]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/atm/firestream.c
Merge tag 'tty-5.2-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[mirror_ubuntu-jammy-kernel.git] / drivers / atm / firestream.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
4 * FireStream 50 (MB86695) device driver
5 */
6
7 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
8 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
9 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
10 */
11
12 /*
13 */
14
15
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/pci.h>
21 #include <linux/poison.h>
22 #include <linux/errno.h>
23 #include <linux/atm.h>
24 #include <linux/atmdev.h>
25 #include <linux/sonet.h>
26 #include <linux/skbuff.h>
27 #include <linux/netdevice.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h> /* for request_region */
30 #include <linux/uio.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/capability.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <asm/byteorder.h>
37 #include <asm/string.h>
38 #include <asm/io.h>
39 #include <linux/atomic.h>
40 #include <linux/uaccess.h>
41 #include <linux/wait.h>
42
43 #include "firestream.h"
44
45 static int loopback = 0;
46 static int num=0x5a;
47
48 /* According to measurements (but they look suspicious to me!) done in
49 * '97, 37% of the packets are one cell in size. So it pays to have
50 * buffers allocated at that size. A large jump in percentage of
51 * packets occurs at packets around 536 bytes in length. So it also
52 * pays to have those pre-allocated. Unfortunately, we can't fully
53 * take advantage of this as the majority of the packets is likely to
54 * be TCP/IP (As where obviously the measurement comes from) There the
55 * link would be opened with say a 1500 byte MTU, and we can't handle
56 * smaller buffers more efficiently than the larger ones. -- REW
57 */
58
59 /* Due to the way Linux memory management works, specifying "576" as
60 * an allocation size here isn't going to help. They are allocated
61 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
62 * large), it doesn't pay to allocate the smallest size (64) -- REW */
63
64 /* This is all guesswork. Hard numbers to back this up or disprove this,
65 * are appreciated. -- REW */
66
67 /* The last entry should be about 64k. However, the "buffer size" is
68 * passed to the chip in a 16 bit field. I don't know how "65536"
69 * would be interpreted. -- REW */
70
71 #define NP FS_NR_FREE_POOLS
72 static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
73 /* log2: 7 8 9 10 11 12 14 16 */
74
75 #if 0
76 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
77 #else
78 /* debug */
79 static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
80 #endif
81 /* log2: 10 10 9 8 7 6 5 5 */
82 /* sumlog2: 17 18 18 18 18 18 19 21 */
83 /* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
84 /* tot mem: almost 4M */
85
86 /* NP is shorter, so that it fits on a single line. */
87 #undef NP
88
89
90 /* Small hardware gotcha:
91
92 The FS50 CAM (VP/VC match registers) always take the lowest channel
93 number that matches. This is not a problem.
94
95 However, they also ignore whether the channel is enabled or
96 not. This means that if you allocate channel 0 to 1.2 and then
97 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
98 match channel for channel 0 will "steal" the traffic from channel
99 1, even if you correctly disable channel 0.
100
101 Workaround:
102
103 - When disabling channels, write an invalid VP/VC value to the
104 match register. (We use 0xffffffff, which in the worst case
105 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
106 anything as some "when not in use, program to 0" bits are now
107 programmed to 1...)
108
109 - Don't initialize the match registers to 0, as 0.0 is a valid
110 channel.
111 */
112
113
114 /* Optimization hints and tips.
115
116 The FireStream chips are very capable of reducing the amount of
117 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
118 action. You could try to minimize this a bit.
119
120 Besides that, the userspace->kernel copy and the PCI bus are the
121 performance limiting issues for this driver.
122
123 You could queue up a bunch of outgoing packets without telling the
124 FireStream. I'm not sure that's going to win you much though. The
125 Linux layer won't tell us in advance when it's not going to give us
126 any more packets in a while. So this is tricky to implement right without
127 introducing extra delays.
128
129 -- REW
130 */
131
132
133
134
135 /* The strings that define what the RX queue entry is all about. */
136 /* Fujitsu: Please tell me which ones can have a pointer to a
137 freepool descriptor! */
138 static char *res_strings[] = {
139 "RX OK: streaming not EOP",
140 "RX OK: streaming EOP",
141 "RX OK: Single buffer packet",
142 "RX OK: packet mode",
143 "RX OK: F4 OAM (end to end)",
144 "RX OK: F4 OAM (Segment)",
145 "RX OK: F5 OAM (end to end)",
146 "RX OK: F5 OAM (Segment)",
147 "RX OK: RM cell",
148 "RX OK: TRANSP cell",
149 "RX OK: TRANSPC cell",
150 "Unmatched cell",
151 "reserved 12",
152 "reserved 13",
153 "reserved 14",
154 "Unrecognized cell",
155 "reserved 16",
156 "reassembly abort: AAL5 abort",
157 "packet purged",
158 "packet ageing timeout",
159 "channel ageing timeout",
160 "calculated length error",
161 "programmed length limit error",
162 "aal5 crc32 error",
163 "oam transp or transpc crc10 error",
164 "reserved 25",
165 "reserved 26",
166 "reserved 27",
167 "reserved 28",
168 "reserved 29",
169 "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
170 "reassembly abort: no buffers",
171 "receive buffer overflow",
172 "change in GFC",
173 "receive buffer full",
174 "low priority discard - no receive descriptor",
175 "low priority discard - missing end of packet",
176 "reserved 37",
177 "reserved 38",
178 "reserved 39",
179 "reserved 40",
180 "reserved 41",
181 "reserved 42",
182 "reserved 43",
183 "reserved 44",
184 "reserved 45",
185 "reserved 46",
186 "reserved 47",
187 "reserved 48",
188 "reserved 49",
189 "reserved 50",
190 "reserved 51",
191 "reserved 52",
192 "reserved 53",
193 "reserved 54",
194 "reserved 55",
195 "reserved 56",
196 "reserved 57",
197 "reserved 58",
198 "reserved 59",
199 "reserved 60",
200 "reserved 61",
201 "reserved 62",
202 "reserved 63",
203 };
204
205 static char *irq_bitname[] = {
206 "LPCO",
207 "DPCO",
208 "RBRQ0_W",
209 "RBRQ1_W",
210 "RBRQ2_W",
211 "RBRQ3_W",
212 "RBRQ0_NF",
213 "RBRQ1_NF",
214 "RBRQ2_NF",
215 "RBRQ3_NF",
216 "BFP_SC",
217 "INIT",
218 "INIT_ERR",
219 "USCEO",
220 "UPEC0",
221 "VPFCO",
222 "CRCCO",
223 "HECO",
224 "TBRQ_W",
225 "TBRQ_NF",
226 "CTPQ_E",
227 "GFC_C0",
228 "PCI_FTL",
229 "CSQ_W",
230 "CSQ_NF",
231 "EXT_INT",
232 "RXDMA_S"
233 };
234
235
236 #define PHY_EOF -1
237 #define PHY_CLEARALL -2
238
239 struct reginit_item {
240 int reg, val;
241 };
242
243
244 static struct reginit_item PHY_NTC_INIT[] = {
245 { PHY_CLEARALL, 0x40 },
246 { 0x12, 0x0001 },
247 { 0x13, 0x7605 },
248 { 0x1A, 0x0001 },
249 { 0x1B, 0x0005 },
250 { 0x38, 0x0003 },
251 { 0x39, 0x0006 }, /* changed here to make loopback */
252 { 0x01, 0x5262 },
253 { 0x15, 0x0213 },
254 { 0x00, 0x0003 },
255 { PHY_EOF, 0}, /* -1 signals end of list */
256 };
257
258
259 /* Safetyfeature: If the card interrupts more than this number of times
260 in a jiffy (1/100th of a second) then we just disable the interrupt and
261 print a message. This prevents the system from hanging.
