]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/ata/libata-core.c
[PATCH] s390: fix cmm kernel thread handling
[mirror_ubuntu-bionic-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
66
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
71
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
74
75 struct workqueue_struct *ata_aux_wq;
76
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
97
98
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
113 {
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139 }
140
141 /**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
153 {
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168 }
169
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
185 0,
186 0,
187 0,
188 0,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
198 };
199
200 /**
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
203 *
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
206 *
207 * LOCKING:
208 * caller.
209 */
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
211 {
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
214 u8 cmd;
215
216 int index, fua, lba48, write;
217
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
221
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
229 } else {
230 tf->protocol = ATA_PROT_DMA;
231 index = 16;
232 }
233
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
238 }
239 return -1;
240 }
241
242 /**
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
247 *
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
250 *
251 * LOCKING:
252 * None.
253 *
254 * RETURNS:
255 * Packed xfer_mask.
256 */
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
260 {
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
264 }
265
266 /**
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
272 *
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
275 */
276 static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
280 {
281 if (pio_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
283 if (mwdma_mask)
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
285 if (udma_mask)
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287 }
288
289 static const struct ata_xfer_ent {
290 int shift, bits;
291 u8 base;
292 } ata_xfer_tbl[] = {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
296 { -1, },
297 };
298
299 /**
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
302 *
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
305 *
306 * LOCKING:
307 * None.
308 *
309 * RETURNS:
310 * Matching XFER_* value, 0 if no match found.
311 */
312 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
313 {
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
316
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
320 return 0;
321 }
322
323 /**
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
326 *
327 * Return matching xfer_mask for @xfer_mode.
328 *
329 * LOCKING:
330 * None.
331 *
332 * RETURNS:
333 * Matching xfer_mask, 0 if no match found.
334 */
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
336 {
337 const struct ata_xfer_ent *ent;
338
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
342 return 0;
343 }
344
345 /**
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
348 *
349 * Return matching xfer_shift for @xfer_mode.
350 *
351 * LOCKING:
352 * None.
353 *
354 * RETURNS:
355 * Matching xfer_shift, -1 if no match found.
356 */
357 static int ata_xfer_mode2shift(unsigned int xfer_mode)
358 {
359 const struct ata_xfer_ent *ent;
360
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
363 return ent->shift;
364 return -1;
365 }
366
367 /**
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
370 *
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
373 *
374 * LOCKING:
375 * None.
376 *
377 * RETURNS:
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
380 */
381 static const char *ata_mode_string(unsigned int xfer_mask)
382 {
383 static const char * const xfer_mode_str[] = {
384 "PIO0",
385 "PIO1",
386 "PIO2",
387 "PIO3",
388 "PIO4",
389 "PIO5",
390 "PIO6",
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
394 "MWDMA3",
395 "MWDMA4",
396 "UDMA/16",
397 "UDMA/25",
398 "UDMA/33",
399 "UDMA/44",
400 "UDMA/66",
401 "UDMA/100",
402 "UDMA/133",
403 "UDMA7",
404 };
405 int highbit;
406
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
410 return "<n/a>";
411 }
412
413 static const char *sata_spd_string(unsigned int spd)
414 {
415 static const char * const spd_str[] = {
416 "1.5 Gbps",
417 "3.0 Gbps",
418 };
419
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
421 return "<unknown>";
422 return spd_str[spd - 1];
423 }
424
425 void ata_dev_disable(struct ata_device *dev)
426 {
427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
429 dev->class++;
430 }
431 }
432
433 /**
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
437 *
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
441 *
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
446 *
447 * LOCKING:
448 * caller.
449 */
450
451 static unsigned int ata_pio_devchk(struct ata_port *ap,
452 unsigned int device)
453 {
454 struct ata_ioports *ioaddr = &ap->ioaddr;
455 u8 nsect, lbal;
456
457 ap->ops->dev_select(ap, device);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
464
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
467
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
470
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
473
474 return 0; /* nothing found */
475 }
476
477 /**
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
481 *
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
485 *
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
490 *
491 * LOCKING:
492 * caller.
493 */
494
495 static unsigned int ata_mmio_devchk(struct ata_port *ap,
496 unsigned int device)
497 {
498 struct ata_ioports *ioaddr = &ap->ioaddr;
499 u8 nsect, lbal;
500
501 ap->ops->dev_select(ap, device);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
508
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
511
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
514
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
517
518 return 0; /* nothing found */
519 }
520
521 /**
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
525 *
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
529 *
530 * LOCKING:
531 * caller.
532 */
533
534 static unsigned int ata_devchk(struct ata_port *ap,
535 unsigned int device)
536 {
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
540 }
541
542 /**
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
545 *
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
556 */
557
558 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
559 {
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
563 */
564
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
568 return ATA_DEV_ATA;
569 }
570
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
575 }
576
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
579 }
580
581 /**
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
586 *
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
590 * and diagnostics.
591 *
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
595 *
596 * LOCKING:
597 * caller.
598 *
599 * RETURNS:
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
601 */
602
603 static unsigned int
604 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
605 {
606 struct ata_taskfile tf;
607 unsigned int class;
608 u8 err;
609
610 ap->ops->dev_select(ap, device);
611
612 memset(&tf, 0, sizeof(tf));
613
614 ap->ops->tf_read(ap, &tf);
615 err = tf.feature;
616 if (r_err)
617 *r_err = err;
618
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
623 else if (err == 1)
624 /* do nothing */ ;
625 else if ((device == 0) && (err == 0x81))
626 /* do nothing */ ;
627 else
628 return ATA_DEV_NONE;
629
630 /* determine if device is ATA or ATAPI */
631 class = ata_dev_classify(&tf);
632
633 if (class == ATA_DEV_UNKNOWN)
634 return ATA_DEV_NONE;
635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
636 return ATA_DEV_NONE;
637 return class;
638 }
639
640 /**
641 * ata_id_string - Convert IDENTIFY DEVICE page into string
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
646 *
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
650 *
651 * LOCKING:
652 * caller.
653 */
654
655 void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
657 {
658 unsigned int c;
659
660 while (len > 0) {
661 c = id[ofs] >> 8;
662 *s = c;
663 s++;
664
665 c = id[ofs] & 0xff;
666 *s = c;
667 s++;
668
669 ofs++;
670 len -= 2;
671 }
672 }
673
674 /**
675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
680 *
681 * This function is identical to ata_id_string except that it
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
684 *
685 * LOCKING:
686 * caller.
687 */
688 void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
690 {
691 unsigned char *p;
692
693 WARN_ON(!(len & 1));
694
695 ata_id_string(id, s, ofs, len - 1);
696
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
699 p--;
700 *p = '\0';
701 }
702
703 static u64 ata_id_n_sectors(const u16 *id)
704 {
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
708 else
709 return ata_id_u32(id, 60);
710 } else {
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
713 else
714 return id[1] * id[3] * id[6];
715 }
716 }
717
718 /**
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
722 *
723 * This function performs no actual function.
724 *
725 * May be used as the dev_select() entry in ata_port_operations.
726 *
727 * LOCKING:
728 * caller.
729 */
730 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
731 {
732 }
733
734
735 /**
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
739 *
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
742 * ATA channel. Works with both PIO and MMIO.
743 *
744 * May be used as the dev_select() entry in ata_port_operations.
745 *
746 * LOCKING:
747 * caller.
748 */
749
750 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
751 {
752 u8 tmp;
753
754 if (device == 0)
755 tmp = ATA_DEVICE_OBS;
756 else
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
758
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
761 } else {
762 outb(tmp, ap->ioaddr.device_addr);
763 }
764 ata_pause(ap); /* needed; also flushes, for mmio */
765 }
766
767 /**
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
773 *
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
776 * ATA channel.
777 *
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
781 *
782 * LOCKING:
783 * caller.
784 */
785
786 void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
788 {
789 if (ata_msg_probe(ap))
790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
791 "device %u, wait %u\n", ap->id, device, wait);
792
793 if (wait)
794 ata_wait_idle(ap);
795
796 ap->ops->dev_select(ap, device);
797
798 if (wait) {
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
800 msleep(150);
801 ata_wait_idle(ap);
802 }
803 }
804
805 /**
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
807 * @id: IDENTIFY DEVICE page to dump
808 *
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
810 * page.
811 *
812 * LOCKING:
813 * caller.
814 */
815
816 static inline void ata_dump_id(const u16 *id)
817 {
818 DPRINTK("49==0x%04x "
819 "53==0x%04x "
820 "63==0x%04x "
821 "64==0x%04x "
822 "75==0x%04x \n",
823 id[49],
824 id[53],
825 id[63],
826 id[64],
827 id[75]);
828 DPRINTK("80==0x%04x "
829 "81==0x%04x "
830 "82==0x%04x "
831 "83==0x%04x "
832 "84==0x%04x \n",
833 id[80],
834 id[81],
835 id[82],
836 id[83],
837 id[84]);
838 DPRINTK("88==0x%04x "
839 "93==0x%04x\n",
840 id[88],
841 id[93]);
842 }
843
844 /**
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
847 *
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
850 *
851 * FIXME: pre IDE drive timing (do we care ?).
852 *
853 * LOCKING:
854 * None.
855 *
856 * RETURNS:
857 * Computed xfermask
858 */
859 static unsigned int ata_id_xfermask(const u16 *id)
860 {
861 unsigned int pio_mask, mwdma_mask, udma_mask;
862
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
866 pio_mask <<= 3;
867 pio_mask |= 0x7;
868 } else {
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
871 * a mask.
872 */
873 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
874
875 /* But wait.. there's more. Design your standards by
876 * committee and you too can get a free iordy field to
877 * process. However its the speeds not the modes that
878 * are supported... Note drivers using the timing API
879 * will get this right anyway
880 */
881 }
882
883 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
884
885 if (ata_id_is_cfa(id)) {
886 /*
887 * Process compact flash extended modes
888 */
889 int pio = id[163] & 0x7;
890 int dma = (id[163] >> 3) & 7;
891
892 if (pio)
893 pio_mask |= (1 << 5);
894 if (pio > 1)
895 pio_mask |= (1 << 6);
896 if (dma)
897 mwdma_mask |= (1 << 3);
898 if (dma > 1)
899 mwdma_mask |= (1 << 4);
900 }
901
902 udma_mask = 0;
903 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
904 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
905
906 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
907 }
908
909 /**
910 * ata_port_queue_task - Queue port_task
911 * @ap: The ata_port to queue port_task for
912 * @fn: workqueue function to be scheduled
913 * @data: data value to pass to workqueue function
914 * @delay: delay time for workqueue function
915 *
916 * Schedule @fn(@data) for execution after @delay jiffies using
917 * port_task. There is one port_task per port and it's the
918 * user(low level driver)'s responsibility to make sure that only
919 * one task is active at any given time.
920 *
921 * libata core layer takes care of synchronization between
922 * port_task and EH. ata_port_queue_task() may be ignored for EH
923 * synchronization.
924 *
925 * LOCKING:
926 * Inherited from caller.
927 */
928 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
929 unsigned long delay)
930 {
931 int rc;
932
933 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
934 return;
935
936 PREPARE_WORK(&ap->port_task, fn, data);
937
938 if (!delay)
939 rc = queue_work(ata_wq, &ap->port_task);
940 else
941 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
942
943 /* rc == 0 means that another user is using port task */
944 WARN_ON(rc == 0);
945 }
946
947 /**
948 * ata_port_flush_task - Flush port_task
949 * @ap: The ata_port to flush port_task for
950 *
951 * After this function completes, port_task is guranteed not to
952 * be running or scheduled.
953 *
954 * LOCKING:
955 * Kernel thread context (may sleep)
956 */
957 void ata_port_flush_task(struct ata_port *ap)
958 {
959 unsigned long flags;
960
961 DPRINTK("ENTER\n");
962
963 spin_lock_irqsave(ap->lock, flags);
964 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
965 spin_unlock_irqrestore(ap->lock, flags);
966
967 DPRINTK("flush #1\n");
968 flush_workqueue(ata_wq);
969
970 /*
971 * At this point, if a task is running, it's guaranteed to see
972 * the FLUSH flag; thus, it will never queue pio tasks again.
973 * Cancel and flush.
974 */
975 if (!cancel_delayed_work(&ap->port_task)) {
976 if (ata_msg_ctl(ap))
977 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
978 __FUNCTION__);
979 flush_workqueue(ata_wq);
980 }
981
982 spin_lock_irqsave(ap->lock, flags);
983 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
984 spin_unlock_irqrestore(ap->lock, flags);
985
986 if (ata_msg_ctl(ap))
987 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
988 }
989
990 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
991 {
992 struct completion *waiting = qc->private_data;
993
994 complete(waiting);
995 }
996
997 /**
998 * ata_exec_internal - execute libata internal command
999 * @dev: Device to which the command is sent
1000 * @tf: Taskfile registers for the command and the result
1001 * @cdb: CDB for packet command
1002 * @dma_dir: Data tranfer direction of the command
1003 * @buf: Data buffer of the command
1004 * @buflen: Length of data buffer
1005 *
1006 * Executes libata internal command with timeout. @tf contains
1007 * command on entry and result on return. Timeout and error
1008 * conditions are reported via return value. No recovery action
1009 * is taken after a command times out. It's caller's duty to
1010 * clean up after timeout.
1011 *
1012 * LOCKING:
1013 * None. Should be called with kernel context, might sleep.
1014 *
1015 * RETURNS:
1016 * Zero on success, AC_ERR_* mask on failure
1017 */
1018 unsigned ata_exec_internal(struct ata_device *dev,
1019 struct ata_taskfile *tf, const u8 *cdb,
1020 int dma_dir, void *buf, unsigned int buflen)
1021 {
1022 struct ata_port *ap = dev->ap;
1023 u8 command = tf->command;
1024 struct ata_queued_cmd *qc;
1025 unsigned int tag, preempted_tag;
1026 u32 preempted_sactive, preempted_qc_active;
1027 DECLARE_COMPLETION_ONSTACK(wait);
1028 unsigned long flags;
1029 unsigned int err_mask;
1030 int rc;
1031
1032 spin_lock_irqsave(ap->lock, flags);
1033
1034 /* no internal command while frozen */
1035 if (ap->pflags & ATA_PFLAG_FROZEN) {
1036 spin_unlock_irqrestore(ap->lock, flags);
1037 return AC_ERR_SYSTEM;
1038 }
1039
1040 /* initialize internal qc */
1041
1042 /* XXX: Tag 0 is used for drivers with legacy EH as some
1043 * drivers choke if any other tag is given. This breaks
1044 * ata_tag_internal() test for those drivers. Don't use new
1045 * EH stuff without converting to it.
1046 */
1047 if (ap->ops->error_handler)
1048 tag = ATA_TAG_INTERNAL;
1049 else
1050 tag = 0;
1051
1052 if (test_and_set_bit(tag, &ap->qc_allocated))
1053 BUG();
1054 qc = __ata_qc_from_tag(ap, tag);
1055
1056 qc->tag = tag;
1057 qc->scsicmd = NULL;
1058 qc->ap = ap;
1059 qc->dev = dev;
1060 ata_qc_reinit(qc);
1061
1062 preempted_tag = ap->active_tag;
1063 preempted_sactive = ap->sactive;
1064 preempted_qc_active = ap->qc_active;
1065 ap->active_tag = ATA_TAG_POISON;
1066 ap->sactive = 0;
1067 ap->qc_active = 0;
1068
1069 /* prepare & issue qc */
1070 qc->tf = *tf;
1071 if (cdb)
1072 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1073 qc->flags |= ATA_QCFLAG_RESULT_TF;
1074 qc->dma_dir = dma_dir;
1075 if (dma_dir != DMA_NONE) {
1076 ata_sg_init_one(qc, buf, buflen);
1077 qc->nsect = buflen / ATA_SECT_SIZE;
1078 }
1079
1080 qc->private_data = &wait;
1081 qc->complete_fn = ata_qc_complete_internal;
1082
1083 ata_qc_issue(qc);
1084
1085 spin_unlock_irqrestore(ap->lock, flags);
1086
1087 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1088
1089 ata_port_flush_task(ap);
1090
1091 if (!rc) {
1092 spin_lock_irqsave(ap->lock, flags);
1093
1094 /* We're racing with irq here. If we lose, the
1095 * following test prevents us from completing the qc
1096 * twice. If we win, the port is frozen and will be
1097 * cleaned up by ->post_internal_cmd().
1098 */
1099 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1100 qc->err_mask |= AC_ERR_TIMEOUT;
1101
1102 if (ap->ops->error_handler)
1103 ata_port_freeze(ap);
1104 else
1105 ata_qc_complete(qc);
1106
1107 if (ata_msg_warn(ap))
1108 ata_dev_printk(dev, KERN_WARNING,
1109 "qc timeout (cmd 0x%x)\n", command);
1110 }
1111
1112 spin_unlock_irqrestore(ap->lock, flags);
1113 }
1114
1115 /* do post_internal_cmd */
1116 if (ap->ops->post_internal_cmd)
1117 ap->ops->post_internal_cmd(qc);
1118
1119 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1120 if (ata_msg_warn(ap))
1121 ata_dev_printk(dev, KERN_WARNING,
1122 "zero err_mask for failed "
1123 "internal command, assuming AC_ERR_OTHER\n");
1124 qc->err_mask |= AC_ERR_OTHER;
1125 }
1126
1127 /* finish up */
1128 spin_lock_irqsave(ap->lock, flags);
1129
1130 *tf = qc->result_tf;
1131 err_mask = qc->err_mask;
1132
1133 ata_qc_free(qc);
1134 ap->active_tag = preempted_tag;
1135 ap->sactive = preempted_sactive;
1136 ap->qc_active = preempted_qc_active;
1137
1138 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1139 * Until those drivers are fixed, we detect the condition
1140 * here, fail the command with AC_ERR_SYSTEM and reenable the
1141 * port.
1142 *
1143 * Note that this doesn't change any behavior as internal
1144 * command failure results in disabling the device in the
1145 * higher layer for LLDDs without new reset/EH callbacks.
1146 *
1147 * Kill the following code as soon as those drivers are fixed.
1148 */
1149 if (ap->flags & ATA_FLAG_DISABLED) {
1150 err_mask |= AC_ERR_SYSTEM;
1151 ata_port_probe(ap);
1152 }
1153
1154 spin_unlock_irqrestore(ap->lock, flags);
1155
1156 return err_mask;
1157 }
1158
1159 /**
1160 * ata_do_simple_cmd - execute simple internal command
1161 * @dev: Device to which the command is sent
1162 * @cmd: Opcode to execute
1163 *
1164 * Execute a 'simple' command, that only consists of the opcode
1165 * 'cmd' itself, without filling any other registers
1166 *
1167 * LOCKING:
1168 * Kernel thread context (may sleep).
1169 *
1170 * RETURNS:
1171 * Zero on success, AC_ERR_* mask on failure
1172 */
1173 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1174 {
1175 struct ata_taskfile tf;
1176
1177 ata_tf_init(dev, &tf);
1178
1179 tf.command = cmd;
1180 tf.flags |= ATA_TFLAG_DEVICE;
1181 tf.protocol = ATA_PROT_NODATA;
1182
1183 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1184 }
1185
1186 /**
1187 * ata_pio_need_iordy - check if iordy needed
1188 * @adev: ATA device
1189 *
1190 * Check if the current speed of the device requires IORDY. Used
1191 * by various controllers for chip configuration.
1192 */
1193
1194 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1195 {
1196 int pio;
1197 int speed = adev->pio_mode - XFER_PIO_0;
1198
1199 if (speed < 2)
1200 return 0;
1201 if (speed > 2)
1202 return 1;
1203
1204 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1205
1206 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1207 pio = adev->id[ATA_ID_EIDE_PIO];
1208 /* Is the speed faster than the drive allows non IORDY ? */
1209 if (pio) {
1210 /* This is cycle times not frequency - watch the logic! */
1211 if (pio > 240) /* PIO2 is 240nS per cycle */
1212 return 1;
1213 return 0;
1214 }
1215 }
1216 return 0;
1217 }
1218
1219 /**
1220 * ata_dev_read_id - Read ID data from the specified device
1221 * @dev: target device
1222 * @p_class: pointer to class of the target device (may be changed)
1223 * @post_reset: is this read ID post-reset?
1224 * @id: buffer to read IDENTIFY data into
1225 *
1226 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1227 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1228 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1229 * for pre-ATA4 drives.
1230 *
1231 * LOCKING:
1232 * Kernel thread context (may sleep)
1233 *
1234 * RETURNS:
1235 * 0 on success, -errno otherwise.
