]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/core.c
Merge tag 'devicetree-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sysfs.h>
31
32 #include "base.h"
33 #include "power/power.h"
34
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47
48 /* Device links support. */
49
50 #ifdef CONFIG_SRCU
51 static DEFINE_MUTEX(device_links_lock);
52 DEFINE_STATIC_SRCU(device_links_srcu);
53
54 static inline void device_links_write_lock(void)
55 {
56 mutex_lock(&device_links_lock);
57 }
58
59 static inline void device_links_write_unlock(void)
60 {
61 mutex_unlock(&device_links_lock);
62 }
63
64 int device_links_read_lock(void)
65 {
66 return srcu_read_lock(&device_links_srcu);
67 }
68
69 void device_links_read_unlock(int idx)
70 {
71 srcu_read_unlock(&device_links_srcu, idx);
72 }
73 #else /* !CONFIG_SRCU */
74 static DECLARE_RWSEM(device_links_lock);
75
76 static inline void device_links_write_lock(void)
77 {
78 down_write(&device_links_lock);
79 }
80
81 static inline void device_links_write_unlock(void)
82 {
83 up_write(&device_links_lock);
84 }
85
86 int device_links_read_lock(void)
87 {
88 down_read(&device_links_lock);
89 return 0;
90 }
91
92 void device_links_read_unlock(int not_used)
93 {
94 up_read(&device_links_lock);
95 }
96 #endif /* !CONFIG_SRCU */
97
98 /**
99 * device_is_dependent - Check if one device depends on another one
100 * @dev: Device to check dependencies for.
101 * @target: Device to check against.
102 *
103 * Check if @target depends on @dev or any device dependent on it (its child or
104 * its consumer etc). Return 1 if that is the case or 0 otherwise.
105 */
106 static int device_is_dependent(struct device *dev, void *target)
107 {
108 struct device_link *link;
109 int ret;
110
111 if (WARN_ON(dev == target))
112 return 1;
113
114 ret = device_for_each_child(dev, target, device_is_dependent);
115 if (ret)
116 return ret;
117
118 list_for_each_entry(link, &dev->links.consumers, s_node) {
119 if (WARN_ON(link->consumer == target))
120 return 1;
121
122 ret = device_is_dependent(link->consumer, target);
123 if (ret)
124 break;
125 }
126 return ret;
127 }
128
129 static int device_reorder_to_tail(struct device *dev, void *not_used)
130 {
131 struct device_link *link;
132
133 /*
134 * Devices that have not been registered yet will be put to the ends
135 * of the lists during the registration, so skip them here.
136 */
137 if (device_is_registered(dev))
138 devices_kset_move_last(dev);
139
140 if (device_pm_initialized(dev))
141 device_pm_move_last(dev);
142
143 device_for_each_child(dev, NULL, device_reorder_to_tail);
144 list_for_each_entry(link, &dev->links.consumers, s_node)
145 device_reorder_to_tail(link->consumer, NULL);
146
147 return 0;
148 }
149
150 /**
151 * device_link_add - Create a link between two devices.
152 * @consumer: Consumer end of the link.
153 * @supplier: Supplier end of the link.
154 * @flags: Link flags.
155 *
156 * The caller is responsible for the proper synchronization of the link creation
157 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
158 * runtime PM framework to take the link into account. Second, if the
159 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
160 * be forced into the active metastate and reference-counted upon the creation
161 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
162 * ignored.
163 *
164 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
165 * when the consumer device driver unbinds from it. The combination of both
166 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
167 * to be returned.
168 *
169 * A side effect of the link creation is re-ordering of dpm_list and the
170 * devices_kset list by moving the consumer device and all devices depending
171 * on it to the ends of these lists (that does not happen to devices that have
172 * not been registered when this function is called).
173 *
174 * The supplier device is required to be registered when this function is called
175 * and NULL will be returned if that is not the case. The consumer device need
176 * not be registered, however.
177 */
178 struct device_link *device_link_add(struct device *consumer,
179 struct device *supplier, u32 flags)
180 {
181 struct device_link *link;
182
183 if (!consumer || !supplier ||
184 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
185 return NULL;
186
187 device_links_write_lock();
188 device_pm_lock();
189
190 /*
191 * If the supplier has not been fully registered yet or there is a
192 * reverse dependency between the consumer and the supplier already in
193 * the graph, return NULL.
194 */
195 if (!device_pm_initialized(supplier)
196 || device_is_dependent(consumer, supplier)) {
197 link = NULL;
198 goto out;
199 }
200
201 list_for_each_entry(link, &supplier->links.consumers, s_node)
202 if (link->consumer == consumer)
203 goto out;
204
205 link = kzalloc(sizeof(*link), GFP_KERNEL);
206 if (!link)
207 goto out;
208
209 if (flags & DL_FLAG_PM_RUNTIME) {
210 if (flags & DL_FLAG_RPM_ACTIVE) {
211 if (pm_runtime_get_sync(supplier) < 0) {
212 pm_runtime_put_noidle(supplier);
213 kfree(link);
214 link = NULL;
215 goto out;
216 }
217 link->rpm_active = true;
218 }
219 pm_runtime_new_link(consumer);
220 }
221 get_device(supplier);
222 link->supplier = supplier;
223 INIT_LIST_HEAD(&link->s_node);
224 get_device(consumer);
225 link->consumer = consumer;
226 INIT_LIST_HEAD(&link->c_node);
227 link->flags = flags;
228
229 /* Determine the initial link state. */
230 if (flags & DL_FLAG_STATELESS) {
231 link->status = DL_STATE_NONE;
232 } else {
233 switch (supplier->links.status) {
234 case DL_DEV_DRIVER_BOUND:
235 switch (consumer->links.status) {
236 case DL_DEV_PROBING:
237 /*
238 * Balance the decrementation of the supplier's
239 * runtime PM usage counter after consumer probe
240 * in driver_probe_device().
241 */
242 if (flags & DL_FLAG_PM_RUNTIME)
243 pm_runtime_get_sync(supplier);
244
245 link->status = DL_STATE_CONSUMER_PROBE;
246 break;
247 case DL_DEV_DRIVER_BOUND:
248 link->status = DL_STATE_ACTIVE;
249 break;
250 default:
251 link->status = DL_STATE_AVAILABLE;
252 break;
253 }
254 break;
255 case DL_DEV_UNBINDING:
256 link->status = DL_STATE_SUPPLIER_UNBIND;
257 break;
258 default:
259 link->status = DL_STATE_DORMANT;
260 break;
261 }
262 }
263
264 /*
265 * Move the consumer and all of the devices depending on it to the end
266 * of dpm_list and the devices_kset list.
267 *
268 * It is necessary to hold dpm_list locked throughout all that or else
269 * we may end up suspending with a wrong ordering of it.
270 */
271 device_reorder_to_tail(consumer, NULL);
272
273 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
274 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
275
276 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
277
278 out:
279 device_pm_unlock();
280 device_links_write_unlock();
281 return link;
282 }
283 EXPORT_SYMBOL_GPL(device_link_add);
284
285 static void device_link_free(struct device_link *link)
286 {
287 put_device(link->consumer);
288 put_device(link->supplier);
289 kfree(link);
290 }
291
292 #ifdef CONFIG_SRCU
293 static void __device_link_free_srcu(struct rcu_head *rhead)
294 {
295 device_link_free(container_of(rhead, struct device_link, rcu_head));
296 }
297
298 static void __device_link_del(struct device_link *link)
299 {
300 dev_info(link->consumer, "Dropping the link to %s\n",
301 dev_name(link->supplier));
302
303 if (link->flags & DL_FLAG_PM_RUNTIME)
304 pm_runtime_drop_link(link->consumer);
305
306 list_del_rcu(&link->s_node);
307 list_del_rcu(&link->c_node);
308 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
309 }
310 #else /* !CONFIG_SRCU */
311 static void __device_link_del(struct device_link *link)
312 {
313 dev_info(link->consumer, "Dropping the link to %s\n",
314 dev_name(link->supplier));
315
316 list_del(&link->s_node);
317 list_del(&link->c_node);
318 device_link_free(link);
319 }
320 #endif /* !CONFIG_SRCU */
321
322 /**
323 * device_link_del - Delete a link between two devices.
324 * @link: Device link to delete.
325 *
326 * The caller must ensure proper synchronization of this function with runtime
327 * PM.
328 */
329 void device_link_del(struct device_link *link)
330 {
331 device_links_write_lock();
332 device_pm_lock();
333 __device_link_del(link);
334 device_pm_unlock();
335 device_links_write_unlock();
336 }
337 EXPORT_SYMBOL_GPL(device_link_del);
338
339 static void device_links_missing_supplier(struct device *dev)
340 {
341 struct device_link *link;
342
343 list_for_each_entry(link, &dev->links.suppliers, c_node)
344 if (link->status == DL_STATE_CONSUMER_PROBE)
345 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
346 }
347
348 /**
349 * device_links_check_suppliers - Check presence of supplier drivers.
350 * @dev: Consumer device.
351 *
352 * Check links from this device to any suppliers. Walk the list of the device's
353 * links to suppliers and see if all of them are available. If not, simply
354 * return -EPROBE_DEFER.
355 *
356 * We need to guarantee that the supplier will not go away after the check has
357 * been positive here. It only can go away in __device_release_driver() and
358 * that function checks the device's links to consumers. This means we need to
359 * mark the link as "consumer probe in progress" to make the supplier removal
360 * wait for us to complete (or bad things may happen).
361 *
362 * Links with the DL_FLAG_STATELESS flag set are ignored.
363 */
364 int device_links_check_suppliers(struct device *dev)
365 {
366 struct device_link *link;
367 int ret = 0;
368
369 device_links_write_lock();
370
371 list_for_each_entry(link, &dev->links.suppliers, c_node) {
372 if (link->flags & DL_FLAG_STATELESS)
373 continue;
374
375 if (link->status != DL_STATE_AVAILABLE) {
376 device_links_missing_supplier(dev);
377 ret = -EPROBE_DEFER;
378 break;
379 }
380 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
381 }
382 dev->links.status = DL_DEV_PROBING;
383
384 device_links_write_unlock();
385 return ret;
386 }
387
388 /**
389 * device_links_driver_bound - Update device links after probing its driver.
390 * @dev: Device to update the links for.
391 *
392 * The probe has been successful, so update links from this device to any
393 * consumers by changing their status to "available".
394 *
395 * Also change the status of @dev's links to suppliers to "active".
396 *
397 * Links with the DL_FLAG_STATELESS flag set are ignored.
398 */
399 void device_links_driver_bound(struct device *dev)
400 {
401 struct device_link *link;
402
403 device_links_write_lock();
404
405 list_for_each_entry(link, &dev->links.consumers, s_node) {
406 if (link->flags & DL_FLAG_STATELESS)
407 continue;
408
409 WARN_ON(link->status != DL_STATE_DORMANT);
410 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
411 }
412
413 list_for_each_entry(link, &dev->links.suppliers, c_node) {
414 if (link->flags & DL_FLAG_STATELESS)
415 continue;
416
417 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
418 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
419 }
420
421 dev->links.status = DL_DEV_DRIVER_BOUND;
422
423 device_links_write_unlock();
424 }
425
426 /**
427 * __device_links_no_driver - Update links of a device without a driver.
428 * @dev: Device without a drvier.
429 *
430 * Delete all non-persistent links from this device to any suppliers.
