]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/ata/libata-sff.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / drivers / ata / libata-sff.c
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41
42 #include "libata.h"
43
44 static struct workqueue_struct *ata_sff_wq;
45
46 const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
48
49 .qc_prep = ata_noop_qc_prep,
50 .qc_issue = ata_sff_qc_issue,
51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
52
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
55 .prereset = ata_sff_prereset,
56 .softreset = ata_sff_softreset,
57 .hardreset = sata_sff_hardreset,
58 .postreset = ata_sff_postreset,
59 .error_handler = ata_sff_error_handler,
60
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
67 .sff_drain_fifo = ata_sff_drain_fifo,
68
69 .lost_interrupt = ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72
73 /**
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
76 *
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89
90 /**
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
93 *
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
96 *
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
107
108 return ioread8(ap->ioaddr.altstatus_addr);
109 }
110
111 /**
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
114 *
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 u8 status;
126
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
131 return status;
132 }
133 /* Clear INTRQ latch */
134 status = ap->ops->sff_check_status(ap);
135 return status;
136 }
137
138 /**
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
156 }
157
158 /**
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
161 *
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
165 *
166 * LOCKING:
167 * Inherited from caller.
168 */
169
170 void ata_sff_pause(struct ata_port *ap)
171 {
172 ata_sff_sync(ap);
173 ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176
177 /**
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
180 *
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
183 */
184
185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
192 }
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199
200 /**
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
205 *
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
208 *
209 * LOCKING:
210 * Kernel thread context (may sleep).
211 *
212 * RETURNS:
213 * 0 on success, -errno otherwise.
214 */
215 int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
217 {
218 unsigned long timer_start, timeout;
219 u8 status;
220
221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 timer_start = jiffies;
223 timeout = ata_deadline(timer_start, tmout_pat);
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
226 ata_msleep(ap, 50);
227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 }
229
230 if (status != 0xff && (status & ATA_BUSY))
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
234
235 timeout = ata_deadline(timer_start, tmout);
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
238 ata_msleep(ap, 50);
239 status = ap->ops->sff_check_status(ap);
240 }
241
242 if (status == 0xff)
243 return -ENODEV;
244
245 if (status & ATA_BUSY) {
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
249 return -EBUSY;
250 }
251
252 return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255
256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 u8 status = link->ap->ops->sff_check_status(link->ap);
259
260 return ata_check_ready(status);
261 }
262
263 /**
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
267 *
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
270 *
271 * LOCKING:
272 * Kernel thread context (may sleep).
273 *
274 * RETURNS:
275 * 0 on success, -errno otherwise.
276 */
277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282
283 /**
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
287 *
288 * Writes ATA taskfile device control register.
289 *
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303
304 /**
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
308 *
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
312 *
313 * May be used as the dev_select() entry in ata_port_operations.
314 *
315 * LOCKING:
316 * caller.
317 */
318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 u8 tmp;
321
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327 iowrite8(tmp, ap->ioaddr.device_addr);
328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331
332 /**
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
338 *
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
342 *
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
346 *
347 * LOCKING:
348 * caller.
349 */
350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 unsigned int wait, unsigned int can_sleep)
352 {
353 if (ata_msg_probe(ap))
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
356
357 if (wait)
358 ata_wait_idle(ap);
359
360 ap->ops->sff_dev_select(ap, device);
361
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 ata_msleep(ap, 150);
365 ata_wait_idle(ap);
366 }
367 }
368
369 /**
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
372 *
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
375 *
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
378 *
379 * LOCKING:
380 * Inherited from caller.
381 */
382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 struct ata_ioports *ioaddr = &ap->ioaddr;
385
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
389 }
390
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
393
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
397
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402
403 /**
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
407 *
408 * Outputs ATA taskfile to standard ATA host controller.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
422 ata_wait_idle(ap);
423 }
424
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 WARN_ON_ONCE(!ioaddr->ctl_addr);
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
438 }
439
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
452 }
453
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
457 }
458
459 ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462
463 /**
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
467 *
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 struct ata_ioports *ioaddr = &ap->ioaddr;
479
480 tf->command = ata_sff_check_status(ap);
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
487
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
499 WARN_ON_ONCE(1);
500 }
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503
504 /**
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
511 *
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
514 */
515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519 iowrite8(tf->command, ap->ioaddr.command_addr);
520 ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523
524 /**
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
528 *
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
532 *
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
535 */
536 static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
538 {
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
541 }
542
543 /**
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @qc: queued command
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
549 *
550 * Transfer data from/to the device data register by PIO.
551 *
552 * LOCKING:
553 * Inherited from caller.
554 *
555 * RETURNS:
556 * Bytes consumed.
557 */
558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
559 unsigned int buflen, int rw)
560 {
561 struct ata_port *ap = qc->dev->link->ap;
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
564
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
570
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen & 0x01)) {
573 unsigned char pad[2] = { };
574
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
577
578 /*
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
581 */
582 if (rw == READ) {
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
585 } else {
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
588 }
589 words++;
590 }
591
592 return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595
596 /**
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @qc: queued command
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
602 *
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
605 *
606 * LOCKING:
607 * Inherited from caller.
608 *
609 * RETURNS:
610 * Bytes consumed.
611 */
612
613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
614 unsigned int buflen, int rw)
615 {
616 struct ata_device *dev = qc->dev;
617 struct ata_port *ap = dev->link->ap;
618 void __iomem *data_addr = ap->ioaddr.data_addr;
619 unsigned int words = buflen >> 2;
620 int slop = buflen & 3;
621
622 if (!(ap->pflags & ATA_PFLAG_PIO32))
623 return ata_sff_data_xfer(qc, buf, buflen, rw);
624
625 /* Transfer multiple of 4 bytes */
626 if (rw == READ)
627 ioread32_rep(data_addr, buf, words);
628 else
629 iowrite32_rep(data_addr, buf, words);
630
631 /* Transfer trailing bytes, if any */
632 if (unlikely(slop)) {
633 unsigned char pad[4] = { };
634
635 /* Point buf to the tail of buffer */
636 buf += buflen - slop;
637
638 /*
639 * Use io*_rep() accessors here as well to avoid pointlessly
640 * swapping bytes to and from on the big endian machines...
641 */
642 if (rw == READ) {
643 if (slop < 3)
644 ioread16_rep(data_addr, pad, 1);
645 else
646 ioread32_rep(data_addr, pad, 1);
647 memcpy(buf, pad, slop);
648 } else {
649 memcpy(pad, buf, slop);
650 if (slop < 3)
651 iowrite16_rep(data_addr, pad, 1);
652 else
653 iowrite32_rep(data_addr, pad, 1);
654 }
655 }
656 return (buflen + 1) & ~1;
657 }
658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659
660 /**
661 * ata_sff_data_xfer_noirq - Transfer data by PIO
662 * @qc: queued command
663 * @buf: data buffer
664 * @buflen: buffer length
665 * @rw: read/write
666 *
667 * Transfer data from/to the device data register by PIO. Do the
668 * transfer with interrupts disabled.
669 *
670 * LOCKING:
671 * Inherited from caller.
672 *
673 * RETURNS:
674 * Bytes consumed.
675 */
676 unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf,
677 unsigned int buflen, int rw)
678 {
679 unsigned long flags;
680 unsigned int consumed;
681
682 local_irq_save(flags);
683 consumed = ata_sff_data_xfer32(qc, buf, buflen, rw);
684 local_irq_restore(flags);
685
686 return consumed;
687 }
688 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
689
690 /**
691 * ata_pio_sector - Transfer a sector of data.
692 * @qc: Command on going
693 *
694 * Transfer qc->sect_size bytes of data from/to the ATA device.
695 *
696 * LOCKING:
697 * Inherited from caller.
698 */
699 static void ata_pio_sector(struct ata_queued_cmd *qc)
700 {
701 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
702 struct ata_port *ap = qc->ap;
703 struct page *page;
704 unsigned int offset;
705 unsigned char *buf;
706
707 if (qc->curbytes == qc->nbytes - qc->sect_size)
708 ap->hsm_task_state = HSM_ST_LAST;
709
710 page = sg_page(qc->cursg);
711 offset = qc->cursg->offset + qc->cursg_ofs;
712
713 /* get the current page and offset */
714 page = nth_page(page, (offset >> PAGE_SHIFT));
715 offset %= PAGE_SIZE;
716
717 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
718
719 if (PageHighMem(page)) {
720 unsigned long flags;
721
722 /* FIXME: use a bounce buffer */
723 local_irq_save(flags);
724 buf = kmap_atomic(page);
725
726 /* do the actual data transfer */
727 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size,
728 do_write);
729
730 kunmap_atomic(buf);
731 local_irq_restore(flags);
732 } else {
733 buf = page_address(page);
734 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size,
735 do_write);
736 }
737
738 if (!do_write && !PageSlab(page))
739 flush_dcache_page(page);
740
741 qc->curbytes += qc->sect_size;
742 qc->cursg_ofs += qc->sect_size;
743
744 if (qc->cursg_ofs == qc->cursg->length) {
745 qc->cursg = sg_next(qc->cursg);
746 qc->cursg_ofs = 0;
747 }
748 }
749
750 /**
751 * ata_pio_sectors - Transfer one or many sectors.
752 * @qc: Command on going
753 *
754 * Transfer one or many sectors of data from/to the
755 * ATA device for the DRQ request.
756 *
757 * LOCKING:
758 * Inherited from caller.
759 */
760 static void ata_pio_sectors(struct ata_queued_cmd *qc)
761 {
762 if (is_multi_taskfile(&qc->tf)) {
763 /* READ/WRITE MULTIPLE */
764 unsigned int nsect;
765
766 WARN_ON_ONCE(qc->dev->multi_count == 0);
767
768 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
769 qc->dev->multi_count);
770 while (nsect--)
771 ata_pio_sector(qc);
772 } else
773 ata_pio_sector(qc);
774
775 ata_sff_sync(qc->ap); /* flush */
776 }
777
778 /**
779 * atapi_send_cdb - Write CDB bytes to hardware
780 * @ap: Port to which ATAPI device is attached.
781 * @qc: Taskfile currently active
782 *
783 * When device has indicated its readiness to accept
784 * a CDB, this function is called. Send the CDB.
785 *
786 * LOCKING:
787 * caller.
788 */
789 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
790 {
791 /* send SCSI cdb */
792 DPRINTK("send cdb\n");
793 WARN_ON_ONCE(qc->dev->cdb_len < 12);
794
795 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
796 ata_sff_sync(ap);
797 /* FIXME: If the CDB is for DMA do we need to do the transition delay
798 or is bmdma_start guaranteed to do it ? */
799 switch (qc->tf.protocol) {
800 case ATAPI_PROT_PIO:
801 ap->hsm_task_state = HSM_ST;
802 break;
803 case ATAPI_PROT_NODATA:
804 ap->hsm_task_state = HSM_ST_LAST;
805 break;
806 #ifdef CONFIG_ATA_BMDMA
807 case ATAPI_PROT_DMA:
808 ap->hsm_task_state = HSM_ST_LAST;
809 /* initiate bmdma */
810 ap->ops->bmdma_start(qc);
811 break;
812 #endif /* CONFIG_ATA_BMDMA */
813 default:
814 BUG();
815 }
816 }
817
818 /**
819 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
820 * @qc: Command on going
821 * @bytes: number of bytes
822 *
823 * Transfer Transfer data from/to the ATAPI device.
