]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/core.c
driver core: set up ownership of class devices in sysfs
[mirror_ubuntu-bionic-kernel.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sysfs.h>
31
32 #include "base.h"
33 #include "power/power.h"
34
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47
48 /* Device links support. */
49
50 #ifdef CONFIG_SRCU
51 static DEFINE_MUTEX(device_links_lock);
52 DEFINE_STATIC_SRCU(device_links_srcu);
53
54 static inline void device_links_write_lock(void)
55 {
56 mutex_lock(&device_links_lock);
57 }
58
59 static inline void device_links_write_unlock(void)
60 {
61 mutex_unlock(&device_links_lock);
62 }
63
64 int device_links_read_lock(void)
65 {
66 return srcu_read_lock(&device_links_srcu);
67 }
68
69 void device_links_read_unlock(int idx)
70 {
71 srcu_read_unlock(&device_links_srcu, idx);
72 }
73 #else /* !CONFIG_SRCU */
74 static DECLARE_RWSEM(device_links_lock);
75
76 static inline void device_links_write_lock(void)
77 {
78 down_write(&device_links_lock);
79 }
80
81 static inline void device_links_write_unlock(void)
82 {
83 up_write(&device_links_lock);
84 }
85
86 int device_links_read_lock(void)
87 {
88 down_read(&device_links_lock);
89 return 0;
90 }
91
92 void device_links_read_unlock(int not_used)
93 {
94 up_read(&device_links_lock);
95 }
96 #endif /* !CONFIG_SRCU */
97
98 /**
99 * device_is_dependent - Check if one device depends on another one
100 * @dev: Device to check dependencies for.
101 * @target: Device to check against.
102 *
103 * Check if @target depends on @dev or any device dependent on it (its child or
104 * its consumer etc). Return 1 if that is the case or 0 otherwise.
105 */
106 static int device_is_dependent(struct device *dev, void *target)
107 {
108 struct device_link *link;
109 int ret;
110
111 if (WARN_ON(dev == target))
112 return 1;
113
114 ret = device_for_each_child(dev, target, device_is_dependent);
115 if (ret)
116 return ret;
117
118 list_for_each_entry(link, &dev->links.consumers, s_node) {
119 if (WARN_ON(link->consumer == target))
120 return 1;
121
122 ret = device_is_dependent(link->consumer, target);
123 if (ret)
124 break;
125 }
126 return ret;
127 }
128
129 static int device_reorder_to_tail(struct device *dev, void *not_used)
130 {
131 struct device_link *link;
132
133 /*
134 * Devices that have not been registered yet will be put to the ends
135 * of the lists during the registration, so skip them here.
136 */
137 if (device_is_registered(dev))
138 devices_kset_move_last(dev);
139
140 if (device_pm_initialized(dev))
141 device_pm_move_last(dev);
142
143 device_for_each_child(dev, NULL, device_reorder_to_tail);
144 list_for_each_entry(link, &dev->links.consumers, s_node)
145 device_reorder_to_tail(link->consumer, NULL);
146
147 return 0;
148 }
149
150 /**
151 * device_link_add - Create a link between two devices.
152 * @consumer: Consumer end of the link.
153 * @supplier: Supplier end of the link.
154 * @flags: Link flags.
155 *
156 * The caller is responsible for the proper synchronization of the link creation
157 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
158 * runtime PM framework to take the link into account. Second, if the
159 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
160 * be forced into the active metastate and reference-counted upon the creation
161 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
162 * ignored.
163 *
164 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
165 * when the consumer device driver unbinds from it. The combination of both
166 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
167 * to be returned.
168 *
169 * A side effect of the link creation is re-ordering of dpm_list and the
170 * devices_kset list by moving the consumer device and all devices depending
171 * on it to the ends of these lists (that does not happen to devices that have
172 * not been registered when this function is called).
173 *
174 * The supplier device is required to be registered when this function is called
175 * and NULL will be returned if that is not the case. The consumer device need
176 * not be registered, however.
177 */
178 struct device_link *device_link_add(struct device *consumer,
179 struct device *supplier, u32 flags)
180 {
181 struct device_link *link;
182
183 if (!consumer || !supplier ||
184 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
185 return NULL;
186
187 device_links_write_lock();
188 device_pm_lock();
189
190 /*
191 * If the supplier has not been fully registered yet or there is a
192 * reverse dependency between the consumer and the supplier already in
193 * the graph, return NULL.
194 */
195 if (!device_pm_initialized(supplier)
196 || device_is_dependent(consumer, supplier)) {
197 link = NULL;
198 goto out;
199 }
200
201 list_for_each_entry(link, &supplier->links.consumers, s_node)
202 if (link->consumer == consumer)
203 goto out;
204
205 link = kzalloc(sizeof(*link), GFP_KERNEL);
206 if (!link)
207 goto out;
208
209 if (flags & DL_FLAG_PM_RUNTIME) {
210 if (flags & DL_FLAG_RPM_ACTIVE) {
211 if (pm_runtime_get_sync(supplier) < 0) {
212 pm_runtime_put_noidle(supplier);
213 kfree(link);
214 link = NULL;
215 goto out;
216 }
217 link->rpm_active = true;
218 }
219 pm_runtime_new_link(consumer);
220 }
221 get_device(supplier);
222 link->supplier = supplier;
223 INIT_LIST_HEAD(&link->s_node);
224 get_device(consumer);
225 link->consumer = consumer;
226 INIT_LIST_HEAD(&link->c_node);
227 link->flags = flags;
228
229 /* Determine the initial link state. */
230 if (flags & DL_FLAG_STATELESS) {
231 link->status = DL_STATE_NONE;
232 } else {
233 switch (supplier->links.status) {
234 case DL_DEV_DRIVER_BOUND:
235 switch (consumer->links.status) {
236 case DL_DEV_PROBING:
237 /*
238 * Balance the decrementation of the supplier's
239 * runtime PM usage counter after consumer probe
240 * in driver_probe_device().
241 */
242 if (flags & DL_FLAG_PM_RUNTIME)
243 pm_runtime_get_sync(supplier);
244
245 link->status = DL_STATE_CONSUMER_PROBE;
246 break;
247 case DL_DEV_DRIVER_BOUND:
248 link->status = DL_STATE_ACTIVE;
249 break;
250 default:
251 link->status = DL_STATE_AVAILABLE;
252 break;
253 }
254 break;
255 case DL_DEV_UNBINDING:
256 link->status = DL_STATE_SUPPLIER_UNBIND;
257 break;
258 default:
259 link->status = DL_STATE_DORMANT;
260 break;
261 }
262 }
263
264 /*
265 * Move the consumer and all of the devices depending on it to the end
266 * of dpm_list and the devices_kset list.
267 *
268 * It is necessary to hold dpm_list locked throughout all that or else
269 * we may end up suspending with a wrong ordering of it.
270 */
271 device_reorder_to_tail(consumer, NULL);
272
273 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
274 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
275
276 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
277
278 out:
279 device_pm_unlock();
280 device_links_write_unlock();
281 return link;
282 }
283 EXPORT_SYMBOL_GPL(device_link_add);
284
285 static void device_link_free(struct device_link *link)
286 {
287 put_device(link->consumer);
288 put_device(link->supplier);
289 kfree(link);
290 }
291
292 #ifdef CONFIG_SRCU
293 static void __device_link_free_srcu(struct rcu_head *rhead)
294 {
295 device_link_free(container_of(rhead, struct device_link, rcu_head));
296 }
297
298 static void __device_link_del(struct device_link *link)
299 {
300 dev_info(link->consumer, "Dropping the link to %s\n",
301 dev_name(link->supplier));
302
303 if (link->flags & DL_FLAG_PM_RUNTIME)
304 pm_runtime_drop_link(link->consumer);
305
306 list_del_rcu(&link->s_node);
307 list_del_rcu(&link->c_node);
308 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
309 }
310 #else /* !CONFIG_SRCU */
311 static void __device_link_del(struct device_link *link)
312 {
313 dev_info(link->consumer, "Dropping the link to %s\n",
314 dev_name(link->supplier));
315
316 if (link->flags & DL_FLAG_PM_RUNTIME)
317 pm_runtime_drop_link(link->consumer);
318
319 list_del(&link->s_node);
320 list_del(&link->c_node);
321 device_link_free(link);
322 }
323 #endif /* !CONFIG_SRCU */
324
325 /**
326 * device_link_del - Delete a link between two devices.
327 * @link: Device link to delete.
328 *
329 * The caller must ensure proper synchronization of this function with runtime
330 * PM.
331 */
332 void device_link_del(struct device_link *link)
333 {
334 device_links_write_lock();
335 device_pm_lock();
336 __device_link_del(link);
337 device_pm_unlock();
338 device_links_write_unlock();
339 }
340 EXPORT_SYMBOL_GPL(device_link_del);
341
342 static void device_links_missing_supplier(struct device *dev)
343 {
344 struct device_link *link;
345
346 list_for_each_entry(link, &dev->links.suppliers, c_node)
347 if (link->status == DL_STATE_CONSUMER_PROBE)
348 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
349 }
350
351 /**
352 * device_links_check_suppliers - Check presence of supplier drivers.
353 * @dev: Consumer device.
354 *
355 * Check links from this device to any suppliers. Walk the list of the device's
356 * links to suppliers and see if all of them are available. If not, simply
357 * return -EPROBE_DEFER.
358 *
359 * We need to guarantee that the supplier will not go away after the check has
360 * been positive here. It only can go away in __device_release_driver() and
361 * that function checks the device's links to consumers. This means we need to
362 * mark the link as "consumer probe in progress" to make the supplier removal
363 * wait for us to complete (or bad things may happen).
364 *
365 * Links with the DL_FLAG_STATELESS flag set are ignored.
366 */
367 int device_links_check_suppliers(struct device *dev)
368 {
369 struct device_link *link;
370 int ret = 0;
371
372 device_links_write_lock();
373
374 list_for_each_entry(link, &dev->links.suppliers, c_node) {
375 if (link->flags & DL_FLAG_STATELESS)
376 continue;
377
378 if (link->status != DL_STATE_AVAILABLE) {
379 device_links_missing_supplier(dev);
380 ret = -EPROBE_DEFER;
381 break;
382 }
383 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
384 }
385 dev->links.status = DL_DEV_PROBING;
386
387 device_links_write_unlock();
388 return ret;
389 }
390
391 /**
392 * device_links_driver_bound - Update device links after probing its driver.
393 * @dev: Device to update the links for.
394 *
395 * The probe has been successful, so update links from this device to any
396 * consumers by changing their status to "available".
397 *
398 * Also change the status of @dev's links to suppliers to "active".
399 *
400 * Links with the DL_FLAG_STATELESS flag set are ignored.
401 */
402 void device_links_driver_bound(struct device *dev)
403 {
404 struct device_link *link;
405
406 device_links_write_lock();
407
408 list_for_each_entry(link, &dev->links.consumers, s_node) {
409 if (link->flags & DL_FLAG_STATELESS)
410 continue;
411
412 WARN_ON(link->status != DL_STATE_DORMANT);
413 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
414 }
415
416 list_for_each_entry(link, &dev->links.suppliers, c_node) {
417 if (link->flags & DL_FLAG_STATELESS)
418 continue;
419
420 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
421 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
422 }
423
424 dev->links.status = DL_DEV_DRIVER_BOUND;
425
426 device_links_write_unlock();
427 }
428
429 /**
430 * __device_links_no_driver - Update links of a device without a driver.
431 * @dev: Device without a drvier.
