]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/atm/fore200e.c
UBUNTU: [Config] CONFIG_MMC_SDHCI_XENON=m
[mirror_ubuntu-artful-kernel.git] / drivers / atm / fore200e.c
1 /*
2 A FORE Systems 200E-series driver for ATM on Linux.
3 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7 This driver simultaneously supports PCA-200E and SBA-200E adapters
8 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/capability.h>
30 #include <linux/interrupt.h>
31 #include <linux/bitops.h>
32 #include <linux/pci.h>
33 #include <linux/module.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/atm_suni.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/firmware.h>
40 #include <asm/io.h>
41 #include <asm/string.h>
42 #include <asm/page.h>
43 #include <asm/irq.h>
44 #include <asm/dma.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <linux/atomic.h>
48
49 #ifdef CONFIG_SBUS
50 #include <linux/of.h>
51 #include <linux/of_device.h>
52 #include <asm/idprom.h>
53 #include <asm/openprom.h>
54 #include <asm/oplib.h>
55 #include <asm/pgtable.h>
56 #endif
57
58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59 #define FORE200E_USE_TASKLET
60 #endif
61
62 #if 0 /* enable the debugging code of the buffer supply queues */
63 #define FORE200E_BSQ_DEBUG
64 #endif
65
66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67 #define FORE200E_52BYTE_AAL0_SDU
68 #endif
69
70 #include "fore200e.h"
71 #include "suni.h"
72
73 #define FORE200E_VERSION "0.3e"
74
75 #define FORE200E "fore200e: "
76
77 #if 0 /* override .config */
78 #define CONFIG_ATM_FORE200E_DEBUG 1
79 #endif
80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81 #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82 printk(FORE200E format, ##args); } while (0)
83 #else
84 #define DPRINTK(level, format, args...) do {} while (0)
85 #endif
86
87
88 #define FORE200E_ALIGN(addr, alignment) \
89 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91 #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
92
93 #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
94
95 #define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
96
97 #if 1
98 #define ASSERT(expr) if (!(expr)) { \
99 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100 __func__, __LINE__, #expr); \
101 panic(FORE200E "%s", __func__); \
102 }
103 #else
104 #define ASSERT(expr) do {} while (0)
105 #endif
106
107
108 static const struct atmdev_ops fore200e_ops;
109 static const struct fore200e_bus fore200e_bus[];
110
111 static LIST_HEAD(fore200e_boards);
112
113
114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120 { BUFFER_S1_NBR, BUFFER_L1_NBR },
121 { BUFFER_S2_NBR, BUFFER_L2_NBR }
122 };
123
124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127 };
128
129
130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132 #endif
133
134
135 #if 0 /* currently unused */
136 static int
137 fore200e_fore2atm_aal(enum fore200e_aal aal)
138 {
139 switch(aal) {
140 case FORE200E_AAL0: return ATM_AAL0;
141 case FORE200E_AAL34: return ATM_AAL34;
142 case FORE200E_AAL5: return ATM_AAL5;
143 }
144
145 return -EINVAL;
146 }
147 #endif
148
149
150 static enum fore200e_aal
151 fore200e_atm2fore_aal(int aal)
152 {
153 switch(aal) {
154 case ATM_AAL0: return FORE200E_AAL0;
155 case ATM_AAL34: return FORE200E_AAL34;
156 case ATM_AAL1:
157 case ATM_AAL2:
158 case ATM_AAL5: return FORE200E_AAL5;
159 }
160
161 return -EINVAL;
162 }
163
164
165 static char*
166 fore200e_irq_itoa(int irq)
167 {
168 static char str[8];
169 sprintf(str, "%d", irq);
170 return str;
171 }
172
173
174 /* allocate and align a chunk of memory intended to hold the data behing exchanged
175 between the driver and the adapter (using streaming DVMA) */
176
177 static int
178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179 {
180 unsigned long offset = 0;
181
182 if (alignment <= sizeof(int))
183 alignment = 0;
184
185 chunk->alloc_size = size + alignment;
186 chunk->align_size = size;
187 chunk->direction = direction;
188
189 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190 if (chunk->alloc_addr == NULL)
191 return -ENOMEM;
192
193 if (alignment > 0)
194 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195
196 chunk->align_addr = chunk->alloc_addr + offset;
197
198 chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199
200 return 0;
201 }
202
203
204 /* free a chunk of memory */
205
206 static void
207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208 {
209 fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211 kfree(chunk->alloc_addr);
212 }
213
214
215 static void
216 fore200e_spin(int msecs)
217 {
218 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219 while (time_before(jiffies, timeout));
220 }
221
222
223 static int
224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225 {
226 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227 int ok;
228
229 mb();
230 do {
231 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232 break;
233
234 } while (time_before(jiffies, timeout));
235
236 #if 1
237 if (!ok) {
238 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239 *addr, val);
240 }
241 #endif
242
243 return ok;
244 }
245
246
247 static int
248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249 {
250 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251 int ok;
252
253 do {
254 if ((ok = (fore200e->bus->read(addr) == val)))
255 break;
256
257 } while (time_before(jiffies, timeout));
258
259 #if 1
260 if (!ok) {
261 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262 fore200e->bus->read(addr), val);
263 }
264 #endif
265
266 return ok;
267 }
268
269
270 static void
271 fore200e_free_rx_buf(struct fore200e* fore200e)
272 {
273 int scheme, magn, nbr;
274 struct buffer* buffer;
275
276 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283 struct chunk* data = &buffer[ nbr ].data;
284
285 if (data->alloc_addr != NULL)
286 fore200e_chunk_free(fore200e, data);
287 }
288 }
289 }
290 }
291 }
292
293
294 static void
295 fore200e_uninit_bs_queue(struct fore200e* fore200e)
296 {
297 int scheme, magn;
298
299 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
303 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304
305 if (status->alloc_addr)
306 fore200e->bus->dma_chunk_free(fore200e, status);
307
308 if (rbd_block->alloc_addr)
309 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310 }
311 }
312 }
313
314
315 static int
316 fore200e_reset(struct fore200e* fore200e, int diag)
317 {
318 int ok;
319
320 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321
322 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324 fore200e->bus->reset(fore200e);
325
326 if (diag) {
327 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328 if (ok == 0) {
329
330 printk(FORE200E "device %s self-test failed\n", fore200e->name);
331 return -ENODEV;
332 }
333
334 printk(FORE200E "device %s self-test passed\n", fore200e->name);
335
336 fore200e->state = FORE200E_STATE_RESET;
337 }
338
339 return 0;
340 }
341
342
343 static void
344 fore200e_shutdown(struct fore200e* fore200e)
345 {
346 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347 fore200e->name, fore200e->phys_base,
348 fore200e_irq_itoa(fore200e->irq));
349
350 if (fore200e->state > FORE200E_STATE_RESET) {
351 /* first, reset the board to prevent further interrupts or data transfers */
352 fore200e_reset(fore200e, 0);
353 }
354
355 /* then, release all allocated resources */
356 switch(fore200e->state) {
357
358 case FORE200E_STATE_COMPLETE:
359 kfree(fore200e->stats);
360
361 case FORE200E_STATE_IRQ:
362 free_irq(fore200e->irq, fore200e->atm_dev);
363
364 case FORE200E_STATE_ALLOC_BUF:
365 fore200e_free_rx_buf(fore200e);
366
367 case FORE200E_STATE_INIT_BSQ:
368 fore200e_uninit_bs_queue(fore200e);
369
370 case FORE200E_STATE_INIT_RXQ:
371 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373
374 case FORE200E_STATE_INIT_TXQ:
375 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377
378 case FORE200E_STATE_INIT_CMDQ:
379 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380
381 case FORE200E_STATE_INITIALIZE:
382 /* nothing to do for that state */
383
384 case FORE200E_STATE_START_FW:
385 /* nothing to do for that state */
386
387 case FORE200E_STATE_RESET:
388 /* nothing to do for that state */
389
390 case FORE200E_STATE_MAP:
391 fore200e->bus->unmap(fore200e);
392
393 case FORE200E_STATE_CONFIGURE:
394 /* nothing to do for that state */
395
396 case FORE200E_STATE_REGISTER:
397 /* XXX shouldn't we *start* by deregistering the device? */
398 atm_dev_deregister(fore200e->atm_dev);
399
400 case FORE200E_STATE_BLANK:
401 /* nothing to do for that state */
402 break;
403 }
404 }
405
406
407 #ifdef CONFIG_PCI
408
409 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410 {
411 /* on big-endian hosts, the board is configured to convert
412 the endianess of slave RAM accesses */
413 return le32_to_cpu(readl(addr));
414 }
415
416
417 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418 {
419 /* on big-endian hosts, the board is configured to convert
420 the endianess of slave RAM accesses */
421 writel(cpu_to_le32(val), addr);
422 }
423
424
425 static u32
426 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427 {
428 u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
429
430 DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n",
431 virt_addr, size, direction, dma_addr);
432
433 return dma_addr;
434 }
435
436
437 static void
438 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439 {
440 DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441 dma_addr, size, direction);
442
443 dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
444 }
445
446
447 static void
448 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449 {
450 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451
452 dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
453 }
454
455 static void
456 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457 {
458 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460 dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461 }
462
463
464 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465 (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466
467 static int
468 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469 int size, int nbr, int alignment)
470 {
471 /* returned chunks are page-aligned */
472 chunk->alloc_size = size * nbr;
473 chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
474 chunk->alloc_size,
475 &chunk->dma_addr,
476 GFP_KERNEL);
477
478 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
479 return -ENOMEM;
480
481 chunk->align_addr = chunk->alloc_addr;
482
483 return 0;
484 }
485
486
487 /* free a DMA consistent chunk of memory */
488
489 static void
490 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
491 {
492 dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
493 chunk->alloc_size,
494 chunk->alloc_addr,
495 chunk->dma_addr);
496 }
497
498
499 static int
500 fore200e_pca_irq_check(struct fore200e* fore200e)
501 {
502 /* this is a 1 bit register */
503 int irq_posted = readl(fore200e->regs.pca.psr);
504
505 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
506 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
507 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
508 }
509 #endif