824 *
825 * LOCKING:
826 * Inherited from caller.
827 *
828 */
829 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
830 {
831 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
832 struct ata_port *ap = qc->ap;
833 struct ata_device *dev = qc->dev;
834 struct ata_eh_info *ehi = &dev->link->eh_info;
835 struct scatterlist *sg;
836 struct page *page;
837 unsigned char *buf;
838 unsigned int offset, count, consumed;
839
840 next_sg:
841 sg = qc->cursg;
842 if (unlikely(!sg)) {
843 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
844 "buf=%u cur=%u bytes=%u",
845 qc->nbytes, qc->curbytes, bytes);
846 return -1;
847 }
848
849 page = sg_page(sg);
850 offset = sg->offset + qc->cursg_ofs;
851
852 /* get the current page and offset */
853 page = nth_page(page, (offset >> PAGE_SHIFT));
854 offset %= PAGE_SIZE;
855
856 /* don't overrun current sg */
857 count = min(sg->length - qc->cursg_ofs, bytes);
858
859 /* don't cross page boundaries */
860 count = min(count, (unsigned int)PAGE_SIZE - offset);
861
862 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
863
864 if (PageHighMem(page)) {
865 unsigned long flags;
866
867 /* FIXME: use bounce buffer */
868 local_irq_save(flags);
869 buf = kmap_atomic(page);
870
871 /* do the actual data transfer */
872 consumed = ap->ops->sff_data_xfer(qc, buf + offset,
873 count, rw);
874
875 kunmap_atomic(buf);
876 local_irq_restore(flags);
877 } else {
878 buf = page_address(page);
879 consumed = ap->ops->sff_data_xfer(qc, buf + offset,
880 count, rw);
881 }
882
883 bytes -= min(bytes, consumed);
884 qc->curbytes += count;
885 qc->cursg_ofs += count;
886
887 if (qc->cursg_ofs == sg->length) {
888 qc->cursg = sg_next(qc->cursg);
889 qc->cursg_ofs = 0;
890 }
891
892 /*
893 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
894 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
895 * check correctly as it doesn't know if it is the last request being
896 * made. Somebody should implement a proper sanity check.
897 */
898 if (bytes)
899 goto next_sg;
900 return 0;
901 }
902
903 /**
904 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
905 * @qc: Command on going
906 *
907 * Transfer Transfer data from/to the ATAPI device.
908 *
909 * LOCKING:
910 * Inherited from caller.
911 */
912 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
913 {
914 struct ata_port *ap = qc->ap;
915 struct ata_device *dev = qc->dev;
916 struct ata_eh_info *ehi = &dev->link->eh_info;
917 unsigned int ireason, bc_lo, bc_hi, bytes;
918 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
919
920 /* Abuse qc->result_tf for temp storage of intermediate TF
921 * here to save some kernel stack usage.
922 * For normal completion, qc->result_tf is not relevant. For
923 * error, qc->result_tf is later overwritten by ata_qc_complete().
924 * So, the correctness of qc->result_tf is not affected.
925 */
926 ap->ops->sff_tf_read(ap, &qc->result_tf);
927 ireason = qc->result_tf.nsect;
928 bc_lo = qc->result_tf.lbam;
929 bc_hi = qc->result_tf.lbah;
930 bytes = (bc_hi << 8) | bc_lo;
931
932 /* shall be cleared to zero, indicating xfer of data */
933 if (unlikely(ireason & ATAPI_COD))
934 goto atapi_check;
935
936 /* make sure transfer direction matches expected */
937 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
938 if (unlikely(do_write != i_write))
939 goto atapi_check;
940
941 if (unlikely(!bytes))
942 goto atapi_check;
943
944 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
945
946 if (unlikely(__atapi_pio_bytes(qc, bytes)))
947 goto err_out;
948 ata_sff_sync(ap); /* flush */
949
950 return;
951
952 atapi_check:
953 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
954 ireason, bytes);
955 err_out:
956 qc->err_mask |= AC_ERR_HSM;
957 ap->hsm_task_state = HSM_ST_ERR;
958 }
959
960 /**
961 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
962 * @ap: the target ata_port
963 * @qc: qc on going
964 *
965 * RETURNS:
966 * 1 if ok in workqueue, 0 otherwise.
967 */
968 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
969 struct ata_queued_cmd *qc)
970 {
971 if (qc->tf.flags & ATA_TFLAG_POLLING)
972 return 1;
973
974 if (ap->hsm_task_state == HSM_ST_FIRST) {
975 if (qc->tf.protocol == ATA_PROT_PIO &&
976 (qc->tf.flags & ATA_TFLAG_WRITE))
977 return 1;
978
979 if (ata_is_atapi(qc->tf.protocol) &&
980 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
981 return 1;
982 }
983
984 return 0;
985 }
986
987 /**
988 * ata_hsm_qc_complete - finish a qc running on standard HSM
989 * @qc: Command to complete
990 * @in_wq: 1 if called from workqueue, 0 otherwise
991 *
992 * Finish @qc which is running on standard HSM.
993 *
994 * LOCKING:
995 * If @in_wq is zero, spin_lock_irqsave(host lock).
996 * Otherwise, none on entry and grabs host lock.
997 */
998 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
999 {
1000 struct ata_port *ap = qc->ap;
1001
1002 if (ap->ops->error_handler) {
1003 if (in_wq) {
1004 /* EH might have kicked in while host lock is
1005 * released.
1006 */
1007 qc = ata_qc_from_tag(ap, qc->tag);
1008 if (qc) {
1009 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1010 ata_sff_irq_on(ap);
1011 ata_qc_complete(qc);
1012 } else
1013 ata_port_freeze(ap);
1014 }
1015 } else {
1016 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1017 ata_qc_complete(qc);
1018 else
1019 ata_port_freeze(ap);
1020 }
1021 } else {
1022 if (in_wq) {
1023 ata_sff_irq_on(ap);
1024 ata_qc_complete(qc);
1025 } else
1026 ata_qc_complete(qc);
1027 }
1028 }
1029
1030 /**
1031 * ata_sff_hsm_move - move the HSM to the next state.
1032 * @ap: the target ata_port
1033 * @qc: qc on going
1034 * @status: current device status
1035 * @in_wq: 1 if called from workqueue, 0 otherwise
1036 *
1037 * RETURNS:
1038 * 1 when poll next status needed, 0 otherwise.
1039 */
1040 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1041 u8 status, int in_wq)
1042 {
1043 struct ata_link *link = qc->dev->link;
1044 struct ata_eh_info *ehi = &link->eh_info;
1045 int poll_next;
1046
1047 lockdep_assert_held(ap->lock);
1048
1049 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1050
1051 /* Make sure ata_sff_qc_issue() does not throw things
1052 * like DMA polling into the workqueue. Notice that
1053 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1054 */
1055 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1056
1057 fsm_start:
1058 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1059 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1060
1061 switch (ap->hsm_task_state) {
1062 case HSM_ST_FIRST:
1063 /* Send first data block or PACKET CDB */
1064
1065 /* If polling, we will stay in the work queue after
1066 * sending the data. Otherwise, interrupt handler
1067 * takes over after sending the data.
1068 */
1069 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1070
1071 /* check device status */
1072 if (unlikely((status & ATA_DRQ) == 0)) {
1073 /* handle BSY=0, DRQ=0 as error */
1074 if (likely(status & (ATA_ERR | ATA_DF)))
1075 /* device stops HSM for abort/error */
1076 qc->err_mask |= AC_ERR_DEV;
1077 else {
1078 /* HSM violation. Let EH handle this */
1079 ata_ehi_push_desc(ehi,
1080 "ST_FIRST: !(DRQ|ERR|DF)");
1081 qc->err_mask |= AC_ERR_HSM;
1082 }
1083
1084 ap->hsm_task_state = HSM_ST_ERR;
1085 goto fsm_start;
1086 }
1087
1088 /* Device should not ask for data transfer (DRQ=1)
1089 * when it finds something wrong.
1090 * We ignore DRQ here and stop the HSM by
1091 * changing hsm_task_state to HSM_ST_ERR and
1092 * let the EH abort the command or reset the device.
1093 */
1094 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1095 /* Some ATAPI tape drives forget to clear the ERR bit
1096 * when doing the next command (mostly request sense).
1097 * We ignore ERR here to workaround and proceed sending
1098 * the CDB.
1099 */
1100 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1101 ata_ehi_push_desc(ehi, "ST_FIRST: "
1102 "DRQ=1 with device error, "
1103 "dev_stat 0x%X", status);
1104 qc->err_mask |= AC_ERR_HSM;
1105 ap->hsm_task_state = HSM_ST_ERR;
1106 goto fsm_start;
1107 }
1108 }
1109
1110 if (qc->tf.protocol == ATA_PROT_PIO) {
1111 /* PIO data out protocol.
1112 * send first data block.
1113 */
1114
1115 /* ata_pio_sectors() might change the state
1116 * to HSM_ST_LAST. so, the state is changed here
1117 * before ata_pio_sectors().
1118 */
1119 ap->hsm_task_state = HSM_ST;
1120 ata_pio_sectors(qc);
1121 } else
1122 /* send CDB */
1123 atapi_send_cdb(ap, qc);
1124
1125 /* if polling, ata_sff_pio_task() handles the rest.
1126 * otherwise, interrupt handler takes over from here.
1127 */
1128 break;
1129
1130 case HSM_ST:
1131 /* complete command or read/write the data register */
1132 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1133 /* ATAPI PIO protocol */
1134 if ((status & ATA_DRQ) == 0) {
1135 /* No more data to transfer or device error.
1136 * Device error will be tagged in HSM_ST_LAST.
1137 */
1138 ap->hsm_task_state = HSM_ST_LAST;
1139 goto fsm_start;
1140 }
1141
1142 /* Device should not ask for data transfer (DRQ=1)
1143 * when it finds something wrong.
1144 * We ignore DRQ here and stop the HSM by
1145 * changing hsm_task_state to HSM_ST_ERR and
1146 * let the EH abort the command or reset the device.
1147 */
1148 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1149 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1150 "DRQ=1 with device error, "
1151 "dev_stat 0x%X", status);
1152 qc->err_mask |= AC_ERR_HSM;
1153 ap->hsm_task_state = HSM_ST_ERR;
1154 goto fsm_start;
1155 }
1156
1157 atapi_pio_bytes(qc);
1158
1159 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1160 /* bad ireason reported by device */
1161 goto fsm_start;
1162
1163 } else {
1164 /* ATA PIO protocol */
1165 if (unlikely((status & ATA_DRQ) == 0)) {
1166 /* handle BSY=0, DRQ=0 as error */
1167 if (likely(status & (ATA_ERR | ATA_DF))) {
1168 /* device stops HSM for abort/error */
1169 qc->err_mask |= AC_ERR_DEV;
1170
1171 /* If diagnostic failed and this is
1172 * IDENTIFY, it's likely a phantom
1173 * device. Mark hint.