432 *
433 * Delete all non-persistent links from this device to any suppliers.
434 *
435 * Persistent links stay around, but their status is changed to "available",
436 * unless they already are in the "supplier unbind in progress" state in which
437 * case they need not be updated.
438 *
439 * Links with the DL_FLAG_STATELESS flag set are ignored.
440 */
441 static void __device_links_no_driver(struct device *dev)
442 {
443 struct device_link *link, *ln;
444
445 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
446 if (link->flags & DL_FLAG_STATELESS)
447 continue;
448
449 if (link->flags & DL_FLAG_AUTOREMOVE)
450 __device_link_del(link);
451 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
452 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
453 }
454
455 dev->links.status = DL_DEV_NO_DRIVER;
456 }
457
458 void device_links_no_driver(struct device *dev)
459 {
460 device_links_write_lock();
461 __device_links_no_driver(dev);
462 device_links_write_unlock();
463 }
464
465 /**
466 * device_links_driver_cleanup - Update links after driver removal.
467 * @dev: Device whose driver has just gone away.
468 *
469 * Update links to consumers for @dev by changing their status to "dormant" and
470 * invoke %__device_links_no_driver() to update links to suppliers for it as
471 * appropriate.
472 *
473 * Links with the DL_FLAG_STATELESS flag set are ignored.
474 */
475 void device_links_driver_cleanup(struct device *dev)
476 {
477 struct device_link *link;
478
479 device_links_write_lock();
480
481 list_for_each_entry(link, &dev->links.consumers, s_node) {
482 if (link->flags & DL_FLAG_STATELESS)
483 continue;
484
485 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
486 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
487 WRITE_ONCE(link->status, DL_STATE_DORMANT);
488 }
489
490 __device_links_no_driver(dev);
491
492 device_links_write_unlock();
493 }
494
495 /**
496 * device_links_busy - Check if there are any busy links to consumers.
497 * @dev: Device to check.
498 *
499 * Check each consumer of the device and return 'true' if its link's status
500 * is one of "consumer probe" or "active" (meaning that the given consumer is
501 * probing right now or its driver is present). Otherwise, change the link
502 * state to "supplier unbind" to prevent the consumer from being probed
503 * successfully going forward.
504 *
505 * Return 'false' if there are no probing or active consumers.
506 *
507 * Links with the DL_FLAG_STATELESS flag set are ignored.
508 */
509 bool device_links_busy(struct device *dev)
510 {
511 struct device_link *link;
512 bool ret = false;
513
514 device_links_write_lock();
515
516 list_for_each_entry(link, &dev->links.consumers, s_node) {
517 if (link->flags & DL_FLAG_STATELESS)
518 continue;
519
520 if (link->status == DL_STATE_CONSUMER_PROBE
521 || link->status == DL_STATE_ACTIVE) {
522 ret = true;
523 break;
524 }
525 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
526 }
527
528 dev->links.status = DL_DEV_UNBINDING;
529
530 device_links_write_unlock();
531 return ret;
532 }
533
534 /**
535 * device_links_unbind_consumers - Force unbind consumers of the given device.
536 * @dev: Device to unbind the consumers of.
537 *
538 * Walk the list of links to consumers for @dev and if any of them is in the
539 * "consumer probe" state, wait for all device probes in progress to complete
540 * and start over.
541 *
542 * If that's not the case, change the status of the link to "supplier unbind"
543 * and check if the link was in the "active" state. If so, force the consumer
544 * driver to unbind and start over (the consumer will not re-probe as we have
545 * changed the state of the link already).
546 *
547 * Links with the DL_FLAG_STATELESS flag set are ignored.
548 */
549 void device_links_unbind_consumers(struct device *dev)
550 {
551 struct device_link *link;
552
553 start:
554 device_links_write_lock();
555
556 list_for_each_entry(link, &dev->links.consumers, s_node) {
557 enum device_link_state status;
558
559 if (link->flags & DL_FLAG_STATELESS)
560 continue;
561
562 status = link->status;
563 if (status == DL_STATE_CONSUMER_PROBE) {
564 device_links_write_unlock();
565
566 wait_for_device_probe();
567 goto start;
568 }
569 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
570 if (status == DL_STATE_ACTIVE) {
571 struct device *consumer = link->consumer;
572
573 get_device(consumer);
574
575 device_links_write_unlock();
576
577 device_release_driver_internal(consumer, NULL,
578 consumer->parent);
579 put_device(consumer);
580 goto start;
581 }
582 }
583
584 device_links_write_unlock();
585 }
586
587 /**
588 * device_links_purge - Delete existing links to other devices.
589 * @dev: Target device.
590 */
591 static void device_links_purge(struct device *dev)
592 {
593 struct device_link *link, *ln;
594
595 /*
596 * Delete all of the remaining links from this device to any other
597 * devices (either consumers or suppliers).
598 */
599 device_links_write_lock();
600
601 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
602 WARN_ON(link->status == DL_STATE_ACTIVE);
603 __device_link_del(link);
604 }
605
606 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
607 WARN_ON(link->status != DL_STATE_DORMANT &&
608 link->status != DL_STATE_NONE);
609 __device_link_del(link);
610 }
611
612 device_links_write_unlock();
613 }
614
615 /* Device links support end. */
616
617 int (*platform_notify)(struct device *dev) = NULL;
618 int (*platform_notify_remove)(struct device *dev) = NULL;
619 static struct kobject *dev_kobj;
620 struct kobject *sysfs_dev_char_kobj;
621 struct kobject *sysfs_dev_block_kobj;
622
623 static DEFINE_MUTEX(device_hotplug_lock);
624
625 void lock_device_hotplug(void)
626 {
627 mutex_lock(&device_hotplug_lock);
628 }
629
630 void unlock_device_hotplug(void)
631 {
632 mutex_unlock(&device_hotplug_lock);
633 }
634
635 int lock_device_hotplug_sysfs(void)
636 {
637 if (mutex_trylock(&device_hotplug_lock))
638 return 0;
639
640 /* Avoid busy looping (5 ms of sleep should do). */
641 msleep(5);
642 return restart_syscall();
643 }
644
645 #ifdef CONFIG_BLOCK
646 static inline int device_is_not_partition(struct device *dev)
647 {
648 return !(dev->type == &part_type);
649 }
650 #else
651 static inline int device_is_not_partition(struct device *dev)
652 {
653 return 1;
654 }
655 #endif
656
657 /**
658 * dev_driver_string - Return a device's driver name, if at all possible
659 * @dev: struct device to get the name of
660 *
661 * Will return the device's driver's name if it is bound to a device. If
662 * the device is not bound to a driver, it will return the name of the bus
663 * it is attached to. If it is not attached to a bus either, an empty
664 * string will be returned.
665 */
666 const char *dev_driver_string(const struct device *dev)
667 {
668 struct device_driver *drv;
669
670 /* dev->driver can change to NULL underneath us because of unbinding,
671 * so be careful about accessing it. dev->bus and dev->class should
672 * never change once they are set, so they don't need special care.
673 */
674 drv = READ_ONCE(dev->driver);
675 return drv ? drv->name :
676 (dev->bus ? dev->bus->name :
677 (dev->class ? dev->class->name : ""));
678 }
679 EXPORT_SYMBOL(dev_driver_string);
680
681 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
682
683 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
684 char *buf)
685 {
686 struct device_attribute *dev_attr = to_dev_attr(attr);
687 struct device *dev = kobj_to_dev(kobj);
688 ssize_t ret = -EIO;
689
690 if (dev_attr->show)
691 ret = dev_attr->show(dev, dev_attr, buf);
692 if (ret >= (ssize_t)PAGE_SIZE) {
693 print_symbol("dev_attr_show: %s returned bad count\n",
694 (unsigned long)dev_attr->show);
695 }
696 return ret;
697 }
698
699 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
700 const char *buf, size_t count)
701 {
702 struct device_attribute *dev_attr = to_dev_attr(attr);
703 struct device *dev = kobj_to_dev(kobj);
704 ssize_t ret = -EIO;
705
706 if (dev_attr->store)
707 ret = dev_attr->store(dev, dev_attr, buf, count);
708 return ret;
709 }
710
711 static const struct sysfs_ops dev_sysfs_ops = {
712 .show = dev_attr_show,
713 .store = dev_attr_store,
714 };
715
716 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
717
718 ssize_t device_store_ulong(struct device *dev,
719 struct device_attribute *attr,
720 const char *buf, size_t size)
721 {
722 struct dev_ext_attribute *ea = to_ext_attr(attr);
723 char *end;
724 unsigned long new = simple_strtoul(buf, &end, 0);
725 if (end == buf)
726 return -EINVAL;
727 *(unsigned long *)(ea->var) = new;
728 /* Always return full write size even if we didn't consume all */
729 return size;
730 }
731 EXPORT_SYMBOL_GPL(device_store_ulong);
732
733 ssize_t device_show_ulong(struct device *dev,
734 struct device_attribute *attr,
735 char *buf)
736 {
737 struct dev_ext_attribute *ea = to_ext_attr(attr);
738 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
739 }
740 EXPORT_SYMBOL_GPL(device_show_ulong);
741
742 ssize_t device_store_int(struct device *dev,
743 struct device_attribute *attr,
744 const char *buf, size_t size)
745 {
746 struct dev_ext_attribute *ea = to_ext_attr(attr);
747 char *end;
748 long new = simple_strtol(buf, &end, 0);
749 if (end == buf || new > INT_MAX || new < INT_MIN)
750 return -EINVAL;
751 *(int *)(ea->var) = new;
752 /* Always return full write size even if we didn't consume all */
753 return size;
754 }
755 EXPORT_SYMBOL_GPL(device_store_int);
756
757 ssize_t device_show_int(struct device *dev,
758 struct device_attribute *attr,
759 char *buf)
760 {
761 struct dev_ext_attribute *ea = to_ext_attr(attr);
762
763 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
764 }
765 EXPORT_SYMBOL_GPL(device_show_int);
766
767 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
768 const char *buf, size_t size)
769 {
770 struct dev_ext_attribute *ea = to_ext_attr(attr);
771
772 if (strtobool(buf, ea->var) < 0)
773 return -EINVAL;
774
775 return size;
776 }
777 EXPORT_SYMBOL_GPL(device_store_bool);
778
779 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
780 char *buf)
781 {
782 struct dev_ext_attribute *ea = to_ext_attr(attr);
783
784 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
785 }
786 EXPORT_SYMBOL_GPL(device_show_bool);
787
788 /**
789 * device_release - free device structure.
790 * @kobj: device's kobject.
791 *
792 * This is called once the reference count for the object
793 * reaches 0. We forward the call to the device's release
794 * method, which should handle actually freeing the structure.
795 */
796 static void device_release(struct kobject *kobj)
797 {
798 struct device *dev = kobj_to_dev(kobj);
799 struct device_private *p = dev->p;
800
801 /*
802 * Some platform devices are driven without driver attached
803 * and managed resources may have been acquired. Make sure
804 * all resources are released.
805 *
806 * Drivers still can add resources into device after device
807 * is deleted but alive, so release devres here to avoid
808 * possible memory leak.
