ap)
2243 {
2244 u32 sstatus, scontrol, tmp;
2245
2246 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2247 return;
2248 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2249
2250 if (ata_port_online(ap)) {
2251 tmp = (sstatus >> 4) & 0xf;
2252 ata_port_printk(ap, KERN_INFO,
2253 "SATA link up %s (SStatus %X SControl %X)\n",
2254 sata_spd_string(tmp), sstatus, scontrol);
2255 } else {
2256 ata_port_printk(ap, KERN_INFO,
2257 "SATA link down (SStatus %X SControl %X)\n",
2258 sstatus, scontrol);
2259 }
2260 }
2261
2262 /**
2263 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2264 * @ap: SATA port associated with target SATA PHY.
2265 *
2266 * This function issues commands to standard SATA Sxxx
2267 * PHY registers, to wake up the phy (and device), and
2268 * clear any reset condition.
2269 *
2270 * LOCKING:
2271 * PCI/etc. bus probe sem.
2272 *
2273 */
2274 void __sata_phy_reset(struct ata_port *ap)
2275 {
2276 u32 sstatus;
2277 unsigned long timeout = jiffies + (HZ * 5);
2278
2279 if (ap->flags & ATA_FLAG_SATA_RESET) {
2280 /* issue phy wake/reset */
2281 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2282 /* Couldn't find anything in SATA I/II specs, but
2283 * AHCI-1.1 10.4.2 says at least 1 ms. */
2284 mdelay(1);
2285 }
2286 /* phy wake/clear reset */
2287 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2288
2289 /* wait for phy to become ready, if necessary */
2290 do {
2291 msleep(200);
2292 sata_scr_read(ap, SCR_STATUS, &sstatus);
2293 if ((sstatus & 0xf) != 1)
2294 break;
2295 } while (time_before(jiffies, timeout));
2296
2297 /* print link status */
2298 sata_print_link_status(ap);
2299
2300 /* TODO: phy layer with polling, timeouts, etc. */
2301 if (!ata_port_offline(ap))
2302 ata_port_probe(ap);
2303 else
2304 ata_port_disable(ap);
2305
2306 if (ap->flags & ATA_FLAG_DISABLED)
2307 return;
2308
2309 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2310 ata_port_disable(ap);
2311 return;
2312 }
2313
2314 ap->cbl = ATA_CBL_SATA;
2315 }
2316
2317 /**
2318 * sata_phy_reset - Reset SATA bus.
2319 * @ap: SATA port associated with target SATA PHY.
2320 *
2321 * This function resets the SATA bus, and then probes
2322 * the bus for devices.
2323 *
2324 * LOCKING:
2325 * PCI/etc. bus probe sem.
2326 *
2327 */
2328 void sata_phy_reset(struct ata_port *ap)
2329 {
2330 __sata_phy_reset(ap);
2331 if (ap->flags & ATA_FLAG_DISABLED)
2332 return;
2333 ata_bus_reset(ap);
2334 }
2335
2336 /**
2337 * ata_dev_pair - return other device on cable
2338 * @adev: device
2339 *
2340 * Obtain the other device on the same cable, or if none is
2341 * present NULL is returned
2342 */
2343
2344 struct ata_device *ata_dev_pair(struct ata_device *adev)
2345 {
2346 struct ata_port *ap = adev->ap;
2347 struct ata_device *pair = &ap->device[1 - adev->devno];
2348 if (!ata_dev_enabled(pair))
2349 return NULL;
2350 return pair;
2351 }
2352
2353 /**
2354 * ata_port_disable - Disable port.
2355 * @ap: Port to be disabled.
2356 *
2357 * Modify @ap data structure such that the system
2358 * thinks that the entire port is disabled, and should
2359 * never attempt to probe or communicate with devices
2360 * on this port.
2361 *
2362 * LOCKING: host lock, or some other form of
2363 * serialization.
2364 */
2365
2366 void ata_port_disable(struct ata_port *ap)
2367 {
2368 ap->device[0].class = ATA_DEV_NONE;
2369 ap->device[1].class = ATA_DEV_NONE;
2370 ap->flags |= ATA_FLAG_DISABLED;
2371 }
2372
2373 /**
2374 * sata_down_spd_limit - adjust SATA spd limit downward
2375 * @ap: Port to adjust SATA spd limit for
2376 *
2377 * Adjust SATA spd limit of @ap downward. Note that this
2378 * function only adjusts the limit. The change must be applied
2379 * using sata_set_spd().
2380 *
2381 * LOCKING:
2382 * Inherited from caller.
2383 *
2384 * RETURNS:
2385 * 0 on success, negative errno on failure
2386 */
2387 int sata_down_spd_limit(struct ata_port *ap)
2388 {
2389 u32 sstatus, spd, mask;
2390 int rc, highbit;
2391
2392 if (!sata_scr_valid(ap))
2393 return -EOPNOTSUPP;
2394
2395 /* If SCR can be read, use it to determine the current SPD.
2396 * If not, use cached value in ap->sata_spd.
2397 */
2398 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2399 if (rc == 0)
2400 spd = (sstatus >> 4) & 0xf;
2401 else
2402 spd = ap->sata_spd;
2403
2404 mask = ap->sata_spd_limit;
2405 if (mask <= 1)
2406 return -EINVAL;
2407
2408 /* unconditionally mask off the highest bit */
2409 highbit = fls(mask) - 1;
2410 mask &= ~(1 << highbit);
2411
2412 /* Mask off all speeds higher than or equal to the current
2413 * one. Force 1.5Gbps if current SPD is not available.
2414 */
2415 if (spd > 1)
2416 mask &= (1 << (spd - 1)) - 1;
2417 else
2418 mask &= 1;
2419
2420 /* were we already at the bottom? */
2421 if (!mask)
2422 return -EINVAL;
2423
2424 ap->sata_spd_limit = mask;
2425
2426 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2427 sata_spd_string(fls(mask)));
2428
2429 return 0;
2430 }
2431
2432 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2433 {
2434 u32 spd, limit;
2435
2436 if (ap->sata_spd_limit == UINT_MAX)
2437 limit = 0;
2438 else
2439 limit = fls(ap->sata_spd_limit);
2440
2441 spd = (*scontrol >> 4) & 0xf;
2442 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2443
2444 return spd != limit;
2445 }
2446
2447 /**
2448 * sata_set_spd_needed - is SATA spd configuration needed
2449 * @ap: Port in question
2450 *
2451 * Test whether the spd limit in SControl matches
2452 * @ap->sata_spd_limit. This function is used to determine
2453 * whether hardreset is necessary to apply SATA spd
2454 * configuration.
2455 *
2456 * LOCKING:
2457 * Inherited from caller.
2458 *
2459 * RETURNS:
2460 * 1 if SATA spd configuration is needed, 0 otherwise.
2461 */
2462 int sata_set_spd_needed(struct ata_port *ap)
2463 {
2464 u32 scontrol;
2465
2466 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2467 return 0;
2468
2469 return __sata_set_spd_needed(ap, &scontrol);
2470 }
2471
2472 /**
2473 * sata_set_spd - set SATA spd according to spd limit
2474 * @ap: Port to set SATA spd for
2475 *
2476 * Set SATA spd of @ap according to sata_spd_limit.
2477 *
2478 * LOCKING:
2479 * Inherited from caller.
2480 *
2481 * RETURNS:
2482 * 0 if spd doesn't need to be changed, 1 if spd has been
2483 * changed. Negative errno if SCR registers are inaccessible.
2484 */
2485 int sata_set_spd(struct ata_port *ap)
2486 {
2487 u32 scontrol;
2488 int rc;
2489
2490 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2491 return rc;
2492
2493 if (!__sata_set_spd_needed(ap, &scontrol))
2494 return 0;
2495
2496 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2497 return rc;
2498
2499 return 1;
2500 }
2501
2502 /*
2503 * This mode timing computation functionality is ported over from
2504 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2505 */
2506 /*
2507 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2508 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2509 * for UDMA6, which is currently supported only by Maxtor drives.
2510 *
2511 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2512 */
2513
2514 static const struct ata_timing ata_timing[] = {
2515
2516 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2517 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2518 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2519 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2520
2521 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2522 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2523 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2524 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2525 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2526
2527 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2528
2529 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2530 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2531 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2532
2533 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2534 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2535 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2536
2537 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2538 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2539 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2540 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2541
2542 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2543 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2544 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2545
2546 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2547
2548 { 0xFF }
2549 };
2550
2551 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2552 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2553
2554 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2555 {
2556 q->setup = EZ(t->setup * 1000, T);
2557 q->act8b = EZ(t->act8b * 1000, T);
2558 q->rec8b = EZ(t->rec8b * 1000, T);
2559 q->cyc8b = EZ(t->cyc8b * 1000, T);
2560 q->active = EZ(t->active * 1000, T);
2561 q->recover = EZ(t->recover * 1000, T);
2562 q->cycle = EZ(t->cycle * 1000, T);
2563 q->udma = EZ(t->udma * 1000, UT);
2564 }
2565
2566 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2567 struct ata_timing *m, unsigned int what)
2568 {
2569 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2570 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2571 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2572 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2573 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2574 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2575 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2576 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2577 }
2578
2579 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2580 {
2581 const struct ata_timing *t;
2582
2583 for (t = ata_timing; t->mode != speed; t++)
2584 if (t->mode == 0xFF)
2585 return NULL;
2586 return t;
2587 }
2588
2589 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2590 struct ata_timing *t, int T, int UT)
2591 {
2592 const struct ata_timing *s;
2593 struct ata_timing p;
2594
2595 /*
2596 * Find the mode.
2597 */
2598
2599 if (!(s = ata_timing_find_mode(speed)))
2600 return -EINVAL;
2601
2602 memcpy(t, s, sizeof(*s));
2603
2604 /*
2605 * If the drive is an EIDE drive, it can tell us it needs extended
2606 * PIO/MW_DMA cycle timing.
2607 */
2608
2609 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2610 memset(&p, 0, sizeof(p));
2611 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2612 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2613 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2614 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2615 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2616 }
2617 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2618 }
2619
2620 /*
2621 * Convert the timing to bus clock counts.
2622 */
2623
2624 ata_timing_quantize(t, t, T, UT);
2625
2626 /*
2627 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2628 * S.M.A.R.T * and some other commands. We have to ensure that the
2629 * DMA cycle timing is slower/equal than the fastest PIO timing.
2630 */
2631
2632 if (speed > XFER_PIO_6) {
2633 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2634 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2635 }
2636
2637 /*
2638 * Lengthen active & recovery time so that cycle time is correct.
2639 */
2640
2641 if (t->act8b + t->rec8b < t->cyc8b) {
2642 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2643 t->rec8b = t->cyc8b - t->act8b;
2644 }
2645
2646 if (t->active + t->recover < t->cycle) {
2647 t->active += (t->cycle - (t->active + t->recover)) / 2;
2648 t->recover = t->cycle - t->active;
2649 }
2650
2651 /* In a few cases quantisation may produce enough errors to
2652 leave t->cycle too low for the sum of active and recovery
2653 if so we must correct this */
2654 if (t->active + t->recover > t->cycle)
2655 t->cycle = t->active + t->recover;
2656
2657 return 0;
2658 }
2659
2660 /**
2661 * ata_down_xfermask_limit - adjust dev xfer masks downward
2662 * @dev: Device to adjust xfer masks
2663 * @sel: ATA_DNXFER_* selector
2664 *
2665 * Adjust xfer masks of @dev downward. Note that this function
2666 * does not apply the change. Invoking ata_set_mode() afterwards
2667 * will apply the limit.
2668 *
2669 * LOCKING:
2670 * Inherited from caller.
2671 *
2672 * RETURNS:
2673 * 0 on success, negative errno on failure
2674 */
2675 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2676 {
2677 char buf[32];
2678 unsigned int orig_mask, xfer_mask;
2679 unsigned int pio_mask, mwdma_mask, udma_mask;
2680 int quiet, highbit;
2681
2682 quiet = !!(sel & ATA_DNXFER_QUIET);
2683 sel &= ~ATA_DNXFER_QUIET;
2684
2685 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2686 dev->mwdma_mask,
2687 dev->udma_mask);
2688 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2689
2690 switch (sel) {
2691 case ATA_DNXFER_PIO:
2692 highbit = fls(pio_mask) - 1;
2693 pio_mask &= ~(1 << highbit);
2694 break;
2695
2696 case ATA_DNXFER_DMA:
2697 if (udma_mask) {
2698 highbit = fls(udma_mask) - 1;
2699 udma_mask &= ~(1 << highbit);
2700 if (!udma_mask)
2701 return -ENOENT;
2702 } else if (mwdma_mask) {
2703 highbit = fls(mwdma_mask) - 1;
2704 mwdma_mask &= ~(1 << highbit);
2705 if (!mwdma_mask)
2706 return -ENOENT;
2707 }
2708 break;
2709
2710 case ATA_DNXFER_40C:
2711 udma_mask &= ATA_UDMA_MASK_40C;
2712 break;
2713
2714 case ATA_DNXFER_FORCE_PIO0:
2715 pio_mask &= 1;
2716 case ATA_DNXFER_FORCE_PIO:
2717 mwdma_mask = 0;
2718 udma_mask = 0;
2719 break;
2720
2721 default:
2722 BUG();
2723 }
2724
2725 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2726
2727 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2728 return -ENOENT;
2729
2730 if (!quiet) {
2731 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2732 snprintf(buf, sizeof(buf), "%s:%s",
2733 ata_mode_string(xfer_mask),
2734 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2735 else
2736 snprintf(buf, sizeof(buf), "%s",
2737 ata_mode_string(xfer_mask));
2738
2739 ata_dev_printk(dev, KERN_WARNING,
2740 "limiting speed to %s\n", buf);
2741 }
2742
2743 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2744 &dev->udma_mask);
2745
2746 return 0;
2747 }
2748
2749 static int ata_dev_set_mode(struct ata_device *dev)
2750 {
2751 struct ata_eh_context *ehc = &dev->ap->eh_context;
2752 unsigned int err_mask;
2753 int rc;
2754
2755 dev->flags &= ~ATA_DFLAG_PIO;
2756 if (dev->xfer_shift == ATA_SHIFT_PIO)
2757 dev->flags |= ATA_DFLAG_PIO;
2758
2759 err_mask = ata_dev_set_xfermode(dev);
2760 /* Old CFA may refuse this command, which is just fine */
2761 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2762 err_mask &= ~AC_ERR_DEV;
2763
2764 if (err_mask) {
2765 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2766 "(err_mask=0x%x)\n", err_mask);
2767 return -EIO;
2768 }
2769
2770 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2771 rc = ata_dev_revalidate(dev, 0);
2772 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2773 if (rc)
2774 return rc;
2775
2776 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2777 dev->xfer_shift, (int)dev->xfer_mode);
2778
2779 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2780 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2781 return 0;
2782 }
2783
2784 /**
2785 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2786 * @ap: port on which timings will be programmed
2787 * @r_failed_dev: out paramter for failed device
2788 *
2789 * Standard implementation of the function used to tune and set
2790 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2791 * ata_dev_set_mode() fails, pointer to the failing device is
2792 * returned in @r_failed_dev.
2793 *
2794 * LOCKING:
2795 * PCI/etc. bus probe sem.
2796 *
2797 * RETURNS:
2798 * 0 on success, negative errno otherwise
2799 */
2800
2801 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2802 {
2803 struct ata_device *dev;
2804 int i, rc = 0, used_dma = 0, found = 0;
2805
2806
2807 /* step 1: calculate xfer_mask */
2808 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2809 unsigned int pio_mask, dma_mask;
2810
2811 dev = &ap->device[i];
2812
2813 if (!ata_dev_enabled(dev))
2814 continue;
2815
2816 ata_dev_xfermask(dev);
2817
2818 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2819 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2820 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2821 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2822
2823 found = 1;
2824 if (dev->dma_mode)
2825 used_dma = 1;
2826 }
2827 if (!found)
2828 goto out;
2829
2830 /* step 2: always set host PIO timings */
2831 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2832 dev = &ap->device[i];
2833 if (!ata_dev_enabled(dev))
2834 continue;
2835
2836 if (!dev->pio_mode) {
2837 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2838 rc = -EINVAL;
2839 goto out;
2840 }
2841
2842 dev->xfer_mode = dev->pio_mode;
2843 dev->xfer_shift = ATA_SHIFT_PIO;
2844 if (ap->ops->set_piomode)
2845 ap->ops->set_piomode(ap, dev);
2846 }
2847
2848 /* step 3: set host DMA timings */
2849 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2850 dev = &ap->device[i];
2851
2852 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2853 continue;
2854
2855 dev->xfer_mode = dev->dma_mode;
2856 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2857 if (ap->ops->set_dmamode)
2858 ap->ops->set_dmamode(ap, dev);
2859 }
2860
2861 /* step 4: update devices' xfer mode */
2862 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2863 dev = &ap->device[i];
2864
2865 /* don't update suspended devices' xfer mode */
2866 if (!ata_dev_enabled(dev))
2867 continue;
2868
2869 rc = ata_dev_set_mode(dev);
2870 if (rc)
2871 goto out;
2872 }
2873
2874 /* Record simplex status. If we selected DMA then the other
2875 * host channels are not permitted to do so.
2876 */
2877 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2878 ap->host->simplex_claimed = ap;
2879
2880 out:
2881 if (rc)
2882 *r_failed_dev = dev;
2883 return rc;
2884 }
2885
2886 /**
2887 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2888 * @ap: port on which timings will be programmed
2889 * @r_failed_dev: out paramter for failed device
2890 *
2891 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2892 * ata_set_mode() fails, pointer to the failing device is
2893 * returned in @r_failed_dev.