262
263 150000 packets per second is close to the limit a PC is going to have
264 anyway. We therefore have to disable this for production. -- REW */
265 #undef IRQ_RATE_LIMIT // 100
266
267 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
268 that great without interrupts. -- REW */
269 #undef FS_POLL_FREQ // 100
270
271 /*
272 This driver can spew a whole lot of debugging output at you. If you
273 need maximum performance, you should disable the DEBUG define. To
274 aid in debugging in the field, I'm leaving the compile-time debug
275 features enabled, and disable them "runtime". That allows me to
276 instruct people with problems to enable debugging without requiring
277 them to recompile... -- REW
278 */
279 #define DEBUG
280
281 #ifdef DEBUG
282 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
283 #else
284 #define fs_dprintk(f, str...) /* nothing */
285 #endif
286
287
288 static int fs_keystream = 0;
289
290 #ifdef DEBUG
291 /* I didn't forget to set this to zero before shipping. Hit me with a stick
292 if you get this with the debug default not set to zero again. -- REW */
293 static int fs_debug = 0;
294 #else
295 #define fs_debug 0
296 #endif
297
298 #ifdef MODULE
299 #ifdef DEBUG
300 module_param(fs_debug, int, 0644);
301 #endif
302 module_param(loopback, int, 0);
303 module_param(num, int, 0);
304 module_param(fs_keystream, int, 0);
305 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
306 #endif
307
308
309 #define FS_DEBUG_FLOW 0x00000001
310 #define FS_DEBUG_OPEN 0x00000002
311 #define FS_DEBUG_QUEUE 0x00000004
312 #define FS_DEBUG_IRQ 0x00000008
313 #define FS_DEBUG_INIT 0x00000010
314 #define FS_DEBUG_SEND 0x00000020
315 #define FS_DEBUG_PHY 0x00000040
316 #define FS_DEBUG_CLEANUP 0x00000080
317 #define FS_DEBUG_QOS 0x00000100
318 #define FS_DEBUG_TXQ 0x00000200
319 #define FS_DEBUG_ALLOC 0x00000400
320 #define FS_DEBUG_TXMEM 0x00000800
321 #define FS_DEBUG_QSIZE 0x00001000
322
323
324 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
325 #define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
326
327
328 static struct fs_dev *fs_boards = NULL;
329
330 #ifdef DEBUG
331
332 static void my_hd (void *addr, int len)
333 {
334 int j, ch;
335 unsigned char *ptr = addr;
336
337 while (len > 0) {
338 printk ("%p ", ptr);
339 for (j=0;j < ((len < 16)?len:16);j++) {
340 printk ("%02x %s", ptr[j], (j==7)?" ":"");
341 }
342 for ( ;j < 16;j++) {
343 printk (" %s", (j==7)?" ":"");
344 }
345 for (j=0;j < ((len < 16)?len:16);j++) {
346 ch = ptr[j];
347 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
348 }
349 printk ("\n");
350 ptr += 16;
351 len -= 16;
352 }
353 }
354 #else /* DEBUG */
355 static void my_hd (void *addr, int len){}
356 #endif /* DEBUG */
357
358 /********** free an skb (as per ATM device driver documentation) **********/
359
360 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
361 * I copied it over from the ambassador driver. -- REW */
362
363 static inline void fs_kfree_skb (struct sk_buff * skb)
364 {
365 if (ATM_SKB(skb)->vcc->pop)
366 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
367 else
368 dev_kfree_skb_any (skb);
369 }
370
371
372
373
374 /* It seems the ATM forum recommends this horribly complicated 16bit
375 * floating point format. Turns out the Ambassador uses the exact same
376 * encoding. I just copied it over. If Mitch agrees, I'll move it over
377 * to the atm_misc file or something like that. (and remove it from
378 * here and the ambassador driver) -- REW
379 */
380
381 /* The good thing about this format is that it is monotonic. So,
382 a conversion routine need not be very complicated. To be able to
383 round "nearest" we need to take along a few extra bits. Lets
384 put these after 16 bits, so that we can just return the top 16
385 bits of the 32bit number as the result:
386
387 int mr (unsigned int rate, int r)
388 {
389 int e = 16+9;
390 static int round[4]={0, 0, 0xffff, 0x8000};
391 if (!rate) return 0;
392 while (rate & 0xfc000000) {
393 rate >>= 1;
394 e++;
395 }
396 while (! (rate & 0xfe000000)) {
397 rate <<= 1;
398 e--;
399 }
400
401 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
402 rate &= ~0x02000000;
403 // Next add in the exponent
404 rate |= e << (16+9);
405 // And perform the rounding:
406 return (rate + round[r]) >> 16;
407 }
408
409 14 lines-of-code. Compare that with the 120 that the Ambassador
410 guys needed. (would be 8 lines shorter if I'd try to really reduce
411 the number of lines:
412
413 int mr (unsigned int rate, int r)
414 {
415 int e = 16+9;
416 static int round[4]={0, 0, 0xffff, 0x8000};
417 if (!rate) return 0;
418 for (; rate & 0xfc000000 ;rate >>= 1, e++);
419 for (;!(rate & 0xfe000000);rate <<= 1, e--);
420 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
421 }
422
423 Exercise for the reader: Remove one more line-of-code, without
424 cheating. (Just joining two lines is cheating). (I know it's
425 possible, don't think you've beat me if you found it... If you
426 manage to lose two lines or more, keep me updated! ;-)
427
428 -- REW */
429
430
431 #define ROUND_UP 1
432 #define ROUND_DOWN 2
433 #define ROUND_NEAREST 3
434 /********** make rate (not quite as much fun as Horizon) **********/
435
436 static int make_rate(unsigned int rate, int r,
437 u16 *bits, unsigned int *actual)
438 {
439 unsigned char exp = -1; /* hush gcc */
440 unsigned int man = -1; /* hush gcc */
441
442 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
443
444 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
445 given 5-bit e and 9-bit m:
446 rate = EITHER (1+m/2^9)*2^e OR 0
447 bits = EITHER 1<<14 | e<<9 | m OR 0
448 (bit 15 is "reserved", bit 14 "non-zero")
449 smallest rate is 0 (special representation)
450 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
451 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
452 simple algorithm:
453 find position of top bit, this gives e
454 remove top bit and shift (rounding if feeling clever) by 9-e
455 */
456 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
457 representable. // This should move into the ambassador driver
458 when properly merged. -- REW */
459
460 if (rate > 0xffc00000U) {
461 /* larger than largest representable rate */
462
463 if (r == ROUND_UP) {
464 return -EINVAL;
465 } else {
466 exp = 31;
467 man = 511;
468 }
469
470 } else if (rate) {
471 /* representable rate */
472
473 exp = 31;
474 man = rate;
475
476 /* invariant: rate = man*2^(exp-31) */
477 while (!(man & (1<<31))) {
478 exp = exp - 1;
479 man = man<<1;
480 }
481
482 /* man has top bit set
483 rate = (2^31+(man-2^31))*2^(exp-31)
484 rate = (1+(man-2^31)/2^31)*2^exp
485 */
486 man = man<<1;
487 man &= 0xffffffffU; /* a nop on 32-bit systems */
488 /* rate = (1+man/2^32)*2^exp
489
490 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
491 time to lose significance... we want m in the range 0 to 2^9-1
492 rounding presents a minor problem... we first decide which way
493 we are rounding (based on given rounding direction and possibly
494 the bits of the mantissa that are to be discarded).
