]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/base/core.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sysfs.h>
30
31 #include "base.h"
32 #include "power/power.h"
33
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46
47 /* Device links support. */
48
49 #ifdef CONFIG_SRCU
50 static DEFINE_MUTEX(device_links_lock);
51 DEFINE_STATIC_SRCU(device_links_srcu);
52
53 static inline void device_links_write_lock(void)
54 {
55 mutex_lock(&device_links_lock);
56 }
57
58 static inline void device_links_write_unlock(void)
59 {
60 mutex_unlock(&device_links_lock);
61 }
62
63 int device_links_read_lock(void)
64 {
65 return srcu_read_lock(&device_links_srcu);
66 }
67
68 void device_links_read_unlock(int idx)
69 {
70 srcu_read_unlock(&device_links_srcu, idx);
71 }
72 #else /* !CONFIG_SRCU */
73 static DECLARE_RWSEM(device_links_lock);
74
75 static inline void device_links_write_lock(void)
76 {
77 down_write(&device_links_lock);
78 }
79
80 static inline void device_links_write_unlock(void)
81 {
82 up_write(&device_links_lock);
83 }
84
85 int device_links_read_lock(void)
86 {
87 down_read(&device_links_lock);
88 return 0;
89 }
90
91 void device_links_read_unlock(int not_used)
92 {
93 up_read(&device_links_lock);
94 }
95 #endif /* !CONFIG_SRCU */
96
97 /**
98 * device_is_dependent - Check if one device depends on another one
99 * @dev: Device to check dependencies for.
100 * @target: Device to check against.
101 *
102 * Check if @target depends on @dev or any device dependent on it (its child or
103 * its consumer etc). Return 1 if that is the case or 0 otherwise.
104 */
105 static int device_is_dependent(struct device *dev, void *target)
106 {
107 struct device_link *link;
108 int ret;
109
110 if (WARN_ON(dev == target))
111 return 1;
112
113 ret = device_for_each_child(dev, target, device_is_dependent);
114 if (ret)
115 return ret;
116
117 list_for_each_entry(link, &dev->links.consumers, s_node) {
118 if (WARN_ON(link->consumer == target))
119 return 1;
120
121 ret = device_is_dependent(link->consumer, target);
122 if (ret)
123 break;
124 }
125 return ret;
126 }
127
128 static int device_reorder_to_tail(struct device *dev, void *not_used)
129 {
130 struct device_link *link;
131
132 /*
133 * Devices that have not been registered yet will be put to the ends
134 * of the lists during the registration, so skip them here.
135 */
136 if (device_is_registered(dev))
137 devices_kset_move_last(dev);
138
139 if (device_pm_initialized(dev))
140 device_pm_move_last(dev);
141
142 device_for_each_child(dev, NULL, device_reorder_to_tail);
143 list_for_each_entry(link, &dev->links.consumers, s_node)
144 device_reorder_to_tail(link->consumer, NULL);
145
146 return 0;
147 }
148
149 /**
150 * device_link_add - Create a link between two devices.
151 * @consumer: Consumer end of the link.
152 * @supplier: Supplier end of the link.
153 * @flags: Link flags.
154 *
155 * The caller is responsible for the proper synchronization of the link creation
156 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
157 * runtime PM framework to take the link into account. Second, if the
158 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
159 * be forced into the active metastate and reference-counted upon the creation
160 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
161 * ignored.
162 *
163 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
164 * when the consumer device driver unbinds from it. The combination of both
165 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
166 * to be returned.
167 *
168 * A side effect of the link creation is re-ordering of dpm_list and the
169 * devices_kset list by moving the consumer device and all devices depending
170 * on it to the ends of these lists (that does not happen to devices that have
171 * not been registered when this function is called).
172 *
173 * The supplier device is required to be registered when this function is called
174 * and NULL will be returned if that is not the case. The consumer device need
175 * not be registered, however.
176 */
177 struct device_link *device_link_add(struct device *consumer,
178 struct device *supplier, u32 flags)
179 {
180 struct device_link *link;
181
182 if (!consumer || !supplier ||
183 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
184 return NULL;
185
186 device_links_write_lock();
187 device_pm_lock();
188
189 /*
190 * If the supplier has not been fully registered yet or there is a
191 * reverse dependency between the consumer and the supplier already in
192 * the graph, return NULL.
193 */
194 if (!device_pm_initialized(supplier)
195 || device_is_dependent(consumer, supplier)) {
196 link = NULL;
197 goto out;
198 }
199
200 list_for_each_entry(link, &supplier->links.consumers, s_node)
201 if (link->consumer == consumer)
202 goto out;
203
204 link = kzalloc(sizeof(*link), GFP_KERNEL);
205 if (!link)
206 goto out;
207
208 if (flags & DL_FLAG_PM_RUNTIME) {
209 if (flags & DL_FLAG_RPM_ACTIVE) {
210 if (pm_runtime_get_sync(supplier) < 0) {
211 pm_runtime_put_noidle(supplier);
212 kfree(link);
213 link = NULL;
214 goto out;
215 }
216 link->rpm_active = true;
217 }
218 pm_runtime_new_link(consumer);
219 }
220 get_device(supplier);
221 link->supplier = supplier;
222 INIT_LIST_HEAD(&link->s_node);
223 get_device(consumer);
224 link->consumer = consumer;
225 INIT_LIST_HEAD(&link->c_node);
226 link->flags = flags;
227
228 /* Determine the initial link state. */
229 if (flags & DL_FLAG_STATELESS) {
230 link->status = DL_STATE_NONE;
231 } else {
232 switch (supplier->links.status) {
233 case DL_DEV_DRIVER_BOUND:
234 switch (consumer->links.status) {
235 case DL_DEV_PROBING:
236 /*
237 * Balance the decrementation of the supplier's
238 * runtime PM usage counter after consumer probe
239 * in driver_probe_device().
240 */
241 if (flags & DL_FLAG_PM_RUNTIME)
242 pm_runtime_get_sync(supplier);
243
244 link->status = DL_STATE_CONSUMER_PROBE;
245 break;
246 case DL_DEV_DRIVER_BOUND:
247 link->status = DL_STATE_ACTIVE;
248 break;
249 default:
250 link->status = DL_STATE_AVAILABLE;
251 break;
252 }
253 break;
254 case DL_DEV_UNBINDING:
255 link->status = DL_STATE_SUPPLIER_UNBIND;
256 break;
257 default:
258 link->status = DL_STATE_DORMANT;
259 break;
260 }
261 }
262
263 /*
264 * Move the consumer and all of the devices depending on it to the end
265 * of dpm_list and the devices_kset list.
266 *
267 * It is necessary to hold dpm_list locked throughout all that or else
268 * we may end up suspending with a wrong ordering of it.
269 */
270 device_reorder_to_tail(consumer, NULL);
271
272 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
273 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
274
275 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
276
277 out:
278 device_pm_unlock();
279 device_links_write_unlock();
280 return link;
281 }
282 EXPORT_SYMBOL_GPL(device_link_add);
283
284 static void device_link_free(struct device_link *link)
285 {
286 put_device(link->consumer);
287 put_device(link->supplier);
288 kfree(link);
289 }
290
291 #ifdef CONFIG_SRCU
292 static void __device_link_free_srcu(struct rcu_head *rhead)
293 {
294 device_link_free(container_of(rhead, struct device_link, rcu_head));
295 }
296
297 static void __device_link_del(struct device_link *link)
298 {
299 dev_info(link->consumer, "Dropping the link to %s\n",
300 dev_name(link->supplier));
301
302 if (link->flags & DL_FLAG_PM_RUNTIME)
303 pm_runtime_drop_link(link->consumer);
304
305 list_del_rcu(&link->s_node);
306 list_del_rcu(&link->c_node);
307 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
308 }
309 #else /* !CONFIG_SRCU */
310 static void __device_link_del(struct device_link *link)
311 {
312 dev_info(link->consumer, "Dropping the link to %s\n",
313 dev_name(link->supplier));
314
315 list_del(&link->s_node);
316 list_del(&link->c_node);
317 device_link_free(link);
318 }
319 #endif /* !CONFIG_SRCU */
320
321 /**
322 * device_link_del - Delete a link between two devices.
323 * @link: Device link to delete.
324 *
325 * The caller must ensure proper synchronization of this function with runtime
326 * PM.
327 */
328 void device_link_del(struct device_link *link)
329 {
330 device_links_write_lock();
331 device_pm_lock();
332 __device_link_del(link);
333 device_pm_unlock();
334 device_links_write_unlock();
335 }
336 EXPORT_SYMBOL_GPL(device_link_del);
337
338 static void device_links_missing_supplier(struct device *dev)
339 {
340 struct device_link *link;
341
342 list_for_each_entry(link, &dev->links.suppliers, c_node)
343 if (link->status == DL_STATE_CONSUMER_PROBE)
344 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
345 }
346
347 /**
348 * device_links_check_suppliers - Check presence of supplier drivers.
349 * @dev: Consumer device.
350 *
351 * Check links from this device to any suppliers. Walk the list of the device's
352 * links to suppliers and see if all of them are available. If not, simply
353 * return -EPROBE_DEFER.
354 *
355 * We need to guarantee that the supplier will not go away after the check has
356 * been positive here. It only can go away in __device_release_driver() and
357 * that function checks the device's links to consumers. This means we need to
358 * mark the link as "consumer probe in progress" to make the supplier removal
359 * wait for us to complete (or bad things may happen).
360 *
361 * Links with the DL_FLAG_STATELESS flag set are ignored.
362 */
363 int device_links_check_suppliers(struct device *dev)
364 {
365 struct device_link *link;
366 int ret = 0;
367
368 device_links_write_lock();
369
370 list_for_each_entry(link, &dev->links.suppliers, c_node) {
371 if (link->flags & DL_FLAG_STATELESS)
372 continue;
373
374 if (link->status != DL_STATE_AVAILABLE) {
375 device_links_missing_supplier(dev);
376 ret = -EPROBE_DEFER;
377 break;
378 }
379 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
380 }
381 dev->links.status = DL_DEV_PROBING;
382
383 device_links_write_unlock();
384 return ret;
385 }
386
387 /**
388 * device_links_driver_bound - Update device links after probing its driver.
389 * @dev: Device to update the links for.
390 *
391 * The probe has been successful, so update links from this device to any
392 * consumers by changing their status to "available".
393 *
394 * Also change the status of @dev's links to suppliers to "active".
395 *
396 * Links with the DL_FLAG_STATELESS flag set are ignored.
397 */
398 void device_links_driver_bound(struct device *dev)
399 {
400 struct device_link *link;
401
402 device_links_write_lock();
403
404 list_for_each_entry(link, &dev->links.consumers, s_node) {
405 if (link->flags & DL_FLAG_STATELESS)
406 continue;
407
408 WARN_ON(link->status != DL_STATE_DORMANT);
409 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
410 }
411
412 list_for_each_entry(link, &dev->links.suppliers, c_node) {
413 if (link->flags & DL_FLAG_STATELESS)
414 continue;
415
416 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
417 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
418 }
419
420 dev->links.status = DL_DEV_DRIVER_BOUND;
421
422 device_links_write_unlock();
423 }
424
425 /**
426 * __device_links_no_driver - Update links of a device without a driver.
