]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ata/libata-sff.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-sff.c
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41
42 #include "libata.h"
43
44 static struct workqueue_struct *ata_sff_wq;
45
46 const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
48
49 .qc_prep = ata_noop_qc_prep,
50 .qc_issue = ata_sff_qc_issue,
51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
52
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
55 .prereset = ata_sff_prereset,
56 .softreset = ata_sff_softreset,
57 .hardreset = sata_sff_hardreset,
58 .postreset = ata_sff_postreset,
59 .error_handler = ata_sff_error_handler,
60
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
67 .sff_drain_fifo = ata_sff_drain_fifo,
68
69 .lost_interrupt = ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72
73 /**
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
76 *
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89
90 /**
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
93 *
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
96 *
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
107
108 return ioread8(ap->ioaddr.altstatus_addr);
109 }
110
111 /**
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
114 *
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 u8 status;
126
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
131 return status;
132 }
133 /* Clear INTRQ latch */
134 status = ap->ops->sff_check_status(ap);
135 return status;
136 }
137
138 /**
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
156 }
157
158 /**
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
161 *
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
165 *
166 * LOCKING:
167 * Inherited from caller.
168 */
169
170 void ata_sff_pause(struct ata_port *ap)
171 {
172 ata_sff_sync(ap);
173 ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176
177 /**
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
180 *
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
183 */
184
185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
192 }
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199
200 /**
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
205 *
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
208 *
209 * LOCKING:
210 * Kernel thread context (may sleep).
211 *
212 * RETURNS:
213 * 0 on success, -errno otherwise.
214 */
215 int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
217 {
218 unsigned long timer_start, timeout;
219 u8 status;
220
221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 timer_start = jiffies;
223 timeout = ata_deadline(timer_start, tmout_pat);
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
226 ata_msleep(ap, 50);
227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 }
229
230 if (status != 0xff && (status & ATA_BUSY))
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
234
235 timeout = ata_deadline(timer_start, tmout);
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
238 ata_msleep(ap, 50);
239 status = ap->ops->sff_check_status(ap);
240 }
241
242 if (status == 0xff)
243 return -ENODEV;
244
245 if (status & ATA_BUSY) {
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
249 return -EBUSY;
250 }
251
252 return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255
256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 u8 status = link->ap->ops->sff_check_status(link->ap);
259
260 return ata_check_ready(status);
261 }
262
263 /**
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
267 *
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
270 *
271 * LOCKING:
272 * Kernel thread context (may sleep).
273 *
274 * RETURNS:
275 * 0 on success, -errno otherwise.
276 */
277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282
283 /**
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
287 *
288 * Writes ATA taskfile device control register.
289 *
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303
304 /**
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
308 *
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
312 *
313 * May be used as the dev_select() entry in ata_port_operations.
314 *
315 * LOCKING:
316 * caller.
317 */
318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 u8 tmp;
321
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327 iowrite8(tmp, ap->ioaddr.device_addr);
328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331
332 /**
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
338 *
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
342 *
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
346 *
347 * LOCKING:
348 * caller.
349 */
350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 unsigned int wait, unsigned int can_sleep)
352 {
353 if (ata_msg_probe(ap))
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
356
357 if (wait)
358 ata_wait_idle(ap);
359
360 ap->ops->sff_dev_select(ap, device);
361
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 ata_msleep(ap, 150);
365 ata_wait_idle(ap);
366 }
367 }
368
369 /**
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
372 *
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
375 *
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
378 *
379 * LOCKING:
380 * Inherited from caller.
381 */
382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 struct ata_ioports *ioaddr = &ap->ioaddr;
385
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
389 }
390
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
393
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
397
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402
403 /**
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
407 *
408 * Outputs ATA taskfile to standard ATA host controller.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
422 ata_wait_idle(ap);
423 }
424
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 WARN_ON_ONCE(!ioaddr->ctl_addr);
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
438 }
439
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
452 }
453
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
457 }
458
459 ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462
463 /**
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
467 *
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 struct ata_ioports *ioaddr = &ap->ioaddr;
479
480 tf->command = ata_sff_check_status(ap);
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
487
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
499 WARN_ON_ONCE(1);
500 }
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503
504 /**
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
511 *
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
514 */
515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519 iowrite8(tf->command, ap->ioaddr.command_addr);
520 ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523
524 /**
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
528 *
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
532 *
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
535 */
536 static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
538 {
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
541 }
542
543 /**
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @qc: queued command
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
549 *
550 * Transfer data from/to the device data register by PIO.
551 *
552 * LOCKING:
553 * Inherited from caller.
554 *
555 * RETURNS:
556 * Bytes consumed.
557 */
558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
559 unsigned int buflen, int rw)
560 {
561 struct ata_port *ap = qc->dev->link->ap;
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
564
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
570
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen & 0x01)) {
573 unsigned char pad[2] = { };
574
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
577
578 /*
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
581 */
582 if (rw == READ) {
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
585 } else {
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
588 }
589 words++;
590 }
591
592 return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595
596 /**
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @qc: queued command
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
602 *
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
605 *
606 * LOCKING:
607 * Inherited from caller.
608 *
609 * RETURNS:
610 * Bytes consumed.
611 */
612
613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
614 unsigned int buflen, int rw)
615 {
616 struct ata_device *dev = qc->dev;
617 struct ata_port *ap = dev->link->ap;
618 void __iomem *data_addr = ap->ioaddr.data_addr;
619 unsigned int words = buflen >> 2;
620 int slop = buflen & 3;
621
622 if (!(ap->pflags & ATA_PFLAG_PIO32))
623 return ata_sff_data_xfer(qc, buf, buflen, rw);
624
625 /* Transfer multiple of 4 bytes */
626 if (rw == READ)
627 ioread32_rep(data_addr, buf, words);
628 else
629 iowrite32_rep(data_addr, buf, words);
630
631 /* Transfer trailing bytes, if any */
632 if (unlikely(slop)) {
633 unsigned char pad[4] = { };
634
635 /* Point buf to the tail of buffer */
636 buf += buflen - slop;
637
638 /*
639 * Use io*_rep() accessors here as well to avoid pointlessly
640 * swapping bytes to and from on the big endian machines...
641 */
642 if (rw == READ) {
643 if (slop < 3)
644 ioread16_rep(data_addr, pad, 1);
645 else
646 ioread32_rep(data_addr, pad, 1);
647 memcpy(buf, pad, slop);
648 } else {
649 memcpy(pad, buf, slop);
650 if (slop < 3)
651 iowrite16_rep(data_addr, pad, 1);
652 else
653 iowrite32_rep(data_addr, pad, 1);
654 }
655 }
656 return (buflen + 1) & ~1;
657 }
658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659
660 /**
661 * ata_sff_data_xfer_noirq - Transfer data by PIO
662 * @qc: queued command
663 * @buf: data buffer
664 * @buflen: buffer length
665 * @rw: read/write
666 *
667 * Transfer data from/to the device data register by PIO. Do the
668 * transfer with interrupts disabled.
669 *
670 * LOCKING:
671 * Inherited from caller.
672 *
673 * RETURNS:
674 * Bytes consumed.
675 */
676 unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf,
677 unsigned int buflen, int rw)
678 {
679 unsigned long flags;
680 unsigned int consumed;
681
682 local_irq_save(flags);
683 consumed = ata_sff_data_xfer32(qc, buf, buflen, rw);
684 local_irq_restore(flags);
685
686 return consumed;
687 }
688 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
689
690 /**
691 * ata_pio_sector - Transfer a sector of data.
692 * @qc: Command on going
693 *
694 * Transfer qc->sect_size bytes of data from/to the ATA device.
695 *
696 * LOCKING:
697 * Inherited from caller.
698 */
699 static void ata_pio_sector(struct ata_queued_cmd *qc)
700 {
701 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
702 struct ata_port *ap = qc->ap;
703 struct page *page;
704 unsigned int offset;
705 unsigned char *buf;
706
707 if (qc->curbytes == qc->nbytes - qc->sect_size)
708 ap->hsm_task_state = HSM_ST_LAST;
709
710 page = sg_page(qc->cursg);
711 offset = qc->cursg->offset + qc->cursg_ofs;
712
713 /* get the current page and offset */
714 page = nth_page(page, (offset >> PAGE_SHIFT));
715 offset %= PAGE_SIZE;
716
717 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
718
719 /* do the actual data transfer */
720 buf = kmap_atomic(page);
721 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
722 kunmap_atomic(buf);
723
724 if (!do_write && !PageSlab(page))
725 flush_dcache_page(page);
726
727 qc->curbytes += qc->sect_size;
728 qc->cursg_ofs += qc->sect_size;
729
730 if (qc->cursg_ofs == qc->cursg->length) {
731 qc->cursg = sg_next(qc->cursg);
732 qc->cursg_ofs = 0;
733 }
734 }
735
736 /**
737 * ata_pio_sectors - Transfer one or many sectors.
738 * @qc: Command on going
739 *
740 * Transfer one or many sectors of data from/to the
741 * ATA device for the DRQ request.
742 *
743 * LOCKING:
744 * Inherited from caller.
745 */
746 static void ata_pio_sectors(struct ata_queued_cmd *qc)
747 {
748 if (is_multi_taskfile(&qc->tf)) {
749 /* READ/WRITE MULTIPLE */
750 unsigned int nsect;
751
752 WARN_ON_ONCE(qc->dev->multi_count == 0);
753
754 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
755 qc->dev->multi_count);
756 while (nsect--)
757 ata_pio_sector(qc);
758 } else
759 ata_pio_sector(qc);
760
761 ata_sff_sync(qc->ap); /* flush */
762 }
763
764 /**
765 * atapi_send_cdb - Write CDB bytes to hardware
766 * @ap: Port to which ATAPI device is attached.
767 * @qc: Taskfile currently active
768 *
769 * When device has indicated its readiness to accept
770 * a CDB, this function is called. Send the CDB.
771 *
772 * LOCKING:
773 * caller.
774 */
775 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
776 {
777 /* send SCSI cdb */
778 DPRINTK("send cdb\n");
779 WARN_ON_ONCE(qc->dev->cdb_len < 12);
780
781 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
782 ata_sff_sync(ap);
783 /* FIXME: If the CDB is for DMA do we need to do the transition delay
784 or is bmdma_start guaranteed to do it ? */
785 switch (qc->tf.protocol) {
786 case ATAPI_PROT_PIO:
787 ap->hsm_task_state = HSM_ST;
788 break;
789 case ATAPI_PROT_NODATA:
790 ap->hsm_task_state = HSM_ST_LAST;
791 break;
792 #ifdef CONFIG_ATA_BMDMA
793 case ATAPI_PROT_DMA:
794 ap->hsm_task_state = HSM_ST_LAST;
795 /* initiate bmdma */
796 ap->ops->bmdma_start(qc);
797 break;
798 #endif /* CONFIG_ATA_BMDMA */
799 default:
800 BUG();
801 }
802 }
803
804 /**
805 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
806 * @qc: Command on going
807 * @bytes: number of bytes
808 *
809 * Transfer Transfer data from/to the ATAPI device.