495 */
496
497 switch (r) {
498 case ROUND_DOWN: {
499 /* just truncate */
500 man = man>>(32-9);
501 break;
502 }
503 case ROUND_UP: {
504 /* check all bits that we are discarding */
505 if (man & (~0U>>9)) {
506 man = (man>>(32-9)) + 1;
507 if (man == (1<<9)) {
508 /* no need to check for round up outside of range */
509 man = 0;
510 exp += 1;
511 }
512 } else {
513 man = (man>>(32-9));
514 }
515 break;
516 }
517 case ROUND_NEAREST: {
518 /* check msb that we are discarding */
519 if (man & (1<<(32-9-1))) {
520 man = (man>>(32-9)) + 1;
521 if (man == (1<<9)) {
522 /* no need to check for round up outside of range */
523 man = 0;
524 exp += 1;
525 }
526 } else {
527 man = (man>>(32-9));
528 }
529 break;
530 }
531 }
532
533 } else {
534 /* zero rate - not representable */
535
536 if (r == ROUND_DOWN) {
537 return -EINVAL;
538 } else {
539 exp = 0;
540 man = 0;
541 }
542 }
543
544 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
545
546 if (bits)
547 *bits = /* (1<<14) | */ (exp<<9) | man;
548
549 if (actual)
550 *actual = (exp >= 9)
551 ? (1 << exp) + (man << (exp-9))
552 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
553
554 return 0;
555 }
556
557
558
559
560 /* FireStream access routines */
561 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
562 certain registers or to just log all accesses. */
563
564 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
565 {
566 writel (val, dev->base + offset);
567 }
568
569
570 static inline u32 read_fs (struct fs_dev *dev, int offset)
571 {
572 return readl (dev->base + offset);
573 }
574
575
576
577 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
578 {
579 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
580 }
581
582
583 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
584 {
585 u32 wp;
586 struct FS_QENTRY *cqe;
587
588 /* XXX Sanity check: the write pointer can be checked to be
589 still the same as the value passed as qe... -- REW */
590 /* udelay (5); */
591 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
592 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
593 q->offset);
594 schedule ();
595 }
596
597 wp &= ~0xf;
598 cqe = bus_to_virt (wp);
599 if (qe != cqe) {
600 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
601 }
602
603 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
604
605 {
606 static int c;
607 if (!(c++ % 100))
608 {
609 int rp, wp;
610 rp = read_fs (dev, Q_RP(q->offset));
611 wp = read_fs (dev, Q_WP(q->offset));
612 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
613 q->offset, rp, wp, wp-rp);
614 }
615 }
616 }
617
618 #ifdef DEBUG_EXTRA
619 static struct FS_QENTRY pq[60];
620 static int qp;
621
622 static struct FS_BPENTRY dq[60];
623 static int qd;
624 static void *da[60];
625 #endif
626
627 static void submit_queue (struct fs_dev *dev, struct queue *q,
628 u32 cmd, u32 p1, u32 p2, u32 p3)
629 {
630 struct FS_QENTRY *qe;
631
632 qe = get_qentry (dev, q);
633 qe->cmd = cmd;
634 qe->p0 = p1;
635 qe->p1 = p2;
636 qe->p2 = p3;
637 submit_qentry (dev, q, qe);
638
639 #ifdef DEBUG_EXTRA
640 pq[qp].cmd = cmd;
641 pq[qp].p0 = p1;
642 pq[qp].p1 = p2;
643 pq[qp].p2 = p3;
644 qp++;
645 if (qp >= 60) qp = 0;
646 #endif
647 }
648
649 /* Test the "other" way one day... -- REW */
650 #if 1
651 #define submit_command submit_queue
652 #else
653
654 static void submit_command (struct fs_dev *dev, struct queue *q,
655 u32 cmd, u32 p1, u32 p2, u32 p3)
656 {
657 write_fs (dev, CMDR0, cmd);
658 write_fs (dev, CMDR1, p1);
659 write_fs (dev, CMDR2, p2);
660 write_fs (dev, CMDR3, p3);
661 }
662 #endif
663
664
665
666 static void process_return_queue (struct fs_dev *dev, struct queue *q)
667 {
668 long rq;
669 struct FS_QENTRY *qe;
670 void *tc;
671
672 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
673 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
674 qe = bus_to_virt (rq);
675
676 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
677 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
678
679 switch (STATUS_CODE (qe)) {
680 case 5:
681 tc = bus_to_virt (qe->p0);
682 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
683 kfree (tc);
684 break;
685 }
686
687 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
688 }
689 }
690
691
692 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
693 {
694 long rq;
695 long tmp;
696 struct FS_QENTRY *qe;
697 struct sk_buff *skb;
698 struct FS_BPENTRY *td;
699
700 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
701 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
702 qe = bus_to_virt (rq);
703
704 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
705 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
706
707 if (STATUS_CODE (qe) != 2)
708 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
709 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
710
711
712 switch (STATUS_CODE (qe)) {
713 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
714 /* Fall through */
715 case 0x02:
716 /* Process a real txdone entry. */
717 tmp = qe->p0;
718 if (tmp & 0x0f)
719 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
720 tmp &= ~0x0f;
721 td = bus_to_virt (tmp);
722
723 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
724 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
725
726 skb = td->skb;
727 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
728 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
729 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
730 }
731 td->dev->ntxpckts--;
732
733 {
734 static int c=0;
735
736 if (!(c++ % 100)) {
737 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
738 }
739 }
740
741 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
742
743 fs_dprintk (FS_DEBUG_TXMEM, "i");
744 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
745 fs_kfree_skb (skb);
746
747 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
748 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
749 kfree (td);
750 break;
751 default:
752 /* Here we get the tx purge inhibit command ... */
753 /* Action, I believe, is "don't do anything". -- REW */
754 ;
755 }
756
757 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
758 }
759 }
760
761
762 static void process_incoming (struct fs_dev *dev, struct queue *q)
763 {
764 long rq;
765 struct FS_QENTRY *qe;
766 struct FS_BPENTRY *pe;
767 struct sk_buff *skb;
768 unsigned int channo;
769 struct atm_vcc *atm_vcc;
770
771 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
772 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
773 qe = bus_to_virt (rq);
774
775 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
776 qe->cmd, qe->p0, qe->p1, qe->p2);
777
778 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
779 STATUS_CODE (qe),
780 res_strings[STATUS_CODE(qe)]);
