]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/ata/libata-core.c
[PATCH] libata: Incorrect timing computation for PIO5/6
[mirror_ubuntu-bionic-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
66
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
71
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
74
75 struct workqueue_struct *ata_aux_wq;
76
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
97
98
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
113 {
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139 }
140
141 /**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
153 {
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168 }
169
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
185 0,
186 0,
187 0,
188 0,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
198 };
199
200 /**
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
204 *
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
207 *
208 * LOCKING:
209 * caller.
210 */
211 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
212 {
213 u8 cmd;
214
215 int index, fua, lba48, write;
216
217 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
218 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
219 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
220
221 if (dev->flags & ATA_DFLAG_PIO) {
222 tf->protocol = ATA_PROT_PIO;
223 index = dev->multi_count ? 0 : 8;
224 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
225 /* Unable to use DMA due to host limitation */
226 tf->protocol = ATA_PROT_PIO;
227 index = dev->multi_count ? 0 : 8;
228 } else {
229 tf->protocol = ATA_PROT_DMA;
230 index = 16;
231 }
232
233 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 if (cmd) {
235 tf->command = cmd;
236 return 0;
237 }
238 return -1;
239 }
240
241 /**
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
245 *
246 * LOCKING:
247 * None.
248 *
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
252 *
253 * RETURNS:
254 * Block address read from @tf.
255 */
256 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
257 {
258 u64 block = 0;
259
260 if (tf->flags & ATA_TFLAG_LBA) {
261 if (tf->flags & ATA_TFLAG_LBA48) {
262 block |= (u64)tf->hob_lbah << 40;
263 block |= (u64)tf->hob_lbam << 32;
264 block |= tf->hob_lbal << 24;
265 } else
266 block |= (tf->device & 0xf) << 24;
267
268 block |= tf->lbah << 16;
269 block |= tf->lbam << 8;
270 block |= tf->lbal;
271 } else {
272 u32 cyl, head, sect;
273
274 cyl = tf->lbam | (tf->lbah << 8);
275 head = tf->device & 0xf;
276 sect = tf->lbal;
277
278 block = (cyl * dev->heads + head) * dev->sectors + sect;
279 }
280
281 return block;
282 }
283
284 /**
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
291 * @tag: tag
292 *
293 * LOCKING:
294 * None.
295 *
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
298 *
299 * RETURNS:
300 *
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
303 */
304 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
305 u64 block, u32 n_block, unsigned int tf_flags,
306 unsigned int tag)
307 {
308 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
309 tf->flags |= tf_flags;
310
311 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
312 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
313 likely(tag != ATA_TAG_INTERNAL)) {
314 /* yay, NCQ */
315 if (!lba_48_ok(block, n_block))
316 return -ERANGE;
317
318 tf->protocol = ATA_PROT_NCQ;
319 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
320
321 if (tf->flags & ATA_TFLAG_WRITE)
322 tf->command = ATA_CMD_FPDMA_WRITE;
323 else
324 tf->command = ATA_CMD_FPDMA_READ;
325
326 tf->nsect = tag << 3;
327 tf->hob_feature = (n_block >> 8) & 0xff;
328 tf->feature = n_block & 0xff;
329
330 tf->hob_lbah = (block >> 40) & 0xff;
331 tf->hob_lbam = (block >> 32) & 0xff;
332 tf->hob_lbal = (block >> 24) & 0xff;
333 tf->lbah = (block >> 16) & 0xff;
334 tf->lbam = (block >> 8) & 0xff;
335 tf->lbal = block & 0xff;
336
337 tf->device = 1 << 6;
338 if (tf->flags & ATA_TFLAG_FUA)
339 tf->device |= 1 << 7;
340 } else if (dev->flags & ATA_DFLAG_LBA) {
341 tf->flags |= ATA_TFLAG_LBA;
342
343 if (lba_28_ok(block, n_block)) {
344 /* use LBA28 */
345 tf->device |= (block >> 24) & 0xf;
346 } else if (lba_48_ok(block, n_block)) {
347 if (!(dev->flags & ATA_DFLAG_LBA48))
348 return -ERANGE;
349
350 /* use LBA48 */
351 tf->flags |= ATA_TFLAG_LBA48;
352
353 tf->hob_nsect = (n_block >> 8) & 0xff;
354
355 tf->hob_lbah = (block >> 40) & 0xff;
356 tf->hob_lbam = (block >> 32) & 0xff;
357 tf->hob_lbal = (block >> 24) & 0xff;
358 } else
359 /* request too large even for LBA48 */
360 return -ERANGE;
361
362 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
363 return -EINVAL;
364
365 tf->nsect = n_block & 0xff;
366
367 tf->lbah = (block >> 16) & 0xff;
368 tf->lbam = (block >> 8) & 0xff;
369 tf->lbal = block & 0xff;
370
371 tf->device |= ATA_LBA;
372 } else {
373 /* CHS */
374 u32 sect, head, cyl, track;
375
376 /* The request -may- be too large for CHS addressing. */
377 if (!lba_28_ok(block, n_block))
378 return -ERANGE;
379
380 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
381 return -EINVAL;
382
383 /* Convert LBA to CHS */
384 track = (u32)block / dev->sectors;
385 cyl = track / dev->heads;
386 head = track % dev->heads;
387 sect = (u32)block % dev->sectors + 1;
388
389 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
390 (u32)block, track, cyl, head, sect);
391
392 /* Check whether the converted CHS can fit.
393 Cylinder: 0-65535
394 Head: 0-15
395 Sector: 1-255*/
396 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
397 return -ERANGE;
398
399 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
400 tf->lbal = sect;
401 tf->lbam = cyl;
402 tf->lbah = cyl >> 8;
403 tf->device |= head;
404 }
405
406 return 0;
407 }
408
409 /**
410 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
411 * @pio_mask: pio_mask
412 * @mwdma_mask: mwdma_mask
413 * @udma_mask: udma_mask
414 *
415 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
416 * unsigned int xfer_mask.
417 *
418 * LOCKING:
419 * None.
420 *
421 * RETURNS:
422 * Packed xfer_mask.
423 */
424 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
425 unsigned int mwdma_mask,
426 unsigned int udma_mask)
427 {
428 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
429 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
430 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
431 }
432
433 /**
434 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
435 * @xfer_mask: xfer_mask to unpack
436 * @pio_mask: resulting pio_mask
437 * @mwdma_mask: resulting mwdma_mask
438 * @udma_mask: resulting udma_mask
439 *
440 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
441 * Any NULL distination masks will be ignored.
442 */
443 static void ata_unpack_xfermask(unsigned int xfer_mask,
444 unsigned int *pio_mask,
445 unsigned int *mwdma_mask,
446 unsigned int *udma_mask)
447 {
448 if (pio_mask)
449 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
450 if (mwdma_mask)
451 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
452 if (udma_mask)
453 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
454 }
455
456 static const struct ata_xfer_ent {
457 int shift, bits;
458 u8 base;
459 } ata_xfer_tbl[] = {
460 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
461 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
462 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
463 { -1, },
464 };
465
466 /**
467 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
468 * @xfer_mask: xfer_mask of interest
469 *
470 * Return matching XFER_* value for @xfer_mask. Only the highest
471 * bit of @xfer_mask is considered.
472 *
473 * LOCKING:
474 * None.
475 *
476 * RETURNS:
477 * Matching XFER_* value, 0 if no match found.
478 */
479 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
480 {
481 int highbit = fls(xfer_mask) - 1;
482 const struct ata_xfer_ent *ent;
483
484 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
485 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
486 return ent->base + highbit - ent->shift;
487 return 0;
488 }
489
490 /**
491 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
492 * @xfer_mode: XFER_* of interest
493 *
494 * Return matching xfer_mask for @xfer_mode.
495 *
496 * LOCKING:
497 * None.
498 *
499 * RETURNS:
500 * Matching xfer_mask, 0 if no match found.
501 */
502 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
503 {
504 const struct ata_xfer_ent *ent;
505
506 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
507 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
508 return 1 << (ent->shift + xfer_mode - ent->base);
509 return 0;
510 }
511
512 /**
513 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
514 * @xfer_mode: XFER_* of interest
515 *
516 * Return matching xfer_shift for @xfer_mode.
517 *
518 * LOCKING:
519 * None.
520 *
521 * RETURNS:
522 * Matching xfer_shift, -1 if no match found.
523 */
524 static int ata_xfer_mode2shift(unsigned int xfer_mode)
525 {
526 const struct ata_xfer_ent *ent;
527
528 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
529 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
530 return ent->shift;
531 return -1;
532 }
533
534 /**
535 * ata_mode_string - convert xfer_mask to string
536 * @xfer_mask: mask of bits supported; only highest bit counts.
537 *
538 * Determine string which represents the highest speed
539 * (highest bit in @modemask).
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Constant C string representing highest speed listed in
546 * @mode_mask, or the constant C string "<n/a>".
547 */
548 static const char *ata_mode_string(unsigned int xfer_mask)
549 {
550 static const char * const xfer_mode_str[] = {
551 "PIO0",
552 "PIO1",
553 "PIO2",
554 "PIO3",
555 "PIO4",
556 "PIO5",
557 "PIO6",
558 "MWDMA0",
559 "MWDMA1",
560 "MWDMA2",
561 "MWDMA3",
562 "MWDMA4",
563 "UDMA/16",
564 "UDMA/25",
565 "UDMA/33",
566 "UDMA/44",
567 "UDMA/66",
568 "UDMA/100",
569 "UDMA/133",
570 "UDMA7",
571 };
572 int highbit;
573
574 highbit = fls(xfer_mask) - 1;
575 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
576 return xfer_mode_str[highbit];
577 return "<n/a>";
578 }
579
580 static const char *sata_spd_string(unsigned int spd)
581 {
582 static const char * const spd_str[] = {
583 "1.5 Gbps",
584 "3.0 Gbps",
585 };
586
587 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
588 return "<unknown>";
589 return spd_str[spd - 1];
590 }
591
592 void ata_dev_disable(struct ata_device *dev)
593 {
594 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
595 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
596 dev->class++;
597 }
598 }
599
600 /**
601 * ata_pio_devchk - PATA device presence detection
602 * @ap: ATA channel to examine
603 * @device: Device to examine (starting at zero)
604 *
605 * This technique was originally described in
606 * Hale Landis's ATADRVR (www.ata-atapi.com), and
607 * later found its way into the ATA/ATAPI spec.
608 *
609 * Write a pattern to the ATA shadow registers,
610 * and if a device is present, it will respond by
611 * correctly storing and echoing back the
612 * ATA shadow register contents.
613 *
614 * LOCKING:
615 * caller.
616 */
617
618 static unsigned int ata_pio_devchk(struct ata_port *ap,
619 unsigned int device)
620 {
621 struct ata_ioports *ioaddr = &ap->ioaddr;
622 u8 nsect, lbal;
623
624 ap->ops->dev_select(ap, device);
625
626 outb(0x55, ioaddr->nsect_addr);
627 outb(0xaa, ioaddr->lbal_addr);
628
629 outb(0xaa, ioaddr->nsect_addr);
630 outb(0x55, ioaddr->lbal_addr);
631
632 outb(0x55, ioaddr->nsect_addr);
633 outb(0xaa, ioaddr->lbal_addr);
634
635 nsect = inb(ioaddr->nsect_addr);
636 lbal = inb(ioaddr->lbal_addr);
637
638 if ((nsect == 0x55) && (lbal == 0xaa))
639 return 1; /* we found a device */
640
641 return 0; /* nothing found */
642 }
643
644 /**
645 * ata_mmio_devchk - PATA device presence detection
646 * @ap: ATA channel to examine
647 * @device: Device to examine (starting at zero)
648 *
649 * This technique was originally described in
650 * Hale Landis's ATADRVR (www.ata-atapi.com), and
651 * later found its way into the ATA/ATAPI spec.
652 *
653 * Write a pattern to the ATA shadow registers,
654 * and if a device is present, it will respond by
655 * correctly storing and echoing back the
656 * ATA shadow register contents.
657 *
658 * LOCKING:
659 * caller.
660 */
661
662 static unsigned int ata_mmio_devchk(struct ata_port *ap,
663 unsigned int device)
664 {
665 struct ata_ioports *ioaddr = &ap->ioaddr;
666 u8 nsect, lbal;
667
668 ap->ops->dev_select(ap, device);
669
670 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
671 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
672
673 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
674 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
675
676 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
677 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
678
679 nsect = readb((void __iomem *) ioaddr->nsect_addr);
680 lbal = readb((void __iomem *) ioaddr->lbal_addr);
681
682 if ((nsect == 0x55) && (lbal == 0xaa))
683 return 1; /* we found a device */
684
685 return 0; /* nothing found */
686 }
687
688 /**
689 * ata_devchk - PATA device presence detection
690 * @ap: ATA channel to examine
691 * @device: Device to examine (starting at zero)
692 *
693 * Dispatch ATA device presence detection, depending
694 * on whether we are using PIO or MMIO to talk to the
695 * ATA shadow registers.
696 *
697 * LOCKING:
698 * caller.
699 */
700
701 static unsigned int ata_devchk(struct ata_port *ap,
702 unsigned int device)
703 {
704 if (ap->flags & ATA_FLAG_MMIO)
705 return ata_mmio_devchk(ap, device);
706 return ata_pio_devchk(ap, device);
707 }
708
709 /**
710 * ata_dev_classify - determine device type based on ATA-spec signature
711 * @tf: ATA taskfile register set for device to be identified
712 *
713 * Determine from taskfile register contents whether a device is
714 * ATA or ATAPI, as per "Signature and persistence" section
715 * of ATA/PI spec (volume 1, sect 5.14).
716 *
717 * LOCKING:
718 * None.
719 *
720 * RETURNS:
721 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
722 * the event of failure.
723 */
724
725 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
726 {
727 /* Apple's open source Darwin code hints that some devices only
728 * put a proper signature into the LBA mid/high registers,
729 * So, we only check those. It's sufficient for uniqueness.
730 */
731
732 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
733 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
734 DPRINTK("found ATA device by sig\n");
735 return ATA_DEV_ATA;
736 }
737
738 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
739 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
740 DPRINTK("found ATAPI device by sig\n");
741 return ATA_DEV_ATAPI;
742 }
743
744 DPRINTK("unknown device\n");
745 return ATA_DEV_UNKNOWN;
746 }
747
748 /**
749 * ata_dev_try_classify - Parse returned ATA device signature
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
752 * @r_err: Value of error register on completion
753 *
754 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
755 * an ATA/ATAPI-defined set of values is placed in the ATA
756 * shadow registers, indicating the results of device detection
757 * and diagnostics.
758 *
759 * Select the ATA device, and read the values from the ATA shadow
760 * registers. Then parse according to the Error register value,
761 * and the spec-defined values examined by ata_dev_classify().
762 *
763 * LOCKING:
764 * caller.
765 *
766 * RETURNS:
767 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
768 */
769
770 static unsigned int
771 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
772 {
773 struct ata_taskfile tf;
774 unsigned int class;
775 u8 err;
776
777 ap->ops->dev_select(ap, device);
778
779 memset(&tf, 0, sizeof(tf));
780
781 ap->ops->tf_read(ap, &tf);
782 err = tf.feature;
783 if (r_err)
784 *r_err = err;
785
786 /* see if device passed diags: if master then continue and warn later */
787 if (err == 0 && device == 0)
788 /* diagnostic fail : do nothing _YET_ */
789 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
790 else if (err == 1)
791 /* do nothing */ ;
792 else if ((device == 0) && (err == 0x81))
793 /* do nothing */ ;
794 else
795 return ATA_DEV_NONE;
796
797 /* determine if device is ATA or ATAPI */
798 class = ata_dev_classify(&tf);
799
800 if (class == ATA_DEV_UNKNOWN)
801 return ATA_DEV_NONE;
802 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
803 return ATA_DEV_NONE;
804 return class;
805 }
806
807 /**
808 * ata_id_string - Convert IDENTIFY DEVICE page into string
809 * @id: IDENTIFY DEVICE results we will examine
810 * @s: string into which data is output
811 * @ofs: offset into identify device page
812 * @len: length of string to return. must be an even number.
813 *
814 * The strings in the IDENTIFY DEVICE page are broken up into
815 * 16-bit chunks. Run through the string, and output each
816 * 8-bit chunk linearly, regardless of platform.
817 *
818 * LOCKING:
819 * caller.
820 */
821
822 void ata_id_string(const u16 *id, unsigned char *s,
823 unsigned int ofs, unsigned int len)
824 {
825 unsigned int c;
826
827 while (len > 0) {
828 c = id[ofs] >> 8;
829 *s = c;
830 s++;
831
832 c = id[ofs] & 0xff;
833 *s = c;
834 s++;
835
836 ofs++;
837 len -= 2;
838 }
839 }
840
841 /**
842 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
843 * @id: IDENTIFY DEVICE results we will examine
844 * @s: string into which data is output
845 * @ofs: offset into identify device page
846 * @len: length of string to return. must be an odd number.
847 *
848 * This function is identical to ata_id_string except that it
849 * trims trailing spaces and terminates the resulting string with
850 * null. @len must be actual maximum length (even number) + 1.
851 *
852 * LOCKING:
853 * caller.
854 */
855 void ata_id_c_string(const u16 *id, unsigned char *s,
856 unsigned int ofs, unsigned int len)
857 {
858 unsigned char *p;
859
860 WARN_ON(!(len & 1));
861
862 ata_id_string(id, s, ofs, len - 1);
863
864 p = s + strnlen(s, len - 1);
865 while (p > s && p[-1] == ' ')
866 p--;
867 *p = '\0';
868 }
869
870 static u64 ata_id_n_sectors(const u16 *id)
871 {
872 if (ata_id_has_lba(id)) {
873 if (ata_id_has_lba48(id))
874 return ata_id_u64(id, 100);
875 else
876 return ata_id_u32(id, 60);
877 } else {
878 if (ata_id_current_chs_valid(id))
879 return ata_id_u32(id, 57);
880 else
881 return id[1] * id[3] * id[6];
882 }
883 }
884
885 /**
886 * ata_noop_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * This function performs no actual function.
891 *
892 * May be used as the dev_select() entry in ata_port_operations.
893 *
894 * LOCKING:
895 * caller.
896 */
897 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
898 {
899 }
900
901
902 /**
903 * ata_std_dev_select - Select device 0/1 on ATA bus
904 * @ap: ATA channel to manipulate
905 * @device: ATA device (numbered from zero) to select
906 *
907 * Use the method defined in the ATA specification to
908 * make either device 0, or device 1, active on the
909 * ATA channel. Works with both PIO and MMIO.
910 *
911 * May be used as the dev_select() entry in ata_port_operations.
912 *
913 * LOCKING:
914 * caller.
915 */
916
917 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
918 {
919 u8 tmp;
920
921 if (device == 0)
922 tmp = ATA_DEVICE_OBS;
923 else
924 tmp = ATA_DEVICE_OBS | ATA_DEV1;
925
926 if (ap->flags & ATA_FLAG_MMIO) {
927 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
928 } else {
929 outb(tmp, ap->ioaddr.device_addr);
930 }
931 ata_pause(ap); /* needed; also flushes, for mmio */
932 }
933
934 /**
935 * ata_dev_select - Select device 0/1 on ATA bus
936 * @ap: ATA channel to manipulate
937 * @device: ATA device (numbered from zero) to select
938 * @wait: non-zero to wait for Status register BSY bit to clear
939 * @can_sleep: non-zero if context allows sleeping
940 *
941 * Use the method defined in the ATA specification to
942 * make either device 0, or device 1, active on the
943 * ATA channel.
944 *
945 * This is a high-level version of ata_std_dev_select(),
946 * which additionally provides the services of inserting
947 * the proper pauses and status polling, where needed.
948 *
949 * LOCKING:
950 * caller.
951 */
952
953 void ata_dev_select(struct ata_port *ap, unsigned int device,
954 unsigned int wait, unsigned int can_sleep)
955 {
956 if (ata_msg_probe(ap))
957 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
958 "device %u, wait %u\n", ap->id, device, wait);
959
960 if (wait)
961 ata_wait_idle(ap);
962
963 ap->ops->dev_select(ap, device);
964
965 if (wait) {
966 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
967 msleep(150);
968 ata_wait_idle(ap);
969 }
970 }
971
972 /**
973 * ata_dump_id - IDENTIFY DEVICE info debugging output
974 * @id: IDENTIFY DEVICE page to dump
975 *
976 * Dump selected 16-bit words from the given IDENTIFY DEVICE
977 * page.
978 *
979 * LOCKING:
980 * caller.
981 */
982
983 static inline void ata_dump_id(const u16 *id)
984 {
985 DPRINTK("49==0x%04x "
986 "53==0x%04x "
987 "63==0x%04x "
988 "64==0x%04x "
989 "75==0x%04x \n",
990 id[49],
991 id[53],
992 id[63],
993 id[64],
994 id[75]);
995 DPRINTK("80==0x%04x "
996 "81==0x%04x "
997 "82==0x%04x "
998 "83==0x%04x "
999 "84==0x%04x \n",
1000 id[80],
1001 id[81],
1002 id[82],
1003 id[83],
1004 id[84]);
1005 DPRINTK("88==0x%04x "
1006 "93==0x%04x\n",
1007 id[88],
1008 id[93]);
1009 }
1010
1011 /**
1012 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1013 * @id: IDENTIFY data to compute xfer mask from
1014 *
1015 * Compute the xfermask for this device. This is not as trivial
1016 * as it seems if we must consider early devices correctly.
1017 *
1018 * FIXME: pre IDE drive timing (do we care ?).
1019 *
1020 * LOCKING:
1021 * None.
1022 *
1023 * RETURNS:
1024 * Computed xfermask
1025 */
1026 static unsigned int ata_id_xfermask(const u16 *id)
1027 {
1028 unsigned int pio_mask, mwdma_mask, udma_mask;
1029
1030 /* Usual case. Word 53 indicates word 64 is valid */
1031 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1032 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1033 pio_mask <<= 3;
1034 pio_mask |= 0x7;
1035 } else {
1036 /* If word 64 isn't valid then Word 51 high byte holds
1037 * the PIO timing number for the maximum. Turn it into
1038 * a mask.