809 */
810 devres_release_all(dev);
811
812 if (dev->release)
813 dev->release(dev);
814 else if (dev->type && dev->type->release)
815 dev->type->release(dev);
816 else if (dev->class && dev->class->dev_release)
817 dev->class->dev_release(dev);
818 else
819 WARN(1, KERN_ERR "Device '%s' does not have a release() "
820 "function, it is broken and must be fixed.\n",
821 dev_name(dev));
822 kfree(p);
823 }
824
825 static const void *device_namespace(struct kobject *kobj)
826 {
827 struct device *dev = kobj_to_dev(kobj);
828 const void *ns = NULL;
829
830 if (dev->class && dev->class->ns_type)
831 ns = dev->class->namespace(dev);
832
833 return ns;
834 }
835
836 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
837 {
838 struct device *dev = kobj_to_dev(kobj);
839
840 if (dev->class && dev->class->get_ownership)
841 dev->class->get_ownership(dev, uid, gid);
842 }
843
844 static struct kobj_type device_ktype = {
845 .release = device_release,
846 .sysfs_ops = &dev_sysfs_ops,
847 .namespace = device_namespace,
848 .get_ownership = device_get_ownership,
849 };
850
851
852 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
853 {
854 struct kobj_type *ktype = get_ktype(kobj);
855
856 if (ktype == &device_ktype) {
857 struct device *dev = kobj_to_dev(kobj);
858 if (dev->bus)
859 return 1;
860 if (dev->class)
861 return 1;
862 }
863 return 0;
864 }
865
866 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
867 {
868 struct device *dev = kobj_to_dev(kobj);
869
870 if (dev->bus)
871 return dev->bus->name;
872 if (dev->class)
873 return dev->class->name;
874 return NULL;
875 }
876
877 static int dev_uevent(struct kset *kset, struct kobject *kobj,
878 struct kobj_uevent_env *env)
879 {
880 struct device *dev = kobj_to_dev(kobj);
881 int retval = 0;
882
883 /* add device node properties if present */
884 if (MAJOR(dev->devt)) {
885 const char *tmp;
886 const char *name;
887 umode_t mode = 0;
888 kuid_t uid = GLOBAL_ROOT_UID;
889 kgid_t gid = GLOBAL_ROOT_GID;
890
891 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
892 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
893 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
894 if (name) {
895 add_uevent_var(env, "DEVNAME=%s", name);
896 if (mode)
897 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
898 if (!uid_eq(uid, GLOBAL_ROOT_UID))
899 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
900 if (!gid_eq(gid, GLOBAL_ROOT_GID))
901 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
902 kfree(tmp);
903 }
904 }
905
906 if (dev->type && dev->type->name)
907 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
908
909 if (dev->driver)
910 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
911
912 /* Add common DT information about the device */
913 of_device_uevent(dev, env);
914
915 /* have the bus specific function add its stuff */
916 if (dev->bus && dev->bus->uevent) {
917 retval = dev->bus->uevent(dev, env);
918 if (retval)
919 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
920 dev_name(dev), __func__, retval);
921 }
922
923 /* have the class specific function add its stuff */
924 if (dev->class && dev->class->dev_uevent) {
925 retval = dev->class->dev_uevent(dev, env);
926 if (retval)
927 pr_debug("device: '%s': %s: class uevent() "
928 "returned %d\n", dev_name(dev),
929 __func__, retval);
930 }
931
932 /* have the device type specific function add its stuff */
933 if (dev->type && dev->type->uevent) {
934 retval = dev->type->uevent(dev, env);
935 if (retval)
936 pr_debug("device: '%s': %s: dev_type uevent() "
937 "returned %d\n", dev_name(dev),
938 __func__, retval);
939 }
940
941 return retval;
942 }
943
944 static const struct kset_uevent_ops device_uevent_ops = {
945 .filter = dev_uevent_filter,
946 .name = dev_uevent_name,
947 .uevent = dev_uevent,
948 };
949
950 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
951 char *buf)
952 {
953 struct kobject *top_kobj;
954 struct kset *kset;
955 struct kobj_uevent_env *env = NULL;
956 int i;
957 size_t count = 0;
958 int retval;
959
960 /* search the kset, the device belongs to */
961 top_kobj = &dev->kobj;
962 while (!top_kobj->kset && top_kobj->parent)
963 top_kobj = top_kobj->parent;
964 if (!top_kobj->kset)
965 goto out;
966
967 kset = top_kobj->kset;
968 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
969 goto out;
970
971 /* respect filter */
972 if (kset->uevent_ops && kset->uevent_ops->filter)
973 if (!kset->uevent_ops->filter(kset, &dev->kobj))
974 goto out;
975
976 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
977 if (!env)
978 return -ENOMEM;
979
980 /* let the kset specific function add its keys */
981 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
982 if (retval)
983 goto out;
984
985 /* copy keys to file */
986 for (i = 0; i < env->envp_idx; i++)
987 count += sprintf(&buf[count], "%s\n", env->envp[i]);
988 out:
989 kfree(env);
990 return count;
991 }
992
993 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
994 const char *buf, size_t count)
995 {
996 if (kobject_synth_uevent(&dev->kobj, buf, count))
997 dev_err(dev, "uevent: failed to send synthetic uevent\n");
998
999 return count;
1000 }
1001 static DEVICE_ATTR_RW(uevent);
1002
1003 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1004 char *buf)
1005 {
1006 bool val;
1007
1008 device_lock(dev);
1009 val = !dev->offline;
1010 device_unlock(dev);
1011 return sprintf(buf, "%u\n", val);
1012 }
1013
1014 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1015 const char *buf, size_t count)
1016 {
1017 bool val;
1018 int ret;
1019
1020 ret = strtobool(buf, &val);
1021 if (ret < 0)
1022 return ret;
1023
1024 ret = lock_device_hotplug_sysfs();
1025 if (ret)
1026 return ret;
1027
1028 ret = val ? device_online(dev) : device_offline(dev);
1029 unlock_device_hotplug();
1030 return ret < 0 ? ret : count;
1031 }
1032 static DEVICE_ATTR_RW(online);
1033
1034 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1035 {
1036 return sysfs_create_groups(&dev->kobj, groups);
1037 }
1038 EXPORT_SYMBOL_GPL(device_add_groups);
1039
1040 void device_remove_groups(struct device *dev,
1041 const struct attribute_group **groups)
1042 {
1043 sysfs_remove_groups(&dev->kobj, groups);
1044 }
1045 EXPORT_SYMBOL_GPL(device_remove_groups);
1046
1047 union device_attr_group_devres {
1048 const struct attribute_group *group;
1049 const struct attribute_group **groups;
1050 };
1051
1052 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1053 {
1054 return ((union device_attr_group_devres *)res)->group == data;
1055 }
1056
1057 static void devm_attr_group_remove(struct device *dev, void *res)
1058 {
1059 union device_attr_group_devres *devres = res;
1060 const struct attribute_group *group = devres->group;
1061
1062 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1063 sysfs_remove_group(&dev->kobj, group);
1064 }
1065
1066 static void devm_attr_groups_remove(struct device *dev, void *res)
1067 {
1068 union device_attr_group_devres *devres = res;
1069 const struct attribute_group **groups = devres->groups;
1070
1071 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1072 sysfs_remove_groups(&dev->kobj, groups);
1073 }
1074
1075 /**
1076 * devm_device_add_group - given a device, create a managed attribute group
1077 * @dev: The device to create the group for
1078 * @grp: The attribute group to create
1079 *
1080 * This function creates a group for the first time. It will explicitly
1081 * warn and error if any of the attribute files being created already exist.
1082 *
1083 * Returns 0 on success or error code on failure.
1084 */
1085 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1086 {
1087 union device_attr_group_devres *devres;
1088 int error;
1089
1090 devres = devres_alloc(devm_attr_group_remove,
1091 sizeof(*devres), GFP_KERNEL);
1092 if (!devres)
1093 return -ENOMEM;
1094
1095 error = sysfs_create_group(&dev->kobj, grp);
1096 if (error) {
1097 devres_free(devres);
1098 return error;
1099 }
1100
1101 devres->group = grp;
1102 devres_add(dev, devres);
1103 return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(devm_device_add_group);
1106
1107 /**
1108 * devm_device_remove_group: remove a managed group from a device
1109 * @dev: device to remove the group from
1110 * @grp: group to remove
1111 *
1112 * This function removes a group of attributes from a device. The attributes
1113 * previously have to have been created for this group, otherwise it will fail.
1114 */
1115 void devm_device_remove_group(struct device *dev,
1116 const struct attribute_group *grp)
1117 {
1118 WARN_ON(devres_release(dev, devm_attr_group_remove,
1119 devm_attr_group_match,
1120 /* cast away const */ (void *)grp));
1121 }
1122 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1123
1124 /**
1125 * devm_device_add_groups - create a bunch of managed attribute groups
1126 * @dev: The device to create the group for
1127 * @groups: The attribute groups to create, NULL terminated
1128 *
1129 * This function creates a bunch of managed attribute groups. If an error
1130 * occurs when creating a group, all previously created groups will be
1131 * removed, unwinding everything back to the original state when this
1132 * function was called. It will explicitly warn and error if any of the
1133 * attribute files being created already exist.
1134 *
1135 * Returns 0 on success or error code from sysfs_create_group on failure.
1136 */
1137 int devm_device_add_groups(struct device *dev,
1138 const struct attribute_group **groups)
1139 {
1140 union device_attr_group_devres *devres;
1141 int error;
1142
1143 devres = devres_alloc(devm_attr_groups_remove,
1144 sizeof(*devres), GFP_KERNEL);
1145 if (!devres)
1146 return -ENOMEM;
1147
1148 error = sysfs_create_groups(&dev->kobj, groups);
1149 if (error) {
1150 devres_free(devres);
1151 return error;
1152 }
1153
1154 devres->groups = groups;
1155 devres_add(dev, devres);
1156 return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1159
1160 /**
1161 * devm_device_remove_groups - remove a list of managed groups
1162 *
1163 * @dev: The device for the groups to be removed from
1164 * @groups: NULL terminated list of groups to be removed
1165 *
1166 * If groups is not NULL, remove the specified groups from the device.
1167 */
1168 void devm_device_remove_groups(struct device *dev,
1169 const struct attribute_group **groups)
1170 {
1171 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1172 devm_attr_group_match,
1173 /* cast away const */ (void *)groups));
1174 }
1175 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1176
1177 static int device_add_attrs(struct device *dev)
1178 {
1179 struct class *class = dev->class;
1180 const struct device_type *type = dev->type;
1181 int error;
1182
1183 if (class) {
1184 error = device_add_groups(dev, class->dev_groups);
1185 if (error)
1186 return error;
1187 }
1188
1189 if (type) {
1190 error = device_add_groups(dev, type->groups);
1191 if (error)
1192 goto err_remove_class_groups;
1193 }
1194
1195 error = device_add_groups(dev, dev->groups);
1196 if (error)
1197 goto err_remove_type_groups;
1198
1199 if (device_supports_offline(dev) && !dev->offline_disabled) {
1200 error = device_create_file(dev, &dev_attr_online);
1201 if (error)
1202 goto err_remove_dev_groups;
1203 }
1204
1205 return 0;
1206
1207 err_remove_dev_groups:
1208 device_remove_groups(dev, dev->groups);
1209 err_remove_type_groups:
1210 if (type)
1211 device_remove_groups(dev, type->groups);
1212 err_remove_class_groups:
1213 if (class)
1214 device_remove_groups(dev, class->dev_groups);
1215
1216 return error;
1217 }
1218
1219 static void device_remove_attrs(struct device *dev)
1220 {
1221 struct class *class = dev->class;
1222 const struct device_type *type = dev->type;
1223
1224 device_remove_file(dev, &dev_attr_online);
1225 device_remove_groups(dev, dev->groups);
1226
1227 if (type)
1228 device_remove_groups(dev, type->groups);
1229
1230 if (class)
1231 device_remove_groups(dev, class->dev_groups);
1232 }
1233
1234 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1235 char *buf)
1236 {
1237 return print_dev_t(buf, dev->devt);
1238 }
1239 static DEVICE_ATTR_RO(dev);
1240
1241 /* /sys/devices/ */
1242 struct kset *devices_kset;
1243
1244 /**
1245 * devices_kset_move_before - Move device in the devices_kset's list.