510
511 return irq_posted;
512 }
513
514
515 static void
516 fore200e_pca_irq_ack(struct fore200e* fore200e)
517 {
518 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
519 }
520
521
522 static void
523 fore200e_pca_reset(struct fore200e* fore200e)
524 {
525 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
526 fore200e_spin(10);
527 writel(0, fore200e->regs.pca.hcr);
528 }
529
530
531 static int fore200e_pca_map(struct fore200e* fore200e)
532 {
533 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
534
535 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
536
537 if (fore200e->virt_base == NULL) {
538 printk(FORE200E "can't map device %s\n", fore200e->name);
539 return -EFAULT;
540 }
541
542 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
543
544 /* gain access to the PCA specific registers */
545 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
546 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
547 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
548
549 fore200e->state = FORE200E_STATE_MAP;
550 return 0;
551 }
552
553
554 static void
555 fore200e_pca_unmap(struct fore200e* fore200e)
556 {
557 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
558
559 if (fore200e->virt_base != NULL)
560 iounmap(fore200e->virt_base);
561 }
562
563
564 static int fore200e_pca_configure(struct fore200e *fore200e)
565 {
566 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
567 u8 master_ctrl, latency;
568
569 DPRINTK(2, "device %s being configured\n", fore200e->name);
570
571 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
572 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
573 return -EIO;
574 }
575
576 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
577
578 master_ctrl = master_ctrl
579 #if defined(__BIG_ENDIAN)
580 /* request the PCA board to convert the endianess of slave RAM accesses */
581 | PCA200E_CTRL_CONVERT_ENDIAN
582 #endif
583 #if 0
584 | PCA200E_CTRL_DIS_CACHE_RD
585 | PCA200E_CTRL_DIS_WRT_INVAL
586 | PCA200E_CTRL_ENA_CONT_REQ_MODE
587 | PCA200E_CTRL_2_CACHE_WRT_INVAL
588 #endif
589 | PCA200E_CTRL_LARGE_PCI_BURSTS;
590
591 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
592
593 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
594 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
595 this may impact the performances of other PCI devices on the same bus, though */
596 latency = 192;
597 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
598
599 fore200e->state = FORE200E_STATE_CONFIGURE;
600 return 0;
601 }
602
603
604 static int __init
605 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
606 {
607 struct host_cmdq* cmdq = &fore200e->host_cmdq;
608 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
609 struct prom_opcode opcode;
610 int ok;
611 u32 prom_dma;
612
613 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
614
615 opcode.opcode = OPCODE_GET_PROM;
616 opcode.pad = 0;
617
618 prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
619
620 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
621
622 *entry->status = STATUS_PENDING;
623
624 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
625
626 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
627
628 *entry->status = STATUS_FREE;
629
630 fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
631
632 if (ok == 0) {
633 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
634 return -EIO;
635 }
636
637 #if defined(__BIG_ENDIAN)
638
639 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
640
641 /* MAC address is stored as little-endian */
642 swap_here(&prom->mac_addr[0]);
643 swap_here(&prom->mac_addr[4]);
644 #endif
645
646 return 0;
647 }
648
649
650 static int
651 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
652 {
653 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
654
655 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
656 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
657 }
658
659 #endif /* CONFIG_PCI */
660
661
662 #ifdef CONFIG_SBUS
663
664 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
665 {
666 return sbus_readl(addr);
667 }
668
669 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
670 {
671 sbus_writel(val, addr);
672 }
673
674 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
675 {
676 struct platform_device *op = fore200e->bus_dev;
677 u32 dma_addr;
678
679 dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
680
681 DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
682 virt_addr, size, direction, dma_addr);
683
684 return dma_addr;
685 }
686
687 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
688 {
689 struct platform_device *op = fore200e->bus_dev;
690
691 DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
692 dma_addr, size, direction);
693
694 dma_unmap_single(&op->dev, dma_addr, size, direction);
695 }
696
697 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
698 {
699 struct platform_device *op = fore200e->bus_dev;
700
701 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
702
703 dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
704 }
705
706 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
707 {
708 struct platform_device *op = fore200e->bus_dev;
709
710 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
711
712 dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
713 }
714
715 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
716 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
717 */
718 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
719 int size, int nbr, int alignment)
720 {
721 struct platform_device *op = fore200e->bus_dev;
722
723 chunk->alloc_size = chunk->align_size = size * nbr;
724
725 /* returned chunks are page-aligned */
726 chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
727 &chunk->dma_addr, GFP_ATOMIC);
728
729 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
730 return -ENOMEM;
731
732 chunk->align_addr = chunk->alloc_addr;
733
734 return 0;
735 }
736
737 /* free a DVMA consistent chunk of memory */
738 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
739 {
740 struct platform_device *op = fore200e->bus_dev;
741
742 dma_free_coherent(&op->dev, chunk->alloc_size,
743 chunk->alloc_addr, chunk->dma_addr);
744 }
745
746 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
747 {
748 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
749 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
750 }
751
752 static int fore200e_sba_irq_check(struct fore200e *fore200e)
753 {
754 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
755 }
756
757 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
758 {
759 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
760 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
761 }
762
763 static void fore200e_sba_reset(struct fore200e *fore200e)
764 {
765 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
766 fore200e_spin(10);
767 fore200e->bus->write(0, fore200e->regs.sba.hcr);
768 }
769
770 static int __init fore200e_sba_map(struct fore200e *fore200e)
771 {
772 struct platform_device *op = fore200e->bus_dev;
773 unsigned int bursts;
774
775 /* gain access to the SBA specific registers */
776 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
777 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
778 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
779 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
780
781 if (!fore200e->virt_base) {
782 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
783 return -EFAULT;
784 }
785
786 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
787
788 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
789
790 /* get the supported DVMA burst sizes */
791 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
792
793 if (sbus_can_dma_64bit())
794 sbus_set_sbus64(&op->dev, bursts);
795
796 fore200e->state = FORE200E_STATE_MAP;
797 return 0;
798 }
799
800 static void fore200e_sba_unmap(struct fore200e *fore200e)
801 {
802 struct platform_device *op = fore200e->bus_dev;
803
804 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
805 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
806 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
807 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
808 }
809
810 static int __init fore200e_sba_configure(struct fore200e *fore200e)
811 {
812 fore200e->state = FORE200E_STATE_CONFIGURE;
813 return 0;
814 }
815
816 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
817 {
818 struct platform_device *op = fore200e->bus_dev;
819 const u8 *prop;
820 int len;
821
822 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
823 if (!prop)
824 return -ENODEV;
825 memcpy(&prom->mac_addr[4], prop, 4);
826
827 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
828 if (!prop)
829 return -ENODEV;
830 memcpy(&prom->mac_addr[2], prop, 4);
831
832 prom->serial_number = of_getintprop_default(op->dev.of_node,
833 "serialnumber", 0);
834 prom->hw_revision = of_getintprop_default(op->dev.of_node,
835 "promversion", 0);
836
837 return 0;
838 }
839
840 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
841 {
842 struct platform_device *op = fore200e->bus_dev;
843 const struct linux_prom_registers *regs;
844
845 regs = of_get_property(op->dev.of_node, "reg", NULL);
846
847 return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n",
848 (regs ? regs->which_io : 0), op->dev.of_node->name);
849 }
850 #endif /* CONFIG_SBUS */
851
852
853 static void
854 fore200e_tx_irq(struct fore200e* fore200e)
855 {
856 struct host_txq* txq = &fore200e->host_txq;
857 struct host_txq_entry* entry;
858 struct atm_vcc* vcc;
859 struct fore200e_vc_map* vc_map;
860
861 if (fore200e->host_txq.txing == 0)
862 return;
863
864 for (;;) {
865
866 entry = &txq->host_entry[ txq->tail ];
867
868 if ((*entry->status & STATUS_COMPLETE) == 0) {
869 break;
870 }
871
872 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
873 entry, txq->tail, entry->vc_map, entry->skb);
874
875 /* free copy of misaligned data */
876 kfree(entry->data);
877
878 /* remove DMA mapping */
879 fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
880 DMA_TO_DEVICE);
881
882 vc_map = entry->vc_map;
883
884 /* vcc closed since the time the entry was submitted for tx? */
885 if ((vc_map->vcc == NULL) ||
886 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
887
888 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
889 fore200e->atm_dev->number);
890
891 dev_kfree_skb_any(entry->skb);
892 }
893 else {
894 ASSERT(vc_map->vcc);
895
896 /* vcc closed then immediately re-opened? */
897 if (vc_map->incarn != entry->incarn) {
898
899 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
900 if the same vcc is immediately re-opened, those pending PDUs must
901 not be popped after the completion of their emission, as they refer
902 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
903 would be decremented by the size of the (unrelated) skb, possibly
904 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
905 we thus bind the tx entry to the current incarnation of the vcc
906 when the entry is submitted for tx. When the tx later completes,
907 if the incarnation number of the tx entry does not match the one
908 of the vcc, then this implies that the vcc has been closed then re-opened.
