]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/atm/ambassador.c
x86/umip: Make umip_insns static
[mirror_ubuntu-jammy-kernel.git] / drivers / atm / ambassador.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Madge Ambassador ATM Adapter driver.
4 Copyright (C) 1995-1999 Madge Networks Ltd.
5
6 */
7
8 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
9
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/pci.h>
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/ioport.h>
16 #include <linux/atmdev.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/poison.h>
20 #include <linux/bitrev.h>
21 #include <linux/mutex.h>
22 #include <linux/firmware.h>
23 #include <linux/ihex.h>
24 #include <linux/slab.h>
25
26 #include <linux/atomic.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29
30 #include "ambassador.h"
31
32 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
33 #define description_string "Madge ATM Ambassador driver"
34 #define version_string "1.2.4"
35
36 static inline void __init show_version (void) {
37 printk ("%s version %s\n", description_string, version_string);
38 }
39
40 /*
41
42 Theory of Operation
43
44 I Hardware, detection, initialisation and shutdown.
45
46 1. Supported Hardware
47
48 This driver is for the PCI ATMizer-based Ambassador card (except
49 very early versions). It is not suitable for the similar EISA "TR7"
50 card. Commercially, both cards are known as Collage Server ATM
51 adapters.
52
53 The loader supports image transfer to the card, image start and few
54 other miscellaneous commands.
55
56 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
57
58 The cards are big-endian.
59
60 2. Detection
61
62 Standard PCI stuff, the early cards are detected and rejected.
63
64 3. Initialisation
65
66 The cards are reset and the self-test results are checked. The
67 microcode image is then transferred and started. This waits for a
68 pointer to a descriptor containing details of the host-based queues
69 and buffers and various parameters etc. Once they are processed
70 normal operations may begin. The BIA is read using a microcode
71 command.
72
73 4. Shutdown
74
75 This may be accomplished either by a card reset or via the microcode
76 shutdown command. Further investigation required.
77
78 5. Persistent state
79
80 The card reset does not affect PCI configuration (good) or the
81 contents of several other "shared run-time registers" (bad) which
82 include doorbell and interrupt control as well as EEPROM and PCI
83 control. The driver must be careful when modifying these registers
84 not to touch bits it does not use and to undo any changes at exit.
85
86 II Driver software
87
88 0. Generalities
89
90 The adapter is quite intelligent (fast) and has a simple interface
91 (few features). VPI is always zero, 1024 VCIs are supported. There
92 is limited cell rate support. UBR channels can be capped and ABR
93 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
94 support.
95
96 1. Driver <-> Adapter Communication
97
98 Apart from the basic loader commands, the driver communicates
99 through three entities: the command queue (CQ), the transmit queue
100 pair (TXQ) and the receive queue pairs (RXQ). These three entities
101 are set up by the host and passed to the microcode just after it has
102 been started.
103
104 All queues are host-based circular queues. They are contiguous and
105 (due to hardware limitations) have some restrictions as to their
106 locations in (bus) memory. They are of the "full means the same as
107 empty so don't do that" variety since the adapter uses pointers
108 internally.
109
110 The queue pairs work as follows: one queue is for supply to the
111 adapter, items in it are pending and are owned by the adapter; the
112 other is the queue for return from the adapter, items in it have
113 been dealt with by the adapter. The host adds items to the supply
114 (TX descriptors and free RX buffer descriptors) and removes items
115 from the return (TX and RX completions). The adapter deals with out
116 of order completions.
117
118 Interrupts (card to host) and the doorbell (host to card) are used
119 for signalling.
120
121 1. CQ
122
123 This is to communicate "open VC", "close VC", "get stats" etc. to
124 the adapter. At most one command is retired every millisecond by the
125 card. There is no out of order completion or notification. The
126 driver needs to check the return code of the command, waiting as
127 appropriate.
128
129 2. TXQ
130
131 TX supply items are of variable length (scatter gather support) and
132 so the queue items are (more or less) pointers to the real thing.
133 Each TX supply item contains a unique, host-supplied handle (the skb
134 bus address seems most sensible as this works for Alphas as well,
135 there is no need to do any endian conversions on the handles).
136
137 TX return items consist of just the handles above.
138
139 3. RXQ (up to 4 of these with different lengths and buffer sizes)
140
141 RX supply items consist of a unique, host-supplied handle (the skb
142 bus address again) and a pointer to the buffer data area.
143
144 RX return items consist of the handle above, the VC, length and a
145 status word. This just screams "oh so easy" doesn't it?
146
147 Note on RX pool sizes:
148
149 Each pool should have enough buffers to handle a back-to-back stream
150 of minimum sized frames on a single VC. For example:
151
152 frame spacing = 3us (about right)
153
154 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
155
156 min number of buffers for one VC = 1 + delay/spacing (buffers)
157
158 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
159
160 The 20us delay assumes that there is no need to sleep; if we need to
161 sleep to get buffers we are going to drop frames anyway.
162
163 In fact, each pool should have enough buffers to support the
164 simultaneous reassembly of a separate frame on each VC and cope with
165 the case in which frames complete in round robin cell fashion on
166 each VC.
167
168 Only one frame can complete at each cell arrival, so if "n" VCs are
169 open, the worst case is to have them all complete frames together
170 followed by all starting new frames together.
171
172 desired number of buffers = n + delay/spacing
173
174 These are the extreme requirements, however, they are "n+k" for some
175 "k" so we have only the constant to choose. This is the argument
176 rx_lats which current defaults to 7.
177
178 Actually, "n ? n+k : 0" is better and this is what is implemented,
179 subject to the limit given by the pool size.
180
181 4. Driver locking
182
183 Simple spinlocks are used around the TX and RX queue mechanisms.
184 Anyone with a faster, working method is welcome to implement it.
185
186 The adapter command queue is protected with a spinlock. We always
187 wait for commands to complete.
188
189 A more complex form of locking is used around parts of the VC open
190 and close functions. There are three reasons for a lock: 1. we need
191 to do atomic rate reservation and release (not used yet), 2. Opening
192 sometimes involves two adapter commands which must not be separated
193 by another command on the same VC, 3. the changes to RX pool size
194 must be atomic. The lock needs to work over context switches, so we
195 use a semaphore.
196
197 III Hardware Features and Microcode Bugs
198
199 1. Byte Ordering
200
201 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
202
203 2. Memory access
204
205 All structures that are not accessed using DMA must be 4-byte
206 aligned (not a problem) and must not cross 4MB boundaries.
207
208 There is a DMA memory hole at E0000000-E00000FF (groan).
209
210 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
211 but for a hardware bug).
212
213 RX buffers (DMA write) must not cross 16MB boundaries and must
214 include spare trailing bytes up to the next 4-byte boundary; they
215 will be written with rubbish.
216
217 The PLX likes to prefetch; if reading up to 4 u32 past the end of
218 each TX fragment is not a problem, then TX can be made to go a
219 little faster by passing a flag at init that disables a prefetch
220 workaround. We do not pass this flag. (new microcode only)
221
222 Now we:
223 . Note that alloc_skb rounds up size to a 16byte boundary.
224 . Ensure all areas do not traverse 4MB boundaries.
225 . Ensure all areas do not start at a E00000xx bus address.
226 (I cannot be certain, but this may always hold with Linux)
227 . Make all failures cause a loud message.
228 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
229 . Discard non-conforming TX fragment descriptors (the TX fails).
230 In the future we could:
231 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
232 . Segment TX areas into some/more fragments, when necessary.
233 . Relax checks for non-DMA items (ignore hole).
234 . Give scatter-gather (iovec) requirements using ???. (?)
235
236 3. VC close is broken (only for new microcode)
237
238 The VC close adapter microcode command fails to do anything if any
239 frames have been received on the VC but none have been transmitted.
240 Frames continue to be reassembled and passed (with IRQ) to the
241 driver.
242
243 IV To Do List
244
245 . Fix bugs!
246
247 . Timer code may be broken.
248
249 . Deal with buggy VC close (somehow) in microcode 12.
250
251 . Handle interrupted and/or non-blocking writes - is this a job for
252 the protocol layer?
253
254 . Add code to break up TX fragments when they span 4MB boundaries.
255
256 . Add SUNI phy layer (need to know where SUNI lives on card).
257
258 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
259 leave extra headroom space for Ambassador TX descriptors.
260
261 . Understand these elements of struct atm_vcc: recvq (proto?),
262 sleep, callback, listenq, backlog_quota, reply and user_back.
263
264 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
265
266 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
267
268 . Decide whether RX buffer recycling is or can be made completely safe;
269 turn it back on. It looks like Werner is going to axe this.