1246 * @deva: Device to move.
1247 * @devb: Device @deva should come before.
1248 */
1249 static void devices_kset_move_before(struct device *deva, struct device *devb)
1250 {
1251 if (!devices_kset)
1252 return;
1253 pr_debug("devices_kset: Moving %s before %s\n",
1254 dev_name(deva), dev_name(devb));
1255 spin_lock(&devices_kset->list_lock);
1256 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1257 spin_unlock(&devices_kset->list_lock);
1258 }
1259
1260 /**
1261 * devices_kset_move_after - Move device in the devices_kset's list.
1262 * @deva: Device to move
1263 * @devb: Device @deva should come after.
1264 */
1265 static void devices_kset_move_after(struct device *deva, struct device *devb)
1266 {
1267 if (!devices_kset)
1268 return;
1269 pr_debug("devices_kset: Moving %s after %s\n",
1270 dev_name(deva), dev_name(devb));
1271 spin_lock(&devices_kset->list_lock);
1272 list_move(&deva->kobj.entry, &devb->kobj.entry);
1273 spin_unlock(&devices_kset->list_lock);
1274 }
1275
1276 /**
1277 * devices_kset_move_last - move the device to the end of devices_kset's list.
1278 * @dev: device to move
1279 */
1280 void devices_kset_move_last(struct device *dev)
1281 {
1282 if (!devices_kset)
1283 return;
1284 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1285 spin_lock(&devices_kset->list_lock);
1286 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1287 spin_unlock(&devices_kset->list_lock);
1288 }
1289
1290 /**
1291 * device_create_file - create sysfs attribute file for device.
1292 * @dev: device.
1293 * @attr: device attribute descriptor.
1294 */
1295 int device_create_file(struct device *dev,
1296 const struct device_attribute *attr)
1297 {
1298 int error = 0;
1299
1300 if (dev) {
1301 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1302 "Attribute %s: write permission without 'store'\n",
1303 attr->attr.name);
1304 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1305 "Attribute %s: read permission without 'show'\n",
1306 attr->attr.name);
1307 error = sysfs_create_file(&dev->kobj, &attr->attr);
1308 }
1309
1310 return error;
1311 }
1312 EXPORT_SYMBOL_GPL(device_create_file);
1313
1314 /**
1315 * device_remove_file - remove sysfs attribute file.
1316 * @dev: device.
1317 * @attr: device attribute descriptor.
1318 */
1319 void device_remove_file(struct device *dev,
1320 const struct device_attribute *attr)
1321 {
1322 if (dev)
1323 sysfs_remove_file(&dev->kobj, &attr->attr);
1324 }
1325 EXPORT_SYMBOL_GPL(device_remove_file);
1326
1327 /**
1328 * device_remove_file_self - remove sysfs attribute file from its own method.
1329 * @dev: device.
1330 * @attr: device attribute descriptor.
1331 *
1332 * See kernfs_remove_self() for details.
1333 */
1334 bool device_remove_file_self(struct device *dev,
1335 const struct device_attribute *attr)
1336 {
1337 if (dev)
1338 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1339 else
1340 return false;
1341 }
1342 EXPORT_SYMBOL_GPL(device_remove_file_self);
1343
1344 /**
1345 * device_create_bin_file - create sysfs binary attribute file for device.
1346 * @dev: device.
1347 * @attr: device binary attribute descriptor.
1348 */
1349 int device_create_bin_file(struct device *dev,
1350 const struct bin_attribute *attr)
1351 {
1352 int error = -EINVAL;
1353 if (dev)
1354 error = sysfs_create_bin_file(&dev->kobj, attr);
1355 return error;
1356 }
1357 EXPORT_SYMBOL_GPL(device_create_bin_file);
1358
1359 /**
1360 * device_remove_bin_file - remove sysfs binary attribute file
1361 * @dev: device.
1362 * @attr: device binary attribute descriptor.
1363 */
1364 void device_remove_bin_file(struct device *dev,
1365 const struct bin_attribute *attr)
1366 {
1367 if (dev)
1368 sysfs_remove_bin_file(&dev->kobj, attr);
1369 }
1370 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1371
1372 static void klist_children_get(struct klist_node *n)
1373 {
1374 struct device_private *p = to_device_private_parent(n);
1375 struct device *dev = p->device;
1376
1377 get_device(dev);
1378 }
1379
1380 static void klist_children_put(struct klist_node *n)
1381 {
1382 struct device_private *p = to_device_private_parent(n);
1383 struct device *dev = p->device;
1384
1385 put_device(dev);
1386 }
1387
1388 /**
1389 * device_initialize - init device structure.
1390 * @dev: device.
1391 *
1392 * This prepares the device for use by other layers by initializing
1393 * its fields.
1394 * It is the first half of device_register(), if called by
1395 * that function, though it can also be called separately, so one
1396 * may use @dev's fields. In particular, get_device()/put_device()
1397 * may be used for reference counting of @dev after calling this
1398 * function.
1399 *
1400 * All fields in @dev must be initialized by the caller to 0, except
1401 * for those explicitly set to some other value. The simplest
1402 * approach is to use kzalloc() to allocate the structure containing
1403 * @dev.
1404 *
1405 * NOTE: Use put_device() to give up your reference instead of freeing
1406 * @dev directly once you have called this function.
1407 */
1408 void device_initialize(struct device *dev)
1409 {
1410 dev->kobj.kset = devices_kset;
1411 kobject_init(&dev->kobj, &device_ktype);
1412 INIT_LIST_HEAD(&dev->dma_pools);
1413 mutex_init(&dev->mutex);
1414 lockdep_set_novalidate_class(&dev->mutex);
1415 spin_lock_init(&dev->devres_lock);
1416 INIT_LIST_HEAD(&dev->devres_head);
1417 device_pm_init(dev);
1418 set_dev_node(dev, -1);
1419 #ifdef CONFIG_GENERIC_MSI_IRQ
1420 INIT_LIST_HEAD(&dev->msi_list);
1421 #endif
1422 INIT_LIST_HEAD(&dev->links.consumers);
1423 INIT_LIST_HEAD(&dev->links.suppliers);
1424 dev->links.status = DL_DEV_NO_DRIVER;
1425 }
1426 EXPORT_SYMBOL_GPL(device_initialize);
1427
1428 struct kobject *virtual_device_parent(struct device *dev)
1429 {
1430 static struct kobject *virtual_dir = NULL;
1431
1432 if (!virtual_dir)
1433 virtual_dir = kobject_create_and_add("virtual",
1434 &devices_kset->kobj);
1435
1436 return virtual_dir;
1437 }
1438
1439 struct class_dir {
1440 struct kobject kobj;
1441 struct class *class;
1442 };
1443
1444 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1445
1446 static void class_dir_release(struct kobject *kobj)
1447 {
1448 struct class_dir *dir = to_class_dir(kobj);
1449 kfree(dir);
1450 }
1451
1452 static const
1453 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1454 {
1455 struct class_dir *dir = to_class_dir(kobj);
1456 return dir->class->ns_type;
1457 }
1458
1459 static struct kobj_type class_dir_ktype = {
1460 .release = class_dir_release,
1461 .sysfs_ops = &kobj_sysfs_ops,
1462 .child_ns_type = class_dir_child_ns_type
1463 };
1464
1465 static struct kobject *
1466 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1467 {
1468 struct class_dir *dir;
1469 int retval;
1470
1471 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1472 if (!dir)
1473 return NULL;
1474
1475 dir->class = class;
1476 kobject_init(&dir->kobj, &class_dir_ktype);
1477
1478 dir->kobj.kset = &class->p->glue_dirs;
1479
1480 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1481 if (retval < 0) {
1482 kobject_put(&dir->kobj);
1483 return NULL;
1484 }
1485 return &dir->kobj;
1486 }
1487
1488 static DEFINE_MUTEX(gdp_mutex);
1489
1490 static struct kobject *get_device_parent(struct device *dev,
1491 struct device *parent)
1492 {
1493 if (dev->class) {
1494 struct kobject *kobj = NULL;
1495 struct kobject *parent_kobj;
1496 struct kobject *k;
1497
1498 #ifdef CONFIG_BLOCK
1499 /* block disks show up in /sys/block */
1500 if (sysfs_deprecated && dev->class == &block_class) {
1501 if (parent && parent->class == &block_class)
1502 return &parent->kobj;
1503 return &block_class.p->subsys.kobj;
1504 }
1505 #endif
1506
1507 /*
1508 * If we have no parent, we live in "virtual".
1509 * Class-devices with a non class-device as parent, live
1510 * in a "glue" directory to prevent namespace collisions.
1511 */
1512 if (parent == NULL)
1513 parent_kobj = virtual_device_parent(dev);
1514 else if (parent->class && !dev->class->ns_type)
1515 return &parent->kobj;
1516 else
1517 parent_kobj = &parent->kobj;
1518
1519 mutex_lock(&gdp_mutex);
1520
1521 /* find our class-directory at the parent and reference it */
1522 spin_lock(&dev->class->p->glue_dirs.list_lock);
1523 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1524 if (k->parent == parent_kobj) {
1525 kobj = kobject_get(k);
1526 break;
1527 }
1528 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1529 if (kobj) {
1530 mutex_unlock(&gdp_mutex);
1531 return kobj;
1532 }
1533
1534 /* or create a new class-directory at the parent device */
1535 k = class_dir_create_and_add(dev->class, parent_kobj);
1536 /* do not emit an uevent for this simple "glue" directory */
1537 mutex_unlock(&gdp_mutex);
1538 return k;
1539 }
1540
1541 /* subsystems can specify a default root directory for their devices */
1542 if (!parent && dev->bus && dev->bus->dev_root)
1543 return &dev->bus->dev_root->kobj;
1544
1545 if (parent)
1546 return &parent->kobj;
1547 return NULL;
1548 }
1549
1550 static inline bool live_in_glue_dir(struct kobject *kobj,
1551 struct device *dev)
1552 {
1553 if (!kobj || !dev->class ||
1554 kobj->kset != &dev->class->p->glue_dirs)
1555 return false;
1556 return true;
1557 }
1558
1559 static inline struct kobject *get_glue_dir(struct device *dev)
1560 {
1561 return dev->kobj.parent;
1562 }
1563
1564 /*
1565 * make sure cleaning up dir as the last step, we need to make
1566 * sure .release handler of kobject is run with holding the
1567 * global lock
1568 */
1569 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1570 {
1571 /* see if we live in a "glue" directory */
1572 if (!live_in_glue_dir(glue_dir, dev))
1573 return;
1574
1575 mutex_lock(&gdp_mutex);
1576 kobject_put(glue_dir);
1577 mutex_unlock(&gdp_mutex);
1578 }
1579
1580 static int device_add_class_symlinks(struct device *dev)
1581 {
1582 struct device_node *of_node = dev_of_node(dev);
1583 int error;
1584
1585 if (of_node) {
1586 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1587 if (error)
1588 dev_warn(dev, "Error %d creating of_node link\n",error);
1589 /* An error here doesn't warrant bringing down the device */
1590 }
1591
1592 if (!dev->class)
1593 return 0;
1594
1595 error = sysfs_create_link(&dev->kobj,
1596 &dev->class->p->subsys.kobj,
1597 "subsystem");
1598 if (error)
1599 goto out_devnode;
1600
1601 if (dev->parent && device_is_not_partition(dev)) {
1602 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1603 "device");
1604 if (error)
1605 goto out_subsys;
1606 }
1607
1608 #ifdef CONFIG_BLOCK
1609 /* /sys/block has directories and does not need symlinks */
1610 if (sysfs_deprecated && dev->class == &block_class)
1611 return 0;
1612 #endif
1613
1614 /* link in the class directory pointing to the device */
1615 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1616 &dev->kobj, dev_name(dev));
1617 if (error)
1618 goto out_device;
1619
1620 return 0;
1621
1622 out_device:
1623 sysfs_remove_link(&dev->kobj, "device");
1624
1625 out_subsys:
1626 sysfs_remove_link(&dev->kobj, "subsystem");
1627 out_devnode:
1628 sysfs_remove_link(&dev->kobj, "of_node");
1629 return error;
1630 }
1631
1632 static void device_remove_class_symlinks(struct device *dev)
1633 {
1634 if (dev_of_node(dev))
1635 sysfs_remove_link(&dev->kobj, "of_node");
1636
1637 if (!dev->class)
1638 return;
1639
1640 if (dev->parent && device_is_not_partition(dev))
1641 sysfs_remove_link(&dev->kobj, "device");
1642 sysfs_remove_link(&dev->kobj, "subsystem");
1643 #ifdef CONFIG_BLOCK
1644 if (sysfs_deprecated && dev->class == &block_class)
1645 return;
1646 #endif
1647 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1648 }
1649
1650 /**
1651 * dev_set_name - set a device name
1652 * @dev: device
1653 * @fmt: format string for the device's name
1654 */
1655 int dev_set_name(struct device *dev, const char *fmt, ...)