427 * @dev: Device without a drvier.
428 *
429 * Delete all non-persistent links from this device to any suppliers.
430 *
431 * Persistent links stay around, but their status is changed to "available",
432 * unless they already are in the "supplier unbind in progress" state in which
433 * case they need not be updated.
434 *
435 * Links with the DL_FLAG_STATELESS flag set are ignored.
436 */
437 static void __device_links_no_driver(struct device *dev)
438 {
439 struct device_link *link, *ln;
440
441 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
442 if (link->flags & DL_FLAG_STATELESS)
443 continue;
444
445 if (link->flags & DL_FLAG_AUTOREMOVE)
446 __device_link_del(link);
447 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
448 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
449 }
450
451 dev->links.status = DL_DEV_NO_DRIVER;
452 }
453
454 void device_links_no_driver(struct device *dev)
455 {
456 device_links_write_lock();
457 __device_links_no_driver(dev);
458 device_links_write_unlock();
459 }
460
461 /**
462 * device_links_driver_cleanup - Update links after driver removal.
463 * @dev: Device whose driver has just gone away.
464 *
465 * Update links to consumers for @dev by changing their status to "dormant" and
466 * invoke %__device_links_no_driver() to update links to suppliers for it as
467 * appropriate.
468 *
469 * Links with the DL_FLAG_STATELESS flag set are ignored.
470 */
471 void device_links_driver_cleanup(struct device *dev)
472 {
473 struct device_link *link;
474
475 device_links_write_lock();
476
477 list_for_each_entry(link, &dev->links.consumers, s_node) {
478 if (link->flags & DL_FLAG_STATELESS)
479 continue;
480
481 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
482 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
483 WRITE_ONCE(link->status, DL_STATE_DORMANT);
484 }
485
486 __device_links_no_driver(dev);
487
488 device_links_write_unlock();
489 }
490
491 /**
492 * device_links_busy - Check if there are any busy links to consumers.
493 * @dev: Device to check.
494 *
495 * Check each consumer of the device and return 'true' if its link's status
496 * is one of "consumer probe" or "active" (meaning that the given consumer is
497 * probing right now or its driver is present). Otherwise, change the link
498 * state to "supplier unbind" to prevent the consumer from being probed
499 * successfully going forward.
500 *
501 * Return 'false' if there are no probing or active consumers.
502 *
503 * Links with the DL_FLAG_STATELESS flag set are ignored.
504 */
505 bool device_links_busy(struct device *dev)
506 {
507 struct device_link *link;
508 bool ret = false;
509
510 device_links_write_lock();
511
512 list_for_each_entry(link, &dev->links.consumers, s_node) {
513 if (link->flags & DL_FLAG_STATELESS)
514 continue;
515
516 if (link->status == DL_STATE_CONSUMER_PROBE
517 || link->status == DL_STATE_ACTIVE) {
518 ret = true;
519 break;
520 }
521 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
522 }
523
524 dev->links.status = DL_DEV_UNBINDING;
525
526 device_links_write_unlock();
527 return ret;
528 }
529
530 /**
531 * device_links_unbind_consumers - Force unbind consumers of the given device.
532 * @dev: Device to unbind the consumers of.
533 *
534 * Walk the list of links to consumers for @dev and if any of them is in the
535 * "consumer probe" state, wait for all device probes in progress to complete
536 * and start over.
537 *
538 * If that's not the case, change the status of the link to "supplier unbind"
539 * and check if the link was in the "active" state. If so, force the consumer
540 * driver to unbind and start over (the consumer will not re-probe as we have
541 * changed the state of the link already).
542 *
543 * Links with the DL_FLAG_STATELESS flag set are ignored.
544 */
545 void device_links_unbind_consumers(struct device *dev)
546 {
547 struct device_link *link;
548
549 start:
550 device_links_write_lock();
551
552 list_for_each_entry(link, &dev->links.consumers, s_node) {
553 enum device_link_state status;
554
555 if (link->flags & DL_FLAG_STATELESS)
556 continue;
557
558 status = link->status;
559 if (status == DL_STATE_CONSUMER_PROBE) {
560 device_links_write_unlock();
561
562 wait_for_device_probe();
563 goto start;
564 }
565 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
566 if (status == DL_STATE_ACTIVE) {
567 struct device *consumer = link->consumer;
568
569 get_device(consumer);
570
571 device_links_write_unlock();
572
573 device_release_driver_internal(consumer, NULL,
574 consumer->parent);
575 put_device(consumer);
576 goto start;
577 }
578 }
579
580 device_links_write_unlock();
581 }
582
583 /**
584 * device_links_purge - Delete existing links to other devices.
585 * @dev: Target device.
586 */
587 static void device_links_purge(struct device *dev)
588 {
589 struct device_link *link, *ln;
590
591 /*
592 * Delete all of the remaining links from this device to any other
593 * devices (either consumers or suppliers).
594 */
595 device_links_write_lock();
596
597 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
598 WARN_ON(link->status == DL_STATE_ACTIVE);
599 __device_link_del(link);
600 }
601
602 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
603 WARN_ON(link->status != DL_STATE_DORMANT &&
604 link->status != DL_STATE_NONE);
605 __device_link_del(link);
606 }
607
608 device_links_write_unlock();
609 }
610
611 /* Device links support end. */
612
613 int (*platform_notify)(struct device *dev) = NULL;
614 int (*platform_notify_remove)(struct device *dev) = NULL;
615 static struct kobject *dev_kobj;
616 struct kobject *sysfs_dev_char_kobj;
617 struct kobject *sysfs_dev_block_kobj;
618
619 static DEFINE_MUTEX(device_hotplug_lock);
620
621 void lock_device_hotplug(void)
622 {
623 mutex_lock(&device_hotplug_lock);
624 }
625
626 void unlock_device_hotplug(void)
627 {
628 mutex_unlock(&device_hotplug_lock);
629 }
630
631 int lock_device_hotplug_sysfs(void)
632 {
633 if (mutex_trylock(&device_hotplug_lock))
634 return 0;
635
636 /* Avoid busy looping (5 ms of sleep should do). */
637 msleep(5);
638 return restart_syscall();
639 }
640
641 void assert_held_device_hotplug(void)
642 {
643 lockdep_assert_held(&device_hotplug_lock);
644 }
645
646 #ifdef CONFIG_BLOCK
647 static inline int device_is_not_partition(struct device *dev)
648 {
649 return !(dev->type == &part_type);
650 }
651 #else
652 static inline int device_is_not_partition(struct device *dev)
653 {
654 return 1;
655 }
656 #endif
657
658 /**
659 * dev_driver_string - Return a device's driver name, if at all possible
660 * @dev: struct device to get the name of
661 *
662 * Will return the device's driver's name if it is bound to a device. If
663 * the device is not bound to a driver, it will return the name of the bus
664 * it is attached to. If it is not attached to a bus either, an empty
665 * string will be returned.
666 */
667 const char *dev_driver_string(const struct device *dev)
668 {
669 struct device_driver *drv;
670
671 /* dev->driver can change to NULL underneath us because of unbinding,
672 * so be careful about accessing it. dev->bus and dev->class should
673 * never change once they are set, so they don't need special care.
674 */
675 drv = ACCESS_ONCE(dev->driver);
676 return drv ? drv->name :
677 (dev->bus ? dev->bus->name :
678 (dev->class ? dev->class->name : ""));
679 }
680 EXPORT_SYMBOL(dev_driver_string);
681
682 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
683
684 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
685 char *buf)
686 {
687 struct device_attribute *dev_attr = to_dev_attr(attr);
688 struct device *dev = kobj_to_dev(kobj);
689 ssize_t ret = -EIO;
690
691 if (dev_attr->show)
692 ret = dev_attr->show(dev, dev_attr, buf);
693 if (ret >= (ssize_t)PAGE_SIZE) {
694 print_symbol("dev_attr_show: %s returned bad count\n",
695 (unsigned long)dev_attr->show);
696 }
697 return ret;
698 }
699
700 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
701 const char *buf, size_t count)
702 {
703 struct device_attribute *dev_attr = to_dev_attr(attr);
704 struct device *dev = kobj_to_dev(kobj);
705 ssize_t ret = -EIO;
706
707 if (dev_attr->store)
708 ret = dev_attr->store(dev, dev_attr, buf, count);
709 return ret;
710 }
711
712 static const struct sysfs_ops dev_sysfs_ops = {
713 .show = dev_attr_show,
714 .store = dev_attr_store,
715 };
716
717 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
718
719 ssize_t device_store_ulong(struct device *dev,
720 struct device_attribute *attr,
721 const char *buf, size_t size)
722 {
723 struct dev_ext_attribute *ea = to_ext_attr(attr);
724 char *end;
725 unsigned long new = simple_strtoul(buf, &end, 0);
726 if (end == buf)
727 return -EINVAL;
728 *(unsigned long *)(ea->var) = new;
729 /* Always return full write size even if we didn't consume all */
730 return size;
731 }
732 EXPORT_SYMBOL_GPL(device_store_ulong);
733
734 ssize_t device_show_ulong(struct device *dev,
735 struct device_attribute *attr,
736 char *buf)
737 {
738 struct dev_ext_attribute *ea = to_ext_attr(attr);
739 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
740 }
741 EXPORT_SYMBOL_GPL(device_show_ulong);
742
743 ssize_t device_store_int(struct device *dev,
744 struct device_attribute *attr,
745 const char *buf, size_t size)
746 {
747 struct dev_ext_attribute *ea = to_ext_attr(attr);
748 char *end;
749 long new = simple_strtol(buf, &end, 0);
750 if (end == buf || new > INT_MAX || new < INT_MIN)
751 return -EINVAL;
752 *(int *)(ea->var) = new;
753 /* Always return full write size even if we didn't consume all */
754 return size;
755 }
756 EXPORT_SYMBOL_GPL(device_store_int);
757
758 ssize_t device_show_int(struct device *dev,
759 struct device_attribute *attr,
760 char *buf)
761 {
762 struct dev_ext_attribute *ea = to_ext_attr(attr);
763
764 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
765 }
766 EXPORT_SYMBOL_GPL(device_show_int);
767
768 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
769 const char *buf, size_t size)
770 {
771 struct dev_ext_attribute *ea = to_ext_attr(attr);
772
773 if (strtobool(buf, ea->var) < 0)
774 return -EINVAL;
775
776 return size;
777 }
778 EXPORT_SYMBOL_GPL(device_store_bool);
779
780 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
781 char *buf)
782 {
783 struct dev_ext_attribute *ea = to_ext_attr(attr);
784
785 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
786 }
787 EXPORT_SYMBOL_GPL(device_show_bool);
788
789 /**
790 * device_release - free device structure.