810 *
811 * LOCKING:
812 * Inherited from caller.
813 *
814 */
815 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
816 {
817 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
818 struct ata_port *ap = qc->ap;
819 struct ata_device *dev = qc->dev;
820 struct ata_eh_info *ehi = &dev->link->eh_info;
821 struct scatterlist *sg;
822 struct page *page;
823 unsigned char *buf;
824 unsigned int offset, count, consumed;
825
826 next_sg:
827 sg = qc->cursg;
828 if (unlikely(!sg)) {
829 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
830 "buf=%u cur=%u bytes=%u",
831 qc->nbytes, qc->curbytes, bytes);
832 return -1;
833 }
834
835 page = sg_page(sg);
836 offset = sg->offset + qc->cursg_ofs;
837
838 /* get the current page and offset */
839 page = nth_page(page, (offset >> PAGE_SHIFT));
840 offset %= PAGE_SIZE;
841
842 /* don't overrun current sg */
843 count = min(sg->length - qc->cursg_ofs, bytes);
844
845 /* don't cross page boundaries */
846 count = min(count, (unsigned int)PAGE_SIZE - offset);
847
848 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
849
850 /* do the actual data transfer */
851 buf = kmap_atomic(page);
852 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
853 kunmap_atomic(buf);
854
855 bytes -= min(bytes, consumed);
856 qc->curbytes += count;
857 qc->cursg_ofs += count;
858
859 if (qc->cursg_ofs == sg->length) {
860 qc->cursg = sg_next(qc->cursg);
861 qc->cursg_ofs = 0;
862 }
863
864 /*
865 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
866 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
867 * check correctly as it doesn't know if it is the last request being
868 * made. Somebody should implement a proper sanity check.
869 */
870 if (bytes)
871 goto next_sg;
872 return 0;
873 }
874
875 /**
876 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
877 * @qc: Command on going
878 *
879 * Transfer Transfer data from/to the ATAPI device.
880 *
881 * LOCKING:
882 * Inherited from caller.
883 */
884 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
885 {
886 struct ata_port *ap = qc->ap;
887 struct ata_device *dev = qc->dev;
888 struct ata_eh_info *ehi = &dev->link->eh_info;
889 unsigned int ireason, bc_lo, bc_hi, bytes;
890 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
891
892 /* Abuse qc->result_tf for temp storage of intermediate TF
893 * here to save some kernel stack usage.
894 * For normal completion, qc->result_tf is not relevant. For
895 * error, qc->result_tf is later overwritten by ata_qc_complete().
896 * So, the correctness of qc->result_tf is not affected.
897 */
898 ap->ops->sff_tf_read(ap, &qc->result_tf);
899 ireason = qc->result_tf.nsect;
900 bc_lo = qc->result_tf.lbam;
901 bc_hi = qc->result_tf.lbah;
902 bytes = (bc_hi << 8) | bc_lo;
903
904 /* shall be cleared to zero, indicating xfer of data */
905 if (unlikely(ireason & ATAPI_COD))
906 goto atapi_check;
907
908 /* make sure transfer direction matches expected */
909 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
910 if (unlikely(do_write != i_write))
911 goto atapi_check;
912
913 if (unlikely(!bytes))
914 goto atapi_check;
915
916 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
917
918 if (unlikely(__atapi_pio_bytes(qc, bytes)))
919 goto err_out;
920 ata_sff_sync(ap); /* flush */
921
922 return;
923
924 atapi_check:
925 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
926 ireason, bytes);
927 err_out:
928 qc->err_mask |= AC_ERR_HSM;
929 ap->hsm_task_state = HSM_ST_ERR;
930 }
931
932 /**
933 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
934 * @ap: the target ata_port
935 * @qc: qc on going
936 *
937 * RETURNS:
938 * 1 if ok in workqueue, 0 otherwise.
939 */
940 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
941 struct ata_queued_cmd *qc)
942 {
943 if (qc->tf.flags & ATA_TFLAG_POLLING)
944 return 1;
945
946 if (ap->hsm_task_state == HSM_ST_FIRST) {
947 if (qc->tf.protocol == ATA_PROT_PIO &&
948 (qc->tf.flags & ATA_TFLAG_WRITE))
949 return 1;
950
951 if (ata_is_atapi(qc->tf.protocol) &&
952 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
953 return 1;
954 }
955
956 return 0;
957 }
958
959 /**
960 * ata_hsm_qc_complete - finish a qc running on standard HSM
961 * @qc: Command to complete
962 * @in_wq: 1 if called from workqueue, 0 otherwise
963 *
964 * Finish @qc which is running on standard HSM.
965 *
966 * LOCKING:
967 * If @in_wq is zero, spin_lock_irqsave(host lock).
968 * Otherwise, none on entry and grabs host lock.
969 */
970 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
971 {
972 struct ata_port *ap = qc->ap;
973
974 if (ap->ops->error_handler) {
975 if (in_wq) {
976 /* EH might have kicked in while host lock is
977 * released.
978 */
979 qc = ata_qc_from_tag(ap, qc->tag);
980 if (qc) {
981 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
982 ata_sff_irq_on(ap);
983 ata_qc_complete(qc);
984 } else
985 ata_port_freeze(ap);
986 }
987 } else {
988 if (likely(!(qc->err_mask & AC_ERR_HSM)))
989 ata_qc_complete(qc);
990 else
991 ata_port_freeze(ap);
992 }
993 } else {
994 if (in_wq) {
995 ata_sff_irq_on(ap);
996 ata_qc_complete(qc);
997 } else
998 ata_qc_complete(qc);
999 }
1000 }
1001
1002 /**
1003 * ata_sff_hsm_move - move the HSM to the next state.
1004 * @ap: the target ata_port
1005 * @qc: qc on going
1006 * @status: current device status
1007 * @in_wq: 1 if called from workqueue, 0 otherwise
1008 *
1009 * RETURNS:
1010 * 1 when poll next status needed, 0 otherwise.
1011 */
1012 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1013 u8 status, int in_wq)
1014 {
1015 struct ata_link *link = qc->dev->link;
1016 struct ata_eh_info *ehi = &link->eh_info;
1017 int poll_next;
1018
1019 lockdep_assert_held(ap->lock);
1020
1021 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1022
1023 /* Make sure ata_sff_qc_issue() does not throw things
1024 * like DMA polling into the workqueue. Notice that
1025 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1026 */
1027 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1028
1029 fsm_start:
1030 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1031 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1032
1033 switch (ap->hsm_task_state) {
1034 case HSM_ST_FIRST:
1035 /* Send first data block or PACKET CDB */
1036
1037 /* If polling, we will stay in the work queue after
1038 * sending the data. Otherwise, interrupt handler
1039 * takes over after sending the data.
1040 */
1041 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1042
1043 /* check device status */
1044 if (unlikely((status & ATA_DRQ) == 0)) {
1045 /* handle BSY=0, DRQ=0 as error */
1046 if (likely(status & (ATA_ERR | ATA_DF)))
1047 /* device stops HSM for abort/error */
1048 qc->err_mask |= AC_ERR_DEV;
1049 else {
1050 /* HSM violation. Let EH handle this */
1051 ata_ehi_push_desc(ehi,
1052 "ST_FIRST: !(DRQ|ERR|DF)");
1053 qc->err_mask |= AC_ERR_HSM;
1054 }
1055
1056 ap->hsm_task_state = HSM_ST_ERR;
1057 goto fsm_start;
1058 }
1059
1060 /* Device should not ask for data transfer (DRQ=1)
1061 * when it finds something wrong.
1062 * We ignore DRQ here and stop the HSM by
1063 * changing hsm_task_state to HSM_ST_ERR and
1064 * let the EH abort the command or reset the device.
1065 */
1066 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1067 /* Some ATAPI tape drives forget to clear the ERR bit
1068 * when doing the next command (mostly request sense).
1069 * We ignore ERR here to workaround and proceed sending
1070 * the CDB.
1071 */
1072 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1073 ata_ehi_push_desc(ehi, "ST_FIRST: "
1074 "DRQ=1 with device error, "
1075 "dev_stat 0x%X", status);
1076 qc->err_mask |= AC_ERR_HSM;
1077 ap->hsm_task_state = HSM_ST_ERR;
1078 goto fsm_start;
1079 }
1080 }
1081
1082 if (qc->tf.protocol == ATA_PROT_PIO) {
1083 /* PIO data out protocol.
1084 * send first data block.
1085 */
1086
1087 /* ata_pio_sectors() might change the state
1088 * to HSM_ST_LAST. so, the state is changed here
1089 * before ata_pio_sectors().
1090 */
1091 ap->hsm_task_state = HSM_ST;
1092 ata_pio_sectors(qc);
1093 } else
1094 /* send CDB */
1095 atapi_send_cdb(ap, qc);
1096
1097 /* if polling, ata_sff_pio_task() handles the rest.
1098 * otherwise, interrupt handler takes over from here.
1099 */
1100 break;
1101
1102 case HSM_ST:
1103 /* complete command or read/write the data register */
1104 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1105 /* ATAPI PIO protocol */
1106 if ((status & ATA_DRQ) == 0) {
1107 /* No more data to transfer or device error.
1108 * Device error will be tagged in HSM_ST_LAST.
1109 */
1110 ap->hsm_task_state = HSM_ST_LAST;
1111 goto fsm_start;
1112 }
1113
1114 /* Device should not ask for data transfer (DRQ=1)
1115 * when it finds something wrong.
1116 * We ignore DRQ here and stop the HSM by
1117 * changing hsm_task_state to HSM_ST_ERR and
1118 * let the EH abort the command or reset the device.
1119 */
1120 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1121 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1122 "DRQ=1 with device error, "
1123 "dev_stat 0x%X", status);
1124 qc->err_mask |= AC_ERR_HSM;
1125 ap->hsm_task_state = HSM_ST_ERR;
1126 goto fsm_start;
1127 }
1128
1129 atapi_pio_bytes(qc);
1130
1131 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1132 /* bad ireason reported by device */
1133 goto fsm_start;
1134
1135 } else {
1136 /* ATA PIO protocol */
1137 if (unlikely((status & ATA_DRQ) == 0)) {
1138 /* handle BSY=0, DRQ=0 as error */
1139 if (likely(status & (ATA_ERR | ATA_DF))) {
1140 /* device stops HSM for abort/error */
1141 qc->err_mask |= AC_ERR_DEV;
1142
1143 /* If diagnostic failed and this is
1144 * IDENTIFY, it's likely a phantom
1145 * device. Mark hint.