1236 */
1237 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1238 int post_reset, u16 *id)
1239 {
1240 struct ata_port *ap = dev->ap;
1241 unsigned int class = *p_class;
1242 struct ata_taskfile tf;
1243 unsigned int err_mask = 0;
1244 const char *reason;
1245 int rc;
1246
1247 if (ata_msg_ctl(ap))
1248 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1249 __FUNCTION__, ap->id, dev->devno);
1250
1251 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1252
1253 retry:
1254 ata_tf_init(dev, &tf);
1255
1256 switch (class) {
1257 case ATA_DEV_ATA:
1258 tf.command = ATA_CMD_ID_ATA;
1259 break;
1260 case ATA_DEV_ATAPI:
1261 tf.command = ATA_CMD_ID_ATAPI;
1262 break;
1263 default:
1264 rc = -ENODEV;
1265 reason = "unsupported class";
1266 goto err_out;
1267 }
1268
1269 tf.protocol = ATA_PROT_PIO;
1270
1271 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1272 id, sizeof(id[0]) * ATA_ID_WORDS);
1273 if (err_mask) {
1274 rc = -EIO;
1275 reason = "I/O error";
1276 goto err_out;
1277 }
1278
1279 swap_buf_le16(id, ATA_ID_WORDS);
1280
1281 /* sanity check */
1282 rc = -EINVAL;
1283 reason = "device reports illegal type";
1284
1285 if (class == ATA_DEV_ATA) {
1286 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1287 goto err_out;
1288 } else {
1289 if (ata_id_is_ata(id))
1290 goto err_out;
1291 }
1292
1293 if (post_reset && class == ATA_DEV_ATA) {
1294 /*
1295 * The exact sequence expected by certain pre-ATA4 drives is:
1296 * SRST RESET
1297 * IDENTIFY
1298 * INITIALIZE DEVICE PARAMETERS
1299 * anything else..
1300 * Some drives were very specific about that exact sequence.
1301 */
1302 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1303 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1304 if (err_mask) {
1305 rc = -EIO;
1306 reason = "INIT_DEV_PARAMS failed";
1307 goto err_out;
1308 }
1309
1310 /* current CHS translation info (id[53-58]) might be
1311 * changed. reread the identify device info.
1312 */
1313 post_reset = 0;
1314 goto retry;
1315 }
1316 }
1317
1318 *p_class = class;
1319
1320 return 0;
1321
1322 err_out:
1323 if (ata_msg_warn(ap))
1324 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1325 "(%s, err_mask=0x%x)\n", reason, err_mask);
1326 return rc;
1327 }
1328
1329 static inline u8 ata_dev_knobble(struct ata_device *dev)
1330 {
1331 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1332 }
1333
1334 static void ata_dev_config_ncq(struct ata_device *dev,
1335 char *desc, size_t desc_sz)
1336 {
1337 struct ata_port *ap = dev->ap;
1338 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1339
1340 if (!ata_id_has_ncq(dev->id)) {
1341 desc[0] = '\0';
1342 return;
1343 }
1344
1345 if (ap->flags & ATA_FLAG_NCQ) {
1346 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1347 dev->flags |= ATA_DFLAG_NCQ;
1348 }
1349
1350 if (hdepth >= ddepth)
1351 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1352 else
1353 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1354 }
1355
1356 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1357 {
1358 int i;
1359
1360 if (ap->scsi_host) {
1361 unsigned int len = 0;
1362
1363 for (i = 0; i < ATA_MAX_DEVICES; i++)
1364 len = max(len, ap->device[i].cdb_len);
1365
1366 ap->scsi_host->max_cmd_len = len;
1367 }
1368 }
1369
1370 /**
1371 * ata_dev_configure - Configure the specified ATA/ATAPI device
1372 * @dev: Target device to configure
1373 * @print_info: Enable device info printout
1374 *
1375 * Configure @dev according to @dev->id. Generic and low-level
1376 * driver specific fixups are also applied.
1377 *
1378 * LOCKING:
1379 * Kernel thread context (may sleep)
1380 *
1381 * RETURNS:
1382 * 0 on success, -errno otherwise
1383 */
1384 int ata_dev_configure(struct ata_device *dev, int print_info)
1385 {
1386 struct ata_port *ap = dev->ap;
1387 const u16 *id = dev->id;
1388 unsigned int xfer_mask;
1389 char revbuf[7]; /* XYZ-99\0 */
1390 int rc;
1391
1392 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1393 ata_dev_printk(dev, KERN_INFO,
1394 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1395 __FUNCTION__, ap->id, dev->devno);
1396 return 0;
1397 }
1398
1399 if (ata_msg_probe(ap))
1400 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1401 __FUNCTION__, ap->id, dev->devno);
1402
1403 /* print device capabilities */
1404 if (ata_msg_probe(ap))
1405 ata_dev_printk(dev, KERN_DEBUG,
1406 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1407 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1408 __FUNCTION__,
1409 id[49], id[82], id[83], id[84],
1410 id[85], id[86], id[87], id[88]);
1411
1412 /* initialize to-be-configured parameters */
1413 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1414 dev->max_sectors = 0;
1415 dev->cdb_len = 0;
1416 dev->n_sectors = 0;
1417 dev->cylinders = 0;
1418 dev->heads = 0;
1419 dev->sectors = 0;
1420
1421 /*
1422 * common ATA, ATAPI feature tests
1423 */
1424
1425 /* find max transfer mode; for printk only */
1426 xfer_mask = ata_id_xfermask(id);
1427
1428 if (ata_msg_probe(ap))
1429 ata_dump_id(id);
1430
1431 /* ATA-specific feature tests */
1432 if (dev->class == ATA_DEV_ATA) {
1433 if (ata_id_is_cfa(id)) {
1434 if (id[162] & 1) /* CPRM may make this media unusable */
1435 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1436 ap->id, dev->devno);
1437 snprintf(revbuf, 7, "CFA");
1438 }
1439 else
1440 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1441
1442 dev->n_sectors = ata_id_n_sectors(id);
1443
1444 if (ata_id_has_lba(id)) {
1445 const char *lba_desc;
1446 char ncq_desc[20];
1447
1448 lba_desc = "LBA";
1449 dev->flags |= ATA_DFLAG_LBA;
1450 if (ata_id_has_lba48(id)) {
1451 dev->flags |= ATA_DFLAG_LBA48;
1452 lba_desc = "LBA48";
1453 }
1454
1455 /* config NCQ */
1456 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1457
1458 /* print device info to dmesg */
1459 if (ata_msg_drv(ap) && print_info)
1460 ata_dev_printk(dev, KERN_INFO, "%s, "
1461 "max %s, %Lu sectors: %s %s\n",
1462 revbuf,
1463 ata_mode_string(xfer_mask),
1464 (unsigned long long)dev->n_sectors,
1465 lba_desc, ncq_desc);
1466 } else {
1467 /* CHS */
1468
1469 /* Default translation */
1470 dev->cylinders = id[1];
1471 dev->heads = id[3];
1472 dev->sectors = id[6];
1473
1474 if (ata_id_current_chs_valid(id)) {
1475 /* Current CHS translation is valid. */
1476 dev->cylinders = id[54];
1477 dev->heads = id[55];
1478 dev->sectors = id[56];
1479 }
1480
1481 /* print device info to dmesg */
1482 if (ata_msg_drv(ap) && print_info)
1483 ata_dev_printk(dev, KERN_INFO, "%s, "
1484 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1485 revbuf,
1486 ata_mode_string(xfer_mask),
1487 (unsigned long long)dev->n_sectors,
1488 dev->cylinders, dev->heads,
1489 dev->sectors);
1490 }
1491
1492 if (dev->id[59] & 0x100) {
1493 dev->multi_count = dev->id[59] & 0xff;
1494 if (ata_msg_drv(ap) && print_info)
1495 ata_dev_printk(dev, KERN_INFO,
1496 "ata%u: dev %u multi count %u\n",
1497 ap->id, dev->devno, dev->multi_count);
1498 }
1499
1500 dev->cdb_len = 16;
1501 }
1502
1503 /* ATAPI-specific feature tests */
1504 else if (dev->class == ATA_DEV_ATAPI) {
1505 char *cdb_intr_string = "";
1506
1507 rc = atapi_cdb_len(id);
1508 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1509 if (ata_msg_warn(ap))
1510 ata_dev_printk(dev, KERN_WARNING,
1511 "unsupported CDB len\n");
1512 rc = -EINVAL;
1513 goto err_out_nosup;
1514 }
1515 dev->cdb_len = (unsigned int) rc;
1516
1517 if (ata_id_cdb_intr(dev->id)) {
1518 dev->flags |= ATA_DFLAG_CDB_INTR;
1519 cdb_intr_string = ", CDB intr";
1520 }
1521
1522 /* print device info to dmesg */
1523 if (ata_msg_drv(ap) && print_info)
1524 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1525 ata_mode_string(xfer_mask),
1526 cdb_intr_string);
1527 }
1528
1529 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1530 /* Let the user know. We don't want to disallow opens for
1531 rescue purposes, or in case the vendor is just a blithering
1532 idiot */
1533 if (print_info) {
1534 ata_dev_printk(dev, KERN_WARNING,
1535 "Drive reports diagnostics failure. This may indicate a drive\n");
1536 ata_dev_printk(dev, KERN_WARNING,
1537 "fault or invalid emulation. Contact drive vendor for information.\n");
1538 }
1539 }
1540
1541 ata_set_port_max_cmd_len(ap);
1542
1543 /* limit bridge transfers to udma5, 200 sectors */
1544 if (ata_dev_knobble(dev)) {
1545 if (ata_msg_drv(ap) && print_info)
1546 ata_dev_printk(dev, KERN_INFO,
1547 "applying bridge limits\n");
1548 dev->udma_mask &= ATA_UDMA5;
1549 dev->max_sectors = ATA_MAX_SECTORS;
1550 }
1551
1552 if (ap->ops->dev_config)
1553 ap->ops->dev_config(ap, dev);
1554
1555 if (ata_msg_probe(ap))
1556 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1557 __FUNCTION__, ata_chk_status(ap));
1558 return 0;
1559
1560 err_out_nosup:
1561 if (ata_msg_probe(ap))
1562 ata_dev_printk(dev, KERN_DEBUG,
1563 "%s: EXIT, err\n", __FUNCTION__);
1564 return rc;
1565 }
1566
1567 /**
1568 * ata_bus_probe - Reset and probe ATA bus
1569 * @ap: Bus to probe
1570 *
1571 * Master ATA bus probing function. Initiates a hardware-dependent
1572 * bus reset, then attempts to identify any devices found on
1573 * the bus.
1574 *
1575 * LOCKING:
1576 * PCI/etc. bus probe sem.
1577 *
1578 * RETURNS:
1579 * Zero on success, negative errno otherwise.
1580 */
1581
1582 int ata_bus_probe(struct ata_port *ap)
1583 {
1584 unsigned int classes[ATA_MAX_DEVICES];
1585 int tries[ATA_MAX_DEVICES];
1586 int i, rc, down_xfermask;
1587 struct ata_device *dev;
1588
1589 ata_port_probe(ap);
1590
1591 for (i = 0; i < ATA_MAX_DEVICES; i++)
1592 tries[i] = ATA_PROBE_MAX_TRIES;
1593
1594 retry:
1595 down_xfermask = 0;
1596
1597 /* reset and determine device classes */
1598 ap->ops->phy_reset(ap);
1599
1600 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1601 dev = &ap->device[i];
1602
1603 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1604 dev->class != ATA_DEV_UNKNOWN)
1605 classes[dev->devno] = dev->class;
1606 else
1607 classes[dev->devno] = ATA_DEV_NONE;
1608
1609 dev->class = ATA_DEV_UNKNOWN;
1610 }
1611
1612 ata_port_probe(ap);
1613
1614 /* after the reset the device state is PIO 0 and the controller
1615 state is undefined. Record the mode */
1616
1617 for (i = 0; i < ATA_MAX_DEVICES; i++)
1618 ap->device[i].pio_mode = XFER_PIO_0;
1619
1620 /* read IDENTIFY page and configure devices */
1621 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1622 dev = &ap->device[i];
1623
1624 if (tries[i])
1625 dev->class = classes[i];
1626
1627 if (!ata_dev_enabled(dev))
1628 continue;
1629
1630 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1631 if (rc)
1632 goto fail;
1633
1634 rc = ata_dev_configure(dev, 1);
1635 if (rc)
1636 goto fail;
1637 }
1638
1639 /* configure transfer mode */
1640 rc = ata_set_mode(ap, &dev);
1641 if (rc) {
1642 down_xfermask = 1;
1643 goto fail;
1644 }
1645
1646 for (i = 0; i < ATA_MAX_DEVICES; i++)
1647 if (ata_dev_enabled(&ap->device[i]))
1648 return 0;
1649
1650 /* no device present, disable port */
1651 ata_port_disable(ap);
1652 ap->ops->port_disable(ap);
1653 return -ENODEV;
1654
1655 fail:
1656 switch (rc) {
1657 case -EINVAL:
1658 case -ENODEV:
1659 tries[dev->devno] = 0;
1660 break;
1661 case -EIO:
1662 sata_down_spd_limit(ap);
1663 /* fall through */
1664 default:
1665 tries[dev->devno]--;
1666 if (down_xfermask &&
1667 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1668 tries[dev->devno] = 0;
1669 }
1670
1671 if (!tries[dev->devno]) {
1672 ata_down_xfermask_limit(dev, 1);
1673 ata_dev_disable(dev);
1674 }
1675
1676 goto retry;
1677 }
1678
1679 /**
1680 * ata_port_probe - Mark port as enabled
1681 * @ap: Port for which we indicate enablement
1682 *
1683 * Modify @ap data structure such that the system
1684 * thinks that the entire port is enabled.
1685 *
1686 * LOCKING: host lock, or some other form of
1687 * serialization.
1688 */
1689
1690 void ata_port_probe(struct ata_port *ap)
1691 {
1692 ap->flags &= ~ATA_FLAG_DISABLED;
1693 }
1694
1695 /**
1696 * sata_print_link_status - Print SATA link status
1697 * @ap: SATA port to printk link status about
1698 *
1699 * This function prints link speed and status of a SATA link.
1700 *
1701 * LOCKING:
1702 * None.
1703 */
1704 static void sata_print_link_status(struct ata_port *ap)
1705 {
1706 u32 sstatus, scontrol, tmp;
1707
1708 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1709 return;
1710 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1711
1712 if (ata_port_online(ap)) {
1713 tmp = (sstatus >> 4) & 0xf;
1714 ata_port_printk(ap, KERN_INFO,
1715 "SATA link up %s (SStatus %X SControl %X)\n",
1716 sata_spd_string(tmp), sstatus, scontrol);
1717 } else {
1718 ata_port_printk(ap, KERN_INFO,
1719 "SATA link down (SStatus %X SControl %X)\n",
1720 sstatus, scontrol);
1721 }
1722 }
1723
1724 /**
1725 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1726 * @ap: SATA port associated with target SATA PHY.
1727 *
1728 * This function issues commands to standard SATA Sxxx
1729 * PHY registers, to wake up the phy (and device), and
1730 * clear any reset condition.
1731 *
1732 * LOCKING:
1733 * PCI/etc. bus probe sem.
1734 *
1735 */
1736 void __sata_phy_reset(struct ata_port *ap)
1737 {
1738 u32 sstatus;
1739 unsigned long timeout = jiffies + (HZ * 5);
1740
1741 if (ap->flags & ATA_FLAG_SATA_RESET) {
1742 /* issue phy wake/reset */
1743 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1744 /* Couldn't find anything in SATA I/II specs, but
1745 * AHCI-1.1 10.4.2 says at least 1 ms. */
1746 mdelay(1);
1747 }
1748 /* phy wake/clear reset */
1749 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1750
1751 /* wait for phy to become ready, if necessary */
1752 do {
1753 msleep(200);
1754 sata_scr_read(ap, SCR_STATUS, &sstatus);
1755 if ((sstatus & 0xf) != 1)
1756 break;
1757 } while (time_before(jiffies, timeout));
1758
1759 /* print link status */
1760 sata_print_link_status(ap);
1761
1762 /* TODO: phy layer with polling, timeouts, etc. */
1763 if (!ata_port_offline(ap))
1764 ata_port_probe(ap);
1765 else
1766 ata_port_disable(ap);
1767
1768 if (ap->flags & ATA_FLAG_DISABLED)
1769 return;
1770
1771 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1772 ata_port_disable(ap);
1773 return;
1774 }
1775
1776 ap->cbl = ATA_CBL_SATA;
1777 }
1778
1779 /**
1780 * sata_phy_reset - Reset SATA bus.
1781 * @ap: SATA port associated with target SATA PHY.
1782 *
1783 * This function resets the SATA bus, and then probes
1784 * the bus for devices.
1785 *
1786 * LOCKING:
1787 * PCI/etc. bus probe sem.
1788 *
1789 */
1790 void sata_phy_reset(struct ata_port *ap)
1791 {
1792 __sata_phy_reset(ap);
1793 if (ap->flags & ATA_FLAG_DISABLED)
1794 return;
1795 ata_bus_reset(ap);
1796 }
1797
1798 /**
1799 * ata_dev_pair - return other device on cable
1800 * @adev: device
1801 *
1802 * Obtain the other device on the same cable, or if none is
1803 * present NULL is returned
1804 */
1805
1806 struct ata_device *ata_dev_pair(struct ata_device *adev)
1807 {
1808 struct ata_port *ap = adev->ap;
1809 struct ata_device *pair = &ap->device[1 - adev->devno];
1810 if (!ata_dev_enabled(pair))
1811 return NULL;
1812 return pair;
1813 }
1814
1815 /**
1816 * ata_port_disable - Disable port.
1817 * @ap: Port to be disabled.
1818 *
1819 * Modify @ap data structure such that the system
1820 * thinks that the entire port is disabled, and should
1821 * never attempt to probe or communicate with devices
1822 * on this port.
1823 *
1824 * LOCKING: host lock, or some other form of
1825 * serialization.
1826 */
1827
1828 void ata_port_disable(struct ata_port *ap)
1829 {
1830 ap->device[0].class = ATA_DEV_NONE;
1831 ap->device[1].class = ATA_DEV_NONE;
1832 ap->flags |= ATA_FLAG_DISABLED;
1833 }
1834
1835 /**
1836 * sata_down_spd_limit - adjust SATA spd limit downward
1837 * @ap: Port to adjust SATA spd limit for
1838 *
1839 * Adjust SATA spd limit of @ap downward. Note that this
1840 * function only adjusts the limit. The change must be applied
1841 * using sata_set_spd().
1842 *
1843 * LOCKING:
1844 * Inherited from caller.
1845 *
1846 * RETURNS:
1847 * 0 on success, negative errno on failure
1848 */
1849 int sata_down_spd_limit(struct ata_port *ap)
1850 {
1851 u32 sstatus, spd, mask;
1852 int rc, highbit;
1853
1854 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1855 if (rc)
1856 return rc;
1857
1858 mask = ap->sata_spd_limit;
1859 if (mask <= 1)
1860 return -EINVAL;
1861 highbit = fls(mask) - 1;
1862 mask &= ~(1 << highbit);
1863
1864 spd = (sstatus >> 4) & 0xf;
1865 if (spd <= 1)
1866 return -EINVAL;
1867 spd--;
1868 mask &= (1 << spd) - 1;
1869 if (!mask)
1870 return -EINVAL;
1871
1872 ap->sata_spd_limit = mask;
1873
1874 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1875 sata_spd_string(fls(mask)));
1876
1877 return 0;
1878 }
1879
1880 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1881 {
1882 u32 spd, limit;
1883
1884 if (ap->sata_spd_limit == UINT_MAX)
1885 limit = 0;
1886 else
1887 limit = fls(ap->sata_spd_limit);
1888
1889 spd = (*scontrol >> 4) & 0xf;
1890 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1891
1892 return spd != limit;
1893 }
1894
1895 /**
1896 * sata_set_spd_needed - is SATA spd configuration needed
1897 * @ap: Port in question
1898 *
1899 * Test whether the spd limit in SControl matches
1900 * @ap->sata_spd_limit. This function is used to determine
1901 * whether hardreset is necessary to apply SATA spd
1902 * configuration.
1903 *
1904 * LOCKING:
1905 * Inherited from caller.
1906 *
1907 * RETURNS:
1908 * 1 if SATA spd configuration is needed, 0 otherwise.
1909 */
1910 int sata_set_spd_needed(struct ata_port *ap)
1911 {
1912 u32 scontrol;
1913
1914 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1915 return 0;
1916
1917 return __sata_set_spd_needed(ap, &scontrol);
1918 }
1919
1920 /**
1921 * sata_set_spd - set SATA spd according to spd limit
1922 * @ap: Port to set SATA spd for
1923 *
1924 * Set SATA spd of @ap according to sata_spd_limit.
1925 *
1926 * LOCKING:
1927 * Inherited from caller.