909 we thus just drop the skb here. */
910
911 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
912 fore200e->atm_dev->number);
913
914 dev_kfree_skb_any(entry->skb);
915 }
916 else {
917 vcc = vc_map->vcc;
918 ASSERT(vcc);
919
920 /* notify tx completion */
921 if (vcc->pop) {
922 vcc->pop(vcc, entry->skb);
923 }
924 else {
925 dev_kfree_skb_any(entry->skb);
926 }
927
928 /* check error condition */
929 if (*entry->status & STATUS_ERROR)
930 atomic_inc(&vcc->stats->tx_err);
931 else
932 atomic_inc(&vcc->stats->tx);
933 }
934 }
935
936 *entry->status = STATUS_FREE;
937
938 fore200e->host_txq.txing--;
939
940 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
941 }
942 }
943
944
945 #ifdef FORE200E_BSQ_DEBUG
946 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
947 {
948 struct buffer* buffer;
949 int count = 0;
950
951 buffer = bsq->freebuf;
952 while (buffer) {
953
954 if (buffer->supplied) {
955 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
956 where, scheme, magn, buffer->index);
957 }
958
959 if (buffer->magn != magn) {
960 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
961 where, scheme, magn, buffer->index, buffer->magn);
962 }
963
964 if (buffer->scheme != scheme) {
965 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
966 where, scheme, magn, buffer->index, buffer->scheme);
967 }
968
969 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
970 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
971 where, scheme, magn, buffer->index);
972 }
973
974 count++;
975 buffer = buffer->next;
976 }
977
978 if (count != bsq->freebuf_count) {
979 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
980 where, scheme, magn, count, bsq->freebuf_count);
981 }
982 return 0;
983 }
984 #endif
985
986
987 static void
988 fore200e_supply(struct fore200e* fore200e)
989 {
990 int scheme, magn, i;
991
992 struct host_bsq* bsq;
993 struct host_bsq_entry* entry;
994 struct buffer* buffer;
995
996 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
997 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
998
999 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1000
1001 #ifdef FORE200E_BSQ_DEBUG
1002 bsq_audit(1, bsq, scheme, magn);
1003 #endif
1004 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1005
1006 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1007 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1008
1009 entry = &bsq->host_entry[ bsq->head ];
1010
1011 for (i = 0; i < RBD_BLK_SIZE; i++) {
1012
1013 /* take the first buffer in the free buffer list */
1014 buffer = bsq->freebuf;
1015 if (!buffer) {
1016 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1017 scheme, magn, bsq->freebuf_count);
1018 return;
1019 }
1020 bsq->freebuf = buffer->next;
1021
1022 #ifdef FORE200E_BSQ_DEBUG
1023 if (buffer->supplied)
1024 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1025 scheme, magn, buffer->index);
1026 buffer->supplied = 1;
1027 #endif
1028 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1029 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
1030 }
1031
1032 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1033
1034 /* decrease accordingly the number of free rx buffers */
1035 bsq->freebuf_count -= RBD_BLK_SIZE;
1036
1037 *entry->status = STATUS_PENDING;
1038 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1039 }
1040 }
1041 }
1042 }
1043
1044
1045 static int
1046 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1047 {
1048 struct sk_buff* skb;
1049 struct buffer* buffer;
1050 struct fore200e_vcc* fore200e_vcc;
1051 int i, pdu_len = 0;
1052 #ifdef FORE200E_52BYTE_AAL0_SDU
1053 u32 cell_header = 0;
1054 #endif
1055
1056 ASSERT(vcc);
1057
1058 fore200e_vcc = FORE200E_VCC(vcc);
1059 ASSERT(fore200e_vcc);
1060
1061 #ifdef FORE200E_52BYTE_AAL0_SDU
1062 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1063
1064 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1065 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1066 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1067 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1068 rpd->atm_header.clp;
1069 pdu_len = 4;
1070 }
1071 #endif
1072
1073 /* compute total PDU length */
1074 for (i = 0; i < rpd->nseg; i++)
1075 pdu_len += rpd->rsd[ i ].length;
1076
1077 skb = alloc_skb(pdu_len, GFP_ATOMIC);
1078 if (skb == NULL) {
1079 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1080
1081 atomic_inc(&vcc->stats->rx_drop);
1082 return -ENOMEM;
1083 }
1084
1085 __net_timestamp(skb);
1086
1087 #ifdef FORE200E_52BYTE_AAL0_SDU
1088 if (cell_header) {
1089 *((u32*)skb_put(skb, 4)) = cell_header;
1090 }
1091 #endif
1092
1093 /* reassemble segments */
1094 for (i = 0; i < rpd->nseg; i++) {
1095
1096 /* rebuild rx buffer address from rsd handle */
1097 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1098
1099 /* Make device DMA transfer visible to CPU. */
1100 fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1101
1102 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1103
1104 /* Now let the device get at it again. */
1105 fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1106 }
1107
1108 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1109
1110 if (pdu_len < fore200e_vcc->rx_min_pdu)
1111 fore200e_vcc->rx_min_pdu = pdu_len;
1112 if (pdu_len > fore200e_vcc->rx_max_pdu)
1113 fore200e_vcc->rx_max_pdu = pdu_len;
1114 fore200e_vcc->rx_pdu++;
1115
1116 /* push PDU */
1117 if (atm_charge(vcc, skb->truesize) == 0) {
1118
1119 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1120 vcc->itf, vcc->vpi, vcc->vci);
1121
1122 dev_kfree_skb_any(skb);
1123
1124 atomic_inc(&vcc->stats->rx_drop);
1125 return -ENOMEM;
1126 }
1127
1128 vcc->push(vcc, skb);
1129 atomic_inc(&vcc->stats->rx);
1130
1131 return 0;
1132 }
1133
1134
1135 static void
1136 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1137 {
1138 struct host_bsq* bsq;
1139 struct buffer* buffer;
1140 int i;
1141
1142 for (i = 0; i < rpd->nseg; i++) {
1143
1144 /* rebuild rx buffer address from rsd handle */
1145 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1146
1147 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1148
1149 #ifdef FORE200E_BSQ_DEBUG
1150 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1151
1152 if (buffer->supplied == 0)
1153 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1154 buffer->scheme, buffer->magn, buffer->index);
1155 buffer->supplied = 0;
1156 #endif
1157
1158 /* re-insert the buffer into the free buffer list */
1159 buffer->next = bsq->freebuf;
1160 bsq->freebuf = buffer;
1161
1162 /* then increment the number of free rx buffers */
1163 bsq->freebuf_count++;
1164 }
1165 }
1166
1167
1168 static void
1169 fore200e_rx_irq(struct fore200e* fore200e)
1170 {
1171 struct host_rxq* rxq = &fore200e->host_rxq;
1172 struct host_rxq_entry* entry;
1173 struct atm_vcc* vcc;
1174 struct fore200e_vc_map* vc_map;
1175
1176 for (;;) {
1177
1178 entry = &rxq->host_entry[ rxq->head ];
1179
1180 /* no more received PDUs */
1181 if ((*entry->status & STATUS_COMPLETE) == 0)
1182 break;
1183
1184 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1185
1186 if ((vc_map->vcc == NULL) ||
1187 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1188
1189 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1190 fore200e->atm_dev->number,
1191 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1192 }
1193 else {
1194 vcc = vc_map->vcc;
1195 ASSERT(vcc);
1196
1197 if ((*entry->status & STATUS_ERROR) == 0) {
1198
1199 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1200 }
1201 else {
1202 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1203 fore200e->atm_dev->number,
1204 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1205 atomic_inc(&vcc->stats->rx_err);
1206 }
1207 }
1208
1209 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1210
1211 fore200e_collect_rpd(fore200e, entry->rpd);
1212
1213 /* rewrite the rpd address to ack the received PDU */
1214 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1215 *entry->status = STATUS_FREE;
1216
1217 fore200e_supply(fore200e);
1218 }
1219 }
1220
1221
1222 #ifndef FORE200E_USE_TASKLET
1223 static void
1224 fore200e_irq(struct fore200e* fore200e)
1225 {
1226 unsigned long flags;
1227
1228 spin_lock_irqsave(&fore200e->q_lock, flags);
1229 fore200e_rx_irq(fore200e);
1230 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1231
1232 spin_lock_irqsave(&fore200e->q_lock, flags);
1233 fore200e_tx_irq(fore200e);
1234 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1235 }
1236 #endif
1237
1238
1239 static irqreturn_t
1240 fore200e_interrupt(int irq, void* dev)
1241 {
1242 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1243
1244 if (fore200e->bus->irq_check(fore200e) == 0) {
1245
1246 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1247 return IRQ_NONE;
1248 }
1249 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1250
1251 #ifdef FORE200E_USE_TASKLET
1252 tasklet_schedule(&fore200e->tx_tasklet);
1253 tasklet_schedule(&fore200e->rx_tasklet);
1254 #else
1255 fore200e_irq(fore200e);
1256 #endif
1257
1258 fore200e->bus->irq_ack(fore200e);
1259 return IRQ_HANDLED;
1260 }
1261
1262
1263 #ifdef FORE200E_USE_TASKLET
1264 static void
1265 fore200e_tx_tasklet(unsigned long data)
1266 {
1267 struct fore200e* fore200e = (struct fore200e*) data;
1268 unsigned long flags;
1269
1270 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1271
1272 spin_lock_irqsave(&fore200e->q_lock, flags);
1273 fore200e_tx_irq(fore200e);
1274 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1275 }
1276
1277
1278 static void
1279 fore200e_rx_tasklet(unsigned long data)
1280 {
1281 struct fore200e* fore200e = (struct fore200e*) data;
1282 unsigned long flags;
1283
1284 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1285
1286 spin_lock_irqsave(&fore200e->q_lock, flags);
1287 fore200e_rx_irq((struct fore200e*) data);
1288 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1289 }
1290 #endif
1291
1292
1293 static int
1294 fore200e_select_scheme(struct atm_vcc* vcc)
1295 {
1296 /* fairly balance the VCs over (identical) buffer schemes */
1297 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1298
1299 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1300 vcc->itf, vcc->vpi, vcc->vci, scheme);
1301
1302 return scheme;
1303 }
1304
1305
1306 static int
1307 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1308 {