270
271 . Implement QoS changes on open VCs (involves extracting parts of VC open
272 and close into separate functions and using them to make changes).
273
274 . Hack on command queue so that someone can issue multiple commands and wait
275 on the last one (OR only "no-op" or "wait" commands are waited for).
276
277 . Eliminate need for while-schedule around do_command.
278
279 */
280
281 static void do_housekeeping (struct timer_list *t);
282 /********** globals **********/
283
284 static unsigned short debug = 0;
285 static unsigned int cmds = 8;
286 static unsigned int txs = 32;
287 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
288 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
289 static unsigned int rx_lats = 7;
290 static unsigned char pci_lat = 0;
291
292 static const unsigned long onegigmask = -1 << 30;
293
294 /********** access to adapter **********/
295
296 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
297 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
298 #ifdef AMB_MMIO
299 dev->membase[addr / sizeof(u32)] = data;
300 #else
301 outl (data, dev->iobase + addr);
302 #endif
303 }
304
305 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
306 #ifdef AMB_MMIO
307 u32 data = dev->membase[addr / sizeof(u32)];
308 #else
309 u32 data = inl (dev->iobase + addr);
310 #endif
311 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
312 return data;
313 }
314
315 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
316 __be32 be = cpu_to_be32 (data);
317 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
318 #ifdef AMB_MMIO
319 dev->membase[addr / sizeof(u32)] = be;
320 #else
321 outl (be, dev->iobase + addr);
322 #endif
323 }
324
325 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
326 #ifdef AMB_MMIO
327 __be32 be = dev->membase[addr / sizeof(u32)];
328 #else
329 __be32 be = inl (dev->iobase + addr);
330 #endif
331 u32 data = be32_to_cpu (be);
332 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
333 return data;
334 }
335
336 /********** dump routines **********/
337
338 static inline void dump_registers (const amb_dev * dev) {
339 #ifdef DEBUG_AMBASSADOR
340 if (debug & DBG_REGS) {
341 size_t i;
342 PRINTD (DBG_REGS, "reading PLX control: ");
343 for (i = 0x00; i < 0x30; i += sizeof(u32))
344 rd_mem (dev, i);
345 PRINTD (DBG_REGS, "reading mailboxes: ");
346 for (i = 0x40; i < 0x60; i += sizeof(u32))
347 rd_mem (dev, i);
348 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
349 for (i = 0x60; i < 0x70; i += sizeof(u32))
350 rd_mem (dev, i);
351 }
352 #else
353 (void) dev;
354 #endif
355 return;
356 }
357
358 static inline void dump_loader_block (volatile loader_block * lb) {
359 #ifdef DEBUG_AMBASSADOR
360 unsigned int i;
361 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
362 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
363 for (i = 0; i < MAX_COMMAND_DATA; ++i)
364 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
365 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
366 #else
367 (void) lb;
368 #endif
369 return;
370 }
371
372 static inline void dump_command (command * cmd) {
373 #ifdef DEBUG_AMBASSADOR
374 unsigned int i;
375 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
376 cmd, /*be32_to_cpu*/ (cmd->request));
377 for (i = 0; i < 3; ++i)
378 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
379 PRINTDE (DBG_CMD, "");
380 #else
381 (void) cmd;
382 #endif
383 return;
384 }
385
386 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
387 #ifdef DEBUG_AMBASSADOR
388 unsigned int i;
389 unsigned char * data = skb->data;
390 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
391 for (i=0; i<skb->len && i < 256;i++)
392 PRINTDM (DBG_DATA, "%02x ", data[i]);
393 PRINTDE (DBG_DATA,"");
394 #else
395 (void) prefix;
396 (void) vc;
397 (void) skb;
398 #endif
399 return;
400 }
401
402 /********** check memory areas for use by Ambassador **********/
403
404 /* see limitations under Hardware Features */
405
406 static int check_area (void * start, size_t length) {
407 // assumes length > 0
408 const u32 fourmegmask = -1 << 22;
409 const u32 twofivesixmask = -1 << 8;
410 const u32 starthole = 0xE0000000;
411 u32 startaddress = virt_to_bus (start);
412 u32 lastaddress = startaddress+length-1;
413 if ((startaddress ^ lastaddress) & fourmegmask ||
414 (startaddress & twofivesixmask) == starthole) {
415 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
416 startaddress, lastaddress);
417 return -1;
418 } else {
419 return 0;
420 }
421 }
422
423 /********** free an skb (as per ATM device driver documentation) **********/
424
425 static void amb_kfree_skb (struct sk_buff * skb) {
426 if (ATM_SKB(skb)->vcc->pop) {
427 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
428 } else {
429 dev_kfree_skb_any (skb);
430 }
431 }
432
433 /********** TX completion **********/
434
435 static void tx_complete (amb_dev * dev, tx_out * tx) {
436 tx_simple * tx_descr = bus_to_virt (tx->handle);
437 struct sk_buff * skb = tx_descr->skb;
438
439 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
440
441 // VC layer stats
442 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
443
444 // free the descriptor
445 kfree (tx_descr);
446
447 // free the skb
448 amb_kfree_skb (skb);
449
450 dev->stats.tx_ok++;
451 return;
452 }
453
454 /********** RX completion **********/
455
456 static void rx_complete (amb_dev * dev, rx_out * rx) {
457 struct sk_buff * skb = bus_to_virt (rx->handle);
458 u16 vc = be16_to_cpu (rx->vc);
459 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
460 u16 status = be16_to_cpu (rx->status);
461 u16 rx_len = be16_to_cpu (rx->length);
462
463 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
464
465 // XXX move this in and add to VC stats ???
466 if (!status) {
467 struct atm_vcc * atm_vcc = dev->rxer[vc];
468 dev->stats.rx.ok++;
469
470 if (atm_vcc) {
471
472 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
473
474 if (atm_charge (atm_vcc, skb->truesize)) {
475
476 // prepare socket buffer
477 ATM_SKB(skb)->vcc = atm_vcc;
478 skb_put (skb, rx_len);
479
480 dump_skb ("<<<", vc, skb);
481
482 // VC layer stats
483 atomic_inc(&atm_vcc->stats->rx);
484 __net_timestamp(skb);
485 // end of our responsibility
486 atm_vcc->push (atm_vcc, skb);
487 return;
488
489 } else {
490 // someone fix this (message), please!
491 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
492 // drop stats incremented in atm_charge
493 }
494
495 } else {
496 PRINTK (KERN_INFO, "dropped over-size frame");
497 // should we count this?
498 atomic_inc(&atm_vcc->stats->rx_drop);
499 }
500
501 } else {
502 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
503 // this is an adapter bug, only in new version of microcode
504 }
505
506 } else {
507 dev->stats.rx.error++;
508 if (status & CRC_ERR)
509 dev->stats.rx.badcrc++;
510 if (status & LEN_ERR)
511 dev->stats.rx.toolong++;
512 if (status & ABORT_ERR)
513 dev->stats.rx.aborted++;
514 if (status & UNUSED_ERR)
515 dev->stats.rx.unused++;
516 }
517
518 dev_kfree_skb_any (skb);
519 return;
520 }
521
522 /*
523
524 Note on queue handling.
525
526 Here "give" and "take" refer to queue entries and a queue (pair)
527 rather than frames to or from the host or adapter. Empty frame
528 buffers are given to the RX queue pair and returned unused or
529 containing RX frames. TX frames (well, pointers to TX fragment
530 lists) are given to the TX queue pair, completions are returned.
531
532 */
533
534 /********** command queue **********/
535
536 // I really don't like this, but it's the best I can do at the moment
537
538 // also, the callers are responsible for byte order as the microcode
539 // sometimes does 16-bit accesses (yuk yuk yuk)
540
541 static int command_do (amb_dev * dev, command * cmd) {
542 amb_cq * cq = &dev->cq;
543 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
544 command * my_slot;
545
546 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
547
548 if (test_bit (dead, &dev->flags))
549 return 0;
550
551 spin_lock (&cq->lock);
552
553 // if not full...
554 if (cq->pending < cq->maximum) {
555 // remember my slot for later
556 my_slot = ptrs->in;
557 PRINTD (DBG_CMD, "command in slot %p", my_slot);
558
559 dump_command (cmd);
560
561 // copy command in
562 *ptrs->in = *cmd;
563 cq->pending++;
564 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
565
566 // mail the command
567 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
568
569 if (cq->pending > cq->high)
570 cq->high = cq->pending;
571 spin_unlock (&cq->lock);
572
573 // these comments were in a while-loop before, msleep removes the loop
574 // go to sleep
575 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
576 msleep(cq->pending);
577
578 // wait for my slot to be reached (all waiters are here or above, until...)