1928 *
1929 * RETURNS:
1930 * 0 if spd doesn't need to be changed, 1 if spd has been
1931 * changed. Negative errno if SCR registers are inaccessible.
1932 */
1933 int sata_set_spd(struct ata_port *ap)
1934 {
1935 u32 scontrol;
1936 int rc;
1937
1938 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1939 return rc;
1940
1941 if (!__sata_set_spd_needed(ap, &scontrol))
1942 return 0;
1943
1944 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1945 return rc;
1946
1947 return 1;
1948 }
1949
1950 /*
1951 * This mode timing computation functionality is ported over from
1952 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1953 */
1954 /*
1955 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1956 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1957 * for UDMA6, which is currently supported only by Maxtor drives.
1958 *
1959 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1960 */
1961
1962 static const struct ata_timing ata_timing[] = {
1963
1964 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1965 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1966 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1967 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1968
1969 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1970 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
1971 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1972 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1973 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1974
1975 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1976
1977 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1978 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1979 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1980
1981 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1982 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1983 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1984
1985 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1986 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
1987 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1988 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1989
1990 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1991 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1992 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1993
1994 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1995
1996 { 0xFF }
1997 };
1998
1999 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2000 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2001
2002 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2003 {
2004 q->setup = EZ(t->setup * 1000, T);
2005 q->act8b = EZ(t->act8b * 1000, T);
2006 q->rec8b = EZ(t->rec8b * 1000, T);
2007 q->cyc8b = EZ(t->cyc8b * 1000, T);
2008 q->active = EZ(t->active * 1000, T);
2009 q->recover = EZ(t->recover * 1000, T);
2010 q->cycle = EZ(t->cycle * 1000, T);
2011 q->udma = EZ(t->udma * 1000, UT);
2012 }
2013
2014 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2015 struct ata_timing *m, unsigned int what)
2016 {
2017 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2018 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2019 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2020 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2021 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2022 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2023 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2024 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2025 }
2026
2027 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2028 {
2029 const struct ata_timing *t;
2030
2031 for (t = ata_timing; t->mode != speed; t++)
2032 if (t->mode == 0xFF)
2033 return NULL;
2034 return t;
2035 }
2036
2037 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2038 struct ata_timing *t, int T, int UT)
2039 {
2040 const struct ata_timing *s;
2041 struct ata_timing p;
2042
2043 /*
2044 * Find the mode.
2045 */
2046
2047 if (!(s = ata_timing_find_mode(speed)))
2048 return -EINVAL;
2049
2050 memcpy(t, s, sizeof(*s));
2051
2052 /*
2053 * If the drive is an EIDE drive, it can tell us it needs extended
2054 * PIO/MW_DMA cycle timing.
2055 */
2056
2057 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2058 memset(&p, 0, sizeof(p));
2059 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2060 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2061 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2062 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2063 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2064 }
2065 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2066 }
2067
2068 /*
2069 * Convert the timing to bus clock counts.
2070 */
2071
2072 ata_timing_quantize(t, t, T, UT);
2073
2074 /*
2075 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2076 * S.M.A.R.T * and some other commands. We have to ensure that the
2077 * DMA cycle timing is slower/equal than the fastest PIO timing.
2078 */
2079
2080 if (speed > XFER_PIO_4) {
2081 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2082 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2083 }
2084
2085 /*
2086 * Lengthen active & recovery time so that cycle time is correct.
2087 */
2088
2089 if (t->act8b + t->rec8b < t->cyc8b) {
2090 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2091 t->rec8b = t->cyc8b - t->act8b;
2092 }
2093
2094 if (t->active + t->recover < t->cycle) {
2095 t->active += (t->cycle - (t->active + t->recover)) / 2;
2096 t->recover = t->cycle - t->active;
2097 }
2098
2099 return 0;
2100 }
2101
2102 /**
2103 * ata_down_xfermask_limit - adjust dev xfer masks downward
2104 * @dev: Device to adjust xfer masks
2105 * @force_pio0: Force PIO0
2106 *
2107 * Adjust xfer masks of @dev downward. Note that this function
2108 * does not apply the change. Invoking ata_set_mode() afterwards
2109 * will apply the limit.
2110 *
2111 * LOCKING:
2112 * Inherited from caller.
2113 *
2114 * RETURNS:
2115 * 0 on success, negative errno on failure
2116 */
2117 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2118 {
2119 unsigned long xfer_mask;
2120 int highbit;
2121
2122 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2123 dev->udma_mask);
2124
2125 if (!xfer_mask)
2126 goto fail;
2127 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2128 if (xfer_mask & ATA_MASK_UDMA)
2129 xfer_mask &= ~ATA_MASK_MWDMA;
2130
2131 highbit = fls(xfer_mask) - 1;
2132 xfer_mask &= ~(1 << highbit);
2133 if (force_pio0)
2134 xfer_mask &= 1 << ATA_SHIFT_PIO;
2135 if (!xfer_mask)
2136 goto fail;
2137
2138 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2139 &dev->udma_mask);
2140
2141 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2142 ata_mode_string(xfer_mask));
2143
2144 return 0;
2145
2146 fail:
2147 return -EINVAL;
2148 }
2149
2150 static int ata_dev_set_mode(struct ata_device *dev)
2151 {
2152 unsigned int err_mask;
2153 int rc;
2154
2155 dev->flags &= ~ATA_DFLAG_PIO;
2156 if (dev->xfer_shift == ATA_SHIFT_PIO)
2157 dev->flags |= ATA_DFLAG_PIO;
2158
2159 err_mask = ata_dev_set_xfermode(dev);
2160 if (err_mask) {
2161 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2162 "(err_mask=0x%x)\n", err_mask);
2163 return -EIO;
2164 }
2165
2166 rc = ata_dev_revalidate(dev, 0);
2167 if (rc)
2168 return rc;
2169
2170 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2171 dev->xfer_shift, (int)dev->xfer_mode);
2172
2173 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2174 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2175 return 0;
2176 }
2177
2178 /**
2179 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2180 * @ap: port on which timings will be programmed
2181 * @r_failed_dev: out paramter for failed device
2182 *
2183 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2184 * ata_set_mode() fails, pointer to the failing device is
2185 * returned in @r_failed_dev.
2186 *
2187 * LOCKING:
2188 * PCI/etc. bus probe sem.
2189 *
2190 * RETURNS:
2191 * 0 on success, negative errno otherwise
2192 */
2193 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2194 {
2195 struct ata_device *dev;
2196 int i, rc = 0, used_dma = 0, found = 0;
2197
2198 /* has private set_mode? */
2199 if (ap->ops->set_mode) {
2200 /* FIXME: make ->set_mode handle no device case and
2201 * return error code and failing device on failure.
2202 */
2203 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2204 if (ata_dev_ready(&ap->device[i])) {
2205 ap->ops->set_mode(ap);
2206 break;
2207 }
2208 }
2209 return 0;
2210 }
2211
2212 /* step 1: calculate xfer_mask */
2213 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2214 unsigned int pio_mask, dma_mask;
2215
2216 dev = &ap->device[i];
2217
2218 if (!ata_dev_enabled(dev))
2219 continue;
2220
2221 ata_dev_xfermask(dev);
2222
2223 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2224 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2225 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2226 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2227
2228 found = 1;
2229 if (dev->dma_mode)
2230 used_dma = 1;
2231 }
2232 if (!found)
2233 goto out;
2234
2235 /* step 2: always set host PIO timings */
2236 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2237 dev = &ap->device[i];
2238 if (!ata_dev_enabled(dev))
2239 continue;
2240
2241 if (!dev->pio_mode) {
2242 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2243 rc = -EINVAL;
2244 goto out;
2245 }
2246
2247 dev->xfer_mode = dev->pio_mode;
2248 dev->xfer_shift = ATA_SHIFT_PIO;
2249 if (ap->ops->set_piomode)
2250 ap->ops->set_piomode(ap, dev);
2251 }
2252
2253 /* step 3: set host DMA timings */
2254 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2255 dev = &ap->device[i];
2256
2257 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2258 continue;
2259
2260 dev->xfer_mode = dev->dma_mode;
2261 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2262 if (ap->ops->set_dmamode)
2263 ap->ops->set_dmamode(ap, dev);
2264 }
2265
2266 /* step 4: update devices' xfer mode */
2267 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2268 dev = &ap->device[i];
2269
2270 /* don't udpate suspended devices' xfer mode */
2271 if (!ata_dev_ready(dev))
2272 continue;
2273
2274 rc = ata_dev_set_mode(dev);
2275 if (rc)
2276 goto out;
2277 }
2278
2279 /* Record simplex status. If we selected DMA then the other
2280 * host channels are not permitted to do so.
2281 */
2282 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2283 ap->host->simplex_claimed = 1;
2284
2285 /* step5: chip specific finalisation */
2286 if (ap->ops->post_set_mode)
2287 ap->ops->post_set_mode(ap);
2288
2289 out:
2290 if (rc)
2291 *r_failed_dev = dev;
2292 return rc;
2293 }
2294
2295 /**
2296 * ata_tf_to_host - issue ATA taskfile to host controller
2297 * @ap: port to which command is being issued
2298 * @tf: ATA taskfile register set
2299 *
2300 * Issues ATA taskfile register set to ATA host controller,
2301 * with proper synchronization with interrupt handler and
2302 * other threads.
2303 *
2304 * LOCKING:
2305 * spin_lock_irqsave(host lock)
2306 */
2307
2308 static inline void ata_tf_to_host(struct ata_port *ap,
2309 const struct ata_taskfile *tf)
2310 {
2311 ap->ops->tf_load(ap, tf);
2312 ap->ops->exec_command(ap, tf);
2313 }
2314
2315 /**
2316 * ata_busy_sleep - sleep until BSY clears, or timeout
2317 * @ap: port containing status register to be polled
2318 * @tmout_pat: impatience timeout
2319 * @tmout: overall timeout
2320 *
2321 * Sleep until ATA Status register bit BSY clears,
2322 * or a timeout occurs.
2323 *
2324 * LOCKING: None.
2325 */
2326
2327 unsigned int ata_busy_sleep (struct ata_port *ap,
2328 unsigned long tmout_pat, unsigned long tmout)
2329 {
2330 unsigned long timer_start, timeout;
2331 u8 status;
2332
2333 status = ata_busy_wait(ap, ATA_BUSY, 300);
2334 timer_start = jiffies;
2335 timeout = timer_start + tmout_pat;
2336 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2337 msleep(50);
2338 status = ata_busy_wait(ap, ATA_BUSY, 3);
2339 }
2340
2341 if (status & ATA_BUSY)
2342 ata_port_printk(ap, KERN_WARNING,
2343 "port is slow to respond, please be patient\n");
2344
2345 timeout = timer_start + tmout;
2346 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2347 msleep(50);
2348 status = ata_chk_status(ap);
2349 }
2350
2351 if (status & ATA_BUSY) {
2352 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2353 "(%lu secs)\n", tmout / HZ);
2354 return 1;
2355 }
2356
2357 return 0;
2358 }
2359
2360 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2361 {
2362 struct ata_ioports *ioaddr = &ap->ioaddr;
2363 unsigned int dev0 = devmask & (1 << 0);
2364 unsigned int dev1 = devmask & (1 << 1);
2365 unsigned long timeout;
2366
2367 /* if device 0 was found in ata_devchk, wait for its
2368 * BSY bit to clear
2369 */
2370 if (dev0)
2371 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2372
2373 /* if device 1 was found in ata_devchk, wait for
2374 * register access, then wait for BSY to clear
2375 */
2376 timeout = jiffies + ATA_TMOUT_BOOT;
2377 while (dev1) {
2378 u8 nsect, lbal;
2379
2380 ap->ops->dev_select(ap, 1);
2381 if (ap->flags & ATA_FLAG_MMIO) {
2382 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2383 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2384 } else {
2385 nsect = inb(ioaddr->nsect_addr);
2386 lbal = inb(ioaddr->lbal_addr);
2387 }
2388 if ((nsect == 1) && (lbal == 1))
2389 break;
2390 if (time_after(jiffies, timeout)) {
2391 dev1 = 0;
2392 break;
2393 }
2394 msleep(50); /* give drive a breather */
2395 }
2396 if (dev1)
2397 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2398
2399 /* is all this really necessary? */
2400 ap->ops->dev_select(ap, 0);
2401 if (dev1)
2402 ap->ops->dev_select(ap, 1);
2403 if (dev0)
2404 ap->ops->dev_select(ap, 0);
2405 }
2406
2407 static unsigned int ata_bus_softreset(struct ata_port *ap,
2408 unsigned int devmask)
2409 {
2410 struct ata_ioports *ioaddr = &ap->ioaddr;
2411
2412 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2413
2414 /* software reset. causes dev0 to be selected */
2415 if (ap->flags & ATA_FLAG_MMIO) {
2416 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2417 udelay(20); /* FIXME: flush */
2418 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2419 udelay(20); /* FIXME: flush */
2420 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2421 } else {
2422 outb(ap->ctl, ioaddr->ctl_addr);
2423 udelay(10);
2424 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2425 udelay(10);
2426 outb(ap->ctl, ioaddr->ctl_addr);
2427 }
2428
2429 /* spec mandates ">= 2ms" before checking status.
2430 * We wait 150ms, because that was the magic delay used for
2431 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2432 * between when the ATA command register is written, and then
2433 * status is checked. Because waiting for "a while" before
2434 * checking status is fine, post SRST, we perform this magic
2435 * delay here as well.
2436 *
2437 * Old drivers/ide uses the 2mS rule and then waits for ready
2438 */
2439 msleep(150);
2440
2441 /* Before we perform post reset processing we want to see if
2442 * the bus shows 0xFF because the odd clown forgets the D7
2443 * pulldown resistor.
2444 */
2445 if (ata_check_status(ap) == 0xFF) {
2446 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2447 return AC_ERR_OTHER;
2448 }
2449
2450 ata_bus_post_reset(ap, devmask);
2451
2452 return 0;
2453 }
2454
2455 /**
2456 * ata_bus_reset - reset host port and associated ATA channel
2457 * @ap: port to reset
2458 *
2459 * This is typically the first time we actually start issuing
2460 * commands to the ATA channel. We wait for BSY to clear, then
2461 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2462 * result. Determine what devices, if any, are on the channel
2463 * by looking at the device 0/1 error register. Look at the signature
2464 * stored in each device's taskfile registers, to determine if
2465 * the device is ATA or ATAPI.
2466 *
2467 * LOCKING:
2468 * PCI/etc. bus probe sem.
2469 * Obtains host lock.
2470 *
2471 * SIDE EFFECTS:
2472 * Sets ATA_FLAG_DISABLED if bus reset fails.
2473 */
2474
2475 void ata_bus_reset(struct ata_port *ap)
2476 {
2477 struct ata_ioports *ioaddr = &ap->ioaddr;
2478 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2479 u8 err;
2480 unsigned int dev0, dev1 = 0, devmask = 0;
2481
2482 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2483
2484 /* determine if device 0/1 are present */
2485 if (ap->flags & ATA_FLAG_SATA_RESET)
2486 dev0 = 1;
2487 else {
2488 dev0 = ata_devchk(ap, 0);
2489 if (slave_possible)
2490 dev1 = ata_devchk(ap, 1);
2491 }
2492
2493 if (dev0)
2494 devmask |= (1 << 0);
2495 if (dev1)
2496 devmask |= (1 << 1);
2497
2498 /* select device 0 again */
2499 ap->ops->dev_select(ap, 0);
2500
2501 /* issue bus reset */
2502 if (ap->flags & ATA_FLAG_SRST)
2503 if (ata_bus_softreset(ap, devmask))
2504 goto err_out;
2505
2506 /*
2507 * determine by signature whether we have ATA or ATAPI devices
2508 */
2509 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2510 if ((slave_possible) && (err != 0x81))
2511 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2512
2513 /* re-enable interrupts */
2514 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2515 ata_irq_on(ap);
2516
2517 /* is double-select really necessary? */
2518 if (ap->device[1].class != ATA_DEV_NONE)
2519 ap->ops->dev_select(ap, 1);
2520 if (ap->device[0].class != ATA_DEV_NONE)
2521 ap->ops->dev_select(ap, 0);
2522
2523 /* if no devices were detected, disable this port */
2524 if ((ap->device[0].class == ATA_DEV_NONE) &&
2525 (ap->device[1].class == ATA_DEV_NONE))
2526 goto err_out;
2527
2528 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2529 /* set up device control for ATA_FLAG_SATA_RESET */
2530 if (ap->flags & ATA_FLAG_MMIO)
2531 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2532 else
2533 outb(ap->ctl, ioaddr->ctl_addr);
2534 }
2535
2536 DPRINTK("EXIT\n");
2537 return;
2538
2539 err_out:
2540 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2541 ap->ops->port_disable(ap);
2542
2543 DPRINTK("EXIT\n");
2544 }
2545
2546 /**
2547 * sata_phy_debounce - debounce SATA phy status
2548 * @ap: ATA port to debounce SATA phy status for
2549 * @params: timing parameters { interval, duratinon, timeout } in msec
2550 *
2551 * Make sure SStatus of @ap reaches stable state, determined by
2552 * holding the same value where DET is not 1 for @duration polled
2553 * every @interval, before @timeout. Timeout constraints the
2554 * beginning of the stable state. Because, after hot unplugging,
2555 * DET gets stuck at 1 on some controllers, this functions waits
2556 * until timeout then returns 0 if DET is stable at 1.
2557 *
2558 * LOCKING:
2559 * Kernel thread context (may sleep)
2560 *
2561 * RETURNS:
2562 * 0 on success, -errno on failure.
2563 */
2564 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2565 {
2566 unsigned long interval_msec = params[0];
2567 unsigned long duration = params[1] * HZ / 1000;
2568 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2569 unsigned long last_jiffies;
2570 u32 last, cur;
2571 int rc;
2572
2573 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2574 return rc;
2575 cur &= 0xf;
2576
2577 last = cur;
2578 last_jiffies = jiffies;
2579
2580 while (1) {
2581 msleep(interval_msec);
2582 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2583 return rc;
2584 cur &= 0xf;
2585
2586 /* DET stable? */
2587 if (cur == last) {
2588 if (cur == 1 && time_before(jiffies, timeout))
2589 continue;
2590 if (time_after(jiffies, last_jiffies + duration))
2591 return 0;
2592 continue;
2593 }
2594
2595 /* unstable, start over */
2596 last = cur;
2597 last_jiffies = jiffies;
2598
2599 /* check timeout */
2600 if (time_after(jiffies, timeout))
2601 return -EBUSY;
2602 }
2603 }
2604
2605 /**
2606 * sata_phy_resume - resume SATA phy
2607 * @ap: ATA port to resume SATA phy for
2608 * @params: timing parameters { interval, duratinon, timeout } in msec
2609 *
2610 * Resume SATA phy of @ap and debounce it.
2611 *
2612 * LOCKING:
2613 * Kernel thread context (may sleep)
2614 *
2615 * RETURNS:
2616 * 0 on success, -errno on failure.
2617 */
2618 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2619 {
2620 u32 scontrol;
2621 int rc;
2622
2623 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2624 return rc;
2625
2626 scontrol = (scontrol & 0x0f0) | 0x300;
2627
2628 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2629 return rc;
2630
2631 /* Some PHYs react badly if SStatus is pounded immediately
2632 * after resuming. Delay 200ms before debouncing.
2633 */
2634 msleep(200);
2635
2636 return sata_phy_debounce(ap, params);
2637 }
2638
2639 static void ata_wait_spinup(struct ata_port *ap)
2640 {
2641 struct ata_eh_context *ehc = &ap->eh_context;
2642 unsigned long end, secs;
2643 int rc;
2644
2645 /* first, debounce phy if SATA */
2646 if (ap->cbl == ATA_CBL_SATA) {
2647 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2648
2649 /* if debounced successfully and offline, no need to wait */
2650 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2651 return;
2652 }
2653
2654 /* okay, let's give the drive time to spin up */
2655 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2656 secs = ((end - jiffies) + HZ - 1) / HZ;
2657
2658 if (time_after(jiffies, end))
2659 return;
2660
2661 if (secs > 5)
2662 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2663 "(%lu secs)\n", secs);
2664
2665 schedule_timeout_uninterruptible(end - jiffies);
2666 }
2667
2668 /**
2669 * ata_std_prereset - prepare for reset
2670 * @ap: ATA port to be reset
2671 *
2672 * @ap is about to be reset. Initialize it.
2673 *
2674 * LOCKING:
2675 * Kernel thread context (may sleep)
2676 *
2677 * RETURNS:
2678 * 0 on success, -errno otherwise.