431 *
432 * Persistent links stay around, but their status is changed to "available",
433 * unless they already are in the "supplier unbind in progress" state in which
434 * case they need not be updated.
435 *
436 * Links with the DL_FLAG_STATELESS flag set are ignored.
437 */
438 static void __device_links_no_driver(struct device *dev)
439 {
440 struct device_link *link, *ln;
441
442 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
443 if (link->flags & DL_FLAG_STATELESS)
444 continue;
445
446 if (link->flags & DL_FLAG_AUTOREMOVE)
447 __device_link_del(link);
448 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
449 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
450 }
451
452 dev->links.status = DL_DEV_NO_DRIVER;
453 }
454
455 void device_links_no_driver(struct device *dev)
456 {
457 device_links_write_lock();
458 __device_links_no_driver(dev);
459 device_links_write_unlock();
460 }
461
462 /**
463 * device_links_driver_cleanup - Update links after driver removal.
464 * @dev: Device whose driver has just gone away.
465 *
466 * Update links to consumers for @dev by changing their status to "dormant" and
467 * invoke %__device_links_no_driver() to update links to suppliers for it as
468 * appropriate.
469 *
470 * Links with the DL_FLAG_STATELESS flag set are ignored.
471 */
472 void device_links_driver_cleanup(struct device *dev)
473 {
474 struct device_link *link;
475
476 device_links_write_lock();
477
478 list_for_each_entry(link, &dev->links.consumers, s_node) {
479 if (link->flags & DL_FLAG_STATELESS)
480 continue;
481
482 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
483 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
484 WRITE_ONCE(link->status, DL_STATE_DORMANT);
485 }
486
487 __device_links_no_driver(dev);
488
489 device_links_write_unlock();
490 }
491
492 /**
493 * device_links_busy - Check if there are any busy links to consumers.
494 * @dev: Device to check.
495 *
496 * Check each consumer of the device and return 'true' if its link's status
497 * is one of "consumer probe" or "active" (meaning that the given consumer is
498 * probing right now or its driver is present). Otherwise, change the link
499 * state to "supplier unbind" to prevent the consumer from being probed
500 * successfully going forward.
501 *
502 * Return 'false' if there are no probing or active consumers.
503 *
504 * Links with the DL_FLAG_STATELESS flag set are ignored.
505 */
506 bool device_links_busy(struct device *dev)
507 {
508 struct device_link *link;
509 bool ret = false;
510
511 device_links_write_lock();
512
513 list_for_each_entry(link, &dev->links.consumers, s_node) {
514 if (link->flags & DL_FLAG_STATELESS)
515 continue;
516
517 if (link->status == DL_STATE_CONSUMER_PROBE
518 || link->status == DL_STATE_ACTIVE) {
519 ret = true;
520 break;
521 }
522 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
523 }
524
525 dev->links.status = DL_DEV_UNBINDING;
526
527 device_links_write_unlock();
528 return ret;
529 }
530
531 /**
532 * device_links_unbind_consumers - Force unbind consumers of the given device.
533 * @dev: Device to unbind the consumers of.
534 *
535 * Walk the list of links to consumers for @dev and if any of them is in the
536 * "consumer probe" state, wait for all device probes in progress to complete
537 * and start over.
538 *
539 * If that's not the case, change the status of the link to "supplier unbind"
540 * and check if the link was in the "active" state. If so, force the consumer
541 * driver to unbind and start over (the consumer will not re-probe as we have
542 * changed the state of the link already).
543 *
544 * Links with the DL_FLAG_STATELESS flag set are ignored.
545 */
546 void device_links_unbind_consumers(struct device *dev)
547 {
548 struct device_link *link;
549
550 start:
551 device_links_write_lock();
552
553 list_for_each_entry(link, &dev->links.consumers, s_node) {
554 enum device_link_state status;
555
556 if (link->flags & DL_FLAG_STATELESS)
557 continue;
558
559 status = link->status;
560 if (status == DL_STATE_CONSUMER_PROBE) {
561 device_links_write_unlock();
562
563 wait_for_device_probe();
564 goto start;
565 }
566 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
567 if (status == DL_STATE_ACTIVE) {
568 struct device *consumer = link->consumer;
569
570 get_device(consumer);
571
572 device_links_write_unlock();
573
574 device_release_driver_internal(consumer, NULL,
575 consumer->parent);
576 put_device(consumer);
577 goto start;
578 }
579 }
580
581 device_links_write_unlock();
582 }
583
584 /**
585 * device_links_purge - Delete existing links to other devices.
586 * @dev: Target device.
587 */
588 static void device_links_purge(struct device *dev)
589 {
590 struct device_link *link, *ln;
591
592 /*
593 * Delete all of the remaining links from this device to any other
594 * devices (either consumers or suppliers).
595 */
596 device_links_write_lock();
597
598 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
599 WARN_ON(link->status == DL_STATE_ACTIVE);
600 __device_link_del(link);
601 }
602
603 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
604 WARN_ON(link->status != DL_STATE_DORMANT &&
605 link->status != DL_STATE_NONE);
606 __device_link_del(link);
607 }
608
609 device_links_write_unlock();
610 }
611
612 /* Device links support end. */
613
614 int (*platform_notify)(struct device *dev) = NULL;
615 int (*platform_notify_remove)(struct device *dev) = NULL;
616 static struct kobject *dev_kobj;
617 struct kobject *sysfs_dev_char_kobj;
618 struct kobject *sysfs_dev_block_kobj;
619
620 static DEFINE_MUTEX(device_hotplug_lock);
621
622 void lock_device_hotplug(void)
623 {
624 mutex_lock(&device_hotplug_lock);
625 }
626
627 void unlock_device_hotplug(void)
628 {
629 mutex_unlock(&device_hotplug_lock);
630 }
631
632 int lock_device_hotplug_sysfs(void)
633 {
634 if (mutex_trylock(&device_hotplug_lock))
635 return 0;
636
637 /* Avoid busy looping (5 ms of sleep should do). */
638 msleep(5);
639 return restart_syscall();
640 }
641
642 #ifdef CONFIG_BLOCK
643 static inline int device_is_not_partition(struct device *dev)
644 {
645 return !(dev->type == &part_type);
646 }
647 #else
648 static inline int device_is_not_partition(struct device *dev)
649 {
650 return 1;
651 }
652 #endif
653
654 /**
655 * dev_driver_string - Return a device's driver name, if at all possible
656 * @dev: struct device to get the name of
657 *
658 * Will return the device's driver's name if it is bound to a device. If
659 * the device is not bound to a driver, it will return the name of the bus
660 * it is attached to. If it is not attached to a bus either, an empty
661 * string will be returned.
662 */
663 const char *dev_driver_string(const struct device *dev)
664 {
665 struct device_driver *drv;
666
667 /* dev->driver can change to NULL underneath us because of unbinding,
668 * so be careful about accessing it. dev->bus and dev->class should
669 * never change once they are set, so they don't need special care.
670 */
671 drv = READ_ONCE(dev->driver);
672 return drv ? drv->name :
673 (dev->bus ? dev->bus->name :
674 (dev->class ? dev->class->name : ""));
675 }
676 EXPORT_SYMBOL(dev_driver_string);
677
678 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
679
680 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
681 char *buf)
682 {
683 struct device_attribute *dev_attr = to_dev_attr(attr);
684 struct device *dev = kobj_to_dev(kobj);
685 ssize_t ret = -EIO;
686
687 if (dev_attr->show)
688 ret = dev_attr->show(dev, dev_attr, buf);
689 if (ret >= (ssize_t)PAGE_SIZE) {
690 print_symbol("dev_attr_show: %s returned bad count\n",
691 (unsigned long)dev_attr->show);
692 }
693 return ret;
694 }
695
696 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
697 const char *buf, size_t count)
698 {
699 struct device_attribute *dev_attr = to_dev_attr(attr);
700 struct device *dev = kobj_to_dev(kobj);
701 ssize_t ret = -EIO;
702
703 if (dev_attr->store)
704 ret = dev_attr->store(dev, dev_attr, buf, count);
705 return ret;
706 }
707
708 static const struct sysfs_ops dev_sysfs_ops = {
709 .show = dev_attr_show,
710 .store = dev_attr_store,
711 };
712
713 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
714
715 ssize_t device_store_ulong(struct device *dev,
716 struct device_attribute *attr,
717 const char *buf, size_t size)
718 {
719 struct dev_ext_attribute *ea = to_ext_attr(attr);
720 char *end;
721 unsigned long new = simple_strtoul(buf, &end, 0);
722 if (end == buf)
723 return -EINVAL;
724 *(unsigned long *)(ea->var) = new;
725 /* Always return full write size even if we didn't consume all */
726 return size;
727 }
728 EXPORT_SYMBOL_GPL(device_store_ulong);
729
730 ssize_t device_show_ulong(struct device *dev,
731 struct device_attribute *attr,
732 char *buf)
733 {
734 struct dev_ext_attribute *ea = to_ext_attr(attr);
735 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
736 }
737 EXPORT_SYMBOL_GPL(device_show_ulong);
738
739 ssize_t device_store_int(struct device *dev,
740 struct device_attribute *attr,
741 const char *buf, size_t size)
742 {
743 struct dev_ext_attribute *ea = to_ext_attr(attr);
744 char *end;
745 long new = simple_strtol(buf, &end, 0);
746 if (end == buf || new > INT_MAX || new < INT_MIN)
747 return -EINVAL;
748 *(int *)(ea->var) = new;
749 /* Always return full write size even if we didn't consume all */
750 return size;
751 }
752 EXPORT_SYMBOL_GPL(device_store_int);
753
754 ssize_t device_show_int(struct device *dev,
755 struct device_attribute *attr,
756 char *buf)
757 {
758 struct dev_ext_attribute *ea = to_ext_attr(attr);
759
760 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
761 }
762 EXPORT_SYMBOL_GPL(device_show_int);
763
764 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
765 const char *buf, size_t size)
766 {
767 struct dev_ext_attribute *ea = to_ext_attr(attr);
768
769 if (strtobool(buf, ea->var) < 0)
770 return -EINVAL;
771
772 return size;
773 }
774 EXPORT_SYMBOL_GPL(device_store_bool);
775
776 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
777 char *buf)
778 {
779 struct dev_ext_attribute *ea = to_ext_attr(attr);
780
781 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
782 }
783 EXPORT_SYMBOL_GPL(device_show_bool);
784
785 /**
786 * device_release - free device structure.
787 * @kobj: device's kobject.
788 *
789 * This is called once the reference count for the object
790 * reaches 0. We forward the call to the device's release
791 * method, which should handle actually freeing the structure.
792 */
793 static void device_release(struct kobject *kobj)
794 {
795 struct device *dev = kobj_to_dev(kobj);
796 struct device_private *p = dev->p;
797
798 /*
799 * Some platform devices are driven without driver attached
800 * and managed resources may have been acquired. Make sure
801 * all resources are released.
802 *
803 * Drivers still can add resources into device after device
804 * is deleted but alive, so release devres here to avoid
805 * possible memory leak.