579 while (ptrs->out != my_slot) {
580 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
581 set_current_state(TASK_UNINTERRUPTIBLE);
582 schedule();
583 }
584
585 // wait on my slot (... one gets to its slot, and... )
586 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
587 PRINTD (DBG_CMD, "wait: command slot completion");
588 set_current_state(TASK_UNINTERRUPTIBLE);
589 schedule();
590 }
591
592 PRINTD (DBG_CMD, "command complete");
593 // update queue (... moves the queue along to the next slot)
594 spin_lock (&cq->lock);
595 cq->pending--;
596 // copy command out
597 *cmd = *ptrs->out;
598 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
599 spin_unlock (&cq->lock);
600
601 return 0;
602 } else {
603 cq->filled++;
604 spin_unlock (&cq->lock);
605 return -EAGAIN;
606 }
607
608 }
609
610 /********** TX queue pair **********/
611
612 static int tx_give (amb_dev * dev, tx_in * tx) {
613 amb_txq * txq = &dev->txq;
614 unsigned long flags;
615
616 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
617
618 if (test_bit (dead, &dev->flags))
619 return 0;
620
621 spin_lock_irqsave (&txq->lock, flags);
622
623 if (txq->pending < txq->maximum) {
624 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
625
626 *txq->in.ptr = *tx;
627 txq->pending++;
628 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
629 // hand over the TX and ring the bell
630 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
631 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
632
633 if (txq->pending > txq->high)
634 txq->high = txq->pending;
635 spin_unlock_irqrestore (&txq->lock, flags);
636 return 0;
637 } else {
638 txq->filled++;
639 spin_unlock_irqrestore (&txq->lock, flags);
640 return -EAGAIN;
641 }
642 }
643
644 static int tx_take (amb_dev * dev) {
645 amb_txq * txq = &dev->txq;
646 unsigned long flags;
647
648 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
649
650 spin_lock_irqsave (&txq->lock, flags);
651
652 if (txq->pending && txq->out.ptr->handle) {
653 // deal with TX completion
654 tx_complete (dev, txq->out.ptr);
655 // mark unused again
656 txq->out.ptr->handle = 0;
657 // remove item
658 txq->pending--;
659 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
660
661 spin_unlock_irqrestore (&txq->lock, flags);
662 return 0;
663 } else {
664
665 spin_unlock_irqrestore (&txq->lock, flags);
666 return -1;
667 }
668 }
669
670 /********** RX queue pairs **********/
671
672 static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
673 amb_rxq * rxq = &dev->rxq[pool];
674 unsigned long flags;
675
676 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
677
678 spin_lock_irqsave (&rxq->lock, flags);
679
680 if (rxq->pending < rxq->maximum) {
681 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
682
683 *rxq->in.ptr = *rx;
684 rxq->pending++;
685 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
686 // hand over the RX buffer
687 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
688
689 spin_unlock_irqrestore (&rxq->lock, flags);
690 return 0;
691 } else {
692 spin_unlock_irqrestore (&rxq->lock, flags);
693 return -1;
694 }
695 }
696
697 static int rx_take (amb_dev * dev, unsigned char pool) {
698 amb_rxq * rxq = &dev->rxq[pool];
699 unsigned long flags;
700
701 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
702
703 spin_lock_irqsave (&rxq->lock, flags);
704
705 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
706 // deal with RX completion
707 rx_complete (dev, rxq->out.ptr);
708 // mark unused again
709 rxq->out.ptr->status = 0;
710 rxq->out.ptr->length = 0;
711 // remove item
712 rxq->pending--;
713 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
714
715 if (rxq->pending < rxq->low)
716 rxq->low = rxq->pending;
717 spin_unlock_irqrestore (&rxq->lock, flags);
718 return 0;
719 } else {
720 if (!rxq->pending && rxq->buffers_wanted)
721 rxq->emptied++;
722 spin_unlock_irqrestore (&rxq->lock, flags);
723 return -1;
724 }
725 }
726
727 /********** RX Pool handling **********/
728
729 /* pre: buffers_wanted = 0, post: pending = 0 */
730 static void drain_rx_pool (amb_dev * dev, unsigned char pool) {
731 amb_rxq * rxq = &dev->rxq[pool];
732
733 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
734
735 if (test_bit (dead, &dev->flags))
736 return;
737
738 /* we are not quite like the fill pool routines as we cannot just
739 remove one buffer, we have to remove all of them, but we might as
740 well pretend... */
741 if (rxq->pending > rxq->buffers_wanted) {
742 command cmd;
743 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
744 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
745 while (command_do (dev, &cmd))
746 schedule();
747 /* the pool may also be emptied via the interrupt handler */
748 while (rxq->pending > rxq->buffers_wanted)
749 if (rx_take (dev, pool))
750 schedule();
751 }
752
753 return;
754 }
755
756 static void drain_rx_pools (amb_dev * dev) {
757 unsigned char pool;
758
759 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
760
761 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
762 drain_rx_pool (dev, pool);
763 }
764
765 static void fill_rx_pool (amb_dev * dev, unsigned char pool,
766 gfp_t priority)
767 {
768 rx_in rx;
769 amb_rxq * rxq;
770
771 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
772
773 if (test_bit (dead, &dev->flags))
774 return;
775
776 rxq = &dev->rxq[pool];
777 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
778
779 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
780 if (!skb) {
781 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
782 return;
783 }
784 if (check_area (skb->data, skb->truesize)) {
785 dev_kfree_skb_any (skb);
786 return;
787 }
788 // cast needed as there is no %? for pointer differences
789 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
790 skb, skb->head, (long) skb_end_offset(skb));
791 rx.handle = virt_to_bus (skb);
792 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
793 if (rx_give (dev, &rx, pool))
794 dev_kfree_skb_any (skb);
795
796 }
797
798 return;
799 }
800
801 // top up all RX pools
802 static void fill_rx_pools (amb_dev * dev) {
803 unsigned char pool;
804
805 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
806
807 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
808 fill_rx_pool (dev, pool, GFP_ATOMIC);
809
810 return;
811 }
812
813 /********** enable host interrupts **********/
814
815 static void interrupts_on (amb_dev * dev) {
816 wr_plain (dev, offsetof(amb_mem, interrupt_control),
817 rd_plain (dev, offsetof(amb_mem, interrupt_control))
818 | AMB_INTERRUPT_BITS);
819 }
820
821 /********** disable host interrupts **********/
822
823 static void interrupts_off (amb_dev * dev) {
824 wr_plain (dev, offsetof(amb_mem, interrupt_control),
825 rd_plain (dev, offsetof(amb_mem, interrupt_control))
826 &~ AMB_INTERRUPT_BITS);
827 }
828
829 /********** interrupt handling **********/
830
831 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
832 amb_dev * dev = dev_id;
833
834 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
835
836 {
837 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
838
839 // for us or someone else sharing the same interrupt
840 if (!interrupt) {
841 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
842 return IRQ_NONE;
843 }
844
845 // definitely for us
846 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
847 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
848 }
849
850 {
851 unsigned int irq_work = 0;
852 unsigned char pool;
853 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
854 while (!rx_take (dev, pool))
855 ++irq_work;
856 while (!tx_take (dev))
857 ++irq_work;
858
859 if (irq_work) {
860 fill_rx_pools (dev);
861
862 PRINTD (DBG_IRQ, "work done: %u", irq_work);
863 } else {
864 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
865 }
866 }
867
868 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
869 return IRQ_HANDLED;
870 }
871
872 /********** make rate (not quite as much fun as Horizon) **********/
873
874 static int make_rate (unsigned int rate, rounding r,
875 u16 * bits, unsigned int * actual) {
876 unsigned char exp = -1; // hush gcc
877 unsigned int man = -1; // hush gcc
878
879 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
880
881 // rates in cells per second, ITU format (nasty 16-bit floating-point)
882 // given 5-bit e and 9-bit m:
883 // rate = EITHER (1+m/2^9)*2^e OR 0
884 // bits = EITHER 1<<14 | e<<9 | m OR 0
885 // (bit 15 is "reserved", bit 14 "non-zero")
886 // smallest rate is 0 (special representation)
887 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
888 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
889 // simple algorithm:
890 // find position of top bit, this gives e
891 // remove top bit and shift (rounding if feeling clever) by 9-e
892
893 // ucode bug: please don't set bit 14! so 0 rate not representable
894
895 if (rate > 0xffc00000U) {
896 // larger than largest representable rate
897
898 if (r == round_up) {
899 return -EINVAL;
900 } else {
901 exp = 31;
902 man = 511;
903 }
904
905 } else if (rate) {
906 // representable rate
907
908 exp = 31;
909 man = rate;
910
911 // invariant: rate = man*2^(exp-31)
912 while (!(man & (1<<31))) {
913 exp = exp - 1;
914 man = man<<1;
915 }
916
917 // man has top bit set
918 // rate = (2^31+(man-2^31))*2^(exp-31)
919 // rate = (1+(man-2^31)/2^31)*2^exp
920 man = man<<1;
921 man &= 0xffffffffU; // a nop on 32-bit systems
922 // rate = (1+man/2^32)*2^exp
923
924 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
925 // time to lose significance... we want m in the range 0 to 2^9-1
926 // rounding presents a minor problem... we first decide which way
927 // we are rounding (based on given rounding direction and possibly
928 // the bits of the mantissa that are to be discarded).