1146 */
1147 if (qc->dev->horkage &
1148 ATA_HORKAGE_DIAGNOSTIC)
1149 qc->err_mask |=
1150 AC_ERR_NODEV_HINT;
1151 } else {
1152 /* HSM violation. Let EH handle this.
1153 * Phantom devices also trigger this
1154 * condition. Mark hint.
1155 */
1156 ata_ehi_push_desc(ehi, "ST-ATA: "
1157 "DRQ=0 without device error, "
1158 "dev_stat 0x%X", status);
1159 qc->err_mask |= AC_ERR_HSM |
1160 AC_ERR_NODEV_HINT;
1161 }
1162
1163 ap->hsm_task_state = HSM_ST_ERR;
1164 goto fsm_start;
1165 }
1166
1167 /* For PIO reads, some devices may ask for
1168 * data transfer (DRQ=1) alone with ERR=1.
1169 * We respect DRQ here and transfer one
1170 * block of junk data before changing the
1171 * hsm_task_state to HSM_ST_ERR.
1172 *
1173 * For PIO writes, ERR=1 DRQ=1 doesn't make
1174 * sense since the data block has been
1175 * transferred to the device.
1176 */
1177 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1178 /* data might be corrputed */
1179 qc->err_mask |= AC_ERR_DEV;
1180
1181 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1182 ata_pio_sectors(qc);
1183 status = ata_wait_idle(ap);
1184 }
1185
1186 if (status & (ATA_BUSY | ATA_DRQ)) {
1187 ata_ehi_push_desc(ehi, "ST-ATA: "
1188 "BUSY|DRQ persists on ERR|DF, "
1189 "dev_stat 0x%X", status);
1190 qc->err_mask |= AC_ERR_HSM;
1191 }
1192
1193 /* There are oddball controllers with
1194 * status register stuck at 0x7f and
1195 * lbal/m/h at zero which makes it
1196 * pass all other presence detection
1197 * mechanisms we have. Set NODEV_HINT
1198 * for it. Kernel bz#7241.
1199 */
1200 if (status == 0x7f)
1201 qc->err_mask |= AC_ERR_NODEV_HINT;
1202
1203 /* ata_pio_sectors() might change the
1204 * state to HSM_ST_LAST. so, the state
1205 * is changed after ata_pio_sectors().
1206 */
1207 ap->hsm_task_state = HSM_ST_ERR;
1208 goto fsm_start;
1209 }
1210
1211 ata_pio_sectors(qc);
1212
1213 if (ap->hsm_task_state == HSM_ST_LAST &&
1214 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1215 /* all data read */
1216 status = ata_wait_idle(ap);
1217 goto fsm_start;
1218 }
1219 }
1220
1221 poll_next = 1;
1222 break;
1223
1224 case HSM_ST_LAST:
1225 if (unlikely(!ata_ok(status))) {
1226 qc->err_mask |= __ac_err_mask(status);
1227 ap->hsm_task_state = HSM_ST_ERR;
1228 goto fsm_start;
1229 }
1230
1231 /* no more data to transfer */
1232 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1233 ap->print_id, qc->dev->devno, status);
1234
1235 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1236
1237 ap->hsm_task_state = HSM_ST_IDLE;
1238
1239 /* complete taskfile transaction */
1240 ata_hsm_qc_complete(qc, in_wq);
1241
1242 poll_next = 0;
1243 break;
1244
1245 case HSM_ST_ERR:
1246 ap->hsm_task_state = HSM_ST_IDLE;
1247
1248 /* complete taskfile transaction */
1249 ata_hsm_qc_complete(qc, in_wq);
1250
1251 poll_next = 0;
1252 break;
1253 default:
1254 poll_next = 0;
1255 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1256 ap->print_id, ap->hsm_task_state);
1257 }
1258
1259 return poll_next;
1260 }
1261 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1262
1263 void ata_sff_queue_work(struct work_struct *work)
1264 {
1265 queue_work(ata_sff_wq, work);
1266 }
1267 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1268
1269 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1270 {
1271 queue_delayed_work(ata_sff_wq, dwork, delay);
1272 }
1273 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1274
1275 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1276 {
1277 struct ata_port *ap = link->ap;
1278
1279 WARN_ON((ap->sff_pio_task_link != NULL) &&
1280 (ap->sff_pio_task_link != link));
1281 ap->sff_pio_task_link = link;
1282
1283 /* may fail if ata_sff_flush_pio_task() in progress */
1284 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1285 }
1286 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1287
1288 void ata_sff_flush_pio_task(struct ata_port *ap)
1289 {
1290 DPRINTK("ENTER\n");
1291
1292 cancel_delayed_work_sync(&ap->sff_pio_task);
1293
1294 /*
1295 * We wanna reset the HSM state to IDLE. If we do so without
1296 * grabbing the port lock, critical sections protected by it which
1297 * expect the HSM state to stay stable may get surprised. For
1298 * example, we may set IDLE in between the time
1299 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1300 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1301 */
1302 spin_lock_irq(ap->lock);
1303 ap->hsm_task_state = HSM_ST_IDLE;
1304 spin_unlock_irq(ap->lock);
1305
1306 ap->sff_pio_task_link = NULL;
1307
1308 if (ata_msg_ctl(ap))
1309 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1310 }
1311
1312 static void ata_sff_pio_task(struct work_struct *work)
1313 {
1314 struct ata_port *ap =
1315 container_of(work, struct ata_port, sff_pio_task.work);
1316 struct ata_link *link = ap->sff_pio_task_link;
1317 struct ata_queued_cmd *qc;
1318 u8 status;
1319 int poll_next;
1320
1321 spin_lock_irq(ap->lock);
1322
1323 BUG_ON(ap->sff_pio_task_link == NULL);
1324 /* qc can be NULL if timeout occurred */
1325 qc = ata_qc_from_tag(ap, link->active_tag);
1326 if (!qc) {
1327 ap->sff_pio_task_link = NULL;
1328 goto out_unlock;
1329 }
1330
1331 fsm_start:
1332 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1333
1334 /*
1335 * This is purely heuristic. This is a fast path.
1336 * Sometimes when we enter, BSY will be cleared in
1337 * a chk-status or two. If not, the drive is probably seeking
1338 * or something. Snooze for a couple msecs, then
1339 * chk-status again. If still busy, queue delayed work.
1340 */
1341 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1342 if (status & ATA_BUSY) {
1343 spin_unlock_irq(ap->lock);
1344 ata_msleep(ap, 2);
1345 spin_lock_irq(ap->lock);
1346
1347 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1348 if (status & ATA_BUSY) {
1349 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1350 goto out_unlock;
1351 }
1352 }
1353
1354 /*
1355 * hsm_move() may trigger another command to be processed.
1356 * clean the link beforehand.
1357 */
1358 ap->sff_pio_task_link = NULL;
1359 /* move the HSM */
1360 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1361
1362 /* another command or interrupt handler
1363 * may be running at this point.
1364 */
1365 if (poll_next)
1366 goto fsm_start;
1367 out_unlock:
1368 spin_unlock_irq(ap->lock);
1369 }
1370
1371 /**
1372 * ata_sff_qc_issue - issue taskfile to a SFF controller
1373 * @qc: command to issue to device
1374 *
1375 * This function issues a PIO or NODATA command to a SFF
1376 * controller.
1377 *
1378 * LOCKING:
1379 * spin_lock_irqsave(host lock)
1380 *
1381 * RETURNS:
1382 * Zero on success, AC_ERR_* mask on failure
1383 */
1384 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1385 {
1386 struct ata_port *ap = qc->ap;
1387 struct ata_link *link = qc->dev->link;
1388
1389 /* Use polling pio if the LLD doesn't handle
1390 * interrupt driven pio and atapi CDB interrupt.
1391 */
1392 if (ap->flags & ATA_FLAG_PIO_POLLING)
1393 qc->tf.flags |= ATA_TFLAG_POLLING;
1394
1395 /* select the device */
1396 ata_dev_select(ap, qc->dev->devno, 1, 0);
1397
1398 /* start the command */
1399 switch (qc->tf.protocol) {
1400 case ATA_PROT_NODATA:
1401 if (qc->tf.flags & ATA_TFLAG_POLLING)
1402 ata_qc_set_polling(qc);
1403
1404 ata_tf_to_host(ap, &qc->tf);
1405 ap->hsm_task_state = HSM_ST_LAST;
1406
1407 if (qc->tf.flags & ATA_TFLAG_POLLING)
1408 ata_sff_queue_pio_task(link, 0);
1409
1410 break;
1411
1412 case ATA_PROT_PIO:
1413 if (qc->tf.flags & ATA_TFLAG_POLLING)
1414 ata_qc_set_polling(qc);
1415
1416 ata_tf_to_host(ap, &qc->tf);
1417
1418 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1419 /* PIO data out protocol */
1420 ap->hsm_task_state = HSM_ST_FIRST;
1421 ata_sff_queue_pio_task(link, 0);
1422
1423 /* always send first data block using the
1424 * ata_sff_pio_task() codepath.
1425 */
1426 } else {
1427 /* PIO data in protocol */
1428 ap->hsm_task_state = HSM_ST;
1429
1430 if (qc->tf.flags & ATA_TFLAG_POLLING)
1431 ata_sff_queue_pio_task(link, 0);
1432
1433 /* if polling, ata_sff_pio_task() handles the
1434 * rest. otherwise, interrupt handler takes
1435 * over from here.
1436 */
1437 }
1438
1439 break;
1440
1441 case ATAPI_PROT_PIO:
1442 case ATAPI_PROT_NODATA:
1443 if (qc->tf.flags & ATA_TFLAG_POLLING)
1444 ata_qc_set_polling(qc);
1445
1446 ata_tf_to_host(ap, &qc->tf);
1447
1448 ap->hsm_task_state = HSM_ST_FIRST;
1449
1450 /* send cdb by polling if no cdb interrupt */
1451 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1452 (qc->tf.flags & ATA_TFLAG_POLLING))
1453 ata_sff_queue_pio_task(link, 0);
1454 break;
1455
1456 default:
1457 return AC_ERR_SYSTEM;
1458 }
1459
1460 return 0;
1461 }
1462 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1463
1464 /**
1465 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1466 * @qc: qc to fill result TF for
1467 *
1468 * @qc is finished and result TF needs to be filled. Fill it
1469 * using ->sff_tf_read.
1470 *
1471 * LOCKING:
1472 * spin_lock_irqsave(host lock)
1473 *
1474 * RETURNS:
1475 * true indicating that result TF is successfully filled.