1656 {
1657 va_list vargs;
1658 int err;
1659
1660 va_start(vargs, fmt);
1661 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1662 va_end(vargs);
1663 return err;
1664 }
1665 EXPORT_SYMBOL_GPL(dev_set_name);
1666
1667 /**
1668 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1669 * @dev: device
1670 *
1671 * By default we select char/ for new entries. Setting class->dev_obj
1672 * to NULL prevents an entry from being created. class->dev_kobj must
1673 * be set (or cleared) before any devices are registered to the class
1674 * otherwise device_create_sys_dev_entry() and
1675 * device_remove_sys_dev_entry() will disagree about the presence of
1676 * the link.
1677 */
1678 static struct kobject *device_to_dev_kobj(struct device *dev)
1679 {
1680 struct kobject *kobj;
1681
1682 if (dev->class)
1683 kobj = dev->class->dev_kobj;
1684 else
1685 kobj = sysfs_dev_char_kobj;
1686
1687 return kobj;
1688 }
1689
1690 static int device_create_sys_dev_entry(struct device *dev)
1691 {
1692 struct kobject *kobj = device_to_dev_kobj(dev);
1693 int error = 0;
1694 char devt_str[15];
1695
1696 if (kobj) {
1697 format_dev_t(devt_str, dev->devt);
1698 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1699 }
1700
1701 return error;
1702 }
1703
1704 static void device_remove_sys_dev_entry(struct device *dev)
1705 {
1706 struct kobject *kobj = device_to_dev_kobj(dev);
1707 char devt_str[15];
1708
1709 if (kobj) {
1710 format_dev_t(devt_str, dev->devt);
1711 sysfs_remove_link(kobj, devt_str);
1712 }
1713 }
1714
1715 int device_private_init(struct device *dev)
1716 {
1717 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1718 if (!dev->p)
1719 return -ENOMEM;
1720 dev->p->device = dev;
1721 klist_init(&dev->p->klist_children, klist_children_get,
1722 klist_children_put);
1723 INIT_LIST_HEAD(&dev->p->deferred_probe);
1724 return 0;
1725 }
1726
1727 /**
1728 * device_add - add device to device hierarchy.
1729 * @dev: device.
1730 *
1731 * This is part 2 of device_register(), though may be called
1732 * separately _iff_ device_initialize() has been called separately.
1733 *
1734 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1735 * to the global and sibling lists for the device, then
1736 * adds it to the other relevant subsystems of the driver model.
1737 *
1738 * Do not call this routine or device_register() more than once for
1739 * any device structure. The driver model core is not designed to work
1740 * with devices that get unregistered and then spring back to life.
1741 * (Among other things, it's very hard to guarantee that all references
1742 * to the previous incarnation of @dev have been dropped.) Allocate
1743 * and register a fresh new struct device instead.
1744 *
1745 * NOTE: _Never_ directly free @dev after calling this function, even
1746 * if it returned an error! Always use put_device() to give up your
1747 * reference instead.
1748 */
1749 int device_add(struct device *dev)
1750 {
1751 struct device *parent;
1752 struct kobject *kobj;
1753 struct class_interface *class_intf;
1754 int error = -EINVAL;
1755 struct kobject *glue_dir = NULL;
1756
1757 dev = get_device(dev);
1758 if (!dev)
1759 goto done;
1760
1761 if (!dev->p) {
1762 error = device_private_init(dev);
1763 if (error)
1764 goto done;
1765 }
1766
1767 /*
1768 * for statically allocated devices, which should all be converted
1769 * some day, we need to initialize the name. We prevent reading back
1770 * the name, and force the use of dev_name()
1771 */
1772 if (dev->init_name) {
1773 dev_set_name(dev, "%s", dev->init_name);
1774 dev->init_name = NULL;
1775 }
1776
1777 /* subsystems can specify simple device enumeration */
1778 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1779 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1780
1781 if (!dev_name(dev)) {
1782 error = -EINVAL;
1783 goto name_error;
1784 }
1785
1786 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1787
1788 parent = get_device(dev->parent);
1789 kobj = get_device_parent(dev, parent);
1790 if (kobj)
1791 dev->kobj.parent = kobj;
1792
1793 /* use parent numa_node */
1794 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1795 set_dev_node(dev, dev_to_node(parent));
1796
1797 /* first, register with generic layer. */
1798 /* we require the name to be set before, and pass NULL */
1799 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1800 if (error) {
1801 glue_dir = get_glue_dir(dev);
1802 goto Error;
1803 }
1804
1805 /* notify platform of device entry */
1806 if (platform_notify)
1807 platform_notify(dev);
1808
1809 error = device_create_file(dev, &dev_attr_uevent);
1810 if (error)
1811 goto attrError;
1812
1813 error = device_add_class_symlinks(dev);
1814 if (error)
1815 goto SymlinkError;
1816 error = device_add_attrs(dev);
1817 if (error)
1818 goto AttrsError;
1819 error = bus_add_device(dev);
1820 if (error)
1821 goto BusError;
1822 error = dpm_sysfs_add(dev);
1823 if (error)
1824 goto DPMError;
1825 device_pm_add(dev);
1826
1827 if (MAJOR(dev->devt)) {
1828 error = device_create_file(dev, &dev_attr_dev);
1829 if (error)
1830 goto DevAttrError;
1831
1832 error = device_create_sys_dev_entry(dev);
1833 if (error)
1834 goto SysEntryError;
1835
1836 devtmpfs_create_node(dev);
1837 }
1838
1839 /* Notify clients of device addition. This call must come
1840 * after dpm_sysfs_add() and before kobject_uevent().
1841 */
1842 if (dev->bus)
1843 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1844 BUS_NOTIFY_ADD_DEVICE, dev);
1845
1846 kobject_uevent(&dev->kobj, KOBJ_ADD);
1847 bus_probe_device(dev);
1848 if (parent)
1849 klist_add_tail(&dev->p->knode_parent,
1850 &parent->p->klist_children);
1851
1852 if (dev->class) {
1853 mutex_lock(&dev->class->p->mutex);
1854 /* tie the class to the device */
1855 klist_add_tail(&dev->knode_class,
1856 &dev->class->p->klist_devices);
1857
1858 /* notify any interfaces that the device is here */
1859 list_for_each_entry(class_intf,
1860 &dev->class->p->interfaces, node)
1861 if (class_intf->add_dev)
1862 class_intf->add_dev(dev, class_intf);
1863 mutex_unlock(&dev->class->p->mutex);
1864 }
1865 done:
1866 put_device(dev);
1867 return error;
1868 SysEntryError:
1869 if (MAJOR(dev->devt))
1870 device_remove_file(dev, &dev_attr_dev);
1871 DevAttrError:
1872 device_pm_remove(dev);
1873 dpm_sysfs_remove(dev);
1874 DPMError:
1875 bus_remove_device(dev);
1876 BusError:
1877 device_remove_attrs(dev);
1878 AttrsError:
1879 device_remove_class_symlinks(dev);
1880 SymlinkError:
1881 device_remove_file(dev, &dev_attr_uevent);
1882 attrError:
1883 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1884 glue_dir = get_glue_dir(dev);
1885 kobject_del(&dev->kobj);
1886 Error:
1887 cleanup_glue_dir(dev, glue_dir);
1888 put_device(parent);
1889 name_error:
1890 kfree(dev->p);
1891 dev->p = NULL;
1892 goto done;
1893 }
1894 EXPORT_SYMBOL_GPL(device_add);
1895
1896 /**
1897 * device_register - register a device with the system.
1898 * @dev: pointer to the device structure
1899 *
1900 * This happens in two clean steps - initialize the device
1901 * and add it to the system. The two steps can be called
1902 * separately, but this is the easiest and most common.
1903 * I.e. you should only call the two helpers separately if
1904 * have a clearly defined need to use and refcount the device
1905 * before it is added to the hierarchy.
1906 *
1907 * For more information, see the kerneldoc for device_initialize()
1908 * and device_add().
1909 *
1910 * NOTE: _Never_ directly free @dev after calling this function, even
1911 * if it returned an error! Always use put_device() to give up the
1912 * reference initialized in this function instead.
1913 */
1914 int device_register(struct device *dev)
1915 {
1916 device_initialize(dev);
1917 return device_add(dev);
1918 }
1919 EXPORT_SYMBOL_GPL(device_register);
1920
1921 /**
1922 * get_device - increment reference count for device.
1923 * @dev: device.
1924 *
1925 * This simply forwards the call to kobject_get(), though
1926 * we do take care to provide for the case that we get a NULL
1927 * pointer passed in.
1928 */
1929 struct device *get_device(struct device *dev)
1930 {
1931 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1932 }
1933 EXPORT_SYMBOL_GPL(get_device);
1934
1935 /**
1936 * put_device - decrement reference count.
1937 * @dev: device in question.
1938 */
1939 void put_device(struct device *dev)
1940 {
1941 /* might_sleep(); */
1942 if (dev)
1943 kobject_put(&dev->kobj);
1944 }
1945 EXPORT_SYMBOL_GPL(put_device);
1946
1947 /**
1948 * device_del - delete device from system.
1949 * @dev: device.
1950 *
1951 * This is the first part of the device unregistration
1952 * sequence. This removes the device from the lists we control
1953 * from here, has it removed from the other driver model
1954 * subsystems it was added to in device_add(), and removes it
1955 * from the kobject hierarchy.
1956 *
1957 * NOTE: this should be called manually _iff_ device_add() was
1958 * also called manually.
