]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/core.c
drivers/base: Introduce kill_device()
[mirror_ubuntu-bionic-kernel.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sysfs.h>
31
32 #include "base.h"
33 #include "power/power.h"
34
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47
48 /* Device links support. */
49
50 #ifdef CONFIG_SRCU
51 static DEFINE_MUTEX(device_links_lock);
52 DEFINE_STATIC_SRCU(device_links_srcu);
53
54 static inline void device_links_write_lock(void)
55 {
56 mutex_lock(&device_links_lock);
57 }
58
59 static inline void device_links_write_unlock(void)
60 {
61 mutex_unlock(&device_links_lock);
62 }
63
64 int device_links_read_lock(void)
65 {
66 return srcu_read_lock(&device_links_srcu);
67 }
68
69 void device_links_read_unlock(int idx)
70 {
71 srcu_read_unlock(&device_links_srcu, idx);
72 }
73 #else /* !CONFIG_SRCU */
74 static DECLARE_RWSEM(device_links_lock);
75
76 static inline void device_links_write_lock(void)
77 {
78 down_write(&device_links_lock);
79 }
80
81 static inline void device_links_write_unlock(void)
82 {
83 up_write(&device_links_lock);
84 }
85
86 int device_links_read_lock(void)
87 {
88 down_read(&device_links_lock);
89 return 0;
90 }
91
92 void device_links_read_unlock(int not_used)
93 {
94 up_read(&device_links_lock);
95 }
96 #endif /* !CONFIG_SRCU */
97
98 /**
99 * device_is_dependent - Check if one device depends on another one
100 * @dev: Device to check dependencies for.
101 * @target: Device to check against.
102 *
103 * Check if @target depends on @dev or any device dependent on it (its child or
104 * its consumer etc). Return 1 if that is the case or 0 otherwise.
105 */
106 static int device_is_dependent(struct device *dev, void *target)
107 {
108 struct device_link *link;
109 int ret;
110
111 if (WARN_ON(dev == target))
112 return 1;
113
114 ret = device_for_each_child(dev, target, device_is_dependent);
115 if (ret)
116 return ret;
117
118 list_for_each_entry(link, &dev->links.consumers, s_node) {
119 if (WARN_ON(link->consumer == target))
120 return 1;
121
122 ret = device_is_dependent(link->consumer, target);
123 if (ret)
124 break;
125 }
126 return ret;
127 }
128
129 static int device_reorder_to_tail(struct device *dev, void *not_used)
130 {
131 struct device_link *link;
132
133 /*
134 * Devices that have not been registered yet will be put to the ends
135 * of the lists during the registration, so skip them here.
136 */
137 if (device_is_registered(dev))
138 devices_kset_move_last(dev);
139
140 if (device_pm_initialized(dev))
141 device_pm_move_last(dev);
142
143 device_for_each_child(dev, NULL, device_reorder_to_tail);
144 list_for_each_entry(link, &dev->links.consumers, s_node)
145 device_reorder_to_tail(link->consumer, NULL);
146
147 return 0;
148 }
149
150 /**
151 * device_link_add - Create a link between two devices.
152 * @consumer: Consumer end of the link.
153 * @supplier: Supplier end of the link.
154 * @flags: Link flags.
155 *
156 * The caller is responsible for the proper synchronization of the link creation
157 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
158 * runtime PM framework to take the link into account. Second, if the
159 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
160 * be forced into the active metastate and reference-counted upon the creation
161 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
162 * ignored.
163 *
164 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
165 * when the consumer device driver unbinds from it. The combination of both
166 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
167 * to be returned.
168 *
169 * A side effect of the link creation is re-ordering of dpm_list and the
170 * devices_kset list by moving the consumer device and all devices depending
171 * on it to the ends of these lists (that does not happen to devices that have
172 * not been registered when this function is called).
173 *
174 * The supplier device is required to be registered when this function is called
175 * and NULL will be returned if that is not the case. The consumer device need
176 * not be registered, however.