1476 */
1477 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1478 {
1479 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1480 return true;
1481 }
1482 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1483
1484 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1485 {
1486 ap->stats.idle_irq++;
1487
1488 #ifdef ATA_IRQ_TRAP
1489 if ((ap->stats.idle_irq % 1000) == 0) {
1490 ap->ops->sff_check_status(ap);
1491 if (ap->ops->sff_irq_clear)
1492 ap->ops->sff_irq_clear(ap);
1493 ata_port_warn(ap, "irq trap\n");
1494 return 1;
1495 }
1496 #endif
1497 return 0; /* irq not handled */
1498 }
1499
1500 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1501 struct ata_queued_cmd *qc,
1502 bool hsmv_on_idle)
1503 {
1504 u8 status;
1505
1506 VPRINTK("ata%u: protocol %d task_state %d\n",
1507 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1508
1509 /* Check whether we are expecting interrupt in this state */
1510 switch (ap->hsm_task_state) {
1511 case HSM_ST_FIRST:
1512 /* Some pre-ATAPI-4 devices assert INTRQ
1513 * at this state when ready to receive CDB.
1514 */
1515
1516 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1517 * The flag was turned on only for atapi devices. No
1518 * need to check ata_is_atapi(qc->tf.protocol) again.
1519 */
1520 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1521 return ata_sff_idle_irq(ap);
1522 break;
1523 case HSM_ST_IDLE:
1524 return ata_sff_idle_irq(ap);
1525 default:
1526 break;
1527 }
1528
1529 /* check main status, clearing INTRQ if needed */
1530 status = ata_sff_irq_status(ap);
1531 if (status & ATA_BUSY) {
1532 if (hsmv_on_idle) {
1533 /* BMDMA engine is already stopped, we're screwed */
1534 qc->err_mask |= AC_ERR_HSM;
1535 ap->hsm_task_state = HSM_ST_ERR;
1536 } else
1537 return ata_sff_idle_irq(ap);
1538 }
1539
1540 /* clear irq events */
1541 if (ap->ops->sff_irq_clear)
1542 ap->ops->sff_irq_clear(ap);
1543
1544 ata_sff_hsm_move(ap, qc, status, 0);
1545
1546 return 1; /* irq handled */
1547 }
1548
1549 /**
1550 * ata_sff_port_intr - Handle SFF port interrupt
1551 * @ap: Port on which interrupt arrived (possibly...)
1552 * @qc: Taskfile currently active in engine
1553 *
1554 * Handle port interrupt for given queued command.
1555 *
1556 * LOCKING:
1557 * spin_lock_irqsave(host lock)
1558 *
1559 * RETURNS:
1560 * One if interrupt was handled, zero if not (shared irq).
1561 */
1562 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1563 {
1564 return __ata_sff_port_intr(ap, qc, false);
1565 }
1566 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1567
1568 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1569 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1570 {
1571 struct ata_host *host = dev_instance;
1572 bool retried = false;
1573 unsigned int i;
1574 unsigned int handled, idle, polling;
1575 unsigned long flags;
1576
1577 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1578 spin_lock_irqsave(&host->lock, flags);
1579
1580 retry:
1581 handled = idle = polling = 0;
1582 for (i = 0; i < host->n_ports; i++) {
1583 struct ata_port *ap = host->ports[i];
1584 struct ata_queued_cmd *qc;
1585
1586 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1587 if (qc) {
1588 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1589 handled |= port_intr(ap, qc);
1590 else
1591 polling |= 1 << i;
1592 } else
1593 idle |= 1 << i;
1594 }
1595
1596 /*
1597 * If no port was expecting IRQ but the controller is actually
1598 * asserting IRQ line, nobody cared will ensue. Check IRQ
1599 * pending status if available and clear spurious IRQ.
1600 */
1601 if (!handled && !retried) {
1602 bool retry = false;
1603
1604 for (i = 0; i < host->n_ports; i++) {
1605 struct ata_port *ap = host->ports[i];
1606
1607 if (polling & (1 << i))
1608 continue;
1609
1610 if (!ap->ops->sff_irq_check ||
1611 !ap->ops->sff_irq_check(ap))
1612 continue;
1613
1614 if (idle & (1 << i)) {
1615 ap->ops->sff_check_status(ap);
1616 if (ap->ops->sff_irq_clear)
1617 ap->ops->sff_irq_clear(ap);
1618 } else {
1619 /* clear INTRQ and check if BUSY cleared */
1620 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1621 retry |= true;
1622 /*
1623 * With command in flight, we can't do
1624 * sff_irq_clear() w/o racing with completion.
1625 */
1626 }
1627 }
1628
1629 if (retry) {
1630 retried = true;
1631 goto retry;
1632 }
1633 }
1634
1635 spin_unlock_irqrestore(&host->lock, flags);
1636
1637 return IRQ_RETVAL(handled);
1638 }
1639
1640 /**
1641 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1642 * @irq: irq line (unused)
1643 * @dev_instance: pointer to our ata_host information structure
1644 *
1645 * Default interrupt handler for PCI IDE devices. Calls
1646 * ata_sff_port_intr() for each port that is not disabled.
1647 *
1648 * LOCKING:
1649 * Obtains host lock during operation.
1650 *
1651 * RETURNS:
1652 * IRQ_NONE or IRQ_HANDLED.
1653 */
1654 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1655 {
1656 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1657 }
1658 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1659
1660 /**
1661 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1662 * @ap: port that appears to have timed out
1663 *
1664 * Called from the libata error handlers when the core code suspects
1665 * an interrupt has been lost. If it has complete anything we can and
1666 * then return. Interface must support altstatus for this faster
1667 * recovery to occur.
1668 *
1669 * Locking:
1670 * Caller holds host lock
1671 */
1672
1673 void ata_sff_lost_interrupt(struct ata_port *ap)
1674 {
1675 u8 status;
1676 struct ata_queued_cmd *qc;
1677
1678 /* Only one outstanding command per SFF channel */
1679 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1680 /* We cannot lose an interrupt on a non-existent or polled command */
1681 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1682 return;
1683 /* See if the controller thinks it is still busy - if so the command
1684 isn't a lost IRQ but is still in progress */
1685 status = ata_sff_altstatus(ap);
1686 if (status & ATA_BUSY)
1687 return;
1688
1689 /* There was a command running, we are no longer busy and we have
1690 no interrupt. */
1691 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1692 status);
1693 /* Run the host interrupt logic as if the interrupt had not been
1694 lost */
1695 ata_sff_port_intr(ap, qc);
1696 }
1697 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1698
1699 /**
1700 * ata_sff_freeze - Freeze SFF controller port
1701 * @ap: port to freeze
1702 *
1703 * Freeze SFF controller port.
1704 *
1705 * LOCKING:
1706 * Inherited from caller.
1707 */
1708 void ata_sff_freeze(struct ata_port *ap)
1709 {
1710 ap->ctl |= ATA_NIEN;
1711 ap->last_ctl = ap->ctl;
1712
1713 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1714 ata_sff_set_devctl(ap, ap->ctl);
1715
1716 /* Under certain circumstances, some controllers raise IRQ on
1717 * ATA_NIEN manipulation. Also, many controllers fail to mask
1718 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1719 */
1720 ap->ops->sff_check_status(ap);
1721
1722 if (ap->ops->sff_irq_clear)
1723 ap->ops->sff_irq_clear(ap);
1724 }
1725 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1726
1727 /**
1728 * ata_sff_thaw - Thaw SFF controller port
1729 * @ap: port to thaw
1730 *
1731 * Thaw SFF controller port.
1732 *
1733 * LOCKING:
1734 * Inherited from caller.
1735 */
1736 void ata_sff_thaw(struct ata_port *ap)
1737 {
1738 /* clear & re-enable interrupts */
1739 ap->ops->sff_check_status(ap);
1740 if (ap->ops->sff_irq_clear)
1741 ap->ops->sff_irq_clear(ap);
1742 ata_sff_irq_on(ap);
1743 }
1744 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1745
1746 /**
1747 * ata_sff_prereset - prepare SFF link for reset
1748 * @link: SFF link to be reset
1749 * @deadline: deadline jiffies for the operation
1750 *
1751 * SFF link @link is about to be reset. Initialize it. It first
1752 * calls ata_std_prereset() and wait for !BSY if the port is
1753 * being softreset.
1754 *
1755 * LOCKING:
1756 * Kernel thread context (may sleep)
1757 *
1758 * RETURNS:
1759 * 0 on success, -errno otherwise.
1760 */
1761 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1762 {
1763 struct ata_eh_context *ehc = &link->eh_context;
1764 int rc;
1765
1766 rc = ata_std_prereset(link, deadline);
1767 if (rc)
1768 return rc;
1769
1770 /* if we're about to do hardreset, nothing more to do */
1771 if (ehc->i.action & ATA_EH_HARDRESET)
1772 return 0;
1773
1774 /* wait for !BSY if we don't know that no device is attached */
1775 if (!ata_link_offline(link)) {
1776 rc = ata_sff_wait_ready(link, deadline);
1777 if (rc && rc != -ENODEV) {
1778 ata_link_warn(link,
1779 "device not ready (errno=%d), forcing hardreset\n",
1780 rc);
1781 ehc->i.action |= ATA_EH_HARDRESET;
1782 }
1783 }
1784
1785 return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1788
1789 /**
1790 * ata_devchk - PATA device presence detection
1791 * @ap: ATA channel to examine
1792 * @device: Device to examine (starting at zero)
1793 *
1794 * This technique was originally described in
1795 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1796 * later found its way into the ATA/ATAPI spec.
1797 *
1798 * Write a pattern to the ATA shadow registers,
1799 * and if a device is present, it will respond by
1800 * correctly storing and echoing back the
1801 * ATA shadow register contents.
1802 *
1803 * LOCKING:
1804 * caller.
1805 */
1806 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1807 {
1808 struct ata_ioports *ioaddr = &ap->ioaddr;
1809 u8 nsect, lbal;
1810
1811 ap->ops->sff_dev_select(ap, device);
1812
1813 iowrite8(0x55, ioaddr->nsect_addr);
1814 iowrite8(0xaa, ioaddr->lbal_addr);
1815
1816 iowrite8(0xaa, ioaddr->nsect_addr);
1817 iowrite8(0x55, ioaddr->lbal_addr);
1818
1819 iowrite8(0x55, ioaddr->nsect_addr);
1820 iowrite8(0xaa, ioaddr->lbal_addr);
1821
1822 nsect = ioread8(ioaddr->nsect_addr);
1823 lbal = ioread8(ioaddr->lbal_addr);
1824
1825 if ((nsect == 0x55) && (lbal == 0xaa))
1826 return 1; /* we found a device */
1827
1828 return 0; /* nothing found */
1829 }
1830
1831 /**
1832 * ata_sff_dev_classify - Parse returned ATA device signature
1833 * @dev: ATA device to classify (starting at zero)
1834 * @present: device seems present
1835 * @r_err: Value of error register on completion
1836 *
1837 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1838 * an ATA/ATAPI-defined set of values is placed in the ATA
1839 * shadow registers, indicating the results of device detection
1840 * and diagnostics.
1841 *
1842 * Select the ATA device, and read the values from the ATA shadow
1843 * registers. Then parse according to the Error register value,
1844 * and the spec-defined values examined by ata_dev_classify().