2894 *
2895 * LOCKING:
2896 * PCI/etc. bus probe sem.
2897 *
2898 * RETURNS:
2899 * 0 on success, negative errno otherwise
2900 */
2901 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2902 {
2903 /* has private set_mode? */
2904 if (ap->ops->set_mode)
2905 return ap->ops->set_mode(ap, r_failed_dev);
2906 return ata_do_set_mode(ap, r_failed_dev);
2907 }
2908
2909 /**
2910 * ata_tf_to_host - issue ATA taskfile to host controller
2911 * @ap: port to which command is being issued
2912 * @tf: ATA taskfile register set
2913 *
2914 * Issues ATA taskfile register set to ATA host controller,
2915 * with proper synchronization with interrupt handler and
2916 * other threads.
2917 *
2918 * LOCKING:
2919 * spin_lock_irqsave(host lock)
2920 */
2921
2922 static inline void ata_tf_to_host(struct ata_port *ap,
2923 const struct ata_taskfile *tf)
2924 {
2925 ap->ops->tf_load(ap, tf);
2926 ap->ops->exec_command(ap, tf);
2927 }
2928
2929 /**
2930 * ata_busy_sleep - sleep until BSY clears, or timeout
2931 * @ap: port containing status register to be polled
2932 * @tmout_pat: impatience timeout
2933 * @tmout: overall timeout
2934 *
2935 * Sleep until ATA Status register bit BSY clears,
2936 * or a timeout occurs.
2937 *
2938 * LOCKING:
2939 * Kernel thread context (may sleep).
2940 *
2941 * RETURNS:
2942 * 0 on success, -errno otherwise.
2943 */
2944 int ata_busy_sleep(struct ata_port *ap,
2945 unsigned long tmout_pat, unsigned long tmout)
2946 {
2947 unsigned long timer_start, timeout;
2948 u8 status;
2949
2950 status = ata_busy_wait(ap, ATA_BUSY, 300);
2951 timer_start = jiffies;
2952 timeout = timer_start + tmout_pat;
2953 while (status != 0xff && (status & ATA_BUSY) &&
2954 time_before(jiffies, timeout)) {
2955 msleep(50);
2956 status = ata_busy_wait(ap, ATA_BUSY, 3);
2957 }
2958
2959 if (status != 0xff && (status & ATA_BUSY))
2960 ata_port_printk(ap, KERN_WARNING,
2961 "port is slow to respond, please be patient "
2962 "(Status 0x%x)\n", status);
2963
2964 timeout = timer_start + tmout;
2965 while (status != 0xff && (status & ATA_BUSY) &&
2966 time_before(jiffies, timeout)) {
2967 msleep(50);
2968 status = ata_chk_status(ap);
2969 }
2970
2971 if (status == 0xff)
2972 return -ENODEV;
2973
2974 if (status & ATA_BUSY) {
2975 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2976 "(%lu secs, Status 0x%x)\n",
2977 tmout / HZ, status);
2978 return -EBUSY;
2979 }
2980
2981 return 0;
2982 }
2983
2984 /**
2985 * ata_wait_ready - sleep until BSY clears, or timeout
2986 * @ap: port containing status register to be polled
2987 * @deadline: deadline jiffies for the operation
2988 *
2989 * Sleep until ATA Status register bit BSY clears, or timeout
2990 * occurs.
2991 *
2992 * LOCKING:
2993 * Kernel thread context (may sleep).
2994 *
2995 * RETURNS:
2996 * 0 on success, -errno otherwise.
2997 */
2998 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2999 {
3000 unsigned long start = jiffies;
3001 int warned = 0;
3002
3003 while (1) {
3004 u8 status = ata_chk_status(ap);
3005 unsigned long now = jiffies;
3006
3007 if (!(status & ATA_BUSY))
3008 return 0;
3009 if (!ata_port_online(ap) && status == 0xff)
3010 return -ENODEV;
3011 if (time_after(now, deadline))
3012 return -EBUSY;
3013
3014 if (!warned && time_after(now, start + 5 * HZ) &&
3015 (deadline - now > 3 * HZ)) {
3016 ata_port_printk(ap, KERN_WARNING,
3017 "port is slow to respond, please be patient "
3018 "(Status 0x%x)\n", status);
3019 warned = 1;
3020 }
3021
3022 msleep(50);
3023 }
3024 }
3025
3026 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3027 unsigned long deadline)
3028 {
3029 struct ata_ioports *ioaddr = &ap->ioaddr;
3030 unsigned int dev0 = devmask & (1 << 0);
3031 unsigned int dev1 = devmask & (1 << 1);
3032 int rc, ret = 0;
3033
3034 /* if device 0 was found in ata_devchk, wait for its
3035 * BSY bit to clear
3036 */
3037 if (dev0) {
3038 rc = ata_wait_ready(ap, deadline);
3039 if (rc) {
3040 if (rc != -ENODEV)
3041 return rc;
3042 ret = rc;
3043 }
3044 }
3045
3046 /* if device 1 was found in ata_devchk, wait for register
3047 * access briefly, then wait for BSY to clear.
3048 */
3049 if (dev1) {
3050 int i;
3051
3052 ap->ops->dev_select(ap, 1);
3053
3054 /* Wait for register access. Some ATAPI devices fail
3055 * to set nsect/lbal after reset, so don't waste too
3056 * much time on it. We're gonna wait for !BSY anyway.
3057 */
3058 for (i = 0; i < 2; i++) {
3059 u8 nsect, lbal;
3060
3061 nsect = ioread8(ioaddr->nsect_addr);
3062 lbal = ioread8(ioaddr->lbal_addr);
3063 if ((nsect == 1) && (lbal == 1))
3064 break;
3065 msleep(50); /* give drive a breather */
3066 }
3067
3068 rc = ata_wait_ready(ap, deadline);
3069 if (rc) {
3070 if (rc != -ENODEV)
3071 return rc;
3072 ret = rc;
3073 }
3074 }
3075
3076 /* is all this really necessary? */
3077 ap->ops->dev_select(ap, 0);
3078 if (dev1)
3079 ap->ops->dev_select(ap, 1);
3080 if (dev0)
3081 ap->ops->dev_select(ap, 0);
3082
3083 return ret;
3084 }
3085
3086 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3087 unsigned long deadline)
3088 {
3089 struct ata_ioports *ioaddr = &ap->ioaddr;
3090
3091 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3092
3093 /* software reset. causes dev0 to be selected */
3094 iowrite8(ap->ctl, ioaddr->ctl_addr);
3095 udelay(20); /* FIXME: flush */
3096 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3097 udelay(20); /* FIXME: flush */
3098 iowrite8(ap->ctl, ioaddr->ctl_addr);
3099
3100 /* spec mandates ">= 2ms" before checking status.
3101 * We wait 150ms, because that was the magic delay used for
3102 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3103 * between when the ATA command register is written, and then
3104 * status is checked. Because waiting for "a while" before
3105 * checking status is fine, post SRST, we perform this magic
3106 * delay here as well.
3107 *
3108 * Old drivers/ide uses the 2mS rule and then waits for ready
3109 */
3110 msleep(150);
3111
3112 /* Before we perform post reset processing we want to see if
3113 * the bus shows 0xFF because the odd clown forgets the D7
3114 * pulldown resistor.
3115 */
3116 if (ata_check_status(ap) == 0xFF)
3117 return -ENODEV;
3118
3119 return ata_bus_post_reset(ap, devmask, deadline);
3120 }
3121
3122 /**
3123 * ata_bus_reset - reset host port and associated ATA channel
3124 * @ap: port to reset
3125 *
3126 * This is typically the first time we actually start issuing
3127 * commands to the ATA channel. We wait for BSY to clear, then
3128 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3129 * result. Determine what devices, if any, are on the channel
3130 * by looking at the device 0/1 error register. Look at the signature
3131 * stored in each device's taskfile registers, to determine if
3132 * the device is ATA or ATAPI.
3133 *
3134 * LOCKING:
3135 * PCI/etc. bus probe sem.
3136 * Obtains host lock.
3137 *
3138 * SIDE EFFECTS:
3139 * Sets ATA_FLAG_DISABLED if bus reset fails.
3140 */
3141
3142 void ata_bus_reset(struct ata_port *ap)
3143 {
3144 struct ata_ioports *ioaddr = &ap->ioaddr;
3145 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3146 u8 err;
3147 unsigned int dev0, dev1 = 0, devmask = 0;
3148 int rc;
3149
3150 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3151
3152 /* determine if device 0/1 are present */
3153 if (ap->flags & ATA_FLAG_SATA_RESET)
3154 dev0 = 1;
3155 else {
3156 dev0 = ata_devchk(ap, 0);
3157 if (slave_possible)
3158 dev1 = ata_devchk(ap, 1);
3159 }
3160
3161 if (dev0)
3162 devmask |= (1 << 0);
3163 if (dev1)
3164 devmask |= (1 << 1);
3165
3166 /* select device 0 again */
3167 ap->ops->dev_select(ap, 0);
3168
3169 /* issue bus reset */
3170 if (ap->flags & ATA_FLAG_SRST) {
3171 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3172 if (rc && rc != -ENODEV)
3173 goto err_out;
3174 }
3175
3176 /*
3177 * determine by signature whether we have ATA or ATAPI devices
3178 */
3179 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3180 if ((slave_possible) && (err != 0x81))
3181 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3182
3183 /* is double-select really necessary? */
3184 if (ap->device[1].class != ATA_DEV_NONE)
3185 ap->ops->dev_select(ap, 1);
3186 if (ap->device[0].class != ATA_DEV_NONE)
3187 ap->ops->dev_select(ap, 0);
3188
3189 /* if no devices were detected, disable this port */
3190 if ((ap->device[0].class == ATA_DEV_NONE) &&
3191 (ap->device[1].class == ATA_DEV_NONE))
3192 goto err_out;
3193
3194 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3195 /* set up device control for ATA_FLAG_SATA_RESET */
3196 iowrite8(ap->ctl, ioaddr->ctl_addr);
3197 }
3198
3199 DPRINTK("EXIT\n");
3200 return;
3201
3202 err_out:
3203 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3204 ap->ops->port_disable(ap);
3205
3206 DPRINTK("EXIT\n");
3207 }
3208
3209 /**
3210 * sata_phy_debounce - debounce SATA phy status
3211 * @ap: ATA port to debounce SATA phy status for
3212 * @params: timing parameters { interval, duratinon, timeout } in msec
3213 * @deadline: deadline jiffies for the operation
3214 *
3215 * Make sure SStatus of @ap reaches stable state, determined by
3216 * holding the same value where DET is not 1 for @duration polled
3217 * every @interval, before @timeout. Timeout constraints the
3218 * beginning of the stable state. Because DET gets stuck at 1 on
3219 * some controllers after hot unplugging, this functions waits
3220 * until timeout then returns 0 if DET is stable at 1.
3221 *
3222 * @timeout is further limited by @deadline. The sooner of the
3223 * two is used.
3224 *
3225 * LOCKING:
3226 * Kernel thread context (may sleep)
3227 *
3228 * RETURNS:
3229 * 0 on success, -errno on failure.
3230 */
3231 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3232 unsigned long deadline)
3233 {
3234 unsigned long interval_msec = params[0];
3235 unsigned long duration = msecs_to_jiffies(params[1]);
3236 unsigned long last_jiffies, t;
3237 u32 last, cur;
3238 int rc;
3239
3240 t = jiffies + msecs_to_jiffies(params[2]);
3241 if (time_before(t, deadline))
3242 deadline = t;
3243
3244 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3245 return rc;
3246 cur &= 0xf;
3247
3248 last = cur;
3249 last_jiffies = jiffies;
3250
3251 while (1) {
3252 msleep(interval_msec);
3253 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3254 return rc;
3255 cur &= 0xf;
3256
3257 /* DET stable? */
3258 if (cur == last) {
3259 if (cur == 1 && time_before(jiffies, deadline))
3260 continue;
3261 if (time_after(jiffies, last_jiffies + duration))
3262 return 0;
3263 continue;
3264 }
3265
3266 /* unstable, start over */
3267 last = cur;
3268 last_jiffies = jiffies;
3269
3270 /* Check deadline. If debouncing failed, return
3271 * -EPIPE to tell upper layer to lower link speed.
3272 */
3273 if (time_after(jiffies, deadline))
3274 return -EPIPE;
3275 }
3276 }
3277
3278 /**
3279 * sata_phy_resume - resume SATA phy
3280 * @ap: ATA port to resume SATA phy for
3281 * @params: timing parameters { interval, duratinon, timeout } in msec
3282 * @deadline: deadline jiffies for the operation
3283 *
3284 * Resume SATA phy of @ap and debounce it.
3285 *
3286 * LOCKING:
3287 * Kernel thread context (may sleep)
3288 *
3289 * RETURNS:
3290 * 0 on success, -errno on failure.
3291 */
3292 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3293 unsigned long deadline)
3294 {
3295 u32 scontrol;
3296 int rc;
3297
3298 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3299 return rc;
3300
3301 scontrol = (scontrol & 0x0f0) | 0x300;
3302
3303 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3304 return rc;
3305
3306 /* Some PHYs react badly if SStatus is pounded immediately
3307 * after resuming. Delay 200ms before debouncing.
3308 */
3309 msleep(200);
3310
3311 return sata_phy_debounce(ap, params, deadline);
3312 }
3313
3314 /**
3315 * ata_std_prereset - prepare for reset
3316 * @ap: ATA port to be reset
3317 * @deadline: deadline jiffies for the operation
3318 *
3319 * @ap is about to be reset. Initialize it. Failure from
3320 * prereset makes libata abort whole reset sequence and give up
3321 * that port, so prereset should be best-effort. It does its
3322 * best to prepare for reset sequence but if things go wrong, it
3323 * should just whine, not fail.
3324 *
3325 * LOCKING:
3326 * Kernel thread context (may sleep)
3327 *
3328 * RETURNS:
3329 * 0 on success, -errno otherwise.
3330 */
3331 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3332 {
3333 struct ata_eh_context *ehc = &ap->eh_context;
3334 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3335 int rc;
3336
3337 /* handle link resume */
3338 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3339 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3340 ehc->i.action |= ATA_EH_HARDRESET;
3341
3342 /* if we're about to do hardreset, nothing more to do */
3343 if (ehc->i.action & ATA_EH_HARDRESET)
3344 return 0;
3345
3346 /* if SATA, resume phy */
3347 if (ap->flags & ATA_FLAG_SATA) {
3348 rc = sata_phy_resume(ap, timing, deadline);
3349 /* whine about phy resume failure but proceed */
3350 if (rc && rc != -EOPNOTSUPP)
3351 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3352 "link for reset (errno=%d)\n", rc);
3353 }
3354
3355 /* Wait for !BSY if the controller can wait for the first D2H
3356 * Reg FIS and we don't know that no device is attached.
3357 */
3358 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3359 rc = ata_wait_ready(ap, deadline);
3360 if (rc && rc != -ENODEV) {
3361 ata_port_printk(ap, KERN_WARNING, "device not ready "
3362 "(errno=%d), forcing hardreset\n", rc);
3363 ehc->i.action |= ATA_EH_HARDRESET;
3364 }
3365 }
3366
3367 return 0;
3368 }
3369
3370 /**
3371 * ata_std_softreset - reset host port via ATA SRST
3372 * @ap: port to reset
3373 * @classes: resulting classes of attached devices
3374 * @deadline: deadline jiffies for the operation
3375 *
3376 * Reset host port using ATA SRST.
3377 *
3378 * LOCKING:
3379 * Kernel thread context (may sleep)
3380 *
3381 * RETURNS:
3382 * 0 on success, -errno otherwise.
3383 */
3384 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3385 unsigned long deadline)
3386 {
3387 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3388 unsigned int devmask = 0;
3389 int rc;
3390 u8 err;
3391
3392 DPRINTK("ENTER\n");
3393
3394 if (ata_port_offline(ap)) {
3395 classes[0] = ATA_DEV_NONE;
3396 goto out;
3397 }
3398
3399 /* determine if device 0/1 are present */
3400 if (ata_devchk(ap, 0))
3401 devmask |= (1 << 0);
3402 if (slave_possible && ata_devchk(ap, 1))
3403 devmask |= (1 << 1);
3404
3405 /* select device 0 again */
3406 ap->ops->dev_select(ap, 0);
3407
3408 /* issue bus reset */
3409 DPRINTK("about to softreset, devmask=%x\n", devmask);
3410 rc = ata_bus_softreset(ap, devmask, deadline);
3411 /* if link is occupied, -ENODEV too is an error */
3412 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3413 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3414 return rc;
3415 }
3416
3417 /* determine by signature whether we have ATA or ATAPI devices */
3418 classes[0] = ata_dev_try_classify(ap, 0, &err);
3419 if (slave_possible && err != 0x81)
3420 classes[1] = ata_dev_try_classify(ap, 1, &err);
3421
3422 out:
3423 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3424 return 0;
3425 }
3426
3427 /**
3428 * sata_port_hardreset - reset port via SATA phy reset
3429 * @ap: port to reset
3430 * @timing: timing parameters { interval, duratinon, timeout } in msec
3431 * @deadline: deadline jiffies for the operation
3432 *
3433 * SATA phy-reset host port using DET bits of SControl register.