2679 */
2680 int ata_std_prereset(struct ata_port *ap)
2681 {
2682 struct ata_eh_context *ehc = &ap->eh_context;
2683 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2684 int rc;
2685
2686 /* handle link resume & hotplug spinup */
2687 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2688 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2689 ehc->i.action |= ATA_EH_HARDRESET;
2690
2691 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2692 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2693 ata_wait_spinup(ap);
2694
2695 /* if we're about to do hardreset, nothing more to do */
2696 if (ehc->i.action & ATA_EH_HARDRESET)
2697 return 0;
2698
2699 /* if SATA, resume phy */
2700 if (ap->cbl == ATA_CBL_SATA) {
2701 rc = sata_phy_resume(ap, timing);
2702 if (rc && rc != -EOPNOTSUPP) {
2703 /* phy resume failed */
2704 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2705 "link for reset (errno=%d)\n", rc);
2706 return rc;
2707 }
2708 }
2709
2710 /* Wait for !BSY if the controller can wait for the first D2H
2711 * Reg FIS and we don't know that no device is attached.
2712 */
2713 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2714 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2715
2716 return 0;
2717 }
2718
2719 /**
2720 * ata_std_softreset - reset host port via ATA SRST
2721 * @ap: port to reset
2722 * @classes: resulting classes of attached devices
2723 *
2724 * Reset host port using ATA SRST.
2725 *
2726 * LOCKING:
2727 * Kernel thread context (may sleep)
2728 *
2729 * RETURNS:
2730 * 0 on success, -errno otherwise.
2731 */
2732 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2733 {
2734 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2735 unsigned int devmask = 0, err_mask;
2736 u8 err;
2737
2738 DPRINTK("ENTER\n");
2739
2740 if (ata_port_offline(ap)) {
2741 classes[0] = ATA_DEV_NONE;
2742 goto out;
2743 }
2744
2745 /* determine if device 0/1 are present */
2746 if (ata_devchk(ap, 0))
2747 devmask |= (1 << 0);
2748 if (slave_possible && ata_devchk(ap, 1))
2749 devmask |= (1 << 1);
2750
2751 /* select device 0 again */
2752 ap->ops->dev_select(ap, 0);
2753
2754 /* issue bus reset */
2755 DPRINTK("about to softreset, devmask=%x\n", devmask);
2756 err_mask = ata_bus_softreset(ap, devmask);
2757 if (err_mask) {
2758 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2759 err_mask);
2760 return -EIO;
2761 }
2762
2763 /* determine by signature whether we have ATA or ATAPI devices */
2764 classes[0] = ata_dev_try_classify(ap, 0, &err);
2765 if (slave_possible && err != 0x81)
2766 classes[1] = ata_dev_try_classify(ap, 1, &err);
2767
2768 out:
2769 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2770 return 0;
2771 }
2772
2773 /**
2774 * sata_std_hardreset - reset host port via SATA phy reset
2775 * @ap: port to reset
2776 * @class: resulting class of attached device
2777 *
2778 * SATA phy-reset host port using DET bits of SControl register.
2779 *
2780 * LOCKING:
2781 * Kernel thread context (may sleep)
2782 *
2783 * RETURNS:
2784 * 0 on success, -errno otherwise.
2785 */
2786 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2787 {
2788 struct ata_eh_context *ehc = &ap->eh_context;
2789 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2790 u32 scontrol;
2791 int rc;
2792
2793 DPRINTK("ENTER\n");
2794
2795 if (sata_set_spd_needed(ap)) {
2796 /* SATA spec says nothing about how to reconfigure
2797 * spd. To be on the safe side, turn off phy during
2798 * reconfiguration. This works for at least ICH7 AHCI
2799 * and Sil3124.
2800 */
2801 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2802 return rc;
2803
2804 scontrol = (scontrol & 0x0f0) | 0x304;
2805
2806 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2807 return rc;
2808
2809 sata_set_spd(ap);
2810 }
2811
2812 /* issue phy wake/reset */
2813 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2814 return rc;
2815
2816 scontrol = (scontrol & 0x0f0) | 0x301;
2817
2818 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2819 return rc;
2820
2821 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2822 * 10.4.2 says at least 1 ms.
2823 */
2824 msleep(1);
2825
2826 /* bring phy back */
2827 sata_phy_resume(ap, timing);
2828
2829 /* TODO: phy layer with polling, timeouts, etc. */
2830 if (ata_port_offline(ap)) {
2831 *class = ATA_DEV_NONE;
2832 DPRINTK("EXIT, link offline\n");
2833 return 0;
2834 }
2835
2836 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2837 ata_port_printk(ap, KERN_ERR,
2838 "COMRESET failed (device not ready)\n");
2839 return -EIO;
2840 }
2841
2842 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2843
2844 *class = ata_dev_try_classify(ap, 0, NULL);
2845
2846 DPRINTK("EXIT, class=%u\n", *class);
2847 return 0;
2848 }
2849
2850 /**
2851 * ata_std_postreset - standard postreset callback
2852 * @ap: the target ata_port
2853 * @classes: classes of attached devices
2854 *
2855 * This function is invoked after a successful reset. Note that
2856 * the device might have been reset more than once using
2857 * different reset methods before postreset is invoked.
2858 *
2859 * LOCKING:
2860 * Kernel thread context (may sleep)
2861 */
2862 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2863 {
2864 u32 serror;
2865
2866 DPRINTK("ENTER\n");
2867
2868 /* print link status */
2869 sata_print_link_status(ap);
2870
2871 /* clear SError */
2872 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2873 sata_scr_write(ap, SCR_ERROR, serror);
2874
2875 /* re-enable interrupts */
2876 if (!ap->ops->error_handler) {
2877 /* FIXME: hack. create a hook instead */
2878 if (ap->ioaddr.ctl_addr)
2879 ata_irq_on(ap);
2880 }
2881
2882 /* is double-select really necessary? */
2883 if (classes[0] != ATA_DEV_NONE)
2884 ap->ops->dev_select(ap, 1);
2885 if (classes[1] != ATA_DEV_NONE)
2886 ap->ops->dev_select(ap, 0);
2887
2888 /* bail out if no device is present */
2889 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2890 DPRINTK("EXIT, no device\n");
2891 return;
2892 }
2893
2894 /* set up device control */
2895 if (ap->ioaddr.ctl_addr) {
2896 if (ap->flags & ATA_FLAG_MMIO)
2897 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2898 else
2899 outb(ap->ctl, ap->ioaddr.ctl_addr);
2900 }
2901
2902 DPRINTK("EXIT\n");
2903 }
2904
2905 /**
2906 * ata_dev_same_device - Determine whether new ID matches configured device
2907 * @dev: device to compare against
2908 * @new_class: class of the new device
2909 * @new_id: IDENTIFY page of the new device
2910 *
2911 * Compare @new_class and @new_id against @dev and determine
2912 * whether @dev is the device indicated by @new_class and
2913 * @new_id.
2914 *
2915 * LOCKING:
2916 * None.
2917 *
2918 * RETURNS:
2919 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2920 */
2921 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2922 const u16 *new_id)
2923 {
2924 const u16 *old_id = dev->id;
2925 unsigned char model[2][41], serial[2][21];
2926 u64 new_n_sectors;
2927
2928 if (dev->class != new_class) {
2929 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2930 dev->class, new_class);
2931 return 0;
2932 }
2933
2934 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2935 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2936 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2937 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2938 new_n_sectors = ata_id_n_sectors(new_id);
2939
2940 if (strcmp(model[0], model[1])) {
2941 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2942 "'%s' != '%s'\n", model[0], model[1]);
2943 return 0;
2944 }
2945
2946 if (strcmp(serial[0], serial[1])) {
2947 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2948 "'%s' != '%s'\n", serial[0], serial[1]);
2949 return 0;
2950 }
2951
2952 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2953 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2954 "%llu != %llu\n",
2955 (unsigned long long)dev->n_sectors,
2956 (unsigned long long)new_n_sectors);
2957 return 0;
2958 }
2959
2960 return 1;
2961 }
2962
2963 /**
2964 * ata_dev_revalidate - Revalidate ATA device
2965 * @dev: device to revalidate
2966 * @post_reset: is this revalidation after reset?
2967 *
2968 * Re-read IDENTIFY page and make sure @dev is still attached to
2969 * the port.
2970 *
2971 * LOCKING:
2972 * Kernel thread context (may sleep)
2973 *
2974 * RETURNS:
2975 * 0 on success, negative errno otherwise
2976 */
2977 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2978 {
2979 unsigned int class = dev->class;
2980 u16 *id = (void *)dev->ap->sector_buf;
2981 int rc;
2982
2983 if (!ata_dev_enabled(dev)) {
2984 rc = -ENODEV;
2985 goto fail;
2986 }
2987
2988 /* read ID data */
2989 rc = ata_dev_read_id(dev, &class, post_reset, id);
2990 if (rc)
2991 goto fail;
2992
2993 /* is the device still there? */
2994 if (!ata_dev_same_device(dev, class, id)) {
2995 rc = -ENODEV;
2996 goto fail;
2997 }
2998
2999 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3000
3001 /* configure device according to the new ID */
3002 rc = ata_dev_configure(dev, 0);
3003 if (rc == 0)
3004 return 0;
3005
3006 fail:
3007 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3008 return rc;
3009 }
3010
3011 static const char * const ata_dma_blacklist [] = {
3012 "WDC AC11000H", NULL,
3013 "WDC AC22100H", NULL,
3014 "WDC AC32500H", NULL,
3015 "WDC AC33100H", NULL,
3016 "WDC AC31600H", NULL,
3017 "WDC AC32100H", "24.09P07",
3018 "WDC AC23200L", "21.10N21",
3019 "Compaq CRD-8241B", NULL,
3020 "CRD-8400B", NULL,
3021 "CRD-8480B", NULL,
3022 "CRD-8482B", NULL,
3023 "CRD-84", NULL,
3024 "SanDisk SDP3B", NULL,
3025 "SanDisk SDP3B-64", NULL,
3026 "SANYO CD-ROM CRD", NULL,
3027 "HITACHI CDR-8", NULL,
3028 "HITACHI CDR-8335", NULL,
3029 "HITACHI CDR-8435", NULL,
3030 "Toshiba CD-ROM XM-6202B", NULL,
3031 "TOSHIBA CD-ROM XM-1702BC", NULL,
3032 "CD-532E-A", NULL,
3033 "E-IDE CD-ROM CR-840", NULL,
3034 "CD-ROM Drive/F5A", NULL,
3035 "WPI CDD-820", NULL,
3036 "SAMSUNG CD-ROM SC-148C", NULL,
3037 "SAMSUNG CD-ROM SC", NULL,
3038 "SanDisk SDP3B-64", NULL,
3039 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3040 "_NEC DV5800A", NULL,
3041 "SAMSUNG CD-ROM SN-124", "N001"
3042 };
3043
3044 static int ata_strim(char *s, size_t len)
3045 {
3046 len = strnlen(s, len);
3047
3048 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3049 while ((len > 0) && (s[len - 1] == ' ')) {
3050 len--;
3051 s[len] = 0;
3052 }
3053 return len;
3054 }
3055
3056 static int ata_dma_blacklisted(const struct ata_device *dev)
3057 {
3058 unsigned char model_num[40];
3059 unsigned char model_rev[16];
3060 unsigned int nlen, rlen;
3061 int i;
3062
3063 /* We don't support polling DMA.
3064 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3065 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3066 */
3067 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3068 (dev->flags & ATA_DFLAG_CDB_INTR))
3069 return 1;
3070
3071 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3072 sizeof(model_num));
3073 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3074 sizeof(model_rev));
3075 nlen = ata_strim(model_num, sizeof(model_num));
3076 rlen = ata_strim(model_rev, sizeof(model_rev));
3077
3078 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3079 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3080 if (ata_dma_blacklist[i+1] == NULL)
3081 return 1;
3082 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3083 return 1;
3084 }
3085 }
3086 return 0;
3087 }
3088
3089 /**
3090 * ata_dev_xfermask - Compute supported xfermask of the given device
3091 * @dev: Device to compute xfermask for
3092 *
3093 * Compute supported xfermask of @dev and store it in
3094 * dev->*_mask. This function is responsible for applying all
3095 * known limits including host controller limits, device
3096 * blacklist, etc...
3097 *
3098 * LOCKING:
3099 * None.
3100 */
3101 static void ata_dev_xfermask(struct ata_device *dev)
3102 {
3103 struct ata_port *ap = dev->ap;
3104 struct ata_host *host = ap->host;
3105 unsigned long xfer_mask;
3106
3107 /* controller modes available */
3108 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3109 ap->mwdma_mask, ap->udma_mask);
3110
3111 /* Apply cable rule here. Don't apply it early because when
3112 * we handle hot plug the cable type can itself change.
3113 */
3114 if (ap->cbl == ATA_CBL_PATA40)
3115 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3116
3117 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3118 dev->mwdma_mask, dev->udma_mask);
3119 xfer_mask &= ata_id_xfermask(dev->id);
3120
3121 /*
3122 * CFA Advanced TrueIDE timings are not allowed on a shared
3123 * cable
3124 */
3125 if (ata_dev_pair(dev)) {
3126 /* No PIO5 or PIO6 */
3127 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3128 /* No MWDMA3 or MWDMA 4 */
3129 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3130 }
3131
3132 if (ata_dma_blacklisted(dev)) {
3133 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3134 ata_dev_printk(dev, KERN_WARNING,
3135 "device is on DMA blacklist, disabling DMA\n");
3136 }
3137
3138 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3139 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3140 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3141 "other device, disabling DMA\n");
3142 }
3143
3144 if (ap->ops->mode_filter)
3145 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3146
3147 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3148 &dev->mwdma_mask, &dev->udma_mask);
3149 }
3150
3151 /**
3152 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3153 * @dev: Device to which command will be sent
3154 *
3155 * Issue SET FEATURES - XFER MODE command to device @dev
3156 * on port @ap.
3157 *
3158 * LOCKING:
3159 * PCI/etc. bus probe sem.
3160 *
3161 * RETURNS:
3162 * 0 on success, AC_ERR_* mask otherwise.
3163 */
3164
3165 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3166 {
3167 struct ata_taskfile tf;
3168 unsigned int err_mask;
3169
3170 /* set up set-features taskfile */
3171 DPRINTK("set features - xfer mode\n");
3172
3173 ata_tf_init(dev, &tf);
3174 tf.command = ATA_CMD_SET_FEATURES;
3175 tf.feature = SETFEATURES_XFER;
3176 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3177 tf.protocol = ATA_PROT_NODATA;
3178 tf.nsect = dev->xfer_mode;
3179
3180 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3181
3182 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3183 return err_mask;
3184 }
3185
3186 /**
3187 * ata_dev_init_params - Issue INIT DEV PARAMS command
3188 * @dev: Device to which command will be sent
3189 * @heads: Number of heads (taskfile parameter)
3190 * @sectors: Number of sectors (taskfile parameter)
3191 *
3192 * LOCKING:
3193 * Kernel thread context (may sleep)
3194 *
3195 * RETURNS:
3196 * 0 on success, AC_ERR_* mask otherwise.
3197 */
3198 static unsigned int ata_dev_init_params(struct ata_device *dev,
3199 u16 heads, u16 sectors)
3200 {
3201 struct ata_taskfile tf;
3202 unsigned int err_mask;
3203
3204 /* Number of sectors per track 1-255. Number of heads 1-16 */
3205 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3206 return AC_ERR_INVALID;
3207
3208 /* set up init dev params taskfile */
3209 DPRINTK("init dev params \n");
3210
3211 ata_tf_init(dev, &tf);
3212 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3213 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3214 tf.protocol = ATA_PROT_NODATA;
3215 tf.nsect = sectors;
3216 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3217
3218 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3219
3220 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3221 return err_mask;
3222 }
3223
3224 /**
3225 * ata_sg_clean - Unmap DMA memory associated with command
3226 * @qc: Command containing DMA memory to be released
3227 *
3228 * Unmap all mapped DMA memory associated with this command.
3229 *
3230 * LOCKING:
3231 * spin_lock_irqsave(host lock)
3232 */
3233
3234 static void ata_sg_clean(struct ata_queued_cmd *qc)
3235 {
3236 struct ata_port *ap = qc->ap;
3237 struct scatterlist *sg = qc->__sg;
3238 int dir = qc->dma_dir;
3239 void *pad_buf = NULL;
3240
3241 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3242 WARN_ON(sg == NULL);
3243
3244 if (qc->flags & ATA_QCFLAG_SINGLE)
3245 WARN_ON(qc->n_elem > 1);
3246
3247 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3248
3249 /* if we padded the buffer out to 32-bit bound, and data
3250 * xfer direction is from-device, we must copy from the
3251 * pad buffer back into the supplied buffer
3252 */
3253 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3254 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3255
3256 if (qc->flags & ATA_QCFLAG_SG) {
3257 if (qc->n_elem)
3258 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3259 /* restore last sg */
3260 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3261 if (pad_buf) {
3262 struct scatterlist *psg = &qc->pad_sgent;
3263 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3264 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3265 kunmap_atomic(addr, KM_IRQ0);
3266 }
3267 } else {
3268 if (qc->n_elem)
3269 dma_unmap_single(ap->dev,
3270 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3271 dir);
3272 /* restore sg */
3273 sg->length += qc->pad_len;
3274 if (pad_buf)
3275 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3276 pad_buf, qc->pad_len);
3277 }
3278
3279 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3280 qc->__sg = NULL;
3281 }
3282
3283 /**
3284 * ata_fill_sg - Fill PCI IDE PRD table
3285 * @qc: Metadata associated with taskfile to be transferred
3286 *
3287 * Fill PCI IDE PRD (scatter-gather) table with segments
3288 * associated with the current disk command.
3289 *
3290 * LOCKING:
3291 * spin_lock_irqsave(host lock)
3292 *
3293 */
3294 static void ata_fill_sg(struct ata_queued_cmd *qc)
3295 {
3296 struct ata_port *ap = qc->ap;
3297 struct scatterlist *sg;
3298 unsigned int idx;
3299
3300 WARN_ON(qc->__sg == NULL);
3301 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3302
3303 idx = 0;
3304 ata_for_each_sg(sg, qc) {
3305 u32 addr, offset;
3306 u32 sg_len, len;
3307
3308 /* determine if physical DMA addr spans 64K boundary.
3309 * Note h/w doesn't support 64-bit, so we unconditionally
3310 * truncate dma_addr_t to u32.
3311 */
3312 addr = (u32) sg_dma_address(sg);
3313 sg_len = sg_dma_len(sg);
3314
3315 while (sg_len) {
3316 offset = addr & 0xffff;
3317 len = sg_len;
3318 if ((offset + sg_len) > 0x10000)
3319 len = 0x10000 - offset;
3320
3321 ap->prd[idx].addr = cpu_to_le32(addr);
3322 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3323 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3324
3325 idx++;
3326 sg_len -= len;
3327 addr += len;
3328 }
3329 }
3330
3331 if (idx)
3332 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3333 }
3334 /**
3335 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3336 * @qc: Metadata associated with taskfile to check
3337 *
3338 * Allow low-level driver to filter ATA PACKET commands, returning
3339 * a status indicating whether or not it is OK to use DMA for the
3340 * supplied PACKET command.
3341 *
3342 * LOCKING:
3343 * spin_lock_irqsave(host lock)
3344 *
3345 * RETURNS: 0 when ATAPI DMA can be used
3346 * nonzero otherwise
3347 */
3348 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3349 {
3350 struct ata_port *ap = qc->ap;
3351 int rc = 0; /* Assume ATAPI DMA is OK by default */
3352
3353 if (ap->ops->check_atapi_dma)
3354 rc = ap->ops->check_atapi_dma(qc);
3355
3356 return rc;
3357 }
3358 /**
3359 * ata_qc_prep - Prepare taskfile for submission
3360 * @qc: Metadata associated with taskfile to be prepared
3361 *
3362 * Prepare ATA taskfile for submission.
3363 *
3364 * LOCKING:
3365 * spin_lock_irqsave(host lock)
3366 */
3367 void ata_qc_prep(struct ata_queued_cmd *qc)
3368 {
3369 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3370 return;
3371
3372 ata_fill_sg(qc);
3373 }
3374
3375 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3376
3377 /**
3378 * ata_sg_init_one - Associate command with memory buffer
3379 * @qc: Command to be associated
3380 * @buf: Memory buffer
3381 * @buflen: Length of memory buffer, in bytes.
3382 *
3383 * Initialize the data-related elements of queued_cmd @qc
3384 * to point to a single memory buffer, @buf of byte length @buflen.