781
782 pe = bus_to_virt (qe->p0);
783 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
784 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
785 pe->skb, pe->fp);
786
787 channo = qe->cmd & 0xffff;
788
789 if (channo < dev->nchannels)
790 atm_vcc = dev->atm_vccs[channo];
791 else
792 atm_vcc = NULL;
793
794 /* Single buffer packet */
795 switch (STATUS_CODE (qe)) {
796 case 0x1:
797 /* Fall through for streaming mode */
798 case 0x2:/* Packet received OK.... */
799 if (atm_vcc) {
800 skb = pe->skb;
801 pe->fp->n--;
802 #if 0
803 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
804 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
805 #endif
806 skb_put (skb, qe->p1 & 0xffff);
807 ATM_SKB(skb)->vcc = atm_vcc;
808 atomic_inc(&atm_vcc->stats->rx);
809 __net_timestamp(skb);
810 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
811 atm_vcc->push (atm_vcc, skb);
812 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
813 kfree (pe);
814 } else {
815 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
816 }
817 break;
818 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
819 has been consumed and needs to be processed. -- REW */
820 if (qe->p1 & 0xffff) {
821 pe = bus_to_virt (qe->p0);
822 pe->fp->n--;
823 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
824 dev_kfree_skb_any (pe->skb);
825 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
826 kfree (pe);
827 }
828 if (atm_vcc)
829 atomic_inc(&atm_vcc->stats->rx_drop);
830 break;
831 case 0x1f: /* Reassembly abort: no buffers. */
832 /* Silently increment error counter. */
833 if (atm_vcc)
834 atomic_inc(&atm_vcc->stats->rx_drop);
835 break;
836 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
837 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
838 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
839 }
840 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
841 }
842 }
843
844
845
846 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
847
848 static int fs_open(struct atm_vcc *atm_vcc)
849 {
850 struct fs_dev *dev;
851 struct fs_vcc *vcc;
852 struct fs_transmit_config *tc;
853 struct atm_trafprm * txtp;
854 struct atm_trafprm * rxtp;
855 /* struct fs_receive_config *rc;*/
856 /* struct FS_QENTRY *qe; */
857 int error;
858 int bfp;
859 int to;
860 unsigned short tmc0;
861 short vpi = atm_vcc->vpi;
862 int vci = atm_vcc->vci;
863
864 func_enter ();
865
866 dev = FS_DEV(atm_vcc->dev);
867 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
868 dev, atm_vcc);
869
870 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
871 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
872
873 if ((atm_vcc->qos.aal != ATM_AAL5) &&
874 (atm_vcc->qos.aal != ATM_AAL2))
875 return -EINVAL; /* XXX AAL0 */
876
877 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
878 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
879
880 /* XXX handle qos parameters (rate limiting) ? */
881
882 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
883 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
884 if (!vcc) {
885 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
886 return -ENOMEM;
887 }
888
889 atm_vcc->dev_data = vcc;
890 vcc->last_skb = NULL;
891
892 init_waitqueue_head (&vcc->close_wait);
893
894 txtp = &atm_vcc->qos.txtp;
895 rxtp = &atm_vcc->qos.rxtp;
896
897 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
898 if (IS_FS50(dev)) {
899 /* Increment the channel numer: take a free one next time. */
900 for (to=33;to;to--, dev->channo++) {
901 /* We only have 32 channels */
902 if (dev->channo >= 32)
903 dev->channo = 0;
904 /* If we need to do RX, AND the RX is inuse, try the next */
905 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
906 continue;
907 /* If we need to do TX, AND the TX is inuse, try the next */
908 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
909 continue;
910 /* Ok, both are free! (or not needed) */
911 break;
912 }
913 if (!to) {
914 printk ("No more free channels for FS50..\n");
915 return -EBUSY;
916 }
917 vcc->channo = dev->channo;
918 dev->channo &= dev->channel_mask;
919
920 } else {
921 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
922 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
923 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
924 printk ("Channel is in use for FS155.\n");
925 return -EBUSY;
926 }
927 }
928 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
929 vcc->channo, vcc->channo);
930 }
931
932 if (DO_DIRECTION (txtp)) {
933 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
934 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
935 tc, sizeof (struct fs_transmit_config));
936 if (!tc) {
937 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
938 return -ENOMEM;
939 }
940
941 /* Allocate the "open" entry from the high priority txq. This makes
942 it most likely that the chip will notice it. It also prevents us
943 from having to wait for completion. On the other hand, we may
944 need to wait for completion anyway, to see if it completed
945 successfully. */
946
947 switch (atm_vcc->qos.aal) {
948 case ATM_AAL2:
949 case ATM_AAL0:
950 tc->flags = 0
951 | TC_FLAGS_TRANSPARENT_PAYLOAD
952 | TC_FLAGS_PACKET
953 | (1 << 28)
954 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
955 | TC_FLAGS_CAL0;
956 break;
957 case ATM_AAL5:
958 tc->flags = 0
959 | TC_FLAGS_AAL5
960 | TC_FLAGS_PACKET /* ??? */
961 | TC_FLAGS_TYPE_CBR
962 | TC_FLAGS_CAL0;
963 break;
964 default:
965 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
966 tc->flags = 0;
967 }
968 /* Docs are vague about this atm_hdr field. By the way, the FS
969 * chip makes odd errors if lower bits are set.... -- REW */
970 tc->atm_hdr = (vpi << 20) | (vci << 4);
971 tmc0 = 0;
972 {
973 int pcr = atm_pcr_goal (txtp);
974
975 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
976
977 /* XXX Hmm. officially we're only allowed to do this if rounding
978 is round_down -- REW */
979 if (IS_FS50(dev)) {
980 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
981 } else {
982 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
983 }
984 if (!pcr) {
985 /* no rate cap */
986 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
987 } else {
988 int r;
989 if (pcr < 0) {
990 r = ROUND_DOWN;
991 pcr = -pcr;
992 } else {
993 r = ROUND_UP;
994 }
995 error = make_rate (pcr, r, &tmc0, NULL);
996 if (error) {
997 kfree(tc);
998 return error;
999 }
1000 }
1001 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1002 }
1003
1004 tc->TMC[0] = tmc0 | 0x4000;
1005 tc->TMC[1] = 0; /* Unused */
1006 tc->TMC[2] = 0; /* Unused */
1007 tc->TMC[3] = 0; /* Unused */
1008
1009 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1010 tc->rtag[0] = 0; /* What should I do with routing tags???