1845 *
1846 * LOCKING:
1847 * caller.
1848 *
1849 * RETURNS:
1850 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1851 */
1852 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1853 u8 *r_err)
1854 {
1855 struct ata_port *ap = dev->link->ap;
1856 struct ata_taskfile tf;
1857 unsigned int class;
1858 u8 err;
1859
1860 ap->ops->sff_dev_select(ap, dev->devno);
1861
1862 memset(&tf, 0, sizeof(tf));
1863
1864 ap->ops->sff_tf_read(ap, &tf);
1865 err = tf.feature;
1866 if (r_err)
1867 *r_err = err;
1868
1869 /* see if device passed diags: continue and warn later */
1870 if (err == 0)
1871 /* diagnostic fail : do nothing _YET_ */
1872 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1873 else if (err == 1)
1874 /* do nothing */ ;
1875 else if ((dev->devno == 0) && (err == 0x81))
1876 /* do nothing */ ;
1877 else
1878 return ATA_DEV_NONE;
1879
1880 /* determine if device is ATA or ATAPI */
1881 class = ata_dev_classify(&tf);
1882
1883 if (class == ATA_DEV_UNKNOWN) {
1884 /* If the device failed diagnostic, it's likely to
1885 * have reported incorrect device signature too.
1886 * Assume ATA device if the device seems present but
1887 * device signature is invalid with diagnostic
1888 * failure.
1889 */
1890 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1891 class = ATA_DEV_ATA;
1892 else
1893 class = ATA_DEV_NONE;
1894 } else if ((class == ATA_DEV_ATA) &&
1895 (ap->ops->sff_check_status(ap) == 0))
1896 class = ATA_DEV_NONE;
1897
1898 return class;
1899 }
1900 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1901
1902 /**
1903 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1904 * @link: SFF link which is just reset
1905 * @devmask: mask of present devices
1906 * @deadline: deadline jiffies for the operation
1907 *
1908 * Wait devices attached to SFF @link to become ready after
1909 * reset. It contains preceding 150ms wait to avoid accessing TF
1910 * status register too early.
1911 *
1912 * LOCKING:
1913 * Kernel thread context (may sleep).
1914 *
1915 * RETURNS:
1916 * 0 on success, -ENODEV if some or all of devices in @devmask
1917 * don't seem to exist. -errno on other errors.
1918 */
1919 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1920 unsigned long deadline)
1921 {
1922 struct ata_port *ap = link->ap;
1923 struct ata_ioports *ioaddr = &ap->ioaddr;
1924 unsigned int dev0 = devmask & (1 << 0);
1925 unsigned int dev1 = devmask & (1 << 1);
1926 int rc, ret = 0;
1927
1928 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1929
1930 /* always check readiness of the master device */
1931 rc = ata_sff_wait_ready(link, deadline);
1932 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1933 * and TF status is 0xff, bail out on it too.
1934 */
1935 if (rc)
1936 return rc;
1937
1938 /* if device 1 was found in ata_devchk, wait for register
1939 * access briefly, then wait for BSY to clear.
1940 */
1941 if (dev1) {
1942 int i;
1943
1944 ap->ops->sff_dev_select(ap, 1);
1945
1946 /* Wait for register access. Some ATAPI devices fail
1947 * to set nsect/lbal after reset, so don't waste too
1948 * much time on it. We're gonna wait for !BSY anyway.
1949 */
1950 for (i = 0; i < 2; i++) {
1951 u8 nsect, lbal;
1952
1953 nsect = ioread8(ioaddr->nsect_addr);
1954 lbal = ioread8(ioaddr->lbal_addr);
1955 if ((nsect == 1) && (lbal == 1))
1956 break;
1957 ata_msleep(ap, 50); /* give drive a breather */
1958 }
1959
1960 rc = ata_sff_wait_ready(link, deadline);
1961 if (rc) {
1962 if (rc != -ENODEV)
1963 return rc;
1964 ret = rc;
1965 }
1966 }
1967
1968 /* is all this really necessary? */
1969 ap->ops->sff_dev_select(ap, 0);
1970 if (dev1)
1971 ap->ops->sff_dev_select(ap, 1);
1972 if (dev0)
1973 ap->ops->sff_dev_select(ap, 0);
1974
1975 return ret;
1976 }
1977 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1978
1979 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1980 unsigned long deadline)
1981 {
1982 struct ata_ioports *ioaddr = &ap->ioaddr;
1983
1984 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1985
1986 if (ap->ioaddr.ctl_addr) {
1987 /* software reset. causes dev0 to be selected */
1988 iowrite8(ap->ctl, ioaddr->ctl_addr);
1989 udelay(20); /* FIXME: flush */
1990 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1991 udelay(20); /* FIXME: flush */
1992 iowrite8(ap->ctl, ioaddr->ctl_addr);
1993 ap->last_ctl = ap->ctl;
1994 }
1995
1996 /* wait the port to become ready */
1997 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1998 }
1999
2000 /**
2001 * ata_sff_softreset - reset host port via ATA SRST
2002 * @link: ATA link to reset
2003 * @classes: resulting classes of attached devices
2004 * @deadline: deadline jiffies for the operation
2005 *
2006 * Reset host port using ATA SRST.
2007 *
2008 * LOCKING:
2009 * Kernel thread context (may sleep)
2010 *
2011 * RETURNS:
2012 * 0 on success, -errno otherwise.
2013 */
2014 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2015 unsigned long deadline)
2016 {
2017 struct ata_port *ap = link->ap;
2018 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2019 unsigned int devmask = 0;
2020 int rc;
2021 u8 err;
2022
2023 DPRINTK("ENTER\n");
2024
2025 /* determine if device 0/1 are present */
2026 if (ata_devchk(ap, 0))
2027 devmask |= (1 << 0);
2028 if (slave_possible && ata_devchk(ap, 1))
2029 devmask |= (1 << 1);
2030
2031 /* select device 0 again */
2032 ap->ops->sff_dev_select(ap, 0);
2033
2034 /* issue bus reset */
2035 DPRINTK("about to softreset, devmask=%x\n", devmask);
2036 rc = ata_bus_softreset(ap, devmask, deadline);
2037 /* if link is occupied, -ENODEV too is an error */
2038 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2039 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2040 return rc;
2041 }
2042
2043 /* determine by signature whether we have ATA or ATAPI devices */
2044 classes[0] = ata_sff_dev_classify(&link->device[0],
2045 devmask & (1 << 0), &err);
2046 if (slave_possible && err != 0x81)
2047 classes[1] = ata_sff_dev_classify(&link->device[1],
2048 devmask & (1 << 1), &err);
2049
2050 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2051 return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2054
2055 /**
2056 * sata_sff_hardreset - reset host port via SATA phy reset
2057 * @link: link to reset
2058 * @class: resulting class of attached device
2059 * @deadline: deadline jiffies for the operation
2060 *
2061 * SATA phy-reset host port using DET bits of SControl register,
2062 * wait for !BSY and classify the attached device.
2063 *
2064 * LOCKING:
2065 * Kernel thread context (may sleep)
2066 *
2067 * RETURNS:
2068 * 0 on success, -errno otherwise.
2069 */
2070 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2071 unsigned long deadline)
2072 {
2073 struct ata_eh_context *ehc = &link->eh_context;
2074 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2075 bool online;
2076 int rc;
2077
2078 rc = sata_link_hardreset(link, timing, deadline, &online,
2079 ata_sff_check_ready);
2080 if (online)
2081 *class = ata_sff_dev_classify(link->device, 1, NULL);
2082
2083 DPRINTK("EXIT, class=%u\n", *class);
2084 return rc;
2085 }
2086 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2087
2088 /**
2089 * ata_sff_postreset - SFF postreset callback
2090 * @link: the target SFF ata_link
2091 * @classes: classes of attached devices
2092 *
2093 * This function is invoked after a successful reset. It first
2094 * calls ata_std_postreset() and performs SFF specific postreset
2095 * processing.
2096 *
2097 * LOCKING:
2098 * Kernel thread context (may sleep)
2099 */
2100 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2101 {
2102 struct ata_port *ap = link->ap;
2103
2104 ata_std_postreset(link, classes);
2105
2106 /* is double-select really necessary? */
2107 if (classes[0] != ATA_DEV_NONE)
2108 ap->ops->sff_dev_select(ap, 1);
2109 if (classes[1] != ATA_DEV_NONE)
2110 ap->ops->sff_dev_select(ap, 0);
2111
2112 /* bail out if no device is present */
2113 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2114 DPRINTK("EXIT, no device\n");
2115 return;
2116 }
2117
2118 /* set up device control */
2119 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2120 ata_sff_set_devctl(ap, ap->ctl);
2121 ap->last_ctl = ap->ctl;
2122 }
2123 }
2124 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2125
2126 /**
2127 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2128 * @qc: command
2129 *
2130 * Drain the FIFO and device of any stuck data following a command
2131 * failing to complete. In some cases this is necessary before a
2132 * reset will recover the device.
2133 *
2134 */
2135
2136 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2137 {
2138 int count;
2139 struct ata_port *ap;
2140
2141 /* We only need to flush incoming data when a command was running */
2142 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2143 return;
2144
2145 ap = qc->ap;
2146 /* Drain up to 64K of data before we give up this recovery method */
2147 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2148 && count < 65536; count += 2)
2149 ioread16(ap->ioaddr.data_addr);
2150
2151 /* Can become DEBUG later */
2152 if (count)
2153 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2154
2155 }
2156 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2157
2158 /**
2159 * ata_sff_error_handler - Stock error handler for SFF controller
2160 * @ap: port to handle error for
2161 *
2162 * Stock error handler for SFF controller. It can handle both
2163 * PATA and SATA controllers. Many controllers should be able to
2164 * use this EH as-is or with some added handling before and
2165 * after.
2166 *
2167 * LOCKING:
2168 * Kernel thread context (may sleep)
2169 */
2170 void ata_sff_error_handler(struct ata_port *ap)
2171 {
2172 ata_reset_fn_t softreset = ap->ops->softreset;
2173 ata_reset_fn_t hardreset = ap->ops->hardreset;
2174 struct ata_queued_cmd *qc;
2175 unsigned long flags;
2176
2177 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2178 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2179 qc = NULL;
2180
2181 spin_lock_irqsave(ap->lock, flags);
2182
2183 /*
2184 * We *MUST* do FIFO draining before we issue a reset as
2185 * several devices helpfully clear their internal state and
2186 * will lock solid if we touch the data port post reset. Pass
2187 * qc in case anyone wants to do different PIO/DMA recovery or
2188 * has per command fixups
2189 */
2190 if (ap->ops->sff_drain_fifo)
2191 ap->ops->sff_drain_fifo(qc);
2192
2193 spin_unlock_irqrestore(ap->lock, flags);
2194
2195 /* ignore built-in hardresets if SCR access is not available */
2196 if ((hardreset == sata_std_hardreset ||
2197 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2198 hardreset = NULL;
2199
2200 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2201 ap->ops->postreset);
2202 }
2203 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2204
2205 /**
2206 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2207 * @ioaddr: IO address structure to be initialized
2208 *
2209 * Utility function which initializes data_addr, error_addr,
2210 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2211 * device_addr, status_addr, and command_addr to standard offsets
2212 * relative to cmd_addr.