791 * @kobj: device's kobject.
792 *
793 * This is called once the reference count for the object
794 * reaches 0. We forward the call to the device's release
795 * method, which should handle actually freeing the structure.
796 */
797 static void device_release(struct kobject *kobj)
798 {
799 struct device *dev = kobj_to_dev(kobj);
800 struct device_private *p = dev->p;
801
802 /*
803 * Some platform devices are driven without driver attached
804 * and managed resources may have been acquired. Make sure
805 * all resources are released.
806 *
807 * Drivers still can add resources into device after device
808 * is deleted but alive, so release devres here to avoid
809 * possible memory leak.
810 */
811 devres_release_all(dev);
812
813 if (dev->release)
814 dev->release(dev);
815 else if (dev->type && dev->type->release)
816 dev->type->release(dev);
817 else if (dev->class && dev->class->dev_release)
818 dev->class->dev_release(dev);
819 else
820 WARN(1, KERN_ERR "Device '%s' does not have a release() "
821 "function, it is broken and must be fixed.\n",
822 dev_name(dev));
823 kfree(p);
824 }
825
826 static const void *device_namespace(struct kobject *kobj)
827 {
828 struct device *dev = kobj_to_dev(kobj);
829 const void *ns = NULL;
830
831 if (dev->class && dev->class->ns_type)
832 ns = dev->class->namespace(dev);
833
834 return ns;
835 }
836
837 static struct kobj_type device_ktype = {
838 .release = device_release,
839 .sysfs_ops = &dev_sysfs_ops,
840 .namespace = device_namespace,
841 };
842
843
844 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
845 {
846 struct kobj_type *ktype = get_ktype(kobj);
847
848 if (ktype == &device_ktype) {
849 struct device *dev = kobj_to_dev(kobj);
850 if (dev->bus)
851 return 1;
852 if (dev->class)
853 return 1;
854 }
855 return 0;
856 }
857
858 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
859 {
860 struct device *dev = kobj_to_dev(kobj);
861
862 if (dev->bus)
863 return dev->bus->name;
864 if (dev->class)
865 return dev->class->name;
866 return NULL;
867 }
868
869 static int dev_uevent(struct kset *kset, struct kobject *kobj,
870 struct kobj_uevent_env *env)
871 {
872 struct device *dev = kobj_to_dev(kobj);
873 int retval = 0;
874
875 /* add device node properties if present */
876 if (MAJOR(dev->devt)) {
877 const char *tmp;
878 const char *name;
879 umode_t mode = 0;
880 kuid_t uid = GLOBAL_ROOT_UID;
881 kgid_t gid = GLOBAL_ROOT_GID;
882
883 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
884 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
885 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
886 if (name) {
887 add_uevent_var(env, "DEVNAME=%s", name);
888 if (mode)
889 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
890 if (!uid_eq(uid, GLOBAL_ROOT_UID))
891 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
892 if (!gid_eq(gid, GLOBAL_ROOT_GID))
893 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
894 kfree(tmp);
895 }
896 }
897
898 if (dev->type && dev->type->name)
899 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
900
901 if (dev->driver)
902 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
903
904 /* Add common DT information about the device */
905 of_device_uevent(dev, env);
906
907 /* have the bus specific function add its stuff */
908 if (dev->bus && dev->bus->uevent) {
909 retval = dev->bus->uevent(dev, env);
910 if (retval)
911 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
912 dev_name(dev), __func__, retval);
913 }
914
915 /* have the class specific function add its stuff */
916 if (dev->class && dev->class->dev_uevent) {
917 retval = dev->class->dev_uevent(dev, env);
918 if (retval)
919 pr_debug("device: '%s': %s: class uevent() "
920 "returned %d\n", dev_name(dev),
921 __func__, retval);
922 }
923
924 /* have the device type specific function add its stuff */
925 if (dev->type && dev->type->uevent) {
926 retval = dev->type->uevent(dev, env);
927 if (retval)
928 pr_debug("device: '%s': %s: dev_type uevent() "
929 "returned %d\n", dev_name(dev),
930 __func__, retval);
931 }
932
933 return retval;
934 }
935
936 static const struct kset_uevent_ops device_uevent_ops = {
937 .filter = dev_uevent_filter,
938 .name = dev_uevent_name,
939 .uevent = dev_uevent,
940 };
941
942 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
943 char *buf)
944 {
945 struct kobject *top_kobj;
946 struct kset *kset;
947 struct kobj_uevent_env *env = NULL;
948 int i;
949 size_t count = 0;
950 int retval;
951
952 /* search the kset, the device belongs to */
953 top_kobj = &dev->kobj;
954 while (!top_kobj->kset && top_kobj->parent)
955 top_kobj = top_kobj->parent;
956 if (!top_kobj->kset)
957 goto out;
958
959 kset = top_kobj->kset;
960 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
961 goto out;
962
963 /* respect filter */
964 if (kset->uevent_ops && kset->uevent_ops->filter)
965 if (!kset->uevent_ops->filter(kset, &dev->kobj))
966 goto out;
967
968 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
969 if (!env)
970 return -ENOMEM;
971
972 /* let the kset specific function add its keys */
973 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
974 if (retval)
975 goto out;
976
977 /* copy keys to file */
978 for (i = 0; i < env->envp_idx; i++)
979 count += sprintf(&buf[count], "%s\n", env->envp[i]);
980 out:
981 kfree(env);
982 return count;
983 }
984
985 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
986 const char *buf, size_t count)
987 {
988 enum kobject_action action;
989
990 if (kobject_action_type(buf, count, &action) == 0)
991 kobject_uevent(&dev->kobj, action);
992 else
993 dev_err(dev, "uevent: unknown action-string\n");
994 return count;
995 }
996 static DEVICE_ATTR_RW(uevent);
997
998 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
999 char *buf)
1000 {
1001 bool val;
1002
1003 device_lock(dev);
1004 val = !dev->offline;
1005 device_unlock(dev);
1006 return sprintf(buf, "%u\n", val);
1007 }
1008
1009 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1010 const char *buf, size_t count)
1011 {
1012 bool val;
1013 int ret;
1014
1015 ret = strtobool(buf, &val);
1016 if (ret < 0)
1017 return ret;
1018
1019 ret = lock_device_hotplug_sysfs();
1020 if (ret)
1021 return ret;
1022
1023 ret = val ? device_online(dev) : device_offline(dev);
1024 unlock_device_hotplug();
1025 return ret < 0 ? ret : count;
1026 }
1027 static DEVICE_ATTR_RW(online);
1028
1029 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1030 {
1031 return sysfs_create_groups(&dev->kobj, groups);
1032 }
1033
1034 void device_remove_groups(struct device *dev,
1035 const struct attribute_group **groups)
1036 {
1037 sysfs_remove_groups(&dev->kobj, groups);
1038 }
1039
1040 static int device_add_attrs(struct device *dev)
1041 {
1042 struct class *class = dev->class;
1043 const struct device_type *type = dev->type;
1044 int error;
1045
1046 if (class) {
1047 error = device_add_groups(dev, class->dev_groups);
1048 if (error)
1049 return error;
1050 }
1051
1052 if (type) {
1053 error = device_add_groups(dev, type->groups);
1054 if (error)
1055 goto err_remove_class_groups;
1056 }
1057
1058 error = device_add_groups(dev, dev->groups);
1059 if (error)
1060 goto err_remove_type_groups;
1061
1062 if (device_supports_offline(dev) && !dev->offline_disabled) {
1063 error = device_create_file(dev, &dev_attr_online);
1064 if (error)
1065 goto err_remove_dev_groups;
1066 }
1067
1068 return 0;
1069
1070 err_remove_dev_groups:
1071 device_remove_groups(dev, dev->groups);
1072 err_remove_type_groups:
1073 if (type)
1074 device_remove_groups(dev, type->groups);
1075 err_remove_class_groups:
1076 if (class)
1077 device_remove_groups(dev, class->dev_groups);
1078
1079 return error;
1080 }
1081
1082 static void device_remove_attrs(struct device *dev)
1083 {
1084 struct class *class = dev->class;
1085 const struct device_type *type = dev->type;
1086
1087 device_remove_file(dev, &dev_attr_online);
1088 device_remove_groups(dev, dev->groups);
1089
1090 if (type)
1091 device_remove_groups(dev, type->groups);
1092
1093 if (class)
1094 device_remove_groups(dev, class->dev_groups);
1095 }
1096
1097 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1098 char *buf)
1099 {
1100 return print_dev_t(buf, dev->devt);
1101 }
1102 static DEVICE_ATTR_RO(dev);
1103
1104 /* /sys/devices/ */
1105 struct kset *devices_kset;
1106
1107 /**
1108 * devices_kset_move_before - Move device in the devices_kset's list.
1109 * @deva: Device to move.
1110 * @devb: Device @deva should come before.
1111 */
1112 static void devices_kset_move_before(struct device *deva, struct device *devb)
1113 {
1114 if (!devices_kset)
1115 return;
1116 pr_debug("devices_kset: Moving %s before %s\n",
1117 dev_name(deva), dev_name(devb));
1118 spin_lock(&devices_kset->list_lock);
1119 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1120 spin_unlock(&devices_kset->list_lock);
1121 }
1122
1123 /**
1124 * devices_kset_move_after - Move device in the devices_kset's list.
1125 * @deva: Device to move
1126 * @devb: Device @deva should come after.
1127 */
1128 static void devices_kset_move_after(struct device *deva, struct device *devb)
1129 {
1130 if (!devices_kset)
1131 return;
1132 pr_debug("devices_kset: Moving %s after %s\n",
1133 dev_name(deva), dev_name(devb));
1134 spin_lock(&devices_kset->list_lock);
1135 list_move(&deva->kobj.entry, &devb->kobj.entry);
1136 spin_unlock(&devices_kset->list_lock);
1137 }
1138
1139 /**
1140 * devices_kset_move_last - move the device to the end of devices_kset's list.
1141 * @dev: device to move
1142 */
1143 void devices_kset_move_last(struct device *dev)
1144 {
1145 if (!devices_kset)
1146 return;
1147 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1148 spin_lock(&devices_kset->list_lock);
1149 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1150 spin_unlock(&devices_kset->list_lock);
1151 }
1152
1153 /**
1154 * device_create_file - create sysfs attribute file for device.
1155 * @dev: device.
1156 * @attr: device attribute descriptor.
1157 */
1158 int device_create_file(struct device *dev,
1159 const struct device_attribute *attr)
1160 {
1161 int error = 0;
1162
1163 if (dev) {
1164 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1165 "Attribute %s: write permission without 'store'\n",
1166 attr->attr.name);
1167 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1168 "Attribute %s: read permission without 'show'\n",
1169 attr->attr.name);
1170 error = sysfs_create_file(&dev->kobj, &attr->attr);
1171 }
1172
1173 return error;
1174 }
1175 EXPORT_SYMBOL_GPL(device_create_file);
1176
1177 /**
1178 * device_remove_file - remove sysfs attribute file.