1011 -- Not used -- AS -- Thanks -- REW*/
1012 tc->rtag[1] = 0;
1013 tc->rtag[2] = 0;
1014
1015 if (fs_debug & FS_DEBUG_OPEN) {
1016 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1017 my_hd (tc, sizeof (*tc));
1018 }
1019
1020 /* We now use the "submit_command" function to submit commands to
1021 the firestream. There is a define up near the definition of
1022 that routine that switches this routine between immediate write
1023 to the immediate command registers and queuing the commands in
1024 the HPTXQ for execution. This last technique might be more
1025 efficient if we know we're going to submit a whole lot of
1026 commands in one go, but this driver is not setup to be able to
1027 use such a construct. So it probably doen't matter much right
1028 now. -- REW */
1029
1030 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1031 submit_command (dev, &dev->hp_txq,
1032 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1033 virt_to_bus (tc), 0, 0);
1034
1035 submit_command (dev, &dev->hp_txq,
1036 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1037 0, 0, 0);
1038 set_bit (vcc->channo, dev->tx_inuse);
1039 }
1040
1041 if (DO_DIRECTION (rxtp)) {
1042 dev->atm_vccs[vcc->channo] = atm_vcc;
1043
1044 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1045 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1046 if (bfp >= FS_NR_FREE_POOLS) {
1047 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1048 atm_vcc->qos.rxtp.max_sdu);
1049 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1050
1051 /* XXX clear tx inuse. Close TX part? */
1052 dev->atm_vccs[vcc->channo] = NULL;
1053 kfree (vcc);
1054 return -EINVAL;
1055 }
1056
1057 switch (atm_vcc->qos.aal) {
1058 case ATM_AAL0:
1059 case ATM_AAL2:
1060 submit_command (dev, &dev->hp_txq,
1061 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1062 RC_FLAGS_TRANSP |
1063 RC_FLAGS_BFPS_BFP * bfp |
1064 RC_FLAGS_RXBM_PSB, 0, 0);
1065 break;
1066 case ATM_AAL5:
1067 submit_command (dev, &dev->hp_txq,
1068 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1069 RC_FLAGS_AAL5 |
1070 RC_FLAGS_BFPS_BFP * bfp |
1071 RC_FLAGS_RXBM_PSB, 0, 0);
1072 break;
1073 };
1074 if (IS_FS50 (dev)) {
1075 submit_command (dev, &dev->hp_txq,
1076 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1077 0x80 + vcc->channo,
1078 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1079 }
1080 submit_command (dev, &dev->hp_txq,
1081 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1082 0, 0, 0);
1083 }
1084
1085 /* Indicate we're done! */
1086 set_bit(ATM_VF_READY, &atm_vcc->flags);
1087
1088 func_exit ();
1089 return 0;
1090 }
1091
1092
1093 static void fs_close(struct atm_vcc *atm_vcc)
1094 {
1095 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1096 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1097 struct atm_trafprm * txtp;
1098 struct atm_trafprm * rxtp;
1099
1100 func_enter ();
1101
1102 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1103
1104 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1105 if (vcc->last_skb) {
1106 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1107 vcc->last_skb);
1108 /* We're going to wait for the last packet to get sent on this VC. It would
1109 be impolite not to send them don't you think?
1110 XXX
1111 We don't know which packets didn't get sent. So if we get interrupted in
1112 this sleep_on, we'll lose any reference to these packets. Memory leak!
1113 On the other hand, it's awfully convenient that we can abort a "close" that
1114 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1115 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1116 }
1117
1118 txtp = &atm_vcc->qos.txtp;
1119 rxtp = &atm_vcc->qos.rxtp;
1120
1121
1122 /* See App note XXX (Unpublished as of now) for the reason for the
1123 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1124
1125 if (DO_DIRECTION (txtp)) {
1126 submit_command (dev, &dev->hp_txq,
1127 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1128 clear_bit (vcc->channo, dev->tx_inuse);
1129 }
1130
1131 if (DO_DIRECTION (rxtp)) {
1132 submit_command (dev, &dev->hp_txq,
1133 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1134 dev->atm_vccs [vcc->channo] = NULL;
1135
1136 /* This means that this is configured as a receive channel */
1137 if (IS_FS50 (dev)) {
1138 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1139 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1140 (0xfff...) -- REW */
1141 submit_command (dev, &dev->hp_txq,
1142 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1143 0x80 + vcc->channo, -1, 0 );
1144 }
1145 }
1146
1147 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1148 kfree (vcc);
1149
1150 func_exit ();
1151 }
1152
1153
1154 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1155 {
1156 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1157 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1158 struct FS_BPENTRY *td;
1159
1160 func_enter ();
1161
1162 fs_dprintk (FS_DEBUG_TXMEM, "I");
1163 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1164 atm_vcc, skb, vcc, dev);
1165
1166 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1167
1168 ATM_SKB(skb)->vcc = atm_vcc;
1169
1170 vcc->last_skb = skb;
1171
1172 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1173 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1174 if (!td) {
1175 /* Oops out of mem */
1176 return -ENOMEM;
1177 }
1178
1179 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1180 *(int *) skb->data);
1181
1182 td->flags = TD_EPI | TD_DATA | skb->len;
1183 td->next = 0;
1184 td->bsa = virt_to_bus (skb->data);
1185 td->skb = skb;
1186 td->dev = dev;
1187 dev->ntxpckts++;
1188
1189 #ifdef DEBUG_EXTRA
1190 da[qd] = td;
1191 dq[qd].flags = td->flags;
1192 dq[qd].next = td->next;
1193 dq[qd].bsa = td->bsa;
1194 dq[qd].skb = td->skb;
1195 dq[qd].dev = td->dev;
1196 qd++;
1197 if (qd >= 60) qd = 0;
1198 #endif
1199
1200 submit_queue (dev, &dev->hp_txq,
1201 QE_TRANSMIT_DE | vcc->channo,
1202 virt_to_bus (td), 0,
1203 virt_to_bus (td));
1204
1205 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1206 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1207 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1208 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1209 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1210
1211 func_exit ();
1212 return 0;
1213 }
1214
1215
1216 /* Some function placeholders for functions we don't yet support. */
1217
1218 #if 0
1219 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1220 {
1221 func_enter ();
1222 func_exit ();
1223 return -ENOIOCTLCMD;
1224 }
1225
1226
1227 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1228 void __user *optval,int optlen)
1229 {
1230 func_enter ();
1231 func_exit ();
1232 return 0;
1233 }
1234
1235
1236 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1237 void __user *optval,unsigned int optlen)
1238 {
1239 func_enter ();
1240 func_exit ();
1241 return 0;
1242 }
1243
1244
1245 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1246 unsigned long addr)