3385 *
3386 * LOCKING:
3387 * spin_lock_irqsave(host lock)
3388 */
3389
3390 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3391 {
3392 struct scatterlist *sg;
3393
3394 qc->flags |= ATA_QCFLAG_SINGLE;
3395
3396 memset(&qc->sgent, 0, sizeof(qc->sgent));
3397 qc->__sg = &qc->sgent;
3398 qc->n_elem = 1;
3399 qc->orig_n_elem = 1;
3400 qc->buf_virt = buf;
3401 qc->nbytes = buflen;
3402
3403 sg = qc->__sg;
3404 sg_init_one(sg, buf, buflen);
3405 }
3406
3407 /**
3408 * ata_sg_init - Associate command with scatter-gather table.
3409 * @qc: Command to be associated
3410 * @sg: Scatter-gather table.
3411 * @n_elem: Number of elements in s/g table.
3412 *
3413 * Initialize the data-related elements of queued_cmd @qc
3414 * to point to a scatter-gather table @sg, containing @n_elem
3415 * elements.
3416 *
3417 * LOCKING:
3418 * spin_lock_irqsave(host lock)
3419 */
3420
3421 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3422 unsigned int n_elem)
3423 {
3424 qc->flags |= ATA_QCFLAG_SG;
3425 qc->__sg = sg;
3426 qc->n_elem = n_elem;
3427 qc->orig_n_elem = n_elem;
3428 }
3429
3430 /**
3431 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3432 * @qc: Command with memory buffer to be mapped.
3433 *
3434 * DMA-map the memory buffer associated with queued_cmd @qc.
3435 *
3436 * LOCKING:
3437 * spin_lock_irqsave(host lock)
3438 *
3439 * RETURNS:
3440 * Zero on success, negative on error.
3441 */
3442
3443 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3444 {
3445 struct ata_port *ap = qc->ap;
3446 int dir = qc->dma_dir;
3447 struct scatterlist *sg = qc->__sg;
3448 dma_addr_t dma_address;
3449 int trim_sg = 0;
3450
3451 /* we must lengthen transfers to end on a 32-bit boundary */
3452 qc->pad_len = sg->length & 3;
3453 if (qc->pad_len) {
3454 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3455 struct scatterlist *psg = &qc->pad_sgent;
3456
3457 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3458
3459 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3460
3461 if (qc->tf.flags & ATA_TFLAG_WRITE)
3462 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3463 qc->pad_len);
3464
3465 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3466 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3467 /* trim sg */
3468 sg->length -= qc->pad_len;
3469 if (sg->length == 0)
3470 trim_sg = 1;
3471
3472 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3473 sg->length, qc->pad_len);
3474 }
3475
3476 if (trim_sg) {
3477 qc->n_elem--;
3478 goto skip_map;
3479 }
3480
3481 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3482 sg->length, dir);
3483 if (dma_mapping_error(dma_address)) {
3484 /* restore sg */
3485 sg->length += qc->pad_len;
3486 return -1;
3487 }
3488
3489 sg_dma_address(sg) = dma_address;
3490 sg_dma_len(sg) = sg->length;
3491
3492 skip_map:
3493 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3494 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3495
3496 return 0;
3497 }
3498
3499 /**
3500 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3501 * @qc: Command with scatter-gather table to be mapped.
3502 *
3503 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3504 *
3505 * LOCKING:
3506 * spin_lock_irqsave(host lock)
3507 *
3508 * RETURNS:
3509 * Zero on success, negative on error.
3510 *
3511 */
3512
3513 static int ata_sg_setup(struct ata_queued_cmd *qc)
3514 {
3515 struct ata_port *ap = qc->ap;
3516 struct scatterlist *sg = qc->__sg;
3517 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3518 int n_elem, pre_n_elem, dir, trim_sg = 0;
3519
3520 VPRINTK("ENTER, ata%u\n", ap->id);
3521 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3522
3523 /* we must lengthen transfers to end on a 32-bit boundary */
3524 qc->pad_len = lsg->length & 3;
3525 if (qc->pad_len) {
3526 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3527 struct scatterlist *psg = &qc->pad_sgent;
3528 unsigned int offset;
3529
3530 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3531
3532 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3533
3534 /*
3535 * psg->page/offset are used to copy to-be-written
3536 * data in this function or read data in ata_sg_clean.
3537 */
3538 offset = lsg->offset + lsg->length - qc->pad_len;
3539 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3540 psg->offset = offset_in_page(offset);
3541
3542 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3543 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3544 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3545 kunmap_atomic(addr, KM_IRQ0);
3546 }
3547
3548 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3549 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3550 /* trim last sg */
3551 lsg->length -= qc->pad_len;
3552 if (lsg->length == 0)
3553 trim_sg = 1;
3554
3555 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3556 qc->n_elem - 1, lsg->length, qc->pad_len);
3557 }
3558
3559 pre_n_elem = qc->n_elem;
3560 if (trim_sg && pre_n_elem)
3561 pre_n_elem--;
3562
3563 if (!pre_n_elem) {
3564 n_elem = 0;
3565 goto skip_map;
3566 }
3567
3568 dir = qc->dma_dir;
3569 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3570 if (n_elem < 1) {
3571 /* restore last sg */
3572 lsg->length += qc->pad_len;
3573 return -1;
3574 }
3575
3576 DPRINTK("%d sg elements mapped\n", n_elem);
3577
3578 skip_map:
3579 qc->n_elem = n_elem;
3580
3581 return 0;
3582 }
3583
3584 /**
3585 * swap_buf_le16 - swap halves of 16-bit words in place
3586 * @buf: Buffer to swap
3587 * @buf_words: Number of 16-bit words in buffer.
3588 *
3589 * Swap halves of 16-bit words if needed to convert from
3590 * little-endian byte order to native cpu byte order, or
3591 * vice-versa.
3592 *
3593 * LOCKING:
3594 * Inherited from caller.
3595 */
3596 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3597 {
3598 #ifdef __BIG_ENDIAN
3599 unsigned int i;
3600
3601 for (i = 0; i < buf_words; i++)
3602 buf[i] = le16_to_cpu(buf[i]);
3603 #endif /* __BIG_ENDIAN */
3604 }
3605
3606 /**
3607 * ata_mmio_data_xfer - Transfer data by MMIO
3608 * @adev: device for this I/O
3609 * @buf: data buffer
3610 * @buflen: buffer length
3611 * @write_data: read/write
3612 *
3613 * Transfer data from/to the device data register by MMIO.
3614 *
3615 * LOCKING:
3616 * Inherited from caller.
3617 */
3618
3619 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3620 unsigned int buflen, int write_data)
3621 {
3622 struct ata_port *ap = adev->ap;
3623 unsigned int i;
3624 unsigned int words = buflen >> 1;
3625 u16 *buf16 = (u16 *) buf;
3626 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3627
3628 /* Transfer multiple of 2 bytes */
3629 if (write_data) {
3630 for (i = 0; i < words; i++)
3631 writew(le16_to_cpu(buf16[i]), mmio);
3632 } else {
3633 for (i = 0; i < words; i++)
3634 buf16[i] = cpu_to_le16(readw(mmio));
3635 }
3636
3637 /* Transfer trailing 1 byte, if any. */
3638 if (unlikely(buflen & 0x01)) {
3639 u16 align_buf[1] = { 0 };
3640 unsigned char *trailing_buf = buf + buflen - 1;
3641
3642 if (write_data) {
3643 memcpy(align_buf, trailing_buf, 1);
3644 writew(le16_to_cpu(align_buf[0]), mmio);
3645 } else {
3646 align_buf[0] = cpu_to_le16(readw(mmio));
3647 memcpy(trailing_buf, align_buf, 1);
3648 }
3649 }
3650 }
3651
3652 /**
3653 * ata_pio_data_xfer - Transfer data by PIO
3654 * @adev: device to target
3655 * @buf: data buffer
3656 * @buflen: buffer length
3657 * @write_data: read/write
3658 *
3659 * Transfer data from/to the device data register by PIO.
3660 *
3661 * LOCKING:
3662 * Inherited from caller.
3663 */
3664
3665 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3666 unsigned int buflen, int write_data)
3667 {
3668 struct ata_port *ap = adev->ap;
3669 unsigned int words = buflen >> 1;
3670
3671 /* Transfer multiple of 2 bytes */
3672 if (write_data)
3673 outsw(ap->ioaddr.data_addr, buf, words);
3674 else
3675 insw(ap->ioaddr.data_addr, buf, words);
3676
3677 /* Transfer trailing 1 byte, if any. */
3678 if (unlikely(buflen & 0x01)) {
3679 u16 align_buf[1] = { 0 };
3680 unsigned char *trailing_buf = buf + buflen - 1;
3681
3682 if (write_data) {
3683 memcpy(align_buf, trailing_buf, 1);
3684 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3685 } else {
3686 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3687 memcpy(trailing_buf, align_buf, 1);
3688 }
3689 }
3690 }
3691
3692 /**
3693 * ata_pio_data_xfer_noirq - Transfer data by PIO
3694 * @adev: device to target
3695 * @buf: data buffer
3696 * @buflen: buffer length
3697 * @write_data: read/write
3698 *
3699 * Transfer data from/to the device data register by PIO. Do the
3700 * transfer with interrupts disabled.
3701 *
3702 * LOCKING:
3703 * Inherited from caller.
3704 */
3705
3706 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3707 unsigned int buflen, int write_data)
3708 {
3709 unsigned long flags;
3710 local_irq_save(flags);
3711 ata_pio_data_xfer(adev, buf, buflen, write_data);
3712 local_irq_restore(flags);
3713 }
3714
3715
3716 /**
3717 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3718 * @qc: Command on going
3719 *
3720 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3721 *
3722 * LOCKING:
3723 * Inherited from caller.
3724 */
3725
3726 static void ata_pio_sector(struct ata_queued_cmd *qc)
3727 {
3728 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3729 struct scatterlist *sg = qc->__sg;
3730 struct ata_port *ap = qc->ap;
3731 struct page *page;
3732 unsigned int offset;
3733 unsigned char *buf;
3734
3735 if (qc->cursect == (qc->nsect - 1))
3736 ap->hsm_task_state = HSM_ST_LAST;
3737
3738 page = sg[qc->cursg].page;
3739 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3740
3741 /* get the current page and offset */
3742 page = nth_page(page, (offset >> PAGE_SHIFT));
3743 offset %= PAGE_SIZE;
3744
3745 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3746
3747 if (PageHighMem(page)) {
3748 unsigned long flags;
3749
3750 /* FIXME: use a bounce buffer */
3751 local_irq_save(flags);
3752 buf = kmap_atomic(page, KM_IRQ0);
3753
3754 /* do the actual data transfer */
3755 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3756
3757 kunmap_atomic(buf, KM_IRQ0);
3758 local_irq_restore(flags);
3759 } else {
3760 buf = page_address(page);
3761 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3762 }
3763
3764 qc->cursect++;
3765 qc->cursg_ofs++;
3766
3767 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3768 qc->cursg++;
3769 qc->cursg_ofs = 0;
3770 }
3771 }
3772
3773 /**
3774 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3775 * @qc: Command on going
3776 *
3777 * Transfer one or many ATA_SECT_SIZE of data from/to the
3778 * ATA device for the DRQ request.
3779 *
3780 * LOCKING:
3781 * Inherited from caller.
3782 */
3783
3784 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3785 {
3786 if (is_multi_taskfile(&qc->tf)) {
3787 /* READ/WRITE MULTIPLE */
3788 unsigned int nsect;
3789
3790 WARN_ON(qc->dev->multi_count == 0);
3791
3792 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3793 while (nsect--)
3794 ata_pio_sector(qc);
3795 } else
3796 ata_pio_sector(qc);
3797 }
3798
3799 /**
3800 * atapi_send_cdb - Write CDB bytes to hardware
3801 * @ap: Port to which ATAPI device is attached.
3802 * @qc: Taskfile currently active
3803 *
3804 * When device has indicated its readiness to accept
3805 * a CDB, this function is called. Send the CDB.
3806 *
3807 * LOCKING:
3808 * caller.
3809 */
3810
3811 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3812 {
3813 /* send SCSI cdb */
3814 DPRINTK("send cdb\n");
3815 WARN_ON(qc->dev->cdb_len < 12);
3816
3817 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3818 ata_altstatus(ap); /* flush */
3819
3820 switch (qc->tf.protocol) {
3821 case ATA_PROT_ATAPI:
3822 ap->hsm_task_state = HSM_ST;
3823 break;
3824 case ATA_PROT_ATAPI_NODATA:
3825 ap->hsm_task_state = HSM_ST_LAST;
3826 break;
3827 case ATA_PROT_ATAPI_DMA:
3828 ap->hsm_task_state = HSM_ST_LAST;
3829 /* initiate bmdma */
3830 ap->ops->bmdma_start(qc);
3831 break;
3832 }
3833 }
3834
3835 /**
3836 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3837 * @qc: Command on going
3838 * @bytes: number of bytes
3839 *
3840 * Transfer Transfer data from/to the ATAPI device.
3841 *
3842 * LOCKING:
3843 * Inherited from caller.
3844 *
3845 */
3846
3847 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3848 {
3849 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3850 struct scatterlist *sg = qc->__sg;
3851 struct ata_port *ap = qc->ap;
3852 struct page *page;
3853 unsigned char *buf;
3854 unsigned int offset, count;
3855
3856 if (qc->curbytes + bytes >= qc->nbytes)
3857 ap->hsm_task_state = HSM_ST_LAST;
3858
3859 next_sg:
3860 if (unlikely(qc->cursg >= qc->n_elem)) {
3861 /*
3862 * The end of qc->sg is reached and the device expects
3863 * more data to transfer. In order not to overrun qc->sg
3864 * and fulfill length specified in the byte count register,
3865 * - for read case, discard trailing data from the device
3866 * - for write case, padding zero data to the device
3867 */
3868 u16 pad_buf[1] = { 0 };
3869 unsigned int words = bytes >> 1;
3870 unsigned int i;
3871
3872 if (words) /* warning if bytes > 1 */
3873 ata_dev_printk(qc->dev, KERN_WARNING,
3874 "%u bytes trailing data\n", bytes);
3875
3876 for (i = 0; i < words; i++)
3877 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3878
3879 ap->hsm_task_state = HSM_ST_LAST;
3880 return;
3881 }
3882
3883 sg = &qc->__sg[qc->cursg];
3884
3885 page = sg->page;
3886 offset = sg->offset + qc->cursg_ofs;
3887
3888 /* get the current page and offset */
3889 page = nth_page(page, (offset >> PAGE_SHIFT));
3890 offset %= PAGE_SIZE;
3891
3892 /* don't overrun current sg */
3893 count = min(sg->length - qc->cursg_ofs, bytes);
3894
3895 /* don't cross page boundaries */
3896 count = min(count, (unsigned int)PAGE_SIZE - offset);
3897
3898 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3899
3900 if (PageHighMem(page)) {
3901 unsigned long flags;
3902
3903 /* FIXME: use bounce buffer */
3904 local_irq_save(flags);
3905 buf = kmap_atomic(page, KM_IRQ0);
3906
3907 /* do the actual data transfer */
3908 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3909
3910 kunmap_atomic(buf, KM_IRQ0);
3911 local_irq_restore(flags);
3912 } else {
3913 buf = page_address(page);
3914 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3915 }
3916
3917 bytes -= count;
3918 qc->curbytes += count;
3919 qc->cursg_ofs += count;
3920
3921 if (qc->cursg_ofs == sg->length) {
3922 qc->cursg++;
3923 qc->cursg_ofs = 0;
3924 }
3925
3926 if (bytes)
3927 goto next_sg;
3928 }
3929
3930 /**
3931 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3932 * @qc: Command on going
3933 *
3934 * Transfer Transfer data from/to the ATAPI device.
3935 *
3936 * LOCKING:
3937 * Inherited from caller.
3938 */
3939
3940 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3941 {
3942 struct ata_port *ap = qc->ap;
3943 struct ata_device *dev = qc->dev;
3944 unsigned int ireason, bc_lo, bc_hi, bytes;
3945 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3946
3947 /* Abuse qc->result_tf for temp storage of intermediate TF
3948 * here to save some kernel stack usage.
3949 * For normal completion, qc->result_tf is not relevant. For
3950 * error, qc->result_tf is later overwritten by ata_qc_complete().
3951 * So, the correctness of qc->result_tf is not affected.
3952 */
3953 ap->ops->tf_read(ap, &qc->result_tf);
3954 ireason = qc->result_tf.nsect;
3955 bc_lo = qc->result_tf.lbam;
3956 bc_hi = qc->result_tf.lbah;
3957 bytes = (bc_hi << 8) | bc_lo;
3958
3959 /* shall be cleared to zero, indicating xfer of data */
3960 if (ireason & (1 << 0))
3961 goto err_out;
3962
3963 /* make sure transfer direction matches expected */
3964 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3965 if (do_write != i_write)
3966 goto err_out;
3967
3968 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3969
3970 __atapi_pio_bytes(qc, bytes);
3971
3972 return;
3973
3974 err_out:
3975 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3976 qc->err_mask |= AC_ERR_HSM;
3977 ap->hsm_task_state = HSM_ST_ERR;
3978 }
3979
3980 /**
3981 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3982 * @ap: the target ata_port
3983 * @qc: qc on going
3984 *
3985 * RETURNS:
3986 * 1 if ok in workqueue, 0 otherwise.
3987 */
3988
3989 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3990 {
3991 if (qc->tf.flags & ATA_TFLAG_POLLING)
3992 return 1;
3993
3994 if (ap->hsm_task_state == HSM_ST_FIRST) {
3995 if (qc->tf.protocol == ATA_PROT_PIO &&
3996 (qc->tf.flags & ATA_TFLAG_WRITE))
3997 return 1;
3998
3999 if (is_atapi_taskfile(&qc->tf) &&
4000 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4001 return 1;
4002 }
4003
4004 return 0;
4005 }
4006
4007 /**
4008 * ata_hsm_qc_complete - finish a qc running on standard HSM
4009 * @qc: Command to complete
4010 * @in_wq: 1 if called from workqueue, 0 otherwise
4011 *
4012 * Finish @qc which is running on standard HSM.
4013 *
4014 * LOCKING:
4015 * If @in_wq is zero, spin_lock_irqsave(host lock).
4016 * Otherwise, none on entry and grabs host lock.
4017 */
4018 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4019 {
4020 struct ata_port *ap = qc->ap;
4021 unsigned long flags;
4022
4023 if (ap->ops->error_handler) {
4024 if (in_wq) {
4025 spin_lock_irqsave(ap->lock, flags);
4026
4027 /* EH might have kicked in while host lock is
4028 * released.
4029 */
4030 qc = ata_qc_from_tag(ap, qc->tag);
4031 if (qc) {
4032 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4033 ata_irq_on(ap);
4034 ata_qc_complete(qc);
4035 } else
4036 ata_port_freeze(ap);
4037 }
4038
4039 spin_unlock_irqrestore(ap->lock, flags);
4040 } else {
4041 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4042 ata_qc_complete(qc);
4043 else
4044 ata_port_freeze(ap);
4045 }
4046 } else {
4047 if (in_wq) {
4048 spin_lock_irqsave(ap->lock, flags);
4049 ata_irq_on(ap);
4050 ata_qc_complete(qc);
4051 spin_unlock_irqrestore(ap->lock, flags);
4052 } else
4053 ata_qc_complete(qc);
4054 }
4055
4056 ata_altstatus(ap); /* flush */
4057 }
4058
4059 /**
4060 * ata_hsm_move - move the HSM to the next state.
4061 * @ap: the target ata_port
4062 * @qc: qc on going
4063 * @status: current device status
4064 * @in_wq: 1 if called from workqueue, 0 otherwise
4065 *
4066 * RETURNS:
4067 * 1 when poll next status needed, 0 otherwise.
4068 */
4069 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4070 u8 status, int in_wq)
4071 {
4072 unsigned long flags = 0;
4073 int poll_next;
4074
4075 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4076
4077 /* Make sure ata_qc_issue_prot() does not throw things
4078 * like DMA polling into the workqueue. Notice that
4079 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4080 */
4081 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4082
4083 fsm_start:
4084 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4085 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4086
4087 switch (ap->hsm_task_state) {
4088 case HSM_ST_FIRST:
4089 /* Send first data block or PACKET CDB */
4090
4091 /* If polling, we will stay in the work queue after
4092 * sending the data. Otherwise, interrupt handler
4093 * takes over after sending the data.
4094 */
4095 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4096
4097 /* check device status */
4098 if (unlikely((status & ATA_DRQ) == 0)) {
4099 /* handle BSY=0, DRQ=0 as error */
4100 if (likely(status & (ATA_ERR | ATA_DF)))
4101 /* device stops HSM for abort/error */
4102 qc->err_mask |= AC_ERR_DEV;
4103 else
4104 /* HSM violation. Let EH handle this */
4105 qc->err_mask |= AC_ERR_HSM;
4106
4107 ap->hsm_task_state = HSM_ST_ERR;
4108 goto fsm_start;
4109 }
4110
4111 /* Device should not ask for data transfer (DRQ=1)
4112 * when it finds something wrong.