1179 * @dev: device.
1180 * @attr: device attribute descriptor.
1181 */
1182 void device_remove_file(struct device *dev,
1183 const struct device_attribute *attr)
1184 {
1185 if (dev)
1186 sysfs_remove_file(&dev->kobj, &attr->attr);
1187 }
1188 EXPORT_SYMBOL_GPL(device_remove_file);
1189
1190 /**
1191 * device_remove_file_self - remove sysfs attribute file from its own method.
1192 * @dev: device.
1193 * @attr: device attribute descriptor.
1194 *
1195 * See kernfs_remove_self() for details.
1196 */
1197 bool device_remove_file_self(struct device *dev,
1198 const struct device_attribute *attr)
1199 {
1200 if (dev)
1201 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1202 else
1203 return false;
1204 }
1205 EXPORT_SYMBOL_GPL(device_remove_file_self);
1206
1207 /**
1208 * device_create_bin_file - create sysfs binary attribute file for device.
1209 * @dev: device.
1210 * @attr: device binary attribute descriptor.
1211 */
1212 int device_create_bin_file(struct device *dev,
1213 const struct bin_attribute *attr)
1214 {
1215 int error = -EINVAL;
1216 if (dev)
1217 error = sysfs_create_bin_file(&dev->kobj, attr);
1218 return error;
1219 }
1220 EXPORT_SYMBOL_GPL(device_create_bin_file);
1221
1222 /**
1223 * device_remove_bin_file - remove sysfs binary attribute file
1224 * @dev: device.
1225 * @attr: device binary attribute descriptor.
1226 */
1227 void device_remove_bin_file(struct device *dev,
1228 const struct bin_attribute *attr)
1229 {
1230 if (dev)
1231 sysfs_remove_bin_file(&dev->kobj, attr);
1232 }
1233 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1234
1235 static void klist_children_get(struct klist_node *n)
1236 {
1237 struct device_private *p = to_device_private_parent(n);
1238 struct device *dev = p->device;
1239
1240 get_device(dev);
1241 }
1242
1243 static void klist_children_put(struct klist_node *n)
1244 {
1245 struct device_private *p = to_device_private_parent(n);
1246 struct device *dev = p->device;
1247
1248 put_device(dev);
1249 }
1250
1251 /**
1252 * device_initialize - init device structure.
1253 * @dev: device.
1254 *
1255 * This prepares the device for use by other layers by initializing
1256 * its fields.
1257 * It is the first half of device_register(), if called by
1258 * that function, though it can also be called separately, so one
1259 * may use @dev's fields. In particular, get_device()/put_device()
1260 * may be used for reference counting of @dev after calling this
1261 * function.
1262 *
1263 * All fields in @dev must be initialized by the caller to 0, except
1264 * for those explicitly set to some other value. The simplest
1265 * approach is to use kzalloc() to allocate the structure containing
1266 * @dev.
1267 *
1268 * NOTE: Use put_device() to give up your reference instead of freeing
1269 * @dev directly once you have called this function.
1270 */
1271 void device_initialize(struct device *dev)
1272 {
1273 dev->kobj.kset = devices_kset;
1274 kobject_init(&dev->kobj, &device_ktype);
1275 INIT_LIST_HEAD(&dev->dma_pools);
1276 mutex_init(&dev->mutex);
1277 lockdep_set_novalidate_class(&dev->mutex);
1278 spin_lock_init(&dev->devres_lock);
1279 INIT_LIST_HEAD(&dev->devres_head);
1280 device_pm_init(dev);
1281 set_dev_node(dev, -1);
1282 #ifdef CONFIG_GENERIC_MSI_IRQ
1283 INIT_LIST_HEAD(&dev->msi_list);
1284 #endif
1285 INIT_LIST_HEAD(&dev->links.consumers);
1286 INIT_LIST_HEAD(&dev->links.suppliers);
1287 dev->links.status = DL_DEV_NO_DRIVER;
1288 }
1289 EXPORT_SYMBOL_GPL(device_initialize);
1290
1291 struct kobject *virtual_device_parent(struct device *dev)
1292 {
1293 static struct kobject *virtual_dir = NULL;
1294
1295 if (!virtual_dir)
1296 virtual_dir = kobject_create_and_add("virtual",
1297 &devices_kset->kobj);
1298
1299 return virtual_dir;
1300 }
1301
1302 struct class_dir {
1303 struct kobject kobj;
1304 struct class *class;
1305 };
1306
1307 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1308
1309 static void class_dir_release(struct kobject *kobj)
1310 {
1311 struct class_dir *dir = to_class_dir(kobj);
1312 kfree(dir);
1313 }
1314
1315 static const
1316 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1317 {
1318 struct class_dir *dir = to_class_dir(kobj);
1319 return dir->class->ns_type;
1320 }
1321
1322 static struct kobj_type class_dir_ktype = {
1323 .release = class_dir_release,
1324 .sysfs_ops = &kobj_sysfs_ops,
1325 .child_ns_type = class_dir_child_ns_type
1326 };
1327
1328 static struct kobject *
1329 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1330 {
1331 struct class_dir *dir;
1332 int retval;
1333
1334 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1335 if (!dir)
1336 return NULL;
1337
1338 dir->class = class;
1339 kobject_init(&dir->kobj, &class_dir_ktype);
1340
1341 dir->kobj.kset = &class->p->glue_dirs;
1342
1343 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1344 if (retval < 0) {
1345 kobject_put(&dir->kobj);
1346 return NULL;
1347 }
1348 return &dir->kobj;
1349 }
1350
1351 static DEFINE_MUTEX(gdp_mutex);
1352
1353 static struct kobject *get_device_parent(struct device *dev,
1354 struct device *parent)
1355 {
1356 if (dev->class) {
1357 struct kobject *kobj = NULL;
1358 struct kobject *parent_kobj;
1359 struct kobject *k;
1360
1361 #ifdef CONFIG_BLOCK
1362 /* block disks show up in /sys/block */
1363 if (sysfs_deprecated && dev->class == &block_class) {
1364 if (parent && parent->class == &block_class)
1365 return &parent->kobj;
1366 return &block_class.p->subsys.kobj;
1367 }
1368 #endif
1369
1370 /*
1371 * If we have no parent, we live in "virtual".
1372 * Class-devices with a non class-device as parent, live
1373 * in a "glue" directory to prevent namespace collisions.
1374 */
1375 if (parent == NULL)
1376 parent_kobj = virtual_device_parent(dev);
1377 else if (parent->class && !dev->class->ns_type)
1378 return &parent->kobj;
1379 else
1380 parent_kobj = &parent->kobj;
1381
1382 mutex_lock(&gdp_mutex);
1383
1384 /* find our class-directory at the parent and reference it */
1385 spin_lock(&dev->class->p->glue_dirs.list_lock);
1386 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1387 if (k->parent == parent_kobj) {
1388 kobj = kobject_get(k);
1389 break;
1390 }
1391 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1392 if (kobj) {
1393 mutex_unlock(&gdp_mutex);
1394 return kobj;
1395 }
1396
1397 /* or create a new class-directory at the parent device */
1398 k = class_dir_create_and_add(dev->class, parent_kobj);
1399 /* do not emit an uevent for this simple "glue" directory */
1400 mutex_unlock(&gdp_mutex);
1401 return k;
1402 }
1403
1404 /* subsystems can specify a default root directory for their devices */
1405 if (!parent && dev->bus && dev->bus->dev_root)
1406 return &dev->bus->dev_root->kobj;
1407
1408 if (parent)
1409 return &parent->kobj;
1410 return NULL;
1411 }
1412
1413 static inline bool live_in_glue_dir(struct kobject *kobj,
1414 struct device *dev)
1415 {
1416 if (!kobj || !dev->class ||
1417 kobj->kset != &dev->class->p->glue_dirs)
1418 return false;
1419 return true;
1420 }
1421
1422 static inline struct kobject *get_glue_dir(struct device *dev)
1423 {
1424 return dev->kobj.parent;
1425 }
1426
1427 /*
1428 * make sure cleaning up dir as the last step, we need to make
1429 * sure .release handler of kobject is run with holding the
1430 * global lock
1431 */
1432 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1433 {
1434 /* see if we live in a "glue" directory */
1435 if (!live_in_glue_dir(glue_dir, dev))
1436 return;
1437
1438 mutex_lock(&gdp_mutex);
1439 kobject_put(glue_dir);
1440 mutex_unlock(&gdp_mutex);
1441 }
1442
1443 static int device_add_class_symlinks(struct device *dev)
1444 {
1445 struct device_node *of_node = dev_of_node(dev);
1446 int error;
1447
1448 if (of_node) {
1449 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
1450 if (error)
1451 dev_warn(dev, "Error %d creating of_node link\n",error);
1452 /* An error here doesn't warrant bringing down the device */
1453 }
1454
1455 if (!dev->class)
1456 return 0;
1457
1458 error = sysfs_create_link(&dev->kobj,
1459 &dev->class->p->subsys.kobj,
1460 "subsystem");
1461 if (error)
1462 goto out_devnode;
1463
1464 if (dev->parent && device_is_not_partition(dev)) {
1465 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1466 "device");
1467 if (error)
1468 goto out_subsys;
1469 }
1470
1471 #ifdef CONFIG_BLOCK
1472 /* /sys/block has directories and does not need symlinks */
1473 if (sysfs_deprecated && dev->class == &block_class)
1474 return 0;
1475 #endif
1476
1477 /* link in the class directory pointing to the device */
1478 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1479 &dev->kobj, dev_name(dev));
1480 if (error)
1481 goto out_device;
1482
1483 return 0;
1484
1485 out_device:
1486 sysfs_remove_link(&dev->kobj, "device");
1487
1488 out_subsys:
1489 sysfs_remove_link(&dev->kobj, "subsystem");
1490 out_devnode:
1491 sysfs_remove_link(&dev->kobj, "of_node");
1492 return error;
1493 }
1494
1495 static void device_remove_class_symlinks(struct device *dev)
1496 {
1497 if (dev_of_node(dev))
1498 sysfs_remove_link(&dev->kobj, "of_node");
1499
1500 if (!dev->class)
1501 return;
1502
1503 if (dev->parent && device_is_not_partition(dev))
1504 sysfs_remove_link(&dev->kobj, "device");
1505 sysfs_remove_link(&dev->kobj, "subsystem");
1506 #ifdef CONFIG_BLOCK
1507 if (sysfs_deprecated && dev->class == &block_class)
1508 return;
1509 #endif
1510 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1511 }
1512
1513 /**
1514 * dev_set_name - set a device name
1515 * @dev: device
1516 * @fmt: format string for the device's name
1517 */
1518 int dev_set_name(struct device *dev, const char *fmt, ...)