929
930 switch (r) {
931 case round_down: {
932 // just truncate
933 man = man>>(32-9);
934 break;
935 }
936 case round_up: {
937 // check all bits that we are discarding
938 if (man & (~0U>>9)) {
939 man = (man>>(32-9)) + 1;
940 if (man == (1<<9)) {
941 // no need to check for round up outside of range
942 man = 0;
943 exp += 1;
944 }
945 } else {
946 man = (man>>(32-9));
947 }
948 break;
949 }
950 case round_nearest: {
951 // check msb that we are discarding
952 if (man & (1<<(32-9-1))) {
953 man = (man>>(32-9)) + 1;
954 if (man == (1<<9)) {
955 // no need to check for round up outside of range
956 man = 0;
957 exp += 1;
958 }
959 } else {
960 man = (man>>(32-9));
961 }
962 break;
963 }
964 }
965
966 } else {
967 // zero rate - not representable
968
969 if (r == round_down) {
970 return -EINVAL;
971 } else {
972 exp = 0;
973 man = 0;
974 }
975
976 }
977
978 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
979
980 if (bits)
981 *bits = /* (1<<14) | */ (exp<<9) | man;
982
983 if (actual)
984 *actual = (exp >= 9)
985 ? (1 << exp) + (man << (exp-9))
986 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
987
988 return 0;
989 }
990
991 /********** Linux ATM Operations **********/
992
993 // some are not yet implemented while others do not make sense for
994 // this device
995
996 /********** Open a VC **********/
997
998 static int amb_open (struct atm_vcc * atm_vcc)
999 {
1000 int error;
1001
1002 struct atm_qos * qos;
1003 struct atm_trafprm * txtp;
1004 struct atm_trafprm * rxtp;
1005 u16 tx_rate_bits = -1; // hush gcc
1006 u16 tx_vc_bits = -1; // hush gcc
1007 u16 tx_frame_bits = -1; // hush gcc
1008
1009 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1010 amb_vcc * vcc;
1011 unsigned char pool = -1; // hush gcc
1012 short vpi = atm_vcc->vpi;
1013 int vci = atm_vcc->vci;
1014
1015 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1016
1017 #ifdef ATM_VPI_UNSPEC
1018 // UNSPEC is deprecated, remove this code eventually
1019 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1020 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1021 return -EINVAL;
1022 }
1023 #endif
1024
1025 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1026 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1027 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1028 return -EINVAL;
1029 }
1030
1031 qos = &atm_vcc->qos;
1032
1033 if (qos->aal != ATM_AAL5) {
1034 PRINTD (DBG_QOS, "AAL not supported");
1035 return -EINVAL;
1036 }
1037
1038 // traffic parameters
1039
1040 PRINTD (DBG_QOS, "TX:");
1041 txtp = &qos->txtp;
1042 if (txtp->traffic_class != ATM_NONE) {
1043 switch (txtp->traffic_class) {
1044 case ATM_UBR: {
1045 // we take "the PCR" as a rate-cap
1046 int pcr = atm_pcr_goal (txtp);
1047 if (!pcr) {
1048 // no rate cap
1049 tx_rate_bits = 0;
1050 tx_vc_bits = TX_UBR;
1051 tx_frame_bits = TX_FRAME_NOTCAP;
1052 } else {
1053 rounding r;
1054 if (pcr < 0) {
1055 r = round_down;
1056 pcr = -pcr;
1057 } else {
1058 r = round_up;
1059 }
1060 error = make_rate (pcr, r, &tx_rate_bits, NULL);
1061 if (error)
1062 return error;
1063 tx_vc_bits = TX_UBR_CAPPED;
1064 tx_frame_bits = TX_FRAME_CAPPED;
1065 }
1066 break;
1067 }
1068 #if 0
1069 case ATM_ABR: {
1070 pcr = atm_pcr_goal (txtp);
1071 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1072 break;
1073 }
1074 #endif
1075 default: {
1076 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1077 PRINTD (DBG_QOS, "request for non-UBR denied");
1078 return -EINVAL;
1079 }
1080 }
1081 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1082 tx_rate_bits, tx_vc_bits);
1083 }
1084
1085 PRINTD (DBG_QOS, "RX:");
1086 rxtp = &qos->rxtp;
1087 if (rxtp->traffic_class == ATM_NONE) {
1088 // do nothing
1089 } else {
1090 // choose an RX pool (arranged in increasing size)
1091 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1092 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1093 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1094 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1095 break;
1096 }
1097 if (pool == NUM_RX_POOLS) {
1098 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1099 "no pool suitable for VC (RX max_sdu %d is too large)",
1100 rxtp->max_sdu);
1101 return -EINVAL;
1102 }
1103
1104 switch (rxtp->traffic_class) {
1105 case ATM_UBR: {
1106 break;
1107 }
1108 #if 0
1109 case ATM_ABR: {
1110 pcr = atm_pcr_goal (rxtp);
1111 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1112 break;
1113 }
1114 #endif
1115 default: {
1116 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1117 PRINTD (DBG_QOS, "request for non-UBR denied");
1118 return -EINVAL;
1119 }
1120 }
1121 }
1122
1123 // get space for our vcc stuff
1124 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1125 if (!vcc) {
1126 PRINTK (KERN_ERR, "out of memory!");
1127 return -ENOMEM;
1128 }
1129 atm_vcc->dev_data = (void *) vcc;
1130
1131 // no failures beyond this point
1132
1133 // we are not really "immediately before allocating the connection
1134 // identifier in hardware", but it will just have to do!
1135 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1136
1137 if (txtp->traffic_class != ATM_NONE) {
1138 command cmd;
1139
1140 vcc->tx_frame_bits = tx_frame_bits;
1141
1142 mutex_lock(&dev->vcc_sf);
1143 if (dev->rxer[vci]) {
1144 // RXer on the channel already, just modify rate...
