]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/ata/libata-sff.c
Pull randconfig into release branch
[mirror_ubuntu-bionic-kernel.git] / drivers / ata / libata-sff.c
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38
39 #include "libata.h"
40
41 /**
42 * ata_irq_on - Enable interrupts on a port.
43 * @ap: Port on which interrupts are enabled.
44 *
45 * Enable interrupts on a legacy IDE device using MMIO or PIO,
46 * wait for idle, clear any pending interrupts.
47 *
48 * LOCKING:
49 * Inherited from caller.
50 */
51 u8 ata_irq_on(struct ata_port *ap)
52 {
53 struct ata_ioports *ioaddr = &ap->ioaddr;
54 u8 tmp;
55
56 ap->ctl &= ~ATA_NIEN;
57 ap->last_ctl = ap->ctl;
58
59 iowrite8(ap->ctl, ioaddr->ctl_addr);
60 tmp = ata_wait_idle(ap);
61
62 ap->ops->irq_clear(ap);
63
64 return tmp;
65 }
66
67 u8 ata_dummy_irq_on (struct ata_port *ap) { return 0; }
68
69 /**
70 * ata_irq_ack - Acknowledge a device interrupt.
71 * @ap: Port on which interrupts are enabled.
72 *
73 * Wait up to 10 ms for legacy IDE device to become idle (BUSY
74 * or BUSY+DRQ clear). Obtain dma status and port status from
75 * device. Clear the interrupt. Return port status.
76 *
77 * LOCKING:
78 */
79
80 u8 ata_irq_ack(struct ata_port *ap, unsigned int chk_drq)
81 {
82 unsigned int bits = chk_drq ? ATA_BUSY | ATA_DRQ : ATA_BUSY;
83 u8 host_stat = 0, post_stat = 0, status;
84
85 status = ata_busy_wait(ap, bits, 1000);
86 if (status & bits)
87 if (ata_msg_err(ap))
88 printk(KERN_ERR "abnormal status 0x%X\n", status);
89
90 if (ap->ioaddr.bmdma_addr) {
91 /* get controller status; clear intr, err bits */
92 host_stat = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
93 iowrite8(host_stat | ATA_DMA_INTR | ATA_DMA_ERR,
94 ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
95
96 post_stat = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
97 }
98 if (ata_msg_intr(ap))
99 printk(KERN_INFO "%s: irq ack: host_stat 0x%X, new host_stat 0x%X, drv_stat 0x%X\n",
100 __FUNCTION__,
101 host_stat, post_stat, status);
102 return status;
103 }
104
105 u8 ata_dummy_irq_ack(struct ata_port *ap, unsigned int chk_drq) { return 0; }
106
107 /**
108 * ata_tf_load - send taskfile registers to host controller
109 * @ap: Port to which output is sent
110 * @tf: ATA taskfile register set
111 *
112 * Outputs ATA taskfile to standard ATA host controller.
113 *
114 * LOCKING:
115 * Inherited from caller.
116 */
117
118 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
119 {
120 struct ata_ioports *ioaddr = &ap->ioaddr;
121 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
122
123 if (tf->ctl != ap->last_ctl) {
124 iowrite8(tf->ctl, ioaddr->ctl_addr);
125 ap->last_ctl = tf->ctl;
126 ata_wait_idle(ap);
127 }
128
129 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
130 iowrite8(tf->hob_feature, ioaddr->feature_addr);
131 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
132 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
133 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
134 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
135 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
136 tf->hob_feature,
137 tf->hob_nsect,
138 tf->hob_lbal,
139 tf->hob_lbam,
140 tf->hob_lbah);
141 }
142
143 if (is_addr) {
144 iowrite8(tf->feature, ioaddr->feature_addr);
145 iowrite8(tf->nsect, ioaddr->nsect_addr);
146 iowrite8(tf->lbal, ioaddr->lbal_addr);
147 iowrite8(tf->lbam, ioaddr->lbam_addr);
148 iowrite8(tf->lbah, ioaddr->lbah_addr);
149 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
150 tf->feature,
151 tf->nsect,
152 tf->lbal,
153 tf->lbam,
154 tf->lbah);
155 }
156
157 if (tf->flags & ATA_TFLAG_DEVICE) {
158 iowrite8(tf->device, ioaddr->device_addr);
159 VPRINTK("device 0x%X\n", tf->device);
160 }
161
162 ata_wait_idle(ap);
163 }
164
165 /**
166 * ata_exec_command - issue ATA command to host controller
167 * @ap: port to which command is being issued
168 * @tf: ATA taskfile register set
169 *
170 * Issues ATA command, with proper synchronization with interrupt
171 * handler / other threads.