1174 */
1175 if (qc->dev->horkage &
1176 ATA_HORKAGE_DIAGNOSTIC)
1177 qc->err_mask |=
1178 AC_ERR_NODEV_HINT;
1179 } else {
1180 /* HSM violation. Let EH handle this.
1181 * Phantom devices also trigger this
1182 * condition. Mark hint.
1183 */
1184 ata_ehi_push_desc(ehi, "ST-ATA: "
1185 "DRQ=0 without device error, "
1186 "dev_stat 0x%X", status);
1187 qc->err_mask |= AC_ERR_HSM |
1188 AC_ERR_NODEV_HINT;
1189 }
1190
1191 ap->hsm_task_state = HSM_ST_ERR;
1192 goto fsm_start;
1193 }
1194
1195 /* For PIO reads, some devices may ask for
1196 * data transfer (DRQ=1) alone with ERR=1.
1197 * We respect DRQ here and transfer one
1198 * block of junk data before changing the
1199 * hsm_task_state to HSM_ST_ERR.
1200 *
1201 * For PIO writes, ERR=1 DRQ=1 doesn't make
1202 * sense since the data block has been
1203 * transferred to the device.
1204 */
1205 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1206 /* data might be corrputed */
1207 qc->err_mask |= AC_ERR_DEV;
1208
1209 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1210 ata_pio_sectors(qc);
1211 status = ata_wait_idle(ap);
1212 }
1213
1214 if (status & (ATA_BUSY | ATA_DRQ)) {
1215 ata_ehi_push_desc(ehi, "ST-ATA: "
1216 "BUSY|DRQ persists on ERR|DF, "
1217 "dev_stat 0x%X", status);
1218 qc->err_mask |= AC_ERR_HSM;
1219 }
1220
1221 /* There are oddball controllers with
1222 * status register stuck at 0x7f and
1223 * lbal/m/h at zero which makes it
1224 * pass all other presence detection
1225 * mechanisms we have. Set NODEV_HINT
1226 * for it. Kernel bz#7241.
1227 */
1228 if (status == 0x7f)
1229 qc->err_mask |= AC_ERR_NODEV_HINT;
1230
1231 /* ata_pio_sectors() might change the
1232 * state to HSM_ST_LAST. so, the state
1233 * is changed after ata_pio_sectors().
1234 */
1235 ap->hsm_task_state = HSM_ST_ERR;
1236 goto fsm_start;
1237 }
1238
1239 ata_pio_sectors(qc);
1240
1241 if (ap->hsm_task_state == HSM_ST_LAST &&
1242 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1243 /* all data read */
1244 status = ata_wait_idle(ap);
1245 goto fsm_start;
1246 }
1247 }
1248
1249 poll_next = 1;
1250 break;
1251
1252 case HSM_ST_LAST:
1253 if (unlikely(!ata_ok(status))) {
1254 qc->err_mask |= __ac_err_mask(status);
1255 ap->hsm_task_state = HSM_ST_ERR;
1256 goto fsm_start;
1257 }
1258
1259 /* no more data to transfer */
1260 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1261 ap->print_id, qc->dev->devno, status);
1262
1263 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1264
1265 ap->hsm_task_state = HSM_ST_IDLE;
1266
1267 /* complete taskfile transaction */
1268 ata_hsm_qc_complete(qc, in_wq);
1269
1270 poll_next = 0;
1271 break;
1272
1273 case HSM_ST_ERR:
1274 ap->hsm_task_state = HSM_ST_IDLE;
1275
1276 /* complete taskfile transaction */
1277 ata_hsm_qc_complete(qc, in_wq);
1278
1279 poll_next = 0;
1280 break;
1281 default:
1282 poll_next = 0;
1283 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1284 ap->print_id, ap->hsm_task_state);
1285 }
1286
1287 return poll_next;
1288 }
1289 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1290
1291 void ata_sff_queue_work(struct work_struct *work)
1292 {
1293 queue_work(ata_sff_wq, work);
1294 }
1295 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1296
1297 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1298 {
1299 queue_delayed_work(ata_sff_wq, dwork, delay);
1300 }
1301 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1302
1303 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1304 {
1305 struct ata_port *ap = link->ap;
1306
1307 WARN_ON((ap->sff_pio_task_link != NULL) &&
1308 (ap->sff_pio_task_link != link));
1309 ap->sff_pio_task_link = link;
1310
1311 /* may fail if ata_sff_flush_pio_task() in progress */
1312 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1313 }
1314 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1315
1316 void ata_sff_flush_pio_task(struct ata_port *ap)
1317 {
1318 DPRINTK("ENTER\n");
1319
1320 cancel_delayed_work_sync(&ap->sff_pio_task);
1321
1322 /*
1323 * We wanna reset the HSM state to IDLE. If we do so without
1324 * grabbing the port lock, critical sections protected by it which
1325 * expect the HSM state to stay stable may get surprised. For
1326 * example, we may set IDLE in between the time
1327 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1328 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1329 */
1330 spin_lock_irq(ap->lock);
1331 ap->hsm_task_state = HSM_ST_IDLE;
1332 spin_unlock_irq(ap->lock);
1333
1334 ap->sff_pio_task_link = NULL;
1335
1336 if (ata_msg_ctl(ap))
1337 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1338 }
1339
1340 static void ata_sff_pio_task(struct work_struct *work)
1341 {
1342 struct ata_port *ap =
1343 container_of(work, struct ata_port, sff_pio_task.work);
1344 struct ata_link *link = ap->sff_pio_task_link;
1345 struct ata_queued_cmd *qc;
1346 u8 status;
1347 int poll_next;
1348
1349 spin_lock_irq(ap->lock);
1350
1351 BUG_ON(ap->sff_pio_task_link == NULL);
1352 /* qc can be NULL if timeout occurred */
1353 qc = ata_qc_from_tag(ap, link->active_tag);
1354 if (!qc) {
1355 ap->sff_pio_task_link = NULL;
1356 goto out_unlock;
1357 }
1358
1359 fsm_start:
1360 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1361
1362 /*
1363 * This is purely heuristic. This is a fast path.
1364 * Sometimes when we enter, BSY will be cleared in
1365 * a chk-status or two. If not, the drive is probably seeking
1366 * or something. Snooze for a couple msecs, then
1367 * chk-status again. If still busy, queue delayed work.
1368 */
1369 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1370 if (status & ATA_BUSY) {
1371 spin_unlock_irq(ap->lock);
1372 ata_msleep(ap, 2);
1373 spin_lock_irq(ap->lock);
1374
1375 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1376 if (status & ATA_BUSY) {
1377 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1378 goto out_unlock;
1379 }
1380 }
1381
1382 /*
1383 * hsm_move() may trigger another command to be processed.
1384 * clean the link beforehand.
1385 */
1386 ap->sff_pio_task_link = NULL;
1387 /* move the HSM */
1388 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1389
1390 /* another command or interrupt handler
1391 * may be running at this point.
1392 */
1393 if (poll_next)
1394 goto fsm_start;
1395 out_unlock:
1396 spin_unlock_irq(ap->lock);
1397 }
1398
1399 /**
1400 * ata_sff_qc_issue - issue taskfile to a SFF controller
1401 * @qc: command to issue to device
1402 *
1403 * This function issues a PIO or NODATA command to a SFF
1404 * controller.
1405 *
1406 * LOCKING:
1407 * spin_lock_irqsave(host lock)
1408 *
1409 * RETURNS:
1410 * Zero on success, AC_ERR_* mask on failure
1411 */
1412 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1413 {
1414 struct ata_port *ap = qc->ap;
1415 struct ata_link *link = qc->dev->link;
1416
1417 /* Use polling pio if the LLD doesn't handle
1418 * interrupt driven pio and atapi CDB interrupt.
1419 */
1420 if (ap->flags & ATA_FLAG_PIO_POLLING)
1421 qc->tf.flags |= ATA_TFLAG_POLLING;
1422
1423 /* select the device */
1424 ata_dev_select(ap, qc->dev->devno, 1, 0);
1425
1426 /* start the command */
1427 switch (qc->tf.protocol) {
1428 case ATA_PROT_NODATA:
1429 if (qc->tf.flags & ATA_TFLAG_POLLING)
1430 ata_qc_set_polling(qc);
1431
1432 ata_tf_to_host(ap, &qc->tf);
1433 ap->hsm_task_state = HSM_ST_LAST;
1434
1435 if (qc->tf.flags & ATA_TFLAG_POLLING)
1436 ata_sff_queue_pio_task(link, 0);
1437
1438 break;
1439
1440 case ATA_PROT_PIO:
1441 if (qc->tf.flags & ATA_TFLAG_POLLING)
1442 ata_qc_set_polling(qc);
1443
1444 ata_tf_to_host(ap, &qc->tf);
1445
1446 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1447 /* PIO data out protocol */
1448 ap->hsm_task_state = HSM_ST_FIRST;
1449 ata_sff_queue_pio_task(link, 0);
1450
1451 /* always send first data block using the
1452 * ata_sff_pio_task() codepath.
1453 */
1454 } else {
1455 /* PIO data in protocol */
1456 ap->hsm_task_state = HSM_ST;
1457
1458 if (qc->tf.flags & ATA_TFLAG_POLLING)
1459 ata_sff_queue_pio_task(link, 0);
1460
1461 /* if polling, ata_sff_pio_task() handles the
1462 * rest. otherwise, interrupt handler takes
1463 * over from here.
1464 */
1465 }
1466
1467 break;
1468
1469 case ATAPI_PROT_PIO:
1470 case ATAPI_PROT_NODATA:
1471 if (qc->tf.flags & ATA_TFLAG_POLLING)
1472 ata_qc_set_polling(qc);
1473
1474 ata_tf_to_host(ap, &qc->tf);
1475
1476 ap->hsm_task_state = HSM_ST_FIRST;
1477
1478 /* send cdb by polling if no cdb interrupt */
1479 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1480 (qc->tf.flags & ATA_TFLAG_POLLING))
1481 ata_sff_queue_pio_task(link, 0);
1482 break;
1483
1484 default:
1485 WARN_ON_ONCE(1);
1486 return AC_ERR_SYSTEM;
1487 }
1488
1489 return 0;
1490 }
1491 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1492
1493 /**
1494 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1495 * @qc: qc to fill result TF for
1496 *
1497 * @qc is finished and result TF needs to be filled. Fill it
1498 * using ->sff_tf_read.
1499 *
1500 * LOCKING:
1501 * spin_lock_irqsave(host lock)
1502 *
1503 * RETURNS:
1504 * true indicating that result TF is successfully filled.