806 */
807 devres_release_all(dev);
808
809 if (dev->release)
810 dev->release(dev);
811 else if (dev->type && dev->type->release)
812 dev->type->release(dev);
813 else if (dev->class && dev->class->dev_release)
814 dev->class->dev_release(dev);
815 else
816 WARN(1, KERN_ERR "Device '%s' does not have a release() "
817 "function, it is broken and must be fixed.\n",
818 dev_name(dev));
819 kfree(p);
820 }
821
822 static const void *device_namespace(struct kobject *kobj)
823 {
824 struct device *dev = kobj_to_dev(kobj);
825 const void *ns = NULL;
826
827 if (dev->class && dev->class->ns_type)
828 ns = dev->class->namespace(dev);
829
830 return ns;
831 }
832
833 static struct kobj_type device_ktype = {
834 .release = device_release,
835 .sysfs_ops = &dev_sysfs_ops,
836 .namespace = device_namespace,
837 };
838
839
840 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
841 {
842 struct kobj_type *ktype = get_ktype(kobj);
843
844 if (ktype == &device_ktype) {
845 struct device *dev = kobj_to_dev(kobj);
846 if (dev->bus)
847 return 1;
848 if (dev->class)
849 return 1;
850 }
851 return 0;
852 }
853
854 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
855 {
856 struct device *dev = kobj_to_dev(kobj);
857
858 if (dev->bus)
859 return dev->bus->name;
860 if (dev->class)
861 return dev->class->name;
862 return NULL;
863 }
864
865 static int dev_uevent(struct kset *kset, struct kobject *kobj,
866 struct kobj_uevent_env *env)
867 {
868 struct device *dev = kobj_to_dev(kobj);
869 int retval = 0;
870
871 /* add device node properties if present */
872 if (MAJOR(dev->devt)) {
873 const char *tmp;
874 const char *name;
875 umode_t mode = 0;
876 kuid_t uid = GLOBAL_ROOT_UID;
877 kgid_t gid = GLOBAL_ROOT_GID;
878
879 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
880 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
881 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
882 if (name) {
883 add_uevent_var(env, "DEVNAME=%s", name);
884 if (mode)
885 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
886 if (!uid_eq(uid, GLOBAL_ROOT_UID))
887 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
888 if (!gid_eq(gid, GLOBAL_ROOT_GID))
889 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
890 kfree(tmp);
891 }
892 }
893
894 if (dev->type && dev->type->name)
895 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
896
897 if (dev->driver)
898 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
899
900 /* Add common DT information about the device */
901 of_device_uevent(dev, env);
902
903 /* have the bus specific function add its stuff */
904 if (dev->bus && dev->bus->uevent) {
905 retval = dev->bus->uevent(dev, env);
906 if (retval)
907 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
908 dev_name(dev), __func__, retval);
909 }
910
911 /* have the class specific function add its stuff */
912 if (dev->class && dev->class->dev_uevent) {
913 retval = dev->class->dev_uevent(dev, env);
914 if (retval)
915 pr_debug("device: '%s': %s: class uevent() "
916 "returned %d\n", dev_name(dev),
917 __func__, retval);
918 }
919
920 /* have the device type specific function add its stuff */
921 if (dev->type && dev->type->uevent) {
922 retval = dev->type->uevent(dev, env);
923 if (retval)
924 pr_debug("device: '%s': %s: dev_type uevent() "
925 "returned %d\n", dev_name(dev),
926 __func__, retval);
927 }
928
929 return retval;
930 }
931
932 static const struct kset_uevent_ops device_uevent_ops = {
933 .filter = dev_uevent_filter,
934 .name = dev_uevent_name,
935 .uevent = dev_uevent,
936 };
937
938 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
939 char *buf)
940 {
941 struct kobject *top_kobj;
942 struct kset *kset;
943 struct kobj_uevent_env *env = NULL;
944 int i;
945 size_t count = 0;
946 int retval;
947
948 /* search the kset, the device belongs to */
949 top_kobj = &dev->kobj;
950 while (!top_kobj->kset && top_kobj->parent)
951 top_kobj = top_kobj->parent;
952 if (!top_kobj->kset)
953 goto out;
954
955 kset = top_kobj->kset;
956 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
957 goto out;
958
959 /* respect filter */
960 if (kset->uevent_ops && kset->uevent_ops->filter)
961 if (!kset->uevent_ops->filter(kset, &dev->kobj))
962 goto out;
963
964 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
965 if (!env)
966 return -ENOMEM;
967
968 /* let the kset specific function add its keys */
969 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
970 if (retval)
971 goto out;
972
973 /* copy keys to file */
974 for (i = 0; i < env->envp_idx; i++)
975 count += sprintf(&buf[count], "%s\n", env->envp[i]);
976 out:
977 kfree(env);
978 return count;
979 }
980
981 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
982 const char *buf, size_t count)
983 {
984 if (kobject_synth_uevent(&dev->kobj, buf, count))
985 dev_err(dev, "uevent: failed to send synthetic uevent\n");
986
987 return count;
988 }
989 static DEVICE_ATTR_RW(uevent);
990
991 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
992 char *buf)
993 {
994 bool val;
995
996 device_lock(dev);
997 val = !dev->offline;
998 device_unlock(dev);
999 return sprintf(buf, "%u\n", val);
1000 }
1001
1002 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1003 const char *buf, size_t count)
1004 {
1005 bool val;
1006 int ret;
1007
1008 ret = strtobool(buf, &val);
1009 if (ret < 0)
1010 return ret;
1011
1012 ret = lock_device_hotplug_sysfs();
1013 if (ret)
1014 return ret;
1015
1016 ret = val ? device_online(dev) : device_offline(dev);
1017 unlock_device_hotplug();
1018 return ret < 0 ? ret : count;
1019 }
1020 static DEVICE_ATTR_RW(online);
1021
1022 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1023 {
1024 return sysfs_create_groups(&dev->kobj, groups);
1025 }
1026 EXPORT_SYMBOL_GPL(device_add_groups);
1027
1028 void device_remove_groups(struct device *dev,
1029 const struct attribute_group **groups)
1030 {
1031 sysfs_remove_groups(&dev->kobj, groups);
1032 }
1033 EXPORT_SYMBOL_GPL(device_remove_groups);
1034
1035 union device_attr_group_devres {
1036 const struct attribute_group *group;
1037 const struct attribute_group **groups;
1038 };
1039
1040 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1041 {
1042 return ((union device_attr_group_devres *)res)->group == data;
1043 }
1044
1045 static void devm_attr_group_remove(struct device *dev, void *res)
1046 {
1047 union device_attr_group_devres *devres = res;
1048 const struct attribute_group *group = devres->group;
1049
1050 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1051 sysfs_remove_group(&dev->kobj, group);
1052 }
1053
1054 static void devm_attr_groups_remove(struct device *dev, void *res)
1055 {
1056 union device_attr_group_devres *devres = res;
1057 const struct attribute_group **groups = devres->groups;
1058
1059 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1060 sysfs_remove_groups(&dev->kobj, groups);
1061 }
1062
1063 /**
1064 * devm_device_add_group - given a device, create a managed attribute group
1065 * @dev: The device to create the group for
1066 * @grp: The attribute group to create
1067 *
1068 * This function creates a group for the first time. It will explicitly
1069 * warn and error if any of the attribute files being created already exist.
1070 *
1071 * Returns 0 on success or error code on failure.
1072 */
1073 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1074 {
1075 union device_attr_group_devres *devres;
1076 int error;
1077
1078 devres = devres_alloc(devm_attr_group_remove,
1079 sizeof(*devres), GFP_KERNEL);
1080 if (!devres)
1081 return -ENOMEM;
1082
1083 error = sysfs_create_group(&dev->kobj, grp);
1084 if (error) {
1085 devres_free(devres);
1086 return error;
1087 }
1088
1089 devres->group = grp;
1090 devres_add(dev, devres);
1091 return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(devm_device_add_group);
1094
1095 /**
1096 * devm_device_remove_group: remove a managed group from a device
1097 * @dev: device to remove the group from
1098 * @grp: group to remove
1099 *
1100 * This function removes a group of attributes from a device. The attributes
1101 * previously have to have been created for this group, otherwise it will fail.
1102 */
1103 void devm_device_remove_group(struct device *dev,
1104 const struct attribute_group *grp)
1105 {
1106 WARN_ON(devres_release(dev, devm_attr_group_remove,
1107 devm_attr_group_match,
1108 /* cast away const */ (void *)grp));
1109 }
1110 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1111
1112 /**
1113 * devm_device_add_groups - create a bunch of managed attribute groups
1114 * @dev: The device to create the group for
1115 * @groups: The attribute groups to create, NULL terminated
1116 *
1117 * This function creates a bunch of managed attribute groups. If an error
1118 * occurs when creating a group, all previously created groups will be
1119 * removed, unwinding everything back to the original state when this
1120 * function was called. It will explicitly warn and error if any of the
1121 * attribute files being created already exist.
1122 *
1123 * Returns 0 on success or error code from sysfs_create_group on failure.
1124 */
1125 int devm_device_add_groups(struct device *dev,
1126 const struct attribute_group **groups)
1127 {
1128 union device_attr_group_devres *devres;
1129 int error;
1130
1131 devres = devres_alloc(devm_attr_groups_remove,
1132 sizeof(*devres), GFP_KERNEL);
1133 if (!devres)
1134 return -ENOMEM;
1135
1136 error = sysfs_create_groups(&dev->kobj, groups);
1137 if (error) {
1138 devres_free(devres);
1139 return error;
1140 }
1141
1142 devres->groups = groups;
1143 devres_add(dev, devres);
1144 return 0;
1145 }
1146 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1147
1148 /**
1149 * devm_device_remove_groups - remove a list of managed groups
1150 *
1151 * @dev: The device for the groups to be removed from
1152 * @groups: NULL terminated list of groups to be removed
1153 *
1154 * If groups is not NULL, remove the specified groups from the device.
1155 */
1156 void devm_device_remove_groups(struct device *dev,
1157 const struct attribute_group **groups)
1158 {
1159 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1160 devm_attr_group_match,
1161 /* cast away const */ (void *)groups));
1162 }
1163 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1164
1165 static int device_add_attrs(struct device *dev)
1166 {
1167 struct class *class = dev->class;
1168 const struct device_type *type = dev->type;
1169 int error;
1170
1171 if (class) {
1172 error = device_add_groups(dev, class->dev_groups);
1173 if (error)
1174 return error;
1175 }
1176
1177 if (type) {
1178 error = device_add_groups(dev, type->groups);
1179 if (error)
1180 goto err_remove_class_groups;
1181 }
1182
1183 error = device_add_groups(dev, dev->groups);
1184 if (error)
1185 goto err_remove_type_groups;
1186
1187 if (device_supports_offline(dev) && !dev->offline_disabled) {
1188 error = device_create_file(dev, &dev_attr_online);
1189 if (error)
1190 goto err_remove_dev_groups;
1191 }
1192
1193 return 0;
1194
1195 err_remove_dev_groups:
1196 device_remove_groups(dev, dev->groups);
1197 err_remove_type_groups:
1198 if (type)
1199 device_remove_groups(dev, type->groups);
1200 err_remove_class_groups:
1201 if (class)
1202 device_remove_groups(dev, class->dev_groups);
1203
1204 return error;
1205 }
1206
1207 static void device_remove_attrs(struct device *dev)
1208 {
1209 struct class *class = dev->class;
1210 const struct device_type *type = dev->type;
1211
1212 device_remove_file(dev, &dev_attr_online);
1213 device_remove_groups(dev, dev->groups);
1214
1215 if (type)
1216 device_remove_groups(dev, type->groups);
1217
1218 if (class)
1219 device_remove_groups(dev, class->dev_groups);
1220 }
1221
1222 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1223 char *buf)
1224 {
1225 return print_dev_t(buf, dev->devt);
1226 }
1227 static DEVICE_ATTR_RO(dev);
1228
1229 /* /sys/devices/ */
1230 struct kset *devices_kset;
1231
1232 /**
1233 * devices_kset_move_before - Move device in the devices_kset's list.