177 */
178 struct device_link *device_link_add(struct device *consumer,
179 struct device *supplier, u32 flags)
180 {
181 struct device_link *link;
182
183 if (!consumer || !supplier ||
184 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
185 return NULL;
186
187 device_links_write_lock();
188 device_pm_lock();
189
190 /*
191 * If the supplier has not been fully registered yet or there is a
192 * reverse dependency between the consumer and the supplier already in
193 * the graph, return NULL.
194 */
195 if (!device_pm_initialized(supplier)
196 || device_is_dependent(consumer, supplier)) {
197 link = NULL;
198 goto out;
199 }
200
201 list_for_each_entry(link, &supplier->links.consumers, s_node)
202 if (link->consumer == consumer)
203 goto out;
204
205 link = kzalloc(sizeof(*link), GFP_KERNEL);
206 if (!link)
207 goto out;
208
209 if (flags & DL_FLAG_PM_RUNTIME) {
210 if (flags & DL_FLAG_RPM_ACTIVE) {
211 if (pm_runtime_get_sync(supplier) < 0) {
212 pm_runtime_put_noidle(supplier);
213 kfree(link);
214 link = NULL;
215 goto out;
216 }
217 link->rpm_active = true;
218 }
219 pm_runtime_new_link(consumer);
220 /*
221 * If the link is being added by the consumer driver at probe
222 * time, balance the decrementation of the supplier's runtime PM
223 * usage counter after consumer probe in driver_probe_device().
224 */
225 if (consumer->links.status == DL_DEV_PROBING)
226 pm_runtime_get_noresume(supplier);
227 }
228 get_device(supplier);
229 link->supplier = supplier;
230 INIT_LIST_HEAD(&link->s_node);
231 get_device(consumer);
232 link->consumer = consumer;
233 INIT_LIST_HEAD(&link->c_node);
234 link->flags = flags;
235
236 /* Determine the initial link state. */
237 if (flags & DL_FLAG_STATELESS) {
238 link->status = DL_STATE_NONE;
239 } else {
240 switch (supplier->links.status) {
241 case DL_DEV_DRIVER_BOUND:
242 switch (consumer->links.status) {
243 case DL_DEV_PROBING:
244 /*
245 * Some callers expect the link creation during
246 * consumer driver probe to resume the supplier
247 * even without DL_FLAG_RPM_ACTIVE.
248 */
249 if (flags & DL_FLAG_PM_RUNTIME)
250 pm_runtime_resume(supplier);
251
252 link->status = DL_STATE_CONSUMER_PROBE;
253 break;
254 case DL_DEV_DRIVER_BOUND:
255 link->status = DL_STATE_ACTIVE;
256 break;
257 default:
258 link->status = DL_STATE_AVAILABLE;
259 break;
260 }
261 break;
262 case DL_DEV_UNBINDING:
263 link->status = DL_STATE_SUPPLIER_UNBIND;
264 break;
265 default:
266 link->status = DL_STATE_DORMANT;
267 break;
268 }
269 }
270
271 /*
272 * Move the consumer and all of the devices depending on it to the end
273 * of dpm_list and the devices_kset list.
274 *
275 * It is necessary to hold dpm_list locked throughout all that or else
276 * we may end up suspending with a wrong ordering of it.
