]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/atm/firestream.c
Merge tag 'riscv-for-linus-5.9-rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / drivers / atm / firestream.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
4 * FireStream 50 (MB86695) device driver
5 */
6
7 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
8 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
9 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
10 */
11
12 /*
13 */
14
15
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/pci.h>
21 #include <linux/poison.h>
22 #include <linux/errno.h>
23 #include <linux/atm.h>
24 #include <linux/atmdev.h>
25 #include <linux/sonet.h>
26 #include <linux/skbuff.h>
27 #include <linux/netdevice.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h> /* for request_region */
30 #include <linux/uio.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/capability.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <asm/byteorder.h>
37 #include <asm/string.h>
38 #include <asm/io.h>
39 #include <linux/atomic.h>
40 #include <linux/uaccess.h>
41 #include <linux/wait.h>
42
43 #include "firestream.h"
44
45 static int loopback = 0;
46 static int num=0x5a;
47
48 /* According to measurements (but they look suspicious to me!) done in
49 * '97, 37% of the packets are one cell in size. So it pays to have
50 * buffers allocated at that size. A large jump in percentage of
51 * packets occurs at packets around 536 bytes in length. So it also
52 * pays to have those pre-allocated. Unfortunately, we can't fully
53 * take advantage of this as the majority of the packets is likely to
54 * be TCP/IP (As where obviously the measurement comes from) There the
55 * link would be opened with say a 1500 byte MTU, and we can't handle
56 * smaller buffers more efficiently than the larger ones. -- REW
57 */
58
59 /* Due to the way Linux memory management works, specifying "576" as
60 * an allocation size here isn't going to help. They are allocated
61 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
62 * large), it doesn't pay to allocate the smallest size (64) -- REW */
63
64 /* This is all guesswork. Hard numbers to back this up or disprove this,
65 * are appreciated. -- REW */
66
67 /* The last entry should be about 64k. However, the "buffer size" is
68 * passed to the chip in a 16 bit field. I don't know how "65536"
69 * would be interpreted. -- REW */
70
71 #define NP FS_NR_FREE_POOLS
72 static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
73 /* log2: 7 8 9 10 11 12 14 16 */
74
75 #if 0
76 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
77 #else
78 /* debug */
79 static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
80 #endif
81 /* log2: 10 10 9 8 7 6 5 5 */
82 /* sumlog2: 17 18 18 18 18 18 19 21 */
83 /* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
84 /* tot mem: almost 4M */
85
86 /* NP is shorter, so that it fits on a single line. */
87 #undef NP
88
89
90 /* Small hardware gotcha:
91
92 The FS50 CAM (VP/VC match registers) always take the lowest channel
93 number that matches. This is not a problem.
94
95 However, they also ignore whether the channel is enabled or
96 not. This means that if you allocate channel 0 to 1.2 and then
97 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
98 match channel for channel 0 will "steal" the traffic from channel
99 1, even if you correctly disable channel 0.
100
101 Workaround:
102
103 - When disabling channels, write an invalid VP/VC value to the
104 match register. (We use 0xffffffff, which in the worst case
105 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
106 anything as some "when not in use, program to 0" bits are now
107 programmed to 1...)
108
109 - Don't initialize the match registers to 0, as 0.0 is a valid
110 channel.
111 */
112
113
114 /* Optimization hints and tips.
115
116 The FireStream chips are very capable of reducing the amount of
117 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
118 action. You could try to minimize this a bit.
119
120 Besides that, the userspace->kernel copy and the PCI bus are the
121 performance limiting issues for this driver.
122
123 You could queue up a bunch of outgoing packets without telling the
124 FireStream. I'm not sure that's going to win you much though. The
125 Linux layer won't tell us in advance when it's not going to give us
126 any more packets in a while. So this is tricky to implement right without
127 introducing extra delays.
128
129 -- REW
130 */
131
132
133
134
135 /* The strings that define what the RX queue entry is all about. */
136 /* Fujitsu: Please tell me which ones can have a pointer to a
137 freepool descriptor! */
138 static char *res_strings[] = {
139 "RX OK: streaming not EOP",
140 "RX OK: streaming EOP",
141 "RX OK: Single buffer packet",
142 "RX OK: packet mode",
143 "RX OK: F4 OAM (end to end)",
144 "RX OK: F4 OAM (Segment)",
145 "RX OK: F5 OAM (end to end)",
146 "RX OK: F5 OAM (Segment)",
147 "RX OK: RM cell",
148 "RX OK: TRANSP cell",
149 "RX OK: TRANSPC cell",
150 "Unmatched cell",
151 "reserved 12",
152 "reserved 13",
153 "reserved 14",
154 "Unrecognized cell",
155 "reserved 16",
156 "reassembly abort: AAL5 abort",
157 "packet purged",
158 "packet ageing timeout",
159 "channel ageing timeout",
160 "calculated length error",
161 "programmed length limit error",
162 "aal5 crc32 error",
163 "oam transp or transpc crc10 error",
164 "reserved 25",
165 "reserved 26",
166 "reserved 27",
167 "reserved 28",
168 "reserved 29",
169 "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
170 "reassembly abort: no buffers",
171 "receive buffer overflow",
172 "change in GFC",
173 "receive buffer full",
174 "low priority discard - no receive descriptor",
175 "low priority discard - missing end of packet",
176 "reserved 37",
177 "reserved 38",
178 "reserved 39",
179 "reserved 40",
180 "reserved 41",
181 "reserved 42",
182 "reserved 43",
183 "reserved 44",
184 "reserved 45",
185 "reserved 46",
186 "reserved 47",
187 "reserved 48",
188 "reserved 49",
189 "reserved 50",
190 "reserved 51",
191 "reserved 52",
192 "reserved 53",
193 "reserved 54",
194 "reserved 55",
195 "reserved 56",
196 "reserved 57",
197 "reserved 58",
198 "reserved 59",
199 "reserved 60",
200 "reserved 61",
201 "reserved 62",
202 "reserved 63",
203 };
204
205 static char *irq_bitname[] = {
206 "LPCO",
207 "DPCO",
208 "RBRQ0_W",
209 "RBRQ1_W",
210 "RBRQ2_W",
211 "RBRQ3_W",
212 "RBRQ0_NF",
213 "RBRQ1_NF",
214 "RBRQ2_NF",
215 "RBRQ3_NF",
216 "BFP_SC",
217 "INIT",
218 "INIT_ERR",
219 "USCEO",
220 "UPEC0",
221 "VPFCO",
222 "CRCCO",
223 "HECO",
224 "TBRQ_W",
225 "TBRQ_NF",
226 "CTPQ_E",
227 "GFC_C0",
228 "PCI_FTL",
229 "CSQ_W",
230 "CSQ_NF",
231 "EXT_INT",
232 "RXDMA_S"
233 };
234
235
236 #define PHY_EOF -1
237 #define PHY_CLEARALL -2
238
239 struct reginit_item {
240 int reg, val;
241 };
242
243
244 static struct reginit_item PHY_NTC_INIT[] = {
245 { PHY_CLEARALL, 0x40 },
246 { 0x12, 0x0001 },
247 { 0x13, 0x7605 },
248 { 0x1A, 0x0001 },
249 { 0x1B, 0x0005 },
250 { 0x38, 0x0003 },
251 { 0x39, 0x0006 }, /* changed here to make loopback */
252 { 0x01, 0x5262 },
253 { 0x15, 0x0213 },
254 { 0x00, 0x0003 },
255 { PHY_EOF, 0}, /* -1 signals end of list */
256 };
257
258
259 /* Safetyfeature: If the card interrupts more than this number of times
260 in a jiffy (1/100th of a second) then we just disable the interrupt and
261 print a message. This prevents the system from hanging.