1234 * @deva: Device to move.
1235 * @devb: Device @deva should come before.
1236 */
1237 static void devices_kset_move_before(struct device *deva, struct device *devb)
1238 {
1239 if (!devices_kset)
1240 return;
1241 pr_debug("devices_kset: Moving %s before %s\n",
1242 dev_name(deva), dev_name(devb));
1243 spin_lock(&devices_kset->list_lock);
1244 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1245 spin_unlock(&devices_kset->list_lock);
1246 }
1247
1248 /**
1249 * devices_kset_move_after - Move device in the devices_kset's list.
1250 * @deva: Device to move
1251 * @devb: Device @deva should come after.
1252 */
1253 static void devices_kset_move_after(struct device *deva, struct device *devb)
1254 {
1255 if (!devices_kset)
1256 return;
1257 pr_debug("devices_kset: Moving %s after %s\n",
1258 dev_name(deva), dev_name(devb));
1259 spin_lock(&devices_kset->list_lock);
1260 list_move(&deva->kobj.entry, &devb->kobj.entry);
1261 spin_unlock(&devices_kset->list_lock);
1262 }
1263
1264 /**
1265 * devices_kset_move_last - move the device to the end of devices_kset's list.
1266 * @dev: device to move
1267 */
1268 void devices_kset_move_last(struct device *dev)
1269 {
1270 if (!devices_kset)
1271 return;
1272 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1273 spin_lock(&devices_kset->list_lock);
1274 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1275 spin_unlock(&devices_kset->list_lock);
1276 }
1277
1278 /**
1279 * device_create_file - create sysfs attribute file for device.
1280 * @dev: device.
1281 * @attr: device attribute descriptor.
1282 */
1283 int device_create_file(struct device *dev,
1284 const struct device_attribute *attr)
1285 {
1286 int error = 0;
1287
1288 if (dev) {
1289 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1290 "Attribute %s: write permission without 'store'\n",
1291 attr->attr.name);
1292 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1293 "Attribute %s: read permission without 'show'\n",
1294 attr->attr.name);
1295 error = sysfs_create_file(&dev->kobj, &attr->attr);
1296 }
1297
1298 return error;
1299 }
1300 EXPORT_SYMBOL_GPL(device_create_file);
1301
1302 /**
1303 * device_remove_file - remove sysfs attribute file.
1304 * @dev: device.
1305 * @attr: device attribute descriptor.
1306 */
1307 void device_remove_file(struct device *dev,
1308 const struct device_attribute *attr)
1309 {
1310 if (dev)
1311 sysfs_remove_file(&dev->kobj, &attr->attr);
1312 }
1313 EXPORT_SYMBOL_GPL(device_remove_file);
1314
1315 /**
1316 * device_remove_file_self - remove sysfs attribute file from its own method.
1317 * @dev: device.
1318 * @attr: device attribute descriptor.
1319 *
1320 * See kernfs_remove_self() for details.
1321 */
1322 bool device_remove_file_self(struct device *dev,
1323 const struct device_attribute *attr)
1324 {
1325 if (dev)
1326 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1327 else
1328 return false;
1329 }
1330 EXPORT_SYMBOL_GPL(device_remove_file_self);
1331
1332 /**
1333 * device_create_bin_file - create sysfs binary attribute file for device.
1334 * @dev: device.
1335 * @attr: device binary attribute descriptor.
1336 */
1337 int device_create_bin_file(struct device *dev,
1338 const struct bin_attribute *attr)
1339 {
1340 int error = -EINVAL;
1341 if (dev)
1342 error = sysfs_create_bin_file(&dev->kobj, attr);
1343 return error;
1344 }
1345 EXPORT_SYMBOL_GPL(device_create_bin_file);
1346
1347 /**
1348 * device_remove_bin_file - remove sysfs binary attribute file
1349 * @dev: device.
1350 * @attr: device binary attribute descriptor.
1351 */
1352 void device_remove_bin_file(struct device *dev,
1353 const struct bin_attribute *attr)
1354 {
1355 if (dev)
1356 sysfs_remove_bin_file(&dev->kobj, attr);
1357 }
1358 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1359
1360 static void klist_children_get(struct klist_node *n)
1361 {
1362 struct device_private *p = to_device_private_parent(n);
1363 struct device *dev = p->device;
1364
1365 get_device(dev);
1366 }
1367
1368 static void klist_children_put(struct klist_node *n)
1369 {
1370 struct device_private *p = to_device_private_parent(n);
1371 struct device *dev = p->device;
1372
1373 put_device(dev);
1374 }
1375
1376 /**
1377 * device_initialize - init device structure.
1378 * @dev: device.
1379 *
1380 * This prepares the device for use by other layers by initializing
1381 * its fields.
1382 * It is the first half of device_register(), if called by
1383 * that function, though it can also be called separately, so one
1384 * may use @dev's fields. In particular, get_device()/put_device()
1385 * may be used for reference counting of @dev after calling this
1386 * function.
1387 *
1388 * All fields in @dev must be initialized by the caller to 0, except
1389 * for those explicitly set to some other value. The simplest
1390 * approach is to use kzalloc() to allocate the structure containing
1391 * @dev.
1392 *
1393 * NOTE: Use put_device() to give up your reference instead of freeing
1394 * @dev directly once you have called this function.
1395 */
1396 void device_initialize(struct device *dev)
1397 {
1398 dev->kobj.kset = devices_kset;
1399 kobject_init(&dev->kobj, &device_ktype);
1400 INIT_LIST_HEAD(&dev->dma_pools);
1401 mutex_init(&dev->mutex);
1402 lockdep_set_novalidate_class(&dev->mutex);
1403 spin_lock_init(&dev->devres_lock);
1404 INIT_LIST_HEAD(&dev->devres_head);
1405 device_pm_init(dev);
1406 set_dev_node(dev, -1);
1407 #ifdef CONFIG_GENERIC_MSI_IRQ
1408 INIT_LIST_HEAD(&dev->msi_list);
1409 #endif
1410 INIT_LIST_HEAD(&dev->links.consumers);
1411 INIT_LIST_HEAD(&dev->links.suppliers);
1412 dev->links.status = DL_DEV_NO_DRIVER;
1413 }
1414 EXPORT_SYMBOL_GPL(device_initialize);
1415
1416 struct kobject *virtual_device_parent(struct device *dev)
1417 {
1418 static struct kobject *virtual_dir = NULL;
1419
1420 if (!virtual_dir)
1421 virtual_dir = kobject_create_and_add("virtual",
1422 &devices_kset->kobj);
1423
1424 return virtual_dir;
1425 }
1426
1427 struct class_dir {
1428 struct kobject kobj;
1429 struct class *class;
1430 };
1431
1432 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1433
1434 static void class_dir_release(struct kobject *kobj)
1435 {
1436 struct class_dir *dir = to_class_dir(kobj);
1437 kfree(dir);
1438 }
1439
1440 static const
1441 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1442 {
1443 struct class_dir *dir = to_class_dir(kobj);
1444 return dir->class->ns_type;
1445 }
1446
1447 static struct kobj_type class_dir_ktype = {
1448 .release = class_dir_release,
1449 .sysfs_ops = &kobj_sysfs_ops,
1450 .child_ns_type = class_dir_child_ns_type
1451 };
1452
1453 static struct kobject *
1454 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1455 {
1456 struct class_dir *dir;
1457 int retval;
1458
1459 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1460 if (!dir)
1461 return NULL;
1462
1463 dir->class = class;
1464 kobject_init(&dir->kobj, &class_dir_ktype);
1465
1466 dir->kobj.kset = &class->p->glue_dirs;
1467
1468 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1469 if (retval < 0) {
1470 kobject_put(&dir->kobj);
1471 return NULL;
1472 }
1473 return &dir->kobj;
1474 }
1475
1476 static DEFINE_MUTEX(gdp_mutex);
1477
1478 static struct kobject *get_device_parent(struct device *dev,
1479 struct device *parent)
1480 {
1481 if (dev->class) {
1482 struct kobject *kobj = NULL;
1483 struct kobject *parent_kobj;
1484 struct kobject *k;
1485
1486 #ifdef CONFIG_BLOCK
1487 /* block disks show up in /sys/block */
1488 if (sysfs_deprecated && dev->class == &block_class) {
1489 if (parent && parent->class == &block_class)
1490 return &parent->kobj;
1491 return &block_class.p->subsys.kobj;
1492 }
1493 #endif
1494
1495 /*
1496 * If we have no parent, we live in "virtual".
1497 * Class-devices with a non class-device as parent, live
1498 * in a "glue" directory to prevent namespace collisions.
1499 */
1500 if (parent == NULL)
1501 parent_kobj = virtual_device_parent(dev);
1502 else if (parent->class && !dev->class->ns_type)
1503 return &parent->kobj;
1504 else
1505 parent_kobj = &parent->kobj;
1506
1507 mutex_lock(&gdp_mutex);
1508
1509 /* find our class-directory at the parent and reference it */
1510 spin_lock(&dev->class->p->glue_dirs.list_lock);
1511 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1512 if (k->parent == parent_kobj) {
1513 kobj = kobject_get(k);
1514 break;
1515 }
1516 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1517 if (kobj) {
1518 mutex_unlock(&gdp_mutex);
1519 return kobj;
1520 }
1521
1522 /* or create a new class-directory at the parent device */
1523 k = class_dir_create_and_add(dev->class, parent_kobj);
1524 /* do not emit an uevent for this simple "glue" directory */
1525 mutex_unlock(&gdp_mutex);
1526 return k;
1527 }
1528
1529 /* subsystems can specify a default root directory for their devices */
1530 if (!parent && dev->bus && dev->bus->dev_root)
1531 return &dev->bus->dev_root->kobj;
1532
1533 if (parent)
1534 return &parent->kobj;
1535 return NULL;
1536 }
1537
1538 static inline bool live_in_glue_dir(struct kobject *kobj,
1539 struct device *dev)
1540 {
1541 if (!kobj || !dev->class ||
1542 kobj->kset != &dev->class->p->glue_dirs)
1543 return false;
1544 return true;
1545 }
1546
1547 static inline struct kobject *get_glue_dir(struct device *dev)
1548 {
1549 return dev->kobj.parent;
1550 }
1551
1552 /*
1553 * make sure cleaning up dir as the last step, we need to make
1554 * sure .release handler of kobject is run with holding the
1555 * global lock
1556 */
1557 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1558 {
1559 /* see if we live in a "glue" directory */
1560 if (!live_in_glue_dir(glue_dir, dev))
1561 return;
1562
1563 mutex_lock(&gdp_mutex);
1564 kobject_put(glue_dir);
1565 mutex_unlock(&gdp_mutex);
1566 }
1567
1568 static int device_add_class_symlinks(struct device *dev)
1569 {
1570 struct device_node *of_node = dev_of_node(dev);
1571 int error;
1572
1573 if (of_node) {
1574 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1575 if (error)
1576 dev_warn(dev, "Error %d creating of_node link\n",error);
1577 /* An error here doesn't warrant bringing down the device */
1578 }
1579
1580 if (!dev->class)
1581 return 0;
1582
1583 error = sysfs_create_link(&dev->kobj,
1584 &dev->class->p->subsys.kobj,
1585 "subsystem");
1586 if (error)
1587 goto out_devnode;
1588
1589 if (dev->parent && device_is_not_partition(dev)) {
1590 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1591 "device");
1592 if (error)
1593 goto out_subsys;
1594 }
1595
1596 #ifdef CONFIG_BLOCK
1597 /* /sys/block has directories and does not need symlinks */
1598 if (sysfs_deprecated && dev->class == &block_class)
1599 return 0;
1600 #endif
1601
1602 /* link in the class directory pointing to the device */
1603 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1604 &dev->kobj, dev_name(dev));
1605 if (error)
1606 goto out_device;
1607
1608 return 0;
1609
1610 out_device:
1611 sysfs_remove_link(&dev->kobj, "device");
1612
1613 out_subsys:
1614 sysfs_remove_link(&dev->kobj, "subsystem");
1615 out_devnode:
1616 sysfs_remove_link(&dev->kobj, "of_node");
1617 return error;
1618 }
1619
1620 static void device_remove_class_symlinks(struct device *dev)
1621 {
1622 if (dev_of_node(dev))
1623 sysfs_remove_link(&dev->kobj, "of_node");
1624
1625 if (!dev->class)
1626 return;
1627
1628 if (dev->parent && device_is_not_partition(dev))
1629 sysfs_remove_link(&dev->kobj, "device");
1630 sysfs_remove_link(&dev->kobj, "subsystem");
1631 #ifdef CONFIG_BLOCK
1632 if (sysfs_deprecated && dev->class == &block_class)
1633 return;
1634 #endif
1635 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1636 }
1637
1638 /**
1639 * dev_set_name - set a device name
1640 * @dev: device
1641 * @fmt: format string for the device's name
1642 */
1643 int dev_set_name(struct device *dev, const char *fmt, ...)
