]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/cacheinfo.c
drivers: base cacheinfo: Add support for ACPI based firmware tables
[mirror_ubuntu-bionic-kernel.git] / drivers / base / cacheinfo.c
1 /*
2 * cacheinfo support - processor cache information via sysfs
3 *
4 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
5 * Author: Sudeep Holla <sudeep.holla@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/acpi.h>
22 #include <linux/bitops.h>
23 #include <linux/cacheinfo.h>
24 #include <linux/compiler.h>
25 #include <linux/cpu.h>
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/of.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/smp.h>
32 #include <linux/sysfs.h>
33
34 /* pointer to per cpu cacheinfo */
35 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
36 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu))
37 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves)
38 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list)
39
40 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
41 {
42 return ci_cacheinfo(cpu);
43 }
44
45 #ifdef CONFIG_OF
46 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
47 struct cacheinfo *sib_leaf)
48 {
49 return sib_leaf->fw_token == this_leaf->fw_token;
50 }
51
52 /* OF properties to query for a given cache type */
53 struct cache_type_info {
54 const char *size_prop;
55 const char *line_size_props[2];
56 const char *nr_sets_prop;
57 };
58
59 static const struct cache_type_info cache_type_info[] = {
60 {
61 .size_prop = "cache-size",
62 .line_size_props = { "cache-line-size",
63 "cache-block-size", },
64 .nr_sets_prop = "cache-sets",
65 }, {
66 .size_prop = "i-cache-size",
67 .line_size_props = { "i-cache-line-size",
68 "i-cache-block-size", },
69 .nr_sets_prop = "i-cache-sets",
70 }, {
71 .size_prop = "d-cache-size",
72 .line_size_props = { "d-cache-line-size",
73 "d-cache-block-size", },
74 .nr_sets_prop = "d-cache-sets",
75 },
76 };
77
78 static inline int get_cacheinfo_idx(enum cache_type type)
79 {
80 if (type == CACHE_TYPE_UNIFIED)
81 return 0;
82 return type;
83 }
84
85 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
86 {
87 const char *propname;
88 const __be32 *cache_size;
89 int ct_idx;
90
91 ct_idx = get_cacheinfo_idx(this_leaf->type);
92 propname = cache_type_info[ct_idx].size_prop;
93
94 cache_size = of_get_property(np, propname, NULL);
95 if (cache_size)
96 this_leaf->size = of_read_number(cache_size, 1);
97 }
98
99 /* not cache_line_size() because that's a macro in include/linux/cache.h */
100 static void cache_get_line_size(struct cacheinfo *this_leaf,
101 struct device_node *np)
102 {
103 const __be32 *line_size;
104 int i, lim, ct_idx;
105
106 ct_idx = get_cacheinfo_idx(this_leaf->type);
107 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
108
109 for (i = 0; i < lim; i++) {
110 const char *propname;
111
112 propname = cache_type_info[ct_idx].line_size_props[i];
113 line_size = of_get_property(np, propname, NULL);
114 if (line_size)
115 break;
116 }
117
118 if (line_size)
119 this_leaf->coherency_line_size = of_read_number(line_size, 1);
120 }
121
122 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
123 {
124 const char *propname;
125 const __be32 *nr_sets;
126 int ct_idx;
127
128 ct_idx = get_cacheinfo_idx(this_leaf->type);
129 propname = cache_type_info[ct_idx].nr_sets_prop;
130
131 nr_sets = of_get_property(np, propname, NULL);
132 if (nr_sets)
133 this_leaf->number_of_sets = of_read_number(nr_sets, 1);
134 }
135
136 static void cache_associativity(struct cacheinfo *this_leaf)
137 {
138 unsigned int line_size = this_leaf->coherency_line_size;
139 unsigned int nr_sets = this_leaf->number_of_sets;
140 unsigned int size = this_leaf->size;
141
142 /*
143 * If the cache is fully associative, there is no need to
144 * check the other properties.