262
263 150000 packets per second is close to the limit a PC is going to have
264 anyway. We therefore have to disable this for production. -- REW */
265 #undef IRQ_RATE_LIMIT // 100
266
267 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
268 that great without interrupts. -- REW */
269 #undef FS_POLL_FREQ // 100
270
271 /*
272 This driver can spew a whole lot of debugging output at you. If you
273 need maximum performance, you should disable the DEBUG define. To
274 aid in debugging in the field, I'm leaving the compile-time debug
275 features enabled, and disable them "runtime". That allows me to
276 instruct people with problems to enable debugging without requiring
277 them to recompile... -- REW
278 */
279 #define DEBUG
280
281 #ifdef DEBUG
282 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
283 #else
284 #define fs_dprintk(f, str...) /* nothing */
285 #endif
286
287
288 static int fs_keystream = 0;
289
290 #ifdef DEBUG
291 /* I didn't forget to set this to zero before shipping. Hit me with a stick
292 if you get this with the debug default not set to zero again. -- REW */
293 static int fs_debug = 0;
294 #else
295 #define fs_debug 0
296 #endif
297
298 #ifdef MODULE
299 #ifdef DEBUG
300 module_param(fs_debug, int, 0644);
301 #endif
302 module_param(loopback, int, 0);
303 module_param(num, int, 0);
304 module_param(fs_keystream, int, 0);
305 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
306 #endif
307
308
309 #define FS_DEBUG_FLOW 0x00000001
310 #define FS_DEBUG_OPEN 0x00000002
311 #define FS_DEBUG_QUEUE 0x00000004
312 #define FS_DEBUG_IRQ 0x00000008
313 #define FS_DEBUG_INIT 0x00000010
314 #define FS_DEBUG_SEND 0x00000020
315 #define FS_DEBUG_PHY 0x00000040
316 #define FS_DEBUG_CLEANUP 0x00000080
317 #define FS_DEBUG_QOS 0x00000100
318 #define FS_DEBUG_TXQ 0x00000200
319 #define FS_DEBUG_ALLOC 0x00000400
320 #define FS_DEBUG_TXMEM 0x00000800
321 #define FS_DEBUG_QSIZE 0x00001000
322
323
324 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
325 #define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
326
327
328 static struct fs_dev *fs_boards = NULL;
329
330 #ifdef DEBUG
331
332 static void my_hd (void *addr, int len)
333 {
334 int j, ch;
335 unsigned char *ptr = addr;
336
337 while (len > 0) {
338 printk ("%p ", ptr);
339 for (j=0;j < ((len < 16)?len:16);j++) {
340 printk ("%02x %s", ptr[j], (j==7)?" ":"");
341 }
342 for ( ;j < 16;j++) {
343 printk (" %s", (j==7)?" ":"");
344 }
345 for (j=0;j < ((len < 16)?len:16);j++) {
346 ch = ptr[j];
347 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
348 }
349 printk ("\n");
350 ptr += 16;
351 len -= 16;
352 }
353 }
354 #else /* DEBUG */
355 static void my_hd (void *addr, int len){}
356 #endif /* DEBUG */
357
358 /********** free an skb (as per ATM device driver documentation) **********/
359
360 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
361 * I copied it over from the ambassador driver. -- REW */
362
363 static inline void fs_kfree_skb (struct sk_buff * skb)
364 {
365 if (ATM_SKB(skb)->vcc->pop)
366 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
367 else
368 dev_kfree_skb_any (skb);
369 }
370
371
372
373
374 /* It seems the ATM forum recommends this horribly complicated 16bit
375 * floating point format. Turns out the Ambassador uses the exact same
376 * encoding. I just copied it over. If Mitch agrees, I'll move it over
377 * to the atm_misc file or something like that. (and remove it from
378 * here and the ambassador driver) -- REW
379 */
380
381 /* The good thing about this format is that it is monotonic. So,
382 a conversion routine need not be very complicated. To be able to
383 round "nearest" we need to take along a few extra bits. Lets
384 put these after 16 bits, so that we can just return the top 16
385 bits of the 32bit number as the result:
386
387 int mr (unsigned int rate, int r)
388 {
389 int e = 16+9;
390 static int round[4]={0, 0, 0xffff, 0x8000};
391 if (!rate) return 0;
392 while (rate & 0xfc000000) {
393 rate >>= 1;
394 e++;
395 }
396 while (! (rate & 0xfe000000)) {
397 rate <<= 1;
398 e--;
399 }
400
401 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
402 rate &= ~0x02000000;
403 // Next add in the exponent
404 rate |= e << (16+9);
405 // And perform the rounding:
406 return (rate + round[r]) >> 16;
407 }
408
409 14 lines-of-code. Compare that with the 120 that the Ambassador
410 guys needed. (would be 8 lines shorter if I'd try to really reduce
411 the number of lines:
412
413 int mr (unsigned int rate, int r)
414 {
415 int e = 16+9;
416 static int round[4]={0, 0, 0xffff, 0x8000};
417 if (!rate) return 0;
418 for (; rate & 0xfc000000 ;rate >>= 1, e++);
419 for (;!(rate & 0xfe000000);rate <<= 1, e--);
420 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
421 }
422
423 Exercise for the reader: Remove one more line-of-code, without
424 cheating. (Just joining two lines is cheating). (I know it's
425 possible, don't think you've beat me if you found it... If you
426 manage to lose two lines or more, keep me updated! ;-)
427
428 -- REW */
429
430
431 #define ROUND_UP 1
432 #define ROUND_DOWN 2
433 #define ROUND_NEAREST 3
434 /********** make rate (not quite as much fun as Horizon) **********/
435
436 static int make_rate(unsigned int rate, int r,
437 u16 *bits, unsigned int *actual)
438 {
439 unsigned char exp = -1; /* hush gcc */
440 unsigned int man = -1; /* hush gcc */
441
442 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
443
444 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
445 given 5-bit e and 9-bit m:
446 rate = EITHER (1+m/2^9)*2^e OR 0
447 bits = EITHER 1<<14 | e<<9 | m OR 0
448 (bit 15 is "reserved", bit 14 "non-zero")
449 smallest rate is 0 (special representation)
450 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
451 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
452 simple algorithm:
453 find position of top bit, this gives e
454 remove top bit and shift (rounding if feeling clever) by 9-e
455 */
456 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
457 representable. // This should move into the ambassador driver
458 when properly merged. -- REW */
459
460 if (rate > 0xffc00000U) {
461 /* larger than largest representable rate */
462
463 if (r == ROUND_UP) {
464 return -EINVAL;
465 } else {
466 exp = 31;
467 man = 511;
468 }
469
470 } else if (rate) {
471 /* representable rate */
472
473 exp = 31;
474 man = rate;
475
476 /* invariant: rate = man*2^(exp-31) */
477 while (!(man & (1<<31))) {
478 exp = exp - 1;
479 man = man<<1;
480 }
481
482 /* man has top bit set
483 rate = (2^31+(man-2^31))*2^(exp-31)
484 rate = (1+(man-2^31)/2^31)*2^exp
485 */
486 man = man<<1;
487 man &= 0xffffffffU; /* a nop on 32-bit systems */
488 /* rate = (1+man/2^32)*2^exp
489
490 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
491 time to lose significance... we want m in the range 0 to 2^9-1
492 rounding presents a minor problem... we first decide which way
493 we are rounding (based on given rounding direction and possibly
494 the bits of the mantissa that are to be discarded).