1145 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1146 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1147 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1148 while (command_do (dev, &cmd))
1149 schedule();
1150 // ... and TX flags, preserving the RX pool
1151 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1152 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1153 cmd.args.modify_flags.flags = cpu_to_be32
1154 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1155 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1156 while (command_do (dev, &cmd))
1157 schedule();
1158 } else {
1159 // no RXer on the channel, just open (with pool zero)
1160 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1161 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1162 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1163 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1164 while (command_do (dev, &cmd))
1165 schedule();
1166 }
1167 dev->txer[vci].tx_present = 1;
1168 mutex_unlock(&dev->vcc_sf);
1169 }
1170
1171 if (rxtp->traffic_class != ATM_NONE) {
1172 command cmd;
1173
1174 vcc->rx_info.pool = pool;
1175
1176 mutex_lock(&dev->vcc_sf);
1177 /* grow RX buffer pool */
1178 if (!dev->rxq[pool].buffers_wanted)
1179 dev->rxq[pool].buffers_wanted = rx_lats;
1180 dev->rxq[pool].buffers_wanted += 1;
1181 fill_rx_pool (dev, pool, GFP_KERNEL);
1182
1183 if (dev->txer[vci].tx_present) {
1184 // TXer on the channel already
1185 // switch (from pool zero) to this pool, preserving the TX bits
1186 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1187 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1188 cmd.args.modify_flags.flags = cpu_to_be32
1189 ( (pool << SRB_POOL_SHIFT)
1190 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1191 } else {
1192 // no TXer on the channel, open the VC (with no rate info)
1193 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1194 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1195 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1196 cmd.args.open.rate = cpu_to_be32 (0);
1197 }
1198 while (command_do (dev, &cmd))
1199 schedule();
1200 // this link allows RX frames through
1201 dev->rxer[vci] = atm_vcc;
1202 mutex_unlock(&dev->vcc_sf);
1203 }
1204
1205 // indicate readiness
1206 set_bit(ATM_VF_READY,&atm_vcc->flags);
1207
1208 return 0;
1209 }
1210
1211 /********** Close a VC **********/
1212
1213 static void amb_close (struct atm_vcc * atm_vcc) {
1214 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1215 amb_vcc * vcc = AMB_VCC (atm_vcc);
1216 u16 vci = atm_vcc->vci;
1217
1218 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1219
1220 // indicate unreadiness
1221 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1222
1223 // disable TXing
1224 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1225 command cmd;
1226
1227 mutex_lock(&dev->vcc_sf);
1228 if (dev->rxer[vci]) {
1229 // RXer still on the channel, just modify rate... XXX not really needed
1230 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1231 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1232 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1233 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1234 } else {
1235 // no RXer on the channel, close channel
1236 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1237 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1238 }
1239 dev->txer[vci].tx_present = 0;
1240 while (command_do (dev, &cmd))
1241 schedule();
1242 mutex_unlock(&dev->vcc_sf);
1243 }
1244
1245 // disable RXing
1246 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1247 command cmd;
1248
1249 // this is (the?) one reason why we need the amb_vcc struct
1250 unsigned char pool = vcc->rx_info.pool;
1251
1252 mutex_lock(&dev->vcc_sf);
1253 if (dev->txer[vci].tx_present) {
1254 // TXer still on the channel, just go to pool zero XXX not really needed
1255 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1256 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1257 cmd.args.modify_flags.flags = cpu_to_be32
1258 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1259 } else {
1260 // no TXer on the channel, close the VC
1261 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1262 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1263 }
1264 // forget the rxer - no more skbs will be pushed
1265 if (atm_vcc != dev->rxer[vci])
1266 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1267 "arghhh! we're going to die!",
1268 vcc, dev->rxer[vci]);
1269 dev->rxer[vci] = NULL;
1270 while (command_do (dev, &cmd))
1271 schedule();
1272
1273 /* shrink RX buffer pool */
1274 dev->rxq[pool].buffers_wanted -= 1;
1275 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1276 dev->rxq[pool].buffers_wanted = 0;
1277 drain_rx_pool (dev, pool);
1278 }
1279 mutex_unlock(&dev->vcc_sf);
1280 }
1281
1282 // free our structure
1283 kfree (vcc);
1284
1285 // say the VPI/VCI is free again
1286 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1287
1288 return;
1289 }
1290
1291 /********** Send **********/
1292
1293 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1294 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1295 amb_vcc * vcc = AMB_VCC(atm_vcc);
1296 u16 vc = atm_vcc->vci;
1297 unsigned int tx_len = skb->len;
1298 unsigned char * tx_data = skb->data;
1299 tx_simple * tx_descr;
1300 tx_in tx;
1301
1302 if (test_bit (dead, &dev->flags))
1303 return -EIO;
1304
1305 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1306 vc, tx_data, tx_len);
1307
1308 dump_skb (">>>", vc, skb);
1309
1310 if (!dev->txer[vc].tx_present) {
1311 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1312 return -EBADFD;
1313 }
1314
1315 // this is a driver private field so we have to set it ourselves,
1316 // despite the fact that we are _required_ to use it to check for a
1317 // pop function
1318 ATM_SKB(skb)->vcc = atm_vcc;
1319
1320 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1321 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1322 return -EIO;
1323 }
1324
1325 if (check_area (skb->data, skb->len)) {
1326 atomic_inc(&atm_vcc->stats->tx_err);
1327 return -ENOMEM; // ?
1328 }
1329
1330 // allocate memory for fragments
1331 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1332 if (!tx_descr) {
1333 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1334 return -ENOMEM;
1335 }
1336 if (check_area (tx_descr, sizeof(tx_simple))) {
1337 kfree (tx_descr);
1338 return -ENOMEM;
1339 }
1340 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1341
1342 tx_descr->skb = skb;
1343
1344 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1345 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1346
1347 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1348 tx_descr->tx_frag_end.vc = 0;
1349 tx_descr->tx_frag_end.next_descriptor_length = 0;
1350 tx_descr->tx_frag_end.next_descriptor = 0;
1351 #ifdef AMB_NEW_MICROCODE
1352 tx_descr->tx_frag_end.cpcs_uu = 0;
1353 tx_descr->tx_frag_end.cpi = 0;
1354 tx_descr->tx_frag_end.pad = 0;
1355 #endif
1356
1357 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1358 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1359 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1360
1361 while (tx_give (dev, &tx))
1362 schedule();
1363 return 0;
1364 }
1365
1366 /********** Change QoS on a VC **********/
1367
1368 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1369
1370 /********** Free RX Socket Buffer **********/
1371
1372 #if 0
1373 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1374 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1375 amb_vcc * vcc = AMB_VCC (atm_vcc);
1376 unsigned char pool = vcc->rx_info.pool;
1377 rx_in rx;
1378
1379 // This may be unsafe for various reasons that I cannot really guess
1380 // at. However, I note that the ATM layer calls kfree_skb rather
1381 // than dev_kfree_skb at this point so we are least covered as far
1382 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1383
1384 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1385 skb, atm_vcc, vcc);
1386
1387 rx.handle = virt_to_bus (skb);
1388 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1389
1390 skb->data = skb->head;
1391 skb_reset_tail_pointer(skb);
1392 skb->len = 0;
1393
1394 if (!rx_give (dev, &rx, pool)) {
1395 // success
1396 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1397 return;
1398 }
1399
1400 // just do what the ATM layer would have done
1401 dev_kfree_skb_any (skb);
1402
1403 return;
1404 }
1405 #endif
1406
1407 /********** Proc File Output **********/
1408
1409 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1410 amb_dev * dev = AMB_DEV (atm_dev);
1411 int left = *pos;
1412 unsigned char pool;
1413
1414 PRINTD (DBG_FLOW, "amb_proc_read");
1415
1416 /* more diagnostics here? */
1417
1418 if (!left--) {
1419 amb_stats * s = &dev->stats;
1420 return sprintf (page,
1421 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1422 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1423 s->tx_ok, s->rx.ok, s->rx.error,
1424 s->rx.badcrc, s->rx.toolong,
1425 s->rx.aborted, s->rx.unused);
1426 }
1427
1428 if (!left--) {
1429 amb_cq * c = &dev->cq;
1430 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1431 c->pending, c->high, c->maximum);
1432 }
1433
1434 if (!left--) {
1435 amb_txq * t = &dev->txq;
1436 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1437 t->pending, t->maximum, t->high, t->filled);
1438 }
1439
1440 if (!left--) {
1441 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1442 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1443 amb_rxq * r = &dev->rxq[pool];
1444 count += sprintf (page+count, " %u/%u/%u %u %u",
1445 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1446 }
1447 count += sprintf (page+count, ".\n");
1448 return count;
1449 }
1450
1451 if (!left--) {
1452 unsigned int count = sprintf (page, "RX buffer sizes:");
1453 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1454 amb_rxq * r = &dev->rxq[pool];
1455 count += sprintf (page+count, " %u", r->buffer_size);
1456 }
1457 count += sprintf (page+count, ".\n");
1458 return count;
1459 }
1460
1461 #if 0
1462 if (!left--) {
1463 // suni block etc?