145 */
146 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
147 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
148 }
149
150 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
151 struct device_node *np)
152 {
153 return of_property_read_bool(np, "cache-unified");
154 }
155
156 static void cache_of_set_props(struct cacheinfo *this_leaf,
157 struct device_node *np)
158 {
159 /*
160 * init_cache_level must setup the cache level correctly
161 * overriding the architecturally specified levels, so
162 * if type is NONE at this stage, it should be unified
163 */
164 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
165 cache_node_is_unified(this_leaf, np))
166 this_leaf->type = CACHE_TYPE_UNIFIED;
167 cache_size(this_leaf, np);
168 cache_get_line_size(this_leaf, np);
169 cache_nr_sets(this_leaf, np);
170 cache_associativity(this_leaf);
171 }
172
173 static int cache_setup_of_node(unsigned int cpu)
174 {
175 struct device_node *np;
176 struct cacheinfo *this_leaf;
177 struct device *cpu_dev = get_cpu_device(cpu);
178 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
179 unsigned int index = 0;
180
181 /* skip if fw_token is already populated */
182 if (this_cpu_ci->info_list->fw_token) {
183 return 0;
184 }
185
186 if (!cpu_dev) {
187 pr_err("No cpu device for CPU %d\n", cpu);
188 return -ENODEV;
189 }
190 np = cpu_dev->of_node;
191 if (!np) {
192 pr_err("Failed to find cpu%d device node\n", cpu);
193 return -ENOENT;
194 }
195
196 while (index < cache_leaves(cpu)) {
197 this_leaf = this_cpu_ci->info_list + index;
198 if (this_leaf->level != 1)
199 np = of_find_next_cache_node(np);
200 else
201 np = of_node_get(np);/* cpu node itself */
202 if (!np)
203 break;
204 cache_of_set_props(this_leaf, np);
205 this_leaf->fw_token = np;
206 index++;
207 }
208
209 if (index != cache_leaves(cpu)) /* not all OF nodes populated */
210 return -ENOENT;
211
212 return 0;
213 }
214 #else
215 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
216 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
217 struct cacheinfo *sib_leaf)
218 {
219 /*
220 * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
221 * shared caches for all other levels. This will be used only if
222 * arch specific code has not populated shared_cpu_map
223 */
224 return !(this_leaf->level == 1);
225 }
226 #endif
227
228 int __weak cache_setup_acpi(unsigned int cpu)
229 {
230 return -ENOTSUPP;
231 }
232
233 static int cache_shared_cpu_map_setup(unsigned int cpu)
234 {
235 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
236 struct cacheinfo *this_leaf, *sib_leaf;
237 unsigned int index;
238 int ret = 0;
239
240 if (this_cpu_ci->cpu_map_populated)
241 return 0;
242
243 if (of_have_populated_dt())
244 ret = cache_setup_of_node(cpu);
245 else if (!acpi_disabled)
246 ret = cache_setup_acpi(cpu);
247
248 if (ret)
249 return ret;
250
251 for (index = 0; index < cache_leaves(cpu); index++) {
252 unsigned int i;
253
254 this_leaf = this_cpu_ci->info_list + index;
255 /* skip if shared_cpu_map is already populated */
256 if (!cpumask_empty(&this_leaf->shared_cpu_map))
257 continue;
258
259 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
260 for_each_online_cpu(i) {
261 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
262
263 if (i == cpu || !sib_cpu_ci->info_list)
264 continue;/* skip if itself or no cacheinfo */
265 sib_leaf = sib_cpu_ci->info_list + index;
266 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
267 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
268 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
269 }
270 }
271 }
272
273 return 0;
274 }
275
276 static void cache_shared_cpu_map_remove(unsigned int cpu)
277 {
278 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
279 struct cacheinfo *this_leaf, *sib_leaf;