277 */
278 device_reorder_to_tail(consumer, NULL);
279
280 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
281 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
282
283 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
284
285 out:
286 device_pm_unlock();
287 device_links_write_unlock();
288 return link;
289 }
290 EXPORT_SYMBOL_GPL(device_link_add);
291
292 static void device_link_free(struct device_link *link)
293 {
294 put_device(link->consumer);
295 put_device(link->supplier);
296 kfree(link);
297 }
298
299 #ifdef CONFIG_SRCU
300 static void __device_link_free_srcu(struct rcu_head *rhead)
301 {
302 device_link_free(container_of(rhead, struct device_link, rcu_head));
303 }
304
305 static void __device_link_del(struct device_link *link)
306 {
307 dev_info(link->consumer, "Dropping the link to %s\n",
308 dev_name(link->supplier));
309
310 if (link->flags & DL_FLAG_PM_RUNTIME)
311 pm_runtime_drop_link(link->consumer);
312
313 list_del_rcu(&link->s_node);
314 list_del_rcu(&link->c_node);
315 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
316 }
317 #else /* !CONFIG_SRCU */
318 static void __device_link_del(struct device_link *link)
319 {
320 dev_info(link->consumer, "Dropping the link to %s\n",
321 dev_name(link->supplier));
322
323 if (link->flags & DL_FLAG_PM_RUNTIME)
324 pm_runtime_drop_link(link->consumer);
325
326 list_del(&link->s_node);
327 list_del(&link->c_node);
328 device_link_free(link);
329 }
330 #endif /* !CONFIG_SRCU */
331
332 /**
333 * device_link_del - Delete a link between two devices.
334 * @link: Device link to delete.
335 *
336 * The caller must ensure proper synchronization of this function with runtime
337 * PM.
338 */
339 void device_link_del(struct device_link *link)
340 {
341 device_links_write_lock();
342 device_pm_lock();
343 __device_link_del(link);
344 device_pm_unlock();
345 device_links_write_unlock();
346 }
347 EXPORT_SYMBOL_GPL(device_link_del);
348
349 static void device_links_missing_supplier(struct device *dev)
350 {
351 struct device_link *link;
352
353 list_for_each_entry(link, &dev->links.suppliers, c_node)
354 if (link->status == DL_STATE_CONSUMER_PROBE)
355 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
356 }
357
358 /**
359 * device_links_check_suppliers - Check presence of supplier drivers.
360 * @dev: Consumer device.
361 *
362 * Check links from this device to any suppliers. Walk the list of the device's
363 * links to suppliers and see if all of them are available. If not, simply
364 * return -EPROBE_DEFER.
365 *
366 * We need to guarantee that the supplier will not go away after the check has
367 * been positive here. It only can go away in __device_release_driver() and
368 * that function checks the device's links to consumers. This means we need to
369 * mark the link as "consumer probe in progress" to make the supplier removal
370 * wait for us to complete (or bad things may happen).
371 *
372 * Links with the DL_FLAG_STATELESS flag set are ignored.
373 */
374 int device_links_check_suppliers(struct device *dev)
375 {
376 struct device_link *link;
377 int ret = 0;
378
379 device_links_write_lock();
380
381 list_for_each_entry(link, &dev->links.suppliers, c_node) {
382 if (link->flags & DL_FLAG_STATELESS)
383 continue;
384
385 if (link->status != DL_STATE_AVAILABLE) {
386 device_links_missing_supplier(dev);
387 ret = -EPROBE_DEFER;
388 break;
389 }
390 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
391 }
392 dev->links.status = DL_DEV_PROBING;
393
394 device_links_write_unlock();
395 return ret;
396 }
397
398 /**
399 * device_links_driver_bound - Update device links after probing its driver.
400 * @dev: Device to update the links for.
401 *
402 * The probe has been successful, so update links from this device to any
403 * consumers by changing their status to "available".
404 *
405 * Also change the status of @dev's links to suppliers to "active".
406 *
407 * Links with the DL_FLAG_STATELESS flag set are ignored.
408 */
409 void device_links_driver_bound(struct device *dev)
410 {
411 struct device_link *link;
412
413 device_links_write_lock();
414
415 list_for_each_entry(link, &dev->links.consumers, s_node) {
416 if (link->flags & DL_FLAG_STATELESS)
417 continue;
418
419 WARN_ON(link->status != DL_STATE_DORMANT);
420 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
421 }
422
423 list_for_each_entry(link, &dev->links.suppliers, c_node) {
424 if (link->flags & DL_FLAG_STATELESS)
425 continue;
426
427 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
428 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
429 }
430
431 dev->links.status = DL_DEV_DRIVER_BOUND;
432
433 device_links_write_unlock();
434 }
435
436 /**
437 * __device_links_no_driver - Update links of a device without a driver.