1505 */
1506 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1507 {
1508 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1509 return true;
1510 }
1511 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1512
1513 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1514 {
1515 ap->stats.idle_irq++;
1516
1517 #ifdef ATA_IRQ_TRAP
1518 if ((ap->stats.idle_irq % 1000) == 0) {
1519 ap->ops->sff_check_status(ap);
1520 if (ap->ops->sff_irq_clear)
1521 ap->ops->sff_irq_clear(ap);
1522 ata_port_warn(ap, "irq trap\n");
1523 return 1;
1524 }
1525 #endif
1526 return 0; /* irq not handled */
1527 }
1528
1529 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1530 struct ata_queued_cmd *qc,
1531 bool hsmv_on_idle)
1532 {
1533 u8 status;
1534
1535 VPRINTK("ata%u: protocol %d task_state %d\n",
1536 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1537
1538 /* Check whether we are expecting interrupt in this state */
1539 switch (ap->hsm_task_state) {
1540 case HSM_ST_FIRST:
1541 /* Some pre-ATAPI-4 devices assert INTRQ
1542 * at this state when ready to receive CDB.
1543 */
1544
1545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1546 * The flag was turned on only for atapi devices. No
1547 * need to check ata_is_atapi(qc->tf.protocol) again.
1548 */
1549 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1550 return ata_sff_idle_irq(ap);
1551 break;
1552 case HSM_ST_IDLE:
1553 return ata_sff_idle_irq(ap);
1554 default:
1555 break;
1556 }
1557
1558 /* check main status, clearing INTRQ if needed */
1559 status = ata_sff_irq_status(ap);
1560 if (status & ATA_BUSY) {
1561 if (hsmv_on_idle) {
1562 /* BMDMA engine is already stopped, we're screwed */
1563 qc->err_mask |= AC_ERR_HSM;
1564 ap->hsm_task_state = HSM_ST_ERR;
1565 } else
1566 return ata_sff_idle_irq(ap);
1567 }
1568
1569 /* clear irq events */
1570 if (ap->ops->sff_irq_clear)
1571 ap->ops->sff_irq_clear(ap);
1572
1573 ata_sff_hsm_move(ap, qc, status, 0);
1574
1575 return 1; /* irq handled */
1576 }
1577
1578 /**
1579 * ata_sff_port_intr - Handle SFF port interrupt
1580 * @ap: Port on which interrupt arrived (possibly...)
1581 * @qc: Taskfile currently active in engine
1582 *
1583 * Handle port interrupt for given queued command.
1584 *
1585 * LOCKING:
1586 * spin_lock_irqsave(host lock)
1587 *
1588 * RETURNS:
1589 * One if interrupt was handled, zero if not (shared irq).
1590 */
1591 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1592 {
1593 return __ata_sff_port_intr(ap, qc, false);
1594 }
1595 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1596
1597 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1598 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1599 {
1600 struct ata_host *host = dev_instance;
1601 bool retried = false;
1602 unsigned int i;
1603 unsigned int handled, idle, polling;
1604 unsigned long flags;
1605
1606 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1607 spin_lock_irqsave(&host->lock, flags);
1608
1609 retry:
1610 handled = idle = polling = 0;
1611 for (i = 0; i < host->n_ports; i++) {
1612 struct ata_port *ap = host->ports[i];
1613 struct ata_queued_cmd *qc;
1614
1615 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1616 if (qc) {
1617 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1618 handled |= port_intr(ap, qc);
1619 else
1620 polling |= 1 << i;
1621 } else
1622 idle |= 1 << i;
1623 }
1624
1625 /*
1626 * If no port was expecting IRQ but the controller is actually
1627 * asserting IRQ line, nobody cared will ensue. Check IRQ
1628 * pending status if available and clear spurious IRQ.
1629 */
1630 if (!handled && !retried) {
1631 bool retry = false;
1632
1633 for (i = 0; i < host->n_ports; i++) {
1634 struct ata_port *ap = host->ports[i];
1635
1636 if (polling & (1 << i))
1637 continue;
1638
1639 if (!ap->ops->sff_irq_check ||
1640 !ap->ops->sff_irq_check(ap))
1641 continue;
1642
1643 if (idle & (1 << i)) {
1644 ap->ops->sff_check_status(ap);
1645 if (ap->ops->sff_irq_clear)
1646 ap->ops->sff_irq_clear(ap);
1647 } else {
1648 /* clear INTRQ and check if BUSY cleared */
1649 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1650 retry |= true;
1651 /*
1652 * With command in flight, we can't do
1653 * sff_irq_clear() w/o racing with completion.
1654 */
1655 }
1656 }
1657
1658 if (retry) {
1659 retried = true;
1660 goto retry;
1661 }
1662 }
1663
1664 spin_unlock_irqrestore(&host->lock, flags);
1665
1666 return IRQ_RETVAL(handled);
1667 }
1668
1669 /**
1670 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1671 * @irq: irq line (unused)
1672 * @dev_instance: pointer to our ata_host information structure
1673 *
1674 * Default interrupt handler for PCI IDE devices. Calls
1675 * ata_sff_port_intr() for each port that is not disabled.
1676 *
1677 * LOCKING:
1678 * Obtains host lock during operation.
1679 *
1680 * RETURNS:
1681 * IRQ_NONE or IRQ_HANDLED.
1682 */
1683 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1684 {
1685 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1686 }
1687 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1688
1689 /**
1690 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1691 * @ap: port that appears to have timed out
1692 *
1693 * Called from the libata error handlers when the core code suspects
1694 * an interrupt has been lost. If it has complete anything we can and
1695 * then return. Interface must support altstatus for this faster
1696 * recovery to occur.
1697 *
1698 * Locking:
1699 * Caller holds host lock
1700 */
1701
1702 void ata_sff_lost_interrupt(struct ata_port *ap)
1703 {
1704 u8 status;
1705 struct ata_queued_cmd *qc;
1706
1707 /* Only one outstanding command per SFF channel */
1708 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1709 /* We cannot lose an interrupt on a non-existent or polled command */
1710 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1711 return;
1712 /* See if the controller thinks it is still busy - if so the command
1713 isn't a lost IRQ but is still in progress */
1714 status = ata_sff_altstatus(ap);
1715 if (status & ATA_BUSY)
1716 return;
1717
1718 /* There was a command running, we are no longer busy and we have
1719 no interrupt. */
1720 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1721 status);
1722 /* Run the host interrupt logic as if the interrupt had not been
1723 lost */
1724 ata_sff_port_intr(ap, qc);
1725 }
1726 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1727
1728 /**
1729 * ata_sff_freeze - Freeze SFF controller port
1730 * @ap: port to freeze
1731 *
1732 * Freeze SFF controller port.
1733 *
1734 * LOCKING:
1735 * Inherited from caller.
1736 */
1737 void ata_sff_freeze(struct ata_port *ap)
1738 {
1739 ap->ctl |= ATA_NIEN;
1740 ap->last_ctl = ap->ctl;
1741
1742 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1743 ata_sff_set_devctl(ap, ap->ctl);
1744
1745 /* Under certain circumstances, some controllers raise IRQ on
1746 * ATA_NIEN manipulation. Also, many controllers fail to mask
1747 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1748 */
1749 ap->ops->sff_check_status(ap);
1750
1751 if (ap->ops->sff_irq_clear)
1752 ap->ops->sff_irq_clear(ap);
1753 }
1754 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1755
1756 /**
1757 * ata_sff_thaw - Thaw SFF controller port
1758 * @ap: port to thaw
1759 *
1760 * Thaw SFF controller port.
1761 *
1762 * LOCKING:
1763 * Inherited from caller.
1764 */
1765 void ata_sff_thaw(struct ata_port *ap)
1766 {
1767 /* clear & re-enable interrupts */
1768 ap->ops->sff_check_status(ap);
1769 if (ap->ops->sff_irq_clear)
1770 ap->ops->sff_irq_clear(ap);
1771 ata_sff_irq_on(ap);
1772 }
1773 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1774
1775 /**
1776 * ata_sff_prereset - prepare SFF link for reset
1777 * @link: SFF link to be reset
1778 * @deadline: deadline jiffies for the operation
1779 *
1780 * SFF link @link is about to be reset. Initialize it. It first
1781 * calls ata_std_prereset() and wait for !BSY if the port is
1782 * being softreset.
1783 *
1784 * LOCKING:
1785 * Kernel thread context (may sleep)
1786 *
1787 * RETURNS:
1788 * 0 on success, -errno otherwise.
1789 */
1790 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1791 {
1792 struct ata_eh_context *ehc = &link->eh_context;
1793 int rc;
1794
1795 rc = ata_std_prereset(link, deadline);
1796 if (rc)
1797 return rc;
1798
1799 /* if we're about to do hardreset, nothing more to do */
1800 if (ehc->i.action & ATA_EH_HARDRESET)
1801 return 0;
1802
1803 /* wait for !BSY if we don't know that no device is attached */
1804 if (!ata_link_offline(link)) {
1805 rc = ata_sff_wait_ready(link, deadline);
1806 if (rc && rc != -ENODEV) {
1807 ata_link_warn(link,
1808 "device not ready (errno=%d), forcing hardreset\n",
1809 rc);
1810 ehc->i.action |= ATA_EH_HARDRESET;
1811 }
1812 }
1813
1814 return 0;
1815 }
1816 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1817
1818 /**
1819 * ata_devchk - PATA device presence detection
1820 * @ap: ATA channel to examine
1821 * @device: Device to examine (starting at zero)
1822 *
1823 * This technique was originally described in
1824 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1825 * later found its way into the ATA/ATAPI spec.
1826 *
1827 * Write a pattern to the ATA shadow registers,
1828 * and if a device is present, it will respond by
1829 * correctly storing and echoing back the
1830 * ATA shadow register contents.
1831 *
1832 * LOCKING:
1833 * caller.
1834 */
1835 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1836 {
1837 struct ata_ioports *ioaddr = &ap->ioaddr;
1838 u8 nsect, lbal;
1839
1840 ap->ops->sff_dev_select(ap, device);
1841
1842 iowrite8(0x55, ioaddr->nsect_addr);
1843 iowrite8(0xaa, ioaddr->lbal_addr);
1844
1845 iowrite8(0xaa, ioaddr->nsect_addr);
1846 iowrite8(0x55, ioaddr->lbal_addr);
1847
1848 iowrite8(0x55, ioaddr->nsect_addr);
1849 iowrite8(0xaa, ioaddr->lbal_addr);
1850
1851 nsect = ioread8(ioaddr->nsect_addr);
1852 lbal = ioread8(ioaddr->lbal_addr);
1853
1854 if ((nsect == 0x55) && (lbal == 0xaa))
1855 return 1; /* we found a device */
1856
1857 return 0; /* nothing found */
1858 }
1859
1860 /**
1861 * ata_sff_dev_classify - Parse returned ATA device signature
1862 * @dev: ATA device to classify (starting at zero)
1863 * @present: device seems present
1864 * @r_err: Value of error register on completion
1865 *
1866 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1867 * an ATA/ATAPI-defined set of values is placed in the ATA
1868 * shadow registers, indicating the results of device detection
1869 * and diagnostics.