1644 {
1645 va_list vargs;
1646 int err;
1647
1648 va_start(vargs, fmt);
1649 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1650 va_end(vargs);
1651 return err;
1652 }
1653 EXPORT_SYMBOL_GPL(dev_set_name);
1654
1655 /**
1656 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1657 * @dev: device
1658 *
1659 * By default we select char/ for new entries. Setting class->dev_obj
1660 * to NULL prevents an entry from being created. class->dev_kobj must
1661 * be set (or cleared) before any devices are registered to the class
1662 * otherwise device_create_sys_dev_entry() and
1663 * device_remove_sys_dev_entry() will disagree about the presence of
1664 * the link.
1665 */
1666 static struct kobject *device_to_dev_kobj(struct device *dev)
1667 {
1668 struct kobject *kobj;
1669
1670 if (dev->class)
1671 kobj = dev->class->dev_kobj;
1672 else
1673 kobj = sysfs_dev_char_kobj;
1674
1675 return kobj;
1676 }
1677
1678 static int device_create_sys_dev_entry(struct device *dev)
1679 {
1680 struct kobject *kobj = device_to_dev_kobj(dev);
1681 int error = 0;
1682 char devt_str[15];
1683
1684 if (kobj) {
1685 format_dev_t(devt_str, dev->devt);
1686 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1687 }
1688
1689 return error;
1690 }
1691
1692 static void device_remove_sys_dev_entry(struct device *dev)
1693 {
1694 struct kobject *kobj = device_to_dev_kobj(dev);
1695 char devt_str[15];
1696
1697 if (kobj) {
1698 format_dev_t(devt_str, dev->devt);
1699 sysfs_remove_link(kobj, devt_str);
1700 }
1701 }
1702
1703 int device_private_init(struct device *dev)
1704 {
1705 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1706 if (!dev->p)
1707 return -ENOMEM;
1708 dev->p->device = dev;
1709 klist_init(&dev->p->klist_children, klist_children_get,
1710 klist_children_put);
1711 INIT_LIST_HEAD(&dev->p->deferred_probe);
1712 return 0;
1713 }
1714
1715 /**
1716 * device_add - add device to device hierarchy.
1717 * @dev: device.
1718 *
1719 * This is part 2 of device_register(), though may be called
1720 * separately _iff_ device_initialize() has been called separately.
1721 *
1722 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1723 * to the global and sibling lists for the device, then
1724 * adds it to the other relevant subsystems of the driver model.
1725 *
1726 * Do not call this routine or device_register() more than once for
1727 * any device structure. The driver model core is not designed to work
1728 * with devices that get unregistered and then spring back to life.
1729 * (Among other things, it's very hard to guarantee that all references
1730 * to the previous incarnation of @dev have been dropped.) Allocate
1731 * and register a fresh new struct device instead.
1732 *
1733 * NOTE: _Never_ directly free @dev after calling this function, even
1734 * if it returned an error! Always use put_device() to give up your
1735 * reference instead.
1736 */
1737 int device_add(struct device *dev)
1738 {
1739 struct device *parent;
1740 struct kobject *kobj;
1741 struct class_interface *class_intf;
1742 int error = -EINVAL;
1743 struct kobject *glue_dir = NULL;
1744
1745 dev = get_device(dev);
1746 if (!dev)
1747 goto done;
1748
1749 if (!dev->p) {
1750 error = device_private_init(dev);
1751 if (error)
1752 goto done;
1753 }
1754
1755 /*
1756 * for statically allocated devices, which should all be converted
1757 * some day, we need to initialize the name. We prevent reading back
1758 * the name, and force the use of dev_name()
1759 */
1760 if (dev->init_name) {
1761 dev_set_name(dev, "%s", dev->init_name);
1762 dev->init_name = NULL;
1763 }
1764
1765 /* subsystems can specify simple device enumeration */
1766 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1767 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1768
1769 if (!dev_name(dev)) {
1770 error = -EINVAL;
1771 goto name_error;
1772 }
1773
1774 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1775
1776 parent = get_device(dev->parent);
1777 kobj = get_device_parent(dev, parent);
1778 if (kobj)
1779 dev->kobj.parent = kobj;
1780
1781 /* use parent numa_node */
1782 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1783 set_dev_node(dev, dev_to_node(parent));
1784
1785 /* first, register with generic layer. */
1786 /* we require the name to be set before, and pass NULL */
1787 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1788 if (error) {
1789 glue_dir = get_glue_dir(dev);
1790 goto Error;
1791 }
1792
1793 /* notify platform of device entry */
1794 if (platform_notify)
1795 platform_notify(dev);
1796
1797 error = device_create_file(dev, &dev_attr_uevent);
1798 if (error)
1799 goto attrError;
1800
1801 error = device_add_class_symlinks(dev);
1802 if (error)
1803 goto SymlinkError;
1804 error = device_add_attrs(dev);
1805 if (error)
1806 goto AttrsError;
1807 error = bus_add_device(dev);
1808 if (error)
1809 goto BusError;
1810 error = dpm_sysfs_add(dev);
1811 if (error)
1812 goto DPMError;
1813 device_pm_add(dev);
1814
1815 if (MAJOR(dev->devt)) {
1816 error = device_create_file(dev, &dev_attr_dev);
1817 if (error)
1818 goto DevAttrError;
1819
1820 error = device_create_sys_dev_entry(dev);
1821 if (error)
1822 goto SysEntryError;
1823
1824 devtmpfs_create_node(dev);
1825 }
1826
1827 /* Notify clients of device addition. This call must come
1828 * after dpm_sysfs_add() and before kobject_uevent().
1829 */
1830 if (dev->bus)
1831 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1832 BUS_NOTIFY_ADD_DEVICE, dev);
1833
1834 kobject_uevent(&dev->kobj, KOBJ_ADD);
1835 bus_probe_device(dev);
1836 if (parent)
1837 klist_add_tail(&dev->p->knode_parent,
1838 &parent->p->klist_children);
1839
1840 if (dev->class) {
1841 mutex_lock(&dev->class->p->mutex);
1842 /* tie the class to the device */
1843 klist_add_tail(&dev->knode_class,
1844 &dev->class->p->klist_devices);
1845
1846 /* notify any interfaces that the device is here */
1847 list_for_each_entry(class_intf,
1848 &dev->class->p->interfaces, node)
1849 if (class_intf->add_dev)
1850 class_intf->add_dev(dev, class_intf);
1851 mutex_unlock(&dev->class->p->mutex);
1852 }
1853 done:
1854 put_device(dev);
1855 return error;
1856 SysEntryError:
1857 if (MAJOR(dev->devt))
1858 device_remove_file(dev, &dev_attr_dev);
1859 DevAttrError:
1860 device_pm_remove(dev);
1861 dpm_sysfs_remove(dev);
1862 DPMError:
1863 bus_remove_device(dev);
1864 BusError:
1865 device_remove_attrs(dev);
1866 AttrsError:
1867 device_remove_class_symlinks(dev);
1868 SymlinkError:
1869 device_remove_file(dev, &dev_attr_uevent);
1870 attrError:
1871 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1872 glue_dir = get_glue_dir(dev);
1873 kobject_del(&dev->kobj);
1874 Error:
1875 cleanup_glue_dir(dev, glue_dir);
1876 put_device(parent);
1877 name_error:
1878 kfree(dev->p);
1879 dev->p = NULL;
1880 goto done;
1881 }
1882 EXPORT_SYMBOL_GPL(device_add);
1883
1884 /**
1885 * device_register - register a device with the system.
1886 * @dev: pointer to the device structure
1887 *
1888 * This happens in two clean steps - initialize the device
1889 * and add it to the system. The two steps can be called
1890 * separately, but this is the easiest and most common.
1891 * I.e. you should only call the two helpers separately if
1892 * have a clearly defined need to use and refcount the device
1893 * before it is added to the hierarchy.
1894 *
1895 * For more information, see the kerneldoc for device_initialize()
1896 * and device_add().
1897 *
1898 * NOTE: _Never_ directly free @dev after calling this function, even
1899 * if it returned an error! Always use put_device() to give up the
1900 * reference initialized in this function instead.
1901 */
1902 int device_register(struct device *dev)
1903 {
1904 device_initialize(dev);
1905 return device_add(dev);
1906 }
1907 EXPORT_SYMBOL_GPL(device_register);
1908
1909 /**
1910 * get_device - increment reference count for device.
1911 * @dev: device.
1912 *
1913 * This simply forwards the call to kobject_get(), though
1914 * we do take care to provide for the case that we get a NULL
1915 * pointer passed in.
1916 */
1917 struct device *get_device(struct device *dev)
1918 {
1919 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1920 }
1921 EXPORT_SYMBOL_GPL(get_device);
1922
1923 /**
1924 * put_device - decrement reference count.
1925 * @dev: device in question.
1926 */
1927 void put_device(struct device *dev)
1928 {
1929 /* might_sleep(); */
1930 if (dev)
1931 kobject_put(&dev->kobj);
1932 }
1933 EXPORT_SYMBOL_GPL(put_device);
1934
1935 /**
1936 * device_del - delete device from system.
1937 * @dev: device.
1938 *
1939 * This is the first part of the device unregistration
1940 * sequence. This removes the device from the lists we control
1941 * from here, has it removed from the other driver model
1942 * subsystems it was added to in device_add(), and removes it
1943 * from the kobject hierarchy.
1944 *
1945 * NOTE: this should be called manually _iff_ device_add() was
1946 * also called manually.
1947 */
1948 void device_del(struct device *dev)
1949 {
1950 struct device *parent = dev->parent;
1951 struct kobject *glue_dir = NULL;
1952 struct class_interface *class_intf;
1953
1954 /* Notify clients of device removal. This call must come
1955 * before dpm_sysfs_remove().