1247 {
1248 func_enter ();
1249 func_exit ();
1250 }
1251
1252
1253 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1254 {
1255 func_enter ();
1256 func_exit ();
1257 return 0;
1258 }
1259
1260
1261 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1262 {
1263 func_enter ();
1264 func_exit ();
1265 return 0;
1266 };
1267
1268 #endif
1269
1270
1271 static const struct atmdev_ops ops = {
1272 .open = fs_open,
1273 .close = fs_close,
1274 .send = fs_send,
1275 .owner = THIS_MODULE,
1276 /* ioctl: fs_ioctl, */
1277 /* getsockopt: fs_getsockopt, */
1278 /* setsockopt: fs_setsockopt, */
1279 /* change_qos: fs_change_qos, */
1280
1281 /* For now implement these internally here... */
1282 /* phy_put: fs_phy_put, */
1283 /* phy_get: fs_phy_get, */
1284 };
1285
1286
1287 static void undocumented_pci_fix(struct pci_dev *pdev)
1288 {
1289 u32 tint;
1290
1291 /* The Windows driver says: */
1292 /* Switch off FireStream Retry Limit Threshold
1293 */
1294
1295 /* The register at 0x28 is documented as "reserved", no further
1296 comments. */
1297
1298 pci_read_config_dword (pdev, 0x28, &tint);
1299 if (tint != 0x80) {
1300 tint = 0x80;
1301 pci_write_config_dword (pdev, 0x28, tint);
1302 }
1303 }
1304
1305
1306
1307 /**************************************************************************
1308 * PHY routines *
1309 **************************************************************************/
1310
1311 static void write_phy(struct fs_dev *dev, int regnum, int val)
1312 {
1313 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1314 regnum, val, 0);
1315 }
1316
1317 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1318 {
1319 int i;
1320
1321 func_enter ();
1322 while (reginit->reg != PHY_EOF) {
1323 if (reginit->reg == PHY_CLEARALL) {
1324 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1325 for (i=0;i<reginit->val;i++) {
1326 write_phy (dev, i, 0);
1327 }
1328 } else {
1329 write_phy (dev, reginit->reg, reginit->val);
1330 }
1331 reginit++;
1332 }
1333 func_exit ();
1334 return 0;
1335 }
1336
1337 static void reset_chip (struct fs_dev *dev)
1338 {
1339 int i;
1340
1341 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1342
1343 /* Undocumented delay */
1344 udelay (128);
1345
1346 /* The "internal registers are documented to all reset to zero, but
1347 comments & code in the Windows driver indicates that the pools are
1348 NOT reset. */
1349 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1350 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1351 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1352 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1353 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1354 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1355 }
1356
1357 /* The same goes for the match channel registers, although those are
1358 NOT documented that way in the Windows driver. -- REW */
1359 /* The Windows driver DOES write 0 to these registers somewhere in
1360 the init sequence. However, a small hardware-feature, will
1361 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1362 allocated happens to have no disabled channels that have a lower
1363 number. -- REW */
1364
1365 /* Clear the match channel registers. */
1366 if (IS_FS50 (dev)) {
1367 for (i=0;i<FS50_NR_CHANNELS;i++) {
1368 write_fs (dev, 0x200 + i * 4, -1);
1369 }
1370 }
1371 }
1372
1373 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1374 {
1375 void *t;
1376
1377 if (alignment <= 0x10) {
1378 t = kmalloc (size, flags);
1379 if ((unsigned long)t & (alignment-1)) {
1380 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1381 kfree (t);
1382 return aligned_kmalloc (size, flags, alignment * 4);
1383 }
1384 return t;
1385 }
1386 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1387 return NULL;
1388 }
1389
1390 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1391 int nentries, int is_rq)
1392 {
1393 int sz = nentries * sizeof (struct FS_QENTRY);
1394 struct FS_QENTRY *p;
1395
1396 func_enter ();
1397
1398 fs_dprintk (FS_DEBUG_INIT, "Initializing queue at %x: %d entries:\n",
1399 queue, nentries);
1400
1401 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1402 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1403
1404 if (!p) return 0;
1405
1406 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1407 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1408 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1409 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1410 if (is_rq) {
1411 /* Configuration for the receive queue: 0: interrupt immediately,
1412 no pre-warning to empty queues: We do our best to keep the
1413 queue filled anyway. */
1414 write_fs (dev, Q_CNF(queue), 0 );
1415 }
1416
1417 txq->sa = p;
1418 txq->ea = p;
1419 txq->offset = queue;
1420
1421 func_exit ();
1422 return 1;
1423 }
1424
1425
1426 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1427 int bufsize, int nr_buffers)
1428 {
1429 func_enter ();
1430
1431 fs_dprintk (FS_DEBUG_INIT, "Initializing free pool at %x:\n", queue);
1432
1433 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1434 write_fs (dev, FP_SA(queue), 0);
1435 write_fs (dev, FP_EA(queue), 0);
1436 write_fs (dev, FP_CTU(queue), 0);
1437 write_fs (dev, FP_CNT(queue), 0);
1438
1439 fp->offset = queue;
1440 fp->bufsize = bufsize;
1441 fp->nr_buffers = nr_buffers;
1442
1443 func_exit ();
1444 return 1;
1445 }
1446
1447
1448 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1449 {
1450 #if 0
1451 /* This seems to be unreliable.... */
1452 return read_fs (dev, FP_CNT (fp->offset));
1453 #else
1454 return fp->n;
1455 #endif
1456 }
1457
1458
1459 /* Check if this gets going again if a pool ever runs out. -- Yes, it
1460 does. I've seen "receive abort: no buffers" and things started
1461 working again after that... -- REW */
1462
1463 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1464 gfp_t gfp_flags)
1465 {
1466 struct FS_BPENTRY *qe, *ne;
1467 struct sk_buff *skb;
1468 int n = 0;
1469 u32 qe_tmp;
1470
1471 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1472 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1473 fp->nr_buffers);
1474 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1475
1476 skb = alloc_skb (fp->bufsize, gfp_flags);
1477 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1478 if (!skb) break;
1479 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1480 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1481 if (!ne) {
1482 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1483 dev_kfree_skb_any (skb);
1484 break;
1485 }
1486
1487 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1488 skb, ne, skb->data, skb->head);
1489 n++;
1490 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1491 ne->next = virt_to_bus (NULL);
1492 ne->bsa = virt_to_bus (skb->data);
1493 ne->aal_bufsize = fp->bufsize;
1494 ne->skb = skb;
1495 ne->fp = fp;
1496
1497 /*
1498 * FIXME: following code encodes and decodes
1499 * machine pointers (could be 64-bit) into a
1500 * 32-bit register.