1959 */
1960 void device_del(struct device *dev)
1961 {
1962 struct device *parent = dev->parent;
1963 struct kobject *glue_dir = NULL;
1964 struct class_interface *class_intf;
1965
1966 /* Notify clients of device removal. This call must come
1967 * before dpm_sysfs_remove().
1968 */
1969 if (dev->bus)
1970 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1971 BUS_NOTIFY_DEL_DEVICE, dev);
1972
1973 dpm_sysfs_remove(dev);
1974 if (parent)
1975 klist_del(&dev->p->knode_parent);
1976 if (MAJOR(dev->devt)) {
1977 devtmpfs_delete_node(dev);
1978 device_remove_sys_dev_entry(dev);
1979 device_remove_file(dev, &dev_attr_dev);
1980 }
1981 if (dev->class) {
1982 device_remove_class_symlinks(dev);
1983
1984 mutex_lock(&dev->class->p->mutex);
1985 /* notify any interfaces that the device is now gone */
1986 list_for_each_entry(class_intf,
1987 &dev->class->p->interfaces, node)
1988 if (class_intf->remove_dev)
1989 class_intf->remove_dev(dev, class_intf);
1990 /* remove the device from the class list */
1991 klist_del(&dev->knode_class);
1992 mutex_unlock(&dev->class->p->mutex);
1993 }
1994 device_remove_file(dev, &dev_attr_uevent);
1995 device_remove_attrs(dev);
1996 bus_remove_device(dev);
1997 device_pm_remove(dev);
1998 driver_deferred_probe_del(dev);
1999 device_remove_properties(dev);
2000 device_links_purge(dev);
2001
2002 /* Notify the platform of the removal, in case they
2003 * need to do anything...
2004 */
2005 if (platform_notify_remove)
2006 platform_notify_remove(dev);
2007 if (dev->bus)
2008 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2009 BUS_NOTIFY_REMOVED_DEVICE, dev);
2010 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2011 glue_dir = get_glue_dir(dev);
2012 kobject_del(&dev->kobj);
2013 cleanup_glue_dir(dev, glue_dir);
2014 put_device(parent);
2015 }
2016 EXPORT_SYMBOL_GPL(device_del);
2017
2018 /**
2019 * device_unregister - unregister device from system.
2020 * @dev: device going away.
2021 *
2022 * We do this in two parts, like we do device_register(). First,
2023 * we remove it from all the subsystems with device_del(), then
2024 * we decrement the reference count via put_device(). If that
2025 * is the final reference count, the device will be cleaned up
2026 * via device_release() above. Otherwise, the structure will
2027 * stick around until the final reference to the device is dropped.
2028 */
2029 void device_unregister(struct device *dev)
2030 {
2031 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2032 device_del(dev);
2033 put_device(dev);
2034 }
2035 EXPORT_SYMBOL_GPL(device_unregister);
2036
2037 static struct device *prev_device(struct klist_iter *i)
2038 {
2039 struct klist_node *n = klist_prev(i);
2040 struct device *dev = NULL;
2041 struct device_private *p;
2042
2043 if (n) {
2044 p = to_device_private_parent(n);
2045 dev = p->device;
2046 }
2047 return dev;
2048 }
2049
2050 static struct device *next_device(struct klist_iter *i)
2051 {
2052 struct klist_node *n = klist_next(i);
2053 struct device *dev = NULL;
2054 struct device_private *p;
2055
2056 if (n) {
2057 p = to_device_private_parent(n);
2058 dev = p->device;
2059 }
2060 return dev;
2061 }
2062
2063 /**
2064 * device_get_devnode - path of device node file
2065 * @dev: device
2066 * @mode: returned file access mode
2067 * @uid: returned file owner
2068 * @gid: returned file group
2069 * @tmp: possibly allocated string
2070 *
2071 * Return the relative path of a possible device node.
2072 * Non-default names may need to allocate a memory to compose
2073 * a name. This memory is returned in tmp and needs to be
2074 * freed by the caller.
2075 */
2076 const char *device_get_devnode(struct device *dev,
2077 umode_t *mode, kuid_t *uid, kgid_t *gid,
2078 const char **tmp)
2079 {
2080 char *s;
2081
2082 *tmp = NULL;
2083
2084 /* the device type may provide a specific name */
2085 if (dev->type && dev->type->devnode)
2086 *tmp = dev->type->devnode(dev, mode, uid, gid);
2087 if (*tmp)
2088 return *tmp;
2089
2090 /* the class may provide a specific name */
2091 if (dev->class && dev->class->devnode)
2092 *tmp = dev->class->devnode(dev, mode);
2093 if (*tmp)
2094 return *tmp;
2095
2096 /* return name without allocation, tmp == NULL */
2097 if (strchr(dev_name(dev), '!') == NULL)
2098 return dev_name(dev);
2099
2100 /* replace '!' in the name with '/' */
2101 s = kstrdup(dev_name(dev), GFP_KERNEL);
2102 if (!s)
2103 return NULL;
2104 strreplace(s, '!', '/');
2105 return *tmp = s;
2106 }
2107
2108 /**
2109 * device_for_each_child - device child iterator.
2110 * @parent: parent struct device.
2111 * @fn: function to be called for each device.
2112 * @data: data for the callback.
2113 *
2114 * Iterate over @parent's child devices, and call @fn for each,
2115 * passing it @data.
2116 *
2117 * We check the return of @fn each time. If it returns anything
2118 * other than 0, we break out and return that value.
2119 */
2120 int device_for_each_child(struct device *parent, void *data,
2121 int (*fn)(struct device *dev, void *data))
2122 {
2123 struct klist_iter i;
2124 struct device *child;
2125 int error = 0;
2126
2127 if (!parent->p)
2128 return 0;
2129
2130 klist_iter_init(&parent->p->klist_children, &i);
2131 while ((child = next_device(&i)) && !error)
2132 error = fn(child, data);
2133 klist_iter_exit(&i);
2134 return error;
2135 }
2136 EXPORT_SYMBOL_GPL(device_for_each_child);
2137
2138 /**
2139 * device_for_each_child_reverse - device child iterator in reversed order.
2140 * @parent: parent struct device.
2141 * @fn: function to be called for each device.
2142 * @data: data for the callback.
2143 *
2144 * Iterate over @parent's child devices, and call @fn for each,
2145 * passing it @data.
2146 *
2147 * We check the return of @fn each time. If it returns anything
2148 * other than 0, we break out and return that value.
2149 */
2150 int device_for_each_child_reverse(struct device *parent, void *data,
2151 int (*fn)(struct device *dev, void *data))
2152 {
2153 struct klist_iter i;
2154 struct device *child;
2155 int error = 0;
2156
2157 if (!parent->p)
2158 return 0;
2159
2160 klist_iter_init(&parent->p->klist_children, &i);
2161 while ((child = prev_device(&i)) && !error)
2162 error = fn(child, data);
2163 klist_iter_exit(&i);
2164 return error;
2165 }
2166 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2167
2168 /**
2169 * device_find_child - device iterator for locating a particular device.
2170 * @parent: parent struct device
2171 * @match: Callback function to check device
2172 * @data: Data to pass to match function
2173 *
2174 * This is similar to the device_for_each_child() function above, but it
2175 * returns a reference to a device that is 'found' for later use, as
2176 * determined by the @match callback.
2177 *
2178 * The callback should return 0 if the device doesn't match and non-zero
2179 * if it does. If the callback returns non-zero and a reference to the
2180 * current device can be obtained, this function will return to the caller
2181 * and not iterate over any more devices.
2182 *
2183 * NOTE: you will need to drop the reference with put_device() after use.
2184 */
2185 struct device *device_find_child(struct device *parent, void *data,
2186 int (*match)(struct device *dev, void *data))
2187 {
2188 struct klist_iter i;
2189 struct device *child;
2190
2191 if (!parent)
2192 return NULL;
2193
2194 klist_iter_init(&parent->p->klist_children, &i);
2195 while ((child = next_device(&i)))
2196 if (match(child, data) && get_device(child))
2197 break;
2198 klist_iter_exit(&i);
2199 return child;
2200 }
2201 EXPORT_SYMBOL_GPL(device_find_child);
2202
2203 int __init devices_init(void)
2204 {
2205 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2206 if (!devices_kset)
2207 return -ENOMEM;
2208 dev_kobj = kobject_create_and_add("dev", NULL);
2209 if (!dev_kobj)
2210 goto dev_kobj_err;
2211 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2212 if (!sysfs_dev_block_kobj)
2213 goto block_kobj_err;
2214 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2215 if (!sysfs_dev_char_kobj)
2216 goto char_kobj_err;
2217
2218 return 0;
2219
2220 char_kobj_err:
2221 kobject_put(sysfs_dev_block_kobj);
2222 block_kobj_err:
2223 kobject_put(dev_kobj);
2224 dev_kobj_err:
2225 kset_unregister(devices_kset);
2226 return -ENOMEM;
2227 }
2228
2229 static int device_check_offline(struct device *dev, void *not_used)
2230 {
2231 int ret;
2232
2233 ret = device_for_each_child(dev, NULL, device_check_offline);
2234 if (ret)
2235 return ret;
2236
2237 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2238 }
2239
2240 /**
2241 * device_offline - Prepare the device for hot-removal.
2242 * @dev: Device to be put offline.
2243 *
2244 * Execute the device bus type's .offline() callback, if present, to prepare
2245 * the device for a subsequent hot-removal. If that succeeds, the device must
2246 * not be used until either it is removed or its bus type's .online() callback
2247 * is executed.
2248 *
2249 * Call under device_hotplug_lock.
2250 */
2251 int device_offline(struct device *dev)
2252 {
2253 int ret;
2254
2255 if (dev->offline_disabled)
2256 return -EPERM;
2257
2258 ret = device_for_each_child(dev, NULL, device_check_offline);
2259 if (ret)
2260 return ret;
2261
2262 device_lock(dev);
2263 if (device_supports_offline(dev)) {
2264 if (dev->offline) {
2265 ret = 1;
2266 } else {
2267 ret = dev->bus->offline(dev);
2268 if (!ret) {
2269 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2270 dev->offline = true;
2271 }
2272 }
2273 }
2274 device_unlock(dev);
2275
2276 return ret;
2277 }
2278
2279 /**
2280 * device_online - Put the device back online after successful device_offline().
2281 * @dev: Device to be put back online.
2282 *
2283 * If device_offline() has been successfully executed for @dev, but the device
2284 * has not been removed subsequently, execute its bus type's .online() callback
2285 * to indicate that the device can be used again.
2286 *
2287 * Call under device_hotplug_lock.
2288 */
2289 int device_online(struct device *dev)
2290 {
2291 int ret = 0;
2292
2293 device_lock(dev);
2294 if (device_supports_offline(dev)) {
2295 if (dev->offline) {
2296 ret = dev->bus->online(dev);
2297 if (!ret) {
2298 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2299 dev->offline = false;
2300 }
2301 } else {
2302 ret = 1;
2303 }
2304 }
2305 device_unlock(dev);
2306
2307 return ret;
2308 }
2309
2310 struct root_device {
2311 struct device dev;
2312 struct module *owner;
2313 };
2314
2315 static inline struct root_device *to_root_device(struct device *d)
2316 {
2317 return container_of(d, struct root_device, dev);
2318 }
2319
2320 static void root_device_release(struct device *dev)
2321 {
2322 kfree(to_root_device(dev));
2323 }
2324
2325 /**
2326 * __root_device_register - allocate and register a root device
2327 * @name: root device name
2328 * @owner: owner module of the root device, usually THIS_MODULE
2329 *
2330 * This function allocates a root device and registers it
2331 * using device_register(). In order to free the returned
2332 * device, use root_device_unregister().