495 */
496
497 switch (r) {
498 case ROUND_DOWN: {
499 /* just truncate */
500 man = man>>(32-9);
501 break;
502 }
503 case ROUND_UP: {
504 /* check all bits that we are discarding */
505 if (man & (~0U>>9)) {
506 man = (man>>(32-9)) + 1;
507 if (man == (1<<9)) {
508 /* no need to check for round up outside of range */
509 man = 0;
510 exp += 1;
511 }
512 } else {
513 man = (man>>(32-9));
514 }
515 break;
516 }
517 case ROUND_NEAREST: {
518 /* check msb that we are discarding */
519 if (man & (1<<(32-9-1))) {
520 man = (man>>(32-9)) + 1;
521 if (man == (1<<9)) {
522 /* no need to check for round up outside of range */
523 man = 0;
524 exp += 1;
525 }
526 } else {
527 man = (man>>(32-9));
528 }
529 break;
530 }
531 }
532
533 } else {
534 /* zero rate - not representable */
535
536 if (r == ROUND_DOWN) {
537 return -EINVAL;
538 } else {
539 exp = 0;
540 man = 0;
541 }
542 }
543
544 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
545
546 if (bits)
547 *bits = /* (1<<14) | */ (exp<<9) | man;
548
549 if (actual)
550 *actual = (exp >= 9)
551 ? (1 << exp) + (man << (exp-9))
552 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
553
554 return 0;
555 }
556
557
558
559
560 /* FireStream access routines */
561 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
562 certain registers or to just log all accesses. */
563
564 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
565 {
566 writel (val, dev->base + offset);
567 }
568
569
570 static inline u32 read_fs (struct fs_dev *dev, int offset)
571 {
572 return readl (dev->base + offset);
573 }
574
575
576
577 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
578 {
579 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
580 }
581
582
583 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
584 {
585 u32 wp;
586 struct FS_QENTRY *cqe;
587
588 /* XXX Sanity check: the write pointer can be checked to be
589 still the same as the value passed as qe... -- REW */
590 /* udelay (5); */
591 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
592 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
593 q->offset);
594 schedule ();
595 }
596
597 wp &= ~0xf;
598 cqe = bus_to_virt (wp);
599 if (qe != cqe) {
600 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
601 }
602
603 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
604
605 {
606 static int c;
607 if (!(c++ % 100))
608 {
609 int rp, wp;
610 rp = read_fs (dev, Q_RP(q->offset));
611 wp = read_fs (dev, Q_WP(q->offset));
612 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
613 q->offset, rp, wp, wp-rp);
614 }
615 }
616 }
617
618 #ifdef DEBUG_EXTRA
619 static struct FS_QENTRY pq[60];
620 static int qp;
621
622 static struct FS_BPENTRY dq[60];
623 static int qd;
624 static void *da[60];
625 #endif
626
627 static void submit_queue (struct fs_dev *dev, struct queue *q,
628 u32 cmd, u32 p1, u32 p2, u32 p3)
629 {
630 struct FS_QENTRY *qe;
631
632 qe = get_qentry (dev, q);
633 qe->cmd = cmd;
634 qe->p0 = p1;
635 qe->p1 = p2;
636 qe->p2 = p3;
637 submit_qentry (dev, q, qe);
638
639 #ifdef DEBUG_EXTRA
640 pq[qp].cmd = cmd;
641 pq[qp].p0 = p1;
642 pq[qp].p1 = p2;
643 pq[qp].p2 = p3;
644 qp++;
645 if (qp >= 60) qp = 0;
646 #endif
647 }
648
649 /* Test the "other" way one day... -- REW */
650 #if 1
651 #define submit_command submit_queue
652 #else
653
654 static void submit_command (struct fs_dev *dev, struct queue *q,
655 u32 cmd, u32 p1, u32 p2, u32 p3)
656 {
657 write_fs (dev, CMDR0, cmd);
658 write_fs (dev, CMDR1, p1);
659 write_fs (dev, CMDR2, p2);
660 write_fs (dev, CMDR3, p3);
661 }
662 #endif
663
664
665
666 static void process_return_queue (struct fs_dev *dev, struct queue *q)
667 {
668 long rq;
669 struct FS_QENTRY *qe;
670 void *tc;
671
672 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
673 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
674 qe = bus_to_virt (rq);
675
676 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
677 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
678
679 switch (STATUS_CODE (qe)) {
680 case 5:
681 tc = bus_to_virt (qe->p0);
682 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
683 kfree (tc);
684 break;
685 }
686
687 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
688 }
689 }
690
691
692 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
693 {
694 long rq;
695 long tmp;
696 struct FS_QENTRY *qe;
697 struct sk_buff *skb;
698 struct FS_BPENTRY *td;
699
700 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
701 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
702 qe = bus_to_virt (rq);
703
704 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
705 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
706
707 if (STATUS_CODE (qe) != 2)
708 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
709 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
710
711
712 switch (STATUS_CODE (qe)) {
713 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
714 fallthrough;
715 case 0x02:
716 /* Process a real txdone entry. */
717 tmp = qe->p0;
718 if (tmp & 0x0f)
719 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
720 tmp &= ~0x0f;
721 td = bus_to_virt (tmp);
722
723 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
724 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
725
726 skb = td->skb;
727 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
728 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
729 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
730 }
731 td->dev->ntxpckts--;
732
733 {
734 static int c=0;
735
736 if (!(c++ % 100)) {
737 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
738 }
739 }
740
741 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
742
743 fs_dprintk (FS_DEBUG_TXMEM, "i");
744 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
745 fs_kfree_skb (skb);
746
747 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
748 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
749 kfree (td);
750 break;
751 default:
752 /* Here we get the tx purge inhibit command ... */
753 /* Action, I believe, is "don't do anything". -- REW */
754 ;
755 }
756
757 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
758 }
759 }
760
761
762 static void process_incoming (struct fs_dev *dev, struct queue *q)
763 {
764 long rq;
765 struct FS_QENTRY *qe;
766 struct FS_BPENTRY *pe;
767 struct sk_buff *skb;
768 unsigned int channo;
769 struct atm_vcc *atm_vcc;
770
771 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
772 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
773 qe = bus_to_virt (rq);
774
775 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
776 qe->cmd, qe->p0, qe->p1, qe->p2);
777
778 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
779 STATUS_CODE (qe),
780 res_strings[STATUS_CODE(qe)]);
781
782 pe = bus_to_virt (qe->p0);