280 unsigned int sibling, index;
281
282 for (index = 0; index < cache_leaves(cpu); index++) {
283 this_leaf = this_cpu_ci->info_list + index;
284 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
285 struct cpu_cacheinfo *sib_cpu_ci;
286
287 if (sibling == cpu) /* skip itself */
288 continue;
289
290 sib_cpu_ci = get_cpu_cacheinfo(sibling);
291 if (!sib_cpu_ci->info_list)
292 continue;
293
294 sib_leaf = sib_cpu_ci->info_list + index;
295 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
296 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
297 }
298 if (of_have_populated_dt())
299 of_node_put(this_leaf->fw_token);
300 }
301 }
302
303 static void free_cache_attributes(unsigned int cpu)
304 {
305 if (!per_cpu_cacheinfo(cpu))
306 return;
307
308 cache_shared_cpu_map_remove(cpu);
309
310 kfree(per_cpu_cacheinfo(cpu));
311 per_cpu_cacheinfo(cpu) = NULL;
312 }
313
314 int __weak init_cache_level(unsigned int cpu)
315 {
316 return -ENOENT;
317 }
318
319 int __weak populate_cache_leaves(unsigned int cpu)
320 {
321 return -ENOENT;
322 }
323
324 static int detect_cache_attributes(unsigned int cpu)
325 {
326 int ret;
327
328 if (init_cache_level(cpu) || !cache_leaves(cpu))
329 return -ENOENT;
330
331 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
332 sizeof(struct cacheinfo), GFP_KERNEL);
333 if (per_cpu_cacheinfo(cpu) == NULL)
334 return -ENOMEM;
335
336 /*
337 * populate_cache_leaves() may completely setup the cache leaves and
338 * shared_cpu_map or it may leave it partially setup.
339 */
340 ret = populate_cache_leaves(cpu);
341 if (ret)
342 goto free_ci;
343 /*
344 * For systems using DT for cache hierarchy, fw_token
345 * and shared_cpu_map will be set up here only if they are
346 * not populated already
347 */
348 ret = cache_shared_cpu_map_setup(cpu);
349 if (ret) {
350 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
351 goto free_ci;
352 }
353
354 return 0;
355
356 free_ci:
357 free_cache_attributes(cpu);
358 return ret;
359 }
360
361 /* pointer to cpuX/cache device */
362 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
363 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu))
364
365 static cpumask_t cache_dev_map;
366
367 /* pointer to array of devices for cpuX/cache/indexY */
368 static DEFINE_PER_CPU(struct device **, ci_index_dev);
369 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu))
370 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx])
371
372 #define show_one(file_name, object) \
373 static ssize_t file_name##_show(struct device *dev, \
374 struct device_attribute *attr, char *buf) \
375 { \
376 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
377 return sprintf(buf, "%u\n", this_leaf->object); \
378 }
379
380 show_one(id, id);
381 show_one(level, level);
382 show_one(coherency_line_size, coherency_line_size);
383 show_one(number_of_sets, number_of_sets);
384 show_one(physical_line_partition, physical_line_partition);
385 show_one(ways_of_associativity, ways_of_associativity);
386
387 static ssize_t size_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
389 {
390 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
391
392 return sprintf(buf, "%uK\n", this_leaf->size >> 10);
393 }
394
395 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
396 {
397 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
398 const struct cpumask *mask = &this_leaf->shared_cpu_map;
399
400 return cpumap_print_to_pagebuf(list, buf, mask);
401 }
402
403 static ssize_t shared_cpu_map_show(struct device *dev,
404 struct device_attribute *attr, char *buf)
405 {
406 return shared_cpumap_show_func(dev, false, buf);
407 }
408
409 static ssize_t shared_cpu_list_show(struct device *dev,
410 struct device_attribute *attr, char *buf)
411 {