3434 *
3435 * LOCKING:
3436 * Kernel thread context (may sleep)
3437 *
3438 * RETURNS:
3439 * 0 on success, -errno otherwise.
3440 */
3441 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3442 unsigned long deadline)
3443 {
3444 u32 scontrol;
3445 int rc;
3446
3447 DPRINTK("ENTER\n");
3448
3449 if (sata_set_spd_needed(ap)) {
3450 /* SATA spec says nothing about how to reconfigure
3451 * spd. To be on the safe side, turn off phy during
3452 * reconfiguration. This works for at least ICH7 AHCI
3453 * and Sil3124.
3454 */
3455 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3456 goto out;
3457
3458 scontrol = (scontrol & 0x0f0) | 0x304;
3459
3460 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3461 goto out;
3462
3463 sata_set_spd(ap);
3464 }
3465
3466 /* issue phy wake/reset */
3467 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3468 goto out;
3469
3470 scontrol = (scontrol & 0x0f0) | 0x301;
3471
3472 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3473 goto out;
3474
3475 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3476 * 10.4.2 says at least 1 ms.
3477 */
3478 msleep(1);
3479
3480 /* bring phy back */
3481 rc = sata_phy_resume(ap, timing, deadline);
3482 out:
3483 DPRINTK("EXIT, rc=%d\n", rc);
3484 return rc;
3485 }
3486
3487 /**
3488 * sata_std_hardreset - reset host port via SATA phy reset
3489 * @ap: port to reset
3490 * @class: resulting class of attached device
3491 * @deadline: deadline jiffies for the operation
3492 *
3493 * SATA phy-reset host port using DET bits of SControl register,
3494 * wait for !BSY and classify the attached device.
3495 *
3496 * LOCKING:
3497 * Kernel thread context (may sleep)
3498 *
3499 * RETURNS:
3500 * 0 on success, -errno otherwise.
3501 */
3502 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3503 unsigned long deadline)
3504 {
3505 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3506 int rc;
3507
3508 DPRINTK("ENTER\n");
3509
3510 /* do hardreset */
3511 rc = sata_port_hardreset(ap, timing, deadline);
3512 if (rc) {
3513 ata_port_printk(ap, KERN_ERR,
3514 "COMRESET failed (errno=%d)\n", rc);
3515 return rc;
3516 }
3517
3518 /* TODO: phy layer with polling, timeouts, etc. */
3519 if (ata_port_offline(ap)) {
3520 *class = ATA_DEV_NONE;
3521 DPRINTK("EXIT, link offline\n");
3522 return 0;
3523 }
3524
3525 /* wait a while before checking status, see SRST for more info */
3526 msleep(150);
3527
3528 rc = ata_wait_ready(ap, deadline);
3529 /* link occupied, -ENODEV too is an error */
3530 if (rc) {
3531 ata_port_printk(ap, KERN_ERR,
3532 "COMRESET failed (errno=%d)\n", rc);
3533 return rc;
3534 }
3535
3536 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3537
3538 *class = ata_dev_try_classify(ap, 0, NULL);
3539
3540 DPRINTK("EXIT, class=%u\n", *class);
3541 return 0;
3542 }
3543
3544 /**
3545 * ata_std_postreset - standard postreset callback
3546 * @ap: the target ata_port
3547 * @classes: classes of attached devices
3548 *
3549 * This function is invoked after a successful reset. Note that
3550 * the device might have been reset more than once using
3551 * different reset methods before postreset is invoked.
3552 *
3553 * LOCKING:
3554 * Kernel thread context (may sleep)
3555 */
3556 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3557 {
3558 u32 serror;
3559
3560 DPRINTK("ENTER\n");
3561
3562 /* print link status */
3563 sata_print_link_status(ap);
3564
3565 /* clear SError */
3566 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3567 sata_scr_write(ap, SCR_ERROR, serror);
3568
3569 /* is double-select really necessary? */
3570 if (classes[0] != ATA_DEV_NONE)
3571 ap->ops->dev_select(ap, 1);
3572 if (classes[1] != ATA_DEV_NONE)
3573 ap->ops->dev_select(ap, 0);
3574
3575 /* bail out if no device is present */
3576 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3577 DPRINTK("EXIT, no device\n");
3578 return;
3579 }
3580
3581 /* set up device control */
3582 if (ap->ioaddr.ctl_addr)
3583 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3584
3585 DPRINTK("EXIT\n");
3586 }
3587
3588 /**
3589 * ata_dev_same_device - Determine whether new ID matches configured device
3590 * @dev: device to compare against
3591 * @new_class: class of the new device
3592 * @new_id: IDENTIFY page of the new device
3593 *
3594 * Compare @new_class and @new_id against @dev and determine
3595 * whether @dev is the device indicated by @new_class and
3596 * @new_id.
3597 *
3598 * LOCKING:
3599 * None.
3600 *
3601 * RETURNS:
3602 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3603 */
3604 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3605 const u16 *new_id)
3606 {
3607 const u16 *old_id = dev->id;
3608 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3609 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3610
3611 if (dev->class != new_class) {
3612 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3613 dev->class, new_class);
3614 return 0;
3615 }
3616
3617 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3618 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3619 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3620 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3621
3622 if (strcmp(model[0], model[1])) {
3623 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3624 "'%s' != '%s'\n", model[0], model[1]);
3625 return 0;
3626 }
3627
3628 if (strcmp(serial[0], serial[1])) {
3629 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3630 "'%s' != '%s'\n", serial[0], serial[1]);
3631 return 0;
3632 }
3633
3634 return 1;
3635 }
3636
3637 /**
3638 * ata_dev_reread_id - Re-read IDENTIFY data
3639 * @dev: target ATA device
3640 * @readid_flags: read ID flags
3641 *
3642 * Re-read IDENTIFY page and make sure @dev is still attached to
3643 * the port.
3644 *
3645 * LOCKING:
3646 * Kernel thread context (may sleep)
3647 *
3648 * RETURNS:
3649 * 0 on success, negative errno otherwise
3650 */
3651 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3652 {
3653 unsigned int class = dev->class;
3654 u16 *id = (void *)dev->ap->sector_buf;
3655 int rc;
3656
3657 /* read ID data */
3658 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3659 if (rc)
3660 return rc;
3661
3662 /* is the device still there? */
3663 if (!ata_dev_same_device(dev, class, id))
3664 return -ENODEV;
3665
3666 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3667 return 0;
3668 }
3669
3670 /**
3671 * ata_dev_revalidate - Revalidate ATA device
3672 * @dev: device to revalidate
3673 * @readid_flags: read ID flags
3674 *
3675 * Re-read IDENTIFY page, make sure @dev is still attached to the
3676 * port and reconfigure it according to the new IDENTIFY page.
3677 *
3678 * LOCKING:
3679 * Kernel thread context (may sleep)
3680 *
3681 * RETURNS:
3682 * 0 on success, negative errno otherwise
3683 */
3684 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3685 {
3686 u64 n_sectors = dev->n_sectors;
3687 int rc;
3688
3689 if (!ata_dev_enabled(dev))
3690 return -ENODEV;
3691
3692 /* re-read ID */
3693 rc = ata_dev_reread_id(dev, readid_flags);
3694 if (rc)
3695 goto fail;
3696
3697 /* configure device according to the new ID */
3698 rc = ata_dev_configure(dev);
3699 if (rc)
3700 goto fail;
3701
3702 /* verify n_sectors hasn't changed */
3703 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3704 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3705 "%llu != %llu\n",
3706 (unsigned long long)n_sectors,
3707 (unsigned long long)dev->n_sectors);
3708 rc = -ENODEV;
3709 goto fail;
3710 }
3711
3712 return 0;
3713
3714 fail:
3715 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3716 return rc;
3717 }
3718
3719 struct ata_blacklist_entry {
3720 const char *model_num;
3721 const char *model_rev;
3722 unsigned long horkage;
3723 };
3724
3725 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3726 /* Devices with DMA related problems under Linux */
3727 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3728 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3729 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3730 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3731 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3732 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3733 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3734 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3735 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3736 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3737 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3738 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3739 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3740 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3741 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3742 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3743 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3744 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3745 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3746 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3747 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3748 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3749 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3750 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3751 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3752 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3753 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3754 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3755 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3756 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3757 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3758 { "IOMEGA ZIP 250 ATAPI Floppy",
3759 NULL, ATA_HORKAGE_NODMA },
3760
3761 /* Weird ATAPI devices */
3762 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3763
3764 /* Devices we expect to fail diagnostics */
3765
3766 /* Devices where NCQ should be avoided */
3767 /* NCQ is slow */
3768 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3769 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3770 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3771 /* NCQ is broken */
3772 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3773 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3774 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3775 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3776 ATA_HORKAGE_NONCQ },
3777 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3778 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3779 /* Blacklist entries taken from Silicon Image 3124/3132
3780 Windows driver .inf file - also several Linux problem reports */
3781 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3782 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3783 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3784 /* Drives which do spurious command completion */
3785 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3786 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3787 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3788 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3789 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3790 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3791 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3792
3793 /* Devices with NCQ limits */
3794
3795 /* End Marker */
3796 { }
3797 };
3798
3799 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3800 {
3801 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3802 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3803 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3804
3805 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3806 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3807
3808 while (ad->model_num) {
3809 if (!strcmp(ad->model_num, model_num)) {
3810 if (ad->model_rev == NULL)
3811 return ad->horkage;
3812 if (!strcmp(ad->model_rev, model_rev))
3813 return ad->horkage;
3814 }
3815 ad++;
3816 }
3817 return 0;
3818 }
3819
3820 static int ata_dma_blacklisted(const struct ata_device *dev)
3821 {
3822 /* We don't support polling DMA.
3823 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3824 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3825 */
3826 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3827 (dev->flags & ATA_DFLAG_CDB_INTR))
3828 return 1;
3829 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3830 }
3831
3832 /**
3833 * ata_dev_xfermask - Compute supported xfermask of the given device
3834 * @dev: Device to compute xfermask for
3835 *
3836 * Compute supported xfermask of @dev and store it in
3837 * dev->*_mask. This function is responsible for applying all
3838 * known limits including host controller limits, device
3839 * blacklist, etc...
3840 *
3841 * LOCKING:
3842 * None.
3843 */
3844 static void ata_dev_xfermask(struct ata_device *dev)
3845 {
3846 struct ata_port *ap = dev->ap;
3847 struct ata_host *host = ap->host;
3848 unsigned long xfer_mask;
3849
3850 /* controller modes available */
3851 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3852 ap->mwdma_mask, ap->udma_mask);
3853
3854 /* drive modes available */
3855 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3856 dev->mwdma_mask, dev->udma_mask);
3857 xfer_mask &= ata_id_xfermask(dev->id);
3858
3859 /*
3860 * CFA Advanced TrueIDE timings are not allowed on a shared
3861 * cable
3862 */
3863 if (ata_dev_pair(dev)) {
3864 /* No PIO5 or PIO6 */
3865 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3866 /* No MWDMA3 or MWDMA 4 */
3867 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3868 }
3869
3870 if (ata_dma_blacklisted(dev)) {
3871 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3872 ata_dev_printk(dev, KERN_WARNING,
3873 "device is on DMA blacklist, disabling DMA\n");
3874 }
3875
3876 if ((host->flags & ATA_HOST_SIMPLEX) &&
3877 host->simplex_claimed && host->simplex_claimed != ap) {
3878 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3879 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3880 "other device, disabling DMA\n");
3881 }
3882
3883 if (ap->flags & ATA_FLAG_NO_IORDY)
3884 xfer_mask &= ata_pio_mask_no_iordy(dev);
3885
3886 if (ap->ops->mode_filter)
3887 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3888
3889 /* Apply cable rule here. Don't apply it early because when
3890 * we handle hot plug the cable type can itself change.
3891 * Check this last so that we know if the transfer rate was
3892 * solely limited by the cable.
3893 * Unknown or 80 wire cables reported host side are checked
3894 * drive side as well. Cases where we know a 40wire cable
3895 * is used safely for 80 are not checked here.
3896 */
3897 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3898 /* UDMA/44 or higher would be available */
3899 if((ap->cbl == ATA_CBL_PATA40) ||
3900 (ata_drive_40wire(dev->id) &&
3901 (ap->cbl == ATA_CBL_PATA_UNK ||
3902 ap->cbl == ATA_CBL_PATA80))) {
3903 ata_dev_printk(dev, KERN_WARNING,
3904 "limited to UDMA/33 due to 40-wire cable\n");
3905 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3906 }
3907
3908 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3909 &dev->mwdma_mask, &dev->udma_mask);
3910 }
3911
3912 /**
3913 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3914 * @dev: Device to which command will be sent
3915 *
3916 * Issue SET FEATURES - XFER MODE command to device @dev
3917 * on port @ap.
3918 *
3919 * LOCKING:
3920 * PCI/etc. bus probe sem.
3921 *
3922 * RETURNS:
3923 * 0 on success, AC_ERR_* mask otherwise.
3924 */
3925
3926 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3927 {
3928 struct ata_taskfile tf;
3929 unsigned int err_mask;
3930
3931 /* set up set-features taskfile */
3932 DPRINTK("set features - xfer mode\n");
3933
3934 /* Some controllers and ATAPI devices show flaky interrupt
3935 * behavior after setting xfer mode. Use polling instead.
3936 */
3937 ata_tf_init(dev, &tf);
3938 tf.command = ATA_CMD_SET_FEATURES;
3939 tf.feature = SETFEATURES_XFER;
3940 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3941 tf.protocol = ATA_PROT_NODATA;
3942 tf.nsect = dev->xfer_mode;
3943
3944 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3945
3946 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3947 return err_mask;
3948 }
3949
3950 /**
3951 * ata_dev_init_params - Issue INIT DEV PARAMS command
3952 * @dev: Device to which command will be sent
3953 * @heads: Number of heads (taskfile parameter)
3954 * @sectors: Number of sectors (taskfile parameter)
3955 *
3956 * LOCKING:
3957 * Kernel thread context (may sleep)
3958 *
3959 * RETURNS:
3960 * 0 on success, AC_ERR_* mask otherwise.
3961 */
3962 static unsigned int ata_dev_init_params(struct ata_device *dev,
3963 u16 heads, u16 sectors)
3964 {
3965 struct ata_taskfile tf;
3966 unsigned int err_mask;
3967
3968 /* Number of sectors per track 1-255. Number of heads 1-16 */
3969 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3970 return AC_ERR_INVALID;
3971
3972 /* set up init dev params taskfile */
3973 DPRINTK("init dev params \n");
3974
3975 ata_tf_init(dev, &tf);
3976 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3977 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3978 tf.protocol = ATA_PROT_NODATA;
3979 tf.nsect = sectors;
3980 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3981
3982 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3983
3984 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3985 return err_mask;
3986 }
3987
3988 /**
3989 * ata_sg_clean - Unmap DMA memory associated with command
3990 * @qc: Command containing DMA memory to be released
3991 *
3992 * Unmap all mapped DMA memory associated with this command.
3993 *
3994 * LOCKING:
3995 * spin_lock_irqsave(host lock)
3996 */
3997 void ata_sg_clean(struct ata_queued_cmd *qc)
3998 {
3999 struct ata_port *ap = qc->ap;
4000 struct scatterlist *sg = qc->__sg;
4001 int dir = qc->dma_dir;
4002 void *pad_buf = NULL;
4003
4004 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4005 WARN_ON(sg == NULL);
4006
4007 if (qc->flags & ATA_QCFLAG_SINGLE)
4008 WARN_ON(qc->n_elem > 1);
4009
4010 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4011
4012 /* if we padded the buffer out to 32-bit bound, and data
4013 * xfer direction is from-device, we must copy from the
4014 * pad buffer back into the supplied buffer
4015 */
4016 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4017 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4018
4019 if (qc->flags & ATA_QCFLAG_SG) {
4020 if (qc->n_elem)
4021 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4022 /* restore last sg */
4023 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4024 if (pad_buf) {
4025 struct scatterlist *psg = &qc->pad_sgent;
4026 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4027 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4028 kunmap_atomic(addr, KM_IRQ0);
4029 }
4030 } else {
4031 if (qc->n_elem)
4032 dma_unmap_single(ap->dev,
4033 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4034 dir);
4035 /* restore sg */
4036 sg->length += qc->pad_len;
4037 if (pad_buf)
4038 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4039 pad_buf, qc->pad_len);
4040 }
4041
4042 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4043 qc->__sg = NULL;
4044 }
4045
4046 /**
4047 * ata_fill_sg - Fill PCI IDE PRD table
4048 * @qc: Metadata associated with taskfile to be transferred
4049 *
4050 * Fill PCI IDE PRD (scatter-gather) table with segments
4051 * associated with the current disk command.
4052 *
4053 * LOCKING:
4054 * spin_lock_irqsave(host lock)
4055 *
4056 */
4057 static void ata_fill_sg(struct ata_queued_cmd *qc)
4058 {
4059 struct ata_port *ap = qc->ap;
4060 struct scatterlist *sg;
4061 unsigned int idx;
4062
4063 WARN_ON(qc->__sg == NULL);
4064 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4065
4066 idx = 0;
4067 ata_for_each_sg(sg, qc) {
4068 u32 addr, offset;
4069 u32 sg_len, len;
4070
4071 /* determine if physical DMA addr spans 64K boundary.
4072 * Note h/w doesn't support 64-bit, so we unconditionally
4073 * truncate dma_addr_t to u32.