2213 *
2214 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2215 */
2216 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2217 {
2218 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2219 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2220 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2221 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2222 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2223 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2224 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2225 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2226 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2227 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2228 }
2229 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2230
2231 #ifdef CONFIG_PCI
2232
2233 static int ata_resources_present(struct pci_dev *pdev, int port)
2234 {
2235 int i;
2236
2237 /* Check the PCI resources for this channel are enabled */
2238 port = port * 2;
2239 for (i = 0; i < 2; i++) {
2240 if (pci_resource_start(pdev, port + i) == 0 ||
2241 pci_resource_len(pdev, port + i) == 0)
2242 return 0;
2243 }
2244 return 1;
2245 }
2246
2247 /**
2248 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2249 * @host: target ATA host
2250 *
2251 * Acquire native PCI ATA resources for @host and initialize the
2252 * first two ports of @host accordingly. Ports marked dummy are
2253 * skipped and allocation failure makes the port dummy.
2254 *
2255 * Note that native PCI resources are valid even for legacy hosts
2256 * as we fix up pdev resources array early in boot, so this
2257 * function can be used for both native and legacy SFF hosts.
2258 *
2259 * LOCKING:
2260 * Inherited from calling layer (may sleep).
2261 *
2262 * RETURNS:
2263 * 0 if at least one port is initialized, -ENODEV if no port is
2264 * available.
2265 */
2266 int ata_pci_sff_init_host(struct ata_host *host)
2267 {
2268 struct device *gdev = host->dev;
2269 struct pci_dev *pdev = to_pci_dev(gdev);
2270 unsigned int mask = 0;
2271 int i, rc;
2272
2273 /* request, iomap BARs and init port addresses accordingly */
2274 for (i = 0; i < 2; i++) {
2275 struct ata_port *ap = host->ports[i];
2276 int base = i * 2;
2277 void __iomem * const *iomap;
2278
2279 if (ata_port_is_dummy(ap))
2280 continue;
2281
2282 /* Discard disabled ports. Some controllers show
2283 * their unused channels this way. Disabled ports are
2284 * made dummy.
2285 */
2286 if (!ata_resources_present(pdev, i)) {
2287 ap->ops = &ata_dummy_port_ops;
2288 continue;
2289 }
2290
2291 rc = pcim_iomap_regions(pdev, 0x3 << base,
2292 dev_driver_string(gdev));
2293 if (rc) {
2294 dev_warn(gdev,
2295 "failed to request/iomap BARs for port %d (errno=%d)\n",
2296 i, rc);
2297 if (rc == -EBUSY)
2298 pcim_pin_device(pdev);
2299 ap->ops = &ata_dummy_port_ops;
2300 continue;
2301 }
2302 host->iomap = iomap = pcim_iomap_table(pdev);
2303
2304 ap->ioaddr.cmd_addr = iomap[base];
2305 ap->ioaddr.altstatus_addr =
2306 ap->ioaddr.ctl_addr = (void __iomem *)
2307 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2308 ata_sff_std_ports(&ap->ioaddr);
2309
2310 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2311 (unsigned long long)pci_resource_start(pdev, base),
2312 (unsigned long long)pci_resource_start(pdev, base + 1));
2313
2314 mask |= 1 << i;
2315 }
2316
2317 if (!mask) {
2318 dev_err(gdev, "no available native port\n");
2319 return -ENODEV;
2320 }
2321
2322 return 0;
2323 }
2324 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2325
2326 /**
2327 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2328 * @pdev: target PCI device
2329 * @ppi: array of port_info, must be enough for two ports
2330 * @r_host: out argument for the initialized ATA host
2331 *
2332 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2333 * all PCI resources and initialize it accordingly in one go.
2334 *
2335 * LOCKING:
2336 * Inherited from calling layer (may sleep).
2337 *
2338 * RETURNS:
2339 * 0 on success, -errno otherwise.
2340 */
2341 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2342 const struct ata_port_info * const *ppi,
2343 struct ata_host **r_host)
2344 {
2345 struct ata_host *host;
2346 int rc;
2347
2348 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2349 return -ENOMEM;
2350
2351 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2352 if (!host) {
2353 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2354 rc = -ENOMEM;
2355 goto err_out;
2356 }
2357
2358 rc = ata_pci_sff_init_host(host);
2359 if (rc)
2360 goto err_out;
2361
2362 devres_remove_group(&pdev->dev, NULL);
2363 *r_host = host;
2364 return 0;
2365
2366 err_out:
2367 devres_release_group(&pdev->dev, NULL);
2368 return rc;
2369 }
2370 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2371
2372 /**
2373 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2374 * @host: target SFF ATA host
2375 * @irq_handler: irq_handler used when requesting IRQ(s)
2376 * @sht: scsi_host_template to use when registering the host
2377 *
2378 * This is the counterpart of ata_host_activate() for SFF ATA
2379 * hosts. This separate helper is necessary because SFF hosts
2380 * use two separate interrupts in legacy mode.
2381 *
2382 * LOCKING:
2383 * Inherited from calling layer (may sleep).
2384 *
2385 * RETURNS:
2386 * 0 on success, -errno otherwise.
2387 */
2388 int ata_pci_sff_activate_host(struct ata_host *host,
2389 irq_handler_t irq_handler,
2390 struct scsi_host_template *sht)
2391 {
2392 struct device *dev = host->dev;
2393 struct pci_dev *pdev = to_pci_dev(dev);
2394 const char *drv_name = dev_driver_string(host->dev);
2395 int legacy_mode = 0, rc;
2396
2397 rc = ata_host_start(host);
2398 if (rc)
2399 return rc;
2400
2401 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2402 u8 tmp8, mask = 0;
2403
2404 /*
2405 * ATA spec says we should use legacy mode when one
2406 * port is in legacy mode, but disabled ports on some
2407 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2408 * on which the secondary port is not wired, so
2409 * ignore ports that are marked as 'dummy' during
2410 * this check
2411 */
2412 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2413 if (!ata_port_is_dummy(host->ports[0]))
2414 mask |= (1 << 0);
2415 if (!ata_port_is_dummy(host->ports[1]))
2416 mask |= (1 << 2);
2417 if ((tmp8 & mask) != mask)
2418 legacy_mode = 1;
2419 }
2420
2421 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2422 return -ENOMEM;
2423
2424 if (!legacy_mode && pdev->irq) {
2425 int i;
2426
2427 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2428 IRQF_SHARED, drv_name, host);
2429 if (rc)
2430 goto out;
2431
2432 for (i = 0; i < 2; i++) {
2433 if (ata_port_is_dummy(host->ports[i]))
2434 continue;
2435 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2436 }
2437 } else if (legacy_mode) {
2438 if (!ata_port_is_dummy(host->ports[0])) {
2439 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2440 irq_handler, IRQF_SHARED,
2441 drv_name, host);
2442 if (rc)
2443 goto out;
2444
2445 ata_port_desc(host->ports[0], "irq %d",
2446 ATA_PRIMARY_IRQ(pdev));
2447 }
2448
2449 if (!ata_port_is_dummy(host->ports[1])) {
2450 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2451 irq_handler, IRQF_SHARED,
2452 drv_name, host);
2453 if (rc)
2454 goto out;
2455
2456 ata_port_desc(host->ports[1], "irq %d",
2457 ATA_SECONDARY_IRQ(pdev));
2458 }
2459 }
2460
2461 rc = ata_host_register(host, sht);
2462 out:
2463 if (rc == 0)
2464 devres_remove_group(dev, NULL);
2465 else
2466 devres_release_group(dev, NULL);
2467
2468 return rc;
2469 }
2470 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2471
2472 static const struct ata_port_info *ata_sff_find_valid_pi(
2473 const struct ata_port_info * const *ppi)
2474 {
2475 int i;
2476
2477 /* look up the first valid port_info */
2478 for (i = 0; i < 2 && ppi[i]; i++)
2479 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2480 return ppi[i];
2481
2482 return NULL;
2483 }
2484
2485 static int ata_pci_init_one(struct pci_dev *pdev,
2486 const struct ata_port_info * const *ppi,
2487 struct scsi_host_template *sht, void *host_priv,
2488 int hflags, bool bmdma)
2489 {
2490 struct device *dev = &pdev->dev;
2491 const struct ata_port_info *pi;
2492 struct ata_host *host = NULL;
2493 int rc;
2494
2495 DPRINTK("ENTER\n");
2496
2497 pi = ata_sff_find_valid_pi(ppi);
2498 if (!pi) {
2499 dev_err(&pdev->dev, "no valid port_info specified\n");
2500 return -EINVAL;
2501 }
2502
2503 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2504 return -ENOMEM;
2505
2506 rc = pcim_enable_device(pdev);
2507 if (rc)
2508 goto out;
2509
2510 #ifdef CONFIG_ATA_BMDMA
2511 if (bmdma)
2512 /* prepare and activate BMDMA host */
2513 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2514 else
2515 #endif
2516 /* prepare and activate SFF host */
2517 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2518 if (rc)
2519 goto out;
2520 host->private_data = host_priv;
2521 host->flags |= hflags;
2522
2523 #ifdef CONFIG_ATA_BMDMA
2524 if (bmdma) {
2525 pci_set_master(pdev);
2526 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2527 } else
2528 #endif
2529 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2530 out:
2531 if (rc == 0)
2532 devres_remove_group(&pdev->dev, NULL);
2533 else
2534 devres_release_group(&pdev->dev, NULL);
2535
2536 return rc;
2537 }
2538
2539 /**
2540 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2541 * @pdev: Controller to be initialized
2542 * @ppi: array of port_info, must be enough for two ports
2543 * @sht: scsi_host_template to use when registering the host
2544 * @host_priv: host private_data
2545 * @hflag: host flags
2546 *
2547 * This is a helper function which can be called from a driver's
2548 * xxx_init_one() probe function if the hardware uses traditional
2549 * IDE taskfile registers and is PIO only.
2550 *
2551 * ASSUMPTION:
2552 * Nobody makes a single channel controller that appears solely as
2553 * the secondary legacy port on PCI.
2554 *
2555 * LOCKING:
2556 * Inherited from PCI layer (may sleep).
2557 *
2558 * RETURNS:
2559 * Zero on success, negative on errno-based value on error.