1870 *
1871 * Select the ATA device, and read the values from the ATA shadow
1872 * registers. Then parse according to the Error register value,
1873 * and the spec-defined values examined by ata_dev_classify().
1874 *
1875 * LOCKING:
1876 * caller.
1877 *
1878 * RETURNS:
1879 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1880 */
1881 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1882 u8 *r_err)
1883 {
1884 struct ata_port *ap = dev->link->ap;
1885 struct ata_taskfile tf;
1886 unsigned int class;
1887 u8 err;
1888
1889 ap->ops->sff_dev_select(ap, dev->devno);
1890
1891 memset(&tf, 0, sizeof(tf));
1892
1893 ap->ops->sff_tf_read(ap, &tf);
1894 err = tf.feature;
1895 if (r_err)
1896 *r_err = err;
1897
1898 /* see if device passed diags: continue and warn later */
1899 if (err == 0)
1900 /* diagnostic fail : do nothing _YET_ */
1901 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1902 else if (err == 1)
1903 /* do nothing */ ;
1904 else if ((dev->devno == 0) && (err == 0x81))
1905 /* do nothing */ ;
1906 else
1907 return ATA_DEV_NONE;
1908
1909 /* determine if device is ATA or ATAPI */
1910 class = ata_dev_classify(&tf);
1911
1912 if (class == ATA_DEV_UNKNOWN) {
1913 /* If the device failed diagnostic, it's likely to
1914 * have reported incorrect device signature too.
1915 * Assume ATA device if the device seems present but
1916 * device signature is invalid with diagnostic
1917 * failure.
1918 */
1919 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1920 class = ATA_DEV_ATA;
1921 else
1922 class = ATA_DEV_NONE;
1923 } else if ((class == ATA_DEV_ATA) &&
1924 (ap->ops->sff_check_status(ap) == 0))
1925 class = ATA_DEV_NONE;
1926
1927 return class;
1928 }
1929 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1930
1931 /**
1932 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1933 * @link: SFF link which is just reset
1934 * @devmask: mask of present devices
1935 * @deadline: deadline jiffies for the operation
1936 *
1937 * Wait devices attached to SFF @link to become ready after
1938 * reset. It contains preceding 150ms wait to avoid accessing TF
1939 * status register too early.
1940 *
1941 * LOCKING:
1942 * Kernel thread context (may sleep).
1943 *
1944 * RETURNS:
1945 * 0 on success, -ENODEV if some or all of devices in @devmask
1946 * don't seem to exist. -errno on other errors.
1947 */
1948 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1949 unsigned long deadline)
1950 {
1951 struct ata_port *ap = link->ap;
1952 struct ata_ioports *ioaddr = &ap->ioaddr;
1953 unsigned int dev0 = devmask & (1 << 0);
1954 unsigned int dev1 = devmask & (1 << 1);
1955 int rc, ret = 0;
1956
1957 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1958
1959 /* always check readiness of the master device */
1960 rc = ata_sff_wait_ready(link, deadline);
1961 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1962 * and TF status is 0xff, bail out on it too.
1963 */
1964 if (rc)
1965 return rc;
1966
1967 /* if device 1 was found in ata_devchk, wait for register
1968 * access briefly, then wait for BSY to clear.
1969 */
1970 if (dev1) {
1971 int i;
1972
1973 ap->ops->sff_dev_select(ap, 1);
1974
1975 /* Wait for register access. Some ATAPI devices fail
1976 * to set nsect/lbal after reset, so don't waste too
1977 * much time on it. We're gonna wait for !BSY anyway.
1978 */
1979 for (i = 0; i < 2; i++) {
1980 u8 nsect, lbal;
1981
1982 nsect = ioread8(ioaddr->nsect_addr);
1983 lbal = ioread8(ioaddr->lbal_addr);
1984 if ((nsect == 1) && (lbal == 1))
1985 break;
1986 ata_msleep(ap, 50); /* give drive a breather */
1987 }
1988
1989 rc = ata_sff_wait_ready(link, deadline);
1990 if (rc) {
1991 if (rc != -ENODEV)
1992 return rc;
1993 ret = rc;
1994 }
1995 }
1996
1997 /* is all this really necessary? */
1998 ap->ops->sff_dev_select(ap, 0);
1999 if (dev1)
2000 ap->ops->sff_dev_select(ap, 1);
2001 if (dev0)
2002 ap->ops->sff_dev_select(ap, 0);
2003
2004 return ret;
2005 }
2006 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2007
2008 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2009 unsigned long deadline)
2010 {
2011 struct ata_ioports *ioaddr = &ap->ioaddr;
2012
2013 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2014
2015 if (ap->ioaddr.ctl_addr) {
2016 /* software reset. causes dev0 to be selected */
2017 iowrite8(ap->ctl, ioaddr->ctl_addr);
2018 udelay(20); /* FIXME: flush */
2019 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2020 udelay(20); /* FIXME: flush */
2021 iowrite8(ap->ctl, ioaddr->ctl_addr);
2022 ap->last_ctl = ap->ctl;
2023 }
2024
2025 /* wait the port to become ready */
2026 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2027 }
2028
2029 /**
2030 * ata_sff_softreset - reset host port via ATA SRST
2031 * @link: ATA link to reset
2032 * @classes: resulting classes of attached devices
2033 * @deadline: deadline jiffies for the operation
2034 *
2035 * Reset host port using ATA SRST.
2036 *
2037 * LOCKING:
2038 * Kernel thread context (may sleep)
2039 *
2040 * RETURNS:
2041 * 0 on success, -errno otherwise.
2042 */
2043 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2044 unsigned long deadline)
2045 {
2046 struct ata_port *ap = link->ap;
2047 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2048 unsigned int devmask = 0;
2049 int rc;
2050 u8 err;
2051
2052 DPRINTK("ENTER\n");
2053
2054 /* determine if device 0/1 are present */
2055 if (ata_devchk(ap, 0))
2056 devmask |= (1 << 0);
2057 if (slave_possible && ata_devchk(ap, 1))
2058 devmask |= (1 << 1);
2059
2060 /* select device 0 again */
2061 ap->ops->sff_dev_select(ap, 0);
2062
2063 /* issue bus reset */
2064 DPRINTK("about to softreset, devmask=%x\n", devmask);
2065 rc = ata_bus_softreset(ap, devmask, deadline);
2066 /* if link is occupied, -ENODEV too is an error */
2067 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2068 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2069 return rc;
2070 }
2071
2072 /* determine by signature whether we have ATA or ATAPI devices */
2073 classes[0] = ata_sff_dev_classify(&link->device[0],
2074 devmask & (1 << 0), &err);
2075 if (slave_possible && err != 0x81)
2076 classes[1] = ata_sff_dev_classify(&link->device[1],
2077 devmask & (1 << 1), &err);
2078
2079 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2080 return 0;
2081 }
2082 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2083
2084 /**
2085 * sata_sff_hardreset - reset host port via SATA phy reset
2086 * @link: link to reset
2087 * @class: resulting class of attached device
2088 * @deadline: deadline jiffies for the operation
2089 *
2090 * SATA phy-reset host port using DET bits of SControl register,
2091 * wait for !BSY and classify the attached device.
2092 *
2093 * LOCKING:
2094 * Kernel thread context (may sleep)
2095 *
2096 * RETURNS:
2097 * 0 on success, -errno otherwise.
2098 */
2099 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2100 unsigned long deadline)
2101 {
2102 struct ata_eh_context *ehc = &link->eh_context;
2103 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2104 bool online;
2105 int rc;
2106
2107 rc = sata_link_hardreset(link, timing, deadline, &online,
2108 ata_sff_check_ready);
2109 if (online)
2110 *class = ata_sff_dev_classify(link->device, 1, NULL);
2111
2112 DPRINTK("EXIT, class=%u\n", *class);
2113 return rc;
2114 }
2115 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2116
2117 /**
2118 * ata_sff_postreset - SFF postreset callback
2119 * @link: the target SFF ata_link
2120 * @classes: classes of attached devices
2121 *
2122 * This function is invoked after a successful reset. It first
2123 * calls ata_std_postreset() and performs SFF specific postreset
2124 * processing.
2125 *
2126 * LOCKING:
2127 * Kernel thread context (may sleep)
2128 */
2129 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2130 {
2131 struct ata_port *ap = link->ap;
2132
2133 ata_std_postreset(link, classes);
2134
2135 /* is double-select really necessary? */
2136 if (classes[0] != ATA_DEV_NONE)
2137 ap->ops->sff_dev_select(ap, 1);
2138 if (classes[1] != ATA_DEV_NONE)
2139 ap->ops->sff_dev_select(ap, 0);
2140
2141 /* bail out if no device is present */
2142 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2143 DPRINTK("EXIT, no device\n");
2144 return;
2145 }
2146
2147 /* set up device control */
2148 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2149 ata_sff_set_devctl(ap, ap->ctl);
2150 ap->last_ctl = ap->ctl;
2151 }
2152 }
2153 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2154
2155 /**
2156 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2157 * @qc: command
2158 *
2159 * Drain the FIFO and device of any stuck data following a command
2160 * failing to complete. In some cases this is necessary before a
2161 * reset will recover the device.
2162 *
2163 */
2164
2165 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2166 {
2167 int count;
2168 struct ata_port *ap;
2169
2170 /* We only need to flush incoming data when a command was running */
2171 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2172 return;
2173
2174 ap = qc->ap;
2175 /* Drain up to 64K of data before we give up this recovery method */
2176 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2177 && count < 65536; count += 2)
2178 ioread16(ap->ioaddr.data_addr);
2179
2180 /* Can become DEBUG later */
2181 if (count)
2182 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2183
2184 }
2185 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2186
2187 /**
2188 * ata_sff_error_handler - Stock error handler for SFF controller
2189 * @ap: port to handle error for
2190 *
2191 * Stock error handler for SFF controller. It can handle both
2192 * PATA and SATA controllers. Many controllers should be able to
2193 * use this EH as-is or with some added handling before and
2194 * after.