172 *
173 * LOCKING:
174 * spin_lock_irqsave(host lock)
175 */
176 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
177 {
178 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
179
180 iowrite8(tf->command, ap->ioaddr.command_addr);
181 ata_pause(ap);
182 }
183
184 /**
185 * ata_tf_read - input device's ATA taskfile shadow registers
186 * @ap: Port from which input is read
187 * @tf: ATA taskfile register set for storing input
188 *
189 * Reads ATA taskfile registers for currently-selected device
190 * into @tf.
191 *
192 * LOCKING:
193 * Inherited from caller.
194 */
195 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
196 {
197 struct ata_ioports *ioaddr = &ap->ioaddr;
198
199 tf->command = ata_check_status(ap);
200 tf->feature = ioread8(ioaddr->error_addr);
201 tf->nsect = ioread8(ioaddr->nsect_addr);
202 tf->lbal = ioread8(ioaddr->lbal_addr);
203 tf->lbam = ioread8(ioaddr->lbam_addr);
204 tf->lbah = ioread8(ioaddr->lbah_addr);
205 tf->device = ioread8(ioaddr->device_addr);
206
207 if (tf->flags & ATA_TFLAG_LBA48) {
208 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
209 tf->hob_feature = ioread8(ioaddr->error_addr);
210 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
211 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
212 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
213 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
214 iowrite8(tf->ctl, ioaddr->ctl_addr);
215 ap->last_ctl = tf->ctl;
216 }
217 }
218
219 /**
220 * ata_check_status - Read device status reg & clear interrupt
221 * @ap: port where the device is
222 *
223 * Reads ATA taskfile status register for currently-selected device
224 * and return its value. This also clears pending interrupts
225 * from this device
226 *
227 * LOCKING:
228 * Inherited from caller.
229 */
230 u8 ata_check_status(struct ata_port *ap)
231 {
232 return ioread8(ap->ioaddr.status_addr);
233 }
234
235 /**
236 * ata_altstatus - Read device alternate status reg
237 * @ap: port where the device is
238 *
239 * Reads ATA taskfile alternate status register for
240 * currently-selected device and return its value.
241 *
242 * Note: may NOT be used as the check_altstatus() entry in
243 * ata_port_operations.
244 *
245 * LOCKING:
246 * Inherited from caller.
247 */
248 u8 ata_altstatus(struct ata_port *ap)
249 {
250 if (ap->ops->check_altstatus)
251 return ap->ops->check_altstatus(ap);
252
253 return ioread8(ap->ioaddr.altstatus_addr);
254 }
255
256 /**
257 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
258 * @qc: Info associated with this ATA transaction.
259 *
260 * LOCKING:
261 * spin_lock_irqsave(host lock)
262 */
263 void ata_bmdma_setup(struct ata_queued_cmd *qc)
264 {
265 struct ata_port *ap = qc->ap;
266 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
267 u8 dmactl;
268
269 /* load PRD table addr. */
270 mb(); /* make sure PRD table writes are visible to controller */
271 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
272
273 /* specify data direction, triple-check start bit is clear */
274 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
275 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
276 if (!rw)
277 dmactl |= ATA_DMA_WR;
278 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
279
280 /* issue r/w command */
281 ap->ops->exec_command(ap, &qc->tf);
282 }
283
284 /**
285 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
286 * @qc: Info associated with this ATA transaction.