4074 */
4075 addr = (u32) sg_dma_address(sg);
4076 sg_len = sg_dma_len(sg);
4077
4078 while (sg_len) {
4079 offset = addr & 0xffff;
4080 len = sg_len;
4081 if ((offset + sg_len) > 0x10000)
4082 len = 0x10000 - offset;
4083
4084 ap->prd[idx].addr = cpu_to_le32(addr);
4085 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4086 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4087
4088 idx++;
4089 sg_len -= len;
4090 addr += len;
4091 }
4092 }
4093
4094 if (idx)
4095 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4096 }
4097
4098 /**
4099 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4100 * @qc: Metadata associated with taskfile to be transferred
4101 *
4102 * Fill PCI IDE PRD (scatter-gather) table with segments
4103 * associated with the current disk command. Perform the fill
4104 * so that we avoid writing any length 64K records for
4105 * controllers that don't follow the spec.
4106 *
4107 * LOCKING:
4108 * spin_lock_irqsave(host lock)
4109 *
4110 */
4111 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4112 {
4113 struct ata_port *ap = qc->ap;
4114 struct scatterlist *sg;
4115 unsigned int idx;
4116
4117 WARN_ON(qc->__sg == NULL);
4118 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4119
4120 idx = 0;
4121 ata_for_each_sg(sg, qc) {
4122 u32 addr, offset;
4123 u32 sg_len, len, blen;
4124
4125 /* determine if physical DMA addr spans 64K boundary.
4126 * Note h/w doesn't support 64-bit, so we unconditionally
4127 * truncate dma_addr_t to u32.
4128 */
4129 addr = (u32) sg_dma_address(sg);
4130 sg_len = sg_dma_len(sg);
4131
4132 while (sg_len) {
4133 offset = addr & 0xffff;
4134 len = sg_len;
4135 if ((offset + sg_len) > 0x10000)
4136 len = 0x10000 - offset;
4137
4138 blen = len & 0xffff;
4139 ap->prd[idx].addr = cpu_to_le32(addr);
4140 if (blen == 0) {
4141 /* Some PATA chipsets like the CS5530 can't
4142 cope with 0x0000 meaning 64K as the spec says */
4143 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4144 blen = 0x8000;
4145 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4146 }
4147 ap->prd[idx].flags_len = cpu_to_le32(blen);
4148 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4149
4150 idx++;
4151 sg_len -= len;
4152 addr += len;
4153 }
4154 }
4155
4156 if (idx)
4157 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4158 }
4159
4160 /**
4161 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4162 * @qc: Metadata associated with taskfile to check
4163 *
4164 * Allow low-level driver to filter ATA PACKET commands, returning
4165 * a status indicating whether or not it is OK to use DMA for the
4166 * supplied PACKET command.
4167 *
4168 * LOCKING:
4169 * spin_lock_irqsave(host lock)
4170 *
4171 * RETURNS: 0 when ATAPI DMA can be used
4172 * nonzero otherwise
4173 */
4174 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4175 {
4176 struct ata_port *ap = qc->ap;
4177
4178 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4179 * few ATAPI devices choke on such DMA requests.
4180 */
4181 if (unlikely(qc->nbytes & 15))
4182 return 1;
4183
4184 if (ap->ops->check_atapi_dma)
4185 return ap->ops->check_atapi_dma(qc);
4186
4187 return 0;
4188 }
4189
4190 /**
4191 * ata_qc_prep - Prepare taskfile for submission
4192 * @qc: Metadata associated with taskfile to be prepared
4193 *
4194 * Prepare ATA taskfile for submission.
4195 *
4196 * LOCKING:
4197 * spin_lock_irqsave(host lock)
4198 */
4199 void ata_qc_prep(struct ata_queued_cmd *qc)
4200 {
4201 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4202 return;
4203
4204 ata_fill_sg(qc);
4205 }
4206
4207 /**
4208 * ata_dumb_qc_prep - Prepare taskfile for submission
4209 * @qc: Metadata associated with taskfile to be prepared
4210 *
4211 * Prepare ATA taskfile for submission.
4212 *
4213 * LOCKING:
4214 * spin_lock_irqsave(host lock)
4215 */
4216 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4217 {
4218 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4219 return;
4220
4221 ata_fill_sg_dumb(qc);
4222 }
4223
4224 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4225
4226 /**
4227 * ata_sg_init_one - Associate command with memory buffer
4228 * @qc: Command to be associated
4229 * @buf: Memory buffer
4230 * @buflen: Length of memory buffer, in bytes.
4231 *
4232 * Initialize the data-related elements of queued_cmd @qc
4233 * to point to a single memory buffer, @buf of byte length @buflen.
4234 *
4235 * LOCKING:
4236 * spin_lock_irqsave(host lock)
4237 */
4238
4239 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4240 {
4241 qc->flags |= ATA_QCFLAG_SINGLE;
4242
4243 qc->__sg = &qc->sgent;
4244 qc->n_elem = 1;
4245 qc->orig_n_elem = 1;
4246 qc->buf_virt = buf;
4247 qc->nbytes = buflen;
4248
4249 sg_init_one(&qc->sgent, buf, buflen);
4250 }
4251
4252 /**
4253 * ata_sg_init - Associate command with scatter-gather table.
4254 * @qc: Command to be associated
4255 * @sg: Scatter-gather table.
4256 * @n_elem: Number of elements in s/g table.
4257 *
4258 * Initialize the data-related elements of queued_cmd @qc
4259 * to point to a scatter-gather table @sg, containing @n_elem
4260 * elements.
4261 *
4262 * LOCKING:
4263 * spin_lock_irqsave(host lock)
4264 */
4265
4266 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4267 unsigned int n_elem)
4268 {
4269 qc->flags |= ATA_QCFLAG_SG;
4270 qc->__sg = sg;
4271 qc->n_elem = n_elem;
4272 qc->orig_n_elem = n_elem;
4273 }
4274
4275 /**
4276 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4277 * @qc: Command with memory buffer to be mapped.
4278 *
4279 * DMA-map the memory buffer associated with queued_cmd @qc.
4280 *
4281 * LOCKING:
4282 * spin_lock_irqsave(host lock)
4283 *
4284 * RETURNS:
4285 * Zero on success, negative on error.
4286 */
4287
4288 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4289 {
4290 struct ata_port *ap = qc->ap;
4291 int dir = qc->dma_dir;
4292 struct scatterlist *sg = qc->__sg;
4293 dma_addr_t dma_address;
4294 int trim_sg = 0;
4295
4296 /* we must lengthen transfers to end on a 32-bit boundary */
4297 qc->pad_len = sg->length & 3;
4298 if (qc->pad_len) {
4299 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4300 struct scatterlist *psg = &qc->pad_sgent;
4301
4302 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4303
4304 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4305
4306 if (qc->tf.flags & ATA_TFLAG_WRITE)
4307 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4308 qc->pad_len);
4309
4310 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4311 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4312 /* trim sg */
4313 sg->length -= qc->pad_len;
4314 if (sg->length == 0)
4315 trim_sg = 1;
4316
4317 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4318 sg->length, qc->pad_len);
4319 }
4320
4321 if (trim_sg) {
4322 qc->n_elem--;
4323 goto skip_map;
4324 }
4325
4326 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4327 sg->length, dir);
4328 if (dma_mapping_error(dma_address)) {
4329 /* restore sg */
4330 sg->length += qc->pad_len;
4331 return -1;
4332 }
4333
4334 sg_dma_address(sg) = dma_address;
4335 sg_dma_len(sg) = sg->length;
4336
4337 skip_map:
4338 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4339 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4340
4341 return 0;
4342 }
4343
4344 /**
4345 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4346 * @qc: Command with scatter-gather table to be mapped.
4347 *
4348 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4349 *
4350 * LOCKING:
4351 * spin_lock_irqsave(host lock)
4352 *
4353 * RETURNS:
4354 * Zero on success, negative on error.
4355 *
4356 */
4357
4358 static int ata_sg_setup(struct ata_queued_cmd *qc)
4359 {
4360 struct ata_port *ap = qc->ap;
4361 struct scatterlist *sg = qc->__sg;
4362 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4363 int n_elem, pre_n_elem, dir, trim_sg = 0;
4364
4365 VPRINTK("ENTER, ata%u\n", ap->print_id);
4366 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4367
4368 /* we must lengthen transfers to end on a 32-bit boundary */
4369 qc->pad_len = lsg->length & 3;
4370 if (qc->pad_len) {
4371 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4372 struct scatterlist *psg = &qc->pad_sgent;
4373 unsigned int offset;
4374
4375 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4376
4377 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4378
4379 /*
4380 * psg->page/offset are used to copy to-be-written
4381 * data in this function or read data in ata_sg_clean.
4382 */
4383 offset = lsg->offset + lsg->length - qc->pad_len;
4384 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4385 psg->offset = offset_in_page(offset);
4386
4387 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4388 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4389 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4390 kunmap_atomic(addr, KM_IRQ0);
4391 }
4392
4393 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4394 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4395 /* trim last sg */
4396 lsg->length -= qc->pad_len;
4397 if (lsg->length == 0)
4398 trim_sg = 1;
4399
4400 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4401 qc->n_elem - 1, lsg->length, qc->pad_len);
4402 }
4403
4404 pre_n_elem = qc->n_elem;
4405 if (trim_sg && pre_n_elem)
4406 pre_n_elem--;
4407
4408 if (!pre_n_elem) {
4409 n_elem = 0;
4410 goto skip_map;
4411 }
4412
4413 dir = qc->dma_dir;
4414 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4415 if (n_elem < 1) {
4416 /* restore last sg */
4417 lsg->length += qc->pad_len;
4418 return -1;
4419 }
4420
4421 DPRINTK("%d sg elements mapped\n", n_elem);
4422
4423 skip_map:
4424 qc->n_elem = n_elem;
4425
4426 return 0;
4427 }
4428
4429 /**
4430 * swap_buf_le16 - swap halves of 16-bit words in place
4431 * @buf: Buffer to swap
4432 * @buf_words: Number of 16-bit words in buffer.
4433 *
4434 * Swap halves of 16-bit words if needed to convert from
4435 * little-endian byte order to native cpu byte order, or
4436 * vice-versa.
4437 *
4438 * LOCKING:
4439 * Inherited from caller.
4440 */
4441 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4442 {
4443 #ifdef __BIG_ENDIAN
4444 unsigned int i;
4445
4446 for (i = 0; i < buf_words; i++)
4447 buf[i] = le16_to_cpu(buf[i]);
4448 #endif /* __BIG_ENDIAN */
4449 }
4450
4451 /**
4452 * ata_data_xfer - Transfer data by PIO
4453 * @adev: device to target
4454 * @buf: data buffer
4455 * @buflen: buffer length
4456 * @write_data: read/write
4457 *
4458 * Transfer data from/to the device data register by PIO.
4459 *
4460 * LOCKING:
4461 * Inherited from caller.
4462 */
4463 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4464 unsigned int buflen, int write_data)
4465 {
4466 struct ata_port *ap = adev->ap;
4467 unsigned int words = buflen >> 1;
4468
4469 /* Transfer multiple of 2 bytes */
4470 if (write_data)
4471 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4472 else
4473 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4474
4475 /* Transfer trailing 1 byte, if any. */
4476 if (unlikely(buflen & 0x01)) {
4477 u16 align_buf[1] = { 0 };
4478 unsigned char *trailing_buf = buf + buflen - 1;
4479
4480 if (write_data) {
4481 memcpy(align_buf, trailing_buf, 1);
4482 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4483 } else {
4484 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4485 memcpy(trailing_buf, align_buf, 1);
4486 }
4487 }
4488 }
4489
4490 /**
4491 * ata_data_xfer_noirq - Transfer data by PIO
4492 * @adev: device to target
4493 * @buf: data buffer
4494 * @buflen: buffer length
4495 * @write_data: read/write
4496 *
4497 * Transfer data from/to the device data register by PIO. Do the
4498 * transfer with interrupts disabled.
4499 *
4500 * LOCKING:
4501 * Inherited from caller.
4502 */
4503 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4504 unsigned int buflen, int write_data)
4505 {
4506 unsigned long flags;
4507 local_irq_save(flags);
4508 ata_data_xfer(adev, buf, buflen, write_data);
4509 local_irq_restore(flags);
4510 }
4511
4512
4513 /**
4514 * ata_pio_sector - Transfer a sector of data.
4515 * @qc: Command on going
4516 *
4517 * Transfer qc->sect_size bytes of data from/to the ATA device.
4518 *
4519 * LOCKING:
4520 * Inherited from caller.
4521 */
4522
4523 static void ata_pio_sector(struct ata_queued_cmd *qc)
4524 {
4525 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4526 struct scatterlist *sg = qc->__sg;
4527 struct ata_port *ap = qc->ap;
4528 struct page *page;
4529 unsigned int offset;
4530 unsigned char *buf;
4531
4532 if (qc->curbytes == qc->nbytes - qc->sect_size)
4533 ap->hsm_task_state = HSM_ST_LAST;
4534
4535 page = sg[qc->cursg].page;
4536 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4537
4538 /* get the current page and offset */
4539 page = nth_page(page, (offset >> PAGE_SHIFT));
4540 offset %= PAGE_SIZE;
4541
4542 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4543
4544 if (PageHighMem(page)) {
4545 unsigned long flags;
4546
4547 /* FIXME: use a bounce buffer */
4548 local_irq_save(flags);
4549 buf = kmap_atomic(page, KM_IRQ0);
4550
4551 /* do the actual data transfer */
4552 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4553
4554 kunmap_atomic(buf, KM_IRQ0);
4555 local_irq_restore(flags);
4556 } else {
4557 buf = page_address(page);
4558 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4559 }
4560
4561 qc->curbytes += qc->sect_size;
4562 qc->cursg_ofs += qc->sect_size;
4563
4564 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4565 qc->cursg++;
4566 qc->cursg_ofs = 0;
4567 }
4568 }
4569
4570 /**
4571 * ata_pio_sectors - Transfer one or many sectors.
4572 * @qc: Command on going
4573 *
4574 * Transfer one or many sectors of data from/to the
4575 * ATA device for the DRQ request.
4576 *
4577 * LOCKING:
4578 * Inherited from caller.
4579 */
4580
4581 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4582 {
4583 if (is_multi_taskfile(&qc->tf)) {
4584 /* READ/WRITE MULTIPLE */
4585 unsigned int nsect;
4586
4587 WARN_ON(qc->dev->multi_count == 0);
4588
4589 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4590 qc->dev->multi_count);
4591 while (nsect--)
4592 ata_pio_sector(qc);
4593 } else
4594 ata_pio_sector(qc);
4595 }
4596
4597 /**
4598 * atapi_send_cdb - Write CDB bytes to hardware
4599 * @ap: Port to which ATAPI device is attached.
4600 * @qc: Taskfile currently active
4601 *
4602 * When device has indicated its readiness to accept
4603 * a CDB, this function is called. Send the CDB.
4604 *
4605 * LOCKING:
4606 * caller.
4607 */
4608
4609 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4610 {
4611 /* send SCSI cdb */
4612 DPRINTK("send cdb\n");
4613 WARN_ON(qc->dev->cdb_len < 12);
4614
4615 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4616 ata_altstatus(ap); /* flush */
4617
4618 switch (qc->tf.protocol) {
4619 case ATA_PROT_ATAPI:
4620 ap->hsm_task_state = HSM_ST;
4621 break;
4622 case ATA_PROT_ATAPI_NODATA:
4623 ap->hsm_task_state = HSM_ST_LAST;
4624 break;
4625 case ATA_PROT_ATAPI_DMA:
4626 ap->hsm_task_state = HSM_ST_LAST;
4627 /* initiate bmdma */
4628 ap->ops->bmdma_start(qc);
4629 break;
4630 }
4631 }
4632
4633 /**
4634 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4635 * @qc: Command on going
4636 * @bytes: number of bytes
4637 *
4638 * Transfer Transfer data from/to the ATAPI device.
4639 *
4640 * LOCKING:
4641 * Inherited from caller.
4642 *
4643 */
4644
4645 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4646 {
4647 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4648 struct scatterlist *sg = qc->__sg;
4649 struct ata_port *ap = qc->ap;
4650 struct page *page;
4651 unsigned char *buf;
4652 unsigned int offset, count;
4653
4654 if (qc->curbytes + bytes >= qc->nbytes)
4655 ap->hsm_task_state = HSM_ST_LAST;
4656
4657 next_sg:
4658 if (unlikely(qc->cursg >= qc->n_elem)) {
4659 /*
4660 * The end of qc->sg is reached and the device expects
4661 * more data to transfer. In order not to overrun qc->sg
4662 * and fulfill length specified in the byte count register,
4663 * - for read case, discard trailing data from the device
4664 * - for write case, padding zero data to the device
4665 */
4666 u16 pad_buf[1] = { 0 };
4667 unsigned int words = bytes >> 1;
4668 unsigned int i;
4669
4670 if (words) /* warning if bytes > 1 */
4671 ata_dev_printk(qc->dev, KERN_WARNING,
4672 "%u bytes trailing data\n", bytes);
4673
4674 for (i = 0; i < words; i++)
4675 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4676
4677 ap->hsm_task_state = HSM_ST_LAST;
4678 return;
4679 }
4680
4681 sg = &qc->__sg[qc->cursg];
4682
4683 page = sg->page;
4684 offset = sg->offset + qc->cursg_ofs;
4685
4686 /* get the current page and offset */
4687 page = nth_page(page, (offset >> PAGE_SHIFT));
4688 offset %= PAGE_SIZE;
4689
4690 /* don't overrun current sg */
4691 count = min(sg->length - qc->cursg_ofs, bytes);
4692
4693 /* don't cross page boundaries */
4694 count = min(count, (unsigned int)PAGE_SIZE - offset);
4695
4696 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4697
4698 if (PageHighMem(page)) {
4699 unsigned long flags;
4700
4701 /* FIXME: use bounce buffer */
4702 local_irq_save(flags);
4703 buf = kmap_atomic(page, KM_IRQ0);
4704
4705 /* do the actual data transfer */
4706 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4707
4708 kunmap_atomic(buf, KM_IRQ0);
4709 local_irq_restore(flags);
4710 } else {
4711 buf = page_address(page);
4712 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4713 }
4714
4715 bytes -= count;
4716 qc->curbytes += count;
4717 qc->cursg_ofs += count;
4718
4719 if (qc->cursg_ofs == sg->length) {
4720 qc->cursg++;
4721 qc->cursg_ofs = 0;
4722 }
4723
4724 if (bytes)
4725 goto next_sg;
4726 }
4727
4728 /**
4729 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4730 * @qc: Command on going
4731 *
4732 * Transfer Transfer data from/to the ATAPI device.