1464 }
1465 #endif
1466
1467 return 0;
1468 }
1469
1470 /********** Operation Structure **********/
1471
1472 static const struct atmdev_ops amb_ops = {
1473 .open = amb_open,
1474 .close = amb_close,
1475 .send = amb_send,
1476 .proc_read = amb_proc_read,
1477 .owner = THIS_MODULE,
1478 };
1479
1480 /********** housekeeping **********/
1481 static void do_housekeeping (struct timer_list *t) {
1482 amb_dev * dev = from_timer(dev, t, housekeeping);
1483
1484 // could collect device-specific (not driver/atm-linux) stats here
1485
1486 // last resort refill once every ten seconds
1487 fill_rx_pools (dev);
1488 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1489
1490 return;
1491 }
1492
1493 /********** creation of communication queues **********/
1494
1495 static int create_queues(amb_dev *dev, unsigned int cmds, unsigned int txs,
1496 unsigned int *rxs, unsigned int *rx_buffer_sizes)
1497 {
1498 unsigned char pool;
1499 size_t total = 0;
1500 void * memory;
1501 void * limit;
1502
1503 PRINTD (DBG_FLOW, "create_queues %p", dev);
1504
1505 total += cmds * sizeof(command);
1506
1507 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1508
1509 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1510 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1511
1512 memory = kmalloc (total, GFP_KERNEL);
1513 if (!memory) {
1514 PRINTK (KERN_ERR, "could not allocate queues");
1515 return -ENOMEM;
1516 }
1517 if (check_area (memory, total)) {
1518 PRINTK (KERN_ERR, "queues allocated in nasty area");
1519 kfree (memory);
1520 return -ENOMEM;
1521 }
1522
1523 limit = memory + total;
1524 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1525
1526 PRINTD (DBG_CMD, "command queue at %p", memory);
1527
1528 {
1529 command * cmd = memory;
1530 amb_cq * cq = &dev->cq;
1531
1532 cq->pending = 0;
1533 cq->high = 0;
1534 cq->maximum = cmds - 1;
1535
1536 cq->ptrs.start = cmd;
1537 cq->ptrs.in = cmd;
1538 cq->ptrs.out = cmd;
1539 cq->ptrs.limit = cmd + cmds;
1540
1541 memory = cq->ptrs.limit;
1542 }
1543
1544 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1545
1546 {
1547 tx_in * in = memory;
1548 tx_out * out;
1549 amb_txq * txq = &dev->txq;
1550
1551 txq->pending = 0;
1552 txq->high = 0;
1553 txq->filled = 0;
1554 txq->maximum = txs - 1;
1555
1556 txq->in.start = in;
1557 txq->in.ptr = in;
1558 txq->in.limit = in + txs;
1559
1560 memory = txq->in.limit;
1561 out = memory;
1562
1563 txq->out.start = out;
1564 txq->out.ptr = out;
1565 txq->out.limit = out + txs;
1566
1567 memory = txq->out.limit;
1568 }
1569
1570 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1571
1572 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1573 rx_in * in = memory;
1574 rx_out * out;
1575 amb_rxq * rxq = &dev->rxq[pool];
1576
1577 rxq->buffer_size = rx_buffer_sizes[pool];
1578 rxq->buffers_wanted = 0;
1579
1580 rxq->pending = 0;
1581 rxq->low = rxs[pool] - 1;
1582 rxq->emptied = 0;
1583 rxq->maximum = rxs[pool] - 1;
1584
1585 rxq->in.start = in;
1586 rxq->in.ptr = in;
1587 rxq->in.limit = in + rxs[pool];
1588
1589 memory = rxq->in.limit;
1590 out = memory;
1591
1592 rxq->out.start = out;
1593 rxq->out.ptr = out;
1594 rxq->out.limit = out + rxs[pool];
1595
1596 memory = rxq->out.limit;
1597 }
1598
1599 if (memory == limit) {
1600 return 0;
1601 } else {
1602 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1603 kfree (limit - total);
1604 return -ENOMEM;
1605 }
1606
1607 }
1608
1609 /********** destruction of communication queues **********/
1610
1611 static void destroy_queues (amb_dev * dev) {
1612 // all queues assumed empty
1613 void * memory = dev->cq.ptrs.start;
1614 // includes txq.in, txq.out, rxq[].in and rxq[].out
1615
1616 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1617
1618 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1619 kfree (memory);
1620
1621 return;
1622 }
1623
1624 /********** basic loader commands and error handling **********/
1625 // centisecond timeouts - guessing away here
1626 static unsigned int command_timeouts [] = {
1627 [host_memory_test] = 15,
1628 [read_adapter_memory] = 2,
1629 [write_adapter_memory] = 2,
1630 [adapter_start] = 50,
1631 [get_version_number] = 10,
1632 [interrupt_host] = 1,
1633 [flash_erase_sector] = 1,
1634 [adap_download_block] = 1,
1635 [adap_erase_flash] = 1,
1636 [adap_run_in_iram] = 1,
1637 [adap_end_download] = 1
1638 };
1639
1640
1641 static unsigned int command_successes [] = {
1642 [host_memory_test] = COMMAND_PASSED_TEST,
1643 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1644 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1645 [adapter_start] = COMMAND_COMPLETE,
1646 [get_version_number] = COMMAND_COMPLETE,
1647 [interrupt_host] = COMMAND_COMPLETE,
1648 [flash_erase_sector] = COMMAND_COMPLETE,
1649 [adap_download_block] = COMMAND_COMPLETE,
1650 [adap_erase_flash] = COMMAND_COMPLETE,
1651 [adap_run_in_iram] = COMMAND_COMPLETE,
1652 [adap_end_download] = COMMAND_COMPLETE
1653 };
1654
1655 static int decode_loader_result (loader_command cmd, u32 result)
1656 {
1657 int res;
1658 const char *msg;
1659
1660 if (result == command_successes[cmd])
1661 return 0;
1662
1663 switch (result) {
1664 case BAD_COMMAND:
1665 res = -EINVAL;
1666 msg = "bad command";
1667 break;
1668 case COMMAND_IN_PROGRESS:
1669 res = -ETIMEDOUT;
1670 msg = "command in progress";
1671 break;
1672 case COMMAND_PASSED_TEST:
1673 res = 0;
1674 msg = "command passed test";
1675 break;
1676 case COMMAND_FAILED_TEST:
1677 res = -EIO;
1678 msg = "command failed test";
1679 break;
1680 case COMMAND_READ_DATA_OK:
1681 res = 0;
1682 msg = "command read data ok";
1683 break;
1684 case COMMAND_READ_BAD_ADDRESS:
1685 res = -EINVAL;
1686 msg = "command read bad address";
1687 break;
1688 case COMMAND_WRITE_DATA_OK:
1689 res = 0;
1690 msg = "command write data ok";
1691 break;
1692 case COMMAND_WRITE_BAD_ADDRESS:
1693 res = -EINVAL;
1694 msg = "command write bad address";
1695 break;
1696 case COMMAND_WRITE_FLASH_FAILURE:
1697 res = -EIO;
1698 msg = "command write flash failure";
1699 break;
1700 case COMMAND_COMPLETE:
1701 res = 0;
1702 msg = "command complete";
1703 break;
1704 case COMMAND_FLASH_ERASE_FAILURE:
1705 res = -EIO;
1706 msg = "command flash erase failure";
1707 break;
1708 case COMMAND_WRITE_BAD_DATA:
1709 res = -EINVAL;
1710 msg = "command write bad data";
1711 break;
1712 default:
1713 res = -EINVAL;
1714 msg = "unknown error";
1715 PRINTD (DBG_LOAD|DBG_ERR,
1716 "decode_loader_result got %d=%x !",
1717 result, result);
1718 break;
1719 }
1720
1721 PRINTK (KERN_ERR, "%s", msg);
1722 return res;
1723 }
1724
1725 static int do_loader_command(volatile loader_block *lb, const amb_dev *dev,
1726 loader_command cmd)
1727 {
1728
1729 unsigned long timeout;
1730
1731 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1732
1733 /* do a command
1734
1735 Set the return value to zero, set the command type and set the
1736 valid entry to the right magic value. The payload is already
1737 correctly byte-ordered so we leave it alone. Hit the doorbell
1738 with the bus address of this structure.
1739
1740 */
1741
1742 lb->result = 0;
1743 lb->command = cpu_to_be32 (cmd);
1744 lb->valid = cpu_to_be32 (DMA_VALID);
1745 // dump_registers (dev);
1746 // dump_loader_block (lb);
1747 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1748
1749 timeout = command_timeouts[cmd] * 10;
1750
1751 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1752 if (timeout) {
1753 timeout = msleep_interruptible(timeout);
1754 } else {
1755 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1756 dump_registers (dev);
1757 dump_loader_block (lb);
1758 return -ETIMEDOUT;
1759 }
1760
1761 if (cmd == adapter_start) {
1762 // wait for start command to acknowledge...