2560 */
2561 int ata_pci_sff_init_one(struct pci_dev *pdev,
2562 const struct ata_port_info * const *ppi,
2563 struct scsi_host_template *sht, void *host_priv, int hflag)
2564 {
2565 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2566 }
2567 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2568
2569 #endif /* CONFIG_PCI */
2570
2571 /*
2572 * BMDMA support
2573 */
2574
2575 #ifdef CONFIG_ATA_BMDMA
2576
2577 const struct ata_port_operations ata_bmdma_port_ops = {
2578 .inherits = &ata_sff_port_ops,
2579
2580 .error_handler = ata_bmdma_error_handler,
2581 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2582
2583 .qc_prep = ata_bmdma_qc_prep,
2584 .qc_issue = ata_bmdma_qc_issue,
2585
2586 .sff_irq_clear = ata_bmdma_irq_clear,
2587 .bmdma_setup = ata_bmdma_setup,
2588 .bmdma_start = ata_bmdma_start,
2589 .bmdma_stop = ata_bmdma_stop,
2590 .bmdma_status = ata_bmdma_status,
2591
2592 .port_start = ata_bmdma_port_start,
2593 };
2594 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2595
2596 const struct ata_port_operations ata_bmdma32_port_ops = {
2597 .inherits = &ata_bmdma_port_ops,
2598
2599 .sff_data_xfer = ata_sff_data_xfer32,
2600 .port_start = ata_bmdma_port_start32,
2601 };
2602 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2603
2604 /**
2605 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2606 * @qc: Metadata associated with taskfile to be transferred
2607 *
2608 * Fill PCI IDE PRD (scatter-gather) table with segments
2609 * associated with the current disk command.
2610 *
2611 * LOCKING:
2612 * spin_lock_irqsave(host lock)
2613 *
2614 */
2615 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2616 {
2617 struct ata_port *ap = qc->ap;
2618 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2619 struct scatterlist *sg;
2620 unsigned int si, pi;
2621
2622 pi = 0;
2623 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2624 u32 addr, offset;
2625 u32 sg_len, len;
2626
2627 /* determine if physical DMA addr spans 64K boundary.
2628 * Note h/w doesn't support 64-bit, so we unconditionally
2629 * truncate dma_addr_t to u32.
2630 */
2631 addr = (u32) sg_dma_address(sg);
2632 sg_len = sg_dma_len(sg);
2633
2634 while (sg_len) {
2635 offset = addr & 0xffff;
2636 len = sg_len;
2637 if ((offset + sg_len) > 0x10000)
2638 len = 0x10000 - offset;
2639
2640 prd[pi].addr = cpu_to_le32(addr);
2641 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2642 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2643
2644 pi++;
2645 sg_len -= len;
2646 addr += len;
2647 }
2648 }
2649
2650 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2651 }
2652
2653 /**
2654 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2655 * @qc: Metadata associated with taskfile to be transferred
2656 *
2657 * Fill PCI IDE PRD (scatter-gather) table with segments
2658 * associated with the current disk command. Perform the fill
2659 * so that we avoid writing any length 64K records for
2660 * controllers that don't follow the spec.
2661 *
2662 * LOCKING:
2663 * spin_lock_irqsave(host lock)
2664 *
2665 */
2666 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2667 {
2668 struct ata_port *ap = qc->ap;
2669 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2670 struct scatterlist *sg;
2671 unsigned int si, pi;
2672
2673 pi = 0;
2674 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2675 u32 addr, offset;
2676 u32 sg_len, len, blen;
2677
2678 /* determine if physical DMA addr spans 64K boundary.
2679 * Note h/w doesn't support 64-bit, so we unconditionally
2680 * truncate dma_addr_t to u32.
2681 */
2682 addr = (u32) sg_dma_address(sg);
2683 sg_len = sg_dma_len(sg);
2684
2685 while (sg_len) {
2686 offset = addr & 0xffff;
2687 len = sg_len;
2688 if ((offset + sg_len) > 0x10000)
2689 len = 0x10000 - offset;
2690
2691 blen = len & 0xffff;
2692 prd[pi].addr = cpu_to_le32(addr);
2693 if (blen == 0) {
2694 /* Some PATA chipsets like the CS5530 can't
2695 cope with 0x0000 meaning 64K as the spec
2696 says */
2697 prd[pi].flags_len = cpu_to_le32(0x8000);
2698 blen = 0x8000;
2699 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2700 }
2701 prd[pi].flags_len = cpu_to_le32(blen);
2702 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2703
2704 pi++;
2705 sg_len -= len;
2706 addr += len;
2707 }
2708 }
2709
2710 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2711 }
2712
2713 /**
2714 * ata_bmdma_qc_prep - Prepare taskfile for submission
2715 * @qc: Metadata associated with taskfile to be prepared
2716 *
2717 * Prepare ATA taskfile for submission.
2718 *
2719 * LOCKING:
2720 * spin_lock_irqsave(host lock)
2721 */
2722 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2723 {
2724 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2725 return;
2726
2727 ata_bmdma_fill_sg(qc);
2728 }
2729 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2730
2731 /**
2732 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2733 * @qc: Metadata associated with taskfile to be prepared
2734 *
2735 * Prepare ATA taskfile for submission.
2736 *
2737 * LOCKING:
2738 * spin_lock_irqsave(host lock)
2739 */
2740 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2741 {
2742 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2743 return;
2744
2745 ata_bmdma_fill_sg_dumb(qc);
2746 }
2747 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2748
2749 /**
2750 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2751 * @qc: command to issue to device
2752 *
2753 * This function issues a PIO, NODATA or DMA command to a
2754 * SFF/BMDMA controller. PIO and NODATA are handled by
2755 * ata_sff_qc_issue().
2756 *
2757 * LOCKING:
2758 * spin_lock_irqsave(host lock)
2759 *
2760 * RETURNS:
2761 * Zero on success, AC_ERR_* mask on failure
2762 */
2763 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2764 {
2765 struct ata_port *ap = qc->ap;
2766 struct ata_link *link = qc->dev->link;
2767
2768 /* defer PIO handling to sff_qc_issue */
2769 if (!ata_is_dma(qc->tf.protocol))
2770 return ata_sff_qc_issue(qc);
2771
2772 /* select the device */
2773 ata_dev_select(ap, qc->dev->devno, 1, 0);
2774
2775 /* start the command */
2776 switch (qc->tf.protocol) {
2777 case ATA_PROT_DMA:
2778 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2779
2780 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2781 ap->ops->bmdma_setup(qc); /* set up bmdma */
2782 ap->ops->bmdma_start(qc); /* initiate bmdma */
2783 ap->hsm_task_state = HSM_ST_LAST;
2784 break;
2785
2786 case ATAPI_PROT_DMA:
2787 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2788
2789 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2790 ap->ops->bmdma_setup(qc); /* set up bmdma */
2791 ap->hsm_task_state = HSM_ST_FIRST;
2792
2793 /* send cdb by polling if no cdb interrupt */
2794 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2795 ata_sff_queue_pio_task(link, 0);
2796 break;
2797
2798 default:
2799 WARN_ON(1);
2800 return AC_ERR_SYSTEM;
2801 }
2802
2803 return 0;
2804 }
2805 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2806
2807 /**
2808 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2809 * @ap: Port on which interrupt arrived (possibly...)
2810 * @qc: Taskfile currently active in engine
2811 *
2812 * Handle port interrupt for given queued command.
2813 *
2814 * LOCKING:
2815 * spin_lock_irqsave(host lock)
2816 *
2817 * RETURNS:
2818 * One if interrupt was handled, zero if not (shared irq).
2819 */
2820 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2821 {
2822 struct ata_eh_info *ehi = &ap->link.eh_info;
2823 u8 host_stat = 0;
2824 bool bmdma_stopped = false;
2825 unsigned int handled;
2826
2827 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2828 /* check status of DMA engine */
2829 host_stat = ap->ops->bmdma_status(ap);
2830 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2831
2832 /* if it's not our irq... */
2833 if (!(host_stat & ATA_DMA_INTR))
2834 return ata_sff_idle_irq(ap);
2835
2836 /* before we do anything else, clear DMA-Start bit */
2837 ap->ops->bmdma_stop(qc);
2838 bmdma_stopped = true;
2839
2840 if (unlikely(host_stat & ATA_DMA_ERR)) {
2841 /* error when transferring data to/from memory */
2842 qc->err_mask |= AC_ERR_HOST_BUS;
2843 ap->hsm_task_state = HSM_ST_ERR;
2844 }
2845 }
2846
2847 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2848
2849 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2850 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2851
2852 return handled;
2853 }
2854 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2855
2856 /**
2857 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2858 * @irq: irq line (unused)
2859 * @dev_instance: pointer to our ata_host information structure
2860 *
2861 * Default interrupt handler for PCI IDE devices. Calls
2862 * ata_bmdma_port_intr() for each port that is not disabled.
2863 *
2864 * LOCKING:
2865 * Obtains host lock during operation.
2866 *
2867 * RETURNS:
2868 * IRQ_NONE or IRQ_HANDLED.
2869 */
2870 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2871 {
2872 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2873 }
2874 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2875
2876 /**
2877 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2878 * @ap: port to handle error for
2879 *
2880 * Stock error handler for BMDMA controller. It can handle both
2881 * PATA and SATA controllers. Most BMDMA controllers should be
2882 * able to use this EH as-is or with some added handling before
2883 * and after.
2884 *
2885 * LOCKING:
2886 * Kernel thread context (may sleep)
2887 */
2888 void ata_bmdma_error_handler(struct ata_port *ap)
2889 {
2890 struct ata_queued_cmd *qc;
2891 unsigned long flags;
2892 bool thaw = false;
2893
2894 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2895 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2896 qc = NULL;
2897
2898 /* reset PIO HSM and stop DMA engine */
2899 spin_lock_irqsave(ap->lock, flags);
2900
2901 if (qc && ata_is_dma(qc->tf.protocol)) {
2902 u8 host_stat;
2903
2904 host_stat = ap->ops->bmdma_status(ap);
2905
2906 /* BMDMA controllers indicate host bus error by
2907 * setting DMA_ERR bit and timing out. As it wasn't
2908 * really a timeout event, adjust error mask and
2909 * cancel frozen state.
2910 */
2911 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2912 qc->err_mask = AC_ERR_HOST_BUS;
2913 thaw = true;
2914 }
2915
2916 ap->ops->bmdma_stop(qc);
2917
2918 /* if we're gonna thaw, make sure IRQ is clear */
2919 if (thaw) {
2920 ap->ops->sff_check_status(ap);
2921 if (ap->ops->sff_irq_clear)
2922 ap->ops->sff_irq_clear(ap);
2923 }
2924 }
2925
2926 spin_unlock_irqrestore(ap->lock, flags);
2927
2928 if (thaw)
2929 ata_eh_thaw_port(ap);
2930
2931 ata_sff_error_handler(ap);
2932 }
2933 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2934
2935 /**
2936 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2937 * @qc: internal command to clean up
2938 *
2939 * LOCKING:
2940 * Kernel thread context (may sleep)
2941 */
2942 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2943 {
2944 struct ata_port *ap = qc->ap;
2945 unsigned long flags;
2946
2947 if (ata_is_dma(qc->tf.protocol)) {
2948 spin_lock_irqsave(ap->lock, flags);
2949 ap->ops->bmdma_stop(qc);
2950 spin_unlock_irqrestore(ap->lock, flags);
2951 }
2952 }
2953 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2954
2955 /**
2956 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2957 * @ap: Port associated with this ATA transaction.