1039 */
1040 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
1041 if (mode < 5) /* Valid PIO range */
1042 pio_mask = (2 << mode) - 1;
1043 else
1044 pio_mask = 1;
1045
1046 /* But wait.. there's more. Design your standards by
1047 * committee and you too can get a free iordy field to
1048 * process. However its the speeds not the modes that
1049 * are supported... Note drivers using the timing API
1050 * will get this right anyway
1051 */
1052 }
1053
1054 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1055
1056 if (ata_id_is_cfa(id)) {
1057 /*
1058 * Process compact flash extended modes
1059 */
1060 int pio = id[163] & 0x7;
1061 int dma = (id[163] >> 3) & 7;
1062
1063 if (pio)
1064 pio_mask |= (1 << 5);
1065 if (pio > 1)
1066 pio_mask |= (1 << 6);
1067 if (dma)
1068 mwdma_mask |= (1 << 3);
1069 if (dma > 1)
1070 mwdma_mask |= (1 << 4);
1071 }
1072
1073 udma_mask = 0;
1074 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1075 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1076
1077 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1078 }
1079
1080 /**
1081 * ata_port_queue_task - Queue port_task
1082 * @ap: The ata_port to queue port_task for
1083 * @fn: workqueue function to be scheduled
1084 * @data: data for @fn to use
1085 * @delay: delay time for workqueue function
1086 *
1087 * Schedule @fn(@data) for execution after @delay jiffies using
1088 * port_task. There is one port_task per port and it's the
1089 * user(low level driver)'s responsibility to make sure that only
1090 * one task is active at any given time.
1091 *
1092 * libata core layer takes care of synchronization between
1093 * port_task and EH. ata_port_queue_task() may be ignored for EH
1094 * synchronization.
1095 *
1096 * LOCKING:
1097 * Inherited from caller.
1098 */
1099 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1100 unsigned long delay)
1101 {
1102 int rc;
1103
1104 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1105 return;
1106
1107 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1108 ap->port_task_data = data;
1109
1110 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1111
1112 /* rc == 0 means that another user is using port task */
1113 WARN_ON(rc == 0);
1114 }
1115
1116 /**
1117 * ata_port_flush_task - Flush port_task
1118 * @ap: The ata_port to flush port_task for
1119 *
1120 * After this function completes, port_task is guranteed not to
1121 * be running or scheduled.
1122 *
1123 * LOCKING:
1124 * Kernel thread context (may sleep)
1125 */
1126 void ata_port_flush_task(struct ata_port *ap)
1127 {
1128 unsigned long flags;
1129
1130 DPRINTK("ENTER\n");
1131
1132 spin_lock_irqsave(ap->lock, flags);
1133 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1134 spin_unlock_irqrestore(ap->lock, flags);
1135
1136 DPRINTK("flush #1\n");
1137 flush_workqueue(ata_wq);
1138
1139 /*
1140 * At this point, if a task is running, it's guaranteed to see
1141 * the FLUSH flag; thus, it will never queue pio tasks again.
1142 * Cancel and flush.
1143 */
1144 if (!cancel_delayed_work(&ap->port_task)) {
1145 if (ata_msg_ctl(ap))
1146 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1147 __FUNCTION__);
1148 flush_workqueue(ata_wq);
1149 }
1150
1151 spin_lock_irqsave(ap->lock, flags);
1152 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1153 spin_unlock_irqrestore(ap->lock, flags);
1154
1155 if (ata_msg_ctl(ap))
1156 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1157 }
1158
1159 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1160 {
1161 struct completion *waiting = qc->private_data;
1162
1163 complete(waiting);
1164 }
1165
1166 /**
1167 * ata_exec_internal_sg - execute libata internal command
1168 * @dev: Device to which the command is sent
1169 * @tf: Taskfile registers for the command and the result
1170 * @cdb: CDB for packet command
1171 * @dma_dir: Data tranfer direction of the command
1172 * @sg: sg list for the data buffer of the command
1173 * @n_elem: Number of sg entries
1174 *
1175 * Executes libata internal command with timeout. @tf contains
1176 * command on entry and result on return. Timeout and error
1177 * conditions are reported via return value. No recovery action
1178 * is taken after a command times out. It's caller's duty to
1179 * clean up after timeout.
1180 *
1181 * LOCKING:
1182 * None. Should be called with kernel context, might sleep.
1183 *
1184 * RETURNS:
1185 * Zero on success, AC_ERR_* mask on failure
1186 */
1187 unsigned ata_exec_internal_sg(struct ata_device *dev,
1188 struct ata_taskfile *tf, const u8 *cdb,
1189 int dma_dir, struct scatterlist *sg,
1190 unsigned int n_elem)
1191 {
1192 struct ata_port *ap = dev->ap;
1193 u8 command = tf->command;
1194 struct ata_queued_cmd *qc;
1195 unsigned int tag, preempted_tag;
1196 u32 preempted_sactive, preempted_qc_active;
1197 DECLARE_COMPLETION_ONSTACK(wait);
1198 unsigned long flags;
1199 unsigned int err_mask;
1200 int rc;
1201
1202 spin_lock_irqsave(ap->lock, flags);
1203
1204 /* no internal command while frozen */
1205 if (ap->pflags & ATA_PFLAG_FROZEN) {
1206 spin_unlock_irqrestore(ap->lock, flags);
1207 return AC_ERR_SYSTEM;
1208 }
1209
1210 /* initialize internal qc */
1211
1212 /* XXX: Tag 0 is used for drivers with legacy EH as some
1213 * drivers choke if any other tag is given. This breaks
1214 * ata_tag_internal() test for those drivers. Don't use new
1215 * EH stuff without converting to it.
1216 */
1217 if (ap->ops->error_handler)
1218 tag = ATA_TAG_INTERNAL;
1219 else
1220 tag = 0;
1221
1222 if (test_and_set_bit(tag, &ap->qc_allocated))
1223 BUG();
1224 qc = __ata_qc_from_tag(ap, tag);
1225
1226 qc->tag = tag;
1227 qc->scsicmd = NULL;
1228 qc->ap = ap;
1229 qc->dev = dev;
1230 ata_qc_reinit(qc);
1231
1232 preempted_tag = ap->active_tag;
1233 preempted_sactive = ap->sactive;
1234 preempted_qc_active = ap->qc_active;
1235 ap->active_tag = ATA_TAG_POISON;
1236 ap->sactive = 0;
1237 ap->qc_active = 0;
1238
1239 /* prepare & issue qc */
1240 qc->tf = *tf;
1241 if (cdb)
1242 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1243 qc->flags |= ATA_QCFLAG_RESULT_TF;
1244 qc->dma_dir = dma_dir;
1245 if (dma_dir != DMA_NONE) {
1246 unsigned int i, buflen = 0;
1247
1248 for (i = 0; i < n_elem; i++)
1249 buflen += sg[i].length;
1250
1251 ata_sg_init(qc, sg, n_elem);
1252 qc->nsect = buflen / ATA_SECT_SIZE;
1253 }
1254
1255 qc->private_data = &wait;
1256 qc->complete_fn = ata_qc_complete_internal;
1257
1258 ata_qc_issue(qc);
1259
1260 spin_unlock_irqrestore(ap->lock, flags);
1261
1262 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1263
1264 ata_port_flush_task(ap);
1265
1266 if (!rc) {
1267 spin_lock_irqsave(ap->lock, flags);
1268
1269 /* We're racing with irq here. If we lose, the
1270 * following test prevents us from completing the qc
1271 * twice. If we win, the port is frozen and will be
1272 * cleaned up by ->post_internal_cmd().
1273 */
1274 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1275 qc->err_mask |= AC_ERR_TIMEOUT;
1276
1277 if (ap->ops->error_handler)
1278 ata_port_freeze(ap);
1279 else
1280 ata_qc_complete(qc);
1281
1282 if (ata_msg_warn(ap))
1283 ata_dev_printk(dev, KERN_WARNING,
1284 "qc timeout (cmd 0x%x)\n", command);
1285 }
1286
1287 spin_unlock_irqrestore(ap->lock, flags);
1288 }
1289
1290 /* do post_internal_cmd */
1291 if (ap->ops->post_internal_cmd)
1292 ap->ops->post_internal_cmd(qc);
1293
1294 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1295 if (ata_msg_warn(ap))
1296 ata_dev_printk(dev, KERN_WARNING,
1297 "zero err_mask for failed "
1298 "internal command, assuming AC_ERR_OTHER\n");
1299 qc->err_mask |= AC_ERR_OTHER;
1300 }
1301
1302 /* finish up */
1303 spin_lock_irqsave(ap->lock, flags);
1304
1305 *tf = qc->result_tf;
1306 err_mask = qc->err_mask;
1307
1308 ata_qc_free(qc);
1309 ap->active_tag = preempted_tag;
1310 ap->sactive = preempted_sactive;
1311 ap->qc_active = preempted_qc_active;
1312
1313 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1314 * Until those drivers are fixed, we detect the condition
1315 * here, fail the command with AC_ERR_SYSTEM and reenable the
1316 * port.
1317 *
1318 * Note that this doesn't change any behavior as internal
1319 * command failure results in disabling the device in the
1320 * higher layer for LLDDs without new reset/EH callbacks.
1321 *
1322 * Kill the following code as soon as those drivers are fixed.
1323 */
1324 if (ap->flags & ATA_FLAG_DISABLED) {
1325 err_mask |= AC_ERR_SYSTEM;
1326 ata_port_probe(ap);
1327 }
1328
1329 spin_unlock_irqrestore(ap->lock, flags);
1330
1331 return err_mask;
1332 }
1333
1334 /**
1335 * ata_exec_internal_sg - execute libata internal command
1336 * @dev: Device to which the command is sent
1337 * @tf: Taskfile registers for the command and the result
1338 * @cdb: CDB for packet command
1339 * @dma_dir: Data tranfer direction of the command
1340 * @buf: Data buffer of the command
1341 * @buflen: Length of data buffer
1342 *
1343 * Wrapper around ata_exec_internal_sg() which takes simple
1344 * buffer instead of sg list.
1345 *
1346 * LOCKING:
1347 * None. Should be called with kernel context, might sleep.
1348 *
1349 * RETURNS:
1350 * Zero on success, AC_ERR_* mask on failure
1351 */
1352 unsigned ata_exec_internal(struct ata_device *dev,
1353 struct ata_taskfile *tf, const u8 *cdb,
1354 int dma_dir, void *buf, unsigned int buflen)
1355 {
1356 struct scatterlist sg;
1357
1358 sg_init_one(&sg, buf, buflen);
1359
1360 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, &sg, 1);
1361 }
1362
1363 /**
1364 * ata_do_simple_cmd - execute simple internal command
1365 * @dev: Device to which the command is sent
1366 * @cmd: Opcode to execute
1367 *
1368 * Execute a 'simple' command, that only consists of the opcode
1369 * 'cmd' itself, without filling any other registers
1370 *
1371 * LOCKING:
1372 * Kernel thread context (may sleep).
1373 *
1374 * RETURNS:
1375 * Zero on success, AC_ERR_* mask on failure
1376 */
1377 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1378 {
1379 struct ata_taskfile tf;
1380
1381 ata_tf_init(dev, &tf);
1382
1383 tf.command = cmd;
1384 tf.flags |= ATA_TFLAG_DEVICE;
1385 tf.protocol = ATA_PROT_NODATA;
1386
1387 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1388 }
1389
1390 /**
1391 * ata_pio_need_iordy - check if iordy needed
1392 * @adev: ATA device
1393 *
1394 * Check if the current speed of the device requires IORDY. Used
1395 * by various controllers for chip configuration.
1396 */
1397
1398 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1399 {
1400 int pio;
1401 int speed = adev->pio_mode - XFER_PIO_0;
1402
1403 if (speed < 2)
1404 return 0;
1405 if (speed > 2)
1406 return 1;
1407
1408 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1409
1410 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1411 pio = adev->id[ATA_ID_EIDE_PIO];
1412 /* Is the speed faster than the drive allows non IORDY ? */
1413 if (pio) {
1414 /* This is cycle times not frequency - watch the logic! */
1415 if (pio > 240) /* PIO2 is 240nS per cycle */
1416 return 1;
1417 return 0;
1418 }
1419 }
1420 return 0;
1421 }
1422
1423 /**
1424 * ata_dev_read_id - Read ID data from the specified device
1425 * @dev: target device
1426 * @p_class: pointer to class of the target device (may be changed)
1427 * @flags: ATA_READID_* flags
1428 * @id: buffer to read IDENTIFY data into
1429 *
1430 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1431 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1432 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1433 * for pre-ATA4 drives.
1434 *
1435 * LOCKING:
1436 * Kernel thread context (may sleep)
1437 *
1438 * RETURNS:
1439 * 0 on success, -errno otherwise.
1440 */
1441 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1442 unsigned int flags, u16 *id)
1443 {
1444 struct ata_port *ap = dev->ap;
1445 unsigned int class = *p_class;
1446 struct ata_taskfile tf;
1447 unsigned int err_mask = 0;
1448 const char *reason;
1449 int rc;
1450
1451 if (ata_msg_ctl(ap))
1452 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1453 __FUNCTION__, ap->id, dev->devno);
1454
1455 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1456
1457 retry:
1458 ata_tf_init(dev, &tf);
1459
1460 switch (class) {
1461 case ATA_DEV_ATA:
1462 tf.command = ATA_CMD_ID_ATA;
1463 break;
1464 case ATA_DEV_ATAPI:
1465 tf.command = ATA_CMD_ID_ATAPI;
1466 break;
1467 default:
1468 rc = -ENODEV;
1469 reason = "unsupported class";
1470 goto err_out;
1471 }
1472
1473 tf.protocol = ATA_PROT_PIO;
1474 tf.flags |= ATA_TFLAG_POLLING; /* for polling presence detection */
1475
1476 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1477 id, sizeof(id[0]) * ATA_ID_WORDS);
1478 if (err_mask) {
1479 if (err_mask & AC_ERR_NODEV_HINT) {
1480 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1481 ap->id, dev->devno);
1482 return -ENOENT;
1483 }
1484
1485 rc = -EIO;
1486 reason = "I/O error";
1487 goto err_out;
1488 }
1489
1490 swap_buf_le16(id, ATA_ID_WORDS);
1491
1492 /* sanity check */
1493 rc = -EINVAL;
1494 reason = "device reports illegal type";
1495
1496 if (class == ATA_DEV_ATA) {
1497 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1498 goto err_out;
1499 } else {
1500 if (ata_id_is_ata(id))
1501 goto err_out;
1502 }
1503
1504 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1505 /*
1506 * The exact sequence expected by certain pre-ATA4 drives is:
1507 * SRST RESET
1508 * IDENTIFY
1509 * INITIALIZE DEVICE PARAMETERS
1510 * anything else..
1511 * Some drives were very specific about that exact sequence.
1512 */
1513 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1514 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1515 if (err_mask) {
1516 rc = -EIO;
1517 reason = "INIT_DEV_PARAMS failed";
1518 goto err_out;
1519 }
1520
1521 /* current CHS translation info (id[53-58]) might be
1522 * changed. reread the identify device info.
1523 */
1524 flags &= ~ATA_READID_POSTRESET;
1525 goto retry;
1526 }
1527 }
1528
1529 *p_class = class;
1530
1531 return 0;
1532
1533 err_out:
1534 if (ata_msg_warn(ap))
1535 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1536 "(%s, err_mask=0x%x)\n", reason, err_mask);
1537 return rc;
1538 }
1539
1540 static inline u8 ata_dev_knobble(struct ata_device *dev)
1541 {
1542 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1543 }
1544
1545 static void ata_dev_config_ncq(struct ata_device *dev,
1546 char *desc, size_t desc_sz)
1547 {
1548 struct ata_port *ap = dev->ap;
1549 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1550
1551 if (!ata_id_has_ncq(dev->id)) {
1552 desc[0] = '\0';
1553 return;
1554 }
1555 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1556 snprintf(desc, desc_sz, "NCQ (not used)");
1557 return;
1558 }
1559 if (ap->flags & ATA_FLAG_NCQ) {
1560 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1561 dev->flags |= ATA_DFLAG_NCQ;
1562 }
1563
1564 if (hdepth >= ddepth)
1565 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1566 else
1567 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1568 }
1569
1570 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1571 {
1572 int i;
1573
1574 if (ap->scsi_host) {
1575 unsigned int len = 0;
1576
1577 for (i = 0; i < ATA_MAX_DEVICES; i++)
1578 len = max(len, ap->device[i].cdb_len);
1579
1580 ap->scsi_host->max_cmd_len = len;
1581 }
1582 }
1583
1584 /**
1585 * ata_dev_configure - Configure the specified ATA/ATAPI device
1586 * @dev: Target device to configure
1587 *
1588 * Configure @dev according to @dev->id. Generic and low-level
1589 * driver specific fixups are also applied.
1590 *
1591 * LOCKING:
1592 * Kernel thread context (may sleep)
1593 *
1594 * RETURNS:
1595 * 0 on success, -errno otherwise
1596 */
1597 int ata_dev_configure(struct ata_device *dev)
1598 {
1599 struct ata_port *ap = dev->ap;
1600 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1601 const u16 *id = dev->id;
1602 unsigned int xfer_mask;
1603 char revbuf[7]; /* XYZ-99\0 */
1604 int rc;
1605
1606 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1607 ata_dev_printk(dev, KERN_INFO,
1608 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1609 __FUNCTION__, ap->id, dev->devno);
1610 return 0;
1611 }
1612
1613 if (ata_msg_probe(ap))
1614 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1615 __FUNCTION__, ap->id, dev->devno);
1616
1617 /* print device capabilities */
1618 if (ata_msg_probe(ap))
1619 ata_dev_printk(dev, KERN_DEBUG,
1620 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1621 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1622 __FUNCTION__,
1623 id[49], id[82], id[83], id[84],
1624 id[85], id[86], id[87], id[88]);
1625
1626 /* initialize to-be-configured parameters */
1627 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1628 dev->max_sectors = 0;
1629 dev->cdb_len = 0;
1630 dev->n_sectors = 0;
1631 dev->cylinders = 0;
1632 dev->heads = 0;
1633 dev->sectors = 0;
1634
1635 /*
1636 * common ATA, ATAPI feature tests
1637 */
1638
1639 /* find max transfer mode; for printk only */
1640 xfer_mask = ata_id_xfermask(id);
1641
1642 if (ata_msg_probe(ap))
1643 ata_dump_id(id);
1644
1645 /* ATA-specific feature tests */
1646 if (dev->class == ATA_DEV_ATA) {
1647 if (ata_id_is_cfa(id)) {
1648 if (id[162] & 1) /* CPRM may make this media unusable */
1649 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1650 ap->id, dev->devno);
1651 snprintf(revbuf, 7, "CFA");
1652 }
1653 else
1654 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1655
1656 dev->n_sectors = ata_id_n_sectors(id);
1657
1658 if (ata_id_has_lba(id)) {
1659 const char *lba_desc;
1660 char ncq_desc[20];
1661
1662 lba_desc = "LBA";
1663 dev->flags |= ATA_DFLAG_LBA;
1664 if (ata_id_has_lba48(id)) {
1665 dev->flags |= ATA_DFLAG_LBA48;
1666 lba_desc = "LBA48";
1667
1668 if (dev->n_sectors >= (1UL << 28) &&
1669 ata_id_has_flush_ext(id))
1670 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1671 }
1672
1673 /* config NCQ */
1674 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1675
1676 /* print device info to dmesg */
1677 if (ata_msg_drv(ap) && print_info)
1678 ata_dev_printk(dev, KERN_INFO, "%s, "
1679 "max %s, %Lu sectors: %s %s\n",
1680 revbuf,
1681 ata_mode_string(xfer_mask),
1682 (unsigned long long)dev->n_sectors,
1683 lba_desc, ncq_desc);
1684 } else {
1685 /* CHS */
1686
1687 /* Default translation */
1688 dev->cylinders = id[1];
1689 dev->heads = id[3];
1690 dev->sectors = id[6];
1691
1692 if (ata_id_current_chs_valid(id)) {
1693 /* Current CHS translation is valid. */
1694 dev->cylinders = id[54];
1695 dev->heads = id[55];
1696 dev->sectors = id[56];
1697 }
1698
1699 /* print device info to dmesg */
1700 if (ata_msg_drv(ap) && print_info)
1701 ata_dev_printk(dev, KERN_INFO, "%s, "
1702 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1703 revbuf,
1704 ata_mode_string(xfer_mask),
1705 (unsigned long long)dev->n_sectors,
1706 dev->cylinders, dev->heads,
1707 dev->sectors);
1708 }
1709
1710 if (dev->id[59] & 0x100) {
1711 dev->multi_count = dev->id[59] & 0xff;
1712 if (ata_msg_drv(ap) && print_info)
1713 ata_dev_printk(dev, KERN_INFO,
1714 "ata%u: dev %u multi count %u\n",
1715 ap->id, dev->devno, dev->multi_count);
1716 }
1717
1718 dev->cdb_len = 16;
1719 }
1720
1721 /* ATAPI-specific feature tests */
1722 else if (dev->class == ATA_DEV_ATAPI) {
1723 char *cdb_intr_string = "";
1724
1725 rc = atapi_cdb_len(id);
1726 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1727 if (ata_msg_warn(ap))
1728 ata_dev_printk(dev, KERN_WARNING,
1729 "unsupported CDB len\n");
1730 rc = -EINVAL;
1731 goto err_out_nosup;
1732 }
1733 dev->cdb_len = (unsigned int) rc;
1734
1735 if (ata_id_cdb_intr(dev->id)) {
1736 dev->flags |= ATA_DFLAG_CDB_INTR;
1737 cdb_intr_string = ", CDB intr";
1738 }
1739
1740 /* print device info to dmesg */
1741 if (ata_msg_drv(ap) && print_info)
1742 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1743 ata_mode_string(xfer_mask),
1744 cdb_intr_string);
1745 }
1746
1747 /* determine max_sectors */
1748 dev->max_sectors = ATA_MAX_SECTORS;
1749 if (dev->flags & ATA_DFLAG_LBA48)
1750 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1751
1752 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1753 /* Let the user know. We don't want to disallow opens for
1754 rescue purposes, or in case the vendor is just a blithering
1755 idiot */
1756 if (print_info) {
1757 ata_dev_printk(dev, KERN_WARNING,
1758 "Drive reports diagnostics failure. This may indicate a drive\n");
1759 ata_dev_printk(dev, KERN_WARNING,
1760 "fault or invalid emulation. Contact drive vendor for information.\n");
1761 }
1762 }
1763
1764 ata_set_port_max_cmd_len(ap);
1765
1766 /* limit bridge transfers to udma5, 200 sectors */
1767 if (ata_dev_knobble(dev)) {
1768 if (ata_msg_drv(ap) && print_info)
1769 ata_dev_printk(dev, KERN_INFO,
1770 "applying bridge limits\n");
1771 dev->udma_mask &= ATA_UDMA5;
1772 dev->max_sectors = ATA_MAX_SECTORS;
1773 }
1774
1775 if (ap->ops->dev_config)
1776 ap->ops->dev_config(ap, dev);
1777
1778 if (ata_msg_probe(ap))
1779 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1780 __FUNCTION__, ata_chk_status(ap));
1781 return 0;
1782
1783 err_out_nosup:
1784 if (ata_msg_probe(ap))
1785 ata_dev_printk(dev, KERN_DEBUG,
1786 "%s: EXIT, err\n", __FUNCTION__);
1787 return rc;
1788 }
1789
1790 /**
1791 * ata_bus_probe - Reset and probe ATA bus
1792 * @ap: Bus to probe
1793 *
1794 * Master ATA bus probing function. Initiates a hardware-dependent
1795 * bus reset, then attempts to identify any devices found on
1796 * the bus.