438 * @dev: Device without a drvier.
439 *
440 * Delete all non-persistent links from this device to any suppliers.
441 *
442 * Persistent links stay around, but their status is changed to "available",
443 * unless they already are in the "supplier unbind in progress" state in which
444 * case they need not be updated.
445 *
446 * Links with the DL_FLAG_STATELESS flag set are ignored.
447 */
448 static void __device_links_no_driver(struct device *dev)
449 {
450 struct device_link *link, *ln;
451
452 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
453 if (link->flags & DL_FLAG_STATELESS)
454 continue;
455
456 if (link->flags & DL_FLAG_AUTOREMOVE)
457 __device_link_del(link);
458 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
459 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
460 }
461
462 dev->links.status = DL_DEV_NO_DRIVER;
463 }
464
465 void device_links_no_driver(struct device *dev)
466 {
467 device_links_write_lock();
468 __device_links_no_driver(dev);
469 device_links_write_unlock();
470 }
471
472 /**
473 * device_links_driver_cleanup - Update links after driver removal.
474 * @dev: Device whose driver has just gone away.
475 *
476 * Update links to consumers for @dev by changing their status to "dormant" and
477 * invoke %__device_links_no_driver() to update links to suppliers for it as
478 * appropriate.
479 *
480 * Links with the DL_FLAG_STATELESS flag set are ignored.
481 */
482 void device_links_driver_cleanup(struct device *dev)
483 {
484 struct device_link *link;
485
486 device_links_write_lock();
487
488 list_for_each_entry(link, &dev->links.consumers, s_node) {
489 if (link->flags & DL_FLAG_STATELESS)
490 continue;
491
492 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
493 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
494 WRITE_ONCE(link->status, DL_STATE_DORMANT);
495 }
496
497 __device_links_no_driver(dev);
498
499 device_links_write_unlock();
500 }
501
502 /**
503 * device_links_busy - Check if there are any busy links to consumers.
504 * @dev: Device to check.
505 *
506 * Check each consumer of the device and return 'true' if its link's status
507 * is one of "consumer probe" or "active" (meaning that the given consumer is
508 * probing right now or its driver is present). Otherwise, change the link
509 * state to "supplier unbind" to prevent the consumer from being probed
510 * successfully going forward.
511 *
512 * Return 'false' if there are no probing or active consumers.
513 *
514 * Links with the DL_FLAG_STATELESS flag set are ignored.
515 */
516 bool device_links_busy(struct device *dev)
517 {
518 struct device_link *link;
519 bool ret = false;
520
521 device_links_write_lock();
522
523 list_for_each_entry(link, &dev->links.consumers, s_node) {
524 if (link->flags & DL_FLAG_STATELESS)
525 continue;
526
527 if (link->status == DL_STATE_CONSUMER_PROBE
528 || link->status == DL_STATE_ACTIVE) {
529 ret = true;
530 break;
531 }
532 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
533 }
534
535 dev->links.status = DL_DEV_UNBINDING;
536
537 device_links_write_unlock();
538 return ret;
539 }
540
541 /**
542 * device_links_unbind_consumers - Force unbind consumers of the given device.
543 * @dev: Device to unbind the consumers of.
544 *
545 * Walk the list of links to consumers for @dev and if any of them is in the
546 * "consumer probe" state, wait for all device probes in progress to complete
547 * and start over.
548 *
549 * If that's not the case, change the status of the link to "supplier unbind"
550 * and check if the link was in the "active" state. If so, force the consumer
551 * driver to unbind and start over (the consumer will not re-probe as we have
552 * changed the state of the link already).