1309 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1310 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1311 struct activate_opcode activ_opcode;
1312 struct deactivate_opcode deactiv_opcode;
1313 struct vpvc vpvc;
1314 int ok;
1315 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1316
1317 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1318
1319 if (activate) {
1320 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1321
1322 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1323 activ_opcode.aal = aal;
1324 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1325 activ_opcode.pad = 0;
1326 }
1327 else {
1328 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1329 deactiv_opcode.pad = 0;
1330 }
1331
1332 vpvc.vci = vcc->vci;
1333 vpvc.vpi = vcc->vpi;
1334
1335 *entry->status = STATUS_PENDING;
1336
1337 if (activate) {
1338
1339 #ifdef FORE200E_52BYTE_AAL0_SDU
1340 mtu = 48;
1341 #endif
1342 /* the MTU is not used by the cp, except in the case of AAL0 */
1343 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1344 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1345 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1346 }
1347 else {
1348 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1349 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1350 }
1351
1352 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1353
1354 *entry->status = STATUS_FREE;
1355
1356 if (ok == 0) {
1357 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1358 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1359 return -EIO;
1360 }
1361
1362 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1363 activate ? "open" : "clos");
1364
1365 return 0;
1366 }
1367
1368
1369 #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1370
1371 static void
1372 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1373 {
1374 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1375
1376 /* compute the data cells to idle cells ratio from the tx PCR */
1377 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1378 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1379 }
1380 else {
1381 /* disable rate control */
1382 rate->data_cells = rate->idle_cells = 0;
1383 }
1384 }
1385
1386
1387 static int
1388 fore200e_open(struct atm_vcc *vcc)
1389 {
1390 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1391 struct fore200e_vcc* fore200e_vcc;
1392 struct fore200e_vc_map* vc_map;
1393 unsigned long flags;
1394 int vci = vcc->vci;
1395 short vpi = vcc->vpi;
1396
1397 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1398 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1399
1400 spin_lock_irqsave(&fore200e->q_lock, flags);
1401
1402 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1403 if (vc_map->vcc) {
1404
1405 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1406
1407 printk(FORE200E "VC %d.%d.%d already in use\n",
1408 fore200e->atm_dev->number, vpi, vci);
1409
1410 return -EINVAL;
1411 }
1412
1413 vc_map->vcc = vcc;
1414
1415 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416
1417 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1418 if (fore200e_vcc == NULL) {
1419 vc_map->vcc = NULL;
1420 return -ENOMEM;
1421 }
1422
1423 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1424 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1425 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1426 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1427 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1428 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1429 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1430
1431 /* pseudo-CBR bandwidth requested? */
1432 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1433
1434 mutex_lock(&fore200e->rate_mtx);
1435 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1436 mutex_unlock(&fore200e->rate_mtx);
1437
1438 kfree(fore200e_vcc);
1439 vc_map->vcc = NULL;
1440 return -EAGAIN;
1441 }
1442
1443 /* reserve bandwidth */
1444 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1445 mutex_unlock(&fore200e->rate_mtx);
1446 }
1447
1448 vcc->itf = vcc->dev->number;
1449
1450 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1451 set_bit(ATM_VF_ADDR, &vcc->flags);
1452
1453 vcc->dev_data = fore200e_vcc;
1454
1455 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1456
1457 vc_map->vcc = NULL;
1458
1459 clear_bit(ATM_VF_ADDR, &vcc->flags);
1460 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1461
1462 vcc->dev_data = NULL;
1463
1464 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1465
1466 kfree(fore200e_vcc);
1467 return -EINVAL;
1468 }
1469
1470 /* compute rate control parameters */
1471 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1472
1473 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1474 set_bit(ATM_VF_HASQOS, &vcc->flags);
1475
1476 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1477 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1478 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1479 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1480 }
1481
1482 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1483 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1484 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1485
1486 /* new incarnation of the vcc */
1487 vc_map->incarn = ++fore200e->incarn_count;
1488
1489 /* VC unusable before this flag is set */
1490 set_bit(ATM_VF_READY, &vcc->flags);
1491
1492 return 0;
1493 }
1494
1495
1496 static void
1497 fore200e_close(struct atm_vcc* vcc)
1498 {
1499 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1500 struct fore200e_vcc* fore200e_vcc;
1501 struct fore200e_vc_map* vc_map;
1502 unsigned long flags;
1503
1504 ASSERT(vcc);
1505 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1506 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1507
1508 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1509
1510 clear_bit(ATM_VF_READY, &vcc->flags);
1511
1512 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1513
1514 spin_lock_irqsave(&fore200e->q_lock, flags);
1515
1516 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1517
1518 /* the vc is no longer considered as "in use" by fore200e_open() */
1519 vc_map->vcc = NULL;
1520
1521 vcc->itf = vcc->vci = vcc->vpi = 0;
1522
1523 fore200e_vcc = FORE200E_VCC(vcc);
1524 vcc->dev_data = NULL;
1525
1526 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1527
1528 /* release reserved bandwidth, if any */
1529 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1530
1531 mutex_lock(&fore200e->rate_mtx);
1532 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1533 mutex_unlock(&fore200e->rate_mtx);
1534
1535 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1536 }
1537
1538 clear_bit(ATM_VF_ADDR, &vcc->flags);
1539 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1540
1541 ASSERT(fore200e_vcc);
1542 kfree(fore200e_vcc);
1543 }
1544
1545
1546 static int
1547 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1548 {
1549 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1550 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1551 struct fore200e_vc_map* vc_map;
1552 struct host_txq* txq = &fore200e->host_txq;
1553 struct host_txq_entry* entry;
1554 struct tpd* tpd;
1555 struct tpd_haddr tpd_haddr;
1556 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1557 int tx_copy = 0;
1558 int tx_len = skb->len;
1559 u32* cell_header = NULL;
1560 unsigned char* skb_data;
1561 int skb_len;
1562 unsigned char* data;
1563 unsigned long flags;
1564
1565 ASSERT(vcc);
1566 ASSERT(fore200e);
1567 ASSERT(fore200e_vcc);
1568
1569 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1570 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1571 dev_kfree_skb_any(skb);
1572 return -EINVAL;
1573 }
1574
1575 #ifdef FORE200E_52BYTE_AAL0_SDU
1576 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1577 cell_header = (u32*) skb->data;
1578 skb_data = skb->data + 4; /* skip 4-byte cell header */
1579 skb_len = tx_len = skb->len - 4;
1580
1581 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1582 }
1583 else
1584 #endif
1585 {
1586 skb_data = skb->data;
1587 skb_len = skb->len;
1588 }
1589
1590 if (((unsigned long)skb_data) & 0x3) {
1591
1592 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1593 tx_copy = 1;
1594 tx_len = skb_len;
1595 }
1596
1597 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1598
1599 /* this simply NUKES the PCA board */
1600 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1601 tx_copy = 1;
1602 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1603 }
1604
1605 if (tx_copy) {
1606 data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1607 if (data == NULL) {
1608 if (vcc->pop) {
1609 vcc->pop(vcc, skb);
1610 }
1611 else {
1612 dev_kfree_skb_any(skb);
1613 }
1614 return -ENOMEM;
1615 }
1616
1617 memcpy(data, skb_data, skb_len);
1618 if (skb_len < tx_len)
1619 memset(data + skb_len, 0x00, tx_len - skb_len);
1620 }
1621 else {
1622 data = skb_data;
1623 }
1624
1625 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1626 ASSERT(vc_map->vcc == vcc);
1627
1628 retry_here:
1629
1630 spin_lock_irqsave(&fore200e->q_lock, flags);
1631
1632 entry = &txq->host_entry[ txq->head ];
1633
1634 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1635
1636 /* try to free completed tx queue entries */
1637 fore200e_tx_irq(fore200e);
1638
1639 if (*entry->status != STATUS_FREE) {
1640
1641 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1642
1643 /* retry once again? */
1644 if (--retry > 0) {
1645 udelay(50);
1646 goto retry_here;
1647 }
1648
1649 atomic_inc(&vcc->stats->tx_err);
1650
1651 fore200e->tx_sat++;
1652 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1653 fore200e->name, fore200e->cp_queues->heartbeat);
1654 if (vcc->pop) {
1655 vcc->pop(vcc, skb);
1656 }
1657 else {
1658 dev_kfree_skb_any(skb);
1659 }
1660
1661 if (tx_copy)
1662 kfree(data);
1663
1664 return -ENOBUFS;
1665 }
1666 }
1667
1668 entry->incarn = vc_map->incarn;
1669 entry->vc_map = vc_map;
1670 entry->skb = skb;
1671 entry->data = tx_copy ? data : NULL;
1672
1673 tpd = entry->tpd;
1674 tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1675 tpd->tsd[ 0 ].length = tx_len;
1676
1677 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1678 txq->txing++;
1679
1680 /* The dma_map call above implies a dma_sync so the device can use it,
1681 * thus no explicit dma_sync call is necessary here.