4113 * We ignore DRQ here and stop the HSM by
4114 * changing hsm_task_state to HSM_ST_ERR and
4115 * let the EH abort the command or reset the device.
4116 */
4117 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4118 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4119 ap->id, status);
4120 qc->err_mask |= AC_ERR_HSM;
4121 ap->hsm_task_state = HSM_ST_ERR;
4122 goto fsm_start;
4123 }
4124
4125 /* Send the CDB (atapi) or the first data block (ata pio out).
4126 * During the state transition, interrupt handler shouldn't
4127 * be invoked before the data transfer is complete and
4128 * hsm_task_state is changed. Hence, the following locking.
4129 */
4130 if (in_wq)
4131 spin_lock_irqsave(ap->lock, flags);
4132
4133 if (qc->tf.protocol == ATA_PROT_PIO) {
4134 /* PIO data out protocol.
4135 * send first data block.
4136 */
4137
4138 /* ata_pio_sectors() might change the state
4139 * to HSM_ST_LAST. so, the state is changed here
4140 * before ata_pio_sectors().
4141 */
4142 ap->hsm_task_state = HSM_ST;
4143 ata_pio_sectors(qc);
4144 ata_altstatus(ap); /* flush */
4145 } else
4146 /* send CDB */
4147 atapi_send_cdb(ap, qc);
4148
4149 if (in_wq)
4150 spin_unlock_irqrestore(ap->lock, flags);
4151
4152 /* if polling, ata_pio_task() handles the rest.
4153 * otherwise, interrupt handler takes over from here.
4154 */
4155 break;
4156
4157 case HSM_ST:
4158 /* complete command or read/write the data register */
4159 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4160 /* ATAPI PIO protocol */
4161 if ((status & ATA_DRQ) == 0) {
4162 /* No more data to transfer or device error.
4163 * Device error will be tagged in HSM_ST_LAST.
4164 */
4165 ap->hsm_task_state = HSM_ST_LAST;
4166 goto fsm_start;
4167 }
4168
4169 /* Device should not ask for data transfer (DRQ=1)
4170 * when it finds something wrong.
4171 * We ignore DRQ here and stop the HSM by
4172 * changing hsm_task_state to HSM_ST_ERR and
4173 * let the EH abort the command or reset the device.
4174 */
4175 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4176 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4177 ap->id, status);
4178 qc->err_mask |= AC_ERR_HSM;
4179 ap->hsm_task_state = HSM_ST_ERR;
4180 goto fsm_start;
4181 }
4182
4183 atapi_pio_bytes(qc);
4184
4185 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4186 /* bad ireason reported by device */
4187 goto fsm_start;
4188
4189 } else {
4190 /* ATA PIO protocol */
4191 if (unlikely((status & ATA_DRQ) == 0)) {
4192 /* handle BSY=0, DRQ=0 as error */
4193 if (likely(status & (ATA_ERR | ATA_DF)))
4194 /* device stops HSM for abort/error */
4195 qc->err_mask |= AC_ERR_DEV;
4196 else
4197 /* HSM violation. Let EH handle this */
4198 qc->err_mask |= AC_ERR_HSM;
4199
4200 ap->hsm_task_state = HSM_ST_ERR;
4201 goto fsm_start;
4202 }
4203
4204 /* For PIO reads, some devices may ask for
4205 * data transfer (DRQ=1) alone with ERR=1.
4206 * We respect DRQ here and transfer one
4207 * block of junk data before changing the
4208 * hsm_task_state to HSM_ST_ERR.
4209 *
4210 * For PIO writes, ERR=1 DRQ=1 doesn't make
4211 * sense since the data block has been
4212 * transferred to the device.
4213 */
4214 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4215 /* data might be corrputed */
4216 qc->err_mask |= AC_ERR_DEV;
4217
4218 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4219 ata_pio_sectors(qc);
4220 ata_altstatus(ap);
4221 status = ata_wait_idle(ap);
4222 }
4223
4224 if (status & (ATA_BUSY | ATA_DRQ))
4225 qc->err_mask |= AC_ERR_HSM;
4226
4227 /* ata_pio_sectors() might change the
4228 * state to HSM_ST_LAST. so, the state
4229 * is changed after ata_pio_sectors().
4230 */
4231 ap->hsm_task_state = HSM_ST_ERR;
4232 goto fsm_start;
4233 }
4234
4235 ata_pio_sectors(qc);
4236
4237 if (ap->hsm_task_state == HSM_ST_LAST &&
4238 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4239 /* all data read */
4240 ata_altstatus(ap);
4241 status = ata_wait_idle(ap);
4242 goto fsm_start;
4243 }
4244 }
4245
4246 ata_altstatus(ap); /* flush */
4247 poll_next = 1;
4248 break;
4249
4250 case HSM_ST_LAST:
4251 if (unlikely(!ata_ok(status))) {
4252 qc->err_mask |= __ac_err_mask(status);
4253 ap->hsm_task_state = HSM_ST_ERR;
4254 goto fsm_start;
4255 }
4256
4257 /* no more data to transfer */
4258 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4259 ap->id, qc->dev->devno, status);
4260
4261 WARN_ON(qc->err_mask);
4262
4263 ap->hsm_task_state = HSM_ST_IDLE;
4264
4265 /* complete taskfile transaction */
4266 ata_hsm_qc_complete(qc, in_wq);
4267
4268 poll_next = 0;
4269 break;
4270
4271 case HSM_ST_ERR:
4272 /* make sure qc->err_mask is available to
4273 * know what's wrong and recover
4274 */
4275 WARN_ON(qc->err_mask == 0);
4276
4277 ap->hsm_task_state = HSM_ST_IDLE;
4278
4279 /* complete taskfile transaction */
4280 ata_hsm_qc_complete(qc, in_wq);
4281
4282 poll_next = 0;
4283 break;
4284 default:
4285 poll_next = 0;
4286 BUG();
4287 }
4288
4289 return poll_next;
4290 }
4291
4292 static void ata_pio_task(void *_data)
4293 {
4294 struct ata_queued_cmd *qc = _data;
4295 struct ata_port *ap = qc->ap;
4296 u8 status;
4297 int poll_next;
4298
4299 fsm_start:
4300 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4301
4302 /*
4303 * This is purely heuristic. This is a fast path.
4304 * Sometimes when we enter, BSY will be cleared in
4305 * a chk-status or two. If not, the drive is probably seeking
4306 * or something. Snooze for a couple msecs, then
4307 * chk-status again. If still busy, queue delayed work.
4308 */
4309 status = ata_busy_wait(ap, ATA_BUSY, 5);
4310 if (status & ATA_BUSY) {
4311 msleep(2);
4312 status = ata_busy_wait(ap, ATA_BUSY, 10);
4313 if (status & ATA_BUSY) {
4314 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4315 return;
4316 }
4317 }
4318
4319 /* move the HSM */
4320 poll_next = ata_hsm_move(ap, qc, status, 1);
4321
4322 /* another command or interrupt handler
4323 * may be running at this point.
4324 */
4325 if (poll_next)
4326 goto fsm_start;
4327 }
4328
4329 /**
4330 * ata_qc_new - Request an available ATA command, for queueing
4331 * @ap: Port associated with device @dev
4332 * @dev: Device from whom we request an available command structure
4333 *
4334 * LOCKING:
4335 * None.
4336 */
4337
4338 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4339 {
4340 struct ata_queued_cmd *qc = NULL;
4341 unsigned int i;
4342
4343 /* no command while frozen */
4344 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4345 return NULL;
4346
4347 /* the last tag is reserved for internal command. */
4348 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4349 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4350 qc = __ata_qc_from_tag(ap, i);
4351 break;
4352 }
4353
4354 if (qc)
4355 qc->tag = i;
4356
4357 return qc;
4358 }
4359
4360 /**
4361 * ata_qc_new_init - Request an available ATA command, and initialize it
4362 * @dev: Device from whom we request an available command structure
4363 *
4364 * LOCKING:
4365 * None.
4366 */
4367
4368 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4369 {
4370 struct ata_port *ap = dev->ap;
4371 struct ata_queued_cmd *qc;
4372
4373 qc = ata_qc_new(ap);
4374 if (qc) {
4375 qc->scsicmd = NULL;
4376 qc->ap = ap;
4377 qc->dev = dev;
4378
4379 ata_qc_reinit(qc);
4380 }
4381
4382 return qc;
4383 }
4384
4385 /**
4386 * ata_qc_free - free unused ata_queued_cmd
4387 * @qc: Command to complete
4388 *
4389 * Designed to free unused ata_queued_cmd object
4390 * in case something prevents using it.
4391 *
4392 * LOCKING:
4393 * spin_lock_irqsave(host lock)
4394 */
4395 void ata_qc_free(struct ata_queued_cmd *qc)
4396 {
4397 struct ata_port *ap = qc->ap;
4398 unsigned int tag;
4399
4400 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4401
4402 qc->flags = 0;
4403 tag = qc->tag;
4404 if (likely(ata_tag_valid(tag))) {
4405 qc->tag = ATA_TAG_POISON;
4406 clear_bit(tag, &ap->qc_allocated);
4407 }
4408 }
4409
4410 void __ata_qc_complete(struct ata_queued_cmd *qc)
4411 {
4412 struct ata_port *ap = qc->ap;
4413
4414 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4415 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4416
4417 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4418 ata_sg_clean(qc);
4419
4420 /* command should be marked inactive atomically with qc completion */
4421 if (qc->tf.protocol == ATA_PROT_NCQ)
4422 ap->sactive &= ~(1 << qc->tag);
4423 else
4424 ap->active_tag = ATA_TAG_POISON;
4425
4426 /* atapi: mark qc as inactive to prevent the interrupt handler
4427 * from completing the command twice later, before the error handler
4428 * is called. (when rc != 0 and atapi request sense is needed)
4429 */
4430 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4431 ap->qc_active &= ~(1 << qc->tag);
4432
4433 /* call completion callback */
4434 qc->complete_fn(qc);
4435 }
4436
4437 /**
4438 * ata_qc_complete - Complete an active ATA command
4439 * @qc: Command to complete
4440 * @err_mask: ATA Status register contents
4441 *
4442 * Indicate to the mid and upper layers that an ATA
4443 * command has completed, with either an ok or not-ok status.
4444 *
4445 * LOCKING:
4446 * spin_lock_irqsave(host lock)
4447 */
4448 void ata_qc_complete(struct ata_queued_cmd *qc)
4449 {
4450 struct ata_port *ap = qc->ap;
4451
4452 /* XXX: New EH and old EH use different mechanisms to
4453 * synchronize EH with regular execution path.
4454 *
4455 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4456 * Normal execution path is responsible for not accessing a
4457 * failed qc. libata core enforces the rule by returning NULL
4458 * from ata_qc_from_tag() for failed qcs.
4459 *
4460 * Old EH depends on ata_qc_complete() nullifying completion
4461 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4462 * not synchronize with interrupt handler. Only PIO task is
4463 * taken care of.
4464 */
4465 if (ap->ops->error_handler) {
4466 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4467
4468 if (unlikely(qc->err_mask))
4469 qc->flags |= ATA_QCFLAG_FAILED;
4470
4471 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4472 if (!ata_tag_internal(qc->tag)) {
4473 /* always fill result TF for failed qc */
4474 ap->ops->tf_read(ap, &qc->result_tf);
4475 ata_qc_schedule_eh(qc);
4476 return;
4477 }
4478 }
4479
4480 /* read result TF if requested */
4481 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4482 ap->ops->tf_read(ap, &qc->result_tf);
4483
4484 __ata_qc_complete(qc);
4485 } else {
4486 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4487 return;
4488
4489 /* read result TF if failed or requested */
4490 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4491 ap->ops->tf_read(ap, &qc->result_tf);
4492
4493 __ata_qc_complete(qc);
4494 }
4495 }
4496
4497 /**
4498 * ata_qc_complete_multiple - Complete multiple qcs successfully
4499 * @ap: port in question
4500 * @qc_active: new qc_active mask
4501 * @finish_qc: LLDD callback invoked before completing a qc
4502 *
4503 * Complete in-flight commands. This functions is meant to be
4504 * called from low-level driver's interrupt routine to complete
4505 * requests normally. ap->qc_active and @qc_active is compared
4506 * and commands are completed accordingly.
4507 *
4508 * LOCKING:
4509 * spin_lock_irqsave(host lock)
4510 *
4511 * RETURNS:
4512 * Number of completed commands on success, -errno otherwise.
4513 */
4514 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4515 void (*finish_qc)(struct ata_queued_cmd *))
4516 {
4517 int nr_done = 0;
4518 u32 done_mask;
4519 int i;
4520
4521 done_mask = ap->qc_active ^ qc_active;
4522
4523 if (unlikely(done_mask & qc_active)) {
4524 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4525 "(%08x->%08x)\n", ap->qc_active, qc_active);
4526 return -EINVAL;
4527 }
4528
4529 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4530 struct ata_queued_cmd *qc;
4531
4532 if (!(done_mask & (1 << i)))
4533 continue;
4534
4535 if ((qc = ata_qc_from_tag(ap, i))) {
4536 if (finish_qc)
4537 finish_qc(qc);
4538 ata_qc_complete(qc);
4539 nr_done++;
4540 }
4541 }
4542
4543 return nr_done;
4544 }
4545
4546 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4547 {
4548 struct ata_port *ap = qc->ap;
4549
4550 switch (qc->tf.protocol) {
4551 case ATA_PROT_NCQ:
4552 case ATA_PROT_DMA:
4553 case ATA_PROT_ATAPI_DMA:
4554 return 1;
4555
4556 case ATA_PROT_ATAPI:
4557 case ATA_PROT_PIO:
4558 if (ap->flags & ATA_FLAG_PIO_DMA)
4559 return 1;
4560
4561 /* fall through */
4562
4563 default:
4564 return 0;
4565 }
4566
4567 /* never reached */
4568 }
4569
4570 /**
4571 * ata_qc_issue - issue taskfile to device
4572 * @qc: command to issue to device
4573 *
4574 * Prepare an ATA command to submission to device.
4575 * This includes mapping the data into a DMA-able
4576 * area, filling in the S/G table, and finally
4577 * writing the taskfile to hardware, starting the command.
4578 *
4579 * LOCKING:
4580 * spin_lock_irqsave(host lock)
4581 */
4582 void ata_qc_issue(struct ata_queued_cmd *qc)
4583 {
4584 struct ata_port *ap = qc->ap;
4585
4586 /* Make sure only one non-NCQ command is outstanding. The
4587 * check is skipped for old EH because it reuses active qc to
4588 * request ATAPI sense.
4589 */
4590 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4591
4592 if (qc->tf.protocol == ATA_PROT_NCQ) {
4593 WARN_ON(ap->sactive & (1 << qc->tag));
4594 ap->sactive |= 1 << qc->tag;
4595 } else {
4596 WARN_ON(ap->sactive);
4597 ap->active_tag = qc->tag;
4598 }
4599
4600 qc->flags |= ATA_QCFLAG_ACTIVE;
4601 ap->qc_active |= 1 << qc->tag;
4602
4603 if (ata_should_dma_map(qc)) {
4604 if (qc->flags & ATA_QCFLAG_SG) {
4605 if (ata_sg_setup(qc))
4606 goto sg_err;
4607 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4608 if (ata_sg_setup_one(qc))
4609 goto sg_err;
4610 }
4611 } else {
4612 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4613 }
4614
4615 ap->ops->qc_prep(qc);
4616
4617 qc->err_mask |= ap->ops->qc_issue(qc);
4618 if (unlikely(qc->err_mask))
4619 goto err;
4620 return;
4621
4622 sg_err:
4623 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4624 qc->err_mask |= AC_ERR_SYSTEM;
4625 err:
4626 ata_qc_complete(qc);
4627 }
4628
4629 /**
4630 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4631 * @qc: command to issue to device
4632 *
4633 * Using various libata functions and hooks, this function
4634 * starts an ATA command. ATA commands are grouped into
4635 * classes called "protocols", and issuing each type of protocol
4636 * is slightly different.
4637 *
4638 * May be used as the qc_issue() entry in ata_port_operations.
4639 *
4640 * LOCKING:
4641 * spin_lock_irqsave(host lock)
4642 *
4643 * RETURNS:
4644 * Zero on success, AC_ERR_* mask on failure
4645 */
4646
4647 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4648 {
4649 struct ata_port *ap = qc->ap;
4650
4651 /* Use polling pio if the LLD doesn't handle
4652 * interrupt driven pio and atapi CDB interrupt.
4653 */
4654 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4655 switch (qc->tf.protocol) {
4656 case ATA_PROT_PIO:
4657 case ATA_PROT_ATAPI:
4658 case ATA_PROT_ATAPI_NODATA:
4659 qc->tf.flags |= ATA_TFLAG_POLLING;
4660 break;
4661 case ATA_PROT_ATAPI_DMA:
4662 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4663 /* see ata_dma_blacklisted() */
4664 BUG();
4665 break;
4666 default:
4667 break;
4668 }
4669 }
4670
4671 /* select the device */
4672 ata_dev_select(ap, qc->dev->devno, 1, 0);
4673
4674 /* start the command */
4675 switch (qc->tf.protocol) {
4676 case ATA_PROT_NODATA:
4677 if (qc->tf.flags & ATA_TFLAG_POLLING)
4678 ata_qc_set_polling(qc);
4679
4680 ata_tf_to_host(ap, &qc->tf);
4681 ap->hsm_task_state = HSM_ST_LAST;
4682
4683 if (qc->tf.flags & ATA_TFLAG_POLLING)
4684 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4685
4686 break;
4687
4688 case ATA_PROT_DMA:
4689 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4690
4691 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4692 ap->ops->bmdma_setup(qc); /* set up bmdma */
4693 ap->ops->bmdma_start(qc); /* initiate bmdma */
4694 ap->hsm_task_state = HSM_ST_LAST;
4695 break;
4696
4697 case ATA_PROT_PIO:
4698 if (qc->tf.flags & ATA_TFLAG_POLLING)
4699 ata_qc_set_polling(qc);
4700
4701 ata_tf_to_host(ap, &qc->tf);
4702
4703 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4704 /* PIO data out protocol */
4705 ap->hsm_task_state = HSM_ST_FIRST;
4706 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4707
4708 /* always send first data block using
4709 * the ata_pio_task() codepath.
4710 */
4711 } else {
4712 /* PIO data in protocol */
4713 ap->hsm_task_state = HSM_ST;
4714
4715 if (qc->tf.flags & ATA_TFLAG_POLLING)
4716 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4717
4718 /* if polling, ata_pio_task() handles the rest.
4719 * otherwise, interrupt handler takes over from here.
4720 */
4721 }
4722
4723 break;
4724
4725 case ATA_PROT_ATAPI:
4726 case ATA_PROT_ATAPI_NODATA:
4727 if (qc->tf.flags & ATA_TFLAG_POLLING)
4728 ata_qc_set_polling(qc);
4729
4730 ata_tf_to_host(ap, &qc->tf);
4731
4732 ap->hsm_task_state = HSM_ST_FIRST;
4733
4734 /* send cdb by polling if no cdb interrupt */
4735 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4736 (qc->tf.flags & ATA_TFLAG_POLLING))
4737 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4738 break;
4739
4740 case ATA_PROT_ATAPI_DMA:
4741 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4742
4743 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4744 ap->ops->bmdma_setup(qc); /* set up bmdma */
4745 ap->hsm_task_state = HSM_ST_FIRST;
4746
4747 /* send cdb by polling if no cdb interrupt */
4748 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4749 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4750 break;
4751
4752 default:
4753 WARN_ON(1);
4754 return AC_ERR_SYSTEM;
4755 }
4756
4757 return 0;
4758 }
4759
4760 /**
4761 * ata_host_intr - Handle host interrupt for given (port, task)
4762 * @ap: Port on which interrupt arrived (possibly...)
4763 * @qc: Taskfile currently active in engine
4764 *
4765 * Handle host interrupt for given queued command. Currently,
4766 * only DMA interrupts are handled. All other commands are
4767 * handled via polling with interrupts disabled (nIEN bit).
4768 *
4769 * LOCKING:
4770 * spin_lock_irqsave(host lock)
4771 *
4772 * RETURNS:
4773 * One if interrupt was handled, zero if not (shared irq).
4774 */
4775
4776 inline unsigned int ata_host_intr (struct ata_port *ap,
4777 struct ata_queued_cmd *qc)
4778 {
4779 u8 status, host_stat = 0;
4780
4781 VPRINTK("ata%u: protocol %d task_state %d\n",
4782 ap->id, qc->tf.protocol, ap->hsm_task_state);
4783
4784 /* Check whether we are expecting interrupt in this state */
4785 switch (ap->hsm_task_state) {
4786 case HSM_ST_FIRST:
4787 /* Some pre-ATAPI-4 devices assert INTRQ
4788 * at this state when ready to receive CDB.