553 *
554 * Links with the DL_FLAG_STATELESS flag set are ignored.
555 */
556 void device_links_unbind_consumers(struct device *dev)
557 {
558 struct device_link *link;
559
560 start:
561 device_links_write_lock();
562
563 list_for_each_entry(link, &dev->links.consumers, s_node) {
564 enum device_link_state status;
565
566 if (link->flags & DL_FLAG_STATELESS)
567 continue;
568
569 status = link->status;
570 if (status == DL_STATE_CONSUMER_PROBE) {
571 device_links_write_unlock();
572
573 wait_for_device_probe();
574 goto start;
575 }
576 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
577 if (status == DL_STATE_ACTIVE) {
578 struct device *consumer = link->consumer;
579
580 get_device(consumer);
581
582 device_links_write_unlock();
583
584 device_release_driver_internal(consumer, NULL,
585 consumer->parent);
586 put_device(consumer);
587 goto start;
588 }
589 }
590
591 device_links_write_unlock();
592 }
593
594 /**
595 * device_links_purge - Delete existing links to other devices.
596 * @dev: Target device.
597 */
598 static void device_links_purge(struct device *dev)
599 {
600 struct device_link *link, *ln;
601
602 /*
603 * Delete all of the remaining links from this device to any other
604 * devices (either consumers or suppliers).
605 */
606 device_links_write_lock();
607
608 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
609 WARN_ON(link->status == DL_STATE_ACTIVE);
610 __device_link_del(link);
611 }
612
613 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
614 WARN_ON(link->status != DL_STATE_DORMANT &&
615 link->status != DL_STATE_NONE);
616 __device_link_del(link);
617 }
618
619 device_links_write_unlock();
620 }
621
622 /* Device links support end. */
623
624 int (*platform_notify)(struct device *dev) = NULL;
625 int (*platform_notify_remove)(struct device *dev) = NULL;
626 static struct kobject *dev_kobj;
627 struct kobject *sysfs_dev_char_kobj;
628 struct kobject *sysfs_dev_block_kobj;
629
630 static DEFINE_MUTEX(device_hotplug_lock);
631
632 void lock_device_hotplug(void)
633 {
634 mutex_lock(&device_hotplug_lock);
635 }
636
637 void unlock_device_hotplug(void)
638 {
639 mutex_unlock(&device_hotplug_lock);
640 }
641
642 int lock_device_hotplug_sysfs(void)
643 {
644 if (mutex_trylock(&device_hotplug_lock))
645 return 0;
646
647 /* Avoid busy looping (5 ms of sleep should do). */
648 msleep(5);
649 return restart_syscall();
650 }
651
652 #ifdef CONFIG_BLOCK
653 static inline int device_is_not_partition(struct device *dev)
654 {
655 return !(dev->type == &part_type);
656 }
657 #else
658 static inline int device_is_not_partition(struct device *dev)
659 {
660 return 1;
661 }
662 #endif
663
664 /**
665 * dev_driver_string - Return a device's driver name, if at all possible
666 * @dev: struct device to get the name of
667 *
668 * Will return the device's driver's name if it is bound to a device. If
669 * the device is not bound to a driver, it will return the name of the bus
670 * it is attached to. If it is not attached to a bus either, an empty
671 * string will be returned.
672 */
673 const char *dev_driver_string(const struct device *dev)
674 {
675 struct device_driver *drv;
676
677 /* dev->driver can change to NULL underneath us because of unbinding,
678 * so be careful about accessing it. dev->bus and dev->class should
679 * never change once they are set, so they don't need special care.