1682 */
1683
1684 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1685 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1686 tpd->tsd[0].length, skb_len);
1687
1688 if (skb_len < fore200e_vcc->tx_min_pdu)
1689 fore200e_vcc->tx_min_pdu = skb_len;
1690 if (skb_len > fore200e_vcc->tx_max_pdu)
1691 fore200e_vcc->tx_max_pdu = skb_len;
1692 fore200e_vcc->tx_pdu++;
1693
1694 /* set tx rate control information */
1695 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1696 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1697
1698 if (cell_header) {
1699 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1700 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1701 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1702 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1703 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1704 }
1705 else {
1706 /* set the ATM header, common to all cells conveying the PDU */
1707 tpd->atm_header.clp = 0;
1708 tpd->atm_header.plt = 0;
1709 tpd->atm_header.vci = vcc->vci;
1710 tpd->atm_header.vpi = vcc->vpi;
1711 tpd->atm_header.gfc = 0;
1712 }
1713
1714 tpd->spec.length = tx_len;
1715 tpd->spec.nseg = 1;
1716 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1717 tpd->spec.intr = 1;
1718
1719 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1720 tpd_haddr.pad = 0;
1721 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1722
1723 *entry->status = STATUS_PENDING;
1724 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1725
1726 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1727
1728 return 0;
1729 }
1730
1731
1732 static int
1733 fore200e_getstats(struct fore200e* fore200e)
1734 {
1735 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1736 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1737 struct stats_opcode opcode;
1738 int ok;
1739 u32 stats_dma_addr;
1740
1741 if (fore200e->stats == NULL) {
1742 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1743 if (fore200e->stats == NULL)
1744 return -ENOMEM;
1745 }
1746
1747 stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1748 sizeof(struct stats), DMA_FROM_DEVICE);
1749
1750 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1751
1752 opcode.opcode = OPCODE_GET_STATS;
1753 opcode.pad = 0;
1754
1755 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1756
1757 *entry->status = STATUS_PENDING;
1758
1759 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1760
1761 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1762
1763 *entry->status = STATUS_FREE;
1764
1765 fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1766
1767 if (ok == 0) {
1768 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1769 return -EIO;
1770 }
1771
1772 return 0;
1773 }
1774
1775
1776 static int
1777 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1778 {
1779 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1780
1781 DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1782 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1783
1784 return -EINVAL;
1785 }
1786
1787
1788 static int
1789 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1790 {
1791 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1792
1793 DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1794 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1795
1796 return -EINVAL;
1797 }
1798
1799
1800 #if 0 /* currently unused */
1801 static int
1802 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1803 {
1804 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1805 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1806 struct oc3_opcode opcode;
1807 int ok;
1808 u32 oc3_regs_dma_addr;
1809
1810 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1811
1812 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1813
1814 opcode.opcode = OPCODE_GET_OC3;
1815 opcode.reg = 0;
1816 opcode.value = 0;
1817 opcode.mask = 0;
1818
1819 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1820
1821 *entry->status = STATUS_PENDING;
1822
1823 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1824
1825 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1826
1827 *entry->status = STATUS_FREE;
1828
1829 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1830
1831 if (ok == 0) {
1832 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1833 return -EIO;
1834 }
1835
1836 return 0;
1837 }
1838 #endif
1839
1840
1841 static int
1842 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1843 {
1844 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1845 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1846 struct oc3_opcode opcode;
1847 int ok;
1848
1849 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1850
1851 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1852
1853 opcode.opcode = OPCODE_SET_OC3;
1854 opcode.reg = reg;
1855 opcode.value = value;
1856 opcode.mask = mask;
1857
1858 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1859
1860 *entry->status = STATUS_PENDING;
1861
1862 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1863
1864 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1865
1866 *entry->status = STATUS_FREE;
1867
1868 if (ok == 0) {
1869 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1870 return -EIO;
1871 }
1872
1873 return 0;
1874 }
1875
1876
1877 static int
1878 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1879 {
1880 u32 mct_value, mct_mask;
1881 int error;
1882
1883 if (!capable(CAP_NET_ADMIN))
1884 return -EPERM;
1885
1886 switch (loop_mode) {
1887
1888 case ATM_LM_NONE:
1889 mct_value = 0;
1890 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1891 break;
1892
1893 case ATM_LM_LOC_PHY:
1894 mct_value = mct_mask = SUNI_MCT_DLE;
1895 break;
1896
1897 case ATM_LM_RMT_PHY:
1898 mct_value = mct_mask = SUNI_MCT_LLE;
1899 break;
1900
1901 default:
1902 return -EINVAL;
1903 }
1904
1905 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1906 if (error == 0)
1907 fore200e->loop_mode = loop_mode;
1908
1909 return error;
1910 }
1911
1912
1913 static int
1914 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1915 {
1916 struct sonet_stats tmp;
1917
1918 if (fore200e_getstats(fore200e) < 0)
1919 return -EIO;
1920
1921 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1922 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1923 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1924 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1925 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1926 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1927 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1928 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1929 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1930 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1931 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1932 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1933 be32_to_cpu(fore200e->stats->aal5.cells_received);
1934
1935 if (arg)
1936 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1937
1938 return 0;
1939 }
1940
1941
1942 static int
1943 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1944 {
1945 struct fore200e* fore200e = FORE200E_DEV(dev);
1946
1947 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1948
1949 switch (cmd) {
1950
1951 case SONET_GETSTAT:
1952 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1953
1954 case SONET_GETDIAG:
1955 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1956
1957 case ATM_SETLOOP:
1958 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1959
1960 case ATM_GETLOOP:
1961 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1962
1963 case ATM_QUERYLOOP:
1964 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1965 }
1966
1967 return -ENOSYS; /* not implemented */
1968 }
1969
1970
1971 static int
1972 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1973 {
1974 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1975 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1976
1977 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1978 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1979 return -EINVAL;
1980 }
1981
1982 DPRINTK(2, "change_qos %d.%d.%d, "
1983 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1984 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1985 "available_cell_rate = %u",
1986 vcc->itf, vcc->vpi, vcc->vci,
1987 fore200e_traffic_class[ qos->txtp.traffic_class ],
1988 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1989 fore200e_traffic_class[ qos->rxtp.traffic_class ],
1990 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1991 flags, fore200e->available_cell_rate);
1992
1993 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1994
1995 mutex_lock(&fore200e->rate_mtx);
1996 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1997 mutex_unlock(&fore200e->rate_mtx);
1998 return -EAGAIN;
1999 }
2000
2001 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2002 fore200e->available_cell_rate -= qos->txtp.max_pcr;
2003
2004 mutex_unlock(&fore200e->rate_mtx);
2005
2006 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2007
2008 /* update rate control parameters */
2009 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2010
2011 set_bit(ATM_VF_HASQOS, &vcc->flags);
2012
2013 return 0;
2014 }
2015
2016 return -EINVAL;
2017 }
2018
2019
2020 static int fore200e_irq_request(struct fore200e *fore200e)
2021 {
2022 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2023
2024 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2025 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2026 return -EBUSY;
2027 }
2028
2029 printk(FORE200E "IRQ %s reserved for device %s\n",
2030 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2031
2032 #ifdef FORE200E_USE_TASKLET
2033 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2034 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2035 #endif
2036
2037 fore200e->state = FORE200E_STATE_IRQ;
2038 return 0;
2039 }
2040
2041
2042 static int fore200e_get_esi(struct fore200e *fore200e)
2043 {
2044 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2045 int ok, i;
2046
2047 if (!prom)
2048 return -ENOMEM;
2049
2050 ok = fore200e->bus->prom_read(fore200e, prom);
2051 if (ok < 0) {
2052 kfree(prom);
2053 return -EBUSY;
2054 }
2055
2056 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2057 fore200e->name,
2058 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
2059 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2060
2061 for (i = 0; i < ESI_LEN; i++) {
2062 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2063 }
2064