4789 */
4790
4791 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4792 * The flag was turned on only for atapi devices.
4793 * No need to check is_atapi_taskfile(&qc->tf) again.
4794 */
4795 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4796 goto idle_irq;
4797 break;
4798 case HSM_ST_LAST:
4799 if (qc->tf.protocol == ATA_PROT_DMA ||
4800 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4801 /* check status of DMA engine */
4802 host_stat = ap->ops->bmdma_status(ap);
4803 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4804
4805 /* if it's not our irq... */
4806 if (!(host_stat & ATA_DMA_INTR))
4807 goto idle_irq;
4808
4809 /* before we do anything else, clear DMA-Start bit */
4810 ap->ops->bmdma_stop(qc);
4811
4812 if (unlikely(host_stat & ATA_DMA_ERR)) {
4813 /* error when transfering data to/from memory */
4814 qc->err_mask |= AC_ERR_HOST_BUS;
4815 ap->hsm_task_state = HSM_ST_ERR;
4816 }
4817 }
4818 break;
4819 case HSM_ST:
4820 break;
4821 default:
4822 goto idle_irq;
4823 }
4824
4825 /* check altstatus */
4826 status = ata_altstatus(ap);
4827 if (status & ATA_BUSY)
4828 goto idle_irq;
4829
4830 /* check main status, clearing INTRQ */
4831 status = ata_chk_status(ap);
4832 if (unlikely(status & ATA_BUSY))
4833 goto idle_irq;
4834
4835 /* ack bmdma irq events */
4836 ap->ops->irq_clear(ap);
4837
4838 ata_hsm_move(ap, qc, status, 0);
4839 return 1; /* irq handled */
4840
4841 idle_irq:
4842 ap->stats.idle_irq++;
4843
4844 #ifdef ATA_IRQ_TRAP
4845 if ((ap->stats.idle_irq % 1000) == 0) {
4846 ata_irq_ack(ap, 0); /* debug trap */
4847 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4848 return 1;
4849 }
4850 #endif
4851 return 0; /* irq not handled */
4852 }
4853
4854 /**
4855 * ata_interrupt - Default ATA host interrupt handler
4856 * @irq: irq line (unused)
4857 * @dev_instance: pointer to our ata_host information structure
4858 * @regs: unused
4859 *
4860 * Default interrupt handler for PCI IDE devices. Calls
4861 * ata_host_intr() for each port that is not disabled.
4862 *
4863 * LOCKING:
4864 * Obtains host lock during operation.
4865 *
4866 * RETURNS:
4867 * IRQ_NONE or IRQ_HANDLED.
4868 */
4869
4870 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4871 {
4872 struct ata_host *host = dev_instance;
4873 unsigned int i;
4874 unsigned int handled = 0;
4875 unsigned long flags;
4876
4877 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4878 spin_lock_irqsave(&host->lock, flags);
4879
4880 for (i = 0; i < host->n_ports; i++) {
4881 struct ata_port *ap;
4882
4883 ap = host->ports[i];
4884 if (ap &&
4885 !(ap->flags & ATA_FLAG_DISABLED)) {
4886 struct ata_queued_cmd *qc;
4887
4888 qc = ata_qc_from_tag(ap, ap->active_tag);
4889 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4890 (qc->flags & ATA_QCFLAG_ACTIVE))
4891 handled |= ata_host_intr(ap, qc);
4892 }
4893 }
4894
4895 spin_unlock_irqrestore(&host->lock, flags);
4896
4897 return IRQ_RETVAL(handled);
4898 }
4899
4900 /**
4901 * sata_scr_valid - test whether SCRs are accessible
4902 * @ap: ATA port to test SCR accessibility for
4903 *
4904 * Test whether SCRs are accessible for @ap.
4905 *
4906 * LOCKING:
4907 * None.
4908 *
4909 * RETURNS:
4910 * 1 if SCRs are accessible, 0 otherwise.
4911 */
4912 int sata_scr_valid(struct ata_port *ap)
4913 {
4914 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4915 }
4916
4917 /**
4918 * sata_scr_read - read SCR register of the specified port
4919 * @ap: ATA port to read SCR for
4920 * @reg: SCR to read
4921 * @val: Place to store read value
4922 *
4923 * Read SCR register @reg of @ap into *@val. This function is
4924 * guaranteed to succeed if the cable type of the port is SATA
4925 * and the port implements ->scr_read.
4926 *
4927 * LOCKING:
4928 * None.
4929 *
4930 * RETURNS:
4931 * 0 on success, negative errno on failure.
4932 */
4933 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4934 {
4935 if (sata_scr_valid(ap)) {
4936 *val = ap->ops->scr_read(ap, reg);
4937 return 0;
4938 }
4939 return -EOPNOTSUPP;
4940 }
4941
4942 /**
4943 * sata_scr_write - write SCR register of the specified port
4944 * @ap: ATA port to write SCR for
4945 * @reg: SCR to write
4946 * @val: value to write
4947 *
4948 * Write @val to SCR register @reg of @ap. This function is
4949 * guaranteed to succeed if the cable type of the port is SATA
4950 * and the port implements ->scr_read.
4951 *
4952 * LOCKING:
4953 * None.
4954 *
4955 * RETURNS:
4956 * 0 on success, negative errno on failure.
4957 */
4958 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4959 {
4960 if (sata_scr_valid(ap)) {
4961 ap->ops->scr_write(ap, reg, val);
4962 return 0;
4963 }
4964 return -EOPNOTSUPP;
4965 }
4966
4967 /**
4968 * sata_scr_write_flush - write SCR register of the specified port and flush
4969 * @ap: ATA port to write SCR for
4970 * @reg: SCR to write
4971 * @val: value to write
4972 *
4973 * This function is identical to sata_scr_write() except that this
4974 * function performs flush after writing to the register.
4975 *
4976 * LOCKING:
4977 * None.
4978 *
4979 * RETURNS:
4980 * 0 on success, negative errno on failure.
4981 */
4982 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4983 {
4984 if (sata_scr_valid(ap)) {
4985 ap->ops->scr_write(ap, reg, val);
4986 ap->ops->scr_read(ap, reg);
4987 return 0;
4988 }
4989 return -EOPNOTSUPP;
4990 }
4991
4992 /**
4993 * ata_port_online - test whether the given port is online
4994 * @ap: ATA port to test
4995 *
4996 * Test whether @ap is online. Note that this function returns 0
4997 * if online status of @ap cannot be obtained, so
4998 * ata_port_online(ap) != !ata_port_offline(ap).
4999 *
5000 * LOCKING:
5001 * None.
5002 *
5003 * RETURNS:
5004 * 1 if the port online status is available and online.
5005 */
5006 int ata_port_online(struct ata_port *ap)
5007 {
5008 u32 sstatus;
5009
5010 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5011 return 1;
5012 return 0;
5013 }
5014
5015 /**
5016 * ata_port_offline - test whether the given port is offline
5017 * @ap: ATA port to test
5018 *
5019 * Test whether @ap is offline. Note that this function returns
5020 * 0 if offline status of @ap cannot be obtained, so
5021 * ata_port_online(ap) != !ata_port_offline(ap).
5022 *
5023 * LOCKING:
5024 * None.
5025 *
5026 * RETURNS:
5027 * 1 if the port offline status is available and offline.
5028 */
5029 int ata_port_offline(struct ata_port *ap)
5030 {
5031 u32 sstatus;
5032
5033 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5034 return 1;
5035 return 0;
5036 }
5037
5038 int ata_flush_cache(struct ata_device *dev)
5039 {
5040 unsigned int err_mask;
5041 u8 cmd;
5042
5043 if (!ata_try_flush_cache(dev))
5044 return 0;
5045
5046 if (ata_id_has_flush_ext(dev->id))
5047 cmd = ATA_CMD_FLUSH_EXT;
5048 else
5049 cmd = ATA_CMD_FLUSH;
5050
5051 err_mask = ata_do_simple_cmd(dev, cmd);
5052 if (err_mask) {
5053 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5054 return -EIO;
5055 }
5056
5057 return 0;
5058 }
5059
5060 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5061 unsigned int action, unsigned int ehi_flags,
5062 int wait)
5063 {
5064 unsigned long flags;
5065 int i, rc;
5066
5067 for (i = 0; i < host->n_ports; i++) {
5068 struct ata_port *ap = host->ports[i];
5069
5070 /* Previous resume operation might still be in
5071 * progress. Wait for PM_PENDING to clear.
5072 */
5073 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5074 ata_port_wait_eh(ap);
5075 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5076 }
5077
5078 /* request PM ops to EH */
5079 spin_lock_irqsave(ap->lock, flags);
5080
5081 ap->pm_mesg = mesg;
5082 if (wait) {
5083 rc = 0;
5084 ap->pm_result = &rc;
5085 }
5086
5087 ap->pflags |= ATA_PFLAG_PM_PENDING;
5088 ap->eh_info.action |= action;
5089 ap->eh_info.flags |= ehi_flags;
5090
5091 ata_port_schedule_eh(ap);
5092
5093 spin_unlock_irqrestore(ap->lock, flags);
5094
5095 /* wait and check result */
5096 if (wait) {
5097 ata_port_wait_eh(ap);
5098 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5099 if (rc)
5100 return rc;
5101 }
5102 }
5103
5104 return 0;
5105 }
5106
5107 /**
5108 * ata_host_suspend - suspend host
5109 * @host: host to suspend
5110 * @mesg: PM message
5111 *
5112 * Suspend @host. Actual operation is performed by EH. This
5113 * function requests EH to perform PM operations and waits for EH
5114 * to finish.
5115 *
5116 * LOCKING:
5117 * Kernel thread context (may sleep).
5118 *
5119 * RETURNS:
5120 * 0 on success, -errno on failure.
5121 */
5122 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5123 {
5124 int i, j, rc;
5125
5126 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5127 if (rc)
5128 goto fail;
5129
5130 /* EH is quiescent now. Fail if we have any ready device.
5131 * This happens if hotplug occurs between completion of device
5132 * suspension and here.
5133 */
5134 for (i = 0; i < host->n_ports; i++) {
5135 struct ata_port *ap = host->ports[i];
5136
5137 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5138 struct ata_device *dev = &ap->device[j];
5139
5140 if (ata_dev_ready(dev)) {
5141 ata_port_printk(ap, KERN_WARNING,
5142 "suspend failed, device %d "
5143 "still active\n", dev->devno);
5144 rc = -EBUSY;
5145 goto fail;
5146 }
5147 }
5148 }
5149
5150 host->dev->power.power_state = mesg;
5151 return 0;
5152
5153 fail:
5154 ata_host_resume(host);
5155 return rc;
5156 }
5157
5158 /**
5159 * ata_host_resume - resume host
5160 * @host: host to resume
5161 *
5162 * Resume @host. Actual operation is performed by EH. This
5163 * function requests EH to perform PM operations and returns.
5164 * Note that all resume operations are performed parallely.
5165 *
5166 * LOCKING:
5167 * Kernel thread context (may sleep).
5168 */
5169 void ata_host_resume(struct ata_host *host)
5170 {
5171 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5172 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5173 host->dev->power.power_state = PMSG_ON;
5174 }
5175
5176 /**
5177 * ata_port_start - Set port up for dma.
5178 * @ap: Port to initialize
5179 *
5180 * Called just after data structures for each port are
5181 * initialized. Allocates space for PRD table.
5182 *
5183 * May be used as the port_start() entry in ata_port_operations.
5184 *
5185 * LOCKING:
5186 * Inherited from caller.
5187 */
5188
5189 int ata_port_start (struct ata_port *ap)
5190 {
5191 struct device *dev = ap->dev;
5192 int rc;
5193
5194 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5195 if (!ap->prd)
5196 return -ENOMEM;
5197
5198 rc = ata_pad_alloc(ap, dev);
5199 if (rc) {
5200 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5201 return rc;
5202 }
5203
5204 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5205
5206 return 0;
5207 }
5208
5209
5210 /**
5211 * ata_port_stop - Undo ata_port_start()
5212 * @ap: Port to shut down
5213 *
5214 * Frees the PRD table.
5215 *
5216 * May be used as the port_stop() entry in ata_port_operations.
5217 *
5218 * LOCKING:
5219 * Inherited from caller.
5220 */
5221
5222 void ata_port_stop (struct ata_port *ap)
5223 {
5224 struct device *dev = ap->dev;
5225
5226 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5227 ata_pad_free(ap, dev);
5228 }
5229
5230 void ata_host_stop (struct ata_host *host)
5231 {
5232 if (host->mmio_base)
5233 iounmap(host->mmio_base);
5234 }
5235
5236 /**
5237 * ata_dev_init - Initialize an ata_device structure
5238 * @dev: Device structure to initialize
5239 *
5240 * Initialize @dev in preparation for probing.
5241 *
5242 * LOCKING:
5243 * Inherited from caller.
5244 */
5245 void ata_dev_init(struct ata_device *dev)
5246 {
5247 struct ata_port *ap = dev->ap;
5248 unsigned long flags;
5249
5250 /* SATA spd limit is bound to the first device */
5251 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5252
5253 /* High bits of dev->flags are used to record warm plug
5254 * requests which occur asynchronously. Synchronize using
5255 * host lock.
5256 */
5257 spin_lock_irqsave(ap->lock, flags);
5258 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5259 spin_unlock_irqrestore(ap->lock, flags);
5260
5261 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5262 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5263 dev->pio_mask = UINT_MAX;
5264 dev->mwdma_mask = UINT_MAX;
5265 dev->udma_mask = UINT_MAX;
5266 }
5267
5268 /**
5269 * ata_port_init - Initialize an ata_port structure
5270 * @ap: Structure to initialize
5271 * @host: Collection of hosts to which @ap belongs
5272 * @ent: Probe information provided by low-level driver
5273 * @port_no: Port number associated with this ata_port
5274 *
5275 * Initialize a new ata_port structure.
5276 *
5277 * LOCKING:
5278 * Inherited from caller.
5279 */
5280 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5281 const struct ata_probe_ent *ent, unsigned int port_no)
5282 {
5283 unsigned int i;
5284
5285 ap->lock = &host->lock;
5286 ap->flags = ATA_FLAG_DISABLED;
5287 ap->id = ata_unique_id++;
5288 ap->ctl = ATA_DEVCTL_OBS;
5289 ap->host = host;
5290 ap->dev = ent->dev;
5291 ap->port_no = port_no;
5292 if (port_no == 1 && ent->pinfo2) {
5293 ap->pio_mask = ent->pinfo2->pio_mask;
5294 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5295 ap->udma_mask = ent->pinfo2->udma_mask;
5296 ap->flags |= ent->pinfo2->flags;
5297 ap->ops = ent->pinfo2->port_ops;
5298 } else {
5299 ap->pio_mask = ent->pio_mask;
5300 ap->mwdma_mask = ent->mwdma_mask;
5301 ap->udma_mask = ent->udma_mask;
5302 ap->flags |= ent->port_flags;
5303 ap->ops = ent->port_ops;
5304 }
5305 ap->hw_sata_spd_limit = UINT_MAX;
5306 ap->active_tag = ATA_TAG_POISON;
5307 ap->last_ctl = 0xFF;
5308
5309 #if defined(ATA_VERBOSE_DEBUG)
5310 /* turn on all debugging levels */
5311 ap->msg_enable = 0x00FF;
5312 #elif defined(ATA_DEBUG)
5313 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5314 #else
5315 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5316 #endif
5317
5318 INIT_WORK(&ap->port_task, NULL, NULL);
5319 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5320 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5321 INIT_LIST_HEAD(&ap->eh_done_q);
5322 init_waitqueue_head(&ap->eh_wait_q);
5323
5324 /* set cable type */
5325 ap->cbl = ATA_CBL_NONE;
5326 if (ap->flags & ATA_FLAG_SATA)
5327 ap->cbl = ATA_CBL_SATA;
5328
5329 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5330 struct ata_device *dev = &ap->device[i];
5331 dev->ap = ap;
5332 dev->devno = i;
5333 ata_dev_init(dev);
5334 }
5335
5336 #ifdef ATA_IRQ_TRAP
5337 ap->stats.unhandled_irq = 1;
5338 ap->stats.idle_irq = 1;
5339 #endif
5340
5341 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5342 }
5343
5344 /**
5345 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5346 * @ap: ATA port to initialize SCSI host for
5347 * @shost: SCSI host associated with @ap
5348 *
5349 * Initialize SCSI host @shost associated with ATA port @ap.
5350 *
5351 * LOCKING:
5352 * Inherited from caller.
5353 */
5354 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5355 {
5356 ap->scsi_host = shost;
5357
5358 shost->unique_id = ap->id;
5359 shost->max_id = 16;
5360 shost->max_lun = 1;
5361 shost->max_channel = 1;
5362 shost->max_cmd_len = 12;
5363 }
5364
5365 /**
5366 * ata_port_add - Attach low-level ATA driver to system
5367 * @ent: Information provided by low-level driver
5368 * @host: Collections of ports to which we add
5369 * @port_no: Port number associated with this host
5370 *
5371 * Attach low-level ATA driver to system.
5372 *
5373 * LOCKING:
5374 * PCI/etc. bus probe sem.
5375 *
5376 * RETURNS:
5377 * New ata_port on success, for NULL on error.
5378 */
5379 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5380 struct ata_host *host,
5381 unsigned int port_no)
5382 {
5383 struct Scsi_Host *shost;
5384 struct ata_port *ap;
5385
5386 DPRINTK("ENTER\n");
5387
5388 if (!ent->port_ops->error_handler &&
5389 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5390 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5391 port_no);
5392 return NULL;
5393 }
5394
5395 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5396 if (!shost)
5397 return NULL;
5398
5399 shost->transportt = &ata_scsi_transport_template;
5400
5401 ap = ata_shost_to_port(shost);
5402
5403 ata_port_init(ap, host, ent, port_no);
5404 ata_port_init_shost(ap, shost);
5405
5406 return ap;
5407 }
5408
5409 /**
5410 * ata_sas_host_init - Initialize a host struct
5411 * @host: host to initialize
5412 * @dev: device host is attached to
5413 * @flags: host flags
5414 * @ops: port_ops
5415 *
5416 * LOCKING:
5417 * PCI/etc. bus probe sem.
5418 *
5419 */
5420
5421 void ata_host_init(struct ata_host *host, struct device *dev,
5422 unsigned long flags, const struct ata_port_operations *ops)
5423 {
5424 spin_lock_init(&host->lock);
5425 host->dev = dev;
5426 host->flags = flags;
5427 host->ops = ops;
5428 }
5429
5430 /**
5431 * ata_device_add - Register hardware device with ATA and SCSI layers
5432 * @ent: Probe information describing hardware device to be registered
5433 *
5434 * This function processes the information provided in the probe
5435 * information struct @ent, allocates the necessary ATA and SCSI
5436 * host information structures, initializes them, and registers
5437 * everything with requisite kernel subsystems.
5438 *
5439 * This function requests irqs, probes the ATA bus, and probes
5440 * the SCSI bus.
5441 *
5442 * LOCKING:
5443 * PCI/etc. bus probe sem.
5444 *
5445 * RETURNS:
5446 * Number of ports registered. Zero on error (no ports registered).