1797 *
1798 * LOCKING:
1799 * PCI/etc. bus probe sem.
1800 *
1801 * RETURNS:
1802 * Zero on success, negative errno otherwise.
1803 */
1804
1805 int ata_bus_probe(struct ata_port *ap)
1806 {
1807 unsigned int classes[ATA_MAX_DEVICES];
1808 int tries[ATA_MAX_DEVICES];
1809 int i, rc, down_xfermask;
1810 struct ata_device *dev;
1811
1812 ata_port_probe(ap);
1813
1814 for (i = 0; i < ATA_MAX_DEVICES; i++)
1815 tries[i] = ATA_PROBE_MAX_TRIES;
1816
1817 retry:
1818 down_xfermask = 0;
1819
1820 /* reset and determine device classes */
1821 ap->ops->phy_reset(ap);
1822
1823 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1824 dev = &ap->device[i];
1825
1826 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1827 dev->class != ATA_DEV_UNKNOWN)
1828 classes[dev->devno] = dev->class;
1829 else
1830 classes[dev->devno] = ATA_DEV_NONE;
1831
1832 dev->class = ATA_DEV_UNKNOWN;
1833 }
1834
1835 ata_port_probe(ap);
1836
1837 /* after the reset the device state is PIO 0 and the controller
1838 state is undefined. Record the mode */
1839
1840 for (i = 0; i < ATA_MAX_DEVICES; i++)
1841 ap->device[i].pio_mode = XFER_PIO_0;
1842
1843 /* read IDENTIFY page and configure devices */
1844 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1845 dev = &ap->device[i];
1846
1847 if (tries[i])
1848 dev->class = classes[i];
1849
1850 if (!ata_dev_enabled(dev))
1851 continue;
1852
1853 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1854 dev->id);
1855 if (rc)
1856 goto fail;
1857
1858 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1859 rc = ata_dev_configure(dev);
1860 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1861 if (rc)
1862 goto fail;
1863 }
1864
1865 /* configure transfer mode */
1866 rc = ata_set_mode(ap, &dev);
1867 if (rc) {
1868 down_xfermask = 1;
1869 goto fail;
1870 }
1871
1872 for (i = 0; i < ATA_MAX_DEVICES; i++)
1873 if (ata_dev_enabled(&ap->device[i]))
1874 return 0;
1875
1876 /* no device present, disable port */
1877 ata_port_disable(ap);
1878 ap->ops->port_disable(ap);
1879 return -ENODEV;
1880
1881 fail:
1882 switch (rc) {
1883 case -EINVAL:
1884 case -ENODEV:
1885 tries[dev->devno] = 0;
1886 break;
1887 case -EIO:
1888 sata_down_spd_limit(ap);
1889 /* fall through */
1890 default:
1891 tries[dev->devno]--;
1892 if (down_xfermask &&
1893 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1894 tries[dev->devno] = 0;
1895 }
1896
1897 if (!tries[dev->devno]) {
1898 ata_down_xfermask_limit(dev, 1);
1899 ata_dev_disable(dev);
1900 }
1901
1902 goto retry;
1903 }
1904
1905 /**
1906 * ata_port_probe - Mark port as enabled
1907 * @ap: Port for which we indicate enablement
1908 *
1909 * Modify @ap data structure such that the system
1910 * thinks that the entire port is enabled.
1911 *
1912 * LOCKING: host lock, or some other form of
1913 * serialization.
1914 */
1915
1916 void ata_port_probe(struct ata_port *ap)
1917 {
1918 ap->flags &= ~ATA_FLAG_DISABLED;
1919 }
1920
1921 /**
1922 * sata_print_link_status - Print SATA link status
1923 * @ap: SATA port to printk link status about
1924 *
1925 * This function prints link speed and status of a SATA link.
1926 *
1927 * LOCKING:
1928 * None.
1929 */
1930 static void sata_print_link_status(struct ata_port *ap)
1931 {
1932 u32 sstatus, scontrol, tmp;
1933
1934 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1935 return;
1936 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1937
1938 if (ata_port_online(ap)) {
1939 tmp = (sstatus >> 4) & 0xf;
1940 ata_port_printk(ap, KERN_INFO,
1941 "SATA link up %s (SStatus %X SControl %X)\n",
1942 sata_spd_string(tmp), sstatus, scontrol);
1943 } else {
1944 ata_port_printk(ap, KERN_INFO,
1945 "SATA link down (SStatus %X SControl %X)\n",
1946 sstatus, scontrol);
1947 }
1948 }
1949
1950 /**
1951 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1952 * @ap: SATA port associated with target SATA PHY.
1953 *
1954 * This function issues commands to standard SATA Sxxx
1955 * PHY registers, to wake up the phy (and device), and
1956 * clear any reset condition.
1957 *
1958 * LOCKING:
1959 * PCI/etc. bus probe sem.
1960 *
1961 */
1962 void __sata_phy_reset(struct ata_port *ap)
1963 {
1964 u32 sstatus;
1965 unsigned long timeout = jiffies + (HZ * 5);
1966
1967 if (ap->flags & ATA_FLAG_SATA_RESET) {
1968 /* issue phy wake/reset */
1969 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1970 /* Couldn't find anything in SATA I/II specs, but
1971 * AHCI-1.1 10.4.2 says at least 1 ms. */
1972 mdelay(1);
1973 }
1974 /* phy wake/clear reset */
1975 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1976
1977 /* wait for phy to become ready, if necessary */
1978 do {
1979 msleep(200);
1980 sata_scr_read(ap, SCR_STATUS, &sstatus);
1981 if ((sstatus & 0xf) != 1)
1982 break;
1983 } while (time_before(jiffies, timeout));
1984
1985 /* print link status */
1986 sata_print_link_status(ap);
1987
1988 /* TODO: phy layer with polling, timeouts, etc. */
1989 if (!ata_port_offline(ap))
1990 ata_port_probe(ap);
1991 else
1992 ata_port_disable(ap);
1993
1994 if (ap->flags & ATA_FLAG_DISABLED)
1995 return;
1996
1997 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1998 ata_port_disable(ap);
1999 return;
2000 }
2001
2002 ap->cbl = ATA_CBL_SATA;
2003 }
2004
2005 /**
2006 * sata_phy_reset - Reset SATA bus.
2007 * @ap: SATA port associated with target SATA PHY.
2008 *
2009 * This function resets the SATA bus, and then probes
2010 * the bus for devices.
2011 *
2012 * LOCKING:
2013 * PCI/etc. bus probe sem.
2014 *
2015 */
2016 void sata_phy_reset(struct ata_port *ap)
2017 {
2018 __sata_phy_reset(ap);
2019 if (ap->flags & ATA_FLAG_DISABLED)
2020 return;
2021 ata_bus_reset(ap);
2022 }
2023
2024 /**
2025 * ata_dev_pair - return other device on cable
2026 * @adev: device
2027 *
2028 * Obtain the other device on the same cable, or if none is
2029 * present NULL is returned
2030 */
2031
2032 struct ata_device *ata_dev_pair(struct ata_device *adev)
2033 {
2034 struct ata_port *ap = adev->ap;
2035 struct ata_device *pair = &ap->device[1 - adev->devno];
2036 if (!ata_dev_enabled(pair))
2037 return NULL;
2038 return pair;
2039 }
2040
2041 /**
2042 * ata_port_disable - Disable port.
2043 * @ap: Port to be disabled.
2044 *
2045 * Modify @ap data structure such that the system
2046 * thinks that the entire port is disabled, and should
2047 * never attempt to probe or communicate with devices
2048 * on this port.
2049 *
2050 * LOCKING: host lock, or some other form of
2051 * serialization.
2052 */
2053
2054 void ata_port_disable(struct ata_port *ap)
2055 {
2056 ap->device[0].class = ATA_DEV_NONE;
2057 ap->device[1].class = ATA_DEV_NONE;
2058 ap->flags |= ATA_FLAG_DISABLED;
2059 }
2060
2061 /**
2062 * sata_down_spd_limit - adjust SATA spd limit downward
2063 * @ap: Port to adjust SATA spd limit for
2064 *
2065 * Adjust SATA spd limit of @ap downward. Note that this
2066 * function only adjusts the limit. The change must be applied
2067 * using sata_set_spd().
2068 *
2069 * LOCKING:
2070 * Inherited from caller.
2071 *
2072 * RETURNS:
2073 * 0 on success, negative errno on failure
2074 */
2075 int sata_down_spd_limit(struct ata_port *ap)
2076 {
2077 u32 sstatus, spd, mask;
2078 int rc, highbit;
2079
2080 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2081 if (rc)
2082 return rc;
2083
2084 mask = ap->sata_spd_limit;
2085 if (mask <= 1)
2086 return -EINVAL;
2087 highbit = fls(mask) - 1;
2088 mask &= ~(1 << highbit);
2089
2090 spd = (sstatus >> 4) & 0xf;
2091 if (spd <= 1)
2092 return -EINVAL;
2093 spd--;
2094 mask &= (1 << spd) - 1;
2095 if (!mask)
2096 return -EINVAL;
2097
2098 ap->sata_spd_limit = mask;
2099
2100 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2101 sata_spd_string(fls(mask)));
2102
2103 return 0;
2104 }
2105
2106 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2107 {
2108 u32 spd, limit;
2109
2110 if (ap->sata_spd_limit == UINT_MAX)
2111 limit = 0;
2112 else
2113 limit = fls(ap->sata_spd_limit);
2114
2115 spd = (*scontrol >> 4) & 0xf;
2116 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2117
2118 return spd != limit;
2119 }
2120
2121 /**
2122 * sata_set_spd_needed - is SATA spd configuration needed
2123 * @ap: Port in question
2124 *
2125 * Test whether the spd limit in SControl matches
2126 * @ap->sata_spd_limit. This function is used to determine
2127 * whether hardreset is necessary to apply SATA spd
2128 * configuration.
2129 *
2130 * LOCKING:
2131 * Inherited from caller.
2132 *
2133 * RETURNS:
2134 * 1 if SATA spd configuration is needed, 0 otherwise.
2135 */
2136 int sata_set_spd_needed(struct ata_port *ap)
2137 {
2138 u32 scontrol;
2139
2140 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2141 return 0;
2142
2143 return __sata_set_spd_needed(ap, &scontrol);
2144 }
2145
2146 /**
2147 * sata_set_spd - set SATA spd according to spd limit
2148 * @ap: Port to set SATA spd for
2149 *
2150 * Set SATA spd of @ap according to sata_spd_limit.
2151 *
2152 * LOCKING:
2153 * Inherited from caller.
2154 *
2155 * RETURNS:
2156 * 0 if spd doesn't need to be changed, 1 if spd has been
2157 * changed. Negative errno if SCR registers are inaccessible.
2158 */
2159 int sata_set_spd(struct ata_port *ap)
2160 {
2161 u32 scontrol;
2162 int rc;
2163
2164 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2165 return rc;
2166
2167 if (!__sata_set_spd_needed(ap, &scontrol))
2168 return 0;
2169
2170 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2171 return rc;
2172
2173 return 1;
2174 }
2175
2176 /*
2177 * This mode timing computation functionality is ported over from
2178 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2179 */
2180 /*
2181 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2182 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2183 * for UDMA6, which is currently supported only by Maxtor drives.
2184 *
2185 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2186 */
2187
2188 static const struct ata_timing ata_timing[] = {
2189
2190 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2191 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2192 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2193 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2194
2195 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2196 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2197 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2198 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2199 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2200
2201 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2202
2203 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2204 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2205 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2206
2207 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2208 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2209 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2210
2211 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2212 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2213 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2214 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2215
2216 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2217 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2218 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2219
2220 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2221
2222 { 0xFF }
2223 };
2224
2225 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2226 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2227
2228 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2229 {
2230 q->setup = EZ(t->setup * 1000, T);
2231 q->act8b = EZ(t->act8b * 1000, T);
2232 q->rec8b = EZ(t->rec8b * 1000, T);
2233 q->cyc8b = EZ(t->cyc8b * 1000, T);
2234 q->active = EZ(t->active * 1000, T);
2235 q->recover = EZ(t->recover * 1000, T);
2236 q->cycle = EZ(t->cycle * 1000, T);
2237 q->udma = EZ(t->udma * 1000, UT);
2238 }
2239
2240 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2241 struct ata_timing *m, unsigned int what)
2242 {
2243 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2244 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2245 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2246 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2247 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2248 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2249 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2250 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2251 }
2252
2253 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2254 {
2255 const struct ata_timing *t;
2256
2257 for (t = ata_timing; t->mode != speed; t++)
2258 if (t->mode == 0xFF)
2259 return NULL;
2260 return t;
2261 }
2262
2263 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2264 struct ata_timing *t, int T, int UT)
2265 {
2266 const struct ata_timing *s;
2267 struct ata_timing p;
2268
2269 /*
2270 * Find the mode.
2271 */
2272
2273 if (!(s = ata_timing_find_mode(speed)))
2274 return -EINVAL;
2275
2276 memcpy(t, s, sizeof(*s));
2277
2278 /*
2279 * If the drive is an EIDE drive, it can tell us it needs extended
2280 * PIO/MW_DMA cycle timing.
2281 */
2282
2283 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2284 memset(&p, 0, sizeof(p));
2285 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2286 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2287 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2288 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2289 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2290 }
2291 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2292 }
2293
2294 /*
2295 * Convert the timing to bus clock counts.
2296 */
2297
2298 ata_timing_quantize(t, t, T, UT);
2299
2300 /*
2301 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2302 * S.M.A.R.T * and some other commands. We have to ensure that the
2303 * DMA cycle timing is slower/equal than the fastest PIO timing.
2304 */
2305
2306 if (speed > XFER_PIO_6) {
2307 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2308 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2309 }
2310
2311 /*
2312 * Lengthen active & recovery time so that cycle time is correct.
2313 */
2314
2315 if (t->act8b + t->rec8b < t->cyc8b) {
2316 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2317 t->rec8b = t->cyc8b - t->act8b;
2318 }
2319
2320 if (t->active + t->recover < t->cycle) {
2321 t->active += (t->cycle - (t->active + t->recover)) / 2;
2322 t->recover = t->cycle - t->active;
2323 }
2324
2325 return 0;
2326 }
2327
2328 /**
2329 * ata_down_xfermask_limit - adjust dev xfer masks downward
2330 * @dev: Device to adjust xfer masks
2331 * @force_pio0: Force PIO0
2332 *
2333 * Adjust xfer masks of @dev downward. Note that this function
2334 * does not apply the change. Invoking ata_set_mode() afterwards
2335 * will apply the limit.
2336 *
2337 * LOCKING:
2338 * Inherited from caller.
2339 *
2340 * RETURNS:
2341 * 0 on success, negative errno on failure
2342 */
2343 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2344 {
2345 unsigned long xfer_mask;
2346 int highbit;
2347
2348 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2349 dev->udma_mask);
2350
2351 if (!xfer_mask)
2352 goto fail;
2353 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2354 if (xfer_mask & ATA_MASK_UDMA)
2355 xfer_mask &= ~ATA_MASK_MWDMA;
2356
2357 highbit = fls(xfer_mask) - 1;
2358 xfer_mask &= ~(1 << highbit);
2359 if (force_pio0)
2360 xfer_mask &= 1 << ATA_SHIFT_PIO;
2361 if (!xfer_mask)
2362 goto fail;
2363
2364 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2365 &dev->udma_mask);
2366
2367 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2368 ata_mode_string(xfer_mask));
2369
2370 return 0;
2371
2372 fail:
2373 return -EINVAL;
2374 }
2375
2376 static int ata_dev_set_mode(struct ata_device *dev)
2377 {
2378 struct ata_eh_context *ehc = &dev->ap->eh_context;
2379 unsigned int err_mask;
2380 int rc;
2381
2382 dev->flags &= ~ATA_DFLAG_PIO;
2383 if (dev->xfer_shift == ATA_SHIFT_PIO)
2384 dev->flags |= ATA_DFLAG_PIO;
2385
2386 err_mask = ata_dev_set_xfermode(dev);
2387 if (err_mask) {
2388 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2389 "(err_mask=0x%x)\n", err_mask);
2390 return -EIO;
2391 }
2392
2393 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2394 rc = ata_dev_revalidate(dev, 0);
2395 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2396 if (rc)
2397 return rc;
2398
2399 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2400 dev->xfer_shift, (int)dev->xfer_mode);
2401
2402 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2403 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2404 return 0;
2405 }
2406
2407 /**
2408 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2409 * @ap: port on which timings will be programmed
2410 * @r_failed_dev: out paramter for failed device
2411 *
2412 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2413 * ata_set_mode() fails, pointer to the failing device is
2414 * returned in @r_failed_dev.
2415 *
2416 * LOCKING:
2417 * PCI/etc. bus probe sem.
2418 *
2419 * RETURNS:
2420 * 0 on success, negative errno otherwise
2421 */
2422 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2423 {
2424 struct ata_device *dev;
2425 int i, rc = 0, used_dma = 0, found = 0;
2426
2427 /* has private set_mode? */
2428 if (ap->ops->set_mode) {
2429 /* FIXME: make ->set_mode handle no device case and
2430 * return error code and failing device on failure.
2431 */
2432 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2433 if (ata_dev_ready(&ap->device[i])) {
2434 ap->ops->set_mode(ap);
2435 break;
2436 }
2437 }
2438 return 0;
2439 }
2440
2441 /* step 1: calculate xfer_mask */
2442 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2443 unsigned int pio_mask, dma_mask;
2444
2445 dev = &ap->device[i];
2446
2447 if (!ata_dev_enabled(dev))
2448 continue;
2449
2450 ata_dev_xfermask(dev);
2451
2452 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2453 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2454 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2455 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2456
2457 found = 1;
2458 if (dev->dma_mode)
2459 used_dma = 1;
2460 }
2461 if (!found)
2462 goto out;
2463
2464 /* step 2: always set host PIO timings */
2465 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2466 dev = &ap->device[i];
2467 if (!ata_dev_enabled(dev))
2468 continue;
2469
2470 if (!dev->pio_mode) {
2471 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2472 rc = -EINVAL;
2473 goto out;
2474 }
2475
2476 dev->xfer_mode = dev->pio_mode;
2477 dev->xfer_shift = ATA_SHIFT_PIO;
2478 if (ap->ops->set_piomode)
2479 ap->ops->set_piomode(ap, dev);
2480 }
2481
2482 /* step 3: set host DMA timings */
2483 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2484 dev = &ap->device[i];
2485
2486 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2487 continue;
2488
2489 dev->xfer_mode = dev->dma_mode;
2490 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2491 if (ap->ops->set_dmamode)
2492 ap->ops->set_dmamode(ap, dev);
2493 }
2494
2495 /* step 4: update devices' xfer mode */
2496 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2497 dev = &ap->device[i];
2498
2499 /* don't udpate suspended devices' xfer mode */
2500 if (!ata_dev_ready(dev))
2501 continue;
2502
2503 rc = ata_dev_set_mode(dev);
2504 if (rc)
2505 goto out;
2506 }
2507
2508 /* Record simplex status. If we selected DMA then the other
2509 * host channels are not permitted to do so.
2510 */
2511 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2512 ap->host->simplex_claimed = 1;
2513
2514 /* step5: chip specific finalisation */
2515 if (ap->ops->post_set_mode)
2516 ap->ops->post_set_mode(ap);
2517
2518 out:
2519 if (rc)
2520 *r_failed_dev = dev;
2521 return rc;
2522 }
2523
2524 /**
2525 * ata_tf_to_host - issue ATA taskfile to host controller
2526 * @ap: port to which command is being issued
2527 * @tf: ATA taskfile register set
2528 *
2529 * Issues ATA taskfile register set to ATA host controller,
2530 * with proper synchronization with interrupt handler and
2531 * other threads.
2532 *
2533 * LOCKING:
2534 * spin_lock_irqsave(host lock)
2535 */
2536
2537 static inline void ata_tf_to_host(struct ata_port *ap,
2538 const struct ata_taskfile *tf)
2539 {
2540 ap->ops->tf_load(ap, tf);
2541 ap->ops->exec_command(ap, tf);
2542 }
2543
2544 /**
2545 * ata_busy_sleep - sleep until BSY clears, or timeout
2546 * @ap: port containing status register to be polled
2547 * @tmout_pat: impatience timeout
2548 * @tmout: overall timeout
2549 *
2550 * Sleep until ATA Status register bit BSY clears,
2551 * or a timeout occurs.
2552 *
2553 * LOCKING:
2554 * Kernel thread context (may sleep).
2555 *
2556 * RETURNS:
2557 * 0 on success, -errno otherwise.
2558 */
2559 int ata_busy_sleep(struct ata_port *ap,
2560 unsigned long tmout_pat, unsigned long tmout)
2561 {
2562 unsigned long timer_start, timeout;
2563 u8 status;
2564
2565 status = ata_busy_wait(ap, ATA_BUSY, 300);
2566 timer_start = jiffies;
2567 timeout = timer_start + tmout_pat;
2568 while (status != 0xff && (status & ATA_BUSY) &&
2569 time_before(jiffies, timeout)) {
2570 msleep(50);
2571 status = ata_busy_wait(ap, ATA_BUSY, 3);
2572 }
2573
2574 if (status != 0xff && (status & ATA_BUSY))
2575 ata_port_printk(ap, KERN_WARNING,
2576 "port is slow to respond, please be patient "
2577 "(Status 0x%x)\n", status);
2578
2579 timeout = timer_start + tmout;
2580 while (status != 0xff && (status & ATA_BUSY) &&
2581 time_before(jiffies, timeout)) {
2582 msleep(50);
2583 status = ata_chk_status(ap);
2584 }
2585
2586 if (status == 0xff)
2587 return -ENODEV;
2588
2589 if (status & ATA_BUSY) {
2590 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2591 "(%lu secs, Status 0x%x)\n",
2592 tmout / HZ, status);
2593 return -EBUSY;
2594 }
2595
2596 return 0;
2597 }
2598
2599 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2600 {
2601 struct ata_ioports *ioaddr = &ap->ioaddr;
2602 unsigned int dev0 = devmask & (1 << 0);
2603 unsigned int dev1 = devmask & (1 << 1);
2604 unsigned long timeout;
2605
2606 /* if device 0 was found in ata_devchk, wait for its
2607 * BSY bit to clear
2608 */
2609 if (dev0)
2610 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2611
2612 /* if device 1 was found in ata_devchk, wait for
2613 * register access, then wait for BSY to clear
2614 */
2615 timeout = jiffies + ATA_TMOUT_BOOT;
2616 while (dev1) {
2617 u8 nsect, lbal;
2618
2619 ap->ops->dev_select(ap, 1);
2620 if (ap->flags & ATA_FLAG_MMIO) {
2621 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2622 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2623 } else {
2624 nsect = inb(ioaddr->nsect_addr);
2625 lbal = inb(ioaddr->lbal_addr);
2626 }
2627 if ((nsect == 1) && (lbal == 1))
2628 break;
2629 if (time_after(jiffies, timeout)) {
2630 dev1 = 0;
2631 break;
2632 }
2633 msleep(50); /* give drive a breather */
2634 }
2635 if (dev1)
2636 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2637
2638 /* is all this really necessary? */
2639 ap->ops->dev_select(ap, 0);
2640 if (dev1)
2641 ap->ops->dev_select(ap, 1);
2642 if (dev0)
2643 ap->ops->dev_select(ap, 0);
2644 }
2645
2646 static unsigned int ata_bus_softreset(struct ata_port *ap,
2647 unsigned int devmask)
2648 {
2649 struct ata_ioports *ioaddr = &ap->ioaddr;
2650
2651 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2652
2653 /* software reset. causes dev0 to be selected */
2654 if (ap->flags & ATA_FLAG_MMIO) {
2655 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2656 udelay(20); /* FIXME: flush */
2657 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2658 udelay(20); /* FIXME: flush */
2659 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2660 } else {
2661 outb(ap->ctl, ioaddr->ctl_addr);
2662 udelay(10);
2663 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2664 udelay(10);
2665 outb(ap->ctl, ioaddr->ctl_addr);
2666 }
2667
2668 /* spec mandates ">= 2ms" before checking status.