783 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
784 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
785 pe->skb, pe->fp);
786
787 channo = qe->cmd & 0xffff;
788
789 if (channo < dev->nchannels)
790 atm_vcc = dev->atm_vccs[channo];
791 else
792 atm_vcc = NULL;
793
794 /* Single buffer packet */
795 switch (STATUS_CODE (qe)) {
796 case 0x1:
797 /* Fall through for streaming mode */
798 case 0x2:/* Packet received OK.... */
799 if (atm_vcc) {
800 skb = pe->skb;
801 pe->fp->n--;
802 #if 0
803 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
804 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
805 #endif
806 skb_put (skb, qe->p1 & 0xffff);
807 ATM_SKB(skb)->vcc = atm_vcc;
808 atomic_inc(&atm_vcc->stats->rx);
809 __net_timestamp(skb);
810 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
811 atm_vcc->push (atm_vcc, skb);
812 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
813 kfree (pe);
814 } else {
815 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
816 }
817 break;
818 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
819 has been consumed and needs to be processed. -- REW */
820 if (qe->p1 & 0xffff) {
821 pe = bus_to_virt (qe->p0);
822 pe->fp->n--;
823 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
824 dev_kfree_skb_any (pe->skb);
825 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
826 kfree (pe);
827 }
828 if (atm_vcc)
829 atomic_inc(&atm_vcc->stats->rx_drop);
830 break;
831 case 0x1f: /* Reassembly abort: no buffers. */
832 /* Silently increment error counter. */
833 if (atm_vcc)
834 atomic_inc(&atm_vcc->stats->rx_drop);
835 break;
836 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
837 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
838 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
839 }
840 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
841 }
842 }
843
844
845
846 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
847
848 static int fs_open(struct atm_vcc *atm_vcc)
849 {
850 struct fs_dev *dev;
851 struct fs_vcc *vcc;
852 struct fs_transmit_config *tc;
853 struct atm_trafprm * txtp;
854 struct atm_trafprm * rxtp;
855 /* struct fs_receive_config *rc;*/
856 /* struct FS_QENTRY *qe; */
857 int error;
858 int bfp;
859 int to;
860 unsigned short tmc0;
861 short vpi = atm_vcc->vpi;
862 int vci = atm_vcc->vci;
863
864 func_enter ();
865
866 dev = FS_DEV(atm_vcc->dev);
867 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
868 dev, atm_vcc);
869
870 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
871 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
872
873 if ((atm_vcc->qos.aal != ATM_AAL5) &&
874 (atm_vcc->qos.aal != ATM_AAL2))
875 return -EINVAL; /* XXX AAL0 */
876
877 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
878 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
879
880 /* XXX handle qos parameters (rate limiting) ? */
881
882 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
883 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
884 if (!vcc) {
885 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
886 return -ENOMEM;
887 }
888
889 atm_vcc->dev_data = vcc;
890 vcc->last_skb = NULL;
891
892 init_waitqueue_head (&vcc->close_wait);
893
894 txtp = &atm_vcc->qos.txtp;
895 rxtp = &atm_vcc->qos.rxtp;
896
897 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
898 if (IS_FS50(dev)) {
899 /* Increment the channel numer: take a free one next time. */
900 for (to=33;to;to--, dev->channo++) {
901 /* We only have 32 channels */
902 if (dev->channo >= 32)
903 dev->channo = 0;
904 /* If we need to do RX, AND the RX is inuse, try the next */
905 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
906 continue;
907 /* If we need to do TX, AND the TX is inuse, try the next */
908 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
909 continue;
910 /* Ok, both are free! (or not needed) */
911 break;
912 }
913 if (!to) {
914 printk ("No more free channels for FS50..\n");
915 kfree(vcc);
916 return -EBUSY;
917 }
918 vcc->channo = dev->channo;
919 dev->channo &= dev->channel_mask;
920
921 } else {
922 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
923 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
924 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
925 printk ("Channel is in use for FS155.\n");
926 kfree(vcc);
927 return -EBUSY;
928 }
929 }
930 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
931 vcc->channo, vcc->channo);
932 }
933
934 if (DO_DIRECTION (txtp)) {
935 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
936 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
937 tc, sizeof (struct fs_transmit_config));
938 if (!tc) {
939 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
940 kfree(vcc);
941 return -ENOMEM;
942 }
943
944 /* Allocate the "open" entry from the high priority txq. This makes
945 it most likely that the chip will notice it. It also prevents us
946 from having to wait for completion. On the other hand, we may
947 need to wait for completion anyway, to see if it completed
948 successfully. */
949
950 switch (atm_vcc->qos.aal) {
951 case ATM_AAL2:
952 case ATM_AAL0:
953 tc->flags = 0
954 | TC_FLAGS_TRANSPARENT_PAYLOAD
955 | TC_FLAGS_PACKET
956 | (1 << 28)
957 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
958 | TC_FLAGS_CAL0;
959 break;
960 case ATM_AAL5:
961 tc->flags = 0
962 | TC_FLAGS_AAL5
963 | TC_FLAGS_PACKET /* ??? */
964 | TC_FLAGS_TYPE_CBR
965 | TC_FLAGS_CAL0;
966 break;
967 default:
968 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
969 tc->flags = 0;
970 }
971 /* Docs are vague about this atm_hdr field. By the way, the FS
972 * chip makes odd errors if lower bits are set.... -- REW */
973 tc->atm_hdr = (vpi << 20) | (vci << 4);
974 tmc0 = 0;
975 {
976 int pcr = atm_pcr_goal (txtp);
977
978 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
979
980 /* XXX Hmm. officially we're only allowed to do this if rounding
981 is round_down -- REW */
982 if (IS_FS50(dev)) {
983 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
984 } else {
985 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
986 }
987 if (!pcr) {
988 /* no rate cap */
989 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
990 } else {
991 int r;
992 if (pcr < 0) {
993 r = ROUND_DOWN;
994 pcr = -pcr;
995 } else {
996 r = ROUND_UP;
997 }
998 error = make_rate (pcr, r, &tmc0, NULL);
999 if (error) {
1000 kfree(tc);
1001 kfree(vcc);
1002 return error;
1003 }
1004 }
1005 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1006 }
1007
1008 tc->TMC[0] = tmc0 | 0x4000;
1009 tc->TMC[1] = 0; /* Unused */
1010 tc->TMC[2] = 0; /* Unused */
1011 tc->TMC[3] = 0; /* Unused */
1012
1013 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1014 tc->rtag[0] = 0; /* What should I do with routing tags???