2333 *
2334 * Root devices are dummy devices which allow other devices
2335 * to be grouped under /sys/devices. Use this function to
2336 * allocate a root device and then use it as the parent of
2337 * any device which should appear under /sys/devices/{name}
2338 *
2339 * The /sys/devices/{name} directory will also contain a
2340 * 'module' symlink which points to the @owner directory
2341 * in sysfs.
2342 *
2343 * Returns &struct device pointer on success, or ERR_PTR() on error.
2344 *
2345 * Note: You probably want to use root_device_register().
2346 */
2347 struct device *__root_device_register(const char *name, struct module *owner)
2348 {
2349 struct root_device *root;
2350 int err = -ENOMEM;
2351
2352 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2353 if (!root)
2354 return ERR_PTR(err);
2355
2356 err = dev_set_name(&root->dev, "%s", name);
2357 if (err) {
2358 kfree(root);
2359 return ERR_PTR(err);
2360 }
2361
2362 root->dev.release = root_device_release;
2363
2364 err = device_register(&root->dev);
2365 if (err) {
2366 put_device(&root->dev);
2367 return ERR_PTR(err);
2368 }
2369
2370 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2371 if (owner) {
2372 struct module_kobject *mk = &owner->mkobj;
2373
2374 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2375 if (err) {
2376 device_unregister(&root->dev);
2377 return ERR_PTR(err);
2378 }
2379 root->owner = owner;
2380 }
2381 #endif
2382
2383 return &root->dev;
2384 }
2385 EXPORT_SYMBOL_GPL(__root_device_register);
2386
2387 /**
2388 * root_device_unregister - unregister and free a root device
2389 * @dev: device going away
2390 *
2391 * This function unregisters and cleans up a device that was created by
2392 * root_device_register().
2393 */
2394 void root_device_unregister(struct device *dev)
2395 {
2396 struct root_device *root = to_root_device(dev);
2397
2398 if (root->owner)
2399 sysfs_remove_link(&root->dev.kobj, "module");
2400
2401 device_unregister(dev);
2402 }
2403 EXPORT_SYMBOL_GPL(root_device_unregister);
2404
2405
2406 static void device_create_release(struct device *dev)
2407 {
2408 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2409 kfree(dev);
2410 }
2411
2412 static struct device *
2413 device_create_groups_vargs(struct class *class, struct device *parent,
2414 dev_t devt, void *drvdata,
2415 const struct attribute_group **groups,
2416 const char *fmt, va_list args)
2417 {
2418 struct device *dev = NULL;
2419 int retval = -ENODEV;
2420
2421 if (class == NULL || IS_ERR(class))
2422 goto error;
2423
2424 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2425 if (!dev) {
2426 retval = -ENOMEM;
2427 goto error;
2428 }
2429
2430 device_initialize(dev);
2431 dev->devt = devt;
2432 dev->class = class;
2433 dev->parent = parent;
2434 dev->groups = groups;
2435 dev->release = device_create_release;
2436 dev_set_drvdata(dev, drvdata);
2437
2438 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2439 if (retval)
2440 goto error;
2441
2442 retval = device_add(dev);
2443 if (retval)
2444 goto error;
2445
2446 return dev;
2447
2448 error:
2449 put_device(dev);
2450 return ERR_PTR(retval);
2451 }
2452
2453 /**
2454 * device_create_vargs - creates a device and registers it with sysfs
2455 * @class: pointer to the struct class that this device should be registered to
2456 * @parent: pointer to the parent struct device of this new device, if any
2457 * @devt: the dev_t for the char device to be added
2458 * @drvdata: the data to be added to the device for callbacks
2459 * @fmt: string for the device's name
2460 * @args: va_list for the device's name
2461 *
2462 * This function can be used by char device classes. A struct device
2463 * will be created in sysfs, registered to the specified class.
2464 *
2465 * A "dev" file will be created, showing the dev_t for the device, if
2466 * the dev_t is not 0,0.
2467 * If a pointer to a parent struct device is passed in, the newly created
2468 * struct device will be a child of that device in sysfs.
2469 * The pointer to the struct device will be returned from the call.
2470 * Any further sysfs files that might be required can be created using this
2471 * pointer.
2472 *
2473 * Returns &struct device pointer on success, or ERR_PTR() on error.
2474 *
2475 * Note: the struct class passed to this function must have previously
2476 * been created with a call to class_create().
2477 */
2478 struct device *device_create_vargs(struct class *class, struct device *parent,
2479 dev_t devt, void *drvdata, const char *fmt,
2480 va_list args)
2481 {
2482 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2483 fmt, args);
2484 }
2485 EXPORT_SYMBOL_GPL(device_create_vargs);
2486
2487 /**
2488 * device_create - creates a device and registers it with sysfs
2489 * @class: pointer to the struct class that this device should be registered to
2490 * @parent: pointer to the parent struct device of this new device, if any
2491 * @devt: the dev_t for the char device to be added
2492 * @drvdata: the data to be added to the device for callbacks
2493 * @fmt: string for the device's name
2494 *
2495 * This function can be used by char device classes. A struct device
2496 * will be created in sysfs, registered to the specified class.
2497 *
2498 * A "dev" file will be created, showing the dev_t for the device, if
2499 * the dev_t is not 0,0.
2500 * If a pointer to a parent struct device is passed in, the newly created
2501 * struct device will be a child of that device in sysfs.
2502 * The pointer to the struct device will be returned from the call.
2503 * Any further sysfs files that might be required can be created using this
2504 * pointer.
2505 *
2506 * Returns &struct device pointer on success, or ERR_PTR() on error.
2507 *
2508 * Note: the struct class passed to this function must have previously
2509 * been created with a call to class_create().
2510 */
2511 struct device *device_create(struct class *class, struct device *parent,
2512 dev_t devt, void *drvdata, const char *fmt, ...)
2513 {
2514 va_list vargs;
2515 struct device *dev;
2516
2517 va_start(vargs, fmt);
2518 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2519 va_end(vargs);
2520 return dev;
2521 }
2522 EXPORT_SYMBOL_GPL(device_create);
2523
2524 /**
2525 * device_create_with_groups - creates a device and registers it with sysfs
2526 * @class: pointer to the struct class that this device should be registered to
2527 * @parent: pointer to the parent struct device of this new device, if any
2528 * @devt: the dev_t for the char device to be added
2529 * @drvdata: the data to be added to the device for callbacks
2530 * @groups: NULL-terminated list of attribute groups to be created
2531 * @fmt: string for the device's name
2532 *
2533 * This function can be used by char device classes. A struct device
2534 * will be created in sysfs, registered to the specified class.
2535 * Additional attributes specified in the groups parameter will also
2536 * be created automatically.
2537 *
2538 * A "dev" file will be created, showing the dev_t for the device, if
2539 * the dev_t is not 0,0.
2540 * If a pointer to a parent struct device is passed in, the newly created
2541 * struct device will be a child of that device in sysfs.
2542 * The pointer to the struct device will be returned from the call.
2543 * Any further sysfs files that might be required can be created using this
2544 * pointer.
2545 *
2546 * Returns &struct device pointer on success, or ERR_PTR() on error.
2547 *
2548 * Note: the struct class passed to this function must have previously
2549 * been created with a call to class_create().
2550 */
2551 struct device *device_create_with_groups(struct class *class,
2552 struct device *parent, dev_t devt,
2553 void *drvdata,
2554 const struct attribute_group **groups,
2555 const char *fmt, ...)
2556 {
2557 va_list vargs;
2558 struct device *dev;
2559
2560 va_start(vargs, fmt);
2561 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2562 fmt, vargs);
2563 va_end(vargs);
2564 return dev;
2565 }
2566 EXPORT_SYMBOL_GPL(device_create_with_groups);
2567
2568 static int __match_devt(struct device *dev, const void *data)
2569 {
2570 const dev_t *devt = data;
2571
2572 return dev->devt == *devt;
2573 }
2574
2575 /**
2576 * device_destroy - removes a device that was created with device_create()
2577 * @class: pointer to the struct class that this device was registered with
2578 * @devt: the dev_t of the device that was previously registered
2579 *
2580 * This call unregisters and cleans up a device that was created with a
2581 * call to device_create().
2582 */
2583 void device_destroy(struct class *class, dev_t devt)
2584 {
2585 struct device *dev;
2586
2587 dev = class_find_device(class, NULL, &devt, __match_devt);
2588 if (dev) {
2589 put_device(dev);
2590 device_unregister(dev);
2591 }
2592 }
2593 EXPORT_SYMBOL_GPL(device_destroy);
2594
2595 /**
2596 * device_rename - renames a device
2597 * @dev: the pointer to the struct device to be renamed
2598 * @new_name: the new name of the device
2599 *
2600 * It is the responsibility of the caller to provide mutual
2601 * exclusion between two different calls of device_rename
2602 * on the same device to ensure that new_name is valid and
2603 * won't conflict with other devices.
2604 *
2605 * Note: Don't call this function. Currently, the networking layer calls this
2606 * function, but that will change. The following text from Kay Sievers offers
2607 * some insight:
2608 *
2609 * Renaming devices is racy at many levels, symlinks and other stuff are not
2610 * replaced atomically, and you get a "move" uevent, but it's not easy to
2611 * connect the event to the old and new device. Device nodes are not renamed at
2612 * all, there isn't even support for that in the kernel now.
2613 *
2614 * In the meantime, during renaming, your target name might be taken by another
2615 * driver, creating conflicts. Or the old name is taken directly after you
2616 * renamed it -- then you get events for the same DEVPATH, before you even see
2617 * the "move" event. It's just a mess, and nothing new should ever rely on
2618 * kernel device renaming. Besides that, it's not even implemented now for
2619 * other things than (driver-core wise very simple) network devices.
2620 *
2621 * We are currently about to change network renaming in udev to completely
2622 * disallow renaming of devices in the same namespace as the kernel uses,
2623 * because we can't solve the problems properly, that arise with swapping names
2624 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2625 * be allowed to some other name than eth[0-9]*, for the aforementioned
2626 * reasons.