2195 *
2196 * LOCKING:
2197 * Kernel thread context (may sleep)
2198 */
2199 void ata_sff_error_handler(struct ata_port *ap)
2200 {
2201 ata_reset_fn_t softreset = ap->ops->softreset;
2202 ata_reset_fn_t hardreset = ap->ops->hardreset;
2203 struct ata_queued_cmd *qc;
2204 unsigned long flags;
2205
2206 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2207 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2208 qc = NULL;
2209
2210 spin_lock_irqsave(ap->lock, flags);
2211
2212 /*
2213 * We *MUST* do FIFO draining before we issue a reset as
2214 * several devices helpfully clear their internal state and
2215 * will lock solid if we touch the data port post reset. Pass
2216 * qc in case anyone wants to do different PIO/DMA recovery or
2217 * has per command fixups
2218 */
2219 if (ap->ops->sff_drain_fifo)
2220 ap->ops->sff_drain_fifo(qc);
2221
2222 spin_unlock_irqrestore(ap->lock, flags);
2223
2224 /* ignore built-in hardresets if SCR access is not available */
2225 if ((hardreset == sata_std_hardreset ||
2226 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2227 hardreset = NULL;
2228
2229 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2230 ap->ops->postreset);
2231 }
2232 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2233
2234 /**
2235 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2236 * @ioaddr: IO address structure to be initialized
2237 *
2238 * Utility function which initializes data_addr, error_addr,
2239 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2240 * device_addr, status_addr, and command_addr to standard offsets
2241 * relative to cmd_addr.
2242 *
2243 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2244 */
2245 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2246 {
2247 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2248 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2249 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2250 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2251 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2252 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2253 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2254 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2255 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2256 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2257 }
2258 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2259
2260 #ifdef CONFIG_PCI
2261
2262 static int ata_resources_present(struct pci_dev *pdev, int port)
2263 {
2264 int i;
2265
2266 /* Check the PCI resources for this channel are enabled */
2267 port = port * 2;
2268 for (i = 0; i < 2; i++) {
2269 if (pci_resource_start(pdev, port + i) == 0 ||
2270 pci_resource_len(pdev, port + i) == 0)
2271 return 0;
2272 }
2273 return 1;
2274 }
2275
2276 /**
2277 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2278 * @host: target ATA host
2279 *
2280 * Acquire native PCI ATA resources for @host and initialize the
2281 * first two ports of @host accordingly. Ports marked dummy are
2282 * skipped and allocation failure makes the port dummy.
2283 *
2284 * Note that native PCI resources are valid even for legacy hosts
2285 * as we fix up pdev resources array early in boot, so this
2286 * function can be used for both native and legacy SFF hosts.
2287 *
2288 * LOCKING:
2289 * Inherited from calling layer (may sleep).
2290 *
2291 * RETURNS:
2292 * 0 if at least one port is initialized, -ENODEV if no port is
2293 * available.
2294 */
2295 int ata_pci_sff_init_host(struct ata_host *host)
2296 {
2297 struct device *gdev = host->dev;
2298 struct pci_dev *pdev = to_pci_dev(gdev);
2299 unsigned int mask = 0;
2300 int i, rc;
2301
2302 /* request, iomap BARs and init port addresses accordingly */
2303 for (i = 0; i < 2; i++) {
2304 struct ata_port *ap = host->ports[i];
2305 int base = i * 2;
2306 void __iomem * const *iomap;
2307
2308 if (ata_port_is_dummy(ap))
2309 continue;
2310
2311 /* Discard disabled ports. Some controllers show
2312 * their unused channels this way. Disabled ports are
2313 * made dummy.
2314 */
2315 if (!ata_resources_present(pdev, i)) {
2316 ap->ops = &ata_dummy_port_ops;
2317 continue;
2318 }
2319
2320 rc = pcim_iomap_regions(pdev, 0x3 << base,
2321 dev_driver_string(gdev));
2322 if (rc) {
2323 dev_warn(gdev,
2324 "failed to request/iomap BARs for port %d (errno=%d)\n",
2325 i, rc);
2326 if (rc == -EBUSY)
2327 pcim_pin_device(pdev);
2328 ap->ops = &ata_dummy_port_ops;
2329 continue;
2330 }
2331 host->iomap = iomap = pcim_iomap_table(pdev);
2332
2333 ap->ioaddr.cmd_addr = iomap[base];
2334 ap->ioaddr.altstatus_addr =
2335 ap->ioaddr.ctl_addr = (void __iomem *)
2336 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2337 ata_sff_std_ports(&ap->ioaddr);
2338
2339 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2340 (unsigned long long)pci_resource_start(pdev, base),
2341 (unsigned long long)pci_resource_start(pdev, base + 1));
2342
2343 mask |= 1 << i;
2344 }
2345
2346 if (!mask) {
2347 dev_err(gdev, "no available native port\n");
2348 return -ENODEV;
2349 }
2350
2351 return 0;
2352 }
2353 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2354
2355 /**
2356 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2357 * @pdev: target PCI device
2358 * @ppi: array of port_info, must be enough for two ports
2359 * @r_host: out argument for the initialized ATA host
2360 *
2361 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2362 * all PCI resources and initialize it accordingly in one go.
2363 *
2364 * LOCKING:
2365 * Inherited from calling layer (may sleep).
2366 *
2367 * RETURNS:
2368 * 0 on success, -errno otherwise.
2369 */
2370 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2371 const struct ata_port_info * const *ppi,
2372 struct ata_host **r_host)
2373 {
2374 struct ata_host *host;
2375 int rc;
2376
2377 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2378 return -ENOMEM;
2379
2380 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2381 if (!host) {
2382 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2383 rc = -ENOMEM;
2384 goto err_out;
2385 }
2386
2387 rc = ata_pci_sff_init_host(host);
2388 if (rc)
2389 goto err_out;
2390
2391 devres_remove_group(&pdev->dev, NULL);
2392 *r_host = host;
2393 return 0;
2394
2395 err_out:
2396 devres_release_group(&pdev->dev, NULL);
2397 return rc;
2398 }
2399 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2400
2401 /**
2402 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2403 * @host: target SFF ATA host
2404 * @irq_handler: irq_handler used when requesting IRQ(s)
2405 * @sht: scsi_host_template to use when registering the host
2406 *
2407 * This is the counterpart of ata_host_activate() for SFF ATA
2408 * hosts. This separate helper is necessary because SFF hosts
2409 * use two separate interrupts in legacy mode.
2410 *
2411 * LOCKING:
2412 * Inherited from calling layer (may sleep).
2413 *
2414 * RETURNS:
2415 * 0 on success, -errno otherwise.
2416 */
2417 int ata_pci_sff_activate_host(struct ata_host *host,
2418 irq_handler_t irq_handler,
2419 struct scsi_host_template *sht)
2420 {
2421 struct device *dev = host->dev;
2422 struct pci_dev *pdev = to_pci_dev(dev);
2423 const char *drv_name = dev_driver_string(host->dev);
2424 int legacy_mode = 0, rc;
2425
2426 rc = ata_host_start(host);
2427 if (rc)
2428 return rc;
2429
2430 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2431 u8 tmp8, mask = 0;
2432
2433 /*
2434 * ATA spec says we should use legacy mode when one
2435 * port is in legacy mode, but disabled ports on some
2436 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2437 * on which the secondary port is not wired, so
2438 * ignore ports that are marked as 'dummy' during
2439 * this check
2440 */
2441 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2442 if (!ata_port_is_dummy(host->ports[0]))
2443 mask |= (1 << 0);
2444 if (!ata_port_is_dummy(host->ports[1]))
2445 mask |= (1 << 2);
2446 if ((tmp8 & mask) != mask)
2447 legacy_mode = 1;
2448 }
2449
2450 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2451 return -ENOMEM;
2452
2453 if (!legacy_mode && pdev->irq) {
2454 int i;
2455
2456 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2457 IRQF_SHARED, drv_name, host);
2458 if (rc)
2459 goto out;
2460
2461 for (i = 0; i < 2; i++) {
2462 if (ata_port_is_dummy(host->ports[i]))
2463 continue;
2464 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2465 }
2466 } else if (legacy_mode) {
2467 if (!ata_port_is_dummy(host->ports[0])) {
2468 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2469 irq_handler, IRQF_SHARED,
2470 drv_name, host);
2471 if (rc)
2472 goto out;
2473
2474 ata_port_desc(host->ports[0], "irq %d",
2475 ATA_PRIMARY_IRQ(pdev));
2476 }
2477
2478 if (!ata_port_is_dummy(host->ports[1])) {
2479 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2480 irq_handler, IRQF_SHARED,
2481 drv_name, host);
2482 if (rc)
2483 goto out;
2484
2485 ata_port_desc(host->ports[1], "irq %d",
2486 ATA_SECONDARY_IRQ(pdev));
2487 }
2488 }
2489
2490 rc = ata_host_register(host, sht);
2491 out:
2492 if (rc == 0)
2493 devres_remove_group(dev, NULL);
2494 else
2495 devres_release_group(dev, NULL);
2496
2497 return rc;
2498 }
2499 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2500
2501 static const struct ata_port_info *ata_sff_find_valid_pi(
2502 const struct ata_port_info * const *ppi)
2503 {
2504 int i;
2505
2506 /* look up the first valid port_info */
2507 for (i = 0; i < 2 && ppi[i]; i++)
2508 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2509 return ppi[i];
2510
2511 return NULL;
2512 }
2513
2514 static int ata_pci_init_one(struct pci_dev *pdev,
2515 const struct ata_port_info * const *ppi,
2516 struct scsi_host_template *sht, void *host_priv,
2517 int hflags, bool bmdma)
2518 {
2519 struct device *dev = &pdev->dev;
2520 const struct ata_port_info *pi;
2521 struct ata_host *host = NULL;
2522 int rc;
2523
2524 DPRINTK("ENTER\n");
2525
2526 pi = ata_sff_find_valid_pi(ppi);
2527 if (!pi) {
2528 dev_err(&pdev->dev, "no valid port_info specified\n");
2529 return -EINVAL;
2530 }
2531
2532 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2533 return -ENOMEM;
2534
2535 rc = pcim_enable_device(pdev);
2536 if (rc)
2537 goto out;
2538
2539 #ifdef CONFIG_ATA_BMDMA
2540 if (bmdma)
2541 /* prepare and activate BMDMA host */
2542 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2543 else
2544 #endif
2545 /* prepare and activate SFF host */
2546 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2547 if (rc)
2548 goto out;
2549 host->private_data = host_priv;
2550 host->flags |= hflags;
2551
2552 #ifdef CONFIG_ATA_BMDMA
2553 if (bmdma) {
2554 pci_set_master(pdev);
2555 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2556 } else
2557 #endif
2558 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2559 out:
2560 if (rc == 0)
2561 devres_remove_group(&pdev->dev, NULL);
2562 else
2563 devres_release_group(&pdev->dev, NULL);
2564
2565 return rc;
2566 }
2567
2568 /**
2569 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2570 * @pdev: Controller to be initialized
2571 * @ppi: array of port_info, must be enough for two ports
2572 * @sht: scsi_host_template to use when registering the host
2573 * @host_priv: host private_data
2574 * @hflag: host flags
2575 *
2576 * This is a helper function which can be called from a driver's
2577 * xxx_init_one() probe function if the hardware uses traditional
2578 * IDE taskfile registers and is PIO only.
2579 *
2580 * ASSUMPTION:
2581 * Nobody makes a single channel controller that appears solely as
2582 * the secondary legacy port on PCI.
2583 *
2584 * LOCKING:
2585 * Inherited from PCI layer (may sleep).