1763 timeout = 100;
1764 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1765 if (timeout) {
1766 timeout = msleep_interruptible(timeout);
1767 } else {
1768 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1769 be32_to_cpu (lb->result));
1770 dump_registers (dev);
1771 return -ETIMEDOUT;
1772 }
1773 return 0;
1774 } else {
1775 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1776 }
1777
1778 }
1779
1780 /* loader: determine loader version */
1781
1782 static int get_loader_version(loader_block *lb, const amb_dev *dev,
1783 u32 *version)
1784 {
1785 int res;
1786
1787 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1788
1789 res = do_loader_command (lb, dev, get_version_number);
1790 if (res)
1791 return res;
1792 if (version)
1793 *version = be32_to_cpu (lb->payload.version);
1794 return 0;
1795 }
1796
1797 /* loader: write memory data blocks */
1798
1799 static int loader_write(loader_block *lb, const amb_dev *dev,
1800 const struct ihex_binrec *rec)
1801 {
1802 transfer_block * tb = &lb->payload.transfer;
1803
1804 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1805
1806 tb->address = rec->addr;
1807 tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1808 memcpy(tb->data, rec->data, be16_to_cpu(rec->len));
1809 return do_loader_command (lb, dev, write_adapter_memory);
1810 }
1811
1812 /* loader: verify memory data blocks */
1813
1814 static int loader_verify(loader_block *lb, const amb_dev *dev,
1815 const struct ihex_binrec *rec)
1816 {
1817 transfer_block * tb = &lb->payload.transfer;
1818 int res;
1819
1820 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1821
1822 tb->address = rec->addr;
1823 tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1824 res = do_loader_command (lb, dev, read_adapter_memory);
1825 if (!res && memcmp(tb->data, rec->data, be16_to_cpu(rec->len)))
1826 res = -EINVAL;
1827 return res;
1828 }
1829
1830 /* loader: start microcode */
1831
1832 static int loader_start(loader_block *lb, const amb_dev *dev, u32 address)
1833 {
1834 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1835
1836 lb->payload.start = cpu_to_be32 (address);
1837 return do_loader_command (lb, dev, adapter_start);
1838 }
1839
1840 /********** reset card **********/
1841
1842 static inline void sf (const char * msg)
1843 {
1844 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1845 }
1846
1847 static int amb_reset (amb_dev * dev, int diags) {
1848 u32 word;
1849
1850 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1851
1852 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1853 // put card into reset state
1854 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1855 // wait a short while
1856 udelay (10);
1857 #if 1
1858 // put card into known good state
1859 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1860 // clear all interrupts just in case
1861 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1862 #endif
1863 // clear self-test done flag
1864 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1865 // take card out of reset state
1866 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1867
1868 if (diags) {
1869 unsigned long timeout;
1870 // 4.2 second wait
1871 msleep(4200);
1872 // half second time-out
1873 timeout = 500;
1874 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1875 if (timeout) {
1876 timeout = msleep_interruptible(timeout);
1877 } else {
1878 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1879 return -ETIMEDOUT;
1880 }
1881
1882 // get results of self-test
1883 // XXX double check byte-order
1884 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1885 if (word & SELF_TEST_FAILURE) {
1886 if (word & GPINT_TST_FAILURE)
1887 sf ("interrupt");
1888 if (word & SUNI_DATA_PATTERN_FAILURE)
1889 sf ("SUNI data pattern");
1890 if (word & SUNI_DATA_BITS_FAILURE)
1891 sf ("SUNI data bits");
1892 if (word & SUNI_UTOPIA_FAILURE)
1893 sf ("SUNI UTOPIA interface");
1894 if (word & SUNI_FIFO_FAILURE)
1895 sf ("SUNI cell buffer FIFO");
1896 if (word & SRAM_FAILURE)
1897 sf ("bad SRAM");
1898 // better return value?
1899 return -EIO;
1900 }
1901
1902 }
1903 return 0;
1904 }
1905
1906 /********** transfer and start the microcode **********/
1907
1908 static int ucode_init(loader_block *lb, amb_dev *dev)
1909 {
1910 const struct firmware *fw;
1911 unsigned long start_address;
1912 const struct ihex_binrec *rec;
1913 const char *errmsg = NULL;
1914 int res;
1915
1916 res = request_ihex_firmware(&fw, "atmsar11.fw", &dev->pci_dev->dev);
1917 if (res) {
1918 PRINTK (KERN_ERR, "Cannot load microcode data");
1919 return res;
1920 }
1921
1922 /* First record contains just the start address */
1923 rec = (const struct ihex_binrec *)fw->data;
1924 if (be16_to_cpu(rec->len) != sizeof(__be32) || be32_to_cpu(rec->addr)) {
1925 errmsg = "no start record";
1926 goto fail;
1927 }
1928 start_address = be32_to_cpup((__be32 *)rec->data);
1929
1930 rec = ihex_next_binrec(rec);
1931
1932 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1933
1934 while (rec) {
1935 PRINTD (DBG_LOAD, "starting region (%x, %u)", be32_to_cpu(rec->addr),
1936 be16_to_cpu(rec->len));
1937 if (be16_to_cpu(rec->len) > 4 * MAX_TRANSFER_DATA) {
1938 errmsg = "record too long";
1939 goto fail;
1940 }
1941 if (be16_to_cpu(rec->len) & 3) {
1942 errmsg = "odd number of bytes";
1943 goto fail;
1944 }
1945 res = loader_write(lb, dev, rec);
1946 if (res)
1947 break;
1948
1949 res = loader_verify(lb, dev, rec);
1950 if (res)
1951 break;
1952 rec = ihex_next_binrec(rec);
1953 }
1954 release_firmware(fw);
1955 if (!res)
1956 res = loader_start(lb, dev, start_address);
1957
1958 return res;
1959 fail:
1960 release_firmware(fw);
1961 PRINTK(KERN_ERR, "Bad microcode data (%s)", errmsg);
1962 return -EINVAL;
1963 }
1964
1965 /********** give adapter parameters **********/
1966
1967 static inline __be32 bus_addr(void * addr) {
1968 return cpu_to_be32 (virt_to_bus (addr));
1969 }
1970
1971 static int amb_talk(amb_dev *dev)
1972 {
1973 adap_talk_block a;
1974 unsigned char pool;
1975 unsigned long timeout;
1976
1977 PRINTD (DBG_FLOW, "amb_talk %p", dev);
1978
1979 a.command_start = bus_addr (dev->cq.ptrs.start);
1980 a.command_end = bus_addr (dev->cq.ptrs.limit);
1981 a.tx_start = bus_addr (dev->txq.in.start);
1982 a.tx_end = bus_addr (dev->txq.in.limit);
1983 a.txcom_start = bus_addr (dev->txq.out.start);
1984 a.txcom_end = bus_addr (dev->txq.out.limit);
1985
1986 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1987 // the other "a" items are set up by the adapter
1988 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
1989 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
1990 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
1991 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
1992 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
1993 }
1994
1995 #ifdef AMB_NEW_MICROCODE
1996 // disable fast PLX prefetching
1997 a.init_flags = 0;
1998 #endif
1999
2000 // pass the structure
2001 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2002
2003 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2004 msleep(2200);
2005 // give the adapter another half second?
2006 timeout = 500;
2007 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2008 if (timeout) {
2009 timeout = msleep_interruptible(timeout);
2010 } else {
2011 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2012 return -ETIMEDOUT;
2013 }
2014
2015 return 0;
2016 }
2017
2018 // get microcode version
2019 static void amb_ucode_version(amb_dev *dev)
2020 {
2021 u32 major;
2022 u32 minor;
2023 command cmd;
2024 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2025 while (command_do (dev, &cmd)) {
2026 set_current_state(TASK_UNINTERRUPTIBLE);
2027 schedule();
2028 }
2029 major = be32_to_cpu (cmd.args.version.major);
2030 minor = be32_to_cpu (cmd.args.version.minor);
2031 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2032 }
2033
2034 // get end station address
2035 static void amb_esi(amb_dev *dev, u8 *esi)
2036 {
2037 u32 lower4;
2038 u16 upper2;
2039 command cmd;
2040
2041 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2042 while (command_do (dev, &cmd)) {
2043 set_current_state(TASK_UNINTERRUPTIBLE);
2044 schedule();
2045 }
2046 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2047 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2048 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2049
2050 if (esi) {
2051 unsigned int i;
2052
2053 PRINTDB (DBG_INIT, "ESI:");
2054 for (i = 0; i < ESI_LEN; ++i) {
2055 if (i < 4)
2056 esi[i] = bitrev8(lower4>>(8*i));
2057 else
2058 esi[i] = bitrev8(upper2>>(8*(i-4)));
2059 PRINTDM (DBG_INIT, " %02x", esi[i]);
2060 }
2061
2062 PRINTDE (DBG_INIT, "");
2063 }
2064
2065 return;
2066 }
2067
2068 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2069 {
2070 // fix up the PLX-mapped window base address to match the block
2071 unsigned long blb;
2072 u32 mapreg;
2073 blb = virt_to_bus(lb);
2074 // the kernel stack had better not ever cross a 1Gb boundary!