1519 {
1520 va_list vargs;
1521 int err;
1522
1523 va_start(vargs, fmt);
1524 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1525 va_end(vargs);
1526 return err;
1527 }
1528 EXPORT_SYMBOL_GPL(dev_set_name);
1529
1530 /**
1531 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1532 * @dev: device
1533 *
1534 * By default we select char/ for new entries. Setting class->dev_obj
1535 * to NULL prevents an entry from being created. class->dev_kobj must
1536 * be set (or cleared) before any devices are registered to the class
1537 * otherwise device_create_sys_dev_entry() and
1538 * device_remove_sys_dev_entry() will disagree about the presence of
1539 * the link.
1540 */
1541 static struct kobject *device_to_dev_kobj(struct device *dev)
1542 {
1543 struct kobject *kobj;
1544
1545 if (dev->class)
1546 kobj = dev->class->dev_kobj;
1547 else
1548 kobj = sysfs_dev_char_kobj;
1549
1550 return kobj;
1551 }
1552
1553 static int device_create_sys_dev_entry(struct device *dev)
1554 {
1555 struct kobject *kobj = device_to_dev_kobj(dev);
1556 int error = 0;
1557 char devt_str[15];
1558
1559 if (kobj) {
1560 format_dev_t(devt_str, dev->devt);
1561 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1562 }
1563
1564 return error;
1565 }
1566
1567 static void device_remove_sys_dev_entry(struct device *dev)
1568 {
1569 struct kobject *kobj = device_to_dev_kobj(dev);
1570 char devt_str[15];
1571
1572 if (kobj) {
1573 format_dev_t(devt_str, dev->devt);
1574 sysfs_remove_link(kobj, devt_str);
1575 }
1576 }
1577
1578 int device_private_init(struct device *dev)
1579 {
1580 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1581 if (!dev->p)
1582 return -ENOMEM;
1583 dev->p->device = dev;
1584 klist_init(&dev->p->klist_children, klist_children_get,
1585 klist_children_put);
1586 INIT_LIST_HEAD(&dev->p->deferred_probe);
1587 return 0;
1588 }
1589
1590 /**
1591 * device_add - add device to device hierarchy.
1592 * @dev: device.
1593 *
1594 * This is part 2 of device_register(), though may be called
1595 * separately _iff_ device_initialize() has been called separately.
1596 *
1597 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1598 * to the global and sibling lists for the device, then
1599 * adds it to the other relevant subsystems of the driver model.
1600 *
1601 * Do not call this routine or device_register() more than once for
1602 * any device structure. The driver model core is not designed to work
1603 * with devices that get unregistered and then spring back to life.
1604 * (Among other things, it's very hard to guarantee that all references
1605 * to the previous incarnation of @dev have been dropped.) Allocate
1606 * and register a fresh new struct device instead.
1607 *
1608 * NOTE: _Never_ directly free @dev after calling this function, even
1609 * if it returned an error! Always use put_device() to give up your
1610 * reference instead.
1611 */
1612 int device_add(struct device *dev)
1613 {
1614 struct device *parent = NULL;
1615 struct kobject *kobj;
1616 struct class_interface *class_intf;
1617 int error = -EINVAL;
1618 struct kobject *glue_dir = NULL;
1619
1620 dev = get_device(dev);
1621 if (!dev)
1622 goto done;
1623
1624 if (!dev->p) {
1625 error = device_private_init(dev);
1626 if (error)
1627 goto done;
1628 }
1629
1630 /*
1631 * for statically allocated devices, which should all be converted
1632 * some day, we need to initialize the name. We prevent reading back
1633 * the name, and force the use of dev_name()
1634 */
1635 if (dev->init_name) {
1636 dev_set_name(dev, "%s", dev->init_name);
1637 dev->init_name = NULL;
1638 }
1639
1640 /* subsystems can specify simple device enumeration */
1641 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1642 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1643
1644 if (!dev_name(dev)) {
1645 error = -EINVAL;
1646 goto name_error;
1647 }
1648
1649 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1650
1651 parent = get_device(dev->parent);
1652 kobj = get_device_parent(dev, parent);
1653 if (kobj)
1654 dev->kobj.parent = kobj;
1655
1656 /* use parent numa_node */
1657 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1658 set_dev_node(dev, dev_to_node(parent));
1659
1660 /* first, register with generic layer. */
1661 /* we require the name to be set before, and pass NULL */
1662 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1663 if (error) {
1664 glue_dir = get_glue_dir(dev);
1665 goto Error;
1666 }
1667
1668 /* notify platform of device entry */
1669 if (platform_notify)
1670 platform_notify(dev);
1671
1672 error = device_create_file(dev, &dev_attr_uevent);
1673 if (error)
1674 goto attrError;
1675
1676 error = device_add_class_symlinks(dev);
1677 if (error)
1678 goto SymlinkError;
1679 error = device_add_attrs(dev);
1680 if (error)
1681 goto AttrsError;
1682 error = bus_add_device(dev);
1683 if (error)
1684 goto BusError;
1685 error = dpm_sysfs_add(dev);
1686 if (error)
1687 goto DPMError;
1688 device_pm_add(dev);
1689
1690 if (MAJOR(dev->devt)) {
1691 error = device_create_file(dev, &dev_attr_dev);
1692 if (error)
1693 goto DevAttrError;
1694
1695 error = device_create_sys_dev_entry(dev);
1696 if (error)
1697 goto SysEntryError;
1698
1699 devtmpfs_create_node(dev);
1700 }
1701
1702 /* Notify clients of device addition. This call must come
1703 * after dpm_sysfs_add() and before kobject_uevent().
1704 */
1705 if (dev->bus)
1706 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1707 BUS_NOTIFY_ADD_DEVICE, dev);
1708
1709 kobject_uevent(&dev->kobj, KOBJ_ADD);
1710 bus_probe_device(dev);
1711 if (parent)
1712 klist_add_tail(&dev->p->knode_parent,
1713 &parent->p->klist_children);
1714
1715 if (dev->class) {
1716 mutex_lock(&dev->class->p->mutex);
1717 /* tie the class to the device */
1718 klist_add_tail(&dev->knode_class,
1719 &dev->class->p->klist_devices);
1720
1721 /* notify any interfaces that the device is here */
1722 list_for_each_entry(class_intf,
1723 &dev->class->p->interfaces, node)
1724 if (class_intf->add_dev)
1725 class_intf->add_dev(dev, class_intf);
1726 mutex_unlock(&dev->class->p->mutex);
1727 }
1728 done:
1729 put_device(dev);
1730 return error;
1731 SysEntryError:
1732 if (MAJOR(dev->devt))
1733 device_remove_file(dev, &dev_attr_dev);
1734 DevAttrError:
1735 device_pm_remove(dev);
1736 dpm_sysfs_remove(dev);
1737 DPMError:
1738 bus_remove_device(dev);
1739 BusError:
1740 device_remove_attrs(dev);
1741 AttrsError:
1742 device_remove_class_symlinks(dev);
1743 SymlinkError:
1744 device_remove_file(dev, &dev_attr_uevent);
1745 attrError:
1746 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1747 glue_dir = get_glue_dir(dev);
1748 kobject_del(&dev->kobj);
1749 Error:
1750 cleanup_glue_dir(dev, glue_dir);
1751 put_device(parent);
1752 name_error:
1753 kfree(dev->p);
1754 dev->p = NULL;
1755 goto done;
1756 }
1757 EXPORT_SYMBOL_GPL(device_add);
1758
1759 /**
1760 * device_register - register a device with the system.
1761 * @dev: pointer to the device structure
1762 *
1763 * This happens in two clean steps - initialize the device
1764 * and add it to the system. The two steps can be called
1765 * separately, but this is the easiest and most common.
1766 * I.e. you should only call the two helpers separately if
1767 * have a clearly defined need to use and refcount the device
1768 * before it is added to the hierarchy.
1769 *
1770 * For more information, see the kerneldoc for device_initialize()
1771 * and device_add().
1772 *
1773 * NOTE: _Never_ directly free @dev after calling this function, even
1774 * if it returned an error! Always use put_device() to give up the
1775 * reference initialized in this function instead.
1776 */
1777 int device_register(struct device *dev)
1778 {
1779 device_initialize(dev);
1780 return device_add(dev);
1781 }
1782 EXPORT_SYMBOL_GPL(device_register);
1783
1784 /**
1785 * get_device - increment reference count for device.
1786 * @dev: device.
1787 *
1788 * This simply forwards the call to kobject_get(), though
1789 * we do take care to provide for the case that we get a NULL
1790 * pointer passed in.
1791 */
1792 struct device *get_device(struct device *dev)
1793 {
1794 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1795 }
1796 EXPORT_SYMBOL_GPL(get_device);
1797
1798 /**
1799 * put_device - decrement reference count.
1800 * @dev: device in question.
1801 */
1802 void put_device(struct device *dev)
1803 {
1804 /* might_sleep(); */
1805 if (dev)
1806 kobject_put(&dev->kobj);
1807 }
1808 EXPORT_SYMBOL_GPL(put_device);
1809
1810 /**
1811 * device_del - delete device from system.
1812 * @dev: device.
1813 *
1814 * This is the first part of the device unregistration
1815 * sequence. This removes the device from the lists we control
1816 * from here, has it removed from the other driver model
1817 * subsystems it was added to in device_add(), and removes it
1818 * from the kobject hierarchy.
1819 *
1820 * NOTE: this should be called manually _iff_ device_add() was
1821 * also called manually.
1822 */
1823 void device_del(struct device *dev)
1824 {
1825 struct device *parent = dev->parent;
1826 struct kobject *glue_dir = NULL;
1827 struct class_interface *class_intf;
1828
1829 /* Notify clients of device removal. This call must come
1830 * before dpm_sysfs_remove().
1831 */
1832 if (dev->bus)
1833 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1834 BUS_NOTIFY_DEL_DEVICE, dev);
1835
1836 device_links_purge(dev);
1837 dpm_sysfs_remove(dev);
1838 if (parent)
1839 klist_del(&dev->p->knode_parent);
1840 if (MAJOR(dev->devt)) {
1841 devtmpfs_delete_node(dev);
1842 device_remove_sys_dev_entry(dev);
1843 device_remove_file(dev, &dev_attr_dev);
1844 }
1845 if (dev->class) {
1846 device_remove_class_symlinks(dev);
1847
1848 mutex_lock(&dev->class->p->mutex);
1849 /* notify any interfaces that the device is now gone */
1850 list_for_each_entry(class_intf,
1851 &dev->class->p->interfaces, node)
1852 if (class_intf->remove_dev)
1853 class_intf->remove_dev(dev, class_intf);
1854 /* remove the device from the class list */
1855 klist_del(&dev->knode_class);
1856 mutex_unlock(&dev->class->p->mutex);
1857 }
1858 device_remove_file(dev, &dev_attr_uevent);
1859 device_remove_attrs(dev);
1860 bus_remove_device(dev);
1861 device_pm_remove(dev);
1862 driver_deferred_probe_del(dev);
1863 device_remove_properties(dev);
1864
1865 /* Notify the platform of the removal, in case they
1866 * need to do anything...