4733 *
4734 * LOCKING:
4735 * Inherited from caller.
4736 */
4737
4738 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4739 {
4740 struct ata_port *ap = qc->ap;
4741 struct ata_device *dev = qc->dev;
4742 unsigned int ireason, bc_lo, bc_hi, bytes;
4743 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4744
4745 /* Abuse qc->result_tf for temp storage of intermediate TF
4746 * here to save some kernel stack usage.
4747 * For normal completion, qc->result_tf is not relevant. For
4748 * error, qc->result_tf is later overwritten by ata_qc_complete().
4749 * So, the correctness of qc->result_tf is not affected.
4750 */
4751 ap->ops->tf_read(ap, &qc->result_tf);
4752 ireason = qc->result_tf.nsect;
4753 bc_lo = qc->result_tf.lbam;
4754 bc_hi = qc->result_tf.lbah;
4755 bytes = (bc_hi << 8) | bc_lo;
4756
4757 /* shall be cleared to zero, indicating xfer of data */
4758 if (ireason & (1 << 0))
4759 goto err_out;
4760
4761 /* make sure transfer direction matches expected */
4762 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4763 if (do_write != i_write)
4764 goto err_out;
4765
4766 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4767
4768 __atapi_pio_bytes(qc, bytes);
4769
4770 return;
4771
4772 err_out:
4773 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4774 qc->err_mask |= AC_ERR_HSM;
4775 ap->hsm_task_state = HSM_ST_ERR;
4776 }
4777
4778 /**
4779 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4780 * @ap: the target ata_port
4781 * @qc: qc on going
4782 *
4783 * RETURNS:
4784 * 1 if ok in workqueue, 0 otherwise.
4785 */
4786
4787 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4788 {
4789 if (qc->tf.flags & ATA_TFLAG_POLLING)
4790 return 1;
4791
4792 if (ap->hsm_task_state == HSM_ST_FIRST) {
4793 if (qc->tf.protocol == ATA_PROT_PIO &&
4794 (qc->tf.flags & ATA_TFLAG_WRITE))
4795 return 1;
4796
4797 if (is_atapi_taskfile(&qc->tf) &&
4798 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4799 return 1;
4800 }
4801
4802 return 0;
4803 }
4804
4805 /**
4806 * ata_hsm_qc_complete - finish a qc running on standard HSM
4807 * @qc: Command to complete
4808 * @in_wq: 1 if called from workqueue, 0 otherwise
4809 *
4810 * Finish @qc which is running on standard HSM.
4811 *
4812 * LOCKING:
4813 * If @in_wq is zero, spin_lock_irqsave(host lock).
4814 * Otherwise, none on entry and grabs host lock.
4815 */
4816 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4817 {
4818 struct ata_port *ap = qc->ap;
4819 unsigned long flags;
4820
4821 if (ap->ops->error_handler) {
4822 if (in_wq) {
4823 spin_lock_irqsave(ap->lock, flags);
4824
4825 /* EH might have kicked in while host lock is
4826 * released.
4827 */
4828 qc = ata_qc_from_tag(ap, qc->tag);
4829 if (qc) {
4830 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4831 ap->ops->irq_on(ap);
4832 ata_qc_complete(qc);
4833 } else
4834 ata_port_freeze(ap);
4835 }
4836
4837 spin_unlock_irqrestore(ap->lock, flags);
4838 } else {
4839 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4840 ata_qc_complete(qc);
4841 else
4842 ata_port_freeze(ap);
4843 }
4844 } else {
4845 if (in_wq) {
4846 spin_lock_irqsave(ap->lock, flags);
4847 ap->ops->irq_on(ap);
4848 ata_qc_complete(qc);
4849 spin_unlock_irqrestore(ap->lock, flags);
4850 } else
4851 ata_qc_complete(qc);
4852 }
4853 }
4854
4855 /**
4856 * ata_hsm_move - move the HSM to the next state.
4857 * @ap: the target ata_port
4858 * @qc: qc on going
4859 * @status: current device status
4860 * @in_wq: 1 if called from workqueue, 0 otherwise
4861 *
4862 * RETURNS:
4863 * 1 when poll next status needed, 0 otherwise.
4864 */
4865 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4866 u8 status, int in_wq)
4867 {
4868 unsigned long flags = 0;
4869 int poll_next;
4870
4871 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4872
4873 /* Make sure ata_qc_issue_prot() does not throw things
4874 * like DMA polling into the workqueue. Notice that
4875 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4876 */
4877 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4878
4879 fsm_start:
4880 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4881 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4882
4883 switch (ap->hsm_task_state) {
4884 case HSM_ST_FIRST:
4885 /* Send first data block or PACKET CDB */
4886
4887 /* If polling, we will stay in the work queue after
4888 * sending the data. Otherwise, interrupt handler
4889 * takes over after sending the data.
4890 */
4891 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4892
4893 /* check device status */
4894 if (unlikely((status & ATA_DRQ) == 0)) {
4895 /* handle BSY=0, DRQ=0 as error */
4896 if (likely(status & (ATA_ERR | ATA_DF)))
4897 /* device stops HSM for abort/error */
4898 qc->err_mask |= AC_ERR_DEV;
4899 else
4900 /* HSM violation. Let EH handle this */
4901 qc->err_mask |= AC_ERR_HSM;
4902
4903 ap->hsm_task_state = HSM_ST_ERR;
4904 goto fsm_start;
4905 }
4906
4907 /* Device should not ask for data transfer (DRQ=1)
4908 * when it finds something wrong.
4909 * We ignore DRQ here and stop the HSM by
4910 * changing hsm_task_state to HSM_ST_ERR and
4911 * let the EH abort the command or reset the device.
4912 */
4913 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4914 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4915 "error, dev_stat 0x%X\n", status);
4916 qc->err_mask |= AC_ERR_HSM;
4917 ap->hsm_task_state = HSM_ST_ERR;
4918 goto fsm_start;
4919 }
4920
4921 /* Send the CDB (atapi) or the first data block (ata pio out).
4922 * During the state transition, interrupt handler shouldn't
4923 * be invoked before the data transfer is complete and
4924 * hsm_task_state is changed. Hence, the following locking.
4925 */
4926 if (in_wq)
4927 spin_lock_irqsave(ap->lock, flags);
4928
4929 if (qc->tf.protocol == ATA_PROT_PIO) {
4930 /* PIO data out protocol.
4931 * send first data block.
4932 */
4933
4934 /* ata_pio_sectors() might change the state
4935 * to HSM_ST_LAST. so, the state is changed here
4936 * before ata_pio_sectors().
4937 */
4938 ap->hsm_task_state = HSM_ST;
4939 ata_pio_sectors(qc);
4940 ata_altstatus(ap); /* flush */
4941 } else
4942 /* send CDB */
4943 atapi_send_cdb(ap, qc);
4944
4945 if (in_wq)
4946 spin_unlock_irqrestore(ap->lock, flags);
4947
4948 /* if polling, ata_pio_task() handles the rest.
4949 * otherwise, interrupt handler takes over from here.
4950 */
4951 break;
4952
4953 case HSM_ST:
4954 /* complete command or read/write the data register */
4955 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4956 /* ATAPI PIO protocol */
4957 if ((status & ATA_DRQ) == 0) {
4958 /* No more data to transfer or device error.
4959 * Device error will be tagged in HSM_ST_LAST.
4960 */
4961 ap->hsm_task_state = HSM_ST_LAST;
4962 goto fsm_start;
4963 }
4964
4965 /* Device should not ask for data transfer (DRQ=1)
4966 * when it finds something wrong.
4967 * We ignore DRQ here and stop the HSM by
4968 * changing hsm_task_state to HSM_ST_ERR and
4969 * let the EH abort the command or reset the device.
4970 */
4971 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4972 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4973 "device error, dev_stat 0x%X\n",
4974 status);
4975 qc->err_mask |= AC_ERR_HSM;
4976 ap->hsm_task_state = HSM_ST_ERR;
4977 goto fsm_start;
4978 }
4979
4980 atapi_pio_bytes(qc);
4981
4982 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4983 /* bad ireason reported by device */
4984 goto fsm_start;
4985
4986 } else {
4987 /* ATA PIO protocol */
4988 if (unlikely((status & ATA_DRQ) == 0)) {
4989 /* handle BSY=0, DRQ=0 as error */
4990 if (likely(status & (ATA_ERR | ATA_DF)))
4991 /* device stops HSM for abort/error */
4992 qc->err_mask |= AC_ERR_DEV;
4993 else
4994 /* HSM violation. Let EH handle this.
4995 * Phantom devices also trigger this
4996 * condition. Mark hint.
4997 */
4998 qc->err_mask |= AC_ERR_HSM |
4999 AC_ERR_NODEV_HINT;
5000
5001 ap->hsm_task_state = HSM_ST_ERR;
5002 goto fsm_start;
5003 }
5004
5005 /* For PIO reads, some devices may ask for
5006 * data transfer (DRQ=1) alone with ERR=1.
5007 * We respect DRQ here and transfer one
5008 * block of junk data before changing the
5009 * hsm_task_state to HSM_ST_ERR.
5010 *
5011 * For PIO writes, ERR=1 DRQ=1 doesn't make
5012 * sense since the data block has been
5013 * transferred to the device.
5014 */
5015 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5016 /* data might be corrputed */
5017 qc->err_mask |= AC_ERR_DEV;
5018
5019 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5020 ata_pio_sectors(qc);
5021 ata_altstatus(ap);
5022 status = ata_wait_idle(ap);
5023 }
5024
5025 if (status & (ATA_BUSY | ATA_DRQ))
5026 qc->err_mask |= AC_ERR_HSM;
5027
5028 /* ata_pio_sectors() might change the
5029 * state to HSM_ST_LAST. so, the state
5030 * is changed after ata_pio_sectors().
5031 */
5032 ap->hsm_task_state = HSM_ST_ERR;
5033 goto fsm_start;
5034 }
5035
5036 ata_pio_sectors(qc);
5037
5038 if (ap->hsm_task_state == HSM_ST_LAST &&
5039 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5040 /* all data read */
5041 ata_altstatus(ap);
5042 status = ata_wait_idle(ap);
5043 goto fsm_start;
5044 }
5045 }
5046
5047 ata_altstatus(ap); /* flush */
5048 poll_next = 1;
5049 break;
5050
5051 case HSM_ST_LAST:
5052 if (unlikely(!ata_ok(status))) {
5053 qc->err_mask |= __ac_err_mask(status);
5054 ap->hsm_task_state = HSM_ST_ERR;
5055 goto fsm_start;
5056 }
5057
5058 /* no more data to transfer */
5059 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5060 ap->print_id, qc->dev->devno, status);
5061
5062 WARN_ON(qc->err_mask);
5063
5064 ap->hsm_task_state = HSM_ST_IDLE;
5065
5066 /* complete taskfile transaction */
5067 ata_hsm_qc_complete(qc, in_wq);
5068
5069 poll_next = 0;
5070 break;
5071
5072 case HSM_ST_ERR:
5073 /* make sure qc->err_mask is available to
5074 * know what's wrong and recover
5075 */
5076 WARN_ON(qc->err_mask == 0);
5077
5078 ap->hsm_task_state = HSM_ST_IDLE;
5079
5080 /* complete taskfile transaction */
5081 ata_hsm_qc_complete(qc, in_wq);
5082
5083 poll_next = 0;
5084 break;
5085 default:
5086 poll_next = 0;
5087 BUG();
5088 }
5089
5090 return poll_next;
5091 }
5092
5093 static void ata_pio_task(struct work_struct *work)
5094 {
5095 struct ata_port *ap =
5096 container_of(work, struct ata_port, port_task.work);
5097 struct ata_queued_cmd *qc = ap->port_task_data;
5098 u8 status;
5099 int poll_next;
5100
5101 fsm_start:
5102 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5103
5104 /*
5105 * This is purely heuristic. This is a fast path.
5106 * Sometimes when we enter, BSY will be cleared in
5107 * a chk-status or two. If not, the drive is probably seeking
5108 * or something. Snooze for a couple msecs, then
5109 * chk-status again. If still busy, queue delayed work.
5110 */
5111 status = ata_busy_wait(ap, ATA_BUSY, 5);
5112 if (status & ATA_BUSY) {
5113 msleep(2);
5114 status = ata_busy_wait(ap, ATA_BUSY, 10);
5115 if (status & ATA_BUSY) {
5116 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5117 return;
5118 }
5119 }
5120
5121 /* move the HSM */
5122 poll_next = ata_hsm_move(ap, qc, status, 1);
5123
5124 /* another command or interrupt handler
5125 * may be running at this point.
5126 */
5127 if (poll_next)
5128 goto fsm_start;
5129 }
5130
5131 /**
5132 * ata_qc_new - Request an available ATA command, for queueing
5133 * @ap: Port associated with device @dev
5134 * @dev: Device from whom we request an available command structure
5135 *
5136 * LOCKING:
5137 * None.
5138 */
5139
5140 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5141 {
5142 struct ata_queued_cmd *qc = NULL;
5143 unsigned int i;
5144
5145 /* no command while frozen */
5146 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5147 return NULL;
5148
5149 /* the last tag is reserved for internal command. */
5150 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5151 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5152 qc = __ata_qc_from_tag(ap, i);
5153 break;
5154 }
5155
5156 if (qc)
5157 qc->tag = i;
5158
5159 return qc;
5160 }
5161
5162 /**
5163 * ata_qc_new_init - Request an available ATA command, and initialize it
5164 * @dev: Device from whom we request an available command structure
5165 *
5166 * LOCKING:
5167 * None.
5168 */
5169
5170 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5171 {
5172 struct ata_port *ap = dev->ap;
5173 struct ata_queued_cmd *qc;
5174
5175 qc = ata_qc_new(ap);
5176 if (qc) {
5177 qc->scsicmd = NULL;
5178 qc->ap = ap;
5179 qc->dev = dev;
5180
5181 ata_qc_reinit(qc);
5182 }
5183
5184 return qc;
5185 }
5186
5187 /**
5188 * ata_qc_free - free unused ata_queued_cmd
5189 * @qc: Command to complete
5190 *
5191 * Designed to free unused ata_queued_cmd object
5192 * in case something prevents using it.
5193 *
5194 * LOCKING:
5195 * spin_lock_irqsave(host lock)
5196 */
5197 void ata_qc_free(struct ata_queued_cmd *qc)
5198 {
5199 struct ata_port *ap = qc->ap;
5200 unsigned int tag;
5201
5202 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5203
5204 qc->flags = 0;
5205 tag = qc->tag;
5206 if (likely(ata_tag_valid(tag))) {
5207 qc->tag = ATA_TAG_POISON;
5208 clear_bit(tag, &ap->qc_allocated);
5209 }
5210 }
5211
5212 void __ata_qc_complete(struct ata_queued_cmd *qc)
5213 {
5214 struct ata_port *ap = qc->ap;
5215
5216 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5217 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5218
5219 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5220 ata_sg_clean(qc);
5221
5222 /* command should be marked inactive atomically with qc completion */
5223 if (qc->tf.protocol == ATA_PROT_NCQ)
5224 ap->sactive &= ~(1 << qc->tag);
5225 else
5226 ap->active_tag = ATA_TAG_POISON;
5227
5228 /* atapi: mark qc as inactive to prevent the interrupt handler
5229 * from completing the command twice later, before the error handler
5230 * is called. (when rc != 0 and atapi request sense is needed)
5231 */
5232 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5233 ap->qc_active &= ~(1 << qc->tag);
5234
5235 /* call completion callback */
5236 qc->complete_fn(qc);
5237 }
5238
5239 static void fill_result_tf(struct ata_queued_cmd *qc)
5240 {
5241 struct ata_port *ap = qc->ap;
5242
5243 qc->result_tf.flags = qc->tf.flags;
5244 ap->ops->tf_read(ap, &qc->result_tf);
5245 }
5246
5247 /**
5248 * ata_qc_complete - Complete an active ATA command
5249 * @qc: Command to complete
5250 * @err_mask: ATA Status register contents
5251 *
5252 * Indicate to the mid and upper layers that an ATA
5253 * command has completed, with either an ok or not-ok status.