2958 *
2959 * Clear interrupt and error flags in DMA status register.
2960 *
2961 * May be used as the irq_clear() entry in ata_port_operations.
2962 *
2963 * LOCKING:
2964 * spin_lock_irqsave(host lock)
2965 */
2966 void ata_bmdma_irq_clear(struct ata_port *ap)
2967 {
2968 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2969
2970 if (!mmio)
2971 return;
2972
2973 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2974 }
2975 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2976
2977 /**
2978 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2979 * @qc: Info associated with this ATA transaction.
2980 *
2981 * LOCKING:
2982 * spin_lock_irqsave(host lock)
2983 */
2984 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2985 {
2986 struct ata_port *ap = qc->ap;
2987 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2988 u8 dmactl;
2989
2990 /* load PRD table addr. */
2991 mb(); /* make sure PRD table writes are visible to controller */
2992 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2993
2994 /* specify data direction, triple-check start bit is clear */
2995 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2996 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2997 if (!rw)
2998 dmactl |= ATA_DMA_WR;
2999 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3000
3001 /* issue r/w command */
3002 ap->ops->sff_exec_command(ap, &qc->tf);
3003 }
3004 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3005
3006 /**
3007 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3008 * @qc: Info associated with this ATA transaction.
3009 *
3010 * LOCKING:
3011 * spin_lock_irqsave(host lock)
3012 */
3013 void ata_bmdma_start(struct ata_queued_cmd *qc)
3014 {
3015 struct ata_port *ap = qc->ap;
3016 u8 dmactl;
3017
3018 /* start host DMA transaction */
3019 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3020 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3021
3022 /* Strictly, one may wish to issue an ioread8() here, to
3023 * flush the mmio write. However, control also passes
3024 * to the hardware at this point, and it will interrupt
3025 * us when we are to resume control. So, in effect,
3026 * we don't care when the mmio write flushes.
3027 * Further, a read of the DMA status register _immediately_
3028 * following the write may not be what certain flaky hardware
3029 * is expected, so I think it is best to not add a readb()
3030 * without first all the MMIO ATA cards/mobos.
3031 * Or maybe I'm just being paranoid.
3032 *
3033 * FIXME: The posting of this write means I/O starts are
3034 * unnecessarily delayed for MMIO
3035 */
3036 }
3037 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3038
3039 /**
3040 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3041 * @qc: Command we are ending DMA for
3042 *
3043 * Clears the ATA_DMA_START flag in the dma control register
3044 *
3045 * May be used as the bmdma_stop() entry in ata_port_operations.
3046 *
3047 * LOCKING:
3048 * spin_lock_irqsave(host lock)
3049 */
3050 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3051 {
3052 struct ata_port *ap = qc->ap;
3053 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3054
3055 /* clear start/stop bit */
3056 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3057 mmio + ATA_DMA_CMD);
3058
3059 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3060 ata_sff_dma_pause(ap);
3061 }
3062 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3063
3064 /**
3065 * ata_bmdma_status - Read PCI IDE BMDMA status
3066 * @ap: Port associated with this ATA transaction.
3067 *
3068 * Read and return BMDMA status register.
3069 *
3070 * May be used as the bmdma_status() entry in ata_port_operations.
3071 *
3072 * LOCKING:
3073 * spin_lock_irqsave(host lock)
3074 */
3075 u8 ata_bmdma_status(struct ata_port *ap)
3076 {
3077 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3078 }
3079 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3080
3081
3082 /**
3083 * ata_bmdma_port_start - Set port up for bmdma.
3084 * @ap: Port to initialize
3085 *
3086 * Called just after data structures for each port are
3087 * initialized. Allocates space for PRD table.
3088 *
3089 * May be used as the port_start() entry in ata_port_operations.
3090 *
3091 * LOCKING:
3092 * Inherited from caller.
3093 */
3094 int ata_bmdma_port_start(struct ata_port *ap)
3095 {
3096 if (ap->mwdma_mask || ap->udma_mask) {
3097 ap->bmdma_prd =
3098 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3099 &ap->bmdma_prd_dma, GFP_KERNEL);
3100 if (!ap->bmdma_prd)
3101 return -ENOMEM;
3102 }
3103
3104 return 0;
3105 }
3106 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3107
3108 /**
3109 * ata_bmdma_port_start32 - Set port up for dma.
3110 * @ap: Port to initialize
3111 *
3112 * Called just after data structures for each port are
3113 * initialized. Enables 32bit PIO and allocates space for PRD
3114 * table.
3115 *
3116 * May be used as the port_start() entry in ata_port_operations for
3117 * devices that are capable of 32bit PIO.
3118 *
3119 * LOCKING:
3120 * Inherited from caller.
3121 */
3122 int ata_bmdma_port_start32(struct ata_port *ap)
3123 {
3124 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3125 return ata_bmdma_port_start(ap);
3126 }
3127 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3128
3129 #ifdef CONFIG_PCI
3130
3131 /**
3132 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3133 * @pdev: PCI device
3134 *
3135 * Some PCI ATA devices report simplex mode but in fact can be told to
3136 * enter non simplex mode. This implements the necessary logic to
3137 * perform the task on such devices. Calling it on other devices will
3138 * have -undefined- behaviour.
3139 */
3140 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3141 {
3142 unsigned long bmdma = pci_resource_start(pdev, 4);
3143 u8 simplex;
3144
3145 if (bmdma == 0)
3146 return -ENOENT;
3147
3148 simplex = inb(bmdma + 0x02);
3149 outb(simplex & 0x60, bmdma + 0x02);
3150 simplex = inb(bmdma + 0x02);
3151 if (simplex & 0x80)
3152 return -EOPNOTSUPP;
3153 return 0;
3154 }
3155 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3156
3157 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3158 {
3159 int i;
3160
3161 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3162
3163 for (i = 0; i < 2; i++) {
3164 host->ports[i]->mwdma_mask = 0;
3165 host->ports[i]->udma_mask = 0;
3166 }
3167 }
3168
3169 /**
3170 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3171 * @host: target ATA host
3172 *
3173 * Acquire PCI BMDMA resources and initialize @host accordingly.
3174 *
3175 * LOCKING:
3176 * Inherited from calling layer (may sleep).
3177 */
3178 void ata_pci_bmdma_init(struct ata_host *host)
3179 {
3180 struct device *gdev = host->dev;
3181 struct pci_dev *pdev = to_pci_dev(gdev);
3182 int i, rc;
3183
3184 /* No BAR4 allocation: No DMA */
3185 if (pci_resource_start(pdev, 4) == 0) {
3186 ata_bmdma_nodma(host, "BAR4 is zero");
3187 return;
3188 }
3189
3190 /*
3191 * Some controllers require BMDMA region to be initialized
3192 * even if DMA is not in use to clear IRQ status via
3193 * ->sff_irq_clear method. Try to initialize bmdma_addr
3194 * regardless of dma masks.
3195 */
3196 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3197 if (rc)
3198 ata_bmdma_nodma(host, "failed to set dma mask");
3199 if (!rc) {
3200 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3201 if (rc)
3202 ata_bmdma_nodma(host,
3203 "failed to set consistent dma mask");
3204 }
3205
3206 /* request and iomap DMA region */
3207 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3208 if (rc) {
3209 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3210 return;
3211 }
3212 host->iomap = pcim_iomap_table(pdev);
3213
3214 for (i = 0; i < 2; i++) {
3215 struct ata_port *ap = host->ports[i];
3216 void __iomem *bmdma = host->iomap[4] + 8 * i;
3217
3218 if (ata_port_is_dummy(ap))
3219 continue;
3220
3221 ap->ioaddr.bmdma_addr = bmdma;
3222 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3223 (ioread8(bmdma + 2) & 0x80))
3224 host->flags |= ATA_HOST_SIMPLEX;
3225
3226 ata_port_desc(ap, "bmdma 0x%llx",
3227 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3228 }
3229 }
3230 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3231
3232 /**
3233 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3234 * @pdev: target PCI device
3235 * @ppi: array of port_info, must be enough for two ports
3236 * @r_host: out argument for the initialized ATA host
3237 *
3238 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3239 * resources and initialize it accordingly in one go.
3240 *
3241 * LOCKING:
3242 * Inherited from calling layer (may sleep).
3243 *
3244 * RETURNS:
3245 * 0 on success, -errno otherwise.
3246 */
3247 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3248 const struct ata_port_info * const * ppi,
3249 struct ata_host **r_host)
3250 {
3251 int rc;
3252
3253 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3254 if (rc)
3255 return rc;
3256
3257 ata_pci_bmdma_init(*r_host);
3258 return 0;
3259 }
3260 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3261
3262 /**
3263 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3264 * @pdev: Controller to be initialized
3265 * @ppi: array of port_info, must be enough for two ports
3266 * @sht: scsi_host_template to use when registering the host
3267 * @host_priv: host private_data
3268 * @hflags: host flags
3269 *
3270 * This function is similar to ata_pci_sff_init_one() but also
3271 * takes care of BMDMA initialization.
3272 *
3273 * LOCKING:
3274 * Inherited from PCI layer (may sleep).
3275 *
3276 * RETURNS:
3277 * Zero on success, negative on errno-based value on error.
3278 */
3279 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3280 const struct ata_port_info * const * ppi,
3281 struct scsi_host_template *sht, void *host_priv,
3282 int hflags)
3283 {
3284 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3285 }
3286 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3287
3288 #endif /* CONFIG_PCI */
3289 #endif /* CONFIG_ATA_BMDMA */
3290
3291 /**
3292 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3293 * @ap: Port to initialize
3294 *
3295 * Called on port allocation to initialize SFF/BMDMA specific
3296 * fields.
3297 *
3298 * LOCKING:
3299 * None.
3300 */
3301 void ata_sff_port_init(struct ata_port *ap)
3302 {
3303 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3304 ap->ctl = ATA_DEVCTL_OBS;
3305 ap->last_ctl = 0xFF;
3306 }
3307
3308 int __init ata_sff_init(void)
3309 {
3310 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3311 if (!ata_sff_wq)
3312 return -ENOMEM;
3313
3314 return 0;
3315 }
3316
3317 void ata_sff_exit(void)
3318 {
3319 destroy_workqueue(ata_sff_wq);
3320 }