2586 *
2587 * RETURNS:
2588 * Zero on success, negative on errno-based value on error.
2589 */
2590 int ata_pci_sff_init_one(struct pci_dev *pdev,
2591 const struct ata_port_info * const *ppi,
2592 struct scsi_host_template *sht, void *host_priv, int hflag)
2593 {
2594 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2595 }
2596 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2597
2598 #endif /* CONFIG_PCI */
2599
2600 /*
2601 * BMDMA support
2602 */
2603
2604 #ifdef CONFIG_ATA_BMDMA
2605
2606 const struct ata_port_operations ata_bmdma_port_ops = {
2607 .inherits = &ata_sff_port_ops,
2608
2609 .error_handler = ata_bmdma_error_handler,
2610 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2611
2612 .qc_prep = ata_bmdma_qc_prep,
2613 .qc_issue = ata_bmdma_qc_issue,
2614
2615 .sff_irq_clear = ata_bmdma_irq_clear,
2616 .bmdma_setup = ata_bmdma_setup,
2617 .bmdma_start = ata_bmdma_start,
2618 .bmdma_stop = ata_bmdma_stop,
2619 .bmdma_status = ata_bmdma_status,
2620
2621 .port_start = ata_bmdma_port_start,
2622 };
2623 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2624
2625 const struct ata_port_operations ata_bmdma32_port_ops = {
2626 .inherits = &ata_bmdma_port_ops,
2627
2628 .sff_data_xfer = ata_sff_data_xfer32,
2629 .port_start = ata_bmdma_port_start32,
2630 };
2631 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2632
2633 /**
2634 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2635 * @qc: Metadata associated with taskfile to be transferred
2636 *
2637 * Fill PCI IDE PRD (scatter-gather) table with segments
2638 * associated with the current disk command.
2639 *
2640 * LOCKING:
2641 * spin_lock_irqsave(host lock)
2642 *
2643 */
2644 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2645 {
2646 struct ata_port *ap = qc->ap;
2647 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2648 struct scatterlist *sg;
2649 unsigned int si, pi;
2650
2651 pi = 0;
2652 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2653 u32 addr, offset;
2654 u32 sg_len, len;
2655
2656 /* determine if physical DMA addr spans 64K boundary.
2657 * Note h/w doesn't support 64-bit, so we unconditionally
2658 * truncate dma_addr_t to u32.
2659 */
2660 addr = (u32) sg_dma_address(sg);
2661 sg_len = sg_dma_len(sg);
2662
2663 while (sg_len) {
2664 offset = addr & 0xffff;
2665 len = sg_len;
2666 if ((offset + sg_len) > 0x10000)
2667 len = 0x10000 - offset;
2668
2669 prd[pi].addr = cpu_to_le32(addr);
2670 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2671 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2672
2673 pi++;
2674 sg_len -= len;
2675 addr += len;
2676 }
2677 }
2678
2679 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2680 }
2681
2682 /**
2683 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2684 * @qc: Metadata associated with taskfile to be transferred
2685 *
2686 * Fill PCI IDE PRD (scatter-gather) table with segments
2687 * associated with the current disk command. Perform the fill
2688 * so that we avoid writing any length 64K records for
2689 * controllers that don't follow the spec.
2690 *
2691 * LOCKING:
2692 * spin_lock_irqsave(host lock)
2693 *
2694 */
2695 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2696 {
2697 struct ata_port *ap = qc->ap;
2698 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2699 struct scatterlist *sg;
2700 unsigned int si, pi;
2701
2702 pi = 0;
2703 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2704 u32 addr, offset;
2705 u32 sg_len, len, blen;
2706
2707 /* determine if physical DMA addr spans 64K boundary.
2708 * Note h/w doesn't support 64-bit, so we unconditionally
2709 * truncate dma_addr_t to u32.
2710 */
2711 addr = (u32) sg_dma_address(sg);
2712 sg_len = sg_dma_len(sg);
2713
2714 while (sg_len) {
2715 offset = addr & 0xffff;
2716 len = sg_len;
2717 if ((offset + sg_len) > 0x10000)
2718 len = 0x10000 - offset;
2719
2720 blen = len & 0xffff;
2721 prd[pi].addr = cpu_to_le32(addr);
2722 if (blen == 0) {
2723 /* Some PATA chipsets like the CS5530 can't
2724 cope with 0x0000 meaning 64K as the spec
2725 says */
2726 prd[pi].flags_len = cpu_to_le32(0x8000);
2727 blen = 0x8000;
2728 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2729 }
2730 prd[pi].flags_len = cpu_to_le32(blen);
2731 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2732
2733 pi++;
2734 sg_len -= len;
2735 addr += len;
2736 }
2737 }
2738
2739 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2740 }
2741
2742 /**
2743 * ata_bmdma_qc_prep - Prepare taskfile for submission
2744 * @qc: Metadata associated with taskfile to be prepared
2745 *
2746 * Prepare ATA taskfile for submission.
2747 *
2748 * LOCKING:
2749 * spin_lock_irqsave(host lock)
2750 */
2751 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2752 {
2753 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2754 return;
2755
2756 ata_bmdma_fill_sg(qc);
2757 }
2758 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2759
2760 /**
2761 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2762 * @qc: Metadata associated with taskfile to be prepared
2763 *
2764 * Prepare ATA taskfile for submission.
2765 *
2766 * LOCKING:
2767 * spin_lock_irqsave(host lock)
2768 */
2769 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2770 {
2771 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2772 return;
2773
2774 ata_bmdma_fill_sg_dumb(qc);
2775 }
2776 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2777
2778 /**
2779 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2780 * @qc: command to issue to device
2781 *
2782 * This function issues a PIO, NODATA or DMA command to a
2783 * SFF/BMDMA controller. PIO and NODATA are handled by
2784 * ata_sff_qc_issue().
2785 *
2786 * LOCKING:
2787 * spin_lock_irqsave(host lock)
2788 *
2789 * RETURNS:
2790 * Zero on success, AC_ERR_* mask on failure
2791 */
2792 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2793 {
2794 struct ata_port *ap = qc->ap;
2795 struct ata_link *link = qc->dev->link;
2796
2797 /* defer PIO handling to sff_qc_issue */
2798 if (!ata_is_dma(qc->tf.protocol))
2799 return ata_sff_qc_issue(qc);
2800
2801 /* select the device */
2802 ata_dev_select(ap, qc->dev->devno, 1, 0);
2803
2804 /* start the command */
2805 switch (qc->tf.protocol) {
2806 case ATA_PROT_DMA:
2807 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2808
2809 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2810 ap->ops->bmdma_setup(qc); /* set up bmdma */
2811 ap->ops->bmdma_start(qc); /* initiate bmdma */
2812 ap->hsm_task_state = HSM_ST_LAST;
2813 break;
2814
2815 case ATAPI_PROT_DMA:
2816 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2817
2818 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2819 ap->ops->bmdma_setup(qc); /* set up bmdma */
2820 ap->hsm_task_state = HSM_ST_FIRST;
2821
2822 /* send cdb by polling if no cdb interrupt */
2823 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2824 ata_sff_queue_pio_task(link, 0);
2825 break;
2826
2827 default:
2828 WARN_ON(1);
2829 return AC_ERR_SYSTEM;
2830 }
2831
2832 return 0;
2833 }
2834 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2835
2836 /**
2837 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2838 * @ap: Port on which interrupt arrived (possibly...)
2839 * @qc: Taskfile currently active in engine
2840 *
2841 * Handle port interrupt for given queued command.
2842 *
2843 * LOCKING:
2844 * spin_lock_irqsave(host lock)
2845 *
2846 * RETURNS:
2847 * One if interrupt was handled, zero if not (shared irq).
2848 */
2849 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2850 {
2851 struct ata_eh_info *ehi = &ap->link.eh_info;
2852 u8 host_stat = 0;
2853 bool bmdma_stopped = false;
2854 unsigned int handled;
2855
2856 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2857 /* check status of DMA engine */
2858 host_stat = ap->ops->bmdma_status(ap);
2859 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2860
2861 /* if it's not our irq... */
2862 if (!(host_stat & ATA_DMA_INTR))
2863 return ata_sff_idle_irq(ap);
2864
2865 /* before we do anything else, clear DMA-Start bit */
2866 ap->ops->bmdma_stop(qc);
2867 bmdma_stopped = true;
2868
2869 if (unlikely(host_stat & ATA_DMA_ERR)) {
2870 /* error when transferring data to/from memory */
2871 qc->err_mask |= AC_ERR_HOST_BUS;
2872 ap->hsm_task_state = HSM_ST_ERR;
2873 }
2874 }
2875
2876 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2877
2878 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2879 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2880
2881 return handled;
2882 }
2883 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2884
2885 /**
2886 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2887 * @irq: irq line (unused)
2888 * @dev_instance: pointer to our ata_host information structure
2889 *
2890 * Default interrupt handler for PCI IDE devices. Calls
2891 * ata_bmdma_port_intr() for each port that is not disabled.
2892 *
2893 * LOCKING:
2894 * Obtains host lock during operation.
2895 *
2896 * RETURNS:
2897 * IRQ_NONE or IRQ_HANDLED.
2898 */
2899 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2900 {
2901 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2902 }
2903 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2904
2905 /**
2906 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2907 * @ap: port to handle error for
2908 *
2909 * Stock error handler for BMDMA controller. It can handle both
2910 * PATA and SATA controllers. Most BMDMA controllers should be
2911 * able to use this EH as-is or with some added handling before
2912 * and after.
2913 *
2914 * LOCKING:
2915 * Kernel thread context (may sleep)
2916 */
2917 void ata_bmdma_error_handler(struct ata_port *ap)
2918 {
2919 struct ata_queued_cmd *qc;
2920 unsigned long flags;
2921 bool thaw = false;
2922
2923 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2924 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2925 qc = NULL;
2926
2927 /* reset PIO HSM and stop DMA engine */
2928 spin_lock_irqsave(ap->lock, flags);
2929
2930 if (qc && ata_is_dma(qc->tf.protocol)) {
2931 u8 host_stat;
2932
2933 host_stat = ap->ops->bmdma_status(ap);
2934
2935 /* BMDMA controllers indicate host bus error by
2936 * setting DMA_ERR bit and timing out. As it wasn't
2937 * really a timeout event, adjust error mask and
2938 * cancel frozen state.