1015 -- Not used -- AS -- Thanks -- REW*/
1016 tc->rtag[1] = 0;
1017 tc->rtag[2] = 0;
1018
1019 if (fs_debug & FS_DEBUG_OPEN) {
1020 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1021 my_hd (tc, sizeof (*tc));
1022 }
1023
1024 /* We now use the "submit_command" function to submit commands to
1025 the firestream. There is a define up near the definition of
1026 that routine that switches this routine between immediate write
1027 to the immediate command registers and queuing the commands in
1028 the HPTXQ for execution. This last technique might be more
1029 efficient if we know we're going to submit a whole lot of
1030 commands in one go, but this driver is not setup to be able to
1031 use such a construct. So it probably doen't matter much right
1032 now. -- REW */
1033
1034 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1035 submit_command (dev, &dev->hp_txq,
1036 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1037 virt_to_bus (tc), 0, 0);
1038
1039 submit_command (dev, &dev->hp_txq,
1040 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1041 0, 0, 0);
1042 set_bit (vcc->channo, dev->tx_inuse);
1043 }
1044
1045 if (DO_DIRECTION (rxtp)) {
1046 dev->atm_vccs[vcc->channo] = atm_vcc;
1047
1048 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1049 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1050 if (bfp >= FS_NR_FREE_POOLS) {
1051 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1052 atm_vcc->qos.rxtp.max_sdu);
1053 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1054
1055 /* XXX clear tx inuse. Close TX part? */
1056 dev->atm_vccs[vcc->channo] = NULL;
1057 kfree (vcc);
1058 return -EINVAL;
1059 }
1060
1061 switch (atm_vcc->qos.aal) {
1062 case ATM_AAL0:
1063 case ATM_AAL2:
1064 submit_command (dev, &dev->hp_txq,
1065 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1066 RC_FLAGS_TRANSP |
1067 RC_FLAGS_BFPS_BFP * bfp |
1068 RC_FLAGS_RXBM_PSB, 0, 0);
1069 break;
1070 case ATM_AAL5:
1071 submit_command (dev, &dev->hp_txq,
1072 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1073 RC_FLAGS_AAL5 |
1074 RC_FLAGS_BFPS_BFP * bfp |
1075 RC_FLAGS_RXBM_PSB, 0, 0);
1076 break;
1077 }
1078 if (IS_FS50 (dev)) {
1079 submit_command (dev, &dev->hp_txq,
1080 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1081 0x80 + vcc->channo,
1082 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1083 }
1084 submit_command (dev, &dev->hp_txq,
1085 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1086 0, 0, 0);
1087 }
1088
1089 /* Indicate we're done! */
1090 set_bit(ATM_VF_READY, &atm_vcc->flags);
1091
1092 func_exit ();
1093 return 0;
1094 }
1095
1096
1097 static void fs_close(struct atm_vcc *atm_vcc)
1098 {
1099 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1100 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1101 struct atm_trafprm * txtp;
1102 struct atm_trafprm * rxtp;
1103
1104 func_enter ();
1105
1106 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1107
1108 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1109 if (vcc->last_skb) {
1110 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1111 vcc->last_skb);
1112 /* We're going to wait for the last packet to get sent on this VC. It would
1113 be impolite not to send them don't you think?
1114 XXX
1115 We don't know which packets didn't get sent. So if we get interrupted in
1116 this sleep_on, we'll lose any reference to these packets. Memory leak!
1117 On the other hand, it's awfully convenient that we can abort a "close" that
1118 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1119 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1120 }
1121
1122 txtp = &atm_vcc->qos.txtp;
1123 rxtp = &atm_vcc->qos.rxtp;
1124
1125
1126 /* See App note XXX (Unpublished as of now) for the reason for the
1127 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1128
1129 if (DO_DIRECTION (txtp)) {
1130 submit_command (dev, &dev->hp_txq,
1131 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1132 clear_bit (vcc->channo, dev->tx_inuse);
1133 }
1134
1135 if (DO_DIRECTION (rxtp)) {
1136 submit_command (dev, &dev->hp_txq,
1137 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1138 dev->atm_vccs [vcc->channo] = NULL;
1139
1140 /* This means that this is configured as a receive channel */
1141 if (IS_FS50 (dev)) {
1142 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1143 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1144 (0xfff...) -- REW */
1145 submit_command (dev, &dev->hp_txq,
1146 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1147 0x80 + vcc->channo, -1, 0 );
1148 }
1149 }
1150
1151 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1152 kfree (vcc);
1153
1154 func_exit ();
1155 }
1156
1157
1158 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1159 {
1160 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1161 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1162 struct FS_BPENTRY *td;
1163
1164 func_enter ();
1165
1166 fs_dprintk (FS_DEBUG_TXMEM, "I");
1167 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1168 atm_vcc, skb, vcc, dev);
1169
1170 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1171
1172 ATM_SKB(skb)->vcc = atm_vcc;
1173
1174 vcc->last_skb = skb;
1175
1176 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1177 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1178 if (!td) {
1179 /* Oops out of mem */
1180 return -ENOMEM;
1181 }
1182
1183 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1184 *(int *) skb->data);
1185
1186 td->flags = TD_EPI | TD_DATA | skb->len;
1187 td->next = 0;
1188 td->bsa = virt_to_bus (skb->data);
1189 td->skb = skb;
1190 td->dev = dev;
1191 dev->ntxpckts++;
1192
1193 #ifdef DEBUG_EXTRA
1194 da[qd] = td;
1195 dq[qd].flags = td->flags;
1196 dq[qd].next = td->next;
1197 dq[qd].bsa = td->bsa;
1198 dq[qd].skb = td->skb;
1199 dq[qd].dev = td->dev;
1200 qd++;
1201 if (qd >= 60) qd = 0;
1202 #endif
1203
1204 submit_queue (dev, &dev->hp_txq,
1205 QE_TRANSMIT_DE | vcc->channo,
1206 virt_to_bus (td), 0,
1207 virt_to_bus (td));
1208
1209 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1210 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1211 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1212 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1213 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1214
1215 func_exit ();
1216 return 0;
1217 }
1218
1219
1220 /* Some function placeholders for functions we don't yet support. */
1221
1222 #if 0
1223 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1224 {
1225 func_enter ();
1226 func_exit ();
1227 return -ENOIOCTLCMD;
1228 }
1229
1230
1231 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1232 void __user *optval,int optlen)
1233 {
1234 func_enter ();
1235 func_exit ();
1236 return 0;
1237 }
1238
1239
1240 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1241 void __user *optval,unsigned int optlen)
1242 {
1243 func_enter ();
1244 func_exit ();
1245 return 0;
1246 }
1247
1248