287 *
288 * LOCKING:
289 * spin_lock_irqsave(host lock)
290 */
291 void ata_bmdma_start (struct ata_queued_cmd *qc)
292 {
293 struct ata_port *ap = qc->ap;
294 u8 dmactl;
295
296 /* start host DMA transaction */
297 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
298 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
299
300 /* Strictly, one may wish to issue an ioread8() here, to
301 * flush the mmio write. However, control also passes
302 * to the hardware at this point, and it will interrupt
303 * us when we are to resume control. So, in effect,
304 * we don't care when the mmio write flushes.
305 * Further, a read of the DMA status register _immediately_
306 * following the write may not be what certain flaky hardware
307 * is expected, so I think it is best to not add a readb()
308 * without first all the MMIO ATA cards/mobos.
309 * Or maybe I'm just being paranoid.
310 *
311 * FIXME: The posting of this write means I/O starts are
312 * unneccessarily delayed for MMIO
313 */
314 }
315
316 /**
317 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
318 * @ap: Port associated with this ATA transaction.
319 *
320 * Clear interrupt and error flags in DMA status register.
321 *
322 * May be used as the irq_clear() entry in ata_port_operations.
323 *
324 * LOCKING:
325 * spin_lock_irqsave(host lock)
326 */
327 void ata_bmdma_irq_clear(struct ata_port *ap)
328 {
329 void __iomem *mmio = ap->ioaddr.bmdma_addr;
330
331 if (!mmio)
332 return;
333
334 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
335 }
336
337 /**
338 * ata_bmdma_status - Read PCI IDE BMDMA status
339 * @ap: Port associated with this ATA transaction.
340 *
341 * Read and return BMDMA status register.
342 *
343 * May be used as the bmdma_status() entry in ata_port_operations.
344 *
345 * LOCKING:
346 * spin_lock_irqsave(host lock)
347 */
348 u8 ata_bmdma_status(struct ata_port *ap)
349 {
350 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
351 }
352
353 /**
354 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
355 * @qc: Command we are ending DMA for
356 *
357 * Clears the ATA_DMA_START flag in the dma control register
358 *
359 * May be used as the bmdma_stop() entry in ata_port_operations.
360 *
361 * LOCKING:
362 * spin_lock_irqsave(host lock)
363 */
364 void ata_bmdma_stop(struct ata_queued_cmd *qc)
365 {
366 struct ata_port *ap = qc->ap;
367 void __iomem *mmio = ap->ioaddr.bmdma_addr;
368
369 /* clear start/stop bit */
370 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
371 mmio + ATA_DMA_CMD);
372
373 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
374 ata_altstatus(ap); /* dummy read */
375 }
376
377 /**
378 * ata_bmdma_freeze - Freeze BMDMA controller port
379 * @ap: port to freeze
380 *
381 * Freeze BMDMA controller port.
382 *
383 * LOCKING:
384 * Inherited from caller.
385 */
386 void ata_bmdma_freeze(struct ata_port *ap)
387 {
388 struct ata_ioports *ioaddr = &ap->ioaddr;
389
390 ap->ctl |= ATA_NIEN;
391 ap->last_ctl = ap->ctl;
392
393 iowrite8(ap->ctl, ioaddr->ctl_addr);
394
395 /* Under certain circumstances, some controllers raise IRQ on
396 * ATA_NIEN manipulation. Also, many controllers fail to mask
397 * previously pending IRQ on ATA_NIEN assertion. Clear it.