5447 */
5448 int ata_device_add(const struct ata_probe_ent *ent)
5449 {
5450 unsigned int i;
5451 struct device *dev = ent->dev;
5452 struct ata_host *host;
5453 int rc;
5454
5455 DPRINTK("ENTER\n");
5456 /* alloc a container for our list of ATA ports (buses) */
5457 host = kzalloc(sizeof(struct ata_host) +
5458 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5459 if (!host)
5460 return 0;
5461
5462 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5463 host->n_ports = ent->n_ports;
5464 host->irq = ent->irq;
5465 host->irq2 = ent->irq2;
5466 host->mmio_base = ent->mmio_base;
5467 host->private_data = ent->private_data;
5468
5469 /* register each port bound to this device */
5470 for (i = 0; i < host->n_ports; i++) {
5471 struct ata_port *ap;
5472 unsigned long xfer_mode_mask;
5473 int irq_line = ent->irq;
5474
5475 ap = ata_port_add(ent, host, i);
5476 if (!ap)
5477 goto err_out;
5478
5479 host->ports[i] = ap;
5480
5481 /* dummy? */
5482 if (ent->dummy_port_mask & (1 << i)) {
5483 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5484 ap->ops = &ata_dummy_port_ops;
5485 continue;
5486 }
5487
5488 /* start port */
5489 rc = ap->ops->port_start(ap);
5490 if (rc) {
5491 host->ports[i] = NULL;
5492 scsi_host_put(ap->scsi_host);
5493 goto err_out;
5494 }
5495
5496 /* Report the secondary IRQ for second channel legacy */
5497 if (i == 1 && ent->irq2)
5498 irq_line = ent->irq2;
5499
5500 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5501 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5502 (ap->pio_mask << ATA_SHIFT_PIO);
5503
5504 /* print per-port info to dmesg */
5505 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5506 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5507 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5508 ata_mode_string(xfer_mode_mask),
5509 ap->ioaddr.cmd_addr,
5510 ap->ioaddr.ctl_addr,
5511 ap->ioaddr.bmdma_addr,
5512 irq_line);
5513
5514 ata_chk_status(ap);
5515 host->ops->irq_clear(ap);
5516 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5517 }
5518
5519 /* obtain irq, that may be shared between channels */
5520 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5521 DRV_NAME, host);
5522 if (rc) {
5523 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5524 ent->irq, rc);
5525 goto err_out;
5526 }
5527
5528 /* do we have a second IRQ for the other channel, eg legacy mode */
5529 if (ent->irq2) {
5530 /* We will get weird core code crashes later if this is true
5531 so trap it now */
5532 BUG_ON(ent->irq == ent->irq2);
5533
5534 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5535 DRV_NAME, host);
5536 if (rc) {
5537 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5538 ent->irq2, rc);
5539 goto err_out_free_irq;
5540 }
5541 }
5542
5543 /* perform each probe synchronously */
5544 DPRINTK("probe begin\n");
5545 for (i = 0; i < host->n_ports; i++) {
5546 struct ata_port *ap = host->ports[i];
5547 u32 scontrol;
5548 int rc;
5549
5550 /* init sata_spd_limit to the current value */
5551 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5552 int spd = (scontrol >> 4) & 0xf;
5553 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5554 }
5555 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5556
5557 rc = scsi_add_host(ap->scsi_host, dev);
5558 if (rc) {
5559 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5560 /* FIXME: do something useful here */
5561 /* FIXME: handle unconditional calls to
5562 * scsi_scan_host and ata_host_remove, below,
5563 * at the very least
5564 */
5565 }
5566
5567 if (ap->ops->error_handler) {
5568 struct ata_eh_info *ehi = &ap->eh_info;
5569 unsigned long flags;
5570
5571 ata_port_probe(ap);
5572
5573 /* kick EH for boot probing */
5574 spin_lock_irqsave(ap->lock, flags);
5575
5576 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5577 ehi->action |= ATA_EH_SOFTRESET;
5578 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5579
5580 ap->pflags |= ATA_PFLAG_LOADING;
5581 ata_port_schedule_eh(ap);
5582
5583 spin_unlock_irqrestore(ap->lock, flags);
5584
5585 /* wait for EH to finish */
5586 ata_port_wait_eh(ap);
5587 } else {
5588 DPRINTK("ata%u: bus probe begin\n", ap->id);
5589 rc = ata_bus_probe(ap);
5590 DPRINTK("ata%u: bus probe end\n", ap->id);
5591
5592 if (rc) {
5593 /* FIXME: do something useful here?
5594 * Current libata behavior will
5595 * tear down everything when
5596 * the module is removed
5597 * or the h/w is unplugged.
5598 */
5599 }
5600 }
5601 }
5602
5603 /* probes are done, now scan each port's disk(s) */
5604 DPRINTK("host probe begin\n");
5605 for (i = 0; i < host->n_ports; i++) {
5606 struct ata_port *ap = host->ports[i];
5607
5608 ata_scsi_scan_host(ap);
5609 }
5610
5611 dev_set_drvdata(dev, host);
5612
5613 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5614 return ent->n_ports; /* success */
5615
5616 err_out_free_irq:
5617 free_irq(ent->irq, host);
5618 err_out:
5619 for (i = 0; i < host->n_ports; i++) {
5620 struct ata_port *ap = host->ports[i];
5621 if (ap) {
5622 ap->ops->port_stop(ap);
5623 scsi_host_put(ap->scsi_host);
5624 }
5625 }
5626
5627 kfree(host);
5628 VPRINTK("EXIT, returning 0\n");
5629 return 0;
5630 }
5631
5632 /**
5633 * ata_port_detach - Detach ATA port in prepration of device removal
5634 * @ap: ATA port to be detached
5635 *
5636 * Detach all ATA devices and the associated SCSI devices of @ap;
5637 * then, remove the associated SCSI host. @ap is guaranteed to
5638 * be quiescent on return from this function.
5639 *
5640 * LOCKING:
5641 * Kernel thread context (may sleep).
5642 */
5643 void ata_port_detach(struct ata_port *ap)
5644 {
5645 unsigned long flags;
5646 int i;
5647
5648 if (!ap->ops->error_handler)
5649 goto skip_eh;
5650
5651 /* tell EH we're leaving & flush EH */
5652 spin_lock_irqsave(ap->lock, flags);
5653 ap->pflags |= ATA_PFLAG_UNLOADING;
5654 spin_unlock_irqrestore(ap->lock, flags);
5655
5656 ata_port_wait_eh(ap);
5657
5658 /* EH is now guaranteed to see UNLOADING, so no new device
5659 * will be attached. Disable all existing devices.
5660 */
5661 spin_lock_irqsave(ap->lock, flags);
5662
5663 for (i = 0; i < ATA_MAX_DEVICES; i++)
5664 ata_dev_disable(&ap->device[i]);
5665
5666 spin_unlock_irqrestore(ap->lock, flags);
5667
5668 /* Final freeze & EH. All in-flight commands are aborted. EH
5669 * will be skipped and retrials will be terminated with bad
5670 * target.
5671 */
5672 spin_lock_irqsave(ap->lock, flags);
5673 ata_port_freeze(ap); /* won't be thawed */
5674 spin_unlock_irqrestore(ap->lock, flags);
5675
5676 ata_port_wait_eh(ap);
5677
5678 /* Flush hotplug task. The sequence is similar to
5679 * ata_port_flush_task().
5680 */
5681 flush_workqueue(ata_aux_wq);
5682 cancel_delayed_work(&ap->hotplug_task);
5683 flush_workqueue(ata_aux_wq);
5684
5685 skip_eh:
5686 /* remove the associated SCSI host */
5687 scsi_remove_host(ap->scsi_host);
5688 }
5689
5690 /**
5691 * ata_host_remove - PCI layer callback for device removal
5692 * @host: ATA host set that was removed
5693 *
5694 * Unregister all objects associated with this host set. Free those
5695 * objects.
5696 *
5697 * LOCKING:
5698 * Inherited from calling layer (may sleep).
5699 */
5700
5701 void ata_host_remove(struct ata_host *host)
5702 {
5703 unsigned int i;
5704
5705 for (i = 0; i < host->n_ports; i++)
5706 ata_port_detach(host->ports[i]);
5707
5708 free_irq(host->irq, host);
5709 if (host->irq2)
5710 free_irq(host->irq2, host);
5711
5712 for (i = 0; i < host->n_ports; i++) {
5713 struct ata_port *ap = host->ports[i];
5714
5715 ata_scsi_release(ap->scsi_host);
5716
5717 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5718 struct ata_ioports *ioaddr = &ap->ioaddr;
5719
5720 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5721 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5722 release_region(ATA_PRIMARY_CMD, 8);
5723 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5724 release_region(ATA_SECONDARY_CMD, 8);
5725 }
5726
5727 scsi_host_put(ap->scsi_host);
5728 }
5729
5730 if (host->ops->host_stop)
5731 host->ops->host_stop(host);
5732
5733 kfree(host);
5734 }
5735
5736 /**
5737 * ata_scsi_release - SCSI layer callback hook for host unload
5738 * @host: libata host to be unloaded
5739 *
5740 * Performs all duties necessary to shut down a libata port...
5741 * Kill port kthread, disable port, and release resources.
5742 *
5743 * LOCKING:
5744 * Inherited from SCSI layer.
5745 *
5746 * RETURNS:
5747 * One.
5748 */
5749
5750 int ata_scsi_release(struct Scsi_Host *shost)
5751 {
5752 struct ata_port *ap = ata_shost_to_port(shost);
5753
5754 DPRINTK("ENTER\n");
5755
5756 ap->ops->port_disable(ap);
5757 ap->ops->port_stop(ap);
5758
5759 DPRINTK("EXIT\n");
5760 return 1;
5761 }
5762
5763 struct ata_probe_ent *
5764 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5765 {
5766 struct ata_probe_ent *probe_ent;
5767
5768 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5769 if (!probe_ent) {
5770 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5771 kobject_name(&(dev->kobj)));
5772 return NULL;
5773 }
5774
5775 INIT_LIST_HEAD(&probe_ent->node);
5776 probe_ent->dev = dev;
5777
5778 probe_ent->sht = port->sht;
5779 probe_ent->port_flags = port->flags;
5780 probe_ent->pio_mask = port->pio_mask;
5781 probe_ent->mwdma_mask = port->mwdma_mask;
5782 probe_ent->udma_mask = port->udma_mask;
5783 probe_ent->port_ops = port->port_ops;
5784
5785 return probe_ent;
5786 }
5787
5788 /**
5789 * ata_std_ports - initialize ioaddr with standard port offsets.
5790 * @ioaddr: IO address structure to be initialized
5791 *
5792 * Utility function which initializes data_addr, error_addr,
5793 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5794 * device_addr, status_addr, and command_addr to standard offsets
5795 * relative to cmd_addr.
5796 *
5797 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5798 */
5799
5800 void ata_std_ports(struct ata_ioports *ioaddr)
5801 {
5802 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5803 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5804 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5805 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5806 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5807 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5808 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5809 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5810 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5811 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5812 }
5813
5814
5815 #ifdef CONFIG_PCI
5816
5817 void ata_pci_host_stop (struct ata_host *host)
5818 {
5819 struct pci_dev *pdev = to_pci_dev(host->dev);
5820
5821 pci_iounmap(pdev, host->mmio_base);
5822 }
5823
5824 /**
5825 * ata_pci_remove_one - PCI layer callback for device removal
5826 * @pdev: PCI device that was removed
5827 *
5828 * PCI layer indicates to libata via this hook that
5829 * hot-unplug or module unload event has occurred.
5830 * Handle this by unregistering all objects associated
5831 * with this PCI device. Free those objects. Then finally
5832 * release PCI resources and disable device.
5833 *
5834 * LOCKING:
5835 * Inherited from PCI layer (may sleep).
5836 */
5837
5838 void ata_pci_remove_one (struct pci_dev *pdev)
5839 {
5840 struct device *dev = pci_dev_to_dev(pdev);
5841 struct ata_host *host = dev_get_drvdata(dev);
5842
5843 ata_host_remove(host);
5844
5845 pci_release_regions(pdev);
5846 pci_disable_device(pdev);
5847 dev_set_drvdata(dev, NULL);
5848 }
5849
5850 /* move to PCI subsystem */
5851 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5852 {
5853 unsigned long tmp = 0;
5854
5855 switch (bits->width) {
5856 case 1: {
5857 u8 tmp8 = 0;
5858 pci_read_config_byte(pdev, bits->reg, &tmp8);
5859 tmp = tmp8;
5860 break;
5861 }
5862 case 2: {
5863 u16 tmp16 = 0;
5864 pci_read_config_word(pdev, bits->reg, &tmp16);
5865 tmp = tmp16;
5866 break;
5867 }
5868 case 4: {
5869 u32 tmp32 = 0;
5870 pci_read_config_dword(pdev, bits->reg, &tmp32);
5871 tmp = tmp32;
5872 break;
5873 }
5874
5875 default:
5876 return -EINVAL;
5877 }
5878
5879 tmp &= bits->mask;
5880
5881 return (tmp == bits->val) ? 1 : 0;
5882 }
5883
5884 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5885 {
5886 pci_save_state(pdev);
5887
5888 if (mesg.event == PM_EVENT_SUSPEND) {
5889 pci_disable_device(pdev);
5890 pci_set_power_state(pdev, PCI_D3hot);
5891 }
5892 }
5893
5894 void ata_pci_device_do_resume(struct pci_dev *pdev)
5895 {
5896 pci_set_power_state(pdev, PCI_D0);
5897 pci_restore_state(pdev);
5898 pci_enable_device(pdev);
5899 pci_set_master(pdev);
5900 }
5901
5902 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5903 {
5904 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5905 int rc = 0;
5906
5907 rc = ata_host_suspend(host, mesg);
5908 if (rc)
5909 return rc;
5910
5911 ata_pci_device_do_suspend(pdev, mesg);
5912
5913 return 0;
5914 }
5915
5916 int ata_pci_device_resume(struct pci_dev *pdev)
5917 {
5918 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5919
5920 ata_pci_device_do_resume(pdev);
5921 ata_host_resume(host);
5922 return 0;
5923 }
5924 #endif /* CONFIG_PCI */
5925
5926
5927 static int __init ata_init(void)
5928 {
5929 ata_probe_timeout *= HZ;
5930 ata_wq = create_workqueue("ata");
5931 if (!ata_wq)
5932 return -ENOMEM;
5933
5934 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5935 if (!ata_aux_wq) {
5936 destroy_workqueue(ata_wq);
5937 return -ENOMEM;
5938 }
5939
5940 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5941 return 0;
5942 }
5943
5944 static void __exit ata_exit(void)
5945 {
5946 destroy_workqueue(ata_wq);
5947 destroy_workqueue(ata_aux_wq);
5948 }
5949
5950 module_init(ata_init);
5951 module_exit(ata_exit);
5952
5953 static unsigned long ratelimit_time;
5954 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5955
5956 int ata_ratelimit(void)
5957 {
5958 int rc;
5959 unsigned long flags;
5960
5961 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5962
5963 if (time_after(jiffies, ratelimit_time)) {
5964 rc = 1;
5965 ratelimit_time = jiffies + (HZ/5);
5966 } else
5967 rc = 0;
5968
5969 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5970
5971 return rc;
5972 }
5973
5974 /**
5975 * ata_wait_register - wait until register value changes
5976 * @reg: IO-mapped register
5977 * @mask: Mask to apply to read register value
5978 * @val: Wait condition
5979 * @interval_msec: polling interval in milliseconds
5980 * @timeout_msec: timeout in milliseconds
5981 *
5982 * Waiting for some bits of register to change is a common
5983 * operation for ATA controllers. This function reads 32bit LE
5984 * IO-mapped register @reg and tests for the following condition.
5985 *
5986 * (*@reg & mask) != val
5987 *
5988 * If the condition is met, it returns; otherwise, the process is
5989 * repeated after @interval_msec until timeout.
5990 *
5991 * LOCKING:
5992 * Kernel thread context (may sleep)
5993 *
5994 * RETURNS:
5995 * The final register value.
5996 */
5997 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5998 unsigned long interval_msec,
5999 unsigned long timeout_msec)
6000 {
6001 unsigned long timeout;
6002 u32 tmp;
6003
6004 tmp = ioread32(reg);
6005
6006 /* Calculate timeout _after_ the first read to make sure
6007 * preceding writes reach the controller before starting to
6008 * eat away the timeout.
6009 */
6010 timeout = jiffies + (timeout_msec * HZ) / 1000;
6011
6012 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6013 msleep(interval_msec);
6014 tmp = ioread32(reg);
6015 }
6016
6017 return tmp;
6018 }
6019
6020 /*
6021 * Dummy port_ops
6022 */
6023 static void ata_dummy_noret(struct ata_port *ap) { }
6024 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6025 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6026
6027 static u8 ata_dummy_check_status(struct ata_port *ap)
6028 {
6029 return ATA_DRDY;
6030 }
6031
6032 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6033 {
6034 return AC_ERR_SYSTEM;
6035 }
6036
6037 const struct ata_port_operations ata_dummy_port_ops = {
6038 .port_disable = ata_port_disable,
6039 .check_status = ata_dummy_check_status,
6040 .check_altstatus = ata_dummy_check_status,
6041 .dev_select = ata_noop_dev_select,
6042 .qc_prep = ata_noop_qc_prep,
6043 .qc_issue = ata_dummy_qc_issue,
6044 .freeze = ata_dummy_noret,
6045 .thaw = ata_dummy_noret,
6046 .error_handler = ata_dummy_noret,
6047 .post_internal_cmd = ata_dummy_qc_noret,
6048 .irq_clear = ata_dummy_noret,
6049 .port_start = ata_dummy_ret0,
6050 .port_stop = ata_dummy_noret,
6051 };
6052
6053 /*
6054 * libata is essentially a library of internal helper functions for
6055 * low-level ATA host controller drivers. As such, the API/ABI is
6056 * likely to change as new drivers are added and updated.
6057 * Do not depend on ABI/API stability.
6058 */
6059
6060 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6061 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6062 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6063 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6064 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6065 EXPORT_SYMBOL_GPL(ata_std_ports);
6066 EXPORT_SYMBOL_GPL(ata_host_init);
6067 EXPORT_SYMBOL_GPL(ata_device_add);
6068 EXPORT_SYMBOL_GPL(ata_port_detach);
6069 EXPORT_SYMBOL_GPL(ata_host_remove);
6070 EXPORT_SYMBOL_GPL(ata_sg_init);
6071 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6072 EXPORT_SYMBOL_GPL(ata_hsm_move);
6073 EXPORT_SYMBOL_GPL(ata_qc_complete);
6074 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6075 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6076 EXPORT_SYMBOL_GPL(ata_tf_load);
6077 EXPORT_SYMBOL_GPL(ata_tf_read);
6078 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6079 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6080 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6081 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6082 EXPORT_SYMBOL_GPL(ata_check_status);
6083 EXPORT_SYMBOL_GPL(ata_altstatus);
6084 EXPORT_SYMBOL_GPL(ata_exec_command);
6085 EXPORT_SYMBOL_GPL(ata_port_start);
6086 EXPORT_SYMBOL_GPL(ata_port_stop);
6087 EXPORT_SYMBOL_GPL(ata_host_stop);
6088 EXPORT_SYMBOL_GPL(ata_interrupt);
6089 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6090 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6091 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6092 EXPORT_SYMBOL_GPL(ata_qc_prep);
6093 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6094 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6095 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6096 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6097 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6098 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6099 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6100 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6101 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6102 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6103 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6104 EXPORT_SYMBOL_GPL(ata_port_probe);
6105 EXPORT_SYMBOL_GPL(sata_set_spd);
6106 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6107 EXPORT_SYMBOL_GPL(sata_phy_resume);
6108 EXPORT_SYMBOL_GPL(sata_phy_reset);
6109 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6110 EXPORT_SYMBOL_GPL(ata_bus_reset);
6111 EXPORT_SYMBOL_GPL(ata_std_prereset);
6112 EXPORT_SYMBOL_GPL(ata_std_softreset);
6113 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6114 EXPORT_SYMBOL_GPL(ata_std_postreset);
6115 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
6116 EXPORT_SYMBOL_GPL(ata_dev_classify);
6117 EXPORT_SYMBOL_GPL(ata_dev_pair);
6118 EXPORT_SYMBOL_GPL(ata_port_disable);
6119 EXPORT_SYMBOL_GPL(ata_ratelimit);
6120 EXPORT_SYMBOL_GPL(ata_wait_register);
6121 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6122 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6123 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6124 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6125 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6126 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6127 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6128 EXPORT_SYMBOL_GPL(ata_scsi_release);
6129 EXPORT_SYMBOL_GPL(ata_host_intr);
6130 EXPORT_SYMBOL_GPL(sata_scr_valid);
6131 EXPORT_SYMBOL_GPL(sata_scr_read);
6132 EXPORT_SYMBOL_GPL(sata_scr_write);
6133 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6134 EXPORT_SYMBOL_GPL(ata_port_online);
6135 EXPORT_SYMBOL_GPL(ata_port_offline);
6136 EXPORT_SYMBOL_GPL(ata_host_suspend);
6137 EXPORT_SYMBOL_GPL(ata_host_resume);
6138 EXPORT_SYMBOL_GPL(ata_id_string);
6139 EXPORT_SYMBOL_GPL(ata_id_c_string);
6140 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6141
6142 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6143 EXPORT_SYMBOL_GPL(ata_timing_compute);
6144 EXPORT_SYMBOL_GPL(ata_timing_merge);
6145
6146 #ifdef CONFIG_PCI
6147 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6148 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6149 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6150 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6151 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6152 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6153 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6154 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6155 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6156 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6157 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6158 #endif /* CONFIG_PCI */
6159
6160 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6161 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6162
6163 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6164 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6165 EXPORT_SYMBOL_GPL(ata_port_abort);
6166 EXPORT_SYMBOL_GPL(ata_port_freeze);
6167 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6168 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6169 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6170 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6171 EXPORT_SYMBOL_GPL(ata_do_eh);