1249 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1250 unsigned long addr)
1251 {
1252 func_enter ();
1253 func_exit ();
1254 }
1255
1256
1257 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1258 {
1259 func_enter ();
1260 func_exit ();
1261 return 0;
1262 }
1263
1264
1265 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1266 {
1267 func_enter ();
1268 func_exit ();
1269 return 0;
1270 };
1271
1272 #endif
1273
1274
1275 static const struct atmdev_ops ops = {
1276 .open = fs_open,
1277 .close = fs_close,
1278 .send = fs_send,
1279 .owner = THIS_MODULE,
1280 /* ioctl: fs_ioctl, */
1281 /* change_qos: fs_change_qos, */
1282
1283 /* For now implement these internally here... */
1284 /* phy_put: fs_phy_put, */
1285 /* phy_get: fs_phy_get, */
1286 };
1287
1288
1289 static void undocumented_pci_fix(struct pci_dev *pdev)
1290 {
1291 u32 tint;
1292
1293 /* The Windows driver says: */
1294 /* Switch off FireStream Retry Limit Threshold
1295 */
1296
1297 /* The register at 0x28 is documented as "reserved", no further
1298 comments. */
1299
1300 pci_read_config_dword (pdev, 0x28, &tint);
1301 if (tint != 0x80) {
1302 tint = 0x80;
1303 pci_write_config_dword (pdev, 0x28, tint);
1304 }
1305 }
1306
1307
1308
1309 /**************************************************************************
1310 * PHY routines *
1311 **************************************************************************/
1312
1313 static void write_phy(struct fs_dev *dev, int regnum, int val)
1314 {
1315 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1316 regnum, val, 0);
1317 }
1318
1319 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1320 {
1321 int i;
1322
1323 func_enter ();
1324 while (reginit->reg != PHY_EOF) {
1325 if (reginit->reg == PHY_CLEARALL) {
1326 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1327 for (i=0;i<reginit->val;i++) {
1328 write_phy (dev, i, 0);
1329 }
1330 } else {
1331 write_phy (dev, reginit->reg, reginit->val);
1332 }
1333 reginit++;
1334 }
1335 func_exit ();
1336 return 0;
1337 }
1338
1339 static void reset_chip (struct fs_dev *dev)
1340 {
1341 int i;
1342
1343 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1344
1345 /* Undocumented delay */
1346 udelay (128);
1347
1348 /* The "internal registers are documented to all reset to zero, but
1349 comments & code in the Windows driver indicates that the pools are
1350 NOT reset. */
1351 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1352 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1353 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1354 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1355 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1356 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1357 }
1358
1359 /* The same goes for the match channel registers, although those are
1360 NOT documented that way in the Windows driver. -- REW */
1361 /* The Windows driver DOES write 0 to these registers somewhere in
1362 the init sequence. However, a small hardware-feature, will
1363 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1364 allocated happens to have no disabled channels that have a lower
1365 number. -- REW */
1366
1367 /* Clear the match channel registers. */
1368 if (IS_FS50 (dev)) {
1369 for (i=0;i<FS50_NR_CHANNELS;i++) {
1370 write_fs (dev, 0x200 + i * 4, -1);
1371 }
1372 }
1373 }
1374
1375 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1376 {
1377 void *t;
1378
1379 if (alignment <= 0x10) {
1380 t = kmalloc (size, flags);
1381 if ((unsigned long)t & (alignment-1)) {
1382 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1383 kfree (t);
1384 return aligned_kmalloc (size, flags, alignment * 4);
1385 }
1386 return t;
1387 }
1388 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1389 return NULL;
1390 }
1391
1392 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1393 int nentries, int is_rq)
1394 {
1395 int sz = nentries * sizeof (struct FS_QENTRY);
1396 struct FS_QENTRY *p;
1397
1398 func_enter ();
1399
1400 fs_dprintk (FS_DEBUG_INIT, "Initializing queue at %x: %d entries:\n",
1401 queue, nentries);
1402
1403 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1404 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1405
1406 if (!p) return 0;
1407
1408 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1409 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1410 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1411 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1412 if (is_rq) {
1413 /* Configuration for the receive queue: 0: interrupt immediately,
1414 no pre-warning to empty queues: We do our best to keep the
1415 queue filled anyway. */
1416 write_fs (dev, Q_CNF(queue), 0 );
1417 }
1418
1419 txq->sa = p;
1420 txq->ea = p;
1421 txq->offset = queue;
1422
1423 func_exit ();
1424 return 1;
1425 }
1426
1427
1428 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1429 int bufsize, int nr_buffers)
1430 {
1431 func_enter ();
1432
1433 fs_dprintk (FS_DEBUG_INIT, "Initializing free pool at %x:\n", queue);
1434
1435 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1436 write_fs (dev, FP_SA(queue), 0);
1437 write_fs (dev, FP_EA(queue), 0);
1438 write_fs (dev, FP_CTU(queue), 0);
1439 write_fs (dev, FP_CNT(queue), 0);
1440
1441 fp->offset = queue;
1442 fp->bufsize = bufsize;
1443 fp->nr_buffers = nr_buffers;
1444
1445 func_exit ();
1446 return 1;
1447 }
1448
1449
1450 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1451 {
1452 #if 0
1453 /* This seems to be unreliable.... */
1454 return read_fs (dev, FP_CNT (fp->offset));
1455 #else
1456 return fp->n;
1457 #endif
1458 }
1459
1460
1461 /* Check if this gets going again if a pool ever runs out. -- Yes, it
1462 does. I've seen "receive abort: no buffers" and things started
1463 working again after that... -- REW */
1464
1465 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1466 gfp_t gfp_flags)
1467 {
1468 struct FS_BPENTRY *qe, *ne;
1469 struct sk_buff *skb;
1470 int n = 0;
1471 u32 qe_tmp;
1472
1473 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1474 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1475 fp->nr_buffers);
1476 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1477
1478 skb = alloc_skb (fp->bufsize, gfp_flags);
1479 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1480 if (!skb) break;
1481 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1482 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1483 if (!ne) {
1484 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1485 dev_kfree_skb_any (skb);
1486 break;
1487 }
1488
1489 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1490 skb, ne, skb->data, skb->head);
1491 n++;
1492 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1493 ne->next = virt_to_bus (NULL);
1494 ne->bsa = virt_to_bus (skb->data);
1495 ne->aal_bufsize = fp->bufsize;
1496 ne->skb = skb;
1497 ne->fp = fp;
1498
1499 /*
1500 * FIXME: following code encodes and decodes
1501 * machine pointers (could be 64-bit) into a
1502 * 32-bit register.