2065 kfree(prom);
2066
2067 return 0;
2068 }
2069
2070
2071 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2072 {
2073 int scheme, magn, nbr, size, i;
2074
2075 struct host_bsq* bsq;
2076 struct buffer* buffer;
2077
2078 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2079 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2080
2081 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2082
2083 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
2084 size = fore200e_rx_buf_size[ scheme ][ magn ];
2085
2086 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2087
2088 /* allocate the array of receive buffers */
2089 buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2090
2091 if (buffer == NULL)
2092 return -ENOMEM;
2093
2094 bsq->freebuf = NULL;
2095
2096 for (i = 0; i < nbr; i++) {
2097
2098 buffer[ i ].scheme = scheme;
2099 buffer[ i ].magn = magn;
2100 #ifdef FORE200E_BSQ_DEBUG
2101 buffer[ i ].index = i;
2102 buffer[ i ].supplied = 0;
2103 #endif
2104
2105 /* allocate the receive buffer body */
2106 if (fore200e_chunk_alloc(fore200e,
2107 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2108 DMA_FROM_DEVICE) < 0) {
2109
2110 while (i > 0)
2111 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2112 kfree(buffer);
2113
2114 return -ENOMEM;
2115 }
2116
2117 /* insert the buffer into the free buffer list */
2118 buffer[ i ].next = bsq->freebuf;
2119 bsq->freebuf = &buffer[ i ];
2120 }
2121 /* all the buffers are free, initially */
2122 bsq->freebuf_count = nbr;
2123
2124 #ifdef FORE200E_BSQ_DEBUG
2125 bsq_audit(3, bsq, scheme, magn);
2126 #endif
2127 }
2128 }
2129
2130 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2131 return 0;
2132 }
2133
2134
2135 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2136 {
2137 int scheme, magn, i;
2138
2139 struct host_bsq* bsq;
2140 struct cp_bsq_entry __iomem * cp_entry;
2141
2142 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2143 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2144
2145 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2146
2147 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2148
2149 /* allocate and align the array of status words */
2150 if (fore200e->bus->dma_chunk_alloc(fore200e,
2151 &bsq->status,
2152 sizeof(enum status),
2153 QUEUE_SIZE_BS,
2154 fore200e->bus->status_alignment) < 0) {
2155 return -ENOMEM;
2156 }
2157
2158 /* allocate and align the array of receive buffer descriptors */
2159 if (fore200e->bus->dma_chunk_alloc(fore200e,
2160 &bsq->rbd_block,
2161 sizeof(struct rbd_block),
2162 QUEUE_SIZE_BS,
2163 fore200e->bus->descr_alignment) < 0) {
2164
2165 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2166 return -ENOMEM;
2167 }
2168
2169 /* get the base address of the cp resident buffer supply queue entries */
2170 cp_entry = fore200e->virt_base +
2171 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2172
2173 /* fill the host resident and cp resident buffer supply queue entries */
2174 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2175
2176 bsq->host_entry[ i ].status =
2177 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2178 bsq->host_entry[ i ].rbd_block =
2179 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2180 bsq->host_entry[ i ].rbd_block_dma =
2181 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2182 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2183
2184 *bsq->host_entry[ i ].status = STATUS_FREE;
2185
2186 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2187 &cp_entry[ i ].status_haddr);
2188 }
2189 }
2190 }
2191
2192 fore200e->state = FORE200E_STATE_INIT_BSQ;
2193 return 0;
2194 }
2195
2196
2197 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2198 {
2199 struct host_rxq* rxq = &fore200e->host_rxq;
2200 struct cp_rxq_entry __iomem * cp_entry;
2201 int i;
2202
2203 DPRINTK(2, "receive queue is being initialized\n");
2204
2205 /* allocate and align the array of status words */
2206 if (fore200e->bus->dma_chunk_alloc(fore200e,
2207 &rxq->status,
2208 sizeof(enum status),
2209 QUEUE_SIZE_RX,
2210 fore200e->bus->status_alignment) < 0) {
2211 return -ENOMEM;
2212 }
2213
2214 /* allocate and align the array of receive PDU descriptors */
2215 if (fore200e->bus->dma_chunk_alloc(fore200e,
2216 &rxq->rpd,
2217 sizeof(struct rpd),
2218 QUEUE_SIZE_RX,
2219 fore200e->bus->descr_alignment) < 0) {
2220
2221 fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2222 return -ENOMEM;
2223 }
2224
2225 /* get the base address of the cp resident rx queue entries */
2226 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2227
2228 /* fill the host resident and cp resident rx entries */
2229 for (i=0; i < QUEUE_SIZE_RX; i++) {
2230
2231 rxq->host_entry[ i ].status =
2232 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2233 rxq->host_entry[ i ].rpd =
2234 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2235 rxq->host_entry[ i ].rpd_dma =
2236 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2237 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2238
2239 *rxq->host_entry[ i ].status = STATUS_FREE;
2240
2241 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2242 &cp_entry[ i ].status_haddr);
2243
2244 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2245 &cp_entry[ i ].rpd_haddr);
2246 }
2247
2248 /* set the head entry of the queue */
2249 rxq->head = 0;
2250
2251 fore200e->state = FORE200E_STATE_INIT_RXQ;
2252 return 0;
2253 }
2254
2255
2256 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2257 {
2258 struct host_txq* txq = &fore200e->host_txq;
2259 struct cp_txq_entry __iomem * cp_entry;
2260 int i;
2261
2262 DPRINTK(2, "transmit queue is being initialized\n");
2263
2264 /* allocate and align the array of status words */
2265 if (fore200e->bus->dma_chunk_alloc(fore200e,
2266 &txq->status,
2267 sizeof(enum status),
2268 QUEUE_SIZE_TX,
2269 fore200e->bus->status_alignment) < 0) {
2270 return -ENOMEM;
2271 }
2272
2273 /* allocate and align the array of transmit PDU descriptors */
2274 if (fore200e->bus->dma_chunk_alloc(fore200e,
2275 &txq->tpd,
2276 sizeof(struct tpd),
2277 QUEUE_SIZE_TX,
2278 fore200e->bus->descr_alignment) < 0) {
2279
2280 fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2281 return -ENOMEM;
2282 }
2283
2284 /* get the base address of the cp resident tx queue entries */
2285 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2286
2287 /* fill the host resident and cp resident tx entries */
2288 for (i=0; i < QUEUE_SIZE_TX; i++) {
2289
2290 txq->host_entry[ i ].status =
2291 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2292 txq->host_entry[ i ].tpd =
2293 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2294 txq->host_entry[ i ].tpd_dma =
2295 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2296 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2297
2298 *txq->host_entry[ i ].status = STATUS_FREE;
2299
2300 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2301 &cp_entry[ i ].status_haddr);
2302
2303 /* although there is a one-to-one mapping of tx queue entries and tpds,
2304 we do not write here the DMA (physical) base address of each tpd into
2305 the related cp resident entry, because the cp relies on this write
2306 operation to detect that a new pdu has been submitted for tx */
2307 }
2308
2309 /* set the head and tail entries of the queue */
2310 txq->head = 0;
2311 txq->tail = 0;
2312
2313 fore200e->state = FORE200E_STATE_INIT_TXQ;
2314 return 0;
2315 }
2316
2317
2318 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2319 {
2320 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2321 struct cp_cmdq_entry __iomem * cp_entry;
2322 int i;
2323
2324 DPRINTK(2, "command queue is being initialized\n");
2325
2326 /* allocate and align the array of status words */
2327 if (fore200e->bus->dma_chunk_alloc(fore200e,
2328 &cmdq->status,
2329 sizeof(enum status),
2330 QUEUE_SIZE_CMD,
2331 fore200e->bus->status_alignment) < 0) {
2332 return -ENOMEM;
2333 }
2334
2335 /* get the base address of the cp resident cmd queue entries */
2336 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2337
2338 /* fill the host resident and cp resident cmd entries */
2339 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2340
2341 cmdq->host_entry[ i ].status =
2342 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2343 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2344
2345 *cmdq->host_entry[ i ].status = STATUS_FREE;
2346
2347 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2348 &cp_entry[ i ].status_haddr);
2349 }
2350
2351 /* set the head entry of the queue */
2352 cmdq->head = 0;
2353
2354 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2355 return 0;
2356 }
2357
2358
2359 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2360 enum buffer_scheme scheme,
2361 enum buffer_magn magn, int queue_length,
2362 int pool_size, int supply_blksize)
2363 {
2364 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2365
2366 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2367 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2368 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2369 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2370 }
2371
2372
2373 static int fore200e_initialize(struct fore200e *fore200e)
2374 {
2375 struct cp_queues __iomem * cpq;
2376 int ok, scheme, magn;
2377
2378 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2379
2380 mutex_init(&fore200e->rate_mtx);
2381 spin_lock_init(&fore200e->q_lock);
2382
2383 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2384
2385 /* enable cp to host interrupts */
2386 fore200e->bus->write(1, &cpq->imask);
2387
2388 if (fore200e->bus->irq_enable)
2389 fore200e->bus->irq_enable(fore200e);
2390
2391 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2392
2393 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2394 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2395 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2396
2397 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2398 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2399
2400 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2401 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2402 fore200e_param_bs_queue(fore200e, scheme, magn,
2403 QUEUE_SIZE_BS,
2404 fore200e_rx_buf_nbr[ scheme ][ magn ],
2405 RBD_BLK_SIZE);
2406
2407 /* issue the initialize command */
2408 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2409 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2410
2411 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2412 if (ok == 0) {