1867 */
1868 if (platform_notify_remove)
1869 platform_notify_remove(dev);
1870 if (dev->bus)
1871 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1872 BUS_NOTIFY_REMOVED_DEVICE, dev);
1873 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1874 glue_dir = get_glue_dir(dev);
1875 kobject_del(&dev->kobj);
1876 cleanup_glue_dir(dev, glue_dir);
1877 put_device(parent);
1878 }
1879 EXPORT_SYMBOL_GPL(device_del);
1880
1881 /**
1882 * device_unregister - unregister device from system.
1883 * @dev: device going away.
1884 *
1885 * We do this in two parts, like we do device_register(). First,
1886 * we remove it from all the subsystems with device_del(), then
1887 * we decrement the reference count via put_device(). If that
1888 * is the final reference count, the device will be cleaned up
1889 * via device_release() above. Otherwise, the structure will
1890 * stick around until the final reference to the device is dropped.
1891 */
1892 void device_unregister(struct device *dev)
1893 {
1894 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1895 device_del(dev);
1896 put_device(dev);
1897 }
1898 EXPORT_SYMBOL_GPL(device_unregister);
1899
1900 static struct device *prev_device(struct klist_iter *i)
1901 {
1902 struct klist_node *n = klist_prev(i);
1903 struct device *dev = NULL;
1904 struct device_private *p;
1905
1906 if (n) {
1907 p = to_device_private_parent(n);
1908 dev = p->device;
1909 }
1910 return dev;
1911 }
1912
1913 static struct device *next_device(struct klist_iter *i)
1914 {
1915 struct klist_node *n = klist_next(i);
1916 struct device *dev = NULL;
1917 struct device_private *p;
1918
1919 if (n) {
1920 p = to_device_private_parent(n);
1921 dev = p->device;
1922 }
1923 return dev;
1924 }
1925
1926 /**
1927 * device_get_devnode - path of device node file
1928 * @dev: device
1929 * @mode: returned file access mode
1930 * @uid: returned file owner
1931 * @gid: returned file group
1932 * @tmp: possibly allocated string
1933 *
1934 * Return the relative path of a possible device node.
1935 * Non-default names may need to allocate a memory to compose
1936 * a name. This memory is returned in tmp and needs to be
1937 * freed by the caller.
1938 */
1939 const char *device_get_devnode(struct device *dev,
1940 umode_t *mode, kuid_t *uid, kgid_t *gid,
1941 const char **tmp)
1942 {
1943 char *s;
1944
1945 *tmp = NULL;
1946
1947 /* the device type may provide a specific name */
1948 if (dev->type && dev->type->devnode)
1949 *tmp = dev->type->devnode(dev, mode, uid, gid);
1950 if (*tmp)
1951 return *tmp;
1952
1953 /* the class may provide a specific name */
1954 if (dev->class && dev->class->devnode)
1955 *tmp = dev->class->devnode(dev, mode);
1956 if (*tmp)
1957 return *tmp;
1958
1959 /* return name without allocation, tmp == NULL */
1960 if (strchr(dev_name(dev), '!') == NULL)
1961 return dev_name(dev);
1962
1963 /* replace '!' in the name with '/' */
1964 s = kstrdup(dev_name(dev), GFP_KERNEL);
1965 if (!s)
1966 return NULL;
1967 strreplace(s, '!', '/');
1968 return *tmp = s;
1969 }
1970
1971 /**
1972 * device_for_each_child - device child iterator.
1973 * @parent: parent struct device.
1974 * @fn: function to be called for each device.
1975 * @data: data for the callback.
1976 *
1977 * Iterate over @parent's child devices, and call @fn for each,
1978 * passing it @data.
1979 *
1980 * We check the return of @fn each time. If it returns anything
1981 * other than 0, we break out and return that value.
1982 */
1983 int device_for_each_child(struct device *parent, void *data,
1984 int (*fn)(struct device *dev, void *data))
1985 {
1986 struct klist_iter i;
1987 struct device *child;
1988 int error = 0;
1989
1990 if (!parent->p)
1991 return 0;
1992
1993 klist_iter_init(&parent->p->klist_children, &i);
1994 while ((child = next_device(&i)) && !error)
1995 error = fn(child, data);
1996 klist_iter_exit(&i);
1997 return error;
1998 }
1999 EXPORT_SYMBOL_GPL(device_for_each_child);
2000
2001 /**
2002 * device_for_each_child_reverse - device child iterator in reversed order.
2003 * @parent: parent struct device.
2004 * @fn: function to be called for each device.
2005 * @data: data for the callback.
2006 *
2007 * Iterate over @parent's child devices, and call @fn for each,
2008 * passing it @data.
2009 *
2010 * We check the return of @fn each time. If it returns anything
2011 * other than 0, we break out and return that value.
2012 */
2013 int device_for_each_child_reverse(struct device *parent, void *data,
2014 int (*fn)(struct device *dev, void *data))
2015 {
2016 struct klist_iter i;
2017 struct device *child;
2018 int error = 0;
2019
2020 if (!parent->p)
2021 return 0;
2022
2023 klist_iter_init(&parent->p->klist_children, &i);
2024 while ((child = prev_device(&i)) && !error)
2025 error = fn(child, data);
2026 klist_iter_exit(&i);
2027 return error;
2028 }
2029 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2030
2031 /**
2032 * device_find_child - device iterator for locating a particular device.
2033 * @parent: parent struct device
2034 * @match: Callback function to check device
2035 * @data: Data to pass to match function
2036 *
2037 * This is similar to the device_for_each_child() function above, but it
2038 * returns a reference to a device that is 'found' for later use, as
2039 * determined by the @match callback.
2040 *
2041 * The callback should return 0 if the device doesn't match and non-zero
2042 * if it does. If the callback returns non-zero and a reference to the
2043 * current device can be obtained, this function will return to the caller
2044 * and not iterate over any more devices.
2045 *
2046 * NOTE: you will need to drop the reference with put_device() after use.
2047 */
2048 struct device *device_find_child(struct device *parent, void *data,
2049 int (*match)(struct device *dev, void *data))
2050 {
2051 struct klist_iter i;
2052 struct device *child;
2053
2054 if (!parent)
2055 return NULL;
2056
2057 klist_iter_init(&parent->p->klist_children, &i);
2058 while ((child = next_device(&i)))
2059 if (match(child, data) && get_device(child))
2060 break;
2061 klist_iter_exit(&i);
2062 return child;
2063 }
2064 EXPORT_SYMBOL_GPL(device_find_child);
2065
2066 int __init devices_init(void)
2067 {
2068 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2069 if (!devices_kset)
2070 return -ENOMEM;
2071 dev_kobj = kobject_create_and_add("dev", NULL);
2072 if (!dev_kobj)
2073 goto dev_kobj_err;
2074 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2075 if (!sysfs_dev_block_kobj)
2076 goto block_kobj_err;
2077 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2078 if (!sysfs_dev_char_kobj)
2079 goto char_kobj_err;
2080
2081 return 0;
2082
2083 char_kobj_err:
2084 kobject_put(sysfs_dev_block_kobj);
2085 block_kobj_err:
2086 kobject_put(dev_kobj);
2087 dev_kobj_err:
2088 kset_unregister(devices_kset);
2089 return -ENOMEM;
2090 }
2091
2092 static int device_check_offline(struct device *dev, void *not_used)
2093 {
2094 int ret;
2095
2096 ret = device_for_each_child(dev, NULL, device_check_offline);
2097 if (ret)
2098 return ret;
2099
2100 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2101 }
2102
2103 /**
2104 * device_offline - Prepare the device for hot-removal.
2105 * @dev: Device to be put offline.
2106 *
2107 * Execute the device bus type's .offline() callback, if present, to prepare
2108 * the device for a subsequent hot-removal. If that succeeds, the device must
2109 * not be used until either it is removed or its bus type's .online() callback
2110 * is executed.
2111 *
2112 * Call under device_hotplug_lock.
2113 */
2114 int device_offline(struct device *dev)
2115 {
2116 int ret;
2117
2118 if (dev->offline_disabled)
2119 return -EPERM;
2120
2121 ret = device_for_each_child(dev, NULL, device_check_offline);
2122 if (ret)
2123 return ret;
2124
2125 device_lock(dev);
2126 if (device_supports_offline(dev)) {
2127 if (dev->offline) {
2128 ret = 1;
2129 } else {
2130 ret = dev->bus->offline(dev);
2131 if (!ret) {
2132 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2133 dev->offline = true;
2134 }
2135 }
2136 }
2137 device_unlock(dev);
2138
2139 return ret;
2140 }
2141
2142 /**
2143 * device_online - Put the device back online after successful device_offline().
2144 * @dev: Device to be put back online.
2145 *
2146 * If device_offline() has been successfully executed for @dev, but the device
2147 * has not been removed subsequently, execute its bus type's .online() callback
2148 * to indicate that the device can be used again.
2149 *
2150 * Call under device_hotplug_lock.
2151 */
2152 int device_online(struct device *dev)
2153 {
2154 int ret = 0;
2155
2156 device_lock(dev);
2157 if (device_supports_offline(dev)) {
2158 if (dev->offline) {
2159 ret = dev->bus->online(dev);
2160 if (!ret) {
2161 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2162 dev->offline = false;
2163 }
2164 } else {
2165 ret = 1;
2166 }
2167 }
2168 device_unlock(dev);
2169
2170 return ret;
2171 }
2172
2173 struct root_device {
2174 struct device dev;
2175 struct module *owner;
2176 };
2177
2178 static inline struct root_device *to_root_device(struct device *d)
2179 {
2180 return container_of(d, struct root_device, dev);
2181 }
2182
2183 static void root_device_release(struct device *dev)
2184 {
2185 kfree(to_root_device(dev));
2186 }
2187
2188 /**
2189 * __root_device_register - allocate and register a root device
2190 * @name: root device name
2191 * @owner: owner module of the root device, usually THIS_MODULE
2192 *
2193 * This function allocates a root device and registers it
2194 * using device_register(). In order to free the returned
2195 * device, use root_device_unregister().
2196 *
2197 * Root devices are dummy devices which allow other devices
2198 * to be grouped under /sys/devices. Use this function to
2199 * allocate a root device and then use it as the parent of
2200 * any device which should appear under /sys/devices/{name}
2201 *
2202 * The /sys/devices/{name} directory will also contain a
2203 * 'module' symlink which points to the @owner directory
2204 * in sysfs.
2205 *
2206 * Returns &struct device pointer on success, or ERR_PTR() on error.
2207 *
2208 * Note: You probably want to use root_device_register().