412 return shared_cpumap_show_func(dev, true, buf);
413 }
414
415 static ssize_t type_show(struct device *dev,
416 struct device_attribute *attr, char *buf)
417 {
418 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
419
420 switch (this_leaf->type) {
421 case CACHE_TYPE_DATA:
422 return sprintf(buf, "Data\n");
423 case CACHE_TYPE_INST:
424 return sprintf(buf, "Instruction\n");
425 case CACHE_TYPE_UNIFIED:
426 return sprintf(buf, "Unified\n");
427 default:
428 return -EINVAL;
429 }
430 }
431
432 static ssize_t allocation_policy_show(struct device *dev,
433 struct device_attribute *attr, char *buf)
434 {
435 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
436 unsigned int ci_attr = this_leaf->attributes;
437 int n = 0;
438
439 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
440 n = sprintf(buf, "ReadWriteAllocate\n");
441 else if (ci_attr & CACHE_READ_ALLOCATE)
442 n = sprintf(buf, "ReadAllocate\n");
443 else if (ci_attr & CACHE_WRITE_ALLOCATE)
444 n = sprintf(buf, "WriteAllocate\n");
445 return n;
446 }
447
448 static ssize_t write_policy_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
450 {
451 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
452 unsigned int ci_attr = this_leaf->attributes;
453 int n = 0;
454
455 if (ci_attr & CACHE_WRITE_THROUGH)
456 n = sprintf(buf, "WriteThrough\n");
457 else if (ci_attr & CACHE_WRITE_BACK)
458 n = sprintf(buf, "WriteBack\n");
459 return n;
460 }
461
462 static DEVICE_ATTR_RO(id);
463 static DEVICE_ATTR_RO(level);
464 static DEVICE_ATTR_RO(type);
465 static DEVICE_ATTR_RO(coherency_line_size);
466 static DEVICE_ATTR_RO(ways_of_associativity);
467 static DEVICE_ATTR_RO(number_of_sets);
468 static DEVICE_ATTR_RO(size);
469 static DEVICE_ATTR_RO(allocation_policy);
470 static DEVICE_ATTR_RO(write_policy);
471 static DEVICE_ATTR_RO(shared_cpu_map);
472 static DEVICE_ATTR_RO(shared_cpu_list);
473 static DEVICE_ATTR_RO(physical_line_partition);
474
475 static struct attribute *cache_default_attrs[] = {
476 &dev_attr_id.attr,
477 &dev_attr_type.attr,
478 &dev_attr_level.attr,
479 &dev_attr_shared_cpu_map.attr,
480 &dev_attr_shared_cpu_list.attr,
481 &dev_attr_coherency_line_size.attr,
482 &dev_attr_ways_of_associativity.attr,
483 &dev_attr_number_of_sets.attr,
484 &dev_attr_size.attr,
485 &dev_attr_allocation_policy.attr,
486 &dev_attr_write_policy.attr,
487 &dev_attr_physical_line_partition.attr,
488 NULL
489 };
490
491 static umode_t
492 cache_default_attrs_is_visible(struct kobject *kobj,
493 struct attribute *attr, int unused)
494 {
495 struct device *dev = kobj_to_dev(kobj);
496 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
497 const struct cpumask *mask = &this_leaf->shared_cpu_map;
498 umode_t mode = attr->mode;
499
500 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
501 return mode;
502 if ((attr == &dev_attr_type.attr) && this_leaf->type)
503 return mode;
504 if ((attr == &dev_attr_level.attr) && this_leaf->level)
505 return mode;
506 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
507 return mode;
508 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
509 return mode;
510 if ((attr == &dev_attr_coherency_line_size.attr) &&
511 this_leaf->coherency_line_size)
512 return mode;
513 if ((attr == &dev_attr_ways_of_associativity.attr) &&
514 this_leaf->size) /* allow 0 = full associativity */
515 return mode;
516 if ((attr == &dev_attr_number_of_sets.attr) &&
517 this_leaf->number_of_sets)
518 return mode;
519 if ((attr == &dev_attr_size.attr) && this_leaf->size)
520 return mode;
521 if ((attr == &dev_attr_write_policy.attr) &&
522 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
523 return mode;
524 if ((attr == &dev_attr_allocation_policy.attr) &&
525 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
526 return mode;