1501 */
1502
1503 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1504 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1505 if (qe_tmp) {
1506 qe = bus_to_virt ((long) qe_tmp);
1507 qe->next = virt_to_bus(ne);
1508 qe->flags &= ~FP_FLAGS_EPI;
1509 } else
1510 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1511
1512 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1513 fp->n++; /* XXX Atomic_inc? */
1514 write_fs (dev, FP_CTU(fp->offset), 1);
1515 }
1516
1517 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1518 }
1519
1520 static void free_queue(struct fs_dev *dev, struct queue *txq)
1521 {
1522 func_enter ();
1523
1524 write_fs (dev, Q_SA(txq->offset), 0);
1525 write_fs (dev, Q_EA(txq->offset), 0);
1526 write_fs (dev, Q_RP(txq->offset), 0);
1527 write_fs (dev, Q_WP(txq->offset), 0);
1528 /* Configuration ? */
1529
1530 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1531 kfree (txq->sa);
1532
1533 func_exit ();
1534 }
1535
1536 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1537 {
1538 func_enter ();
1539
1540 write_fs (dev, FP_CNF(fp->offset), 0);
1541 write_fs (dev, FP_SA (fp->offset), 0);
1542 write_fs (dev, FP_EA (fp->offset), 0);
1543 write_fs (dev, FP_CNT(fp->offset), 0);
1544 write_fs (dev, FP_CTU(fp->offset), 0);
1545
1546 func_exit ();
1547 }
1548
1549
1550
1551 static irqreturn_t fs_irq (int irq, void *dev_id)
1552 {
1553 int i;
1554 u32 status;
1555 struct fs_dev *dev = dev_id;
1556
1557 status = read_fs (dev, ISR);
1558 if (!status)
1559 return IRQ_NONE;
1560
1561 func_enter ();
1562
1563 #ifdef IRQ_RATE_LIMIT
1564 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1565 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1566 {
1567 static int lastjif;
1568 static int nintr=0;
1569
1570 if (lastjif == jiffies) {
1571 if (++nintr > IRQ_RATE_LIMIT) {
1572 free_irq (dev->irq, dev_id);
1573 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1574 dev->irq);
1575 }
1576 } else {
1577 lastjif = jiffies;
1578 nintr = 0;
1579 }
1580 }
1581 #endif
1582 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1583 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1584 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1585 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1586 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1587
1588 /* print the bits in the ISR register. */
1589 if (fs_debug & FS_DEBUG_IRQ) {
1590 /* The FS_DEBUG things are unnecessary here. But this way it is
1591 clear for grep that these are debug prints. */
1592 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1593 for (i=0;i<27;i++)
1594 if (status & (1 << i))
1595 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1596 fs_dprintk (FS_DEBUG_IRQ, "\n");
1597 }
1598
1599 if (status & ISR_RBRQ0_W) {
1600 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1601 process_incoming (dev, &dev->rx_rq[0]);
1602 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1603 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1604 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1605 }
1606
1607 if (status & ISR_RBRQ1_W) {
1608 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1609 process_incoming (dev, &dev->rx_rq[1]);
1610 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1611 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1612 }
1613
1614 if (status & ISR_RBRQ2_W) {
1615 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1616 process_incoming (dev, &dev->rx_rq[2]);
1617 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1618 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1619 }
1620
1621 if (status & ISR_RBRQ3_W) {
1622 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1623 process_incoming (dev, &dev->rx_rq[3]);
1624 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1625 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1626 }
1627
1628 if (status & ISR_CSQ_W) {
1629 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1630 process_return_queue (dev, &dev->st_q);
1631 }
1632
1633 if (status & ISR_TBRQ_W) {
1634 fs_dprintk (FS_DEBUG_IRQ, "Data transmitted!\n");
1635 process_txdone_queue (dev, &dev->tx_relq);
1636 }
1637
1638 func_exit ();
1639 return IRQ_HANDLED;
1640 }
1641
1642
1643 #ifdef FS_POLL_FREQ
1644 static void fs_poll (struct timer_list *t)
1645 {
1646 struct fs_dev *dev = from_timer(dev, t, timer);
1647
1648 fs_irq (0, dev);
1649 dev->timer.expires = jiffies + FS_POLL_FREQ;
1650 add_timer (&dev->timer);
1651 }
1652 #endif
1653
1654 static int fs_init(struct fs_dev *dev)
1655 {
1656 struct pci_dev *pci_dev;
1657 int isr, to;
1658 int i;
1659
1660 func_enter ();
1661 pci_dev = dev->pci_dev;
1662
1663 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1664 IS_FS50(dev)?50:155,
1665 (unsigned long long)pci_resource_start(pci_dev, 0),
1666 dev->pci_dev->irq);
1667
1668 if (fs_debug & FS_DEBUG_INIT)
1669 my_hd ((unsigned char *) dev, sizeof (*dev));
1670
1671 undocumented_pci_fix (pci_dev);
1672
1673 dev->hw_base = pci_resource_start(pci_dev, 0);
1674
1675 dev->base = ioremap(dev->hw_base, 0x1000);
1676
1677 reset_chip (dev);
1678
1679 write_fs (dev, SARMODE0, 0
1680 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1681 | (1 * SARMODE0_INTMODE_READCLEAR)
1682 | (1 * SARMODE0_CWRE)
1683 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1684 SARMODE0_PRPWT_FS155_3)
1685 | (1 * SARMODE0_CALSUP_1)
1686 | (IS_FS50(dev) ? (0
1687 | SARMODE0_RXVCS_32
1688 | SARMODE0_ABRVCS_32
1689 | SARMODE0_TXVCS_32):
1690 (0
1691 | SARMODE0_RXVCS_1k
1692 | SARMODE0_ABRVCS_1k
1693 | SARMODE0_TXVCS_1k)));
1694
1695 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1696 1ms. */
1697 to = 100;
1698 while (--to) {
1699 isr = read_fs (dev, ISR);
1700
1701 /* This bit is documented as "RESERVED" */
1702 if (isr & ISR_INIT_ERR) {
1703 printk (KERN_ERR "Error initializing the FS... \n");
1704 goto unmap;
1705 }
1706 if (isr & ISR_INIT) {
1707 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1708 break;
1709 }
1710
1711 /* Try again after 10ms. */
1712 msleep(10);
1713 }
1714
1715 if (!to) {
1716 printk (KERN_ERR "timeout initializing the FS... \n");
1717 goto unmap;
1718 }
1719
1720 /* XXX fix for fs155 */
1721 dev->channel_mask = 0x1f;
1722 dev->channo = 0;
1723
1724 /* AN3: 10 */
1725 write_fs (dev, SARMODE1, 0
1726 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1727 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1728 | (1 * SARMODE1_DCRM)
1729 | (1 * SARMODE1_DCOAM)
1730 | (0 * SARMODE1_OAMCRC)
1731 | (0 * SARMODE1_DUMPE)
1732 | (0 * SARMODE1_GPLEN)
1733 | (0 * SARMODE1_GNAM)
1734 | (0 * SARMODE1_GVAS)
1735 | (0 * SARMODE1_GPAS)
1736 | (1 * SARMODE1_GPRI)
1737 | (0 * SARMODE1_PMS)
1738 | (0 * SARMODE1_GFCR)
1739 | (1 * SARMODE1_HECM2)
1740 | (1 * SARMODE1_HECM1)
1741 | (1 * SARMODE1_HECM0)
1742 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1743 | (0 * 0xff) /* XXX FS155 */);
1744
1745
1746 /* Cal prescale etc */
1747
1748 /* AN3: 11 */
1749 write_fs (dev, TMCONF, 0x0000000f);
1750 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1751 write_fs (dev, 0x80, 0x000F00E4);
1752
1753 /* AN3: 12 */
1754 write_fs (dev, CELLOSCONF, 0
1755 | ( 0 * CELLOSCONF_CEN)
1756 | ( CELLOSCONF_SC1)
1757 | (0x80 * CELLOSCONF_COBS)
1758 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1759 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1760 * performance jumped 50->70... */
1761
1762 /* Magic value by Hang */
1763 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1764
1765 if (IS_FS50 (dev)) {
1766 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1767 dev->atm_dev->ci_range.vpi_bits = 12;
1768 dev->atm_dev->ci_range.vci_bits = 16;
1769 dev->nchannels = FS50_NR_CHANNELS;
1770 } else {
1771 write_fs (dev, RAS0, RAS0_DCD_XHLT
1772 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1773 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1774 /* We can chose the split arbitrarily. We might be able to
1775 support more. Whatever. This should do for now. */