398 */
399 ata_chk_status(ap);
400
401 ap->ops->irq_clear(ap);
402 }
403
404 /**
405 * ata_bmdma_thaw - Thaw BMDMA controller port
406 * @ap: port to thaw
407 *
408 * Thaw BMDMA controller port.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
413 void ata_bmdma_thaw(struct ata_port *ap)
414 {
415 /* clear & re-enable interrupts */
416 ata_chk_status(ap);
417 ap->ops->irq_clear(ap);
418 ap->ops->irq_on(ap);
419 }
420
421 /**
422 * ata_bmdma_drive_eh - Perform EH with given methods for BMDMA controller
423 * @ap: port to handle error for
424 * @prereset: prereset method (can be NULL)
425 * @softreset: softreset method (can be NULL)
426 * @hardreset: hardreset method (can be NULL)
427 * @postreset: postreset method (can be NULL)
428 *
429 * Handle error for ATA BMDMA controller. It can handle both
430 * PATA and SATA controllers. Many controllers should be able to
431 * use this EH as-is or with some added handling before and
432 * after.
433 *
434 * This function is intended to be used for constructing
435 * ->error_handler callback by low level drivers.
436 *
437 * LOCKING:
438 * Kernel thread context (may sleep)
439 */
440 void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset,
441 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
442 ata_postreset_fn_t postreset)
443 {
444 struct ata_queued_cmd *qc;
445 unsigned long flags;
446 int thaw = 0;
447
448 qc = __ata_qc_from_tag(ap, ap->active_tag);
449 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
450 qc = NULL;
451
452 /* reset PIO HSM and stop DMA engine */
453 spin_lock_irqsave(ap->lock, flags);
454
455 ap->hsm_task_state = HSM_ST_IDLE;
456
457 if (qc && (qc->tf.protocol == ATA_PROT_DMA ||
458 qc->tf.protocol == ATA_PROT_ATAPI_DMA)) {
459 u8 host_stat;
460
461 host_stat = ap->ops->bmdma_status(ap);
462
463 /* BMDMA controllers indicate host bus error by
464 * setting DMA_ERR bit and timing out. As it wasn't
465 * really a timeout event, adjust error mask and
466 * cancel frozen state.
467 */
468 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
469 qc->err_mask = AC_ERR_HOST_BUS;
470 thaw = 1;
471 }
472
473 ap->ops->bmdma_stop(qc);
474 }
475
476 ata_altstatus(ap);
477 ata_chk_status(ap);
478 ap->ops->irq_clear(ap);
479
480 spin_unlock_irqrestore(ap->lock, flags);
481
482 if (thaw)
483 ata_eh_thaw_port(ap);
484
485 /* PIO and DMA engines have been stopped, perform recovery */
486 ata_do_eh(ap, prereset, softreset, hardreset, postreset);
487 }
488
489 /**
490 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
491 * @ap: port to handle error for
492 *
493 * Stock error handler for BMDMA controller.
494 *
495 * LOCKING:
496 * Kernel thread context (may sleep)
497 */
498 void ata_bmdma_error_handler(struct ata_port *ap)
499 {
500 ata_reset_fn_t hardreset;
501
502 hardreset = NULL;
503 if (sata_scr_valid(ap))
504 hardreset = sata_std_hardreset;
505
506 ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, hardreset,
507 ata_std_postreset);
508 }
509
510 /**
511 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for
512 * BMDMA controller
513 * @qc: internal command to clean up
514 *
515 * LOCKING:
516 * Kernel thread context (may sleep)
517 */
518 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
519 {
520 if (qc->ap->ioaddr.bmdma_addr)
521 ata_bmdma_stop(qc);
522 }
523
524 /**
525 * ata_sff_port_start - Set port up for dma.
526 * @ap: Port to initialize
527 *
528 * Called just after data structures for each port are
529 * initialized. Allocates space for PRD table if the device
530 * is DMA capable SFF.
531 *
532 * May be used as the port_start() entry in ata_port_operations.
533 *
534 * LOCKING:
535 * Inherited from caller.