5254 *
5255 * LOCKING:
5256 * spin_lock_irqsave(host lock)
5257 */
5258 void ata_qc_complete(struct ata_queued_cmd *qc)
5259 {
5260 struct ata_port *ap = qc->ap;
5261
5262 /* XXX: New EH and old EH use different mechanisms to
5263 * synchronize EH with regular execution path.
5264 *
5265 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5266 * Normal execution path is responsible for not accessing a
5267 * failed qc. libata core enforces the rule by returning NULL
5268 * from ata_qc_from_tag() for failed qcs.
5269 *
5270 * Old EH depends on ata_qc_complete() nullifying completion
5271 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5272 * not synchronize with interrupt handler. Only PIO task is
5273 * taken care of.
5274 */
5275 if (ap->ops->error_handler) {
5276 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5277
5278 if (unlikely(qc->err_mask))
5279 qc->flags |= ATA_QCFLAG_FAILED;
5280
5281 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5282 if (!ata_tag_internal(qc->tag)) {
5283 /* always fill result TF for failed qc */
5284 fill_result_tf(qc);
5285 ata_qc_schedule_eh(qc);
5286 return;
5287 }
5288 }
5289
5290 /* read result TF if requested */
5291 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5292 fill_result_tf(qc);
5293
5294 __ata_qc_complete(qc);
5295 } else {
5296 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5297 return;
5298
5299 /* read result TF if failed or requested */
5300 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5301 fill_result_tf(qc);
5302
5303 __ata_qc_complete(qc);
5304 }
5305 }
5306
5307 /**
5308 * ata_qc_complete_multiple - Complete multiple qcs successfully
5309 * @ap: port in question
5310 * @qc_active: new qc_active mask
5311 * @finish_qc: LLDD callback invoked before completing a qc
5312 *
5313 * Complete in-flight commands. This functions is meant to be
5314 * called from low-level driver's interrupt routine to complete
5315 * requests normally. ap->qc_active and @qc_active is compared
5316 * and commands are completed accordingly.
5317 *
5318 * LOCKING:
5319 * spin_lock_irqsave(host lock)
5320 *
5321 * RETURNS:
5322 * Number of completed commands on success, -errno otherwise.
5323 */
5324 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5325 void (*finish_qc)(struct ata_queued_cmd *))
5326 {
5327 int nr_done = 0;
5328 u32 done_mask;
5329 int i;
5330
5331 done_mask = ap->qc_active ^ qc_active;
5332
5333 if (unlikely(done_mask & qc_active)) {
5334 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5335 "(%08x->%08x)\n", ap->qc_active, qc_active);
5336 return -EINVAL;
5337 }
5338
5339 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5340 struct ata_queued_cmd *qc;
5341
5342 if (!(done_mask & (1 << i)))
5343 continue;
5344
5345 if ((qc = ata_qc_from_tag(ap, i))) {
5346 if (finish_qc)
5347 finish_qc(qc);
5348 ata_qc_complete(qc);
5349 nr_done++;
5350 }
5351 }
5352
5353 return nr_done;
5354 }
5355
5356 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5357 {
5358 struct ata_port *ap = qc->ap;
5359
5360 switch (qc->tf.protocol) {
5361 case ATA_PROT_NCQ:
5362 case ATA_PROT_DMA:
5363 case ATA_PROT_ATAPI_DMA:
5364 return 1;
5365
5366 case ATA_PROT_ATAPI:
5367 case ATA_PROT_PIO:
5368 if (ap->flags & ATA_FLAG_PIO_DMA)
5369 return 1;
5370
5371 /* fall through */
5372
5373 default:
5374 return 0;
5375 }
5376
5377 /* never reached */
5378 }
5379
5380 /**
5381 * ata_qc_issue - issue taskfile to device
5382 * @qc: command to issue to device
5383 *
5384 * Prepare an ATA command to submission to device.
5385 * This includes mapping the data into a DMA-able
5386 * area, filling in the S/G table, and finally
5387 * writing the taskfile to hardware, starting the command.
5388 *
5389 * LOCKING:
5390 * spin_lock_irqsave(host lock)
5391 */
5392 void ata_qc_issue(struct ata_queued_cmd *qc)
5393 {
5394 struct ata_port *ap = qc->ap;
5395
5396 /* Make sure only one non-NCQ command is outstanding. The
5397 * check is skipped for old EH because it reuses active qc to
5398 * request ATAPI sense.
5399 */
5400 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5401
5402 if (qc->tf.protocol == ATA_PROT_NCQ) {
5403 WARN_ON(ap->sactive & (1 << qc->tag));
5404 ap->sactive |= 1 << qc->tag;
5405 } else {
5406 WARN_ON(ap->sactive);
5407 ap->active_tag = qc->tag;
5408 }
5409
5410 qc->flags |= ATA_QCFLAG_ACTIVE;
5411 ap->qc_active |= 1 << qc->tag;
5412
5413 if (ata_should_dma_map(qc)) {
5414 if (qc->flags & ATA_QCFLAG_SG) {
5415 if (ata_sg_setup(qc))
5416 goto sg_err;
5417 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5418 if (ata_sg_setup_one(qc))
5419 goto sg_err;
5420 }
5421 } else {
5422 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5423 }
5424
5425 ap->ops->qc_prep(qc);
5426
5427 qc->err_mask |= ap->ops->qc_issue(qc);
5428 if (unlikely(qc->err_mask))
5429 goto err;
5430 return;
5431
5432 sg_err:
5433 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5434 qc->err_mask |= AC_ERR_SYSTEM;
5435 err:
5436 ata_qc_complete(qc);
5437 }
5438
5439 /**
5440 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5441 * @qc: command to issue to device
5442 *
5443 * Using various libata functions and hooks, this function
5444 * starts an ATA command. ATA commands are grouped into
5445 * classes called "protocols", and issuing each type of protocol
5446 * is slightly different.
5447 *
5448 * May be used as the qc_issue() entry in ata_port_operations.
5449 *
5450 * LOCKING:
5451 * spin_lock_irqsave(host lock)
5452 *
5453 * RETURNS:
5454 * Zero on success, AC_ERR_* mask on failure
5455 */
5456
5457 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5458 {
5459 struct ata_port *ap = qc->ap;
5460
5461 /* Use polling pio if the LLD doesn't handle
5462 * interrupt driven pio and atapi CDB interrupt.
5463 */
5464 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5465 switch (qc->tf.protocol) {
5466 case ATA_PROT_PIO:
5467 case ATA_PROT_NODATA:
5468 case ATA_PROT_ATAPI:
5469 case ATA_PROT_ATAPI_NODATA:
5470 qc->tf.flags |= ATA_TFLAG_POLLING;
5471 break;
5472 case ATA_PROT_ATAPI_DMA:
5473 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5474 /* see ata_dma_blacklisted() */
5475 BUG();
5476 break;
5477 default:
5478 break;
5479 }
5480 }
5481
5482 /* select the device */
5483 ata_dev_select(ap, qc->dev->devno, 1, 0);
5484
5485 /* start the command */
5486 switch (qc->tf.protocol) {
5487 case ATA_PROT_NODATA:
5488 if (qc->tf.flags & ATA_TFLAG_POLLING)
5489 ata_qc_set_polling(qc);
5490
5491 ata_tf_to_host(ap, &qc->tf);
5492 ap->hsm_task_state = HSM_ST_LAST;
5493
5494 if (qc->tf.flags & ATA_TFLAG_POLLING)
5495 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5496
5497 break;
5498
5499 case ATA_PROT_DMA:
5500 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5501
5502 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5503 ap->ops->bmdma_setup(qc); /* set up bmdma */
5504 ap->ops->bmdma_start(qc); /* initiate bmdma */
5505 ap->hsm_task_state = HSM_ST_LAST;
5506 break;
5507
5508 case ATA_PROT_PIO:
5509 if (qc->tf.flags & ATA_TFLAG_POLLING)
5510 ata_qc_set_polling(qc);
5511
5512 ata_tf_to_host(ap, &qc->tf);
5513
5514 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5515 /* PIO data out protocol */
5516 ap->hsm_task_state = HSM_ST_FIRST;
5517 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5518
5519 /* always send first data block using
5520 * the ata_pio_task() codepath.
5521 */
5522 } else {
5523 /* PIO data in protocol */
5524 ap->hsm_task_state = HSM_ST;
5525
5526 if (qc->tf.flags & ATA_TFLAG_POLLING)
5527 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5528
5529 /* if polling, ata_pio_task() handles the rest.
5530 * otherwise, interrupt handler takes over from here.
5531 */
5532 }
5533
5534 break;
5535
5536 case ATA_PROT_ATAPI:
5537 case ATA_PROT_ATAPI_NODATA:
5538 if (qc->tf.flags & ATA_TFLAG_POLLING)
5539 ata_qc_set_polling(qc);
5540
5541 ata_tf_to_host(ap, &qc->tf);
5542
5543 ap->hsm_task_state = HSM_ST_FIRST;
5544
5545 /* send cdb by polling if no cdb interrupt */
5546 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5547 (qc->tf.flags & ATA_TFLAG_POLLING))
5548 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5549 break;
5550
5551 case ATA_PROT_ATAPI_DMA:
5552 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5553
5554 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5555 ap->ops->bmdma_setup(qc); /* set up bmdma */
5556 ap->hsm_task_state = HSM_ST_FIRST;
5557
5558 /* send cdb by polling if no cdb interrupt */
5559 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5560 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5561 break;
5562
5563 default:
5564 WARN_ON(1);
5565 return AC_ERR_SYSTEM;
5566 }
5567
5568 return 0;
5569 }
5570
5571 /**
5572 * ata_host_intr - Handle host interrupt for given (port, task)
5573 * @ap: Port on which interrupt arrived (possibly...)
5574 * @qc: Taskfile currently active in engine
5575 *
5576 * Handle host interrupt for given queued command. Currently,
5577 * only DMA interrupts are handled. All other commands are
5578 * handled via polling with interrupts disabled (nIEN bit).
5579 *
5580 * LOCKING:
5581 * spin_lock_irqsave(host lock)
5582 *
5583 * RETURNS:
5584 * One if interrupt was handled, zero if not (shared irq).
5585 */
5586
5587 inline unsigned int ata_host_intr (struct ata_port *ap,
5588 struct ata_queued_cmd *qc)
5589 {
5590 struct ata_eh_info *ehi = &ap->eh_info;
5591 u8 status, host_stat = 0;
5592
5593 VPRINTK("ata%u: protocol %d task_state %d\n",
5594 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5595
5596 /* Check whether we are expecting interrupt in this state */
5597 switch (ap->hsm_task_state) {
5598 case HSM_ST_FIRST:
5599 /* Some pre-ATAPI-4 devices assert INTRQ
5600 * at this state when ready to receive CDB.
5601 */
5602
5603 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5604 * The flag was turned on only for atapi devices.
5605 * No need to check is_atapi_taskfile(&qc->tf) again.
5606 */
5607 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5608 goto idle_irq;
5609 break;
5610 case HSM_ST_LAST:
5611 if (qc->tf.protocol == ATA_PROT_DMA ||
5612 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5613 /* check status of DMA engine */
5614 host_stat = ap->ops->bmdma_status(ap);
5615 VPRINTK("ata%u: host_stat 0x%X\n",
5616 ap->print_id, host_stat);
5617
5618 /* if it's not our irq... */
5619 if (!(host_stat & ATA_DMA_INTR))
5620 goto idle_irq;
5621
5622 /* before we do anything else, clear DMA-Start bit */
5623 ap->ops->bmdma_stop(qc);
5624
5625 if (unlikely(host_stat & ATA_DMA_ERR)) {
5626 /* error when transfering data to/from memory */
5627 qc->err_mask |= AC_ERR_HOST_BUS;
5628 ap->hsm_task_state = HSM_ST_ERR;
5629 }
5630 }
5631 break;
5632 case HSM_ST:
5633 break;
5634 default:
5635 goto idle_irq;
5636 }
5637
5638 /* check altstatus */
5639 status = ata_altstatus(ap);
5640 if (status & ATA_BUSY)
5641 goto idle_irq;
5642
5643 /* check main status, clearing INTRQ */
5644 status = ata_chk_status(ap);
5645 if (unlikely(status & ATA_BUSY))
5646 goto idle_irq;
5647
5648 /* ack bmdma irq events */
5649 ap->ops->irq_clear(ap);
5650
5651 ata_hsm_move(ap, qc, status, 0);
5652
5653 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5654 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5655 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5656
5657 return 1; /* irq handled */
5658
5659 idle_irq:
5660 ap->stats.idle_irq++;
5661
5662 #ifdef ATA_IRQ_TRAP
5663 if ((ap->stats.idle_irq % 1000) == 0) {
5664 ap->ops->irq_ack(ap, 0); /* debug trap */
5665 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5666 return 1;
5667 }
5668 #endif
5669 return 0; /* irq not handled */
5670 }
5671
5672 /**
5673 * ata_interrupt - Default ATA host interrupt handler
5674 * @irq: irq line (unused)
5675 * @dev_instance: pointer to our ata_host information structure
5676 *
5677 * Default interrupt handler for PCI IDE devices. Calls
5678 * ata_host_intr() for each port that is not disabled.
5679 *
5680 * LOCKING:
5681 * Obtains host lock during operation.
5682 *
5683 * RETURNS:
5684 * IRQ_NONE or IRQ_HANDLED.
5685 */
5686
5687 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5688 {
5689 struct ata_host *host = dev_instance;
5690 unsigned int i;
5691 unsigned int handled = 0;
5692 unsigned long flags;
5693
5694 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5695 spin_lock_irqsave(&host->lock, flags);
5696
5697 for (i = 0; i < host->n_ports; i++) {
5698 struct ata_port *ap;
5699
5700 ap = host->ports[i];
5701 if (ap &&
5702 !(ap->flags & ATA_FLAG_DISABLED)) {
5703 struct ata_queued_cmd *qc;
5704
5705 qc = ata_qc_from_tag(ap, ap->active_tag);
5706 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5707 (qc->flags & ATA_QCFLAG_ACTIVE))
5708 handled |= ata_host_intr(ap, qc);
5709 }
5710 }
5711
5712 spin_unlock_irqrestore(&host->lock, flags);
5713
5714 return IRQ_RETVAL(handled);
5715 }
5716
5717 /**
5718 * sata_scr_valid - test whether SCRs are accessible
5719 * @ap: ATA port to test SCR accessibility for
5720 *
5721 * Test whether SCRs are accessible for @ap.
5722 *
5723 * LOCKING:
5724 * None.
5725 *
5726 * RETURNS:
5727 * 1 if SCRs are accessible, 0 otherwise.
5728 */
5729 int sata_scr_valid(struct ata_port *ap)
5730 {
5731 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5732 }
5733
5734 /**
5735 * sata_scr_read - read SCR register of the specified port
5736 * @ap: ATA port to read SCR for
5737 * @reg: SCR to read
5738 * @val: Place to store read value
5739 *
5740 * Read SCR register @reg of @ap into *@val. This function is
5741 * guaranteed to succeed if the cable type of the port is SATA
5742 * and the port implements ->scr_read.
5743 *
5744 * LOCKING:
5745 * None.
5746 *
5747 * RETURNS:
5748 * 0 on success, negative errno on failure.
5749 */
5750 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5751 {
5752 if (sata_scr_valid(ap))
5753 return ap->ops->scr_read(ap, reg, val);
5754 return -EOPNOTSUPP;
5755 }
5756
5757 /**
5758 * sata_scr_write - write SCR register of the specified port
5759 * @ap: ATA port to write SCR for
5760 * @reg: SCR to write
5761 * @val: value to write
5762 *
5763 * Write @val to SCR register @reg of @ap. This function is
5764 * guaranteed to succeed if the cable type of the port is SATA
5765 * and the port implements ->scr_read.
5766 *
5767 * LOCKING:
5768 * None.
5769 *
5770 * RETURNS:
5771 * 0 on success, negative errno on failure.
5772 */
5773 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5774 {
5775 if (sata_scr_valid(ap))
5776 return ap->ops->scr_write(ap, reg, val);
5777 return -EOPNOTSUPP;
5778 }
5779
5780 /**
5781 * sata_scr_write_flush - write SCR register of the specified port and flush
5782 * @ap: ATA port to write SCR for
5783 * @reg: SCR to write
5784 * @val: value to write
5785 *
5786 * This function is identical to sata_scr_write() except that this
5787 * function performs flush after writing to the register.
5788 *
5789 * LOCKING:
5790 * None.
5791 *
5792 * RETURNS:
5793 * 0 on success, negative errno on failure.
5794 */
5795 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5796 {
5797 int rc;
5798
5799 if (sata_scr_valid(ap)) {
5800 rc = ap->ops->scr_write(ap, reg, val);
5801 if (rc == 0)
5802 rc = ap->ops->scr_read(ap, reg, &val);
5803 return rc;
5804 }
5805 return -EOPNOTSUPP;
5806 }
5807
5808 /**
5809 * ata_port_online - test whether the given port is online
5810 * @ap: ATA port to test
5811 *
5812 * Test whether @ap is online. Note that this function returns 0
5813 * if online status of @ap cannot be obtained, so
5814 * ata_port_online(ap) != !ata_port_offline(ap).
5815 *
5816 * LOCKING:
5817 * None.
5818 *
5819 * RETURNS:
5820 * 1 if the port online status is available and online.
5821 */
5822 int ata_port_online(struct ata_port *ap)
5823 {
5824 u32 sstatus;
5825
5826 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5827 return 1;
5828 return 0;
5829 }
5830
5831 /**
5832 * ata_port_offline - test whether the given port is offline
5833 * @ap: ATA port to test
5834 *
5835 * Test whether @ap is offline. Note that this function returns
5836 * 0 if offline status of @ap cannot be obtained, so
5837 * ata_port_online(ap) != !ata_port_offline(ap).