2209 */
2210 struct device *__root_device_register(const char *name, struct module *owner)
2211 {
2212 struct root_device *root;
2213 int err = -ENOMEM;
2214
2215 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2216 if (!root)
2217 return ERR_PTR(err);
2218
2219 err = dev_set_name(&root->dev, "%s", name);
2220 if (err) {
2221 kfree(root);
2222 return ERR_PTR(err);
2223 }
2224
2225 root->dev.release = root_device_release;
2226
2227 err = device_register(&root->dev);
2228 if (err) {
2229 put_device(&root->dev);
2230 return ERR_PTR(err);
2231 }
2232
2233 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2234 if (owner) {
2235 struct module_kobject *mk = &owner->mkobj;
2236
2237 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2238 if (err) {
2239 device_unregister(&root->dev);
2240 return ERR_PTR(err);
2241 }
2242 root->owner = owner;
2243 }
2244 #endif
2245
2246 return &root->dev;
2247 }
2248 EXPORT_SYMBOL_GPL(__root_device_register);
2249
2250 /**
2251 * root_device_unregister - unregister and free a root device
2252 * @dev: device going away
2253 *
2254 * This function unregisters and cleans up a device that was created by
2255 * root_device_register().
2256 */
2257 void root_device_unregister(struct device *dev)
2258 {
2259 struct root_device *root = to_root_device(dev);
2260
2261 if (root->owner)
2262 sysfs_remove_link(&root->dev.kobj, "module");
2263
2264 device_unregister(dev);
2265 }
2266 EXPORT_SYMBOL_GPL(root_device_unregister);
2267
2268
2269 static void device_create_release(struct device *dev)
2270 {
2271 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2272 kfree(dev);
2273 }
2274
2275 static struct device *
2276 device_create_groups_vargs(struct class *class, struct device *parent,
2277 dev_t devt, void *drvdata,
2278 const struct attribute_group **groups,
2279 const char *fmt, va_list args)
2280 {
2281 struct device *dev = NULL;
2282 int retval = -ENODEV;
2283
2284 if (class == NULL || IS_ERR(class))
2285 goto error;
2286
2287 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2288 if (!dev) {
2289 retval = -ENOMEM;
2290 goto error;
2291 }
2292
2293 device_initialize(dev);
2294 dev->devt = devt;
2295 dev->class = class;
2296 dev->parent = parent;
2297 dev->groups = groups;
2298 dev->release = device_create_release;
2299 dev_set_drvdata(dev, drvdata);
2300
2301 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2302 if (retval)
2303 goto error;
2304
2305 retval = device_add(dev);
2306 if (retval)
2307 goto error;
2308
2309 return dev;
2310
2311 error:
2312 put_device(dev);
2313 return ERR_PTR(retval);
2314 }
2315
2316 /**
2317 * device_create_vargs - creates a device and registers it with sysfs
2318 * @class: pointer to the struct class that this device should be registered to
2319 * @parent: pointer to the parent struct device of this new device, if any
2320 * @devt: the dev_t for the char device to be added
2321 * @drvdata: the data to be added to the device for callbacks
2322 * @fmt: string for the device's name
2323 * @args: va_list for the device's name
2324 *
2325 * This function can be used by char device classes. A struct device
2326 * will be created in sysfs, registered to the specified class.
2327 *
2328 * A "dev" file will be created, showing the dev_t for the device, if
2329 * the dev_t is not 0,0.
2330 * If a pointer to a parent struct device is passed in, the newly created
2331 * struct device will be a child of that device in sysfs.
2332 * The pointer to the struct device will be returned from the call.
2333 * Any further sysfs files that might be required can be created using this
2334 * pointer.
2335 *
2336 * Returns &struct device pointer on success, or ERR_PTR() on error.
2337 *
2338 * Note: the struct class passed to this function must have previously
2339 * been created with a call to class_create().
2340 */
2341 struct device *device_create_vargs(struct class *class, struct device *parent,
2342 dev_t devt, void *drvdata, const char *fmt,
2343 va_list args)
2344 {
2345 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2346 fmt, args);
2347 }
2348 EXPORT_SYMBOL_GPL(device_create_vargs);
2349
2350 /**
2351 * device_create - creates a device and registers it with sysfs
2352 * @class: pointer to the struct class that this device should be registered to
2353 * @parent: pointer to the parent struct device of this new device, if any
2354 * @devt: the dev_t for the char device to be added
2355 * @drvdata: the data to be added to the device for callbacks
2356 * @fmt: string for the device's name
2357 *
2358 * This function can be used by char device classes. A struct device
2359 * will be created in sysfs, registered to the specified class.
2360 *
2361 * A "dev" file will be created, showing the dev_t for the device, if
2362 * the dev_t is not 0,0.
2363 * If a pointer to a parent struct device is passed in, the newly created
2364 * struct device will be a child of that device in sysfs.
2365 * The pointer to the struct device will be returned from the call.
2366 * Any further sysfs files that might be required can be created using this
2367 * pointer.
2368 *
2369 * Returns &struct device pointer on success, or ERR_PTR() on error.
2370 *
2371 * Note: the struct class passed to this function must have previously
2372 * been created with a call to class_create().
2373 */
2374 struct device *device_create(struct class *class, struct device *parent,
2375 dev_t devt, void *drvdata, const char *fmt, ...)
2376 {
2377 va_list vargs;
2378 struct device *dev;
2379
2380 va_start(vargs, fmt);
2381 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2382 va_end(vargs);
2383 return dev;
2384 }
2385 EXPORT_SYMBOL_GPL(device_create);
2386
2387 /**
2388 * device_create_with_groups - creates a device and registers it with sysfs
2389 * @class: pointer to the struct class that this device should be registered to
2390 * @parent: pointer to the parent struct device of this new device, if any
2391 * @devt: the dev_t for the char device to be added
2392 * @drvdata: the data to be added to the device for callbacks
2393 * @groups: NULL-terminated list of attribute groups to be created
2394 * @fmt: string for the device's name
2395 *
2396 * This function can be used by char device classes. A struct device
2397 * will be created in sysfs, registered to the specified class.
2398 * Additional attributes specified in the groups parameter will also
2399 * be created automatically.
2400 *
2401 * A "dev" file will be created, showing the dev_t for the device, if
2402 * the dev_t is not 0,0.
2403 * If a pointer to a parent struct device is passed in, the newly created
2404 * struct device will be a child of that device in sysfs.
2405 * The pointer to the struct device will be returned from the call.
2406 * Any further sysfs files that might be required can be created using this
2407 * pointer.
2408 *
2409 * Returns &struct device pointer on success, or ERR_PTR() on error.
2410 *
2411 * Note: the struct class passed to this function must have previously
2412 * been created with a call to class_create().
2413 */
2414 struct device *device_create_with_groups(struct class *class,
2415 struct device *parent, dev_t devt,
2416 void *drvdata,
2417 const struct attribute_group **groups,
2418 const char *fmt, ...)
2419 {
2420 va_list vargs;
2421 struct device *dev;
2422
2423 va_start(vargs, fmt);
2424 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2425 fmt, vargs);
2426 va_end(vargs);
2427 return dev;
2428 }
2429 EXPORT_SYMBOL_GPL(device_create_with_groups);
2430
2431 static int __match_devt(struct device *dev, const void *data)
2432 {
2433 const dev_t *devt = data;
2434
2435 return dev->devt == *devt;
2436 }
2437
2438 /**
2439 * device_destroy - removes a device that was created with device_create()
2440 * @class: pointer to the struct class that this device was registered with
2441 * @devt: the dev_t of the device that was previously registered
2442 *
2443 * This call unregisters and cleans up a device that was created with a
2444 * call to device_create().
2445 */
2446 void device_destroy(struct class *class, dev_t devt)
2447 {
2448 struct device *dev;
2449
2450 dev = class_find_device(class, NULL, &devt, __match_devt);
2451 if (dev) {
2452 put_device(dev);
2453 device_unregister(dev);
2454 }
2455 }
2456 EXPORT_SYMBOL_GPL(device_destroy);
2457
2458 /**
2459 * device_rename - renames a device
2460 * @dev: the pointer to the struct device to be renamed
2461 * @new_name: the new name of the device
2462 *
2463 * It is the responsibility of the caller to provide mutual
2464 * exclusion between two different calls of device_rename
2465 * on the same device to ensure that new_name is valid and
2466 * won't conflict with other devices.
2467 *
2468 * Note: Don't call this function. Currently, the networking layer calls this
2469 * function, but that will change. The following text from Kay Sievers offers
2470 * some insight:
2471 *
2472 * Renaming devices is racy at many levels, symlinks and other stuff are not
2473 * replaced atomically, and you get a "move" uevent, but it's not easy to
2474 * connect the event to the old and new device. Device nodes are not renamed at
2475 * all, there isn't even support for that in the kernel now.
2476 *
2477 * In the meantime, during renaming, your target name might be taken by another
2478 * driver, creating conflicts. Or the old name is taken directly after you
2479 * renamed it -- then you get events for the same DEVPATH, before you even see
2480 * the "move" event. It's just a mess, and nothing new should ever rely on
2481 * kernel device renaming. Besides that, it's not even implemented now for
2482 * other things than (driver-core wise very simple) network devices.
2483 *
2484 * We are currently about to change network renaming in udev to completely
2485 * disallow renaming of devices in the same namespace as the kernel uses,
2486 * because we can't solve the problems properly, that arise with swapping names
2487 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2488 * be allowed to some other name than eth[0-9]*, for the aforementioned
2489 * reasons.