2669 * We wait 150ms, because that was the magic delay used for
2670 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2671 * between when the ATA command register is written, and then
2672 * status is checked. Because waiting for "a while" before
2673 * checking status is fine, post SRST, we perform this magic
2674 * delay here as well.
2675 *
2676 * Old drivers/ide uses the 2mS rule and then waits for ready
2677 */
2678 msleep(150);
2679
2680 /* Before we perform post reset processing we want to see if
2681 * the bus shows 0xFF because the odd clown forgets the D7
2682 * pulldown resistor.
2683 */
2684 if (ata_check_status(ap) == 0xFF)
2685 return 0;
2686
2687 ata_bus_post_reset(ap, devmask);
2688
2689 return 0;
2690 }
2691
2692 /**
2693 * ata_bus_reset - reset host port and associated ATA channel
2694 * @ap: port to reset
2695 *
2696 * This is typically the first time we actually start issuing
2697 * commands to the ATA channel. We wait for BSY to clear, then
2698 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2699 * result. Determine what devices, if any, are on the channel
2700 * by looking at the device 0/1 error register. Look at the signature
2701 * stored in each device's taskfile registers, to determine if
2702 * the device is ATA or ATAPI.
2703 *
2704 * LOCKING:
2705 * PCI/etc. bus probe sem.
2706 * Obtains host lock.
2707 *
2708 * SIDE EFFECTS:
2709 * Sets ATA_FLAG_DISABLED if bus reset fails.
2710 */
2711
2712 void ata_bus_reset(struct ata_port *ap)
2713 {
2714 struct ata_ioports *ioaddr = &ap->ioaddr;
2715 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2716 u8 err;
2717 unsigned int dev0, dev1 = 0, devmask = 0;
2718
2719 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2720
2721 /* determine if device 0/1 are present */
2722 if (ap->flags & ATA_FLAG_SATA_RESET)
2723 dev0 = 1;
2724 else {
2725 dev0 = ata_devchk(ap, 0);
2726 if (slave_possible)
2727 dev1 = ata_devchk(ap, 1);
2728 }
2729
2730 if (dev0)
2731 devmask |= (1 << 0);
2732 if (dev1)
2733 devmask |= (1 << 1);
2734
2735 /* select device 0 again */
2736 ap->ops->dev_select(ap, 0);
2737
2738 /* issue bus reset */
2739 if (ap->flags & ATA_FLAG_SRST)
2740 if (ata_bus_softreset(ap, devmask))
2741 goto err_out;
2742
2743 /*
2744 * determine by signature whether we have ATA or ATAPI devices
2745 */
2746 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2747 if ((slave_possible) && (err != 0x81))
2748 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2749
2750 /* re-enable interrupts */
2751 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2752 ata_irq_on(ap);
2753
2754 /* is double-select really necessary? */
2755 if (ap->device[1].class != ATA_DEV_NONE)
2756 ap->ops->dev_select(ap, 1);
2757 if (ap->device[0].class != ATA_DEV_NONE)
2758 ap->ops->dev_select(ap, 0);
2759
2760 /* if no devices were detected, disable this port */
2761 if ((ap->device[0].class == ATA_DEV_NONE) &&
2762 (ap->device[1].class == ATA_DEV_NONE))
2763 goto err_out;
2764
2765 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2766 /* set up device control for ATA_FLAG_SATA_RESET */
2767 if (ap->flags & ATA_FLAG_MMIO)
2768 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2769 else
2770 outb(ap->ctl, ioaddr->ctl_addr);
2771 }
2772
2773 DPRINTK("EXIT\n");
2774 return;
2775
2776 err_out:
2777 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2778 ap->ops->port_disable(ap);
2779
2780 DPRINTK("EXIT\n");
2781 }
2782
2783 /**
2784 * sata_phy_debounce - debounce SATA phy status
2785 * @ap: ATA port to debounce SATA phy status for
2786 * @params: timing parameters { interval, duratinon, timeout } in msec
2787 *
2788 * Make sure SStatus of @ap reaches stable state, determined by
2789 * holding the same value where DET is not 1 for @duration polled
2790 * every @interval, before @timeout. Timeout constraints the
2791 * beginning of the stable state. Because, after hot unplugging,
2792 * DET gets stuck at 1 on some controllers, this functions waits
2793 * until timeout then returns 0 if DET is stable at 1.
2794 *
2795 * LOCKING:
2796 * Kernel thread context (may sleep)
2797 *
2798 * RETURNS:
2799 * 0 on success, -errno on failure.
2800 */
2801 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2802 {
2803 unsigned long interval_msec = params[0];
2804 unsigned long duration = params[1] * HZ / 1000;
2805 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2806 unsigned long last_jiffies;
2807 u32 last, cur;
2808 int rc;
2809
2810 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2811 return rc;
2812 cur &= 0xf;
2813
2814 last = cur;
2815 last_jiffies = jiffies;
2816
2817 while (1) {
2818 msleep(interval_msec);
2819 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2820 return rc;
2821 cur &= 0xf;
2822
2823 /* DET stable? */
2824 if (cur == last) {
2825 if (cur == 1 && time_before(jiffies, timeout))
2826 continue;
2827 if (time_after(jiffies, last_jiffies + duration))
2828 return 0;
2829 continue;
2830 }
2831
2832 /* unstable, start over */
2833 last = cur;
2834 last_jiffies = jiffies;
2835
2836 /* check timeout */
2837 if (time_after(jiffies, timeout))
2838 return -EBUSY;
2839 }
2840 }
2841
2842 /**
2843 * sata_phy_resume - resume SATA phy
2844 * @ap: ATA port to resume SATA phy for
2845 * @params: timing parameters { interval, duratinon, timeout } in msec
2846 *
2847 * Resume SATA phy of @ap and debounce it.
2848 *
2849 * LOCKING:
2850 * Kernel thread context (may sleep)
2851 *
2852 * RETURNS:
2853 * 0 on success, -errno on failure.
2854 */
2855 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2856 {
2857 u32 scontrol;
2858 int rc;
2859
2860 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2861 return rc;
2862
2863 scontrol = (scontrol & 0x0f0) | 0x300;
2864
2865 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2866 return rc;
2867
2868 /* Some PHYs react badly if SStatus is pounded immediately
2869 * after resuming. Delay 200ms before debouncing.
2870 */
2871 msleep(200);
2872
2873 return sata_phy_debounce(ap, params);
2874 }
2875
2876 static void ata_wait_spinup(struct ata_port *ap)
2877 {
2878 struct ata_eh_context *ehc = &ap->eh_context;
2879 unsigned long end, secs;
2880 int rc;
2881
2882 /* first, debounce phy if SATA */
2883 if (ap->cbl == ATA_CBL_SATA) {
2884 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2885
2886 /* if debounced successfully and offline, no need to wait */
2887 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2888 return;
2889 }
2890
2891 /* okay, let's give the drive time to spin up */
2892 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2893 secs = ((end - jiffies) + HZ - 1) / HZ;
2894
2895 if (time_after(jiffies, end))
2896 return;
2897
2898 if (secs > 5)
2899 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2900 "(%lu secs)\n", secs);
2901
2902 schedule_timeout_uninterruptible(end - jiffies);
2903 }
2904
2905 /**
2906 * ata_std_prereset - prepare for reset
2907 * @ap: ATA port to be reset
2908 *
2909 * @ap is about to be reset. Initialize it.
2910 *
2911 * LOCKING:
2912 * Kernel thread context (may sleep)
2913 *
2914 * RETURNS:
2915 * 0 on success, -errno otherwise.
2916 */
2917 int ata_std_prereset(struct ata_port *ap)
2918 {
2919 struct ata_eh_context *ehc = &ap->eh_context;
2920 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2921 int rc;
2922
2923 /* handle link resume & hotplug spinup */
2924 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2925 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2926 ehc->i.action |= ATA_EH_HARDRESET;
2927
2928 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2929 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2930 ata_wait_spinup(ap);
2931
2932 /* if we're about to do hardreset, nothing more to do */
2933 if (ehc->i.action & ATA_EH_HARDRESET)
2934 return 0;
2935
2936 /* if SATA, resume phy */
2937 if (ap->cbl == ATA_CBL_SATA) {
2938 rc = sata_phy_resume(ap, timing);
2939 if (rc && rc != -EOPNOTSUPP) {
2940 /* phy resume failed */
2941 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2942 "link for reset (errno=%d)\n", rc);
2943 return rc;
2944 }
2945 }
2946
2947 /* Wait for !BSY if the controller can wait for the first D2H
2948 * Reg FIS and we don't know that no device is attached.
2949 */
2950 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2951 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2952
2953 return 0;
2954 }
2955
2956 /**
2957 * ata_std_softreset - reset host port via ATA SRST
2958 * @ap: port to reset
2959 * @classes: resulting classes of attached devices
2960 *
2961 * Reset host port using ATA SRST.
2962 *
2963 * LOCKING:
2964 * Kernel thread context (may sleep)
2965 *
2966 * RETURNS:
2967 * 0 on success, -errno otherwise.
2968 */
2969 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2970 {
2971 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2972 unsigned int devmask = 0, err_mask;
2973 u8 err;
2974
2975 DPRINTK("ENTER\n");
2976
2977 if (ata_port_offline(ap)) {
2978 classes[0] = ATA_DEV_NONE;
2979 goto out;
2980 }
2981
2982 /* determine if device 0/1 are present */
2983 if (ata_devchk(ap, 0))
2984 devmask |= (1 << 0);
2985 if (slave_possible && ata_devchk(ap, 1))
2986 devmask |= (1 << 1);
2987
2988 /* select device 0 again */
2989 ap->ops->dev_select(ap, 0);
2990
2991 /* issue bus reset */
2992 DPRINTK("about to softreset, devmask=%x\n", devmask);
2993 err_mask = ata_bus_softreset(ap, devmask);
2994 if (err_mask) {
2995 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2996 err_mask);
2997 return -EIO;
2998 }
2999
3000 /* determine by signature whether we have ATA or ATAPI devices */
3001 classes[0] = ata_dev_try_classify(ap, 0, &err);
3002 if (slave_possible && err != 0x81)
3003 classes[1] = ata_dev_try_classify(ap, 1, &err);
3004
3005 out:
3006 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3007 return 0;
3008 }
3009
3010 /**
3011 * sata_port_hardreset - reset port via SATA phy reset
3012 * @ap: port to reset
3013 * @timing: timing parameters { interval, duratinon, timeout } in msec
3014 *
3015 * SATA phy-reset host port using DET bits of SControl register.
3016 *
3017 * LOCKING:
3018 * Kernel thread context (may sleep)
3019 *
3020 * RETURNS:
3021 * 0 on success, -errno otherwise.
3022 */
3023 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3024 {
3025 u32 scontrol;
3026 int rc;
3027
3028 DPRINTK("ENTER\n");
3029
3030 if (sata_set_spd_needed(ap)) {
3031 /* SATA spec says nothing about how to reconfigure
3032 * spd. To be on the safe side, turn off phy during
3033 * reconfiguration. This works for at least ICH7 AHCI
3034 * and Sil3124.
3035 */
3036 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3037 goto out;
3038
3039 scontrol = (scontrol & 0x0f0) | 0x304;
3040
3041 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3042 goto out;
3043
3044 sata_set_spd(ap);
3045 }
3046
3047 /* issue phy wake/reset */
3048 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3049 goto out;
3050
3051 scontrol = (scontrol & 0x0f0) | 0x301;
3052
3053 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3054 goto out;
3055
3056 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3057 * 10.4.2 says at least 1 ms.
3058 */
3059 msleep(1);
3060
3061 /* bring phy back */
3062 rc = sata_phy_resume(ap, timing);
3063 out:
3064 DPRINTK("EXIT, rc=%d\n", rc);
3065 return rc;
3066 }
3067
3068 /**
3069 * sata_std_hardreset - reset host port via SATA phy reset
3070 * @ap: port to reset
3071 * @class: resulting class of attached device
3072 *
3073 * SATA phy-reset host port using DET bits of SControl register,
3074 * wait for !BSY and classify the attached device.
3075 *
3076 * LOCKING:
3077 * Kernel thread context (may sleep)
3078 *
3079 * RETURNS:
3080 * 0 on success, -errno otherwise.
3081 */
3082 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3083 {
3084 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3085 int rc;
3086
3087 DPRINTK("ENTER\n");
3088
3089 /* do hardreset */
3090 rc = sata_port_hardreset(ap, timing);
3091 if (rc) {
3092 ata_port_printk(ap, KERN_ERR,
3093 "COMRESET failed (errno=%d)\n", rc);
3094 return rc;
3095 }
3096
3097 /* TODO: phy layer with polling, timeouts, etc. */
3098 if (ata_port_offline(ap)) {
3099 *class = ATA_DEV_NONE;
3100 DPRINTK("EXIT, link offline\n");
3101 return 0;
3102 }
3103
3104 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3105 ata_port_printk(ap, KERN_ERR,
3106 "COMRESET failed (device not ready)\n");
3107 return -EIO;
3108 }
3109
3110 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3111
3112 *class = ata_dev_try_classify(ap, 0, NULL);
3113
3114 DPRINTK("EXIT, class=%u\n", *class);
3115 return 0;
3116 }
3117
3118 /**
3119 * ata_std_postreset - standard postreset callback
3120 * @ap: the target ata_port
3121 * @classes: classes of attached devices
3122 *
3123 * This function is invoked after a successful reset. Note that
3124 * the device might have been reset more than once using
3125 * different reset methods before postreset is invoked.
3126 *
3127 * LOCKING:
3128 * Kernel thread context (may sleep)
3129 */
3130 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3131 {
3132 u32 serror;
3133
3134 DPRINTK("ENTER\n");
3135
3136 /* print link status */
3137 sata_print_link_status(ap);
3138
3139 /* clear SError */
3140 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3141 sata_scr_write(ap, SCR_ERROR, serror);
3142
3143 /* re-enable interrupts */
3144 if (!ap->ops->error_handler) {
3145 /* FIXME: hack. create a hook instead */
3146 if (ap->ioaddr.ctl_addr)
3147 ata_irq_on(ap);
3148 }
3149
3150 /* is double-select really necessary? */
3151 if (classes[0] != ATA_DEV_NONE)
3152 ap->ops->dev_select(ap, 1);
3153 if (classes[1] != ATA_DEV_NONE)
3154 ap->ops->dev_select(ap, 0);
3155
3156 /* bail out if no device is present */
3157 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3158 DPRINTK("EXIT, no device\n");
3159 return;
3160 }
3161
3162 /* set up device control */
3163 if (ap->ioaddr.ctl_addr) {
3164 if (ap->flags & ATA_FLAG_MMIO)
3165 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3166 else
3167 outb(ap->ctl, ap->ioaddr.ctl_addr);
3168 }
3169
3170 DPRINTK("EXIT\n");
3171 }
3172
3173 /**
3174 * ata_dev_same_device - Determine whether new ID matches configured device
3175 * @dev: device to compare against
3176 * @new_class: class of the new device
3177 * @new_id: IDENTIFY page of the new device
3178 *
3179 * Compare @new_class and @new_id against @dev and determine
3180 * whether @dev is the device indicated by @new_class and
3181 * @new_id.
3182 *
3183 * LOCKING:
3184 * None.
3185 *
3186 * RETURNS:
3187 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3188 */
3189 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3190 const u16 *new_id)
3191 {
3192 const u16 *old_id = dev->id;
3193 unsigned char model[2][41], serial[2][21];
3194 u64 new_n_sectors;
3195
3196 if (dev->class != new_class) {
3197 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3198 dev->class, new_class);
3199 return 0;
3200 }
3201
3202 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3203 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3204 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3205 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3206 new_n_sectors = ata_id_n_sectors(new_id);
3207
3208 if (strcmp(model[0], model[1])) {
3209 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3210 "'%s' != '%s'\n", model[0], model[1]);
3211 return 0;
3212 }
3213
3214 if (strcmp(serial[0], serial[1])) {
3215 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3216 "'%s' != '%s'\n", serial[0], serial[1]);
3217 return 0;
3218 }
3219
3220 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3221 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3222 "%llu != %llu\n",
3223 (unsigned long long)dev->n_sectors,
3224 (unsigned long long)new_n_sectors);
3225 return 0;
3226 }
3227
3228 return 1;
3229 }
3230
3231 /**
3232 * ata_dev_revalidate - Revalidate ATA device
3233 * @dev: device to revalidate
3234 * @readid_flags: read ID flags
3235 *
3236 * Re-read IDENTIFY page and make sure @dev is still attached to
3237 * the port.
3238 *
3239 * LOCKING:
3240 * Kernel thread context (may sleep)
3241 *
3242 * RETURNS:
3243 * 0 on success, negative errno otherwise
3244 */
3245 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3246 {
3247 unsigned int class = dev->class;
3248 u16 *id = (void *)dev->ap->sector_buf;
3249 int rc;
3250
3251 if (!ata_dev_enabled(dev)) {
3252 rc = -ENODEV;
3253 goto fail;
3254 }
3255
3256 /* read ID data */
3257 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3258 if (rc)
3259 goto fail;
3260
3261 /* is the device still there? */
3262 if (!ata_dev_same_device(dev, class, id)) {
3263 rc = -ENODEV;
3264 goto fail;
3265 }
3266
3267 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3268
3269 /* configure device according to the new ID */
3270 rc = ata_dev_configure(dev);
3271 if (rc == 0)
3272 return 0;
3273
3274 fail:
3275 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3276 return rc;
3277 }
3278
3279 struct ata_blacklist_entry {
3280 const char *model_num;
3281 const char *model_rev;
3282 unsigned long horkage;
3283 };
3284
3285 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3286 /* Devices with DMA related problems under Linux */
3287 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3288 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3289 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3290 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3291 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3292 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3293 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3294 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3295 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3296 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3297 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3298 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3299 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3300 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3301 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3302 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3303 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3304 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3305 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3306 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3307 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3308 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3309 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3310 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3311 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3312 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3313 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3314 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3315 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3316 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3317
3318 /* Devices we expect to fail diagnostics */
3319
3320 /* Devices where NCQ should be avoided */
3321 /* NCQ is slow */
3322 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3323
3324 /* Devices with NCQ limits */
3325
3326 /* End Marker */
3327 { }
3328 };
3329
3330 static int ata_strim(char *s, size_t len)
3331 {
3332 len = strnlen(s, len);
3333
3334 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3335 while ((len > 0) && (s[len - 1] == ' ')) {
3336 len--;
3337 s[len] = 0;
3338 }
3339 return len;
3340 }
3341
3342 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3343 {
3344 unsigned char model_num[40];
3345 unsigned char model_rev[16];
3346 unsigned int nlen, rlen;
3347 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3348
3349 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3350 sizeof(model_num));
3351 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3352 sizeof(model_rev));
3353 nlen = ata_strim(model_num, sizeof(model_num));
3354 rlen = ata_strim(model_rev, sizeof(model_rev));
3355
3356 while (ad->model_num) {
3357 if (!strncmp(ad->model_num, model_num, nlen)) {
3358 if (ad->model_rev == NULL)
3359 return ad->horkage;
3360 if (!strncmp(ad->model_rev, model_rev, rlen))
3361 return ad->horkage;
3362 }
3363 ad++;
3364 }
3365 return 0;
3366 }
3367
3368 static int ata_dma_blacklisted(const struct ata_device *dev)
3369 {
3370 /* We don't support polling DMA.
3371 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3372 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3373 */
3374 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3375 (dev->flags & ATA_DFLAG_CDB_INTR))
3376 return 1;
3377 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3378 }
3379
3380 /**
3381 * ata_dev_xfermask - Compute supported xfermask of the given device
3382 * @dev: Device to compute xfermask for
3383 *
3384 * Compute supported xfermask of @dev and store it in
3385 * dev->*_mask. This function is responsible for applying all
3386 * known limits including host controller limits, device
3387 * blacklist, etc...
3388 *
3389 * LOCKING:
3390 * None.
3391 */
3392 static void ata_dev_xfermask(struct ata_device *dev)
3393 {
3394 struct ata_port *ap = dev->ap;
3395 struct ata_host *host = ap->host;
3396 unsigned long xfer_mask;
3397
3398 /* controller modes available */
3399 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3400 ap->mwdma_mask, ap->udma_mask);
3401
3402 /* Apply cable rule here. Don't apply it early because when
3403 * we handle hot plug the cable type can itself change.
3404 */
3405 if (ap->cbl == ATA_CBL_PATA40)
3406 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3407 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3408 * host side are checked drive side as well. Cases where we know a
3409 * 40wire cable is used safely for 80 are not checked here.
3410 */
3411 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3412 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3413
3414
3415 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3416 dev->mwdma_mask, dev->udma_mask);
3417 xfer_mask &= ata_id_xfermask(dev->id);
3418
3419 /*
3420 * CFA Advanced TrueIDE timings are not allowed on a shared
3421 * cable
3422 */
3423 if (ata_dev_pair(dev)) {
3424 /* No PIO5 or PIO6 */
3425 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3426 /* No MWDMA3 or MWDMA 4 */
3427 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3428 }
3429
3430 if (ata_dma_blacklisted(dev)) {
3431 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3432 ata_dev_printk(dev, KERN_WARNING,
3433 "device is on DMA blacklist, disabling DMA\n");
3434 }
3435
3436 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3437 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3438 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3439 "other device, disabling DMA\n");
3440 }
3441
3442 if (ap->ops->mode_filter)
3443 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3444
3445 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3446 &dev->mwdma_mask, &dev->udma_mask);
3447 }
3448
3449 /**
3450 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3451 * @dev: Device to which command will be sent
3452 *
3453 * Issue SET FEATURES - XFER MODE command to device @dev
3454 * on port @ap.