5838 *
5839 * LOCKING:
5840 * None.
5841 *
5842 * RETURNS:
5843 * 1 if the port offline status is available and offline.
5844 */
5845 int ata_port_offline(struct ata_port *ap)
5846 {
5847 u32 sstatus;
5848
5849 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5850 return 1;
5851 return 0;
5852 }
5853
5854 int ata_flush_cache(struct ata_device *dev)
5855 {
5856 unsigned int err_mask;
5857 u8 cmd;
5858
5859 if (!ata_try_flush_cache(dev))
5860 return 0;
5861
5862 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5863 cmd = ATA_CMD_FLUSH_EXT;
5864 else
5865 cmd = ATA_CMD_FLUSH;
5866
5867 err_mask = ata_do_simple_cmd(dev, cmd);
5868 if (err_mask) {
5869 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5870 return -EIO;
5871 }
5872
5873 return 0;
5874 }
5875
5876 #ifdef CONFIG_PM
5877 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5878 unsigned int action, unsigned int ehi_flags,
5879 int wait)
5880 {
5881 unsigned long flags;
5882 int i, rc;
5883
5884 for (i = 0; i < host->n_ports; i++) {
5885 struct ata_port *ap = host->ports[i];
5886
5887 /* Previous resume operation might still be in
5888 * progress. Wait for PM_PENDING to clear.
5889 */
5890 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5891 ata_port_wait_eh(ap);
5892 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5893 }
5894
5895 /* request PM ops to EH */
5896 spin_lock_irqsave(ap->lock, flags);
5897
5898 ap->pm_mesg = mesg;
5899 if (wait) {
5900 rc = 0;
5901 ap->pm_result = &rc;
5902 }
5903
5904 ap->pflags |= ATA_PFLAG_PM_PENDING;
5905 ap->eh_info.action |= action;
5906 ap->eh_info.flags |= ehi_flags;
5907
5908 ata_port_schedule_eh(ap);
5909
5910 spin_unlock_irqrestore(ap->lock, flags);
5911
5912 /* wait and check result */
5913 if (wait) {
5914 ata_port_wait_eh(ap);
5915 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5916 if (rc)
5917 return rc;
5918 }
5919 }
5920
5921 return 0;
5922 }
5923
5924 /**
5925 * ata_host_suspend - suspend host
5926 * @host: host to suspend
5927 * @mesg: PM message
5928 *
5929 * Suspend @host. Actual operation is performed by EH. This
5930 * function requests EH to perform PM operations and waits for EH
5931 * to finish.
5932 *
5933 * LOCKING:
5934 * Kernel thread context (may sleep).
5935 *
5936 * RETURNS:
5937 * 0 on success, -errno on failure.
5938 */
5939 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5940 {
5941 int rc;
5942
5943 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5944 if (rc == 0)
5945 host->dev->power.power_state = mesg;
5946 return rc;
5947 }
5948
5949 /**
5950 * ata_host_resume - resume host
5951 * @host: host to resume
5952 *
5953 * Resume @host. Actual operation is performed by EH. This
5954 * function requests EH to perform PM operations and returns.
5955 * Note that all resume operations are performed parallely.
5956 *
5957 * LOCKING:
5958 * Kernel thread context (may sleep).
5959 */
5960 void ata_host_resume(struct ata_host *host)
5961 {
5962 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5963 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5964 host->dev->power.power_state = PMSG_ON;
5965 }
5966 #endif
5967
5968 /**
5969 * ata_port_start - Set port up for dma.
5970 * @ap: Port to initialize
5971 *
5972 * Called just after data structures for each port are
5973 * initialized. Allocates space for PRD table.
5974 *
5975 * May be used as the port_start() entry in ata_port_operations.
5976 *
5977 * LOCKING:
5978 * Inherited from caller.
5979 */
5980 int ata_port_start(struct ata_port *ap)
5981 {
5982 struct device *dev = ap->dev;
5983 int rc;
5984
5985 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5986 GFP_KERNEL);
5987 if (!ap->prd)
5988 return -ENOMEM;
5989
5990 rc = ata_pad_alloc(ap, dev);
5991 if (rc)
5992 return rc;
5993
5994 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5995 (unsigned long long)ap->prd_dma);
5996 return 0;
5997 }
5998
5999 /**
6000 * ata_dev_init - Initialize an ata_device structure
6001 * @dev: Device structure to initialize
6002 *
6003 * Initialize @dev in preparation for probing.
6004 *
6005 * LOCKING:
6006 * Inherited from caller.
6007 */
6008 void ata_dev_init(struct ata_device *dev)
6009 {
6010 struct ata_port *ap = dev->ap;
6011 unsigned long flags;
6012
6013 /* SATA spd limit is bound to the first device */
6014 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6015 ap->sata_spd = 0;
6016
6017 /* High bits of dev->flags are used to record warm plug
6018 * requests which occur asynchronously. Synchronize using
6019 * host lock.
6020 */
6021 spin_lock_irqsave(ap->lock, flags);
6022 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6023 spin_unlock_irqrestore(ap->lock, flags);
6024
6025 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6026 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6027 dev->pio_mask = UINT_MAX;
6028 dev->mwdma_mask = UINT_MAX;
6029 dev->udma_mask = UINT_MAX;
6030 }
6031
6032 /**
6033 * ata_port_alloc - allocate and initialize basic ATA port resources
6034 * @host: ATA host this allocated port belongs to
6035 *
6036 * Allocate and initialize basic ATA port resources.
6037 *
6038 * RETURNS:
6039 * Allocate ATA port on success, NULL on failure.
6040 *
6041 * LOCKING:
6042 * Inherited from calling layer (may sleep).
6043 */
6044 struct ata_port *ata_port_alloc(struct ata_host *host)
6045 {
6046 struct ata_port *ap;
6047 unsigned int i;
6048
6049 DPRINTK("ENTER\n");
6050
6051 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6052 if (!ap)
6053 return NULL;
6054
6055 ap->pflags |= ATA_PFLAG_INITIALIZING;
6056 ap->lock = &host->lock;
6057 ap->flags = ATA_FLAG_DISABLED;
6058 ap->print_id = -1;
6059 ap->ctl = ATA_DEVCTL_OBS;
6060 ap->host = host;
6061 ap->dev = host->dev;
6062
6063 ap->hw_sata_spd_limit = UINT_MAX;
6064 ap->active_tag = ATA_TAG_POISON;
6065 ap->last_ctl = 0xFF;
6066
6067 #if defined(ATA_VERBOSE_DEBUG)
6068 /* turn on all debugging levels */
6069 ap->msg_enable = 0x00FF;
6070 #elif defined(ATA_DEBUG)
6071 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6072 #else
6073 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6074 #endif
6075
6076 INIT_DELAYED_WORK(&ap->port_task, NULL);
6077 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6078 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6079 INIT_LIST_HEAD(&ap->eh_done_q);
6080 init_waitqueue_head(&ap->eh_wait_q);
6081 init_timer_deferrable(&ap->fastdrain_timer);
6082 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6083 ap->fastdrain_timer.data = (unsigned long)ap;
6084
6085 ap->cbl = ATA_CBL_NONE;
6086
6087 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6088 struct ata_device *dev = &ap->device[i];
6089 dev->ap = ap;
6090 dev->devno = i;
6091 ata_dev_init(dev);
6092 }
6093
6094 #ifdef ATA_IRQ_TRAP
6095 ap->stats.unhandled_irq = 1;
6096 ap->stats.idle_irq = 1;
6097 #endif
6098 return ap;
6099 }
6100
6101 static void ata_host_release(struct device *gendev, void *res)
6102 {
6103 struct ata_host *host = dev_get_drvdata(gendev);
6104 int i;
6105
6106 for (i = 0; i < host->n_ports; i++) {
6107 struct ata_port *ap = host->ports[i];
6108
6109 if (!ap)
6110 continue;
6111
6112 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6113 ap->ops->port_stop(ap);
6114 }
6115
6116 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6117 host->ops->host_stop(host);
6118
6119 for (i = 0; i < host->n_ports; i++) {
6120 struct ata_port *ap = host->ports[i];
6121
6122 if (!ap)
6123 continue;
6124
6125 if (ap->scsi_host)
6126 scsi_host_put(ap->scsi_host);
6127
6128 kfree(ap);
6129 host->ports[i] = NULL;
6130 }
6131
6132 dev_set_drvdata(gendev, NULL);
6133 }
6134
6135 /**
6136 * ata_host_alloc - allocate and init basic ATA host resources
6137 * @dev: generic device this host is associated with
6138 * @max_ports: maximum number of ATA ports associated with this host
6139 *
6140 * Allocate and initialize basic ATA host resources. LLD calls
6141 * this function to allocate a host, initializes it fully and
6142 * attaches it using ata_host_register().
6143 *
6144 * @max_ports ports are allocated and host->n_ports is
6145 * initialized to @max_ports. The caller is allowed to decrease
6146 * host->n_ports before calling ata_host_register(). The unused
6147 * ports will be automatically freed on registration.
6148 *
6149 * RETURNS:
6150 * Allocate ATA host on success, NULL on failure.
6151 *
6152 * LOCKING:
6153 * Inherited from calling layer (may sleep).
6154 */
6155 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6156 {
6157 struct ata_host *host;
6158 size_t sz;
6159 int i;
6160
6161 DPRINTK("ENTER\n");
6162
6163 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6164 return NULL;
6165
6166 /* alloc a container for our list of ATA ports (buses) */
6167 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6168 /* alloc a container for our list of ATA ports (buses) */
6169 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6170 if (!host)
6171 goto err_out;
6172
6173 devres_add(dev, host);
6174 dev_set_drvdata(dev, host);
6175
6176 spin_lock_init(&host->lock);
6177 host->dev = dev;
6178 host->n_ports = max_ports;
6179
6180 /* allocate ports bound to this host */
6181 for (i = 0; i < max_ports; i++) {
6182 struct ata_port *ap;
6183
6184 ap = ata_port_alloc(host);
6185 if (!ap)
6186 goto err_out;
6187
6188 ap->port_no = i;
6189 host->ports[i] = ap;
6190 }
6191
6192 devres_remove_group(dev, NULL);
6193 return host;
6194
6195 err_out:
6196 devres_release_group(dev, NULL);
6197 return NULL;
6198 }
6199
6200 /**
6201 * ata_host_alloc_pinfo - alloc host and init with port_info array
6202 * @dev: generic device this host is associated with
6203 * @ppi: array of ATA port_info to initialize host with
6204 * @n_ports: number of ATA ports attached to this host
6205 *
6206 * Allocate ATA host and initialize with info from @ppi. If NULL
6207 * terminated, @ppi may contain fewer entries than @n_ports. The
6208 * last entry will be used for the remaining ports.
6209 *
6210 * RETURNS:
6211 * Allocate ATA host on success, NULL on failure.
6212 *
6213 * LOCKING:
6214 * Inherited from calling layer (may sleep).
6215 */
6216 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6217 const struct ata_port_info * const * ppi,
6218 int n_ports)
6219 {
6220 const struct ata_port_info *pi;
6221 struct ata_host *host;
6222 int i, j;
6223
6224 host = ata_host_alloc(dev, n_ports);
6225 if (!host)
6226 return NULL;
6227
6228 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6229 struct ata_port *ap = host->ports[i];
6230
6231 if (ppi[j])
6232 pi = ppi[j++];
6233
6234 ap->pio_mask = pi->pio_mask;
6235 ap->mwdma_mask = pi->mwdma_mask;
6236 ap->udma_mask = pi->udma_mask;
6237 ap->flags |= pi->flags;
6238 ap->ops = pi->port_ops;
6239
6240 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6241 host->ops = pi->port_ops;
6242 if (!host->private_data && pi->private_data)
6243 host->private_data = pi->private_data;
6244 }
6245
6246 return host;
6247 }
6248
6249 /**
6250 * ata_host_start - start and freeze ports of an ATA host
6251 * @host: ATA host to start ports for
6252 *
6253 * Start and then freeze ports of @host. Started status is
6254 * recorded in host->flags, so this function can be called
6255 * multiple times. Ports are guaranteed to get started only
6256 * once. If host->ops isn't initialized yet, its set to the
6257 * first non-dummy port ops.
6258 *
6259 * LOCKING:
6260 * Inherited from calling layer (may sleep).
6261 *
6262 * RETURNS:
6263 * 0 if all ports are started successfully, -errno otherwise.
6264 */
6265 int ata_host_start(struct ata_host *host)
6266 {
6267 int i, rc;
6268
6269 if (host->flags & ATA_HOST_STARTED)
6270 return 0;
6271
6272 for (i = 0; i < host->n_ports; i++) {
6273 struct ata_port *ap = host->ports[i];
6274
6275 if (!host->ops && !ata_port_is_dummy(ap))
6276 host->ops = ap->ops;
6277
6278 if (ap->ops->port_start) {
6279 rc = ap->ops->port_start(ap);
6280 if (rc) {
6281 ata_port_printk(ap, KERN_ERR, "failed to "
6282 "start port (errno=%d)\n", rc);
6283 goto err_out;
6284 }
6285 }
6286
6287 ata_eh_freeze_port(ap);
6288 }
6289
6290 host->flags |= ATA_HOST_STARTED;
6291 return 0;
6292
6293 err_out:
6294 while (--i >= 0) {
6295 struct ata_port *ap = host->ports[i];
6296
6297 if (ap->ops->port_stop)
6298 ap->ops->port_stop(ap);
6299 }
6300 return rc;
6301 }
6302
6303 /**
6304 * ata_sas_host_init - Initialize a host struct
6305 * @host: host to initialize
6306 * @dev: device host is attached to
6307 * @flags: host flags
6308 * @ops: port_ops
6309 *
6310 * LOCKING:
6311 * PCI/etc. bus probe sem.
6312 *
6313 */
6314 /* KILLME - the only user left is ipr */
6315 void ata_host_init(struct ata_host *host, struct device *dev,
6316 unsigned long flags, const struct ata_port_operations *ops)
6317 {
6318 spin_lock_init(&host->lock);
6319 host->dev = dev;
6320 host->flags = flags;
6321 host->ops = ops;
6322 }
6323
6324 /**
6325 * ata_host_register - register initialized ATA host
6326 * @host: ATA host to register
6327 * @sht: template for SCSI host
6328 *
6329 * Register initialized ATA host. @host is allocated using
6330 * ata_host_alloc() and fully initialized by LLD. This function
6331 * starts ports, registers @host with ATA and SCSI layers and
6332 * probe registered devices.
6333 *
6334 * LOCKING:
6335 * Inherited from calling layer (may sleep).
6336 *
6337 * RETURNS:
6338 * 0 on success, -errno otherwise.
6339 */
6340 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6341 {
6342 int i, rc;
6343
6344 /* host must have been started */
6345 if (!(host->flags & ATA_HOST_STARTED)) {
6346 dev_printk(KERN_ERR, host->dev,
6347 "BUG: trying to register unstarted host\n");
6348 WARN_ON(1);
6349 return -EINVAL;
6350 }
6351
6352 /* Blow away unused ports. This happens when LLD can't
6353 * determine the exact number of ports to allocate at
6354 * allocation time.
6355 */
6356 for (i = host->n_ports; host->ports[i]; i++)
6357 kfree(host->ports[i]);
6358
6359 /* give ports names and add SCSI hosts */
6360 for (i = 0; i < host->n_ports; i++)
6361 host->ports[i]->print_id = ata_print_id++;
6362
6363 rc = ata_scsi_add_hosts(host, sht);
6364 if (rc)
6365 return rc;
6366
6367 /* associate with ACPI nodes */
6368 ata_acpi_associate(host);
6369
6370 /* set cable, sata_spd_limit and report */
6371 for (i = 0; i < host->n_ports; i++) {
6372 struct ata_port *ap = host->ports[i];
6373 int irq_line;
6374 u32 scontrol;
6375 unsigned long xfer_mask;
6376
6377 /* set SATA cable type if still unset */
6378 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6379 ap->cbl = ATA_CBL_SATA;
6380
6381 /* init sata_spd_limit to the current value */
6382 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6383 int spd = (scontrol >> 4) & 0xf;
6384 if (spd)
6385 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6386 }
6387 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6388
6389 /* report the secondary IRQ for second channel legacy */
6390 irq_line = host->irq;
6391 if (i == 1 && host->irq2)
6392 irq_line = host->irq2;
6393
6394 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6395 ap->udma_mask);
6396
6397 /* print per-port info to dmesg */
6398 if (!ata_port_is_dummy(ap))
6399 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6400 "ctl 0x%p bmdma 0x%p irq %d\n",
6401 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6402 ata_mode_string(xfer_mask),
6403 ap->ioaddr.cmd_addr,
6404 ap->ioaddr.ctl_addr,
6405 ap->ioaddr.bmdma_addr,
6406 irq_line);
6407 else
6408 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6409 }
6410
6411 /* perform each probe synchronously */
6412 DPRINTK("probe begin\n");
6413 for (i = 0; i < host->n_ports; i++) {
6414 struct ata_port *ap = host->ports[i];
6415 int rc;
6416
6417 /* probe */
6418 if (ap->ops->error_handler) {
6419 struct ata_eh_info *ehi = &ap->eh_info;
6420 unsigned long flags;
6421
6422 ata_port_probe(ap);
6423
6424 /* kick EH for boot probing */
6425 spin_lock_irqsave(ap->lock, flags);
6426
6427 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6428 ehi->action |= ATA_EH_SOFTRESET;
6429 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6430
6431 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6432 ap->pflags |= ATA_PFLAG_LOADING;
6433 ata_port_schedule_eh(ap);
6434
6435 spin_unlock_irqrestore(ap->lock, flags);
6436
6437 /* wait for EH to finish */
6438 ata_port_wait_eh(ap);
6439 } else {
6440 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6441 rc = ata_bus_probe(ap);
6442 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6443
6444 if (rc) {
6445 /* FIXME: do something useful here?