1503 */
1504
1505 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1506 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1507 if (qe_tmp) {
1508 qe = bus_to_virt ((long) qe_tmp);
1509 qe->next = virt_to_bus(ne);
1510 qe->flags &= ~FP_FLAGS_EPI;
1511 } else
1512 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1513
1514 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1515 fp->n++; /* XXX Atomic_inc? */
1516 write_fs (dev, FP_CTU(fp->offset), 1);
1517 }
1518
1519 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1520 }
1521
1522 static void free_queue(struct fs_dev *dev, struct queue *txq)
1523 {
1524 func_enter ();
1525
1526 write_fs (dev, Q_SA(txq->offset), 0);
1527 write_fs (dev, Q_EA(txq->offset), 0);
1528 write_fs (dev, Q_RP(txq->offset), 0);
1529 write_fs (dev, Q_WP(txq->offset), 0);
1530 /* Configuration ? */
1531
1532 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1533 kfree (txq->sa);
1534
1535 func_exit ();
1536 }
1537
1538 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1539 {
1540 func_enter ();
1541
1542 write_fs (dev, FP_CNF(fp->offset), 0);
1543 write_fs (dev, FP_SA (fp->offset), 0);
1544 write_fs (dev, FP_EA (fp->offset), 0);
1545 write_fs (dev, FP_CNT(fp->offset), 0);
1546 write_fs (dev, FP_CTU(fp->offset), 0);
1547
1548 func_exit ();
1549 }
1550
1551
1552
1553 static irqreturn_t fs_irq (int irq, void *dev_id)
1554 {
1555 int i;
1556 u32 status;
1557 struct fs_dev *dev = dev_id;
1558
1559 status = read_fs (dev, ISR);
1560 if (!status)
1561 return IRQ_NONE;
1562
1563 func_enter ();
1564
1565 #ifdef IRQ_RATE_LIMIT
1566 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1567 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1568 {
1569 static int lastjif;
1570 static int nintr=0;
1571
1572 if (lastjif == jiffies) {
1573 if (++nintr > IRQ_RATE_LIMIT) {
1574 free_irq (dev->irq, dev_id);
1575 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1576 dev->irq);
1577 }
1578 } else {
1579 lastjif = jiffies;
1580 nintr = 0;
1581 }
1582 }
1583 #endif
1584 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1585 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1586 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1587 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1588 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1589
1590 /* print the bits in the ISR register. */
1591 if (fs_debug & FS_DEBUG_IRQ) {
1592 /* The FS_DEBUG things are unnecessary here. But this way it is
1593 clear for grep that these are debug prints. */
1594 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1595 for (i=0;i<27;i++)
1596 if (status & (1 << i))
1597 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1598 fs_dprintk (FS_DEBUG_IRQ, "\n");
1599 }
1600
1601 if (status & ISR_RBRQ0_W) {
1602 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1603 process_incoming (dev, &dev->rx_rq[0]);
1604 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1605 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1606 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1607 }
1608
1609 if (status & ISR_RBRQ1_W) {
1610 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1611 process_incoming (dev, &dev->rx_rq[1]);
1612 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1613 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1614 }
1615
1616 if (status & ISR_RBRQ2_W) {
1617 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1618 process_incoming (dev, &dev->rx_rq[2]);
1619 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1620 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1621 }
1622
1623 if (status & ISR_RBRQ3_W) {
1624 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1625 process_incoming (dev, &dev->rx_rq[3]);
1626 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1627 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1628 }
1629
1630 if (status & ISR_CSQ_W) {
1631 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1632 process_return_queue (dev, &dev->st_q);
1633 }
1634
1635 if (status & ISR_TBRQ_W) {
1636 fs_dprintk (FS_DEBUG_IRQ, "Data transmitted!\n");
1637 process_txdone_queue (dev, &dev->tx_relq);
1638 }
1639
1640 func_exit ();
1641 return IRQ_HANDLED;
1642 }
1643
1644
1645 #ifdef FS_POLL_FREQ
1646 static void fs_poll (struct timer_list *t)
1647 {
1648 struct fs_dev *dev = from_timer(dev, t, timer);
1649
1650 fs_irq (0, dev);
1651 dev->timer.expires = jiffies + FS_POLL_FREQ;
1652 add_timer (&dev->timer);
1653 }
1654 #endif
1655
1656 static int fs_init(struct fs_dev *dev)
1657 {
1658 struct pci_dev *pci_dev;
1659 int isr, to;
1660 int i;
1661
1662 func_enter ();
1663 pci_dev = dev->pci_dev;
1664
1665 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1666 IS_FS50(dev)?50:155,
1667 (unsigned long long)pci_resource_start(pci_dev, 0),
1668 dev->pci_dev->irq);
1669
1670 if (fs_debug & FS_DEBUG_INIT)
1671 my_hd ((unsigned char *) dev, sizeof (*dev));
1672
1673 undocumented_pci_fix (pci_dev);
1674
1675 dev->hw_base = pci_resource_start(pci_dev, 0);
1676
1677 dev->base = ioremap(dev->hw_base, 0x1000);
1678
1679 reset_chip (dev);
1680
1681 write_fs (dev, SARMODE0, 0
1682 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1683 | (1 * SARMODE0_INTMODE_READCLEAR)
1684 | (1 * SARMODE0_CWRE)
1685 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1686 SARMODE0_PRPWT_FS155_3)
1687 | (1 * SARMODE0_CALSUP_1)
1688 | (IS_FS50(dev) ? (0
1689 | SARMODE0_RXVCS_32
1690 | SARMODE0_ABRVCS_32
1691 | SARMODE0_TXVCS_32):
1692 (0
1693 | SARMODE0_RXVCS_1k
1694 | SARMODE0_ABRVCS_1k
1695 | SARMODE0_TXVCS_1k)));
1696
1697 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1698 1ms. */
1699 to = 100;
1700 while (--to) {
1701 isr = read_fs (dev, ISR);
1702
1703 /* This bit is documented as "RESERVED" */
1704 if (isr & ISR_INIT_ERR) {
1705 printk (KERN_ERR "Error initializing the FS... \n");
1706 goto unmap;
1707 }
1708 if (isr & ISR_INIT) {
1709 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1710 break;
1711 }
1712
1713 /* Try again after 10ms. */
1714 msleep(10);
1715 }
1716
1717 if (!to) {
1718 printk (KERN_ERR "timeout initializing the FS... \n");
1719 goto unmap;
1720 }
1721
1722 /* XXX fix for fs155 */
1723 dev->channel_mask = 0x1f;
1724 dev->channo = 0;
1725
1726 /* AN3: 10 */
1727 write_fs (dev, SARMODE1, 0
1728 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1729 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1730 | (1 * SARMODE1_DCRM)
1731 | (1 * SARMODE1_DCOAM)
1732 | (0 * SARMODE1_OAMCRC)
1733 | (0 * SARMODE1_DUMPE)
1734 | (0 * SARMODE1_GPLEN)
1735 | (0 * SARMODE1_GNAM)
1736 | (0 * SARMODE1_GVAS)
1737 | (0 * SARMODE1_GPAS)
1738 | (1 * SARMODE1_GPRI)
1739 | (0 * SARMODE1_PMS)
1740 | (0 * SARMODE1_GFCR)
1741 | (1 * SARMODE1_HECM2)
1742 | (1 * SARMODE1_HECM1)
1743 | (1 * SARMODE1_HECM0)
1744 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1745 | (0 * 0xff) /* XXX FS155 */);
1746
1747
1748 /* Cal prescale etc */
1749
1750 /* AN3: 11 */
1751 write_fs (dev, TMCONF, 0x0000000f);
1752 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1753 write_fs (dev, 0x80, 0x000F00E4);
1754
1755 /* AN3: 12 */
1756 write_fs (dev, CELLOSCONF, 0
1757 | ( 0 * CELLOSCONF_CEN)
1758 | ( CELLOSCONF_SC1)
1759 | (0x80 * CELLOSCONF_COBS)
1760 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1761 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1762 * performance jumped 50->70... */
1763
1764 /* Magic value by Hang */
1765 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1766
1767 if (IS_FS50 (dev)) {
1768 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1769 dev->atm_dev->ci_range.vpi_bits = 12;
1770 dev->atm_dev->ci_range.vci_bits = 16;
1771 dev->nchannels = FS50_NR_CHANNELS;
1772 } else {
1773 write_fs (dev, RAS0, RAS0_DCD_XHLT
1774 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1775 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1776 /* We can chose the split arbitrarily. We might be able to
1777 support more. Whatever. This should do for now. */