3455 *
3456 * LOCKING:
3457 * PCI/etc. bus probe sem.
3458 *
3459 * RETURNS:
3460 * 0 on success, AC_ERR_* mask otherwise.
3461 */
3462
3463 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3464 {
3465 struct ata_taskfile tf;
3466 unsigned int err_mask;
3467
3468 /* set up set-features taskfile */
3469 DPRINTK("set features - xfer mode\n");
3470
3471 ata_tf_init(dev, &tf);
3472 tf.command = ATA_CMD_SET_FEATURES;
3473 tf.feature = SETFEATURES_XFER;
3474 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3475 tf.protocol = ATA_PROT_NODATA;
3476 tf.nsect = dev->xfer_mode;
3477
3478 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3479
3480 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3481 return err_mask;
3482 }
3483
3484 /**
3485 * ata_dev_init_params - Issue INIT DEV PARAMS command
3486 * @dev: Device to which command will be sent
3487 * @heads: Number of heads (taskfile parameter)
3488 * @sectors: Number of sectors (taskfile parameter)
3489 *
3490 * LOCKING:
3491 * Kernel thread context (may sleep)
3492 *
3493 * RETURNS:
3494 * 0 on success, AC_ERR_* mask otherwise.
3495 */
3496 static unsigned int ata_dev_init_params(struct ata_device *dev,
3497 u16 heads, u16 sectors)
3498 {
3499 struct ata_taskfile tf;
3500 unsigned int err_mask;
3501
3502 /* Number of sectors per track 1-255. Number of heads 1-16 */
3503 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3504 return AC_ERR_INVALID;
3505
3506 /* set up init dev params taskfile */
3507 DPRINTK("init dev params \n");
3508
3509 ata_tf_init(dev, &tf);
3510 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3511 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3512 tf.protocol = ATA_PROT_NODATA;
3513 tf.nsect = sectors;
3514 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3515
3516 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3517
3518 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3519 return err_mask;
3520 }
3521
3522 /**
3523 * ata_sg_clean - Unmap DMA memory associated with command
3524 * @qc: Command containing DMA memory to be released
3525 *
3526 * Unmap all mapped DMA memory associated with this command.
3527 *
3528 * LOCKING:
3529 * spin_lock_irqsave(host lock)
3530 */
3531 void ata_sg_clean(struct ata_queued_cmd *qc)
3532 {
3533 struct ata_port *ap = qc->ap;
3534 struct scatterlist *sg = qc->__sg;
3535 int dir = qc->dma_dir;
3536 void *pad_buf = NULL;
3537
3538 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3539 WARN_ON(sg == NULL);
3540
3541 if (qc->flags & ATA_QCFLAG_SINGLE)
3542 WARN_ON(qc->n_elem > 1);
3543
3544 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3545
3546 /* if we padded the buffer out to 32-bit bound, and data
3547 * xfer direction is from-device, we must copy from the
3548 * pad buffer back into the supplied buffer
3549 */
3550 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3551 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3552
3553 if (qc->flags & ATA_QCFLAG_SG) {
3554 if (qc->n_elem)
3555 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3556 /* restore last sg */
3557 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3558 if (pad_buf) {
3559 struct scatterlist *psg = &qc->pad_sgent;
3560 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3561 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3562 kunmap_atomic(addr, KM_IRQ0);
3563 }
3564 } else {
3565 if (qc->n_elem)
3566 dma_unmap_single(ap->dev,
3567 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3568 dir);
3569 /* restore sg */
3570 sg->length += qc->pad_len;
3571 if (pad_buf)
3572 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3573 pad_buf, qc->pad_len);
3574 }
3575
3576 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3577 qc->__sg = NULL;
3578 }
3579
3580 /**
3581 * ata_fill_sg - Fill PCI IDE PRD table
3582 * @qc: Metadata associated with taskfile to be transferred
3583 *
3584 * Fill PCI IDE PRD (scatter-gather) table with segments
3585 * associated with the current disk command.
3586 *
3587 * LOCKING:
3588 * spin_lock_irqsave(host lock)
3589 *
3590 */
3591 static void ata_fill_sg(struct ata_queued_cmd *qc)
3592 {
3593 struct ata_port *ap = qc->ap;
3594 struct scatterlist *sg;
3595 unsigned int idx;
3596
3597 WARN_ON(qc->__sg == NULL);
3598 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3599
3600 idx = 0;
3601 ata_for_each_sg(sg, qc) {
3602 u32 addr, offset;
3603 u32 sg_len, len;
3604
3605 /* determine if physical DMA addr spans 64K boundary.
3606 * Note h/w doesn't support 64-bit, so we unconditionally
3607 * truncate dma_addr_t to u32.
3608 */
3609 addr = (u32) sg_dma_address(sg);
3610 sg_len = sg_dma_len(sg);
3611
3612 while (sg_len) {
3613 offset = addr & 0xffff;
3614 len = sg_len;
3615 if ((offset + sg_len) > 0x10000)
3616 len = 0x10000 - offset;
3617
3618 ap->prd[idx].addr = cpu_to_le32(addr);
3619 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3620 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3621
3622 idx++;
3623 sg_len -= len;
3624 addr += len;
3625 }
3626 }
3627
3628 if (idx)
3629 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3630 }
3631 /**
3632 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3633 * @qc: Metadata associated with taskfile to check
3634 *
3635 * Allow low-level driver to filter ATA PACKET commands, returning
3636 * a status indicating whether or not it is OK to use DMA for the
3637 * supplied PACKET command.
3638 *
3639 * LOCKING:
3640 * spin_lock_irqsave(host lock)
3641 *
3642 * RETURNS: 0 when ATAPI DMA can be used
3643 * nonzero otherwise
3644 */
3645 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3646 {
3647 struct ata_port *ap = qc->ap;
3648 int rc = 0; /* Assume ATAPI DMA is OK by default */
3649
3650 if (ap->ops->check_atapi_dma)
3651 rc = ap->ops->check_atapi_dma(qc);
3652
3653 return rc;
3654 }
3655 /**
3656 * ata_qc_prep - Prepare taskfile for submission
3657 * @qc: Metadata associated with taskfile to be prepared
3658 *
3659 * Prepare ATA taskfile for submission.
3660 *
3661 * LOCKING:
3662 * spin_lock_irqsave(host lock)
3663 */
3664 void ata_qc_prep(struct ata_queued_cmd *qc)
3665 {
3666 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3667 return;
3668
3669 ata_fill_sg(qc);
3670 }
3671
3672 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3673
3674 /**
3675 * ata_sg_init_one - Associate command with memory buffer
3676 * @qc: Command to be associated
3677 * @buf: Memory buffer
3678 * @buflen: Length of memory buffer, in bytes.
3679 *
3680 * Initialize the data-related elements of queued_cmd @qc
3681 * to point to a single memory buffer, @buf of byte length @buflen.
3682 *
3683 * LOCKING:
3684 * spin_lock_irqsave(host lock)
3685 */
3686
3687 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3688 {
3689 qc->flags |= ATA_QCFLAG_SINGLE;
3690
3691 qc->__sg = &qc->sgent;
3692 qc->n_elem = 1;
3693 qc->orig_n_elem = 1;
3694 qc->buf_virt = buf;
3695 qc->nbytes = buflen;
3696
3697 sg_init_one(&qc->sgent, buf, buflen);
3698 }
3699
3700 /**
3701 * ata_sg_init - Associate command with scatter-gather table.
3702 * @qc: Command to be associated
3703 * @sg: Scatter-gather table.
3704 * @n_elem: Number of elements in s/g table.
3705 *
3706 * Initialize the data-related elements of queued_cmd @qc
3707 * to point to a scatter-gather table @sg, containing @n_elem
3708 * elements.
3709 *
3710 * LOCKING:
3711 * spin_lock_irqsave(host lock)
3712 */
3713
3714 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3715 unsigned int n_elem)
3716 {
3717 qc->flags |= ATA_QCFLAG_SG;
3718 qc->__sg = sg;
3719 qc->n_elem = n_elem;
3720 qc->orig_n_elem = n_elem;
3721 }
3722
3723 /**
3724 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3725 * @qc: Command with memory buffer to be mapped.
3726 *
3727 * DMA-map the memory buffer associated with queued_cmd @qc.
3728 *
3729 * LOCKING:
3730 * spin_lock_irqsave(host lock)
3731 *
3732 * RETURNS:
3733 * Zero on success, negative on error.
3734 */
3735
3736 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3737 {
3738 struct ata_port *ap = qc->ap;
3739 int dir = qc->dma_dir;
3740 struct scatterlist *sg = qc->__sg;
3741 dma_addr_t dma_address;
3742 int trim_sg = 0;
3743
3744 /* we must lengthen transfers to end on a 32-bit boundary */
3745 qc->pad_len = sg->length & 3;
3746 if (qc->pad_len) {
3747 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3748 struct scatterlist *psg = &qc->pad_sgent;
3749
3750 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3751
3752 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3753
3754 if (qc->tf.flags & ATA_TFLAG_WRITE)
3755 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3756 qc->pad_len);
3757
3758 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3759 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3760 /* trim sg */
3761 sg->length -= qc->pad_len;
3762 if (sg->length == 0)
3763 trim_sg = 1;
3764
3765 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3766 sg->length, qc->pad_len);
3767 }
3768
3769 if (trim_sg) {
3770 qc->n_elem--;
3771 goto skip_map;
3772 }
3773
3774 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3775 sg->length, dir);
3776 if (dma_mapping_error(dma_address)) {
3777 /* restore sg */
3778 sg->length += qc->pad_len;
3779 return -1;
3780 }
3781
3782 sg_dma_address(sg) = dma_address;
3783 sg_dma_len(sg) = sg->length;
3784
3785 skip_map:
3786 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3787 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3788
3789 return 0;
3790 }
3791
3792 /**
3793 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3794 * @qc: Command with scatter-gather table to be mapped.
3795 *
3796 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3797 *
3798 * LOCKING:
3799 * spin_lock_irqsave(host lock)
3800 *
3801 * RETURNS:
3802 * Zero on success, negative on error.
3803 *
3804 */
3805
3806 static int ata_sg_setup(struct ata_queued_cmd *qc)
3807 {
3808 struct ata_port *ap = qc->ap;
3809 struct scatterlist *sg = qc->__sg;
3810 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3811 int n_elem, pre_n_elem, dir, trim_sg = 0;
3812
3813 VPRINTK("ENTER, ata%u\n", ap->id);
3814 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3815
3816 /* we must lengthen transfers to end on a 32-bit boundary */
3817 qc->pad_len = lsg->length & 3;
3818 if (qc->pad_len) {
3819 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3820 struct scatterlist *psg = &qc->pad_sgent;
3821 unsigned int offset;
3822
3823 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3824
3825 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3826
3827 /*
3828 * psg->page/offset are used to copy to-be-written
3829 * data in this function or read data in ata_sg_clean.
3830 */
3831 offset = lsg->offset + lsg->length - qc->pad_len;
3832 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3833 psg->offset = offset_in_page(offset);
3834
3835 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3836 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3837 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3838 kunmap_atomic(addr, KM_IRQ0);
3839 }
3840
3841 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3842 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3843 /* trim last sg */
3844 lsg->length -= qc->pad_len;
3845 if (lsg->length == 0)
3846 trim_sg = 1;
3847
3848 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3849 qc->n_elem - 1, lsg->length, qc->pad_len);
3850 }
3851
3852 pre_n_elem = qc->n_elem;
3853 if (trim_sg && pre_n_elem)
3854 pre_n_elem--;
3855
3856 if (!pre_n_elem) {
3857 n_elem = 0;
3858 goto skip_map;
3859 }
3860
3861 dir = qc->dma_dir;
3862 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3863 if (n_elem < 1) {
3864 /* restore last sg */
3865 lsg->length += qc->pad_len;
3866 return -1;
3867 }
3868
3869 DPRINTK("%d sg elements mapped\n", n_elem);
3870
3871 skip_map:
3872 qc->n_elem = n_elem;
3873
3874 return 0;
3875 }
3876
3877 /**
3878 * swap_buf_le16 - swap halves of 16-bit words in place
3879 * @buf: Buffer to swap
3880 * @buf_words: Number of 16-bit words in buffer.
3881 *
3882 * Swap halves of 16-bit words if needed to convert from
3883 * little-endian byte order to native cpu byte order, or
3884 * vice-versa.
3885 *
3886 * LOCKING:
3887 * Inherited from caller.
3888 */
3889 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3890 {
3891 #ifdef __BIG_ENDIAN
3892 unsigned int i;
3893
3894 for (i = 0; i < buf_words; i++)
3895 buf[i] = le16_to_cpu(buf[i]);
3896 #endif /* __BIG_ENDIAN */
3897 }
3898
3899 /**
3900 * ata_mmio_data_xfer - Transfer data by MMIO
3901 * @adev: device for this I/O
3902 * @buf: data buffer
3903 * @buflen: buffer length
3904 * @write_data: read/write
3905 *
3906 * Transfer data from/to the device data register by MMIO.
3907 *
3908 * LOCKING:
3909 * Inherited from caller.
3910 */
3911
3912 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3913 unsigned int buflen, int write_data)
3914 {
3915 struct ata_port *ap = adev->ap;
3916 unsigned int i;
3917 unsigned int words = buflen >> 1;
3918 u16 *buf16 = (u16 *) buf;
3919 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3920
3921 /* Transfer multiple of 2 bytes */
3922 if (write_data) {
3923 for (i = 0; i < words; i++)
3924 writew(le16_to_cpu(buf16[i]), mmio);
3925 } else {
3926 for (i = 0; i < words; i++)
3927 buf16[i] = cpu_to_le16(readw(mmio));
3928 }
3929
3930 /* Transfer trailing 1 byte, if any. */
3931 if (unlikely(buflen & 0x01)) {
3932 u16 align_buf[1] = { 0 };
3933 unsigned char *trailing_buf = buf + buflen - 1;
3934
3935 if (write_data) {
3936 memcpy(align_buf, trailing_buf, 1);
3937 writew(le16_to_cpu(align_buf[0]), mmio);
3938 } else {
3939 align_buf[0] = cpu_to_le16(readw(mmio));
3940 memcpy(trailing_buf, align_buf, 1);
3941 }
3942 }
3943 }
3944
3945 /**
3946 * ata_pio_data_xfer - Transfer data by PIO
3947 * @adev: device to target
3948 * @buf: data buffer
3949 * @buflen: buffer length
3950 * @write_data: read/write
3951 *
3952 * Transfer data from/to the device data register by PIO.
3953 *
3954 * LOCKING:
3955 * Inherited from caller.
3956 */
3957
3958 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3959 unsigned int buflen, int write_data)
3960 {
3961 struct ata_port *ap = adev->ap;
3962 unsigned int words = buflen >> 1;
3963
3964 /* Transfer multiple of 2 bytes */
3965 if (write_data)
3966 outsw(ap->ioaddr.data_addr, buf, words);
3967 else
3968 insw(ap->ioaddr.data_addr, buf, words);
3969
3970 /* Transfer trailing 1 byte, if any. */
3971 if (unlikely(buflen & 0x01)) {
3972 u16 align_buf[1] = { 0 };
3973 unsigned char *trailing_buf = buf + buflen - 1;
3974
3975 if (write_data) {
3976 memcpy(align_buf, trailing_buf, 1);
3977 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3978 } else {
3979 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3980 memcpy(trailing_buf, align_buf, 1);
3981 }
3982 }
3983 }
3984
3985 /**
3986 * ata_pio_data_xfer_noirq - Transfer data by PIO
3987 * @adev: device to target
3988 * @buf: data buffer
3989 * @buflen: buffer length
3990 * @write_data: read/write
3991 *
3992 * Transfer data from/to the device data register by PIO. Do the
3993 * transfer with interrupts disabled.
3994 *
3995 * LOCKING:
3996 * Inherited from caller.
3997 */
3998
3999 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4000 unsigned int buflen, int write_data)
4001 {
4002 unsigned long flags;
4003 local_irq_save(flags);
4004 ata_pio_data_xfer(adev, buf, buflen, write_data);
4005 local_irq_restore(flags);
4006 }
4007
4008
4009 /**
4010 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4011 * @qc: Command on going
4012 *
4013 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4014 *
4015 * LOCKING:
4016 * Inherited from caller.
4017 */
4018
4019 static void ata_pio_sector(struct ata_queued_cmd *qc)
4020 {
4021 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4022 struct scatterlist *sg = qc->__sg;
4023 struct ata_port *ap = qc->ap;
4024 struct page *page;
4025 unsigned int offset;
4026 unsigned char *buf;
4027
4028 if (qc->cursect == (qc->nsect - 1))
4029 ap->hsm_task_state = HSM_ST_LAST;
4030
4031 page = sg[qc->cursg].page;
4032 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
4033
4034 /* get the current page and offset */
4035 page = nth_page(page, (offset >> PAGE_SHIFT));
4036 offset %= PAGE_SIZE;
4037
4038 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4039
4040 if (PageHighMem(page)) {
4041 unsigned long flags;
4042
4043 /* FIXME: use a bounce buffer */
4044 local_irq_save(flags);
4045 buf = kmap_atomic(page, KM_IRQ0);
4046
4047 /* do the actual data transfer */
4048 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4049
4050 kunmap_atomic(buf, KM_IRQ0);
4051 local_irq_restore(flags);
4052 } else {
4053 buf = page_address(page);
4054 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4055 }
4056
4057 qc->cursect++;
4058 qc->cursg_ofs++;
4059
4060 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
4061 qc->cursg++;
4062 qc->cursg_ofs = 0;
4063 }
4064 }
4065
4066 /**
4067 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4068 * @qc: Command on going
4069 *
4070 * Transfer one or many ATA_SECT_SIZE of data from/to the
4071 * ATA device for the DRQ request.
4072 *
4073 * LOCKING:
4074 * Inherited from caller.
4075 */
4076
4077 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4078 {
4079 if (is_multi_taskfile(&qc->tf)) {
4080 /* READ/WRITE MULTIPLE */
4081 unsigned int nsect;
4082
4083 WARN_ON(qc->dev->multi_count == 0);
4084
4085 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
4086 while (nsect--)
4087 ata_pio_sector(qc);
4088 } else
4089 ata_pio_sector(qc);
4090 }
4091
4092 /**
4093 * atapi_send_cdb - Write CDB bytes to hardware
4094 * @ap: Port to which ATAPI device is attached.
4095 * @qc: Taskfile currently active
4096 *
4097 * When device has indicated its readiness to accept
4098 * a CDB, this function is called. Send the CDB.
4099 *
4100 * LOCKING:
4101 * caller.
4102 */
4103
4104 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4105 {
4106 /* send SCSI cdb */
4107 DPRINTK("send cdb\n");
4108 WARN_ON(qc->dev->cdb_len < 12);
4109
4110 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4111 ata_altstatus(ap); /* flush */
4112
4113 switch (qc->tf.protocol) {
4114 case ATA_PROT_ATAPI:
4115 ap->hsm_task_state = HSM_ST;
4116 break;
4117 case ATA_PROT_ATAPI_NODATA:
4118 ap->hsm_task_state = HSM_ST_LAST;
4119 break;
4120 case ATA_PROT_ATAPI_DMA:
4121 ap->hsm_task_state = HSM_ST_LAST;
4122 /* initiate bmdma */
4123 ap->ops->bmdma_start(qc);
4124 break;
4125 }
4126 }
4127
4128 /**
4129 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4130 * @qc: Command on going
4131 * @bytes: number of bytes
4132 *
4133 * Transfer Transfer data from/to the ATAPI device.
4134 *
4135 * LOCKING:
4136 * Inherited from caller.
4137 *
4138 */
4139
4140 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4141 {
4142 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4143 struct scatterlist *sg = qc->__sg;
4144 struct ata_port *ap = qc->ap;
4145 struct page *page;
4146 unsigned char *buf;
4147 unsigned int offset, count;
4148
4149 if (qc->curbytes + bytes >= qc->nbytes)
4150 ap->hsm_task_state = HSM_ST_LAST;
4151
4152 next_sg:
4153 if (unlikely(qc->cursg >= qc->n_elem)) {
4154 /*
4155 * The end of qc->sg is reached and the device expects
4156 * more data to transfer. In order not to overrun qc->sg
4157 * and fulfill length specified in the byte count register,
4158 * - for read case, discard trailing data from the device
4159 * - for write case, padding zero data to the device
4160 */
4161 u16 pad_buf[1] = { 0 };
4162 unsigned int words = bytes >> 1;
4163 unsigned int i;
4164
4165 if (words) /* warning if bytes > 1 */
4166 ata_dev_printk(qc->dev, KERN_WARNING,
4167 "%u bytes trailing data\n", bytes);
4168
4169 for (i = 0; i < words; i++)
4170 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4171
4172 ap->hsm_task_state = HSM_ST_LAST;
4173 return;
4174 }
4175
4176 sg = &qc->__sg[qc->cursg];
4177
4178 page = sg->page;
4179 offset = sg->offset + qc->cursg_ofs;
4180
4181 /* get the current page and offset */
4182 page = nth_page(page, (offset >> PAGE_SHIFT));
4183 offset %= PAGE_SIZE;
4184
4185 /* don't overrun current sg */
4186 count = min(sg->length - qc->cursg_ofs, bytes);
4187
4188 /* don't cross page boundaries */
4189 count = min(count, (unsigned int)PAGE_SIZE - offset);
4190
4191 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4192
4193 if (PageHighMem(page)) {
4194 unsigned long flags;
4195
4196 /* FIXME: use bounce buffer */
4197 local_irq_save(flags);
4198 buf = kmap_atomic(page, KM_IRQ0);
4199
4200 /* do the actual data transfer */
4201 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4202
4203 kunmap_atomic(buf, KM_IRQ0);
4204 local_irq_restore(flags);
4205 } else {
4206 buf = page_address(page);
4207 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4208 }
4209
4210 bytes -= count;
4211 qc->curbytes += count;
4212 qc->cursg_ofs += count;
4213
4214 if (qc->cursg_ofs == sg->length) {
4215 qc->cursg++;
4216 qc->cursg_ofs = 0;
4217 }
4218
4219 if (bytes)
4220 goto next_sg;
4221 }
4222
4223 /**
4224 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4225 * @qc: Command on going
4226 *
4227 * Transfer Transfer data from/to the ATAPI device.