2075 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2076 mapreg &= ~onegigmask;
2077 mapreg |= blb & onegigmask;
2078 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2079 return;
2080 }
2081
2082 static int amb_init(amb_dev *dev)
2083 {
2084 loader_block lb;
2085
2086 u32 version;
2087
2088 if (amb_reset (dev, 1)) {
2089 PRINTK (KERN_ERR, "card reset failed!");
2090 } else {
2091 fixup_plx_window (dev, &lb);
2092
2093 if (get_loader_version (&lb, dev, &version)) {
2094 PRINTK (KERN_INFO, "failed to get loader version");
2095 } else {
2096 PRINTK (KERN_INFO, "loader version is %08x", version);
2097
2098 if (ucode_init (&lb, dev)) {
2099 PRINTK (KERN_ERR, "microcode failure");
2100 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2101 PRINTK (KERN_ERR, "failed to get memory for queues");
2102 } else {
2103
2104 if (amb_talk (dev)) {
2105 PRINTK (KERN_ERR, "adapter did not accept queues");
2106 } else {
2107
2108 amb_ucode_version (dev);
2109 return 0;
2110
2111 } /* amb_talk */
2112
2113 destroy_queues (dev);
2114 } /* create_queues, ucode_init */
2115
2116 amb_reset (dev, 0);
2117 } /* get_loader_version */
2118
2119 } /* amb_reset */
2120
2121 return -EINVAL;
2122 }
2123
2124 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2125 {
2126 unsigned char pool;
2127
2128 // set up known dev items straight away
2129 dev->pci_dev = pci_dev;
2130 pci_set_drvdata(pci_dev, dev);
2131
2132 dev->iobase = pci_resource_start (pci_dev, 1);
2133 dev->irq = pci_dev->irq;
2134 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2135
2136 // flags (currently only dead)
2137 dev->flags = 0;
2138
2139 // Allocate cell rates (fibre)
2140 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2141 // to be really pedantic, this should be ATM_OC3c_PCR
2142 dev->tx_avail = ATM_OC3_PCR;
2143 dev->rx_avail = ATM_OC3_PCR;
2144
2145 // semaphore for txer/rxer modifications - we cannot use a
2146 // spinlock as the critical region needs to switch processes
2147 mutex_init(&dev->vcc_sf);
2148 // queue manipulation spinlocks; we want atomic reads and
2149 // writes to the queue descriptors (handles IRQ and SMP)
2150 // consider replacing "int pending" -> "atomic_t available"
2151 // => problem related to who gets to move queue pointers
2152 spin_lock_init (&dev->cq.lock);
2153 spin_lock_init (&dev->txq.lock);
2154 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2155 spin_lock_init (&dev->rxq[pool].lock);
2156 }
2157
2158 static void setup_pci_dev(struct pci_dev *pci_dev)
2159 {
2160 unsigned char lat;
2161
2162 // enable bus master accesses
2163 pci_set_master(pci_dev);
2164
2165 // frobnicate latency (upwards, usually)
2166 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2167
2168 if (!pci_lat)
2169 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2170
2171 if (lat != pci_lat) {
2172 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2173 lat, pci_lat);
2174 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2175 }
2176 }
2177
2178 static int amb_probe(struct pci_dev *pci_dev,
2179 const struct pci_device_id *pci_ent)
2180 {
2181 amb_dev * dev;
2182 int err;
2183 unsigned int irq;
2184
2185 err = pci_enable_device(pci_dev);
2186 if (err < 0) {
2187 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2188 goto out;
2189 }
2190
2191 // read resources from PCI configuration space
2192 irq = pci_dev->irq;
2193
2194 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2195 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2196 err = -EINVAL;
2197 goto out_disable;
2198 }
2199
2200 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2201 " IO %llx, IRQ %u, MEM %p",
2202 (unsigned long long)pci_resource_start(pci_dev, 1),
2203 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2204
2205 // check IO region
2206 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2207 if (err < 0) {
2208 PRINTK (KERN_ERR, "IO range already in use!");
2209 goto out_disable;
2210 }
2211
2212 dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
2213 if (!dev) {
2214 PRINTK (KERN_ERR, "out of memory!");
2215 err = -ENOMEM;
2216 goto out_release;
2217 }
2218
2219 setup_dev(dev, pci_dev);
2220
2221 err = amb_init(dev);
2222 if (err < 0) {
2223 PRINTK (KERN_ERR, "adapter initialisation failure");
2224 goto out_free;
2225 }
2226
2227 setup_pci_dev(pci_dev);
2228
2229 // grab (but share) IRQ and install handler
2230 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2231 if (err < 0) {
2232 PRINTK (KERN_ERR, "request IRQ failed!");
2233 goto out_reset;
2234 }
2235
2236 dev->atm_dev = atm_dev_register (DEV_LABEL, &pci_dev->dev, &amb_ops, -1,
2237 NULL);
2238 if (!dev->atm_dev) {
2239 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2240 err = -EINVAL;
2241 goto out_free_irq;
2242 }
2243
2244 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2245 dev->atm_dev->number, dev, dev->atm_dev);
2246 dev->atm_dev->dev_data = (void *) dev;
2247
2248 // register our address
2249 amb_esi (dev, dev->atm_dev->esi);
2250
2251 // 0 bits for vpi, 10 bits for vci
2252 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2253 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2254
2255 timer_setup(&dev->housekeeping, do_housekeeping, 0);
2256 mod_timer(&dev->housekeeping, jiffies);
2257
2258 // enable host interrupts
2259 interrupts_on (dev);
2260
2261 out:
2262 return err;
2263
2264 out_free_irq:
2265 free_irq(irq, dev);
2266 out_reset:
2267 amb_reset(dev, 0);
2268 out_free:
2269 kfree(dev);
2270 out_release:
2271 pci_release_region(pci_dev, 1);
2272 out_disable:
2273 pci_disable_device(pci_dev);
2274 goto out;
2275 }
2276
2277
2278 static void amb_remove_one(struct pci_dev *pci_dev)
2279 {
2280 struct amb_dev *dev;
2281
2282 dev = pci_get_drvdata(pci_dev);
2283
2284 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2285 del_timer_sync(&dev->housekeeping);
2286 // the drain should not be necessary
2287 drain_rx_pools(dev);
2288 interrupts_off(dev);
2289 amb_reset(dev, 0);
2290 free_irq(dev->irq, dev);
2291 pci_disable_device(pci_dev);
2292 destroy_queues(dev);
2293 atm_dev_deregister(dev->atm_dev);
2294 kfree(dev);
2295 pci_release_region(pci_dev, 1);
2296 }
2297
2298 static void __init amb_check_args (void) {
2299 unsigned char pool;
2300 unsigned int max_rx_size;
2301
2302 #ifdef DEBUG_AMBASSADOR
2303 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2304 #else
2305 if (debug)
2306 PRINTK (KERN_NOTICE, "no debugging support");
2307 #endif
2308
2309 if (cmds < MIN_QUEUE_SIZE)
2310 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2311 cmds = MIN_QUEUE_SIZE);
2312
2313 if (txs < MIN_QUEUE_SIZE)
2314 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2315 txs = MIN_QUEUE_SIZE);
2316
2317 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2318 if (rxs[pool] < MIN_QUEUE_SIZE)
2319 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2320 pool, rxs[pool] = MIN_QUEUE_SIZE);
2321
2322 // buffers sizes should be greater than zero and strictly increasing
2323 max_rx_size = 0;
2324 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2325 if (rxs_bs[pool] <= max_rx_size)
2326 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2327 pool, rxs_bs[pool]);
2328 else
2329 max_rx_size = rxs_bs[pool];
2330
2331 if (rx_lats < MIN_RX_BUFFERS)
2332 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2333 rx_lats = MIN_RX_BUFFERS);
2334
2335 return;
2336 }
2337
2338 /********** module stuff **********/
2339
2340 MODULE_AUTHOR(maintainer_string);
2341 MODULE_DESCRIPTION(description_string);
2342 MODULE_LICENSE("GPL");
2343 MODULE_FIRMWARE("atmsar11.fw");
2344 module_param(debug, ushort, 0644);
2345 module_param(cmds, uint, 0);
2346 module_param(txs, uint, 0);
2347 module_param_array(rxs, uint, NULL, 0);
2348 module_param_array(rxs_bs, uint, NULL, 0);
2349 module_param(rx_lats, uint, 0);
2350 module_param(pci_lat, byte, 0);
2351 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2352 MODULE_PARM_DESC(cmds, "number of command queue entries");
2353 MODULE_PARM_DESC(txs, "number of TX queue entries");
2354 MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2355 MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2356 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2357 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2358
2359 /********** module entry **********/
2360
2361 static const struct pci_device_id amb_pci_tbl[] = {
2362 { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR), 0 },
2363 { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD), 0 },
2364 { 0, }
2365 };
2366
2367 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2368
2369 static struct pci_driver amb_driver = {
2370 .name = "amb",
2371 .probe = amb_probe,
2372 .remove = amb_remove_one,
2373 .id_table = amb_pci_tbl,
2374 };
2375
2376 static int __init amb_module_init (void)
2377 {
2378 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2379
2380 BUILD_BUG_ON(sizeof(amb_mem) != 4*16 + 4*12);
2381
2382 show_version();
2383
2384 amb_check_args();
2385
2386 // get the juice
2387 return pci_register_driver(&amb_driver);
2388 }
2389
2390 /********** module exit **********/
2391
2392 static void __exit amb_module_exit (void)
2393 {
2394 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2395
2396 pci_unregister_driver(&amb_driver);
2397 }
2398
2399 module_init(amb_module_init);
2400 module_exit(amb_module_exit);