2413 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2414 return -ENODEV;
2415 }
2416
2417 printk(FORE200E "device %s initialized\n", fore200e->name);
2418
2419 fore200e->state = FORE200E_STATE_INITIALIZE;
2420 return 0;
2421 }
2422
2423
2424 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2425 {
2426 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2427
2428 #if 0
2429 printk("%c", c);
2430 #endif
2431 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2432 }
2433
2434
2435 static int fore200e_monitor_getc(struct fore200e *fore200e)
2436 {
2437 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2438 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2439 int c;
2440
2441 while (time_before(jiffies, timeout)) {
2442
2443 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2444
2445 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2446
2447 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2448 #if 0
2449 printk("%c", c & 0xFF);
2450 #endif
2451 return c & 0xFF;
2452 }
2453 }
2454
2455 return -1;
2456 }
2457
2458
2459 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2460 {
2461 while (*str) {
2462
2463 /* the i960 monitor doesn't accept any new character if it has something to say */
2464 while (fore200e_monitor_getc(fore200e) >= 0);
2465
2466 fore200e_monitor_putc(fore200e, *str++);
2467 }
2468
2469 while (fore200e_monitor_getc(fore200e) >= 0);
2470 }
2471
2472 #ifdef __LITTLE_ENDIAN
2473 #define FW_EXT ".bin"
2474 #else
2475 #define FW_EXT "_ecd.bin2"
2476 #endif
2477
2478 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2479 {
2480 const struct firmware *firmware;
2481 struct device *device;
2482 const struct fw_header *fw_header;
2483 const __le32 *fw_data;
2484 u32 fw_size;
2485 u32 __iomem *load_addr;
2486 char buf[48];
2487 int err = -ENODEV;
2488
2489 if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2490 device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2491 #ifdef CONFIG_SBUS
2492 else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2493 device = &((struct platform_device *) fore200e->bus_dev)->dev;
2494 #endif
2495 else
2496 return err;
2497
2498 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2499 if ((err = request_firmware(&firmware, buf, device)) < 0) {
2500 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2501 return err;
2502 }
2503
2504 fw_data = (const __le32 *)firmware->data;
2505 fw_size = firmware->size / sizeof(u32);
2506 fw_header = (const struct fw_header *)firmware->data;
2507 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2508
2509 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2510 fore200e->name, load_addr, fw_size);
2511
2512 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2513 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2514 goto release;
2515 }
2516
2517 for (; fw_size--; fw_data++, load_addr++)
2518 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2519
2520 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2521
2522 #if defined(__sparc_v9__)
2523 /* reported to be required by SBA cards on some sparc64 hosts */
2524 fore200e_spin(100);
2525 #endif
2526
2527 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2528 fore200e_monitor_puts(fore200e, buf);
2529
2530 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2531 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2532 goto release;
2533 }
2534
2535 printk(FORE200E "device %s firmware started\n", fore200e->name);
2536
2537 fore200e->state = FORE200E_STATE_START_FW;
2538 err = 0;
2539
2540 release:
2541 release_firmware(firmware);
2542 return err;
2543 }
2544
2545
2546 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2547 {
2548 struct atm_dev* atm_dev;
2549
2550 DPRINTK(2, "device %s being registered\n", fore200e->name);
2551
2552 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2553 -1, NULL);
2554 if (atm_dev == NULL) {
2555 printk(FORE200E "unable to register device %s\n", fore200e->name);
2556 return -ENODEV;
2557 }
2558
2559 atm_dev->dev_data = fore200e;
2560 fore200e->atm_dev = atm_dev;
2561
2562 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2563 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2564
2565 fore200e->available_cell_rate = ATM_OC3_PCR;
2566
2567 fore200e->state = FORE200E_STATE_REGISTER;
2568 return 0;
2569 }
2570
2571
2572 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2573 {
2574 if (fore200e_register(fore200e, parent) < 0)
2575 return -ENODEV;
2576
2577 if (fore200e->bus->configure(fore200e) < 0)
2578 return -ENODEV;
2579
2580 if (fore200e->bus->map(fore200e) < 0)
2581 return -ENODEV;
2582
2583 if (fore200e_reset(fore200e, 1) < 0)
2584 return -ENODEV;
2585
2586 if (fore200e_load_and_start_fw(fore200e) < 0)
2587 return -ENODEV;
2588
2589 if (fore200e_initialize(fore200e) < 0)
2590 return -ENODEV;
2591
2592 if (fore200e_init_cmd_queue(fore200e) < 0)
2593 return -ENOMEM;
2594
2595 if (fore200e_init_tx_queue(fore200e) < 0)
2596 return -ENOMEM;
2597
2598 if (fore200e_init_rx_queue(fore200e) < 0)
2599 return -ENOMEM;
2600
2601 if (fore200e_init_bs_queue(fore200e) < 0)
2602 return -ENOMEM;
2603
2604 if (fore200e_alloc_rx_buf(fore200e) < 0)
2605 return -ENOMEM;
2606
2607 if (fore200e_get_esi(fore200e) < 0)
2608 return -EIO;
2609
2610 if (fore200e_irq_request(fore200e) < 0)
2611 return -EBUSY;
2612
2613 fore200e_supply(fore200e);
2614
2615 /* all done, board initialization is now complete */
2616 fore200e->state = FORE200E_STATE_COMPLETE;
2617 return 0;
2618 }
2619
2620 #ifdef CONFIG_SBUS
2621 static const struct of_device_id fore200e_sba_match[];
2622 static int fore200e_sba_probe(struct platform_device *op)
2623 {
2624 const struct of_device_id *match;
2625 const struct fore200e_bus *bus;
2626 struct fore200e *fore200e;
2627 static int index = 0;
2628 int err;
2629
2630 match = of_match_device(fore200e_sba_match, &op->dev);
2631 if (!match)
2632 return -EINVAL;
2633 bus = match->data;
2634
2635 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2636 if (!fore200e)
2637 return -ENOMEM;
2638
2639 fore200e->bus = bus;
2640 fore200e->bus_dev = op;
2641 fore200e->irq = op->archdata.irqs[0];
2642 fore200e->phys_base = op->resource[0].start;
2643
2644 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2645
2646 err = fore200e_init(fore200e, &op->dev);
2647 if (err < 0) {
2648 fore200e_shutdown(fore200e);
2649 kfree(fore200e);
2650 return err;
2651 }
2652
2653 index++;
2654 dev_set_drvdata(&op->dev, fore200e);
2655
2656 return 0;
2657 }
2658
2659 static int fore200e_sba_remove(struct platform_device *op)
2660 {
2661 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2662
2663 fore200e_shutdown(fore200e);
2664 kfree(fore200e);
2665
2666 return 0;
2667 }
2668
2669 static const struct of_device_id fore200e_sba_match[] = {
2670 {
2671 .name = SBA200E_PROM_NAME,
2672 .data = (void *) &fore200e_bus[1],
2673 },
2674 {},
2675 };
2676 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2677
2678 static struct platform_driver fore200e_sba_driver = {
2679 .driver = {
2680 .name = "fore_200e",
2681 .of_match_table = fore200e_sba_match,
2682 },
2683 .probe = fore200e_sba_probe,
2684 .remove = fore200e_sba_remove,
2685 };
2686 #endif
2687
2688 #ifdef CONFIG_PCI
2689 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2690 const struct pci_device_id *pci_ent)
2691 {
2692 const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2693 struct fore200e* fore200e;
2694 int err = 0;
2695 static int index = 0;
2696
2697 if (pci_enable_device(pci_dev)) {
2698 err = -EINVAL;
2699 goto out;
2700 }
2701
2702 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2703 err = -EINVAL;
2704 goto out;
2705 }
2706
2707 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2708 if (fore200e == NULL) {
2709 err = -ENOMEM;
2710 goto out_disable;
2711 }
2712
2713 fore200e->bus = bus;
2714 fore200e->bus_dev = pci_dev;
2715 fore200e->irq = pci_dev->irq;
2716 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2717
2718 sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2719
2720 pci_set_master(pci_dev);
2721
2722 printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2723 fore200e->bus->model_name,
2724 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2725
2726 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2727
2728 err = fore200e_init(fore200e, &pci_dev->dev);
2729 if (err < 0) {
2730 fore200e_shutdown(fore200e);
2731 goto out_free;
2732 }
2733
2734 ++index;
2735 pci_set_drvdata(pci_dev, fore200e);
2736
2737 out:
2738 return err;
2739
2740 out_free:
2741 kfree(fore200e);
2742 out_disable:
2743 pci_disable_device(pci_dev);
2744 goto out;
2745 }
2746
2747
2748 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2749 {
2750 struct fore200e *fore200e;
2751
2752 fore200e = pci_get_drvdata(pci_dev);
2753
2754 fore200e_shutdown(fore200e);
2755 kfree(fore200e);
2756 pci_disable_device(pci_dev);
2757 }
2758
2759
2760 static struct pci_device_id fore200e_pca_tbl[] = {
2761 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2762 0, 0, (unsigned long) &fore200e_bus[0] },
2763 { 0, }
2764 };
2765
2766 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2767
2768 static struct pci_driver fore200e_pca_driver = {
2769 .name = "fore_200e",
2770 .probe = fore200e_pca_detect,
2771 .remove = fore200e_pca_remove_one,
2772 .id_table = fore200e_pca_tbl,
2773 };
2774 #endif
2775
2776 static int __init fore200e_module_init(void)
2777 {
2778 int err = 0;
2779
2780 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2781
2782 #ifdef CONFIG_SBUS
2783 err = platform_driver_register(&fore200e_sba_driver);
2784 if (err)
2785 return err;
2786 #endif
2787
2788 #ifdef CONFIG_PCI
2789 err = pci_register_driver(&fore200e_pca_driver);
2790 #endif
2791
2792 #ifdef CONFIG_SBUS
2793 if (err)
2794 platform_driver_unregister(&fore200e_sba_driver);
2795 #endif
2796
2797 return err;
2798 }
2799
2800 static void __exit fore200e_module_cleanup(void)
2801 {
2802 #ifdef CONFIG_PCI
2803 pci_unregister_driver(&fore200e_pca_driver);
2804 #endif
2805 #ifdef CONFIG_SBUS
2806 platform_driver_unregister(&fore200e_sba_driver);
2807 #endif
2808 }
2809
2810 static int
2811 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2812 {
2813 struct fore200e* fore200e = FORE200E_DEV(dev);
2814 struct fore200e_vcc* fore200e_vcc;
2815 struct atm_vcc* vcc;
2816 int i, len, left = *pos;
2817 unsigned long flags;
2818
2819 if (!left--) {
2820
2821 if (fore200e_getstats(fore200e) < 0)
2822 return -EIO;
2823
2824 len = sprintf(page,"\n"
2825 " device:\n"
2826 " internal name:\t\t%s\n", fore200e->name);
2827
2828 /* print bus-specific information */