4228 *
4229 * LOCKING:
4230 * Inherited from caller.
4231 */
4232
4233 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4234 {
4235 struct ata_port *ap = qc->ap;
4236 struct ata_device *dev = qc->dev;
4237 unsigned int ireason, bc_lo, bc_hi, bytes;
4238 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4239
4240 /* Abuse qc->result_tf for temp storage of intermediate TF
4241 * here to save some kernel stack usage.
4242 * For normal completion, qc->result_tf is not relevant. For
4243 * error, qc->result_tf is later overwritten by ata_qc_complete().
4244 * So, the correctness of qc->result_tf is not affected.
4245 */
4246 ap->ops->tf_read(ap, &qc->result_tf);
4247 ireason = qc->result_tf.nsect;
4248 bc_lo = qc->result_tf.lbam;
4249 bc_hi = qc->result_tf.lbah;
4250 bytes = (bc_hi << 8) | bc_lo;
4251
4252 /* shall be cleared to zero, indicating xfer of data */
4253 if (ireason & (1 << 0))
4254 goto err_out;
4255
4256 /* make sure transfer direction matches expected */
4257 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4258 if (do_write != i_write)
4259 goto err_out;
4260
4261 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4262
4263 __atapi_pio_bytes(qc, bytes);
4264
4265 return;
4266
4267 err_out:
4268 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4269 qc->err_mask |= AC_ERR_HSM;
4270 ap->hsm_task_state = HSM_ST_ERR;
4271 }
4272
4273 /**
4274 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4275 * @ap: the target ata_port
4276 * @qc: qc on going
4277 *
4278 * RETURNS:
4279 * 1 if ok in workqueue, 0 otherwise.
4280 */
4281
4282 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4283 {
4284 if (qc->tf.flags & ATA_TFLAG_POLLING)
4285 return 1;
4286
4287 if (ap->hsm_task_state == HSM_ST_FIRST) {
4288 if (qc->tf.protocol == ATA_PROT_PIO &&
4289 (qc->tf.flags & ATA_TFLAG_WRITE))
4290 return 1;
4291
4292 if (is_atapi_taskfile(&qc->tf) &&
4293 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4294 return 1;
4295 }
4296
4297 return 0;
4298 }
4299
4300 /**
4301 * ata_hsm_qc_complete - finish a qc running on standard HSM
4302 * @qc: Command to complete
4303 * @in_wq: 1 if called from workqueue, 0 otherwise
4304 *
4305 * Finish @qc which is running on standard HSM.
4306 *
4307 * LOCKING:
4308 * If @in_wq is zero, spin_lock_irqsave(host lock).
4309 * Otherwise, none on entry and grabs host lock.
4310 */
4311 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4312 {
4313 struct ata_port *ap = qc->ap;
4314 unsigned long flags;
4315
4316 if (ap->ops->error_handler) {
4317 if (in_wq) {
4318 spin_lock_irqsave(ap->lock, flags);
4319
4320 /* EH might have kicked in while host lock is
4321 * released.
4322 */
4323 qc = ata_qc_from_tag(ap, qc->tag);
4324 if (qc) {
4325 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4326 ata_irq_on(ap);
4327 ata_qc_complete(qc);
4328 } else
4329 ata_port_freeze(ap);
4330 }
4331
4332 spin_unlock_irqrestore(ap->lock, flags);
4333 } else {
4334 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4335 ata_qc_complete(qc);
4336 else
4337 ata_port_freeze(ap);
4338 }
4339 } else {
4340 if (in_wq) {
4341 spin_lock_irqsave(ap->lock, flags);
4342 ata_irq_on(ap);
4343 ata_qc_complete(qc);
4344 spin_unlock_irqrestore(ap->lock, flags);
4345 } else
4346 ata_qc_complete(qc);
4347 }
4348
4349 ata_altstatus(ap); /* flush */
4350 }
4351
4352 /**
4353 * ata_hsm_move - move the HSM to the next state.
4354 * @ap: the target ata_port
4355 * @qc: qc on going
4356 * @status: current device status
4357 * @in_wq: 1 if called from workqueue, 0 otherwise
4358 *
4359 * RETURNS:
4360 * 1 when poll next status needed, 0 otherwise.
4361 */
4362 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4363 u8 status, int in_wq)
4364 {
4365 unsigned long flags = 0;
4366 int poll_next;
4367
4368 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4369
4370 /* Make sure ata_qc_issue_prot() does not throw things
4371 * like DMA polling into the workqueue. Notice that
4372 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4373 */
4374 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4375
4376 fsm_start:
4377 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4378 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4379
4380 switch (ap->hsm_task_state) {
4381 case HSM_ST_FIRST:
4382 /* Send first data block or PACKET CDB */
4383
4384 /* If polling, we will stay in the work queue after
4385 * sending the data. Otherwise, interrupt handler
4386 * takes over after sending the data.
4387 */
4388 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4389
4390 /* check device status */
4391 if (unlikely((status & ATA_DRQ) == 0)) {
4392 /* handle BSY=0, DRQ=0 as error */
4393 if (likely(status & (ATA_ERR | ATA_DF)))
4394 /* device stops HSM for abort/error */
4395 qc->err_mask |= AC_ERR_DEV;
4396 else
4397 /* HSM violation. Let EH handle this */
4398 qc->err_mask |= AC_ERR_HSM;
4399
4400 ap->hsm_task_state = HSM_ST_ERR;
4401 goto fsm_start;
4402 }
4403
4404 /* Device should not ask for data transfer (DRQ=1)
4405 * when it finds something wrong.
4406 * We ignore DRQ here and stop the HSM by
4407 * changing hsm_task_state to HSM_ST_ERR and
4408 * let the EH abort the command or reset the device.
4409 */
4410 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4411 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4412 ap->id, status);
4413 qc->err_mask |= AC_ERR_HSM;
4414 ap->hsm_task_state = HSM_ST_ERR;
4415 goto fsm_start;
4416 }
4417
4418 /* Send the CDB (atapi) or the first data block (ata pio out).
4419 * During the state transition, interrupt handler shouldn't
4420 * be invoked before the data transfer is complete and
4421 * hsm_task_state is changed. Hence, the following locking.
4422 */
4423 if (in_wq)
4424 spin_lock_irqsave(ap->lock, flags);
4425
4426 if (qc->tf.protocol == ATA_PROT_PIO) {
4427 /* PIO data out protocol.
4428 * send first data block.
4429 */
4430
4431 /* ata_pio_sectors() might change the state
4432 * to HSM_ST_LAST. so, the state is changed here
4433 * before ata_pio_sectors().
4434 */
4435 ap->hsm_task_state = HSM_ST;
4436 ata_pio_sectors(qc);
4437 ata_altstatus(ap); /* flush */
4438 } else
4439 /* send CDB */
4440 atapi_send_cdb(ap, qc);
4441
4442 if (in_wq)
4443 spin_unlock_irqrestore(ap->lock, flags);
4444
4445 /* if polling, ata_pio_task() handles the rest.
4446 * otherwise, interrupt handler takes over from here.
4447 */
4448 break;
4449
4450 case HSM_ST:
4451 /* complete command or read/write the data register */
4452 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4453 /* ATAPI PIO protocol */
4454 if ((status & ATA_DRQ) == 0) {
4455 /* No more data to transfer or device error.
4456 * Device error will be tagged in HSM_ST_LAST.
4457 */
4458 ap->hsm_task_state = HSM_ST_LAST;
4459 goto fsm_start;
4460 }
4461
4462 /* Device should not ask for data transfer (DRQ=1)
4463 * when it finds something wrong.
4464 * We ignore DRQ here and stop the HSM by
4465 * changing hsm_task_state to HSM_ST_ERR and
4466 * let the EH abort the command or reset the device.
4467 */
4468 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4469 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4470 ap->id, status);
4471 qc->err_mask |= AC_ERR_HSM;
4472 ap->hsm_task_state = HSM_ST_ERR;
4473 goto fsm_start;
4474 }
4475
4476 atapi_pio_bytes(qc);
4477
4478 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4479 /* bad ireason reported by device */
4480 goto fsm_start;
4481
4482 } else {
4483 /* ATA PIO protocol */
4484 if (unlikely((status & ATA_DRQ) == 0)) {
4485 /* handle BSY=0, DRQ=0 as error */
4486 if (likely(status & (ATA_ERR | ATA_DF)))
4487 /* device stops HSM for abort/error */
4488 qc->err_mask |= AC_ERR_DEV;
4489 else
4490 /* HSM violation. Let EH handle this.
4491 * Phantom devices also trigger this
4492 * condition. Mark hint.
4493 */
4494 qc->err_mask |= AC_ERR_HSM |
4495 AC_ERR_NODEV_HINT;
4496
4497 ap->hsm_task_state = HSM_ST_ERR;
4498 goto fsm_start;
4499 }
4500
4501 /* For PIO reads, some devices may ask for
4502 * data transfer (DRQ=1) alone with ERR=1.
4503 * We respect DRQ here and transfer one
4504 * block of junk data before changing the
4505 * hsm_task_state to HSM_ST_ERR.
4506 *
4507 * For PIO writes, ERR=1 DRQ=1 doesn't make
4508 * sense since the data block has been
4509 * transferred to the device.
4510 */
4511 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4512 /* data might be corrputed */
4513 qc->err_mask |= AC_ERR_DEV;
4514
4515 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4516 ata_pio_sectors(qc);
4517 ata_altstatus(ap);
4518 status = ata_wait_idle(ap);
4519 }
4520
4521 if (status & (ATA_BUSY | ATA_DRQ))
4522 qc->err_mask |= AC_ERR_HSM;
4523
4524 /* ata_pio_sectors() might change the
4525 * state to HSM_ST_LAST. so, the state
4526 * is changed after ata_pio_sectors().
4527 */
4528 ap->hsm_task_state = HSM_ST_ERR;
4529 goto fsm_start;
4530 }
4531
4532 ata_pio_sectors(qc);
4533
4534 if (ap->hsm_task_state == HSM_ST_LAST &&
4535 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4536 /* all data read */
4537 ata_altstatus(ap);
4538 status = ata_wait_idle(ap);
4539 goto fsm_start;
4540 }
4541 }
4542
4543 ata_altstatus(ap); /* flush */
4544 poll_next = 1;
4545 break;
4546
4547 case HSM_ST_LAST:
4548 if (unlikely(!ata_ok(status))) {
4549 qc->err_mask |= __ac_err_mask(status);
4550 ap->hsm_task_state = HSM_ST_ERR;
4551 goto fsm_start;
4552 }
4553
4554 /* no more data to transfer */
4555 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4556 ap->id, qc->dev->devno, status);
4557
4558 WARN_ON(qc->err_mask);
4559
4560 ap->hsm_task_state = HSM_ST_IDLE;
4561
4562 /* complete taskfile transaction */
4563 ata_hsm_qc_complete(qc, in_wq);
4564
4565 poll_next = 0;
4566 break;
4567
4568 case HSM_ST_ERR:
4569 /* make sure qc->err_mask is available to
4570 * know what's wrong and recover
4571 */
4572 WARN_ON(qc->err_mask == 0);
4573
4574 ap->hsm_task_state = HSM_ST_IDLE;
4575
4576 /* complete taskfile transaction */
4577 ata_hsm_qc_complete(qc, in_wq);
4578
4579 poll_next = 0;
4580 break;
4581 default:
4582 poll_next = 0;
4583 BUG();
4584 }
4585
4586 return poll_next;
4587 }
4588
4589 static void ata_pio_task(struct work_struct *work)
4590 {
4591 struct ata_port *ap =
4592 container_of(work, struct ata_port, port_task.work);
4593 struct ata_queued_cmd *qc = ap->port_task_data;
4594 u8 status;
4595 int poll_next;
4596
4597 fsm_start:
4598 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4599
4600 /*
4601 * This is purely heuristic. This is a fast path.
4602 * Sometimes when we enter, BSY will be cleared in
4603 * a chk-status or two. If not, the drive is probably seeking
4604 * or something. Snooze for a couple msecs, then
4605 * chk-status again. If still busy, queue delayed work.
4606 */
4607 status = ata_busy_wait(ap, ATA_BUSY, 5);
4608 if (status & ATA_BUSY) {
4609 msleep(2);
4610 status = ata_busy_wait(ap, ATA_BUSY, 10);
4611 if (status & ATA_BUSY) {
4612 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4613 return;
4614 }
4615 }
4616
4617 /* move the HSM */
4618 poll_next = ata_hsm_move(ap, qc, status, 1);
4619
4620 /* another command or interrupt handler
4621 * may be running at this point.
4622 */
4623 if (poll_next)
4624 goto fsm_start;
4625 }
4626
4627 /**
4628 * ata_qc_new - Request an available ATA command, for queueing
4629 * @ap: Port associated with device @dev
4630 * @dev: Device from whom we request an available command structure
4631 *
4632 * LOCKING:
4633 * None.
4634 */
4635
4636 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4637 {
4638 struct ata_queued_cmd *qc = NULL;
4639 unsigned int i;
4640
4641 /* no command while frozen */
4642 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4643 return NULL;
4644
4645 /* the last tag is reserved for internal command. */
4646 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4647 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4648 qc = __ata_qc_from_tag(ap, i);
4649 break;
4650 }
4651
4652 if (qc)
4653 qc->tag = i;
4654
4655 return qc;
4656 }
4657
4658 /**
4659 * ata_qc_new_init - Request an available ATA command, and initialize it
4660 * @dev: Device from whom we request an available command structure
4661 *
4662 * LOCKING:
4663 * None.
4664 */
4665
4666 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4667 {
4668 struct ata_port *ap = dev->ap;
4669 struct ata_queued_cmd *qc;
4670
4671 qc = ata_qc_new(ap);
4672 if (qc) {
4673 qc->scsicmd = NULL;
4674 qc->ap = ap;
4675 qc->dev = dev;
4676
4677 ata_qc_reinit(qc);
4678 }
4679
4680 return qc;
4681 }
4682
4683 /**
4684 * ata_qc_free - free unused ata_queued_cmd
4685 * @qc: Command to complete
4686 *
4687 * Designed to free unused ata_queued_cmd object
4688 * in case something prevents using it.
4689 *
4690 * LOCKING:
4691 * spin_lock_irqsave(host lock)
4692 */
4693 void ata_qc_free(struct ata_queued_cmd *qc)
4694 {
4695 struct ata_port *ap = qc->ap;
4696 unsigned int tag;
4697
4698 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4699
4700 qc->flags = 0;
4701 tag = qc->tag;
4702 if (likely(ata_tag_valid(tag))) {
4703 qc->tag = ATA_TAG_POISON;
4704 clear_bit(tag, &ap->qc_allocated);
4705 }
4706 }
4707
4708 void __ata_qc_complete(struct ata_queued_cmd *qc)
4709 {
4710 struct ata_port *ap = qc->ap;
4711
4712 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4713 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4714
4715 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4716 ata_sg_clean(qc);
4717
4718 /* command should be marked inactive atomically with qc completion */
4719 if (qc->tf.protocol == ATA_PROT_NCQ)
4720 ap->sactive &= ~(1 << qc->tag);
4721 else
4722 ap->active_tag = ATA_TAG_POISON;
4723
4724 /* atapi: mark qc as inactive to prevent the interrupt handler
4725 * from completing the command twice later, before the error handler
4726 * is called. (when rc != 0 and atapi request sense is needed)
4727 */
4728 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4729 ap->qc_active &= ~(1 << qc->tag);
4730
4731 /* call completion callback */
4732 qc->complete_fn(qc);
4733 }
4734
4735 static void fill_result_tf(struct ata_queued_cmd *qc)
4736 {
4737 struct ata_port *ap = qc->ap;
4738
4739 ap->ops->tf_read(ap, &qc->result_tf);
4740 qc->result_tf.flags = qc->tf.flags;
4741 }
4742
4743 /**
4744 * ata_qc_complete - Complete an active ATA command
4745 * @qc: Command to complete
4746 * @err_mask: ATA Status register contents
4747 *
4748 * Indicate to the mid and upper layers that an ATA
4749 * command has completed, with either an ok or not-ok status.
4750 *
4751 * LOCKING:
4752 * spin_lock_irqsave(host lock)
4753 */
4754 void ata_qc_complete(struct ata_queued_cmd *qc)
4755 {
4756 struct ata_port *ap = qc->ap;
4757
4758 /* XXX: New EH and old EH use different mechanisms to
4759 * synchronize EH with regular execution path.
4760 *
4761 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4762 * Normal execution path is responsible for not accessing a
4763 * failed qc. libata core enforces the rule by returning NULL
4764 * from ata_qc_from_tag() for failed qcs.
4765 *
4766 * Old EH depends on ata_qc_complete() nullifying completion
4767 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4768 * not synchronize with interrupt handler. Only PIO task is
4769 * taken care of.
4770 */
4771 if (ap->ops->error_handler) {
4772 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4773
4774 if (unlikely(qc->err_mask))
4775 qc->flags |= ATA_QCFLAG_FAILED;
4776
4777 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4778 if (!ata_tag_internal(qc->tag)) {
4779 /* always fill result TF for failed qc */
4780 fill_result_tf(qc);
4781 ata_qc_schedule_eh(qc);
4782 return;
4783 }
4784 }
4785
4786 /* read result TF if requested */
4787 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4788 fill_result_tf(qc);
4789
4790 __ata_qc_complete(qc);
4791 } else {
4792 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4793 return;
4794
4795 /* read result TF if failed or requested */
4796 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4797 fill_result_tf(qc);
4798
4799 __ata_qc_complete(qc);
4800 }
4801 }
4802
4803 /**
4804 * ata_qc_complete_multiple - Complete multiple qcs successfully
4805 * @ap: port in question
4806 * @qc_active: new qc_active mask
4807 * @finish_qc: LLDD callback invoked before completing a qc
4808 *
4809 * Complete in-flight commands. This functions is meant to be
4810 * called from low-level driver's interrupt routine to complete
4811 * requests normally. ap->qc_active and @qc_active is compared
4812 * and commands are completed accordingly.
4813 *
4814 * LOCKING:
4815 * spin_lock_irqsave(host lock)
4816 *
4817 * RETURNS:
4818 * Number of completed commands on success, -errno otherwise.
4819 */
4820 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4821 void (*finish_qc)(struct ata_queued_cmd *))
4822 {
4823 int nr_done = 0;
4824 u32 done_mask;
4825 int i;
4826
4827 done_mask = ap->qc_active ^ qc_active;
4828
4829 if (unlikely(done_mask & qc_active)) {
4830 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4831 "(%08x->%08x)\n", ap->qc_active, qc_active);
4832 return -EINVAL;
4833 }
4834
4835 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4836 struct ata_queued_cmd *qc;
4837
4838 if (!(done_mask & (1 << i)))
4839 continue;
4840
4841 if ((qc = ata_qc_from_tag(ap, i))) {
4842 if (finish_qc)
4843 finish_qc(qc);
4844 ata_qc_complete(qc);
4845 nr_done++;
4846 }
4847 }
4848
4849 return nr_done;
4850 }
4851
4852 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4853 {
4854 struct ata_port *ap = qc->ap;
4855
4856 switch (qc->tf.protocol) {
4857 case ATA_PROT_NCQ:
4858 case ATA_PROT_DMA:
4859 case ATA_PROT_ATAPI_DMA:
4860 return 1;
4861
4862 case ATA_PROT_ATAPI:
4863 case ATA_PROT_PIO:
4864 if (ap->flags & ATA_FLAG_PIO_DMA)
4865 return 1;
4866
4867 /* fall through */
4868
4869 default:
4870 return 0;
4871 }
4872
4873 /* never reached */
4874 }
4875
4876 /**
4877 * ata_qc_issue - issue taskfile to device
4878 * @qc: command to issue to device
4879 *
4880 * Prepare an ATA command to submission to device.
4881 * This includes mapping the data into a DMA-able
4882 * area, filling in the S/G table, and finally
4883 * writing the taskfile to hardware, starting the command.
4884 *
4885 * LOCKING:
4886 * spin_lock_irqsave(host lock)
4887 */
4888 void ata_qc_issue(struct ata_queued_cmd *qc)
4889 {
4890 struct ata_port *ap = qc->ap;
4891
4892 /* Make sure only one non-NCQ command is outstanding. The
4893 * check is skipped for old EH because it reuses active qc to
4894 * request ATAPI sense.
4895 */
4896 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4897
4898 if (qc->tf.protocol == ATA_PROT_NCQ) {
4899 WARN_ON(ap->sactive & (1 << qc->tag));
4900 ap->sactive |= 1 << qc->tag;
4901 } else {
4902 WARN_ON(ap->sactive);
4903 ap->active_tag = qc->tag;
4904 }
4905
4906 qc->flags |= ATA_QCFLAG_ACTIVE;
4907 ap->qc_active |= 1 << qc->tag;
4908
4909 if (ata_should_dma_map(qc)) {
4910 if (qc->flags & ATA_QCFLAG_SG) {
4911 if (ata_sg_setup(qc))
4912 goto sg_err;
4913 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4914 if (ata_sg_setup_one(qc))
4915 goto sg_err;
4916 }
4917 } else {
4918 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4919 }
4920
4921 ap->ops->qc_prep(qc);
4922
4923 qc->err_mask |= ap->ops->qc_issue(qc);
4924 if (unlikely(qc->err_mask))
4925 goto err;
4926 return;
4927
4928 sg_err:
4929 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4930 qc->err_mask |= AC_ERR_SYSTEM;
4931 err:
4932 ata_qc_complete(qc);
4933 }
4934
4935 /**
4936 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4937 * @qc: command to issue to device
4938 *
4939 * Using various libata functions and hooks, this function
4940 * starts an ATA command. ATA commands are grouped into
4941 * classes called "protocols", and issuing each type of protocol
4942 * is slightly different.
4943 *
4944 * May be used as the qc_issue() entry in ata_port_operations.
4945 *
4946 * LOCKING:
4947 * spin_lock_irqsave(host lock)
4948 *
4949 * RETURNS:
4950 * Zero on success, AC_ERR_* mask on failure
4951 */
4952
4953 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4954 {
4955 struct ata_port *ap = qc->ap;
4956
4957 /* Use polling pio if the LLD doesn't handle
4958 * interrupt driven pio and atapi CDB interrupt.
4959 */
4960 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4961 switch (qc->tf.protocol) {
4962 case ATA_PROT_PIO:
4963 case ATA_PROT_NODATA:
4964 case ATA_PROT_ATAPI:
4965 case ATA_PROT_ATAPI_NODATA:
4966 qc->tf.flags |= ATA_TFLAG_POLLING;
4967 break;
4968 case ATA_PROT_ATAPI_DMA:
4969 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4970 /* see ata_dma_blacklisted() */
4971 BUG();
4972 break;
4973 default:
4974 break;
4975 }
4976 }
4977
4978 /* Some controllers show flaky interrupt behavior after
4979 * setting xfer mode. Use polling instead.