2939 */
2940 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2941 qc->err_mask = AC_ERR_HOST_BUS;
2942 thaw = true;
2943 }
2944
2945 ap->ops->bmdma_stop(qc);
2946
2947 /* if we're gonna thaw, make sure IRQ is clear */
2948 if (thaw) {
2949 ap->ops->sff_check_status(ap);
2950 if (ap->ops->sff_irq_clear)
2951 ap->ops->sff_irq_clear(ap);
2952 }
2953 }
2954
2955 spin_unlock_irqrestore(ap->lock, flags);
2956
2957 if (thaw)
2958 ata_eh_thaw_port(ap);
2959
2960 ata_sff_error_handler(ap);
2961 }
2962 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2963
2964 /**
2965 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2966 * @qc: internal command to clean up
2967 *
2968 * LOCKING:
2969 * Kernel thread context (may sleep)
2970 */
2971 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2972 {
2973 struct ata_port *ap = qc->ap;
2974 unsigned long flags;
2975
2976 if (ata_is_dma(qc->tf.protocol)) {
2977 spin_lock_irqsave(ap->lock, flags);
2978 ap->ops->bmdma_stop(qc);
2979 spin_unlock_irqrestore(ap->lock, flags);
2980 }
2981 }
2982 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2983
2984 /**
2985 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2986 * @ap: Port associated with this ATA transaction.
2987 *
2988 * Clear interrupt and error flags in DMA status register.
2989 *
2990 * May be used as the irq_clear() entry in ata_port_operations.
2991 *
2992 * LOCKING:
2993 * spin_lock_irqsave(host lock)
2994 */
2995 void ata_bmdma_irq_clear(struct ata_port *ap)
2996 {
2997 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2998
2999 if (!mmio)
3000 return;
3001
3002 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
3003 }
3004 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
3005
3006 /**
3007 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3008 * @qc: Info associated with this ATA transaction.
3009 *
3010 * LOCKING:
3011 * spin_lock_irqsave(host lock)
3012 */
3013 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3014 {
3015 struct ata_port *ap = qc->ap;
3016 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3017 u8 dmactl;
3018
3019 /* load PRD table addr. */
3020 mb(); /* make sure PRD table writes are visible to controller */
3021 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3022
3023 /* specify data direction, triple-check start bit is clear */
3024 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3025 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3026 if (!rw)
3027 dmactl |= ATA_DMA_WR;
3028 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3029
3030 /* issue r/w command */
3031 ap->ops->sff_exec_command(ap, &qc->tf);
3032 }
3033 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3034
3035 /**
3036 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3037 * @qc: Info associated with this ATA transaction.
3038 *
3039 * LOCKING:
3040 * spin_lock_irqsave(host lock)
3041 */
3042 void ata_bmdma_start(struct ata_queued_cmd *qc)
3043 {
3044 struct ata_port *ap = qc->ap;
3045 u8 dmactl;
3046
3047 /* start host DMA transaction */
3048 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3049 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3050
3051 /* Strictly, one may wish to issue an ioread8() here, to
3052 * flush the mmio write. However, control also passes
3053 * to the hardware at this point, and it will interrupt
3054 * us when we are to resume control. So, in effect,
3055 * we don't care when the mmio write flushes.
3056 * Further, a read of the DMA status register _immediately_
3057 * following the write may not be what certain flaky hardware
3058 * is expected, so I think it is best to not add a readb()
3059 * without first all the MMIO ATA cards/mobos.
3060 * Or maybe I'm just being paranoid.
3061 *
3062 * FIXME: The posting of this write means I/O starts are
3063 * unnecessarily delayed for MMIO
3064 */
3065 }
3066 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3067
3068 /**
3069 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3070 * @qc: Command we are ending DMA for
3071 *
3072 * Clears the ATA_DMA_START flag in the dma control register
3073 *
3074 * May be used as the bmdma_stop() entry in ata_port_operations.
3075 *
3076 * LOCKING:
3077 * spin_lock_irqsave(host lock)
3078 */
3079 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3080 {
3081 struct ata_port *ap = qc->ap;
3082 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3083
3084 /* clear start/stop bit */
3085 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3086 mmio + ATA_DMA_CMD);
3087
3088 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3089 ata_sff_dma_pause(ap);
3090 }
3091 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3092
3093 /**
3094 * ata_bmdma_status - Read PCI IDE BMDMA status
3095 * @ap: Port associated with this ATA transaction.
3096 *
3097 * Read and return BMDMA status register.
3098 *
3099 * May be used as the bmdma_status() entry in ata_port_operations.
3100 *
3101 * LOCKING:
3102 * spin_lock_irqsave(host lock)
3103 */
3104 u8 ata_bmdma_status(struct ata_port *ap)
3105 {
3106 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3107 }
3108 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3109
3110
3111 /**
3112 * ata_bmdma_port_start - Set port up for bmdma.
3113 * @ap: Port to initialize
3114 *
3115 * Called just after data structures for each port are
3116 * initialized. Allocates space for PRD table.
3117 *
3118 * May be used as the port_start() entry in ata_port_operations.
3119 *
3120 * LOCKING:
3121 * Inherited from caller.
3122 */
3123 int ata_bmdma_port_start(struct ata_port *ap)
3124 {
3125 if (ap->mwdma_mask || ap->udma_mask) {
3126 ap->bmdma_prd =
3127 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3128 &ap->bmdma_prd_dma, GFP_KERNEL);
3129 if (!ap->bmdma_prd)
3130 return -ENOMEM;
3131 }
3132
3133 return 0;
3134 }
3135 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3136
3137 /**
3138 * ata_bmdma_port_start32 - Set port up for dma.
3139 * @ap: Port to initialize
3140 *
3141 * Called just after data structures for each port are
3142 * initialized. Enables 32bit PIO and allocates space for PRD
3143 * table.
3144 *
3145 * May be used as the port_start() entry in ata_port_operations for
3146 * devices that are capable of 32bit PIO.
3147 *
3148 * LOCKING:
3149 * Inherited from caller.
3150 */
3151 int ata_bmdma_port_start32(struct ata_port *ap)
3152 {
3153 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3154 return ata_bmdma_port_start(ap);
3155 }
3156 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3157
3158 #ifdef CONFIG_PCI
3159
3160 /**
3161 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3162 * @pdev: PCI device
3163 *
3164 * Some PCI ATA devices report simplex mode but in fact can be told to
3165 * enter non simplex mode. This implements the necessary logic to
3166 * perform the task on such devices. Calling it on other devices will
3167 * have -undefined- behaviour.
3168 */
3169 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3170 {
3171 unsigned long bmdma = pci_resource_start(pdev, 4);
3172 u8 simplex;
3173
3174 if (bmdma == 0)
3175 return -ENOENT;
3176
3177 simplex = inb(bmdma + 0x02);
3178 outb(simplex & 0x60, bmdma + 0x02);
3179 simplex = inb(bmdma + 0x02);
3180 if (simplex & 0x80)
3181 return -EOPNOTSUPP;
3182 return 0;
3183 }
3184 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3185
3186 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3187 {
3188 int i;
3189
3190 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3191
3192 for (i = 0; i < 2; i++) {
3193 host->ports[i]->mwdma_mask = 0;
3194 host->ports[i]->udma_mask = 0;
3195 }
3196 }
3197
3198 /**
3199 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3200 * @host: target ATA host
3201 *
3202 * Acquire PCI BMDMA resources and initialize @host accordingly.
3203 *
3204 * LOCKING:
3205 * Inherited from calling layer (may sleep).
3206 */
3207 void ata_pci_bmdma_init(struct ata_host *host)
3208 {
3209 struct device *gdev = host->dev;
3210 struct pci_dev *pdev = to_pci_dev(gdev);
3211 int i, rc;
3212
3213 /* No BAR4 allocation: No DMA */
3214 if (pci_resource_start(pdev, 4) == 0) {
3215 ata_bmdma_nodma(host, "BAR4 is zero");
3216 return;
3217 }
3218
3219 /*
3220 * Some controllers require BMDMA region to be initialized
3221 * even if DMA is not in use to clear IRQ status via
3222 * ->sff_irq_clear method. Try to initialize bmdma_addr
3223 * regardless of dma masks.
3224 */
3225 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3226 if (rc)
3227 ata_bmdma_nodma(host, "failed to set dma mask");
3228 if (!rc) {
3229 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3230 if (rc)
3231 ata_bmdma_nodma(host,
3232 "failed to set consistent dma mask");
3233 }
3234
3235 /* request and iomap DMA region */
3236 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3237 if (rc) {
3238 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3239 return;
3240 }
3241 host->iomap = pcim_iomap_table(pdev);
3242
3243 for (i = 0; i < 2; i++) {
3244 struct ata_port *ap = host->ports[i];
3245 void __iomem *bmdma = host->iomap[4] + 8 * i;
3246
3247 if (ata_port_is_dummy(ap))
3248 continue;
3249
3250 ap->ioaddr.bmdma_addr = bmdma;
3251 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3252 (ioread8(bmdma + 2) & 0x80))
3253 host->flags |= ATA_HOST_SIMPLEX;
3254
3255 ata_port_desc(ap, "bmdma 0x%llx",
3256 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3257 }
3258 }
3259 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3260
3261 /**
3262 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3263 * @pdev: target PCI device
3264 * @ppi: array of port_info, must be enough for two ports
3265 * @r_host: out argument for the initialized ATA host
3266 *
3267 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3268 * resources and initialize it accordingly in one go.
3269 *
3270 * LOCKING:
3271 * Inherited from calling layer (may sleep).
3272 *
3273 * RETURNS:
3274 * 0 on success, -errno otherwise.
3275 */
3276 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3277 const struct ata_port_info * const * ppi,
3278 struct ata_host **r_host)
3279 {
3280 int rc;
3281
3282 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3283 if (rc)
3284 return rc;
3285
3286 ata_pci_bmdma_init(*r_host);
3287 return 0;
3288 }
3289 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3290
3291 /**
3292 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3293 * @pdev: Controller to be initialized
3294 * @ppi: array of port_info, must be enough for two ports
3295 * @sht: scsi_host_template to use when registering the host
3296 * @host_priv: host private_data
3297 * @hflags: host flags
3298 *
3299 * This function is similar to ata_pci_sff_init_one() but also
3300 * takes care of BMDMA initialization.
3301 *
3302 * LOCKING:
3303 * Inherited from PCI layer (may sleep).
3304 *
3305 * RETURNS:
3306 * Zero on success, negative on errno-based value on error.
3307 */
3308 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3309 const struct ata_port_info * const * ppi,
3310 struct scsi_host_template *sht, void *host_priv,
3311 int hflags)
3312 {
3313 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3314 }
3315 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3316
3317 #endif /* CONFIG_PCI */
3318 #endif /* CONFIG_ATA_BMDMA */
3319
3320 /**
3321 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3322 * @ap: Port to initialize
3323 *
3324 * Called on port allocation to initialize SFF/BMDMA specific
3325 * fields.
3326 *
3327 * LOCKING:
3328 * None.
3329 */
3330 void ata_sff_port_init(struct ata_port *ap)
3331 {
3332 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3333 ap->ctl = ATA_DEVCTL_OBS;
3334 ap->last_ctl = 0xFF;
3335 }
3336
3337 int __init ata_sff_init(void)
3338 {
3339 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3340 if (!ata_sff_wq)
3341 return -ENOMEM;
3342
3343 return 0;
3344 }
3345
3346 void ata_sff_exit(void)
3347 {
3348 destroy_workqueue(ata_sff_wq);
3349 }