536 */
537
538 int ata_sff_port_start(struct ata_port *ap)
539 {
540 if (ap->ioaddr.bmdma_addr)
541 return ata_port_start(ap);
542 return 0;
543 }
544
545 #ifdef CONFIG_PCI
546
547 static int ata_resources_present(struct pci_dev *pdev, int port)
548 {
549 int i;
550
551 /* Check the PCI resources for this channel are enabled */
552 port = port * 2;
553 for (i = 0; i < 2; i ++) {
554 if (pci_resource_start(pdev, port + i) == 0 ||
555 pci_resource_len(pdev, port + i) == 0)
556 return 0;
557 }
558 return 1;
559 }
560
561 /**
562 * ata_pci_init_bmdma - acquire PCI BMDMA resources and init ATA host
563 * @host: target ATA host
564 *
565 * Acquire PCI BMDMA resources and initialize @host accordingly.
566 *
567 * LOCKING:
568 * Inherited from calling layer (may sleep).
569 *
570 * RETURNS:
571 * 0 on success, -errno otherwise.
572 */
573 int ata_pci_init_bmdma(struct ata_host *host)
574 {
575 struct device *gdev = host->dev;
576 struct pci_dev *pdev = to_pci_dev(gdev);
577 int i, rc;
578
579 /* No BAR4 allocation: No DMA */
580 if (pci_resource_start(pdev, 4) == 0)
581 return 0;
582
583 /* TODO: If we get no DMA mask we should fall back to PIO */
584 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
585 if (rc)
586 return rc;
587 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
588 if (rc)
589 return rc;
590
591 /* request and iomap DMA region */
592 rc = pcim_iomap_regions(pdev, 1 << 4, DRV_NAME);
593 if (rc) {
594 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
595 return -ENOMEM;
596 }
597 host->iomap = pcim_iomap_table(pdev);
598
599 for (i = 0; i < 2; i++) {
600 struct ata_port *ap = host->ports[i];
601 void __iomem *bmdma = host->iomap[4] + 8 * i;
602
603 if (ata_port_is_dummy(ap))
604 continue;
605
606 ap->ioaddr.bmdma_addr = bmdma;
607 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
608 (ioread8(bmdma + 2) & 0x80))
609 host->flags |= ATA_HOST_SIMPLEX;
610 }
611
612 return 0;
613 }
614
615 /**
616 * ata_pci_init_sff_host - acquire native PCI ATA resources and init host
617 * @host: target ATA host
618 *
619 * Acquire native PCI ATA resources for @host and initialize the
620 * first two ports of @host accordingly. Ports marked dummy are
621 * skipped and allocation failure makes the port dummy.
622 *
623 * Note that native PCI resources are valid even for legacy hosts
624 * as we fix up pdev resources array early in boot, so this
625 * function can be used for both native and legacy SFF hosts.
626 *
627 * LOCKING:
628 * Inherited from calling layer (may sleep).
629 *
630 * RETURNS:
631 * 0 if at least one port is initialized, -ENODEV if no port is
632 * available.
633 */
634 int ata_pci_init_sff_host(struct ata_host *host)
635 {
636 struct device *gdev = host->dev;
637 struct pci_dev *pdev = to_pci_dev(gdev);
638 unsigned int mask = 0;
639 int i, rc;
640
641 /* request, iomap BARs and init port addresses accordingly */
642 for (i = 0; i < 2; i++) {
643 struct ata_port *ap = host->ports[i];
644 int base = i * 2;
645 void __iomem * const *iomap;
646
647 if (ata_port_is_dummy(ap))
648 continue;
649
650 /* Discard disabled ports. Some controllers show
651 * their unused channels this way. Disabled ports are
652 * made dummy.