1956 */
1957 if (dev->bus)
1958 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1959 BUS_NOTIFY_DEL_DEVICE, dev);
1960
1961 device_links_purge(dev);
1962 dpm_sysfs_remove(dev);
1963 if (parent)
1964 klist_del(&dev->p->knode_parent);
1965 if (MAJOR(dev->devt)) {
1966 devtmpfs_delete_node(dev);
1967 device_remove_sys_dev_entry(dev);
1968 device_remove_file(dev, &dev_attr_dev);
1969 }
1970 if (dev->class) {
1971 device_remove_class_symlinks(dev);
1972
1973 mutex_lock(&dev->class->p->mutex);
1974 /* notify any interfaces that the device is now gone */
1975 list_for_each_entry(class_intf,
1976 &dev->class->p->interfaces, node)
1977 if (class_intf->remove_dev)
1978 class_intf->remove_dev(dev, class_intf);
1979 /* remove the device from the class list */
1980 klist_del(&dev->knode_class);
1981 mutex_unlock(&dev->class->p->mutex);
1982 }
1983 device_remove_file(dev, &dev_attr_uevent);
1984 device_remove_attrs(dev);
1985 bus_remove_device(dev);
1986 device_pm_remove(dev);
1987 driver_deferred_probe_del(dev);
1988 device_remove_properties(dev);
1989
1990 /* Notify the platform of the removal, in case they
1991 * need to do anything...
1992 */
1993 if (platform_notify_remove)
1994 platform_notify_remove(dev);
1995 if (dev->bus)
1996 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1997 BUS_NOTIFY_REMOVED_DEVICE, dev);
1998 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1999 glue_dir = get_glue_dir(dev);
2000 kobject_del(&dev->kobj);
2001 cleanup_glue_dir(dev, glue_dir);
2002 put_device(parent);
2003 }
2004 EXPORT_SYMBOL_GPL(device_del);
2005
2006 /**
2007 * device_unregister - unregister device from system.
2008 * @dev: device going away.
2009 *
2010 * We do this in two parts, like we do device_register(). First,
2011 * we remove it from all the subsystems with device_del(), then
2012 * we decrement the reference count via put_device(). If that
2013 * is the final reference count, the device will be cleaned up
2014 * via device_release() above. Otherwise, the structure will
2015 * stick around until the final reference to the device is dropped.
2016 */
2017 void device_unregister(struct device *dev)
2018 {
2019 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2020 device_del(dev);
2021 put_device(dev);
2022 }
2023 EXPORT_SYMBOL_GPL(device_unregister);
2024
2025 static struct device *prev_device(struct klist_iter *i)
2026 {
2027 struct klist_node *n = klist_prev(i);
2028 struct device *dev = NULL;
2029 struct device_private *p;
2030
2031 if (n) {
2032 p = to_device_private_parent(n);
2033 dev = p->device;
2034 }
2035 return dev;
2036 }
2037
2038 static struct device *next_device(struct klist_iter *i)
2039 {
2040 struct klist_node *n = klist_next(i);
2041 struct device *dev = NULL;
2042 struct device_private *p;
2043
2044 if (n) {
2045 p = to_device_private_parent(n);
2046 dev = p->device;
2047 }
2048 return dev;
2049 }
2050
2051 /**
2052 * device_get_devnode - path of device node file
2053 * @dev: device
2054 * @mode: returned file access mode
2055 * @uid: returned file owner
2056 * @gid: returned file group
2057 * @tmp: possibly allocated string
2058 *
2059 * Return the relative path of a possible device node.
2060 * Non-default names may need to allocate a memory to compose
2061 * a name. This memory is returned in tmp and needs to be
2062 * freed by the caller.
2063 */
2064 const char *device_get_devnode(struct device *dev,
2065 umode_t *mode, kuid_t *uid, kgid_t *gid,
2066 const char **tmp)
2067 {
2068 char *s;
2069
2070 *tmp = NULL;
2071
2072 /* the device type may provide a specific name */
2073 if (dev->type && dev->type->devnode)
2074 *tmp = dev->type->devnode(dev, mode, uid, gid);
2075 if (*tmp)
2076 return *tmp;
2077
2078 /* the class may provide a specific name */
2079 if (dev->class && dev->class->devnode)
2080 *tmp = dev->class->devnode(dev, mode);
2081 if (*tmp)
2082 return *tmp;
2083
2084 /* return name without allocation, tmp == NULL */
2085 if (strchr(dev_name(dev), '!') == NULL)
2086 return dev_name(dev);
2087
2088 /* replace '!' in the name with '/' */
2089 s = kstrdup(dev_name(dev), GFP_KERNEL);
2090 if (!s)
2091 return NULL;
2092 strreplace(s, '!', '/');
2093 return *tmp = s;
2094 }
2095
2096 /**
2097 * device_for_each_child - device child iterator.
2098 * @parent: parent struct device.
2099 * @fn: function to be called for each device.
2100 * @data: data for the callback.
2101 *
2102 * Iterate over @parent's child devices, and call @fn for each,
2103 * passing it @data.
2104 *
2105 * We check the return of @fn each time. If it returns anything
2106 * other than 0, we break out and return that value.
2107 */
2108 int device_for_each_child(struct device *parent, void *data,
2109 int (*fn)(struct device *dev, void *data))
2110 {
2111 struct klist_iter i;
2112 struct device *child;
2113 int error = 0;
2114
2115 if (!parent->p)
2116 return 0;
2117
2118 klist_iter_init(&parent->p->klist_children, &i);
2119 while ((child = next_device(&i)) && !error)
2120 error = fn(child, data);
2121 klist_iter_exit(&i);
2122 return error;
2123 }
2124 EXPORT_SYMBOL_GPL(device_for_each_child);
2125
2126 /**
2127 * device_for_each_child_reverse - device child iterator in reversed order.
2128 * @parent: parent struct device.
2129 * @fn: function to be called for each device.
2130 * @data: data for the callback.
2131 *
2132 * Iterate over @parent's child devices, and call @fn for each,
2133 * passing it @data.
2134 *
2135 * We check the return of @fn each time. If it returns anything
2136 * other than 0, we break out and return that value.
2137 */
2138 int device_for_each_child_reverse(struct device *parent, void *data,
2139 int (*fn)(struct device *dev, void *data))
2140 {
2141 struct klist_iter i;
2142 struct device *child;
2143 int error = 0;
2144
2145 if (!parent->p)
2146 return 0;
2147
2148 klist_iter_init(&parent->p->klist_children, &i);
2149 while ((child = prev_device(&i)) && !error)
2150 error = fn(child, data);
2151 klist_iter_exit(&i);
2152 return error;
2153 }
2154 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2155
2156 /**
2157 * device_find_child - device iterator for locating a particular device.
2158 * @parent: parent struct device
2159 * @match: Callback function to check device
2160 * @data: Data to pass to match function
2161 *
2162 * This is similar to the device_for_each_child() function above, but it
2163 * returns a reference to a device that is 'found' for later use, as
2164 * determined by the @match callback.
2165 *
2166 * The callback should return 0 if the device doesn't match and non-zero
2167 * if it does. If the callback returns non-zero and a reference to the
2168 * current device can be obtained, this function will return to the caller
2169 * and not iterate over any more devices.
2170 *
2171 * NOTE: you will need to drop the reference with put_device() after use.
2172 */
2173 struct device *device_find_child(struct device *parent, void *data,
2174 int (*match)(struct device *dev, void *data))
2175 {
2176 struct klist_iter i;
2177 struct device *child;
2178
2179 if (!parent)
2180 return NULL;
2181
2182 klist_iter_init(&parent->p->klist_children, &i);
2183 while ((child = next_device(&i)))
2184 if (match(child, data) && get_device(child))
2185 break;
2186 klist_iter_exit(&i);
2187 return child;
2188 }
2189 EXPORT_SYMBOL_GPL(device_find_child);
2190
2191 int __init devices_init(void)
2192 {
2193 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2194 if (!devices_kset)
2195 return -ENOMEM;
2196 dev_kobj = kobject_create_and_add("dev", NULL);
2197 if (!dev_kobj)
2198 goto dev_kobj_err;
2199 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2200 if (!sysfs_dev_block_kobj)
2201 goto block_kobj_err;
2202 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2203 if (!sysfs_dev_char_kobj)
2204 goto char_kobj_err;
2205
2206 return 0;
2207
2208 char_kobj_err:
2209 kobject_put(sysfs_dev_block_kobj);
2210 block_kobj_err:
2211 kobject_put(dev_kobj);
2212 dev_kobj_err:
2213 kset_unregister(devices_kset);
2214 return -ENOMEM;
2215 }
2216
2217 static int device_check_offline(struct device *dev, void *not_used)
2218 {
2219 int ret;
2220
2221 ret = device_for_each_child(dev, NULL, device_check_offline);
2222 if (ret)
2223 return ret;
2224
2225 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2226 }
2227
2228 /**
2229 * device_offline - Prepare the device for hot-removal.
2230 * @dev: Device to be put offline.
2231 *
2232 * Execute the device bus type's .offline() callback, if present, to prepare
2233 * the device for a subsequent hot-removal. If that succeeds, the device must
2234 * not be used until either it is removed or its bus type's .online() callback
2235 * is executed.
2236 *
2237 * Call under device_hotplug_lock.
2238 */
2239 int device_offline(struct device *dev)
2240 {
2241 int ret;
2242
2243 if (dev->offline_disabled)
2244 return -EPERM;
2245
2246 ret = device_for_each_child(dev, NULL, device_check_offline);
2247 if (ret)
2248 return ret;
2249
2250 device_lock(dev);
2251 if (device_supports_offline(dev)) {
2252 if (dev->offline) {
2253 ret = 1;
2254 } else {
2255 ret = dev->bus->offline(dev);
2256 if (!ret) {
2257 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2258 dev->offline = true;
2259 }
2260 }
2261 }
2262 device_unlock(dev);
2263
2264 return ret;
2265 }
2266
2267 /**
2268 * device_online - Put the device back online after successful device_offline().
2269 * @dev: Device to be put back online.
2270 *
2271 * If device_offline() has been successfully executed for @dev, but the device
2272 * has not been removed subsequently, execute its bus type's .online() callback
2273 * to indicate that the device can be used again.
2274 *
2275 * Call under device_hotplug_lock.
2276 */
2277 int device_online(struct device *dev)
2278 {
2279 int ret = 0;
2280
2281 device_lock(dev);
2282 if (device_supports_offline(dev)) {
2283 if (dev->offline) {
2284 ret = dev->bus->online(dev);
2285 if (!ret) {
2286 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2287 dev->offline = false;
2288 }
2289 } else {
2290 ret = 1;
2291 }
2292 }
2293 device_unlock(dev);
2294
2295 return ret;
2296 }
2297
2298 struct root_device {
2299 struct device dev;
2300 struct module *owner;
2301 };
2302
2303 static inline struct root_device *to_root_device(struct device *d)
2304 {
2305 return container_of(d, struct root_device, dev);
2306 }
2307
2308 static void root_device_release(struct device *dev)
2309 {
2310 kfree(to_root_device(dev));
2311 }
2312
2313 /**
2314 * __root_device_register - allocate and register a root device
2315 * @name: root device name
2316 * @owner: owner module of the root device, usually THIS_MODULE
2317 *
2318 * This function allocates a root device and registers it
2319 * using device_register(). In order to free the returned
2320 * device, use root_device_unregister().