6446 * Current libata behavior will
6447 * tear down everything when
6448 * the module is removed
6449 * or the h/w is unplugged.
6450 */
6451 }
6452 }
6453 }
6454
6455 /* probes are done, now scan each port's disk(s) */
6456 DPRINTK("host probe begin\n");
6457 for (i = 0; i < host->n_ports; i++) {
6458 struct ata_port *ap = host->ports[i];
6459
6460 ata_scsi_scan_host(ap, 1);
6461 }
6462
6463 return 0;
6464 }
6465
6466 /**
6467 * ata_host_activate - start host, request IRQ and register it
6468 * @host: target ATA host
6469 * @irq: IRQ to request
6470 * @irq_handler: irq_handler used when requesting IRQ
6471 * @irq_flags: irq_flags used when requesting IRQ
6472 * @sht: scsi_host_template to use when registering the host
6473 *
6474 * After allocating an ATA host and initializing it, most libata
6475 * LLDs perform three steps to activate the host - start host,
6476 * request IRQ and register it. This helper takes necessasry
6477 * arguments and performs the three steps in one go.
6478 *
6479 * LOCKING:
6480 * Inherited from calling layer (may sleep).
6481 *
6482 * RETURNS:
6483 * 0 on success, -errno otherwise.
6484 */
6485 int ata_host_activate(struct ata_host *host, int irq,
6486 irq_handler_t irq_handler, unsigned long irq_flags,
6487 struct scsi_host_template *sht)
6488 {
6489 int rc;
6490
6491 rc = ata_host_start(host);
6492 if (rc)
6493 return rc;
6494
6495 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6496 dev_driver_string(host->dev), host);
6497 if (rc)
6498 return rc;
6499
6500 /* Used to print device info at probe */
6501 host->irq = irq;
6502
6503 rc = ata_host_register(host, sht);
6504 /* if failed, just free the IRQ and leave ports alone */
6505 if (rc)
6506 devm_free_irq(host->dev, irq, host);
6507
6508 return rc;
6509 }
6510
6511 /**
6512 * ata_port_detach - Detach ATA port in prepration of device removal
6513 * @ap: ATA port to be detached
6514 *
6515 * Detach all ATA devices and the associated SCSI devices of @ap;
6516 * then, remove the associated SCSI host. @ap is guaranteed to
6517 * be quiescent on return from this function.
6518 *
6519 * LOCKING:
6520 * Kernel thread context (may sleep).
6521 */
6522 void ata_port_detach(struct ata_port *ap)
6523 {
6524 unsigned long flags;
6525 int i;
6526
6527 if (!ap->ops->error_handler)
6528 goto skip_eh;
6529
6530 /* tell EH we're leaving & flush EH */
6531 spin_lock_irqsave(ap->lock, flags);
6532 ap->pflags |= ATA_PFLAG_UNLOADING;
6533 spin_unlock_irqrestore(ap->lock, flags);
6534
6535 ata_port_wait_eh(ap);
6536
6537 /* EH is now guaranteed to see UNLOADING, so no new device
6538 * will be attached. Disable all existing devices.
6539 */
6540 spin_lock_irqsave(ap->lock, flags);
6541
6542 for (i = 0; i < ATA_MAX_DEVICES; i++)
6543 ata_dev_disable(&ap->device[i]);
6544
6545 spin_unlock_irqrestore(ap->lock, flags);
6546
6547 /* Final freeze & EH. All in-flight commands are aborted. EH
6548 * will be skipped and retrials will be terminated with bad
6549 * target.
6550 */
6551 spin_lock_irqsave(ap->lock, flags);
6552 ata_port_freeze(ap); /* won't be thawed */
6553 spin_unlock_irqrestore(ap->lock, flags);
6554
6555 ata_port_wait_eh(ap);
6556 cancel_rearming_delayed_work(&ap->hotplug_task);
6557
6558 skip_eh:
6559 /* remove the associated SCSI host */
6560 scsi_remove_host(ap->scsi_host);
6561 }
6562
6563 /**
6564 * ata_host_detach - Detach all ports of an ATA host
6565 * @host: Host to detach
6566 *
6567 * Detach all ports of @host.
6568 *
6569 * LOCKING:
6570 * Kernel thread context (may sleep).
6571 */
6572 void ata_host_detach(struct ata_host *host)
6573 {
6574 int i;
6575
6576 for (i = 0; i < host->n_ports; i++)
6577 ata_port_detach(host->ports[i]);
6578 }
6579
6580 /**
6581 * ata_std_ports - initialize ioaddr with standard port offsets.
6582 * @ioaddr: IO address structure to be initialized
6583 *
6584 * Utility function which initializes data_addr, error_addr,
6585 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6586 * device_addr, status_addr, and command_addr to standard offsets
6587 * relative to cmd_addr.
6588 *
6589 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6590 */
6591
6592 void ata_std_ports(struct ata_ioports *ioaddr)
6593 {
6594 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6595 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6596 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6597 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6598 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6599 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6600 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6601 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6602 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6603 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6604 }
6605
6606
6607 #ifdef CONFIG_PCI
6608
6609 /**
6610 * ata_pci_remove_one - PCI layer callback for device removal
6611 * @pdev: PCI device that was removed
6612 *
6613 * PCI layer indicates to libata via this hook that hot-unplug or
6614 * module unload event has occurred. Detach all ports. Resource
6615 * release is handled via devres.
6616 *
6617 * LOCKING:
6618 * Inherited from PCI layer (may sleep).
6619 */
6620 void ata_pci_remove_one(struct pci_dev *pdev)
6621 {
6622 struct device *dev = pci_dev_to_dev(pdev);
6623 struct ata_host *host = dev_get_drvdata(dev);
6624
6625 ata_host_detach(host);
6626 }
6627
6628 /* move to PCI subsystem */
6629 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6630 {
6631 unsigned long tmp = 0;
6632
6633 switch (bits->width) {
6634 case 1: {
6635 u8 tmp8 = 0;
6636 pci_read_config_byte(pdev, bits->reg, &tmp8);
6637 tmp = tmp8;
6638 break;
6639 }
6640 case 2: {
6641 u16 tmp16 = 0;
6642 pci_read_config_word(pdev, bits->reg, &tmp16);
6643 tmp = tmp16;
6644 break;
6645 }
6646 case 4: {
6647 u32 tmp32 = 0;
6648 pci_read_config_dword(pdev, bits->reg, &tmp32);
6649 tmp = tmp32;
6650 break;
6651 }
6652
6653 default:
6654 return -EINVAL;
6655 }
6656
6657 tmp &= bits->mask;
6658
6659 return (tmp == bits->val) ? 1 : 0;
6660 }
6661
6662 #ifdef CONFIG_PM
6663 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6664 {
6665 pci_save_state(pdev);
6666 pci_disable_device(pdev);
6667
6668 if (mesg.event == PM_EVENT_SUSPEND)
6669 pci_set_power_state(pdev, PCI_D3hot);
6670 }
6671
6672 int ata_pci_device_do_resume(struct pci_dev *pdev)
6673 {
6674 int rc;
6675
6676 pci_set_power_state(pdev, PCI_D0);
6677 pci_restore_state(pdev);
6678
6679 rc = pcim_enable_device(pdev);
6680 if (rc) {
6681 dev_printk(KERN_ERR, &pdev->dev,
6682 "failed to enable device after resume (%d)\n", rc);
6683 return rc;
6684 }
6685
6686 pci_set_master(pdev);
6687 return 0;
6688 }
6689
6690 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6691 {
6692 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6693 int rc = 0;
6694
6695 rc = ata_host_suspend(host, mesg);
6696 if (rc)
6697 return rc;
6698
6699 ata_pci_device_do_suspend(pdev, mesg);
6700
6701 return 0;
6702 }
6703
6704 int ata_pci_device_resume(struct pci_dev *pdev)
6705 {
6706 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6707 int rc;
6708
6709 rc = ata_pci_device_do_resume(pdev);
6710 if (rc == 0)
6711 ata_host_resume(host);
6712 return rc;
6713 }
6714 #endif /* CONFIG_PM */
6715
6716 #endif /* CONFIG_PCI */
6717
6718
6719 static int __init ata_init(void)
6720 {
6721 ata_probe_timeout *= HZ;
6722 ata_wq = create_workqueue("ata");
6723 if (!ata_wq)
6724 return -ENOMEM;
6725
6726 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6727 if (!ata_aux_wq) {
6728 destroy_workqueue(ata_wq);
6729 return -ENOMEM;
6730 }
6731
6732 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6733 return 0;
6734 }
6735
6736 static void __exit ata_exit(void)
6737 {
6738 destroy_workqueue(ata_wq);
6739 destroy_workqueue(ata_aux_wq);
6740 }
6741
6742 subsys_initcall(ata_init);
6743 module_exit(ata_exit);
6744
6745 static unsigned long ratelimit_time;
6746 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6747
6748 int ata_ratelimit(void)
6749 {
6750 int rc;
6751 unsigned long flags;
6752
6753 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6754
6755 if (time_after(jiffies, ratelimit_time)) {
6756 rc = 1;
6757 ratelimit_time = jiffies + (HZ/5);
6758 } else
6759 rc = 0;
6760
6761 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6762
6763 return rc;
6764 }
6765
6766 /**
6767 * ata_wait_register - wait until register value changes
6768 * @reg: IO-mapped register
6769 * @mask: Mask to apply to read register value
6770 * @val: Wait condition
6771 * @interval_msec: polling interval in milliseconds
6772 * @timeout_msec: timeout in milliseconds
6773 *
6774 * Waiting for some bits of register to change is a common
6775 * operation for ATA controllers. This function reads 32bit LE
6776 * IO-mapped register @reg and tests for the following condition.
6777 *
6778 * (*@reg & mask) != val
6779 *
6780 * If the condition is met, it returns; otherwise, the process is
6781 * repeated after @interval_msec until timeout.
6782 *
6783 * LOCKING:
6784 * Kernel thread context (may sleep)
6785 *
6786 * RETURNS:
6787 * The final register value.
6788 */
6789 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6790 unsigned long interval_msec,
6791 unsigned long timeout_msec)
6792 {
6793 unsigned long timeout;
6794 u32 tmp;
6795
6796 tmp = ioread32(reg);
6797
6798 /* Calculate timeout _after_ the first read to make sure
6799 * preceding writes reach the controller before starting to
6800 * eat away the timeout.
6801 */
6802 timeout = jiffies + (timeout_msec * HZ) / 1000;
6803
6804 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6805 msleep(interval_msec);
6806 tmp = ioread32(reg);
6807 }
6808
6809 return tmp;
6810 }
6811
6812 /*
6813 * Dummy port_ops
6814 */
6815 static void ata_dummy_noret(struct ata_port *ap) { }
6816 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6817 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6818
6819 static u8 ata_dummy_check_status(struct ata_port *ap)
6820 {
6821 return ATA_DRDY;
6822 }
6823
6824 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6825 {
6826 return AC_ERR_SYSTEM;
6827 }
6828
6829 const struct ata_port_operations ata_dummy_port_ops = {
6830 .port_disable = ata_port_disable,
6831 .check_status = ata_dummy_check_status,
6832 .check_altstatus = ata_dummy_check_status,
6833 .dev_select = ata_noop_dev_select,
6834 .qc_prep = ata_noop_qc_prep,
6835 .qc_issue = ata_dummy_qc_issue,
6836 .freeze = ata_dummy_noret,
6837 .thaw = ata_dummy_noret,
6838 .error_handler = ata_dummy_noret,
6839 .post_internal_cmd = ata_dummy_qc_noret,
6840 .irq_clear = ata_dummy_noret,
6841 .port_start = ata_dummy_ret0,
6842 .port_stop = ata_dummy_noret,
6843 };
6844
6845 const struct ata_port_info ata_dummy_port_info = {
6846 .port_ops = &ata_dummy_port_ops,
6847 };
6848
6849 /*
6850 * libata is essentially a library of internal helper functions for
6851 * low-level ATA host controller drivers. As such, the API/ABI is
6852 * likely to change as new drivers are added and updated.
6853 * Do not depend on ABI/API stability.
6854 */
6855
6856 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6857 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6858 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6859 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6860 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6861 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6862 EXPORT_SYMBOL_GPL(ata_std_ports);
6863 EXPORT_SYMBOL_GPL(ata_host_init);
6864 EXPORT_SYMBOL_GPL(ata_host_alloc);
6865 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6866 EXPORT_SYMBOL_GPL(ata_host_start);
6867 EXPORT_SYMBOL_GPL(ata_host_register);
6868 EXPORT_SYMBOL_GPL(ata_host_activate);
6869 EXPORT_SYMBOL_GPL(ata_host_detach);
6870 EXPORT_SYMBOL_GPL(ata_sg_init);
6871 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6872 EXPORT_SYMBOL_GPL(ata_hsm_move);
6873 EXPORT_SYMBOL_GPL(ata_qc_complete);
6874 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6875 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6876 EXPORT_SYMBOL_GPL(ata_tf_load);
6877 EXPORT_SYMBOL_GPL(ata_tf_read);
6878 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6879 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6880 EXPORT_SYMBOL_GPL(sata_print_link_status);
6881 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6882 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6883 EXPORT_SYMBOL_GPL(ata_check_status);
6884 EXPORT_SYMBOL_GPL(ata_altstatus);
6885 EXPORT_SYMBOL_GPL(ata_exec_command);
6886 EXPORT_SYMBOL_GPL(ata_port_start);
6887 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6888 EXPORT_SYMBOL_GPL(ata_interrupt);
6889 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6890 EXPORT_SYMBOL_GPL(ata_data_xfer);
6891 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6892 EXPORT_SYMBOL_GPL(ata_qc_prep);
6893 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6894 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6895 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6896 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6897 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6898 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6899 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6900 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6901 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6902 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6903 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6904 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6905 EXPORT_SYMBOL_GPL(ata_port_probe);
6906 EXPORT_SYMBOL_GPL(ata_dev_disable);
6907 EXPORT_SYMBOL_GPL(sata_set_spd);
6908 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6909 EXPORT_SYMBOL_GPL(sata_phy_resume);
6910 EXPORT_SYMBOL_GPL(sata_phy_reset);
6911 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6912 EXPORT_SYMBOL_GPL(ata_bus_reset);
6913 EXPORT_SYMBOL_GPL(ata_std_prereset);
6914 EXPORT_SYMBOL_GPL(ata_std_softreset);
6915 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6916 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6917 EXPORT_SYMBOL_GPL(ata_std_postreset);
6918 EXPORT_SYMBOL_GPL(ata_dev_classify);
6919 EXPORT_SYMBOL_GPL(ata_dev_pair);
6920 EXPORT_SYMBOL_GPL(ata_port_disable);
6921 EXPORT_SYMBOL_GPL(ata_ratelimit);
6922 EXPORT_SYMBOL_GPL(ata_wait_register);
6923 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6924 EXPORT_SYMBOL_GPL(ata_wait_ready);
6925 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6926 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6927 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6928 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6929 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6930 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6931 EXPORT_SYMBOL_GPL(ata_host_intr);
6932 EXPORT_SYMBOL_GPL(sata_scr_valid);
6933 EXPORT_SYMBOL_GPL(sata_scr_read);
6934 EXPORT_SYMBOL_GPL(sata_scr_write);
6935 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6936 EXPORT_SYMBOL_GPL(ata_port_online);
6937 EXPORT_SYMBOL_GPL(ata_port_offline);
6938 #ifdef CONFIG_PM
6939 EXPORT_SYMBOL_GPL(ata_host_suspend);
6940 EXPORT_SYMBOL_GPL(ata_host_resume);
6941 #endif /* CONFIG_PM */
6942 EXPORT_SYMBOL_GPL(ata_id_string);
6943 EXPORT_SYMBOL_GPL(ata_id_c_string);
6944 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6945 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6946
6947 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6948 EXPORT_SYMBOL_GPL(ata_timing_compute);
6949 EXPORT_SYMBOL_GPL(ata_timing_merge);
6950
6951 #ifdef CONFIG_PCI
6952 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6953 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
6954 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6955 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
6956 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6957 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6958 #ifdef CONFIG_PM
6959 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6960 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6961 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6962 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6963 #endif /* CONFIG_PM */
6964 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6965 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6966 #endif /* CONFIG_PCI */
6967
6968 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6969 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6970 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6971 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6972 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6973 EXPORT_SYMBOL_GPL(ata_port_abort);
6974 EXPORT_SYMBOL_GPL(ata_port_freeze);
6975 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6976 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6977 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6978 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6979 EXPORT_SYMBOL_GPL(ata_do_eh);
6980 EXPORT_SYMBOL_GPL(ata_irq_on);
6981 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6982 EXPORT_SYMBOL_GPL(ata_irq_ack);
6983 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6984 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6985
6986 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6987 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6988 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6989 EXPORT_SYMBOL_GPL(ata_cable_sata);