653 */
654 if (!ata_resources_present(pdev, i)) {
655 ap->ops = &ata_dummy_port_ops;
656 continue;
657 }
658
659 rc = pcim_iomap_regions(pdev, 0x3 << base, DRV_NAME);
660 if (rc) {
661 dev_printk(KERN_WARNING, gdev,
662 "failed to request/iomap BARs for port %d "
663 "(errno=%d)\n", i, rc);
664 if (rc == -EBUSY)
665 pcim_pin_device(pdev);
666 ap->ops = &ata_dummy_port_ops;
667 continue;
668 }
669 host->iomap = iomap = pcim_iomap_table(pdev);
670
671 ap->ioaddr.cmd_addr = iomap[base];
672 ap->ioaddr.altstatus_addr =
673 ap->ioaddr.ctl_addr = (void __iomem *)
674 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
675 ata_std_ports(&ap->ioaddr);
676
677 mask |= 1 << i;
678 }
679
680 if (!mask) {
681 dev_printk(KERN_ERR, gdev, "no available native port\n");
682 return -ENODEV;
683 }
684
685 return 0;
686 }
687
688 /**
689 * ata_pci_prepare_sff_host - helper to prepare native PCI ATA host
690 * @pdev: target PCI device
691 * @ppi: array of port_info, must be enough for two ports
692 * @r_host: out argument for the initialized ATA host
693 *
694 * Helper to allocate ATA host for @pdev, acquire all native PCI
695 * resources and initialize it accordingly in one go.
696 *
697 * LOCKING:
698 * Inherited from calling layer (may sleep).
699 *
700 * RETURNS:
701 * 0 on success, -errno otherwise.
702 */
703 int ata_pci_prepare_sff_host(struct pci_dev *pdev,
704 const struct ata_port_info * const * ppi,
705 struct ata_host **r_host)
706 {
707 struct ata_host *host;
708 int rc;
709
710 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
711 return -ENOMEM;
712
713 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
714 if (!host) {
715 dev_printk(KERN_ERR, &pdev->dev,
716 "failed to allocate ATA host\n");
717 rc = -ENOMEM;
718 goto err_out;
719 }
720
721 rc = ata_pci_init_sff_host(host);
722 if (rc)
723 goto err_out;
724
725 /* init DMA related stuff */
726 rc = ata_pci_init_bmdma(host);
727 if (rc)
728 goto err_bmdma;
729
730 devres_remove_group(&pdev->dev, NULL);
731 *r_host = host;
732 return 0;
733
734 err_bmdma:
735 /* This is necessary because PCI and iomap resources are
736 * merged and releasing the top group won't release the
737 * acquired resources if some of those have been acquired
738 * before entering this function.
739 */
740 pcim_iounmap_regions(pdev, 0xf);
741 err_out:
742 devres_release_group(&pdev->dev, NULL);
743 return rc;
744 }
745
746 /**
747 * ata_pci_init_one - Initialize/register PCI IDE host controller
748 * @pdev: Controller to be initialized
749 * @ppi: array of port_info, must be enough for two ports
750 *
751 * This is a helper function which can be called from a driver's
752 * xxx_init_one() probe function if the hardware uses traditional
753 * IDE taskfile registers.
754 *
755 * This function calls pci_enable_device(), reserves its register
756 * regions, sets the dma mask, enables bus master mode, and calls
757 * ata_device_add()
758 *
759 * ASSUMPTION:
760 * Nobody makes a single channel controller that appears solely as
761 * the secondary legacy port on PCI.
762 *
763 * LOCKING:
764 * Inherited from PCI layer (may sleep).
765 *
766 * RETURNS:
767 * Zero on success, negative on errno-based value on error.