2321 *
2322 * Root devices are dummy devices which allow other devices
2323 * to be grouped under /sys/devices. Use this function to
2324 * allocate a root device and then use it as the parent of
2325 * any device which should appear under /sys/devices/{name}
2326 *
2327 * The /sys/devices/{name} directory will also contain a
2328 * 'module' symlink which points to the @owner directory
2329 * in sysfs.
2330 *
2331 * Returns &struct device pointer on success, or ERR_PTR() on error.
2332 *
2333 * Note: You probably want to use root_device_register().
2334 */
2335 struct device *__root_device_register(const char *name, struct module *owner)
2336 {
2337 struct root_device *root;
2338 int err = -ENOMEM;
2339
2340 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2341 if (!root)
2342 return ERR_PTR(err);
2343
2344 err = dev_set_name(&root->dev, "%s", name);
2345 if (err) {
2346 kfree(root);
2347 return ERR_PTR(err);
2348 }
2349
2350 root->dev.release = root_device_release;
2351
2352 err = device_register(&root->dev);
2353 if (err) {
2354 put_device(&root->dev);
2355 return ERR_PTR(err);
2356 }
2357
2358 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2359 if (owner) {
2360 struct module_kobject *mk = &owner->mkobj;
2361
2362 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2363 if (err) {
2364 device_unregister(&root->dev);
2365 return ERR_PTR(err);
2366 }
2367 root->owner = owner;
2368 }
2369 #endif
2370
2371 return &root->dev;
2372 }
2373 EXPORT_SYMBOL_GPL(__root_device_register);
2374
2375 /**
2376 * root_device_unregister - unregister and free a root device
2377 * @dev: device going away
2378 *
2379 * This function unregisters and cleans up a device that was created by
2380 * root_device_register().
2381 */
2382 void root_device_unregister(struct device *dev)
2383 {
2384 struct root_device *root = to_root_device(dev);
2385
2386 if (root->owner)
2387 sysfs_remove_link(&root->dev.kobj, "module");
2388
2389 device_unregister(dev);
2390 }
2391 EXPORT_SYMBOL_GPL(root_device_unregister);
2392
2393
2394 static void device_create_release(struct device *dev)
2395 {
2396 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2397 kfree(dev);
2398 }
2399
2400 static struct device *
2401 device_create_groups_vargs(struct class *class, struct device *parent,
2402 dev_t devt, void *drvdata,
2403 const struct attribute_group **groups,
2404 const char *fmt, va_list args)
2405 {
2406 struct device *dev = NULL;
2407 int retval = -ENODEV;
2408
2409 if (class == NULL || IS_ERR(class))
2410 goto error;
2411
2412 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2413 if (!dev) {
2414 retval = -ENOMEM;
2415 goto error;
2416 }
2417
2418 device_initialize(dev);
2419 dev->devt = devt;
2420 dev->class = class;
2421 dev->parent = parent;
2422 dev->groups = groups;
2423 dev->release = device_create_release;
2424 dev_set_drvdata(dev, drvdata);
2425
2426 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2427 if (retval)
2428 goto error;
2429
2430 retval = device_add(dev);
2431 if (retval)
2432 goto error;
2433
2434 return dev;
2435
2436 error:
2437 put_device(dev);
2438 return ERR_PTR(retval);
2439 }
2440
2441 /**
2442 * device_create_vargs - creates a device and registers it with sysfs
2443 * @class: pointer to the struct class that this device should be registered to
2444 * @parent: pointer to the parent struct device of this new device, if any
2445 * @devt: the dev_t for the char device to be added
2446 * @drvdata: the data to be added to the device for callbacks
2447 * @fmt: string for the device's name
2448 * @args: va_list for the device's name
2449 *
2450 * This function can be used by char device classes. A struct device
2451 * will be created in sysfs, registered to the specified class.
2452 *
2453 * A "dev" file will be created, showing the dev_t for the device, if
2454 * the dev_t is not 0,0.
2455 * If a pointer to a parent struct device is passed in, the newly created
2456 * struct device will be a child of that device in sysfs.
2457 * The pointer to the struct device will be returned from the call.
2458 * Any further sysfs files that might be required can be created using this
2459 * pointer.
2460 *
2461 * Returns &struct device pointer on success, or ERR_PTR() on error.
2462 *
2463 * Note: the struct class passed to this function must have previously
2464 * been created with a call to class_create().
2465 */
2466 struct device *device_create_vargs(struct class *class, struct device *parent,
2467 dev_t devt, void *drvdata, const char *fmt,
2468 va_list args)
2469 {
2470 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2471 fmt, args);
2472 }
2473 EXPORT_SYMBOL_GPL(device_create_vargs);
2474
2475 /**
2476 * device_create - creates a device and registers it with sysfs
2477 * @class: pointer to the struct class that this device should be registered to
2478 * @parent: pointer to the parent struct device of this new device, if any
2479 * @devt: the dev_t for the char device to be added
2480 * @drvdata: the data to be added to the device for callbacks
2481 * @fmt: string for the device's name
2482 *
2483 * This function can be used by char device classes. A struct device
2484 * will be created in sysfs, registered to the specified class.
2485 *
2486 * A "dev" file will be created, showing the dev_t for the device, if
2487 * the dev_t is not 0,0.
2488 * If a pointer to a parent struct device is passed in, the newly created
2489 * struct device will be a child of that device in sysfs.
2490 * The pointer to the struct device will be returned from the call.
2491 * Any further sysfs files that might be required can be created using this
2492 * pointer.
2493 *
2494 * Returns &struct device pointer on success, or ERR_PTR() on error.
2495 *
2496 * Note: the struct class passed to this function must have previously
2497 * been created with a call to class_create().
2498 */
2499 struct device *device_create(struct class *class, struct device *parent,
2500 dev_t devt, void *drvdata, const char *fmt, ...)
2501 {
2502 va_list vargs;
2503 struct device *dev;
2504
2505 va_start(vargs, fmt);
2506 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2507 va_end(vargs);
2508 return dev;
2509 }
2510 EXPORT_SYMBOL_GPL(device_create);
2511
2512 /**
2513 * device_create_with_groups - creates a device and registers it with sysfs
2514 * @class: pointer to the struct class that this device should be registered to
2515 * @parent: pointer to the parent struct device of this new device, if any
2516 * @devt: the dev_t for the char device to be added
2517 * @drvdata: the data to be added to the device for callbacks
2518 * @groups: NULL-terminated list of attribute groups to be created
2519 * @fmt: string for the device's name
2520 *
2521 * This function can be used by char device classes. A struct device
2522 * will be created in sysfs, registered to the specified class.
2523 * Additional attributes specified in the groups parameter will also
2524 * be created automatically.
2525 *
2526 * A "dev" file will be created, showing the dev_t for the device, if
2527 * the dev_t is not 0,0.
2528 * If a pointer to a parent struct device is passed in, the newly created
2529 * struct device will be a child of that device in sysfs.
2530 * The pointer to the struct device will be returned from the call.
2531 * Any further sysfs files that might be required can be created using this
2532 * pointer.
2533 *
2534 * Returns &struct device pointer on success, or ERR_PTR() on error.
2535 *
2536 * Note: the struct class passed to this function must have previously
2537 * been created with a call to class_create().
2538 */
2539 struct device *device_create_with_groups(struct class *class,
2540 struct device *parent, dev_t devt,
2541 void *drvdata,
2542 const struct attribute_group **groups,
2543 const char *fmt, ...)
2544 {
2545 va_list vargs;
2546 struct device *dev;
2547
2548 va_start(vargs, fmt);
2549 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2550 fmt, vargs);
2551 va_end(vargs);
2552 return dev;
2553 }
2554 EXPORT_SYMBOL_GPL(device_create_with_groups);
2555
2556 static int __match_devt(struct device *dev, const void *data)
2557 {
2558 const dev_t *devt = data;
2559
2560 return dev->devt == *devt;
2561 }
2562
2563 /**
2564 * device_destroy - removes a device that was created with device_create()
2565 * @class: pointer to the struct class that this device was registered with
2566 * @devt: the dev_t of the device that was previously registered
2567 *
2568 * This call unregisters and cleans up a device that was created with a
2569 * call to device_create().
2570 */
2571 void device_destroy(struct class *class, dev_t devt)
2572 {
2573 struct device *dev;
2574
2575 dev = class_find_device(class, NULL, &devt, __match_devt);
2576 if (dev) {
2577 put_device(dev);
2578 device_unregister(dev);
2579 }
2580 }
2581 EXPORT_SYMBOL_GPL(device_destroy);
2582
2583 /**
2584 * device_rename - renames a device
2585 * @dev: the pointer to the struct device to be renamed
2586 * @new_name: the new name of the device
2587 *
2588 * It is the responsibility of the caller to provide mutual
2589 * exclusion between two different calls of device_rename
2590 * on the same device to ensure that new_name is valid and
2591 * won't conflict with other devices.
2592 *
2593 * Note: Don't call this function. Currently, the networking layer calls this
2594 * function, but that will change. The following text from Kay Sievers offers
2595 * some insight:
2596 *
2597 * Renaming devices is racy at many levels, symlinks and other stuff are not
2598 * replaced atomically, and you get a "move" uevent, but it's not easy to
2599 * connect the event to the old and new device. Device nodes are not renamed at
2600 * all, there isn't even support for that in the kernel now.
2601 *
2602 * In the meantime, during renaming, your target name might be taken by another
2603 * driver, creating conflicts. Or the old name is taken directly after you
2604 * renamed it -- then you get events for the same DEVPATH, before you even see
2605 * the "move" event. It's just a mess, and nothing new should ever rely on
2606 * kernel device renaming. Besides that, it's not even implemented now for
2607 * other things than (driver-core wise very simple) network devices.
2608 *
2609 * We are currently about to change network renaming in udev to completely
2610 * disallow renaming of devices in the same namespace as the kernel uses,
2611 * because we can't solve the problems properly, that arise with swapping names
2612 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2613 * be allowed to some other name than eth[0-9]*, for the aforementioned
2614 * reasons.