2627 *
2628 * Make up a "real" name in the driver before you register anything, or add
2629 * some other attributes for userspace to find the device, or use udev to add
2630 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2631 * don't even want to get into that and try to implement the missing pieces in
2632 * the core. We really have other pieces to fix in the driver core mess. :)
2633 */
2634 int device_rename(struct device *dev, const char *new_name)
2635 {
2636 struct kobject *kobj = &dev->kobj;
2637 char *old_device_name = NULL;
2638 int error;
2639
2640 dev = get_device(dev);
2641 if (!dev)
2642 return -EINVAL;
2643
2644 dev_dbg(dev, "renaming to %s\n", new_name);
2645
2646 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2647 if (!old_device_name) {
2648 error = -ENOMEM;
2649 goto out;
2650 }
2651
2652 if (dev->class) {
2653 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2654 kobj, old_device_name,
2655 new_name, kobject_namespace(kobj));
2656 if (error)
2657 goto out;
2658 }
2659
2660 error = kobject_rename(kobj, new_name);
2661 if (error)
2662 goto out;
2663
2664 out:
2665 put_device(dev);
2666
2667 kfree(old_device_name);
2668
2669 return error;
2670 }
2671 EXPORT_SYMBOL_GPL(device_rename);
2672
2673 static int device_move_class_links(struct device *dev,
2674 struct device *old_parent,
2675 struct device *new_parent)
2676 {
2677 int error = 0;
2678
2679 if (old_parent)
2680 sysfs_remove_link(&dev->kobj, "device");
2681 if (new_parent)
2682 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2683 "device");
2684 return error;
2685 }
2686
2687 /**
2688 * device_move - moves a device to a new parent
2689 * @dev: the pointer to the struct device to be moved
2690 * @new_parent: the new parent of the device (can by NULL)
2691 * @dpm_order: how to reorder the dpm_list
2692 */
2693 int device_move(struct device *dev, struct device *new_parent,
2694 enum dpm_order dpm_order)
2695 {
2696 int error;
2697 struct device *old_parent;
2698 struct kobject *new_parent_kobj;
2699
2700 dev = get_device(dev);
2701 if (!dev)
2702 return -EINVAL;
2703
2704 device_pm_lock();
2705 new_parent = get_device(new_parent);
2706 new_parent_kobj = get_device_parent(dev, new_parent);
2707
2708 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2709 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2710 error = kobject_move(&dev->kobj, new_parent_kobj);
2711 if (error) {
2712 cleanup_glue_dir(dev, new_parent_kobj);
2713 put_device(new_parent);
2714 goto out;
2715 }
2716 old_parent = dev->parent;
2717 dev->parent = new_parent;
2718 if (old_parent)
2719 klist_remove(&dev->p->knode_parent);
2720 if (new_parent) {
2721 klist_add_tail(&dev->p->knode_parent,
2722 &new_parent->p->klist_children);
2723 set_dev_node(dev, dev_to_node(new_parent));
2724 }
2725
2726 if (dev->class) {
2727 error = device_move_class_links(dev, old_parent, new_parent);
2728 if (error) {
2729 /* We ignore errors on cleanup since we're hosed anyway... */
2730 device_move_class_links(dev, new_parent, old_parent);
2731 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2732 if (new_parent)
2733 klist_remove(&dev->p->knode_parent);
2734 dev->parent = old_parent;
2735 if (old_parent) {
2736 klist_add_tail(&dev->p->knode_parent,
2737 &old_parent->p->klist_children);
2738 set_dev_node(dev, dev_to_node(old_parent));
2739 }
2740 }
2741 cleanup_glue_dir(dev, new_parent_kobj);
2742 put_device(new_parent);
2743 goto out;
2744 }
2745 }
2746 switch (dpm_order) {
2747 case DPM_ORDER_NONE:
2748 break;
2749 case DPM_ORDER_DEV_AFTER_PARENT:
2750 device_pm_move_after(dev, new_parent);
2751 devices_kset_move_after(dev, new_parent);
2752 break;
2753 case DPM_ORDER_PARENT_BEFORE_DEV:
2754 device_pm_move_before(new_parent, dev);
2755 devices_kset_move_before(new_parent, dev);
2756 break;
2757 case DPM_ORDER_DEV_LAST:
2758 device_pm_move_last(dev);
2759 devices_kset_move_last(dev);
2760 break;
2761 }
2762
2763 put_device(old_parent);
2764 out:
2765 device_pm_unlock();
2766 put_device(dev);
2767 return error;
2768 }
2769 EXPORT_SYMBOL_GPL(device_move);
2770
2771 /**
2772 * device_shutdown - call ->shutdown() on each device to shutdown.
2773 */
2774 void device_shutdown(void)
2775 {
2776 struct device *dev, *parent;
2777
2778 spin_lock(&devices_kset->list_lock);
2779 /*
2780 * Walk the devices list backward, shutting down each in turn.
2781 * Beware that device unplug events may also start pulling
2782 * devices offline, even as the system is shutting down.
2783 */
2784 while (!list_empty(&devices_kset->list)) {
2785 dev = list_entry(devices_kset->list.prev, struct device,
2786 kobj.entry);
2787
2788 /*
2789 * hold reference count of device's parent to
2790 * prevent it from being freed because parent's
2791 * lock is to be held
2792 */
2793 parent = get_device(dev->parent);
2794 get_device(dev);
2795 /*
2796 * Make sure the device is off the kset list, in the
2797 * event that dev->*->shutdown() doesn't remove it.
2798 */
2799 list_del_init(&dev->kobj.entry);
2800 spin_unlock(&devices_kset->list_lock);
2801
2802 /* hold lock to avoid race with probe/release */
2803 if (parent)
2804 device_lock(parent);
2805 device_lock(dev);
2806
2807 /* Don't allow any more runtime suspends */
2808 pm_runtime_get_noresume(dev);
2809 pm_runtime_barrier(dev);
2810
2811 if (dev->class && dev->class->shutdown_pre) {
2812 if (initcall_debug)
2813 dev_info(dev, "shutdown_pre\n");
2814 dev->class->shutdown_pre(dev);
2815 }
2816 if (dev->bus && dev->bus->shutdown) {
2817 if (initcall_debug)
2818 dev_info(dev, "shutdown\n");
2819 dev->bus->shutdown(dev);
2820 } else if (dev->driver && dev->driver->shutdown) {
2821 if (initcall_debug)
2822 dev_info(dev, "shutdown\n");
2823 dev->driver->shutdown(dev);
2824 }
2825
2826 device_unlock(dev);
2827 if (parent)
2828 device_unlock(parent);
2829
2830 put_device(dev);
2831 put_device(parent);
2832
2833 spin_lock(&devices_kset->list_lock);
2834 }
2835 spin_unlock(&devices_kset->list_lock);
2836 }
2837
2838 /*
2839 * Device logging functions
2840 */
2841
2842 #ifdef CONFIG_PRINTK
2843 static int
2844 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2845 {
2846 const char *subsys;
2847 size_t pos = 0;
2848
2849 if (dev->class)
2850 subsys = dev->class->name;
2851 else if (dev->bus)
2852 subsys = dev->bus->name;
2853 else
2854 return 0;
2855
2856 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2857 if (pos >= hdrlen)
2858 goto overflow;
2859
2860 /*
2861 * Add device identifier DEVICE=:
2862 * b12:8 block dev_t
2863 * c127:3 char dev_t
2864 * n8 netdev ifindex
2865 * +sound:card0 subsystem:devname
2866 */
2867 if (MAJOR(dev->devt)) {
2868 char c;
2869
2870 if (strcmp(subsys, "block") == 0)
2871 c = 'b';
2872 else
2873 c = 'c';
2874 pos++;
2875 pos += snprintf(hdr + pos, hdrlen - pos,
2876 "DEVICE=%c%u:%u",
2877 c, MAJOR(dev->devt), MINOR(dev->devt));
2878 } else if (strcmp(subsys, "net") == 0) {
2879 struct net_device *net = to_net_dev(dev);
2880
2881 pos++;
2882 pos += snprintf(hdr + pos, hdrlen - pos,
2883 "DEVICE=n%u", net->ifindex);
2884 } else {
2885 pos++;
2886 pos += snprintf(hdr + pos, hdrlen - pos,
2887 "DEVICE=+%s:%s", subsys, dev_name(dev));
2888 }
2889
2890 if (pos >= hdrlen)
2891 goto overflow;
2892
2893 return pos;
2894
2895 overflow:
2896 dev_WARN(dev, "device/subsystem name too long");
2897 return 0;
2898 }
2899
2900 int dev_vprintk_emit(int level, const struct device *dev,
2901 const char *fmt, va_list args)
2902 {
2903 char hdr[128];
2904 size_t hdrlen;
2905
2906 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2907
2908 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2909 }
2910 EXPORT_SYMBOL(dev_vprintk_emit);
2911
2912 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2913 {
2914 va_list args;
2915 int r;
2916
2917 va_start(args, fmt);
2918
2919 r = dev_vprintk_emit(level, dev, fmt, args);
2920
2921 va_end(args);
2922
2923 return r;
2924 }
2925 EXPORT_SYMBOL(dev_printk_emit);
2926
2927 static void __dev_printk(const char *level, const struct device *dev,
2928 struct va_format *vaf)
2929 {
2930 if (dev)
2931 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2932 dev_driver_string(dev), dev_name(dev), vaf);
2933 else
2934 printk("%s(NULL device *): %pV", level, vaf);
2935 }
2936
2937 void dev_printk(const char *level, const struct device *dev,
2938 const char *fmt, ...)
2939 {
2940 struct va_format vaf;
2941 va_list args;
2942
2943 va_start(args, fmt);
2944
2945 vaf.fmt = fmt;
2946 vaf.va = &args;
2947
2948 __dev_printk(level, dev, &vaf);
2949
2950 va_end(args);
2951 }
2952 EXPORT_SYMBOL(dev_printk);
2953
2954 #define define_dev_printk_level(func, kern_level) \
2955 void func(const struct device *dev, const char *fmt, ...) \
2956 { \
2957 struct va_format vaf; \
2958 va_list args; \
2959 \
2960 va_start(args, fmt); \
2961 \
2962 vaf.fmt = fmt; \
2963 vaf.va = &args; \
2964 \
2965 __dev_printk(kern_level, dev, &vaf); \
2966 \
2967 va_end(args); \
2968 } \
2969 EXPORT_SYMBOL(func);
2970
2971 define_dev_printk_level(dev_emerg, KERN_EMERG);
2972 define_dev_printk_level(dev_alert, KERN_ALERT);
2973 define_dev_printk_level(dev_crit, KERN_CRIT);
2974 define_dev_printk_level(dev_err, KERN_ERR);
2975 define_dev_printk_level(dev_warn, KERN_WARNING);
2976 define_dev_printk_level(dev_notice, KERN_NOTICE);
2977 define_dev_printk_level(_dev_info, KERN_INFO);
2978
2979 #endif
2980
2981 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2982 {
2983 return fwnode && !IS_ERR(fwnode->secondary);
2984 }
2985
2986 /**
2987 * set_primary_fwnode - Change the primary firmware node of a given device.
2988 * @dev: Device to handle.
2989 * @fwnode: New primary firmware node of the device.
2990 *
2991 * Set the device's firmware node pointer to @fwnode, but if a secondary
2992 * firmware node of the device is present, preserve it.
2993 */
2994 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2995 {
2996 if (fwnode) {
2997 struct fwnode_handle *fn = dev->fwnode;
2998
2999 if (fwnode_is_primary(fn))
3000 fn = fn->secondary;
3001
3002 if (fn) {
3003 WARN_ON(fwnode->secondary);
3004 fwnode->secondary = fn;
3005 }
3006 dev->fwnode = fwnode;
3007 } else {
3008 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3009 dev->fwnode->secondary : NULL;
3010 }
3011 }
3012 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3013
3014 /**
3015 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3016 * @dev: Device to handle.
3017 * @fwnode: New secondary firmware node of the device.
3018 *
3019 * If a primary firmware node of the device is present, set its secondary
3020 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3021 * @fwnode.
3022 */
3023 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3024 {
3025 if (fwnode)
3026 fwnode->secondary = ERR_PTR(-ENODEV);
3027
3028 if (fwnode_is_primary(dev->fwnode))
3029 dev->fwnode->secondary = fwnode;
3030 else
3031 dev->fwnode = fwnode;
3032 }
3033
3034 /**
3035 * device_set_of_node_from_dev - reuse device-tree node of another device
3036 * @dev: device whose device-tree node is being set
3037 * @dev2: device whose device-tree node is being reused
3038 *
3039 * Takes another reference to the new device-tree node after first dropping
3040 * any reference held to the old node.
3041 */
3042 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3043 {
3044 of_node_put(dev->of_node);
3045 dev->of_node = of_node_get(dev2->of_node);
3046 dev->of_node_reused = true;
3047 }
3048 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);