2490 *
2491 * Make up a "real" name in the driver before you register anything, or add
2492 * some other attributes for userspace to find the device, or use udev to add
2493 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2494 * don't even want to get into that and try to implement the missing pieces in
2495 * the core. We really have other pieces to fix in the driver core mess. :)
2496 */
2497 int device_rename(struct device *dev, const char *new_name)
2498 {
2499 struct kobject *kobj = &dev->kobj;
2500 char *old_device_name = NULL;
2501 int error;
2502
2503 dev = get_device(dev);
2504 if (!dev)
2505 return -EINVAL;
2506
2507 dev_dbg(dev, "renaming to %s\n", new_name);
2508
2509 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2510 if (!old_device_name) {
2511 error = -ENOMEM;
2512 goto out;
2513 }
2514
2515 if (dev->class) {
2516 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2517 kobj, old_device_name,
2518 new_name, kobject_namespace(kobj));
2519 if (error)
2520 goto out;
2521 }
2522
2523 error = kobject_rename(kobj, new_name);
2524 if (error)
2525 goto out;
2526
2527 out:
2528 put_device(dev);
2529
2530 kfree(old_device_name);
2531
2532 return error;
2533 }
2534 EXPORT_SYMBOL_GPL(device_rename);
2535
2536 static int device_move_class_links(struct device *dev,
2537 struct device *old_parent,
2538 struct device *new_parent)
2539 {
2540 int error = 0;
2541
2542 if (old_parent)
2543 sysfs_remove_link(&dev->kobj, "device");
2544 if (new_parent)
2545 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2546 "device");
2547 return error;
2548 }
2549
2550 /**
2551 * device_move - moves a device to a new parent
2552 * @dev: the pointer to the struct device to be moved
2553 * @new_parent: the new parent of the device (can by NULL)
2554 * @dpm_order: how to reorder the dpm_list
2555 */
2556 int device_move(struct device *dev, struct device *new_parent,
2557 enum dpm_order dpm_order)
2558 {
2559 int error;
2560 struct device *old_parent;
2561 struct kobject *new_parent_kobj;
2562
2563 dev = get_device(dev);
2564 if (!dev)
2565 return -EINVAL;
2566
2567 device_pm_lock();
2568 new_parent = get_device(new_parent);
2569 new_parent_kobj = get_device_parent(dev, new_parent);
2570
2571 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2572 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2573 error = kobject_move(&dev->kobj, new_parent_kobj);
2574 if (error) {
2575 cleanup_glue_dir(dev, new_parent_kobj);
2576 put_device(new_parent);
2577 goto out;
2578 }
2579 old_parent = dev->parent;
2580 dev->parent = new_parent;
2581 if (old_parent)
2582 klist_remove(&dev->p->knode_parent);
2583 if (new_parent) {
2584 klist_add_tail(&dev->p->knode_parent,
2585 &new_parent->p->klist_children);
2586 set_dev_node(dev, dev_to_node(new_parent));
2587 }
2588
2589 if (dev->class) {
2590 error = device_move_class_links(dev, old_parent, new_parent);
2591 if (error) {
2592 /* We ignore errors on cleanup since we're hosed anyway... */
2593 device_move_class_links(dev, new_parent, old_parent);
2594 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2595 if (new_parent)
2596 klist_remove(&dev->p->knode_parent);
2597 dev->parent = old_parent;
2598 if (old_parent) {
2599 klist_add_tail(&dev->p->knode_parent,
2600 &old_parent->p->klist_children);
2601 set_dev_node(dev, dev_to_node(old_parent));
2602 }
2603 }
2604 cleanup_glue_dir(dev, new_parent_kobj);
2605 put_device(new_parent);
2606 goto out;
2607 }
2608 }
2609 switch (dpm_order) {
2610 case DPM_ORDER_NONE:
2611 break;
2612 case DPM_ORDER_DEV_AFTER_PARENT:
2613 device_pm_move_after(dev, new_parent);
2614 devices_kset_move_after(dev, new_parent);
2615 break;
2616 case DPM_ORDER_PARENT_BEFORE_DEV:
2617 device_pm_move_before(new_parent, dev);
2618 devices_kset_move_before(new_parent, dev);
2619 break;
2620 case DPM_ORDER_DEV_LAST:
2621 device_pm_move_last(dev);
2622 devices_kset_move_last(dev);
2623 break;
2624 }
2625
2626 put_device(old_parent);
2627 out:
2628 device_pm_unlock();
2629 put_device(dev);
2630 return error;
2631 }
2632 EXPORT_SYMBOL_GPL(device_move);
2633
2634 /**
2635 * device_shutdown - call ->shutdown() on each device to shutdown.
2636 */
2637 void device_shutdown(void)
2638 {
2639 struct device *dev, *parent;
2640
2641 spin_lock(&devices_kset->list_lock);
2642 /*
2643 * Walk the devices list backward, shutting down each in turn.
2644 * Beware that device unplug events may also start pulling
2645 * devices offline, even as the system is shutting down.
2646 */
2647 while (!list_empty(&devices_kset->list)) {
2648 dev = list_entry(devices_kset->list.prev, struct device,
2649 kobj.entry);
2650
2651 /*
2652 * hold reference count of device's parent to
2653 * prevent it from being freed because parent's
2654 * lock is to be held
2655 */
2656 parent = get_device(dev->parent);
2657 get_device(dev);
2658 /*
2659 * Make sure the device is off the kset list, in the
2660 * event that dev->*->shutdown() doesn't remove it.
2661 */
2662 list_del_init(&dev->kobj.entry);
2663 spin_unlock(&devices_kset->list_lock);
2664
2665 /* hold lock to avoid race with probe/release */
2666 if (parent)
2667 device_lock(parent);
2668 device_lock(dev);
2669
2670 /* Don't allow any more runtime suspends */
2671 pm_runtime_get_noresume(dev);
2672 pm_runtime_barrier(dev);
2673
2674 if (dev->bus && dev->bus->shutdown) {
2675 if (initcall_debug)
2676 dev_info(dev, "shutdown\n");
2677 dev->bus->shutdown(dev);
2678 } else if (dev->driver && dev->driver->shutdown) {
2679 if (initcall_debug)
2680 dev_info(dev, "shutdown\n");
2681 dev->driver->shutdown(dev);
2682 }
2683
2684 device_unlock(dev);
2685 if (parent)
2686 device_unlock(parent);
2687
2688 put_device(dev);
2689 put_device(parent);
2690
2691 spin_lock(&devices_kset->list_lock);
2692 }
2693 spin_unlock(&devices_kset->list_lock);
2694 }
2695
2696 /*
2697 * Device logging functions
2698 */
2699
2700 #ifdef CONFIG_PRINTK
2701 static int
2702 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2703 {
2704 const char *subsys;
2705 size_t pos = 0;
2706
2707 if (dev->class)
2708 subsys = dev->class->name;
2709 else if (dev->bus)
2710 subsys = dev->bus->name;
2711 else
2712 return 0;
2713
2714 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2715 if (pos >= hdrlen)
2716 goto overflow;
2717
2718 /*
2719 * Add device identifier DEVICE=:
2720 * b12:8 block dev_t
2721 * c127:3 char dev_t
2722 * n8 netdev ifindex
2723 * +sound:card0 subsystem:devname
2724 */
2725 if (MAJOR(dev->devt)) {
2726 char c;
2727
2728 if (strcmp(subsys, "block") == 0)
2729 c = 'b';
2730 else
2731 c = 'c';
2732 pos++;
2733 pos += snprintf(hdr + pos, hdrlen - pos,
2734 "DEVICE=%c%u:%u",
2735 c, MAJOR(dev->devt), MINOR(dev->devt));
2736 } else if (strcmp(subsys, "net") == 0) {
2737 struct net_device *net = to_net_dev(dev);
2738
2739 pos++;
2740 pos += snprintf(hdr + pos, hdrlen - pos,
2741 "DEVICE=n%u", net->ifindex);
2742 } else {
2743 pos++;
2744 pos += snprintf(hdr + pos, hdrlen - pos,
2745 "DEVICE=+%s:%s", subsys, dev_name(dev));
2746 }
2747
2748 if (pos >= hdrlen)
2749 goto overflow;
2750
2751 return pos;
2752
2753 overflow:
2754 dev_WARN(dev, "device/subsystem name too long");
2755 return 0;
2756 }
2757
2758 int dev_vprintk_emit(int level, const struct device *dev,
2759 const char *fmt, va_list args)
2760 {
2761 char hdr[128];
2762 size_t hdrlen;
2763
2764 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2765
2766 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2767 }
2768 EXPORT_SYMBOL(dev_vprintk_emit);
2769
2770 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2771 {
2772 va_list args;
2773 int r;
2774
2775 va_start(args, fmt);
2776
2777 r = dev_vprintk_emit(level, dev, fmt, args);
2778
2779 va_end(args);
2780
2781 return r;
2782 }
2783 EXPORT_SYMBOL(dev_printk_emit);
2784
2785 static void __dev_printk(const char *level, const struct device *dev,
2786 struct va_format *vaf)
2787 {
2788 if (dev)
2789 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2790 dev_driver_string(dev), dev_name(dev), vaf);
2791 else
2792 printk("%s(NULL device *): %pV", level, vaf);
2793 }
2794
2795 void dev_printk(const char *level, const struct device *dev,
2796 const char *fmt, ...)
2797 {
2798 struct va_format vaf;
2799 va_list args;
2800
2801 va_start(args, fmt);
2802
2803 vaf.fmt = fmt;
2804 vaf.va = &args;
2805
2806 __dev_printk(level, dev, &vaf);
2807
2808 va_end(args);
2809 }
2810 EXPORT_SYMBOL(dev_printk);
2811
2812 #define define_dev_printk_level(func, kern_level) \
2813 void func(const struct device *dev, const char *fmt, ...) \
2814 { \
2815 struct va_format vaf; \
2816 va_list args; \
2817 \
2818 va_start(args, fmt); \
2819 \
2820 vaf.fmt = fmt; \
2821 vaf.va = &args; \
2822 \
2823 __dev_printk(kern_level, dev, &vaf); \
2824 \
2825 va_end(args); \
2826 } \
2827 EXPORT_SYMBOL(func);
2828
2829 define_dev_printk_level(dev_emerg, KERN_EMERG);
2830 define_dev_printk_level(dev_alert, KERN_ALERT);
2831 define_dev_printk_level(dev_crit, KERN_CRIT);
2832 define_dev_printk_level(dev_err, KERN_ERR);
2833 define_dev_printk_level(dev_warn, KERN_WARNING);
2834 define_dev_printk_level(dev_notice, KERN_NOTICE);
2835 define_dev_printk_level(_dev_info, KERN_INFO);
2836
2837 #endif
2838
2839 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2840 {
2841 return fwnode && !IS_ERR(fwnode->secondary);
2842 }
2843
2844 /**
2845 * set_primary_fwnode - Change the primary firmware node of a given device.
2846 * @dev: Device to handle.
2847 * @fwnode: New primary firmware node of the device.
2848 *
2849 * Set the device's firmware node pointer to @fwnode, but if a secondary
2850 * firmware node of the device is present, preserve it.
2851 */
2852 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2853 {
2854 if (fwnode) {
2855 struct fwnode_handle *fn = dev->fwnode;
2856
2857 if (fwnode_is_primary(fn))
2858 fn = fn->secondary;
2859
2860 if (fn) {
2861 WARN_ON(fwnode->secondary);
2862 fwnode->secondary = fn;
2863 }
2864 dev->fwnode = fwnode;
2865 } else {
2866 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2867 dev->fwnode->secondary : NULL;
2868 }
2869 }
2870 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2871
2872 /**
2873 * set_secondary_fwnode - Change the secondary firmware node of a given device.
2874 * @dev: Device to handle.
2875 * @fwnode: New secondary firmware node of the device.
2876 *
2877 * If a primary firmware node of the device is present, set its secondary
2878 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
2879 * @fwnode.
2880 */
2881 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2882 {
2883 if (fwnode)
2884 fwnode->secondary = ERR_PTR(-ENODEV);
2885
2886 if (fwnode_is_primary(dev->fwnode))
2887 dev->fwnode->secondary = fwnode;
2888 else
2889 dev->fwnode = fwnode;
2890 }