2615 *
2616 * Make up a "real" name in the driver before you register anything, or add
2617 * some other attributes for userspace to find the device, or use udev to add
2618 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2619 * don't even want to get into that and try to implement the missing pieces in
2620 * the core. We really have other pieces to fix in the driver core mess. :)
2621 */
2622 int device_rename(struct device *dev, const char *new_name)
2623 {
2624 struct kobject *kobj = &dev->kobj;
2625 char *old_device_name = NULL;
2626 int error;
2627
2628 dev = get_device(dev);
2629 if (!dev)
2630 return -EINVAL;
2631
2632 dev_dbg(dev, "renaming to %s\n", new_name);
2633
2634 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2635 if (!old_device_name) {
2636 error = -ENOMEM;
2637 goto out;
2638 }
2639
2640 if (dev->class) {
2641 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2642 kobj, old_device_name,
2643 new_name, kobject_namespace(kobj));
2644 if (error)
2645 goto out;
2646 }
2647
2648 error = kobject_rename(kobj, new_name);
2649 if (error)
2650 goto out;
2651
2652 out:
2653 put_device(dev);
2654
2655 kfree(old_device_name);
2656
2657 return error;
2658 }
2659 EXPORT_SYMBOL_GPL(device_rename);
2660
2661 static int device_move_class_links(struct device *dev,
2662 struct device *old_parent,
2663 struct device *new_parent)
2664 {
2665 int error = 0;
2666
2667 if (old_parent)
2668 sysfs_remove_link(&dev->kobj, "device");
2669 if (new_parent)
2670 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2671 "device");
2672 return error;
2673 }
2674
2675 /**
2676 * device_move - moves a device to a new parent
2677 * @dev: the pointer to the struct device to be moved
2678 * @new_parent: the new parent of the device (can by NULL)
2679 * @dpm_order: how to reorder the dpm_list
2680 */
2681 int device_move(struct device *dev, struct device *new_parent,
2682 enum dpm_order dpm_order)
2683 {
2684 int error;
2685 struct device *old_parent;
2686 struct kobject *new_parent_kobj;
2687
2688 dev = get_device(dev);
2689 if (!dev)
2690 return -EINVAL;
2691
2692 device_pm_lock();
2693 new_parent = get_device(new_parent);
2694 new_parent_kobj = get_device_parent(dev, new_parent);
2695
2696 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2697 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2698 error = kobject_move(&dev->kobj, new_parent_kobj);
2699 if (error) {
2700 cleanup_glue_dir(dev, new_parent_kobj);
2701 put_device(new_parent);
2702 goto out;
2703 }
2704 old_parent = dev->parent;
2705 dev->parent = new_parent;
2706 if (old_parent)
2707 klist_remove(&dev->p->knode_parent);
2708 if (new_parent) {
2709 klist_add_tail(&dev->p->knode_parent,
2710 &new_parent->p->klist_children);
2711 set_dev_node(dev, dev_to_node(new_parent));
2712 }
2713
2714 if (dev->class) {
2715 error = device_move_class_links(dev, old_parent, new_parent);
2716 if (error) {
2717 /* We ignore errors on cleanup since we're hosed anyway... */
2718 device_move_class_links(dev, new_parent, old_parent);
2719 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2720 if (new_parent)
2721 klist_remove(&dev->p->knode_parent);
2722 dev->parent = old_parent;
2723 if (old_parent) {
2724 klist_add_tail(&dev->p->knode_parent,
2725 &old_parent->p->klist_children);
2726 set_dev_node(dev, dev_to_node(old_parent));
2727 }
2728 }
2729 cleanup_glue_dir(dev, new_parent_kobj);
2730 put_device(new_parent);
2731 goto out;
2732 }
2733 }
2734 switch (dpm_order) {
2735 case DPM_ORDER_NONE:
2736 break;
2737 case DPM_ORDER_DEV_AFTER_PARENT:
2738 device_pm_move_after(dev, new_parent);
2739 devices_kset_move_after(dev, new_parent);
2740 break;
2741 case DPM_ORDER_PARENT_BEFORE_DEV:
2742 device_pm_move_before(new_parent, dev);
2743 devices_kset_move_before(new_parent, dev);
2744 break;
2745 case DPM_ORDER_DEV_LAST:
2746 device_pm_move_last(dev);
2747 devices_kset_move_last(dev);
2748 break;
2749 }
2750
2751 put_device(old_parent);
2752 out:
2753 device_pm_unlock();
2754 put_device(dev);
2755 return error;
2756 }
2757 EXPORT_SYMBOL_GPL(device_move);
2758
2759 /**
2760 * device_shutdown - call ->shutdown() on each device to shutdown.
2761 */
2762 void device_shutdown(void)
2763 {
2764 struct device *dev, *parent;
2765
2766 spin_lock(&devices_kset->list_lock);
2767 /*
2768 * Walk the devices list backward, shutting down each in turn.
2769 * Beware that device unplug events may also start pulling
2770 * devices offline, even as the system is shutting down.
2771 */
2772 while (!list_empty(&devices_kset->list)) {
2773 dev = list_entry(devices_kset->list.prev, struct device,
2774 kobj.entry);
2775
2776 /*
2777 * hold reference count of device's parent to
2778 * prevent it from being freed because parent's
2779 * lock is to be held
2780 */
2781 parent = get_device(dev->parent);
2782 get_device(dev);
2783 /*
2784 * Make sure the device is off the kset list, in the
2785 * event that dev->*->shutdown() doesn't remove it.
2786 */
2787 list_del_init(&dev->kobj.entry);
2788 spin_unlock(&devices_kset->list_lock);
2789
2790 /* hold lock to avoid race with probe/release */
2791 if (parent)
2792 device_lock(parent);
2793 device_lock(dev);
2794
2795 /* Don't allow any more runtime suspends */
2796 pm_runtime_get_noresume(dev);
2797 pm_runtime_barrier(dev);
2798
2799 if (dev->class && dev->class->shutdown_pre) {
2800 if (initcall_debug)
2801 dev_info(dev, "shutdown_pre\n");
2802 dev->class->shutdown_pre(dev);
2803 }
2804 if (dev->bus && dev->bus->shutdown) {
2805 if (initcall_debug)
2806 dev_info(dev, "shutdown\n");
2807 dev->bus->shutdown(dev);
2808 } else if (dev->driver && dev->driver->shutdown) {
2809 if (initcall_debug)
2810 dev_info(dev, "shutdown\n");
2811 dev->driver->shutdown(dev);
2812 }
2813
2814 device_unlock(dev);
2815 if (parent)
2816 device_unlock(parent);
2817
2818 put_device(dev);
2819 put_device(parent);
2820
2821 spin_lock(&devices_kset->list_lock);
2822 }
2823 spin_unlock(&devices_kset->list_lock);
2824 }
2825
2826 /*
2827 * Device logging functions
2828 */
2829
2830 #ifdef CONFIG_PRINTK
2831 static int
2832 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2833 {
2834 const char *subsys;
2835 size_t pos = 0;
2836
2837 if (dev->class)
2838 subsys = dev->class->name;
2839 else if (dev->bus)
2840 subsys = dev->bus->name;
2841 else
2842 return 0;
2843
2844 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2845 if (pos >= hdrlen)
2846 goto overflow;
2847
2848 /*
2849 * Add device identifier DEVICE=:
2850 * b12:8 block dev_t
2851 * c127:3 char dev_t
2852 * n8 netdev ifindex
2853 * +sound:card0 subsystem:devname
2854 */
2855 if (MAJOR(dev->devt)) {
2856 char c;
2857
2858 if (strcmp(subsys, "block") == 0)
2859 c = 'b';
2860 else
2861 c = 'c';
2862 pos++;
2863 pos += snprintf(hdr + pos, hdrlen - pos,
2864 "DEVICE=%c%u:%u",
2865 c, MAJOR(dev->devt), MINOR(dev->devt));
2866 } else if (strcmp(subsys, "net") == 0) {
2867 struct net_device *net = to_net_dev(dev);
2868
2869 pos++;
2870 pos += snprintf(hdr + pos, hdrlen - pos,
2871 "DEVICE=n%u", net->ifindex);
2872 } else {
2873 pos++;
2874 pos += snprintf(hdr + pos, hdrlen - pos,
2875 "DEVICE=+%s:%s", subsys, dev_name(dev));
2876 }
2877
2878 if (pos >= hdrlen)
2879 goto overflow;
2880
2881 return pos;
2882
2883 overflow:
2884 dev_WARN(dev, "device/subsystem name too long");
2885 return 0;
2886 }
2887
2888 int dev_vprintk_emit(int level, const struct device *dev,
2889 const char *fmt, va_list args)
2890 {
2891 char hdr[128];
2892 size_t hdrlen;
2893
2894 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2895
2896 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2897 }
2898 EXPORT_SYMBOL(dev_vprintk_emit);
2899
2900 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2901 {
2902 va_list args;
2903 int r;
2904
2905 va_start(args, fmt);
2906
2907 r = dev_vprintk_emit(level, dev, fmt, args);
2908
2909 va_end(args);
2910
2911 return r;
2912 }
2913 EXPORT_SYMBOL(dev_printk_emit);
2914
2915 static void __dev_printk(const char *level, const struct device *dev,
2916 struct va_format *vaf)
2917 {
2918 if (dev)
2919 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2920 dev_driver_string(dev), dev_name(dev), vaf);
2921 else
2922 printk("%s(NULL device *): %pV", level, vaf);
2923 }
2924
2925 void dev_printk(const char *level, const struct device *dev,
2926 const char *fmt, ...)
2927 {
2928 struct va_format vaf;
2929 va_list args;
2930
2931 va_start(args, fmt);
2932
2933 vaf.fmt = fmt;
2934 vaf.va = &args;
2935
2936 __dev_printk(level, dev, &vaf);
2937
2938 va_end(args);
2939 }
2940 EXPORT_SYMBOL(dev_printk);
2941
2942 #define define_dev_printk_level(func, kern_level) \
2943 void func(const struct device *dev, const char *fmt, ...) \
2944 { \
2945 struct va_format vaf; \
2946 va_list args; \
2947 \
2948 va_start(args, fmt); \
2949 \
2950 vaf.fmt = fmt; \
2951 vaf.va = &args; \
2952 \
2953 __dev_printk(kern_level, dev, &vaf); \
2954 \
2955 va_end(args); \
2956 } \
2957 EXPORT_SYMBOL(func);
2958
2959 define_dev_printk_level(dev_emerg, KERN_EMERG);
2960 define_dev_printk_level(dev_alert, KERN_ALERT);
2961 define_dev_printk_level(dev_crit, KERN_CRIT);
2962 define_dev_printk_level(dev_err, KERN_ERR);
2963 define_dev_printk_level(dev_warn, KERN_WARNING);
2964 define_dev_printk_level(dev_notice, KERN_NOTICE);
2965 define_dev_printk_level(_dev_info, KERN_INFO);
2966
2967 #endif
2968
2969 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2970 {
2971 return fwnode && !IS_ERR(fwnode->secondary);
2972 }
2973
2974 /**
2975 * set_primary_fwnode - Change the primary firmware node of a given device.
2976 * @dev: Device to handle.
2977 * @fwnode: New primary firmware node of the device.
2978 *
2979 * Set the device's firmware node pointer to @fwnode, but if a secondary
2980 * firmware node of the device is present, preserve it.
2981 */
2982 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2983 {
2984 if (fwnode) {
2985 struct fwnode_handle *fn = dev->fwnode;
2986
2987 if (fwnode_is_primary(fn))
2988 fn = fn->secondary;
2989
2990 if (fn) {
2991 WARN_ON(fwnode->secondary);
2992 fwnode->secondary = fn;
2993 }
2994 dev->fwnode = fwnode;
2995 } else {
2996 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2997 dev->fwnode->secondary : NULL;
2998 }
2999 }
3000 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3001
3002 /**
3003 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3004 * @dev: Device to handle.
3005 * @fwnode: New secondary firmware node of the device.
3006 *
3007 * If a primary firmware node of the device is present, set its secondary
3008 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3009 * @fwnode.
3010 */
3011 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3012 {
3013 if (fwnode)
3014 fwnode->secondary = ERR_PTR(-ENODEV);
3015
3016 if (fwnode_is_primary(dev->fwnode))
3017 dev->fwnode->secondary = fwnode;
3018 else
3019 dev->fwnode = fwnode;
3020 }
3021
3022 /**
3023 * device_set_of_node_from_dev - reuse device-tree node of another device
3024 * @dev: device whose device-tree node is being set
3025 * @dev2: device whose device-tree node is being reused
3026 *
3027 * Takes another reference to the new device-tree node after first dropping
3028 * any reference held to the old node.
3029 */
3030 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3031 {
3032 of_node_put(dev->of_node);
3033 dev->of_node = of_node_get(dev2->of_node);
3034 dev->of_node_reused = true;
3035 }
3036 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);