2829 if (fore200e->bus->proc_read)
2830 len += fore200e->bus->proc_read(fore200e, page + len);
2831
2832 len += sprintf(page + len,
2833 " interrupt line:\t\t%s\n"
2834 " physical base address:\t0x%p\n"
2835 " virtual base address:\t0x%p\n"
2836 " factory address (ESI):\t%pM\n"
2837 " board serial number:\t\t%d\n\n",
2838 fore200e_irq_itoa(fore200e->irq),
2839 (void*)fore200e->phys_base,
2840 fore200e->virt_base,
2841 fore200e->esi,
2842 fore200e->esi[4] * 256 + fore200e->esi[5]);
2843
2844 return len;
2845 }
2846
2847 if (!left--)
2848 return sprintf(page,
2849 " free small bufs, scheme 1:\t%d\n"
2850 " free large bufs, scheme 1:\t%d\n"
2851 " free small bufs, scheme 2:\t%d\n"
2852 " free large bufs, scheme 2:\t%d\n",
2853 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2854 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2855 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2856 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2857
2858 if (!left--) {
2859 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2860
2861 len = sprintf(page,"\n\n"
2862 " cell processor:\n"
2863 " heartbeat state:\t\t");
2864
2865 if (hb >> 16 != 0xDEAD)
2866 len += sprintf(page + len, "0x%08x\n", hb);
2867 else
2868 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2869
2870 return len;
2871 }
2872
2873 if (!left--) {
2874 static const char* media_name[] = {
2875 "unshielded twisted pair",
2876 "multimode optical fiber ST",
2877 "multimode optical fiber SC",
2878 "single-mode optical fiber ST",
2879 "single-mode optical fiber SC",
2880 "unknown"
2881 };
2882
2883 static const char* oc3_mode[] = {
2884 "normal operation",
2885 "diagnostic loopback",
2886 "line loopback",
2887 "unknown"
2888 };
2889
2890 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2891 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2892 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2893 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2894 u32 oc3_index;
2895
2896 if (media_index > 4)
2897 media_index = 5;
2898
2899 switch (fore200e->loop_mode) {
2900 case ATM_LM_NONE: oc3_index = 0;
2901 break;
2902 case ATM_LM_LOC_PHY: oc3_index = 1;
2903 break;
2904 case ATM_LM_RMT_PHY: oc3_index = 2;
2905 break;
2906 default: oc3_index = 3;
2907 }
2908
2909 return sprintf(page,
2910 " firmware release:\t\t%d.%d.%d\n"
2911 " monitor release:\t\t%d.%d\n"
2912 " media type:\t\t\t%s\n"
2913 " OC-3 revision:\t\t0x%x\n"
2914 " OC-3 mode:\t\t\t%s",
2915 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2916 mon960_release >> 16, mon960_release << 16 >> 16,
2917 media_name[ media_index ],
2918 oc3_revision,
2919 oc3_mode[ oc3_index ]);
2920 }
2921
2922 if (!left--) {
2923 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2924
2925 return sprintf(page,
2926 "\n\n"
2927 " monitor:\n"
2928 " version number:\t\t%d\n"
2929 " boot status word:\t\t0x%08x\n",
2930 fore200e->bus->read(&cp_monitor->mon_version),
2931 fore200e->bus->read(&cp_monitor->bstat));
2932 }
2933
2934 if (!left--)
2935 return sprintf(page,
2936 "\n"
2937 " device statistics:\n"
2938 " 4b5b:\n"
2939 " crc_header_errors:\t\t%10u\n"
2940 " framing_errors:\t\t%10u\n",
2941 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2942 be32_to_cpu(fore200e->stats->phy.framing_errors));
2943
2944 if (!left--)
2945 return sprintf(page, "\n"
2946 " OC-3:\n"
2947 " section_bip8_errors:\t%10u\n"
2948 " path_bip8_errors:\t\t%10u\n"
2949 " line_bip24_errors:\t\t%10u\n"
2950 " line_febe_errors:\t\t%10u\n"
2951 " path_febe_errors:\t\t%10u\n"
2952 " corr_hcs_errors:\t\t%10u\n"
2953 " ucorr_hcs_errors:\t\t%10u\n",
2954 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2955 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2956 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2957 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2958 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2959 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2960 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2961
2962 if (!left--)
2963 return sprintf(page,"\n"
2964 " ATM:\t\t\t\t cells\n"
2965 " TX:\t\t\t%10u\n"
2966 " RX:\t\t\t%10u\n"
2967 " vpi out of range:\t\t%10u\n"
2968 " vpi no conn:\t\t%10u\n"
2969 " vci out of range:\t\t%10u\n"
2970 " vci no conn:\t\t%10u\n",
2971 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2972 be32_to_cpu(fore200e->stats->atm.cells_received),
2973 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2974 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2975 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2976 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2977
2978 if (!left--)
2979 return sprintf(page,"\n"
2980 " AAL0:\t\t\t cells\n"
2981 " TX:\t\t\t%10u\n"
2982 " RX:\t\t\t%10u\n"
2983 " dropped:\t\t\t%10u\n",
2984 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2985 be32_to_cpu(fore200e->stats->aal0.cells_received),
2986 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2987
2988 if (!left--)
2989 return sprintf(page,"\n"
2990 " AAL3/4:\n"
2991 " SAR sublayer:\t\t cells\n"
2992 " TX:\t\t\t%10u\n"
2993 " RX:\t\t\t%10u\n"
2994 " dropped:\t\t\t%10u\n"
2995 " CRC errors:\t\t%10u\n"
2996 " protocol errors:\t\t%10u\n\n"
2997 " CS sublayer:\t\t PDUs\n"
2998 " TX:\t\t\t%10u\n"
2999 " RX:\t\t\t%10u\n"
3000 " dropped:\t\t\t%10u\n"
3001 " protocol errors:\t\t%10u\n",
3002 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3003 be32_to_cpu(fore200e->stats->aal34.cells_received),
3004 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3005 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3006 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3007 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3008 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3009 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3010 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3011
3012 if (!left--)
3013 return sprintf(page,"\n"
3014 " AAL5:\n"
3015 " SAR sublayer:\t\t cells\n"
3016 " TX:\t\t\t%10u\n"
3017 " RX:\t\t\t%10u\n"
3018 " dropped:\t\t\t%10u\n"
3019 " congestions:\t\t%10u\n\n"
3020 " CS sublayer:\t\t PDUs\n"
3021 " TX:\t\t\t%10u\n"
3022 " RX:\t\t\t%10u\n"
3023 " dropped:\t\t\t%10u\n"
3024 " CRC errors:\t\t%10u\n"
3025 " protocol errors:\t\t%10u\n",
3026 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3027 be32_to_cpu(fore200e->stats->aal5.cells_received),
3028 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3029 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3030 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3031 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3032 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3033 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3034 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3035
3036 if (!left--)
3037 return sprintf(page,"\n"
3038 " AUX:\t\t allocation failures\n"
3039 " small b1:\t\t\t%10u\n"
3040 " large b1:\t\t\t%10u\n"
3041 " small b2:\t\t\t%10u\n"
3042 " large b2:\t\t\t%10u\n"
3043 " RX PDUs:\t\t\t%10u\n"
3044 " TX PDUs:\t\t\t%10lu\n",
3045 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3046 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3047 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3048 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3049 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3050 fore200e->tx_sat);
3051
3052 if (!left--)
3053 return sprintf(page,"\n"
3054 " receive carrier:\t\t\t%s\n",
3055 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3056
3057 if (!left--) {
3058 return sprintf(page,"\n"
3059 " VCCs:\n address VPI VCI AAL "
3060 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
3061 }
3062
3063 for (i = 0; i < NBR_CONNECT; i++) {
3064
3065 vcc = fore200e->vc_map[i].vcc;
3066
3067 if (vcc == NULL)
3068 continue;
3069
3070 spin_lock_irqsave(&fore200e->q_lock, flags);
3071
3072 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3073
3074 fore200e_vcc = FORE200E_VCC(vcc);
3075 ASSERT(fore200e_vcc);
3076
3077 len = sprintf(page,
3078 " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
3079 (u32)(unsigned long)vcc,
3080 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3081 fore200e_vcc->tx_pdu,
3082 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3083 fore200e_vcc->tx_max_pdu,
3084 fore200e_vcc->rx_pdu,
3085 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3086 fore200e_vcc->rx_max_pdu);
3087
3088 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3089 return len;
3090 }
3091
3092 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3093 }
3094
3095 return 0;
3096 }
3097
3098 module_init(fore200e_module_init);
3099 module_exit(fore200e_module_cleanup);
3100
3101
3102 static const struct atmdev_ops fore200e_ops =
3103 {
3104 .open = fore200e_open,
3105 .close = fore200e_close,
3106 .ioctl = fore200e_ioctl,
3107 .getsockopt = fore200e_getsockopt,
3108 .setsockopt = fore200e_setsockopt,
3109 .send = fore200e_send,
3110 .change_qos = fore200e_change_qos,
3111 .proc_read = fore200e_proc_read,
3112 .owner = THIS_MODULE
3113 };
3114
3115
3116 static const struct fore200e_bus fore200e_bus[] = {
3117 #ifdef CONFIG_PCI
3118 { "PCA-200E", "pca200e", 32, 4, 32,
3119 fore200e_pca_read,
3120 fore200e_pca_write,
3121 fore200e_pca_dma_map,
3122 fore200e_pca_dma_unmap,
3123 fore200e_pca_dma_sync_for_cpu,
3124 fore200e_pca_dma_sync_for_device,
3125 fore200e_pca_dma_chunk_alloc,
3126 fore200e_pca_dma_chunk_free,
3127 fore200e_pca_configure,
3128 fore200e_pca_map,
3129 fore200e_pca_reset,
3130 fore200e_pca_prom_read,
3131 fore200e_pca_unmap,
3132 NULL,
3133 fore200e_pca_irq_check,
3134 fore200e_pca_irq_ack,
3135 fore200e_pca_proc_read,
3136 },
3137 #endif
3138 #ifdef CONFIG_SBUS
3139 { "SBA-200E", "sba200e", 32, 64, 32,
3140 fore200e_sba_read,
3141 fore200e_sba_write,
3142 fore200e_sba_dma_map,
3143 fore200e_sba_dma_unmap,
3144 fore200e_sba_dma_sync_for_cpu,
3145 fore200e_sba_dma_sync_for_device,
3146 fore200e_sba_dma_chunk_alloc,
3147 fore200e_sba_dma_chunk_free,
3148 fore200e_sba_configure,
3149 fore200e_sba_map,
3150 fore200e_sba_reset,
3151 fore200e_sba_prom_read,
3152 fore200e_sba_unmap,
3153 fore200e_sba_irq_enable,
3154 fore200e_sba_irq_check,
3155 fore200e_sba_irq_ack,
3156 fore200e_sba_proc_read,
3157 },
3158 #endif
3159 {}
3160 };
3161
3162 MODULE_LICENSE("GPL");
3163 #ifdef CONFIG_PCI
3164 #ifdef __LITTLE_ENDIAN__
3165 MODULE_FIRMWARE("pca200e.bin");
3166 #else
3167 MODULE_FIRMWARE("pca200e_ecd.bin2");
3168 #endif
3169 #endif /* CONFIG_PCI */
3170 #ifdef CONFIG_SBUS
3171 MODULE_FIRMWARE("sba200e_ecd.bin2");
3172 #endif