527 if ((attr == &dev_attr_physical_line_partition.attr) &&
528 this_leaf->physical_line_partition)
529 return mode;
530
531 return 0;
532 }
533
534 static const struct attribute_group cache_default_group = {
535 .attrs = cache_default_attrs,
536 .is_visible = cache_default_attrs_is_visible,
537 };
538
539 static const struct attribute_group *cache_default_groups[] = {
540 &cache_default_group,
541 NULL,
542 };
543
544 static const struct attribute_group *cache_private_groups[] = {
545 &cache_default_group,
546 NULL, /* Place holder for private group */
547 NULL,
548 };
549
550 const struct attribute_group *
551 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
552 {
553 return NULL;
554 }
555
556 static const struct attribute_group **
557 cache_get_attribute_groups(struct cacheinfo *this_leaf)
558 {
559 const struct attribute_group *priv_group =
560 cache_get_priv_group(this_leaf);
561
562 if (!priv_group)
563 return cache_default_groups;
564
565 if (!cache_private_groups[1])
566 cache_private_groups[1] = priv_group;
567
568 return cache_private_groups;
569 }
570
571 /* Add/Remove cache interface for CPU device */
572 static void cpu_cache_sysfs_exit(unsigned int cpu)
573 {
574 int i;
575 struct device *ci_dev;
576
577 if (per_cpu_index_dev(cpu)) {
578 for (i = 0; i < cache_leaves(cpu); i++) {
579 ci_dev = per_cache_index_dev(cpu, i);
580 if (!ci_dev)
581 continue;
582 device_unregister(ci_dev);
583 }
584 kfree(per_cpu_index_dev(cpu));
585 per_cpu_index_dev(cpu) = NULL;
586 }
587 device_unregister(per_cpu_cache_dev(cpu));
588 per_cpu_cache_dev(cpu) = NULL;
589 }
590
591 static int cpu_cache_sysfs_init(unsigned int cpu)
592 {
593 struct device *dev = get_cpu_device(cpu);
594
595 if (per_cpu_cacheinfo(cpu) == NULL)
596 return -ENOENT;
597
598 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
599 if (IS_ERR(per_cpu_cache_dev(cpu)))
600 return PTR_ERR(per_cpu_cache_dev(cpu));
601
602 /* Allocate all required memory */
603 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
604 sizeof(struct device *), GFP_KERNEL);
605 if (unlikely(per_cpu_index_dev(cpu) == NULL))
606 goto err_out;
607
608 return 0;
609
610 err_out:
611 cpu_cache_sysfs_exit(cpu);
612 return -ENOMEM;
613 }
614
615 static int cache_add_dev(unsigned int cpu)
616 {
617 unsigned int i;
618 int rc;
619 struct device *ci_dev, *parent;
620 struct cacheinfo *this_leaf;
621 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
622 const struct attribute_group **cache_groups;
623
624 rc = cpu_cache_sysfs_init(cpu);
625 if (unlikely(rc < 0))
626 return rc;
627
628 parent = per_cpu_cache_dev(cpu);
629 for (i = 0; i < cache_leaves(cpu); i++) {
630 this_leaf = this_cpu_ci->info_list + i;
631 if (this_leaf->disable_sysfs)
632 continue;
633 cache_groups = cache_get_attribute_groups(this_leaf);
634 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
635 "index%1u", i);
636 if (IS_ERR(ci_dev)) {
637 rc = PTR_ERR(ci_dev);
638 goto err;
639 }
640 per_cache_index_dev(cpu, i) = ci_dev;
641 }
642 cpumask_set_cpu(cpu, &cache_dev_map);
643
644 return 0;
645 err:
646 cpu_cache_sysfs_exit(cpu);
647 return rc;
648 }
649
650 static int cacheinfo_cpu_online(unsigned int cpu)
651 {
652 int rc = detect_cache_attributes(cpu);
653
654 if (rc)
655 return rc;
656 rc = cache_add_dev(cpu);
657 if (rc)
658 free_cache_attributes(cpu);
659 return rc;
660 }
661
662 static int cacheinfo_cpu_pre_down(unsigned int cpu)
663 {
664 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
665 cpu_cache_sysfs_exit(cpu);
666
667 free_cache_attributes(cpu);
668 return 0;
669 }
670
671 static int __init cacheinfo_sysfs_init(void)
672 {
673 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
674 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
675 }
676 device_initcall(cacheinfo_sysfs_init);