4980 */
4981 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4982 qc->tf.feature == SETFEATURES_XFER) &&
4983 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4984 qc->tf.flags |= ATA_TFLAG_POLLING;
4985
4986 /* select the device */
4987 ata_dev_select(ap, qc->dev->devno, 1, 0);
4988
4989 /* start the command */
4990 switch (qc->tf.protocol) {
4991 case ATA_PROT_NODATA:
4992 if (qc->tf.flags & ATA_TFLAG_POLLING)
4993 ata_qc_set_polling(qc);
4994
4995 ata_tf_to_host(ap, &qc->tf);
4996 ap->hsm_task_state = HSM_ST_LAST;
4997
4998 if (qc->tf.flags & ATA_TFLAG_POLLING)
4999 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5000
5001 break;
5002
5003 case ATA_PROT_DMA:
5004 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5005
5006 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5007 ap->ops->bmdma_setup(qc); /* set up bmdma */
5008 ap->ops->bmdma_start(qc); /* initiate bmdma */
5009 ap->hsm_task_state = HSM_ST_LAST;
5010 break;
5011
5012 case ATA_PROT_PIO:
5013 if (qc->tf.flags & ATA_TFLAG_POLLING)
5014 ata_qc_set_polling(qc);
5015
5016 ata_tf_to_host(ap, &qc->tf);
5017
5018 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5019 /* PIO data out protocol */
5020 ap->hsm_task_state = HSM_ST_FIRST;
5021 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5022
5023 /* always send first data block using
5024 * the ata_pio_task() codepath.
5025 */
5026 } else {
5027 /* PIO data in protocol */
5028 ap->hsm_task_state = HSM_ST;
5029
5030 if (qc->tf.flags & ATA_TFLAG_POLLING)
5031 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5032
5033 /* if polling, ata_pio_task() handles the rest.
5034 * otherwise, interrupt handler takes over from here.
5035 */
5036 }
5037
5038 break;
5039
5040 case ATA_PROT_ATAPI:
5041 case ATA_PROT_ATAPI_NODATA:
5042 if (qc->tf.flags & ATA_TFLAG_POLLING)
5043 ata_qc_set_polling(qc);
5044
5045 ata_tf_to_host(ap, &qc->tf);
5046
5047 ap->hsm_task_state = HSM_ST_FIRST;
5048
5049 /* send cdb by polling if no cdb interrupt */
5050 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5051 (qc->tf.flags & ATA_TFLAG_POLLING))
5052 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5053 break;
5054
5055 case ATA_PROT_ATAPI_DMA:
5056 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5057
5058 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5059 ap->ops->bmdma_setup(qc); /* set up bmdma */
5060 ap->hsm_task_state = HSM_ST_FIRST;
5061
5062 /* send cdb by polling if no cdb interrupt */
5063 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5064 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5065 break;
5066
5067 default:
5068 WARN_ON(1);
5069 return AC_ERR_SYSTEM;
5070 }
5071
5072 return 0;
5073 }
5074
5075 /**
5076 * ata_host_intr - Handle host interrupt for given (port, task)
5077 * @ap: Port on which interrupt arrived (possibly...)
5078 * @qc: Taskfile currently active in engine
5079 *
5080 * Handle host interrupt for given queued command. Currently,
5081 * only DMA interrupts are handled. All other commands are
5082 * handled via polling with interrupts disabled (nIEN bit).
5083 *
5084 * LOCKING:
5085 * spin_lock_irqsave(host lock)
5086 *
5087 * RETURNS:
5088 * One if interrupt was handled, zero if not (shared irq).
5089 */
5090
5091 inline unsigned int ata_host_intr (struct ata_port *ap,
5092 struct ata_queued_cmd *qc)
5093 {
5094 struct ata_eh_info *ehi = &ap->eh_info;
5095 u8 status, host_stat = 0;
5096
5097 VPRINTK("ata%u: protocol %d task_state %d\n",
5098 ap->id, qc->tf.protocol, ap->hsm_task_state);
5099
5100 /* Check whether we are expecting interrupt in this state */
5101 switch (ap->hsm_task_state) {
5102 case HSM_ST_FIRST:
5103 /* Some pre-ATAPI-4 devices assert INTRQ
5104 * at this state when ready to receive CDB.
5105 */
5106
5107 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5108 * The flag was turned on only for atapi devices.
5109 * No need to check is_atapi_taskfile(&qc->tf) again.
5110 */
5111 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5112 goto idle_irq;
5113 break;
5114 case HSM_ST_LAST:
5115 if (qc->tf.protocol == ATA_PROT_DMA ||
5116 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5117 /* check status of DMA engine */
5118 host_stat = ap->ops->bmdma_status(ap);
5119 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5120
5121 /* if it's not our irq... */
5122 if (!(host_stat & ATA_DMA_INTR))
5123 goto idle_irq;
5124
5125 /* before we do anything else, clear DMA-Start bit */
5126 ap->ops->bmdma_stop(qc);
5127
5128 if (unlikely(host_stat & ATA_DMA_ERR)) {
5129 /* error when transfering data to/from memory */
5130 qc->err_mask |= AC_ERR_HOST_BUS;
5131 ap->hsm_task_state = HSM_ST_ERR;
5132 }
5133 }
5134 break;
5135 case HSM_ST:
5136 break;
5137 default:
5138 goto idle_irq;
5139 }
5140
5141 /* check altstatus */
5142 status = ata_altstatus(ap);
5143 if (status & ATA_BUSY)
5144 goto idle_irq;
5145
5146 /* check main status, clearing INTRQ */
5147 status = ata_chk_status(ap);
5148 if (unlikely(status & ATA_BUSY))
5149 goto idle_irq;
5150
5151 /* ack bmdma irq events */
5152 ap->ops->irq_clear(ap);
5153
5154 ata_hsm_move(ap, qc, status, 0);
5155
5156 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5157 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5158 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5159
5160 return 1; /* irq handled */
5161
5162 idle_irq:
5163 ap->stats.idle_irq++;
5164
5165 #ifdef ATA_IRQ_TRAP
5166 if ((ap->stats.idle_irq % 1000) == 0) {
5167 ata_irq_ack(ap, 0); /* debug trap */
5168 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5169 return 1;
5170 }
5171 #endif
5172 return 0; /* irq not handled */
5173 }
5174
5175 /**
5176 * ata_interrupt - Default ATA host interrupt handler
5177 * @irq: irq line (unused)
5178 * @dev_instance: pointer to our ata_host information structure
5179 *
5180 * Default interrupt handler for PCI IDE devices. Calls
5181 * ata_host_intr() for each port that is not disabled.
5182 *
5183 * LOCKING:
5184 * Obtains host lock during operation.
5185 *
5186 * RETURNS:
5187 * IRQ_NONE or IRQ_HANDLED.
5188 */
5189
5190 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5191 {
5192 struct ata_host *host = dev_instance;
5193 unsigned int i;
5194 unsigned int handled = 0;
5195 unsigned long flags;
5196
5197 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5198 spin_lock_irqsave(&host->lock, flags);
5199
5200 for (i = 0; i < host->n_ports; i++) {
5201 struct ata_port *ap;
5202
5203 ap = host->ports[i];
5204 if (ap &&
5205 !(ap->flags & ATA_FLAG_DISABLED)) {
5206 struct ata_queued_cmd *qc;
5207
5208 qc = ata_qc_from_tag(ap, ap->active_tag);
5209 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5210 (qc->flags & ATA_QCFLAG_ACTIVE))
5211 handled |= ata_host_intr(ap, qc);
5212 }
5213 }
5214
5215 spin_unlock_irqrestore(&host->lock, flags);
5216
5217 return IRQ_RETVAL(handled);
5218 }
5219
5220 /**
5221 * sata_scr_valid - test whether SCRs are accessible
5222 * @ap: ATA port to test SCR accessibility for
5223 *
5224 * Test whether SCRs are accessible for @ap.
5225 *
5226 * LOCKING:
5227 * None.
5228 *
5229 * RETURNS:
5230 * 1 if SCRs are accessible, 0 otherwise.
5231 */
5232 int sata_scr_valid(struct ata_port *ap)
5233 {
5234 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5235 }
5236
5237 /**
5238 * sata_scr_read - read SCR register of the specified port
5239 * @ap: ATA port to read SCR for
5240 * @reg: SCR to read
5241 * @val: Place to store read value
5242 *
5243 * Read SCR register @reg of @ap into *@val. This function is
5244 * guaranteed to succeed if the cable type of the port is SATA
5245 * and the port implements ->scr_read.
5246 *
5247 * LOCKING:
5248 * None.
5249 *
5250 * RETURNS:
5251 * 0 on success, negative errno on failure.
5252 */
5253 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5254 {
5255 if (sata_scr_valid(ap)) {
5256 *val = ap->ops->scr_read(ap, reg);
5257 return 0;
5258 }
5259 return -EOPNOTSUPP;
5260 }
5261
5262 /**
5263 * sata_scr_write - write SCR register of the specified port
5264 * @ap: ATA port to write SCR for
5265 * @reg: SCR to write
5266 * @val: value to write
5267 *
5268 * Write @val to SCR register @reg of @ap. This function is
5269 * guaranteed to succeed if the cable type of the port is SATA
5270 * and the port implements ->scr_read.
5271 *
5272 * LOCKING:
5273 * None.
5274 *
5275 * RETURNS:
5276 * 0 on success, negative errno on failure.
5277 */
5278 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5279 {
5280 if (sata_scr_valid(ap)) {
5281 ap->ops->scr_write(ap, reg, val);
5282 return 0;
5283 }
5284 return -EOPNOTSUPP;
5285 }
5286
5287 /**
5288 * sata_scr_write_flush - write SCR register of the specified port and flush
5289 * @ap: ATA port to write SCR for
5290 * @reg: SCR to write
5291 * @val: value to write
5292 *
5293 * This function is identical to sata_scr_write() except that this
5294 * function performs flush after writing to the register.
5295 *
5296 * LOCKING:
5297 * None.
5298 *
5299 * RETURNS:
5300 * 0 on success, negative errno on failure.
5301 */
5302 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5303 {
5304 if (sata_scr_valid(ap)) {
5305 ap->ops->scr_write(ap, reg, val);
5306 ap->ops->scr_read(ap, reg);
5307 return 0;
5308 }
5309 return -EOPNOTSUPP;
5310 }
5311
5312 /**
5313 * ata_port_online - test whether the given port is online
5314 * @ap: ATA port to test
5315 *
5316 * Test whether @ap is online. Note that this function returns 0
5317 * if online status of @ap cannot be obtained, so
5318 * ata_port_online(ap) != !ata_port_offline(ap).
5319 *
5320 * LOCKING:
5321 * None.
5322 *
5323 * RETURNS:
5324 * 1 if the port online status is available and online.
5325 */
5326 int ata_port_online(struct ata_port *ap)
5327 {
5328 u32 sstatus;
5329
5330 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5331 return 1;
5332 return 0;
5333 }
5334
5335 /**
5336 * ata_port_offline - test whether the given port is offline
5337 * @ap: ATA port to test
5338 *
5339 * Test whether @ap is offline. Note that this function returns
5340 * 0 if offline status of @ap cannot be obtained, so
5341 * ata_port_online(ap) != !ata_port_offline(ap).
5342 *
5343 * LOCKING:
5344 * None.
5345 *
5346 * RETURNS:
5347 * 1 if the port offline status is available and offline.
5348 */
5349 int ata_port_offline(struct ata_port *ap)
5350 {
5351 u32 sstatus;
5352
5353 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5354 return 1;
5355 return 0;
5356 }
5357
5358 int ata_flush_cache(struct ata_device *dev)
5359 {
5360 unsigned int err_mask;
5361 u8 cmd;
5362
5363 if (!ata_try_flush_cache(dev))
5364 return 0;
5365
5366 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5367 cmd = ATA_CMD_FLUSH_EXT;
5368 else
5369 cmd = ATA_CMD_FLUSH;
5370
5371 err_mask = ata_do_simple_cmd(dev, cmd);
5372 if (err_mask) {
5373 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5374 return -EIO;
5375 }
5376
5377 return 0;
5378 }
5379
5380 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5381 unsigned int action, unsigned int ehi_flags,
5382 int wait)
5383 {
5384 unsigned long flags;
5385 int i, rc;
5386
5387 for (i = 0; i < host->n_ports; i++) {
5388 struct ata_port *ap = host->ports[i];
5389
5390 /* Previous resume operation might still be in
5391 * progress. Wait for PM_PENDING to clear.
5392 */
5393 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5394 ata_port_wait_eh(ap);
5395 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5396 }
5397
5398 /* request PM ops to EH */
5399 spin_lock_irqsave(ap->lock, flags);
5400
5401 ap->pm_mesg = mesg;
5402 if (wait) {
5403 rc = 0;
5404 ap->pm_result = &rc;
5405 }
5406
5407 ap->pflags |= ATA_PFLAG_PM_PENDING;
5408 ap->eh_info.action |= action;
5409 ap->eh_info.flags |= ehi_flags;
5410
5411 ata_port_schedule_eh(ap);
5412
5413 spin_unlock_irqrestore(ap->lock, flags);
5414
5415 /* wait and check result */
5416 if (wait) {
5417 ata_port_wait_eh(ap);
5418 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5419 if (rc)
5420 return rc;
5421 }
5422 }
5423
5424 return 0;
5425 }
5426
5427 /**
5428 * ata_host_suspend - suspend host
5429 * @host: host to suspend
5430 * @mesg: PM message
5431 *
5432 * Suspend @host. Actual operation is performed by EH. This
5433 * function requests EH to perform PM operations and waits for EH
5434 * to finish.
5435 *
5436 * LOCKING:
5437 * Kernel thread context (may sleep).
5438 *
5439 * RETURNS:
5440 * 0 on success, -errno on failure.
5441 */
5442 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5443 {
5444 int i, j, rc;
5445
5446 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5447 if (rc)
5448 goto fail;
5449
5450 /* EH is quiescent now. Fail if we have any ready device.
5451 * This happens if hotplug occurs between completion of device
5452 * suspension and here.
5453 */
5454 for (i = 0; i < host->n_ports; i++) {
5455 struct ata_port *ap = host->ports[i];
5456
5457 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5458 struct ata_device *dev = &ap->device[j];
5459
5460 if (ata_dev_ready(dev)) {
5461 ata_port_printk(ap, KERN_WARNING,
5462 "suspend failed, device %d "
5463 "still active\n", dev->devno);
5464 rc = -EBUSY;
5465 goto fail;
5466 }
5467 }
5468 }
5469
5470 host->dev->power.power_state = mesg;
5471 return 0;
5472
5473 fail:
5474 ata_host_resume(host);
5475 return rc;
5476 }
5477
5478 /**
5479 * ata_host_resume - resume host
5480 * @host: host to resume
5481 *
5482 * Resume @host. Actual operation is performed by EH. This
5483 * function requests EH to perform PM operations and returns.
5484 * Note that all resume operations are performed parallely.
5485 *
5486 * LOCKING:
5487 * Kernel thread context (may sleep).
5488 */
5489 void ata_host_resume(struct ata_host *host)
5490 {
5491 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5492 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5493 host->dev->power.power_state = PMSG_ON;
5494 }
5495
5496 /**
5497 * ata_port_start - Set port up for dma.
5498 * @ap: Port to initialize
5499 *
5500 * Called just after data structures for each port are
5501 * initialized. Allocates space for PRD table.
5502 *
5503 * May be used as the port_start() entry in ata_port_operations.
5504 *
5505 * LOCKING:
5506 * Inherited from caller.
5507 */
5508
5509 int ata_port_start (struct ata_port *ap)
5510 {
5511 struct device *dev = ap->dev;
5512 int rc;
5513
5514 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5515 if (!ap->prd)
5516 return -ENOMEM;
5517
5518 rc = ata_pad_alloc(ap, dev);
5519 if (rc) {
5520 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5521 return rc;
5522 }
5523
5524 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5525
5526 return 0;
5527 }
5528
5529
5530 /**
5531 * ata_port_stop - Undo ata_port_start()
5532 * @ap: Port to shut down
5533 *
5534 * Frees the PRD table.
5535 *
5536 * May be used as the port_stop() entry in ata_port_operations.
5537 *
5538 * LOCKING:
5539 * Inherited from caller.
5540 */
5541
5542 void ata_port_stop (struct ata_port *ap)
5543 {
5544 struct device *dev = ap->dev;
5545
5546 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5547 ata_pad_free(ap, dev);
5548 }
5549
5550 void ata_host_stop (struct ata_host *host)
5551 {
5552 if (host->mmio_base)
5553 iounmap(host->mmio_base);
5554 }
5555
5556 /**
5557 * ata_dev_init - Initialize an ata_device structure
5558 * @dev: Device structure to initialize
5559 *
5560 * Initialize @dev in preparation for probing.
5561 *
5562 * LOCKING:
5563 * Inherited from caller.
5564 */
5565 void ata_dev_init(struct ata_device *dev)
5566 {
5567 struct ata_port *ap = dev->ap;
5568 unsigned long flags;
5569
5570 /* SATA spd limit is bound to the first device */
5571 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5572
5573 /* High bits of dev->flags are used to record warm plug
5574 * requests which occur asynchronously. Synchronize using
5575 * host lock.
5576 */
5577 spin_lock_irqsave(ap->lock, flags);
5578 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5579 spin_unlock_irqrestore(ap->lock, flags);
5580
5581 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5582 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5583 dev->pio_mask = UINT_MAX;
5584 dev->mwdma_mask = UINT_MAX;
5585 dev->udma_mask = UINT_MAX;
5586 }
5587
5588 /**
5589 * ata_port_init - Initialize an ata_port structure
5590 * @ap: Structure to initialize
5591 * @host: Collection of hosts to which @ap belongs
5592 * @ent: Probe information provided by low-level driver
5593 * @port_no: Port number associated with this ata_port
5594 *
5595 * Initialize a new ata_port structure.
5596 *
5597 * LOCKING:
5598 * Inherited from caller.
5599 */
5600 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5601 const struct ata_probe_ent *ent, unsigned int port_no)
5602 {
5603 unsigned int i;
5604
5605 ap->lock = &host->lock;
5606 ap->flags = ATA_FLAG_DISABLED;
5607 ap->id = ata_unique_id++;
5608 ap->ctl = ATA_DEVCTL_OBS;
5609 ap->host = host;
5610 ap->dev = ent->dev;
5611 ap->port_no = port_no;
5612 if (port_no == 1 && ent->pinfo2) {
5613 ap->pio_mask = ent->pinfo2->pio_mask;
5614 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5615 ap->udma_mask = ent->pinfo2->udma_mask;
5616 ap->flags |= ent->pinfo2->flags;
5617 ap->ops = ent->pinfo2->port_ops;
5618 } else {
5619 ap->pio_mask = ent->pio_mask;
5620 ap->mwdma_mask = ent->mwdma_mask;
5621 ap->udma_mask = ent->udma_mask;
5622 ap->flags |= ent->port_flags;
5623 ap->ops = ent->port_ops;
5624 }
5625 ap->hw_sata_spd_limit = UINT_MAX;
5626 ap->active_tag = ATA_TAG_POISON;
5627 ap->last_ctl = 0xFF;
5628
5629 #if defined(ATA_VERBOSE_DEBUG)
5630 /* turn on all debugging levels */
5631 ap->msg_enable = 0x00FF;
5632 #elif defined(ATA_DEBUG)
5633 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5634 #else
5635 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5636 #endif
5637
5638 INIT_DELAYED_WORK(&ap->port_task, NULL);
5639 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5640 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5641 INIT_LIST_HEAD(&ap->eh_done_q);
5642 init_waitqueue_head(&ap->eh_wait_q);
5643
5644 /* set cable type */
5645 ap->cbl = ATA_CBL_NONE;
5646 if (ap->flags & ATA_FLAG_SATA)
5647 ap->cbl = ATA_CBL_SATA;
5648
5649 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5650 struct ata_device *dev = &ap->device[i];
5651 dev->ap = ap;
5652 dev->devno = i;
5653 ata_dev_init(dev);
5654 }
5655
5656 #ifdef ATA_IRQ_TRAP
5657 ap->stats.unhandled_irq = 1;
5658 ap->stats.idle_irq = 1;
5659 #endif
5660
5661 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5662 }
5663
5664 /**
5665 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5666 * @ap: ATA port to initialize SCSI host for
5667 * @shost: SCSI host associated with @ap
5668 *
5669 * Initialize SCSI host @shost associated with ATA port @ap.
5670 *
5671 * LOCKING:
5672 * Inherited from caller.
5673 */
5674 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5675 {
5676 ap->scsi_host = shost;
5677
5678 shost->unique_id = ap->id;
5679 shost->max_id = 16;
5680 shost->max_lun = 1;
5681 shost->max_channel = 1;
5682 shost->max_cmd_len = 12;
5683 }
5684
5685 /**
5686 * ata_port_add - Attach low-level ATA driver to system
5687 * @ent: Information provided by low-level driver
5688 * @host: Collections of ports to which we add
5689 * @port_no: Port number associated with this host
5690 *
5691 * Attach low-level ATA driver to system.
5692 *
5693 * LOCKING:
5694 * PCI/etc. bus probe sem.
5695 *
5696 * RETURNS:
5697 * New ata_port on success, for NULL on error.
5698 */
5699 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5700 struct ata_host *host,
5701 unsigned int port_no)
5702 {
5703 struct Scsi_Host *shost;
5704 struct ata_port *ap;
5705
5706 DPRINTK("ENTER\n");
5707
5708 if (!ent->port_ops->error_handler &&
5709 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5710 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5711 port_no);
5712 return NULL;
5713 }
5714
5715 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5716 if (!shost)
5717 return NULL;
5718
5719 shost->transportt = &ata_scsi_transport_template;
5720
5721 ap = ata_shost_to_port(shost);
5722
5723 ata_port_init(ap, host, ent, port_no);
5724 ata_port_init_shost(ap, shost);
5725
5726 return ap;
5727 }
5728
5729 /**
5730 * ata_sas_host_init - Initialize a host struct
5731 * @host: host to initialize
5732 * @dev: device host is attached to
5733 * @flags: host flags
5734 * @ops: port_ops
5735 *
5736 * LOCKING:
5737 * PCI/etc. bus probe sem.
5738 *
5739 */
5740
5741 void ata_host_init(struct ata_host *host, struct device *dev,
5742 unsigned long flags, const struct ata_port_operations *ops)
5743 {
5744 spin_lock_init(&host->lock);
5745 host->dev = dev;
5746 host->flags = flags;
5747 host->ops = ops;
5748 }
5749
5750 /**
5751 * ata_device_add - Register hardware device with ATA and SCSI layers
5752 * @ent: Probe information describing hardware device to be registered
5753 *
5754 * This function processes the information provided in the probe
5755 * information struct @ent, allocates the necessary ATA and SCSI
5756 * host information structures, initializes them, and registers
5757 * everything with requisite kernel subsystems.