768 */
769 int ata_pci_init_one(struct pci_dev *pdev,
770 const struct ata_port_info * const * ppi)
771 {
772 struct device *dev = &pdev->dev;
773 const struct ata_port_info *pi = NULL;
774 struct ata_host *host = NULL;
775 u8 mask;
776 int legacy_mode = 0;
777 int i, rc;
778
779 DPRINTK("ENTER\n");
780
781 /* look up the first valid port_info */
782 for (i = 0; i < 2 && ppi[i]; i++) {
783 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
784 pi = ppi[i];
785 break;
786 }
787 }
788
789 if (!pi) {
790 dev_printk(KERN_ERR, &pdev->dev,
791 "no valid port_info specified\n");
792 return -EINVAL;
793 }
794
795 if (!devres_open_group(dev, NULL, GFP_KERNEL))
796 return -ENOMEM;
797
798 /* FIXME: Really for ATA it isn't safe because the device may be
799 multi-purpose and we want to leave it alone if it was already
800 enabled. Secondly for shared use as Arjan says we want refcounting
801
802 Checking dev->is_enabled is insufficient as this is not set at
803 boot for the primary video which is BIOS enabled
804 */
805
806 rc = pcim_enable_device(pdev);
807 if (rc)
808 goto err_out;
809
810 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
811 u8 tmp8;
812
813 /* TODO: What if one channel is in native mode ... */
814 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
815 mask = (1 << 2) | (1 << 0);
816 if ((tmp8 & mask) != mask)
817 legacy_mode = 1;
818 #if defined(CONFIG_NO_ATA_LEGACY)
819 /* Some platforms with PCI limits cannot address compat
820 port space. In that case we punt if their firmware has
821 left a device in compatibility mode */
822 if (legacy_mode) {
823 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
824 rc = -EOPNOTSUPP;
825 goto err_out;
826 }
827 #endif
828 }
829
830 /* prepare host */
831 rc = ata_pci_prepare_sff_host(pdev, ppi, &host);
832 if (rc)
833 goto err_out;
834
835 pci_set_master(pdev);
836
837 /* start host and request IRQ */
838 rc = ata_host_start(host);
839 if (rc)
840 goto err_out;
841
842 if (!legacy_mode) {
843 rc = devm_request_irq(dev, pdev->irq, pi->port_ops->irq_handler,
844 IRQF_SHARED, DRV_NAME, host);
845 if (rc)
846 goto err_out;
847 host->irq = pdev->irq;
848 } else {
849 if (!ata_port_is_dummy(host->ports[0])) {
850 host->irq = ATA_PRIMARY_IRQ(pdev);
851 rc = devm_request_irq(dev, host->irq,
852 pi->port_ops->irq_handler,
853 IRQF_SHARED, DRV_NAME, host);
854 if (rc)
855 goto err_out;
856 }
857
858 if (!ata_port_is_dummy(host->ports[1])) {
859 host->irq2 = ATA_SECONDARY_IRQ(pdev);
860 rc = devm_request_irq(dev, host->irq2,
861 pi->port_ops->irq_handler,
862 IRQF_SHARED, DRV_NAME, host);
863 if (rc)
864 goto err_out;
865 }
866 }
867
868 /* register */
869 rc = ata_host_register(host, pi->sht);
870 if (rc)
871 goto err_out;
872
873 devres_remove_group(dev, NULL);
874 return 0;
875
876 err_out:
877 devres_release_group(dev, NULL);
878 return rc;
879 }
880
881 /**
882 * ata_pci_clear_simplex - attempt to kick device out of simplex
883 * @pdev: PCI device
884 *
885 * Some PCI ATA devices report simplex mode but in fact can be told to
886 * enter non simplex mode. This implements the neccessary logic to
887 * perform the task on such devices. Calling it on other devices will
888 * have -undefined- behaviour.
889 */
890
891 int ata_pci_clear_simplex(struct pci_dev *pdev)
892 {
893 unsigned long bmdma = pci_resource_start(pdev, 4);
894 u8 simplex;
895
896 if (bmdma == 0)
897 return -ENOENT;
898
899 simplex = inb(bmdma + 0x02);
900 outb(simplex & 0x60, bmdma + 0x02);
901 simplex = inb(bmdma + 0x02);
902 if (simplex & 0x80)
903 return -EOPNOTSUPP;
904 return 0;
905 }
906
907 unsigned long ata_pci_default_filter(struct ata_device *adev, unsigned long xfer_mask)
908 {
909 /* Filter out DMA modes if the device has been configured by
910 the BIOS as PIO only */
911
912 if (adev->ap->ioaddr.bmdma_addr == 0)
913 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
914 return xfer_mask;
915 }
916
917 #endif /* CONFIG_PCI */
918