1776 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1777 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1778
1779 /* Address bits we can't use should be compared to 0. */
1780 write_fs (dev, RAC, 0);
1781
1782 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1783 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1784 * other bits, then compare with 0, which is exactly what we
1785 * want. */
1786 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1787 dev->nchannels = FS155_NR_CHANNELS;
1788 }
1789 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1790 GFP_KERNEL);
1791 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1792 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1793
1794 if (!dev->atm_vccs) {
1795 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1796 /* XXX Clean up..... */
1797 goto unmap;
1798 }
1799
1800 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1801 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1802 dev->atm_vccs, dev->nchannels / 8);
1803
1804 if (!dev->tx_inuse) {
1805 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1806 /* XXX Clean up..... */
1807 goto unmap;
1808 }
1809 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1810 /* -- RAS2 : FS50 only: Default is OK. */
1811
1812 /* DMAMODE, default should be OK. -- REW */
1813 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1814
1815 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1816 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1817 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1818 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1819
1820 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1821 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1822 rx_buf_sizes[i], rx_pool_sizes[i]);
1823 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1824 }
1825
1826
1827 for (i=0;i < FS_NR_RX_QUEUES;i++)
1828 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1829
1830 dev->irq = pci_dev->irq;
1831 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1832 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1833 /* XXX undo all previous stuff... */
1834 goto unmap;
1835 }
1836 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1837
1838 /* We want to be notified of most things. Just the statistics count
1839 overflows are not interesting */
1840 write_fs (dev, IMR, 0
1841 | ISR_RBRQ0_W
1842 | ISR_RBRQ1_W
1843 | ISR_RBRQ2_W
1844 | ISR_RBRQ3_W
1845 | ISR_TBRQ_W
1846 | ISR_CSQ_W);
1847
1848 write_fs (dev, SARMODE0, 0
1849 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1850 | (1 * SARMODE0_GINT)
1851 | (1 * SARMODE0_INTMODE_READCLEAR)
1852 | (0 * SARMODE0_CWRE)
1853 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1854 SARMODE0_PRPWT_FS155_3)
1855 | (1 * SARMODE0_CALSUP_1)
1856 | (IS_FS50 (dev)?(0
1857 | SARMODE0_RXVCS_32
1858 | SARMODE0_ABRVCS_32
1859 | SARMODE0_TXVCS_32):
1860 (0
1861 | SARMODE0_RXVCS_1k
1862 | SARMODE0_ABRVCS_1k
1863 | SARMODE0_TXVCS_1k))
1864 | (1 * SARMODE0_RUN));
1865
1866 init_phy (dev, PHY_NTC_INIT);
1867
1868 if (loopback == 2) {
1869 write_phy (dev, 0x39, 0x000e);
1870 }
1871
1872 #ifdef FS_POLL_FREQ
1873 timer_setup(&dev->timer, fs_poll, 0);
1874 dev->timer.expires = jiffies + FS_POLL_FREQ;
1875 add_timer (&dev->timer);
1876 #endif
1877
1878 dev->atm_dev->dev_data = dev;
1879
1880 func_exit ();
1881 return 0;
1882 unmap:
1883 iounmap(dev->base);
1884 return 1;
1885 }
1886
1887 static int firestream_init_one(struct pci_dev *pci_dev,
1888 const struct pci_device_id *ent)
1889 {
1890 struct atm_dev *atm_dev;
1891 struct fs_dev *fs_dev;
1892
1893 if (pci_enable_device(pci_dev))
1894 goto err_out;
1895
1896 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1897 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1898 fs_dev, sizeof (struct fs_dev));
1899 if (!fs_dev)
1900 goto err_out;
1901 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1902 if (!atm_dev)
1903 goto err_out_free_fs_dev;
1904
1905 fs_dev->pci_dev = pci_dev;
1906 fs_dev->atm_dev = atm_dev;
1907 fs_dev->flags = ent->driver_data;
1908
1909 if (fs_init(fs_dev))
1910 goto err_out_free_atm_dev;
1911
1912 fs_dev->next = fs_boards;
1913 fs_boards = fs_dev;
1914 return 0;
1915
1916 err_out_free_atm_dev:
1917 atm_dev_deregister(atm_dev);
1918 err_out_free_fs_dev:
1919 kfree(fs_dev);
1920 err_out:
1921 return -ENODEV;
1922 }
1923
1924 static void firestream_remove_one(struct pci_dev *pdev)
1925 {
1926 int i;
1927 struct fs_dev *dev, *nxtdev;
1928 struct fs_vcc *vcc;
1929 struct FS_BPENTRY *fp, *nxt;
1930
1931 func_enter ();
1932
1933 #if 0
1934 printk ("hptxq:\n");
1935 for (i=0;i<60;i++) {
1936 printk ("%d: %08x %08x %08x %08x \n",
1937 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1938 qp++;
1939 if (qp >= 60) qp = 0;
1940 }
1941
1942 printk ("descriptors:\n");
1943 for (i=0;i<60;i++) {
1944 printk ("%d: %p: %08x %08x %p %p\n",
1945 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1946 qd++;
1947 if (qd >= 60) qd = 0;
1948 }
1949 #endif
1950
1951 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1952 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1953
1954 /* XXX Hit all the tx channels too! */
1955
1956 for (i=0;i < dev->nchannels;i++) {
1957 if (dev->atm_vccs[i]) {
1958 vcc = FS_VCC (dev->atm_vccs[i]);
1959 submit_command (dev, &dev->hp_txq,
1960 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1961 submit_command (dev, &dev->hp_txq,
1962 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1963
1964 }
1965 }
1966
1967 /* XXX Wait a while for the chip to release all buffers. */
1968
1969 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1970 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1971 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1972 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1973 dev_kfree_skb_any (fp->skb);
1974 nxt = bus_to_virt (fp->next);
1975 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1976 kfree (fp);
1977 }
1978 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1979 dev_kfree_skb_any (fp->skb);
1980 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1981 kfree (fp);
1982 }
1983
1984 /* Hang the chip in "reset", prevent it clobbering memory that is
1985 no longer ours. */
1986 reset_chip (dev);
1987
1988 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1989 free_irq (dev->irq, dev);
1990 del_timer_sync (&dev->timer);
1991
1992 atm_dev_deregister(dev->atm_dev);
1993 free_queue (dev, &dev->hp_txq);
1994 free_queue (dev, &dev->lp_txq);
1995 free_queue (dev, &dev->tx_relq);
1996 free_queue (dev, &dev->st_q);
1997
1998 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
1999 kfree (dev->atm_vccs);
2000
2001 for (i=0;i< FS_NR_FREE_POOLS;i++)
2002 free_freepool (dev, &dev->rx_fp[i]);
2003
2004 for (i=0;i < FS_NR_RX_QUEUES;i++)
2005 free_queue (dev, &dev->rx_rq[i]);
2006
2007 iounmap(dev->base);
2008 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2009 nxtdev = dev->next;
2010 kfree (dev);
2011 }
2012
2013 func_exit ();
2014 }
2015
2016 static const struct pci_device_id firestream_pci_tbl[] = {
2017 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2018 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2019 { 0, }
2020 };
2021
2022 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2023
2024 static struct pci_driver firestream_driver = {
2025 .name = "firestream",
2026 .id_table = firestream_pci_tbl,
2027 .probe = firestream_init_one,
2028 .remove = firestream_remove_one,
2029 };
2030
2031 static int __init firestream_init_module (void)
2032 {
2033 int error;
2034
2035 func_enter ();
2036 error = pci_register_driver(&firestream_driver);
2037 func_exit ();
2038 return error;
2039 }
2040
2041 static void __exit firestream_cleanup_module(void)
2042 {
2043 pci_unregister_driver(&firestream_driver);
2044 }
2045
2046 module_init(firestream_init_module);
2047 module_exit(firestream_cleanup_module);
2048
2049 MODULE_LICENSE("GPL");
2050
2051
2052