5758 *
5759 * This function requests irqs, probes the ATA bus, and probes
5760 * the SCSI bus.
5761 *
5762 * LOCKING:
5763 * PCI/etc. bus probe sem.
5764 *
5765 * RETURNS:
5766 * Number of ports registered. Zero on error (no ports registered).
5767 */
5768 int ata_device_add(const struct ata_probe_ent *ent)
5769 {
5770 unsigned int i;
5771 struct device *dev = ent->dev;
5772 struct ata_host *host;
5773 int rc;
5774
5775 DPRINTK("ENTER\n");
5776
5777 if (ent->irq == 0) {
5778 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5779 return 0;
5780 }
5781 /* alloc a container for our list of ATA ports (buses) */
5782 host = kzalloc(sizeof(struct ata_host) +
5783 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5784 if (!host)
5785 return 0;
5786
5787 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5788 host->n_ports = ent->n_ports;
5789 host->irq = ent->irq;
5790 host->irq2 = ent->irq2;
5791 host->mmio_base = ent->mmio_base;
5792 host->private_data = ent->private_data;
5793
5794 /* register each port bound to this device */
5795 for (i = 0; i < host->n_ports; i++) {
5796 struct ata_port *ap;
5797 unsigned long xfer_mode_mask;
5798 int irq_line = ent->irq;
5799
5800 ap = ata_port_add(ent, host, i);
5801 host->ports[i] = ap;
5802 if (!ap)
5803 goto err_out;
5804
5805 /* dummy? */
5806 if (ent->dummy_port_mask & (1 << i)) {
5807 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5808 ap->ops = &ata_dummy_port_ops;
5809 continue;
5810 }
5811
5812 /* start port */
5813 rc = ap->ops->port_start(ap);
5814 if (rc) {
5815 host->ports[i] = NULL;
5816 scsi_host_put(ap->scsi_host);
5817 goto err_out;
5818 }
5819
5820 /* Report the secondary IRQ for second channel legacy */
5821 if (i == 1 && ent->irq2)
5822 irq_line = ent->irq2;
5823
5824 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5825 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5826 (ap->pio_mask << ATA_SHIFT_PIO);
5827
5828 /* print per-port info to dmesg */
5829 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5830 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5831 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5832 ata_mode_string(xfer_mode_mask),
5833 ap->ioaddr.cmd_addr,
5834 ap->ioaddr.ctl_addr,
5835 ap->ioaddr.bmdma_addr,
5836 irq_line);
5837
5838 /* freeze port before requesting IRQ */
5839 ata_eh_freeze_port(ap);
5840 }
5841
5842 /* obtain irq, that may be shared between channels */
5843 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5844 DRV_NAME, host);
5845 if (rc) {
5846 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5847 ent->irq, rc);
5848 goto err_out;
5849 }
5850
5851 /* do we have a second IRQ for the other channel, eg legacy mode */
5852 if (ent->irq2) {
5853 /* We will get weird core code crashes later if this is true
5854 so trap it now */
5855 BUG_ON(ent->irq == ent->irq2);
5856
5857 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5858 DRV_NAME, host);
5859 if (rc) {
5860 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5861 ent->irq2, rc);
5862 goto err_out_free_irq;
5863 }
5864 }
5865
5866 /* perform each probe synchronously */
5867 DPRINTK("probe begin\n");
5868 for (i = 0; i < host->n_ports; i++) {
5869 struct ata_port *ap = host->ports[i];
5870 u32 scontrol;
5871 int rc;
5872
5873 /* init sata_spd_limit to the current value */
5874 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5875 int spd = (scontrol >> 4) & 0xf;
5876 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5877 }
5878 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5879
5880 rc = scsi_add_host(ap->scsi_host, dev);
5881 if (rc) {
5882 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5883 /* FIXME: do something useful here */
5884 /* FIXME: handle unconditional calls to
5885 * scsi_scan_host and ata_host_remove, below,
5886 * at the very least
5887 */
5888 }
5889
5890 if (ap->ops->error_handler) {
5891 struct ata_eh_info *ehi = &ap->eh_info;
5892 unsigned long flags;
5893
5894 ata_port_probe(ap);
5895
5896 /* kick EH for boot probing */
5897 spin_lock_irqsave(ap->lock, flags);
5898
5899 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5900 ehi->action |= ATA_EH_SOFTRESET;
5901 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5902
5903 ap->pflags |= ATA_PFLAG_LOADING;
5904 ata_port_schedule_eh(ap);
5905
5906 spin_unlock_irqrestore(ap->lock, flags);
5907
5908 /* wait for EH to finish */
5909 ata_port_wait_eh(ap);
5910 } else {
5911 DPRINTK("ata%u: bus probe begin\n", ap->id);
5912 rc = ata_bus_probe(ap);
5913 DPRINTK("ata%u: bus probe end\n", ap->id);
5914
5915 if (rc) {
5916 /* FIXME: do something useful here?
5917 * Current libata behavior will
5918 * tear down everything when
5919 * the module is removed
5920 * or the h/w is unplugged.
5921 */
5922 }
5923 }
5924 }
5925
5926 /* probes are done, now scan each port's disk(s) */
5927 DPRINTK("host probe begin\n");
5928 for (i = 0; i < host->n_ports; i++) {
5929 struct ata_port *ap = host->ports[i];
5930
5931 ata_scsi_scan_host(ap);
5932 }
5933
5934 dev_set_drvdata(dev, host);
5935
5936 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5937 return ent->n_ports; /* success */
5938
5939 err_out_free_irq:
5940 free_irq(ent->irq, host);
5941 err_out:
5942 for (i = 0; i < host->n_ports; i++) {
5943 struct ata_port *ap = host->ports[i];
5944 if (ap) {
5945 ap->ops->port_stop(ap);
5946 scsi_host_put(ap->scsi_host);
5947 }
5948 }
5949
5950 kfree(host);
5951 VPRINTK("EXIT, returning 0\n");
5952 return 0;
5953 }
5954
5955 /**
5956 * ata_port_detach - Detach ATA port in prepration of device removal
5957 * @ap: ATA port to be detached
5958 *
5959 * Detach all ATA devices and the associated SCSI devices of @ap;
5960 * then, remove the associated SCSI host. @ap is guaranteed to
5961 * be quiescent on return from this function.
5962 *
5963 * LOCKING:
5964 * Kernel thread context (may sleep).
5965 */
5966 void ata_port_detach(struct ata_port *ap)
5967 {
5968 unsigned long flags;
5969 int i;
5970
5971 if (!ap->ops->error_handler)
5972 goto skip_eh;
5973
5974 /* tell EH we're leaving & flush EH */
5975 spin_lock_irqsave(ap->lock, flags);
5976 ap->pflags |= ATA_PFLAG_UNLOADING;
5977 spin_unlock_irqrestore(ap->lock, flags);
5978
5979 ata_port_wait_eh(ap);
5980
5981 /* EH is now guaranteed to see UNLOADING, so no new device
5982 * will be attached. Disable all existing devices.
5983 */
5984 spin_lock_irqsave(ap->lock, flags);
5985
5986 for (i = 0; i < ATA_MAX_DEVICES; i++)
5987 ata_dev_disable(&ap->device[i]);
5988
5989 spin_unlock_irqrestore(ap->lock, flags);
5990
5991 /* Final freeze & EH. All in-flight commands are aborted. EH
5992 * will be skipped and retrials will be terminated with bad
5993 * target.
5994 */
5995 spin_lock_irqsave(ap->lock, flags);
5996 ata_port_freeze(ap); /* won't be thawed */
5997 spin_unlock_irqrestore(ap->lock, flags);
5998
5999 ata_port_wait_eh(ap);
6000
6001 /* Flush hotplug task. The sequence is similar to
6002 * ata_port_flush_task().
6003 */
6004 flush_workqueue(ata_aux_wq);
6005 cancel_delayed_work(&ap->hotplug_task);
6006 flush_workqueue(ata_aux_wq);
6007
6008 skip_eh:
6009 /* remove the associated SCSI host */
6010 scsi_remove_host(ap->scsi_host);
6011 }
6012
6013 /**
6014 * ata_host_remove - PCI layer callback for device removal
6015 * @host: ATA host set that was removed
6016 *
6017 * Unregister all objects associated with this host set. Free those
6018 * objects.
6019 *
6020 * LOCKING:
6021 * Inherited from calling layer (may sleep).
6022 */
6023
6024 void ata_host_remove(struct ata_host *host)
6025 {
6026 unsigned int i;
6027
6028 for (i = 0; i < host->n_ports; i++)
6029 ata_port_detach(host->ports[i]);
6030
6031 free_irq(host->irq, host);
6032 if (host->irq2)
6033 free_irq(host->irq2, host);
6034
6035 for (i = 0; i < host->n_ports; i++) {
6036 struct ata_port *ap = host->ports[i];
6037
6038 ata_scsi_release(ap->scsi_host);
6039
6040 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
6041 struct ata_ioports *ioaddr = &ap->ioaddr;
6042
6043 /* FIXME: Add -ac IDE pci mods to remove these special cases */
6044 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
6045 release_region(ATA_PRIMARY_CMD, 8);
6046 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
6047 release_region(ATA_SECONDARY_CMD, 8);
6048 }
6049
6050 scsi_host_put(ap->scsi_host);
6051 }
6052
6053 if (host->ops->host_stop)
6054 host->ops->host_stop(host);
6055
6056 kfree(host);
6057 }
6058
6059 /**
6060 * ata_scsi_release - SCSI layer callback hook for host unload
6061 * @shost: libata host to be unloaded
6062 *
6063 * Performs all duties necessary to shut down a libata port...
6064 * Kill port kthread, disable port, and release resources.
6065 *
6066 * LOCKING:
6067 * Inherited from SCSI layer.
6068 *
6069 * RETURNS:
6070 * One.
6071 */
6072
6073 int ata_scsi_release(struct Scsi_Host *shost)
6074 {
6075 struct ata_port *ap = ata_shost_to_port(shost);
6076
6077 DPRINTK("ENTER\n");
6078
6079 ap->ops->port_disable(ap);
6080 ap->ops->port_stop(ap);
6081
6082 DPRINTK("EXIT\n");
6083 return 1;
6084 }
6085
6086 struct ata_probe_ent *
6087 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6088 {
6089 struct ata_probe_ent *probe_ent;
6090
6091 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
6092 if (!probe_ent) {
6093 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6094 kobject_name(&(dev->kobj)));
6095 return NULL;
6096 }
6097
6098 INIT_LIST_HEAD(&probe_ent->node);
6099 probe_ent->dev = dev;
6100
6101 probe_ent->sht = port->sht;
6102 probe_ent->port_flags = port->flags;
6103 probe_ent->pio_mask = port->pio_mask;
6104 probe_ent->mwdma_mask = port->mwdma_mask;
6105 probe_ent->udma_mask = port->udma_mask;
6106 probe_ent->port_ops = port->port_ops;
6107 probe_ent->private_data = port->private_data;
6108
6109 return probe_ent;
6110 }
6111
6112 /**
6113 * ata_std_ports - initialize ioaddr with standard port offsets.
6114 * @ioaddr: IO address structure to be initialized
6115 *
6116 * Utility function which initializes data_addr, error_addr,
6117 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6118 * device_addr, status_addr, and command_addr to standard offsets
6119 * relative to cmd_addr.
6120 *
6121 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6122 */
6123
6124 void ata_std_ports(struct ata_ioports *ioaddr)
6125 {
6126 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6127 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6128 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6129 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6130 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6131 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6132 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6133 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6134 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6135 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6136 }
6137
6138
6139 #ifdef CONFIG_PCI
6140
6141 void ata_pci_host_stop (struct ata_host *host)
6142 {
6143 struct pci_dev *pdev = to_pci_dev(host->dev);
6144
6145 pci_iounmap(pdev, host->mmio_base);
6146 }
6147
6148 /**
6149 * ata_pci_remove_one - PCI layer callback for device removal
6150 * @pdev: PCI device that was removed
6151 *
6152 * PCI layer indicates to libata via this hook that
6153 * hot-unplug or module unload event has occurred.
6154 * Handle this by unregistering all objects associated
6155 * with this PCI device. Free those objects. Then finally
6156 * release PCI resources and disable device.
6157 *
6158 * LOCKING:
6159 * Inherited from PCI layer (may sleep).
6160 */
6161
6162 void ata_pci_remove_one (struct pci_dev *pdev)
6163 {
6164 struct device *dev = pci_dev_to_dev(pdev);
6165 struct ata_host *host = dev_get_drvdata(dev);
6166
6167 ata_host_remove(host);
6168
6169 pci_release_regions(pdev);
6170 pci_disable_device(pdev);
6171 dev_set_drvdata(dev, NULL);
6172 }
6173
6174 /* move to PCI subsystem */
6175 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6176 {
6177 unsigned long tmp = 0;
6178
6179 switch (bits->width) {
6180 case 1: {
6181 u8 tmp8 = 0;
6182 pci_read_config_byte(pdev, bits->reg, &tmp8);
6183 tmp = tmp8;
6184 break;
6185 }
6186 case 2: {
6187 u16 tmp16 = 0;
6188 pci_read_config_word(pdev, bits->reg, &tmp16);
6189 tmp = tmp16;
6190 break;
6191 }
6192 case 4: {
6193 u32 tmp32 = 0;
6194 pci_read_config_dword(pdev, bits->reg, &tmp32);
6195 tmp = tmp32;
6196 break;
6197 }
6198
6199 default:
6200 return -EINVAL;
6201 }
6202
6203 tmp &= bits->mask;
6204
6205 return (tmp == bits->val) ? 1 : 0;
6206 }
6207
6208 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6209 {
6210 pci_save_state(pdev);
6211
6212 if (mesg.event == PM_EVENT_SUSPEND) {
6213 pci_disable_device(pdev);
6214 pci_set_power_state(pdev, PCI_D3hot);
6215 }
6216 }
6217
6218 void ata_pci_device_do_resume(struct pci_dev *pdev)
6219 {
6220 pci_set_power_state(pdev, PCI_D0);
6221 pci_restore_state(pdev);
6222 pci_enable_device(pdev);
6223 pci_set_master(pdev);
6224 }
6225
6226 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6227 {
6228 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6229 int rc = 0;
6230
6231 rc = ata_host_suspend(host, mesg);
6232 if (rc)
6233 return rc;
6234
6235 ata_pci_device_do_suspend(pdev, mesg);
6236
6237 return 0;
6238 }
6239
6240 int ata_pci_device_resume(struct pci_dev *pdev)
6241 {
6242 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6243
6244 ata_pci_device_do_resume(pdev);
6245 ata_host_resume(host);
6246 return 0;
6247 }
6248 #endif /* CONFIG_PCI */
6249
6250
6251 static int __init ata_init(void)
6252 {
6253 ata_probe_timeout *= HZ;
6254 ata_wq = create_workqueue("ata");
6255 if (!ata_wq)
6256 return -ENOMEM;
6257
6258 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6259 if (!ata_aux_wq) {
6260 destroy_workqueue(ata_wq);
6261 return -ENOMEM;
6262 }
6263
6264 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6265 return 0;
6266 }
6267
6268 static void __exit ata_exit(void)
6269 {
6270 destroy_workqueue(ata_wq);
6271 destroy_workqueue(ata_aux_wq);
6272 }
6273
6274 subsys_initcall(ata_init);
6275 module_exit(ata_exit);
6276
6277 static unsigned long ratelimit_time;
6278 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6279
6280 int ata_ratelimit(void)
6281 {
6282 int rc;
6283 unsigned long flags;
6284
6285 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6286
6287 if (time_after(jiffies, ratelimit_time)) {
6288 rc = 1;
6289 ratelimit_time = jiffies + (HZ/5);
6290 } else
6291 rc = 0;
6292
6293 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6294
6295 return rc;
6296 }
6297
6298 /**
6299 * ata_wait_register - wait until register value changes
6300 * @reg: IO-mapped register
6301 * @mask: Mask to apply to read register value
6302 * @val: Wait condition
6303 * @interval_msec: polling interval in milliseconds
6304 * @timeout_msec: timeout in milliseconds
6305 *
6306 * Waiting for some bits of register to change is a common
6307 * operation for ATA controllers. This function reads 32bit LE
6308 * IO-mapped register @reg and tests for the following condition.
6309 *
6310 * (*@reg & mask) != val
6311 *
6312 * If the condition is met, it returns; otherwise, the process is
6313 * repeated after @interval_msec until timeout.
6314 *
6315 * LOCKING:
6316 * Kernel thread context (may sleep)
6317 *
6318 * RETURNS:
6319 * The final register value.
6320 */
6321 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6322 unsigned long interval_msec,
6323 unsigned long timeout_msec)
6324 {
6325 unsigned long timeout;
6326 u32 tmp;
6327
6328 tmp = ioread32(reg);
6329
6330 /* Calculate timeout _after_ the first read to make sure
6331 * preceding writes reach the controller before starting to
6332 * eat away the timeout.
6333 */
6334 timeout = jiffies + (timeout_msec * HZ) / 1000;
6335
6336 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6337 msleep(interval_msec);
6338 tmp = ioread32(reg);
6339 }
6340
6341 return tmp;
6342 }
6343
6344 /*
6345 * Dummy port_ops
6346 */
6347 static void ata_dummy_noret(struct ata_port *ap) { }
6348 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6349 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6350
6351 static u8 ata_dummy_check_status(struct ata_port *ap)
6352 {
6353 return ATA_DRDY;
6354 }
6355
6356 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6357 {
6358 return AC_ERR_SYSTEM;
6359 }
6360
6361 const struct ata_port_operations ata_dummy_port_ops = {
6362 .port_disable = ata_port_disable,
6363 .check_status = ata_dummy_check_status,
6364 .check_altstatus = ata_dummy_check_status,
6365 .dev_select = ata_noop_dev_select,
6366 .qc_prep = ata_noop_qc_prep,
6367 .qc_issue = ata_dummy_qc_issue,
6368 .freeze = ata_dummy_noret,
6369 .thaw = ata_dummy_noret,
6370 .error_handler = ata_dummy_noret,
6371 .post_internal_cmd = ata_dummy_qc_noret,
6372 .irq_clear = ata_dummy_noret,
6373 .port_start = ata_dummy_ret0,
6374 .port_stop = ata_dummy_noret,
6375 };
6376
6377 /*
6378 * libata is essentially a library of internal helper functions for
6379 * low-level ATA host controller drivers. As such, the API/ABI is
6380 * likely to change as new drivers are added and updated.
6381 * Do not depend on ABI/API stability.
6382 */
6383
6384 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6385 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6386 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6387 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6388 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6389 EXPORT_SYMBOL_GPL(ata_std_ports);
6390 EXPORT_SYMBOL_GPL(ata_host_init);
6391 EXPORT_SYMBOL_GPL(ata_device_add);
6392 EXPORT_SYMBOL_GPL(ata_port_detach);
6393 EXPORT_SYMBOL_GPL(ata_host_remove);
6394 EXPORT_SYMBOL_GPL(ata_sg_init);
6395 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6396 EXPORT_SYMBOL_GPL(ata_hsm_move);
6397 EXPORT_SYMBOL_GPL(ata_qc_complete);
6398 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6399 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6400 EXPORT_SYMBOL_GPL(ata_tf_load);
6401 EXPORT_SYMBOL_GPL(ata_tf_read);
6402 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6403 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6404 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6405 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6406 EXPORT_SYMBOL_GPL(ata_check_status);
6407 EXPORT_SYMBOL_GPL(ata_altstatus);
6408 EXPORT_SYMBOL_GPL(ata_exec_command);
6409 EXPORT_SYMBOL_GPL(ata_port_start);
6410 EXPORT_SYMBOL_GPL(ata_port_stop);
6411 EXPORT_SYMBOL_GPL(ata_host_stop);
6412 EXPORT_SYMBOL_GPL(ata_interrupt);
6413 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6414 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6415 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6416 EXPORT_SYMBOL_GPL(ata_qc_prep);
6417 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6418 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6419 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6420 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6421 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6422 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6423 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6424 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6425 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6426 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6427 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6428 EXPORT_SYMBOL_GPL(ata_port_probe);
6429 EXPORT_SYMBOL_GPL(sata_set_spd);
6430 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6431 EXPORT_SYMBOL_GPL(sata_phy_resume);
6432 EXPORT_SYMBOL_GPL(sata_phy_reset);
6433 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6434 EXPORT_SYMBOL_GPL(ata_bus_reset);
6435 EXPORT_SYMBOL_GPL(ata_std_prereset);
6436 EXPORT_SYMBOL_GPL(ata_std_softreset);
6437 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6438 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6439 EXPORT_SYMBOL_GPL(ata_std_postreset);
6440 EXPORT_SYMBOL_GPL(ata_dev_classify);
6441 EXPORT_SYMBOL_GPL(ata_dev_pair);
6442 EXPORT_SYMBOL_GPL(ata_port_disable);
6443 EXPORT_SYMBOL_GPL(ata_ratelimit);
6444 EXPORT_SYMBOL_GPL(ata_wait_register);
6445 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6446 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6447 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6448 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6449 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6450 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6451 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6452 EXPORT_SYMBOL_GPL(ata_scsi_release);
6453 EXPORT_SYMBOL_GPL(ata_host_intr);
6454 EXPORT_SYMBOL_GPL(sata_scr_valid);
6455 EXPORT_SYMBOL_GPL(sata_scr_read);
6456 EXPORT_SYMBOL_GPL(sata_scr_write);
6457 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6458 EXPORT_SYMBOL_GPL(ata_port_online);
6459 EXPORT_SYMBOL_GPL(ata_port_offline);
6460 EXPORT_SYMBOL_GPL(ata_host_suspend);
6461 EXPORT_SYMBOL_GPL(ata_host_resume);
6462 EXPORT_SYMBOL_GPL(ata_id_string);
6463 EXPORT_SYMBOL_GPL(ata_id_c_string);
6464 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6465 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6466
6467 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6468 EXPORT_SYMBOL_GPL(ata_timing_compute);
6469 EXPORT_SYMBOL_GPL(ata_timing_merge);
6470
6471 #ifdef CONFIG_PCI
6472 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6473 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6474 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6475 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6476 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6477 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6478 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6479 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6480 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6481 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6482 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6483 #endif /* CONFIG_PCI */
6484
6485 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6486 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6487
6488 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6489 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6490 EXPORT_SYMBOL_GPL(ata_port_abort);
6491 EXPORT_SYMBOL_GPL(ata_port_freeze);
6492 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6493 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6494 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6495 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6496 EXPORT_SYMBOL_GPL(ata_do_eh);