1778 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1779 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1780
1781 /* Address bits we can't use should be compared to 0. */
1782 write_fs (dev, RAC, 0);
1783
1784 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1785 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1786 * other bits, then compare with 0, which is exactly what we
1787 * want. */
1788 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1789 dev->nchannels = FS155_NR_CHANNELS;
1790 }
1791 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1792 GFP_KERNEL);
1793 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1794 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1795
1796 if (!dev->atm_vccs) {
1797 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1798 /* XXX Clean up..... */
1799 goto unmap;
1800 }
1801
1802 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1803 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1804 dev->atm_vccs, dev->nchannels / 8);
1805
1806 if (!dev->tx_inuse) {
1807 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1808 /* XXX Clean up..... */
1809 goto unmap;
1810 }
1811 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1812 /* -- RAS2 : FS50 only: Default is OK. */
1813
1814 /* DMAMODE, default should be OK. -- REW */
1815 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1816
1817 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1818 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1819 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1820 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1821
1822 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1823 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1824 rx_buf_sizes[i], rx_pool_sizes[i]);
1825 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1826 }
1827
1828
1829 for (i=0;i < FS_NR_RX_QUEUES;i++)
1830 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1831
1832 dev->irq = pci_dev->irq;
1833 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1834 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1835 /* XXX undo all previous stuff... */
1836 goto unmap;
1837 }
1838 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1839
1840 /* We want to be notified of most things. Just the statistics count
1841 overflows are not interesting */
1842 write_fs (dev, IMR, 0
1843 | ISR_RBRQ0_W
1844 | ISR_RBRQ1_W
1845 | ISR_RBRQ2_W
1846 | ISR_RBRQ3_W
1847 | ISR_TBRQ_W
1848 | ISR_CSQ_W);
1849
1850 write_fs (dev, SARMODE0, 0
1851 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1852 | (1 * SARMODE0_GINT)
1853 | (1 * SARMODE0_INTMODE_READCLEAR)
1854 | (0 * SARMODE0_CWRE)
1855 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1856 SARMODE0_PRPWT_FS155_3)
1857 | (1 * SARMODE0_CALSUP_1)
1858 | (IS_FS50 (dev)?(0
1859 | SARMODE0_RXVCS_32
1860 | SARMODE0_ABRVCS_32
1861 | SARMODE0_TXVCS_32):
1862 (0
1863 | SARMODE0_RXVCS_1k
1864 | SARMODE0_ABRVCS_1k
1865 | SARMODE0_TXVCS_1k))
1866 | (1 * SARMODE0_RUN));
1867
1868 init_phy (dev, PHY_NTC_INIT);
1869
1870 if (loopback == 2) {
1871 write_phy (dev, 0x39, 0x000e);
1872 }
1873
1874 #ifdef FS_POLL_FREQ
1875 timer_setup(&dev->timer, fs_poll, 0);
1876 dev->timer.expires = jiffies + FS_POLL_FREQ;
1877 add_timer (&dev->timer);
1878 #endif
1879
1880 dev->atm_dev->dev_data = dev;
1881
1882 func_exit ();
1883 return 0;
1884 unmap:
1885 iounmap(dev->base);
1886 return 1;
1887 }
1888
1889 static int firestream_init_one(struct pci_dev *pci_dev,
1890 const struct pci_device_id *ent)
1891 {
1892 struct atm_dev *atm_dev;
1893 struct fs_dev *fs_dev;
1894
1895 if (pci_enable_device(pci_dev))
1896 goto err_out;
1897
1898 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1899 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1900 fs_dev, sizeof (struct fs_dev));
1901 if (!fs_dev)
1902 goto err_out;
1903 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1904 if (!atm_dev)
1905 goto err_out_free_fs_dev;
1906
1907 fs_dev->pci_dev = pci_dev;
1908 fs_dev->atm_dev = atm_dev;
1909 fs_dev->flags = ent->driver_data;
1910
1911 if (fs_init(fs_dev))
1912 goto err_out_free_atm_dev;
1913
1914 fs_dev->next = fs_boards;
1915 fs_boards = fs_dev;
1916 return 0;
1917
1918 err_out_free_atm_dev:
1919 atm_dev_deregister(atm_dev);
1920 err_out_free_fs_dev:
1921 kfree(fs_dev);
1922 err_out:
1923 return -ENODEV;
1924 }
1925
1926 static void firestream_remove_one(struct pci_dev *pdev)
1927 {
1928 int i;
1929 struct fs_dev *dev, *nxtdev;
1930 struct fs_vcc *vcc;
1931 struct FS_BPENTRY *fp, *nxt;
1932
1933 func_enter ();
1934
1935 #if 0
1936 printk ("hptxq:\n");
1937 for (i=0;i<60;i++) {
1938 printk ("%d: %08x %08x %08x %08x \n",
1939 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1940 qp++;
1941 if (qp >= 60) qp = 0;
1942 }
1943
1944 printk ("descriptors:\n");
1945 for (i=0;i<60;i++) {
1946 printk ("%d: %p: %08x %08x %p %p\n",
1947 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1948 qd++;
1949 if (qd >= 60) qd = 0;
1950 }
1951 #endif
1952
1953 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1954 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1955
1956 /* XXX Hit all the tx channels too! */
1957
1958 for (i=0;i < dev->nchannels;i++) {
1959 if (dev->atm_vccs[i]) {
1960 vcc = FS_VCC (dev->atm_vccs[i]);
1961 submit_command (dev, &dev->hp_txq,
1962 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1963 submit_command (dev, &dev->hp_txq,
1964 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1965
1966 }
1967 }
1968
1969 /* XXX Wait a while for the chip to release all buffers. */
1970
1971 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1972 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1973 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1974 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1975 dev_kfree_skb_any (fp->skb);
1976 nxt = bus_to_virt (fp->next);
1977 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1978 kfree (fp);
1979 }
1980 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1981 dev_kfree_skb_any (fp->skb);
1982 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1983 kfree (fp);
1984 }
1985
1986 /* Hang the chip in "reset", prevent it clobbering memory that is
1987 no longer ours. */
1988 reset_chip (dev);
1989
1990 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1991 free_irq (dev->irq, dev);
1992 del_timer_sync (&dev->timer);
1993
1994 atm_dev_deregister(dev->atm_dev);
1995 free_queue (dev, &dev->hp_txq);
1996 free_queue (dev, &dev->lp_txq);
1997 free_queue (dev, &dev->tx_relq);
1998 free_queue (dev, &dev->st_q);
1999
2000 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2001 kfree (dev->atm_vccs);
2002
2003 for (i=0;i< FS_NR_FREE_POOLS;i++)
2004 free_freepool (dev, &dev->rx_fp[i]);
2005
2006 for (i=0;i < FS_NR_RX_QUEUES;i++)
2007 free_queue (dev, &dev->rx_rq[i]);
2008
2009 iounmap(dev->base);
2010 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2011 nxtdev = dev->next;
2012 kfree (dev);
2013 }
2014
2015 func_exit ();
2016 }
2017
2018 static const struct pci_device_id firestream_pci_tbl[] = {
2019 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2020 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2021 { 0, }
2022 };
2023
2024 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2025
2026 static struct pci_driver firestream_driver = {
2027 .name = "firestream",
2028 .id_table = firestream_pci_tbl,
2029 .probe = firestream_init_one,
2030 .remove = firestream_remove_one,
2031 };
2032
2033 static int __init firestream_init_module (void)
2034 {
2035 int error;
2036
2037 func_enter ();
2038 error = pci_register_driver(&firestream_driver);
2039 func_exit ();
2040 return error;
2041 }
2042
2043 static void __exit firestream_cleanup_module(void)
2044 {
2045 pci_unregister_driver(&firestream_driver);
2046 }
2047
2048 module_init(firestream_init_module);
2049 module_exit(firestream_cleanup_module);
2050
2051 MODULE_LICENSE("GPL");
2052
2053
2054