680 */
681 drv = READ_ONCE(dev->driver);
682 return drv ? drv->name :
683 (dev->bus ? dev->bus->name :
684 (dev->class ? dev->class->name : ""));
685 }
686 EXPORT_SYMBOL(dev_driver_string);
687
688 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
689
690 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
691 char *buf)
692 {
693 struct device_attribute *dev_attr = to_dev_attr(attr);
694 struct device *dev = kobj_to_dev(kobj);
695 ssize_t ret = -EIO;
696
697 if (dev_attr->show)
698 ret = dev_attr->show(dev, dev_attr, buf);
699 if (ret >= (ssize_t)PAGE_SIZE) {
700 print_symbol("dev_attr_show: %s returned bad count\n",
701 (unsigned long)dev_attr->show);
702 }
703 return ret;
704 }
705
706 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
707 const char *buf, size_t count)
708 {
709 struct device_attribute *dev_attr = to_dev_attr(attr);
710 struct device *dev = kobj_to_dev(kobj);
711 ssize_t ret = -EIO;
712
713 if (dev_attr->store)
714 ret = dev_attr->store(dev, dev_attr, buf, count);
715 return ret;
716 }
717
718 static const struct sysfs_ops dev_sysfs_ops = {
719 .show = dev_attr_show,
720 .store = dev_attr_store,
721 };
722
723 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
724
725 ssize_t device_store_ulong(struct device *dev,
726 struct device_attribute *attr,
727 const char *buf, size_t size)
728 {
729 struct dev_ext_attribute *ea = to_ext_attr(attr);
730 char *end;
731 unsigned long new = simple_strtoul(buf, &end, 0);
732 if (end == buf)
733 return -EINVAL;
734 *(unsigned long *)(ea->var) = new;
735 /* Always return full write size even if we didn't consume all */
736 return size;
737 }
738 EXPORT_SYMBOL_GPL(device_store_ulong);
739
740 ssize_t device_show_ulong(struct device *dev,
741 struct device_attribute *attr,
742 char *buf)
743 {
744 struct dev_ext_attribute *ea = to_ext_attr(attr);
745 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
746 }
747 EXPORT_SYMBOL_GPL(device_show_ulong);
748
749 ssize_t device_store_int(struct device *dev,
750 struct device_attribute *attr,
751 const char *buf, size_t size)
752 {
753 struct dev_ext_attribute *ea = to_ext_attr(attr);
754 char *end;
755 long new = simple_strtol(buf, &end, 0);
756 if (end == buf || new > INT_MAX || new < INT_MIN)
757 return -EINVAL;
758 *(int *)(ea->var) = new;
759 /* Always return full write size even if we didn't consume all */
760 return size;
761 }
762 EXPORT_SYMBOL_GPL(device_store_int);
763
764 ssize_t device_show_int(struct device *dev,
765 struct device_attribute *attr,
766 char *buf)
767 {
768 struct dev_ext_attribute *ea = to_ext_attr(attr);
769
770 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
771 }
772 EXPORT_SYMBOL_GPL(device_show_int);
773
774 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
775 const char *buf, size_t size)
776 {
777 struct dev_ext_attribute *ea = to_ext_attr(attr);
778
779 if (strtobool(buf, ea->var) < 0)
780 return -EINVAL;
781
782 return size;
783 }
784 EXPORT_SYMBOL_GPL(device_store_bool);
785
786 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
787 char *buf)
788 {
789 struct dev_ext_attribute *ea = to_ext_attr(attr);
790
791 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
792 }
793 EXPORT_SYMBOL_GPL(device_show_bool);
794
795 /**
796 * device_release - free device structure.
797 * @kobj: device's kobject.
798 *
799 * This is called once the reference count for the object
800 * reaches 0. We forward the call to the device's release
801 * method, which should handle actually freeing the structure.
802 */
803 static void device_release(struct kobject *kobj)
804 {
805 struct device *dev = kobj_to_dev(kobj);
806 struct device_private *p = dev->p;
807
808 /*
809 * Some platform devices are driven without driver attached
810 * and managed resources may have been acquired. Make sure
811 * all resources are released.
812 *
813 * Drivers still can add resources into device after device
814 * is deleted but alive, so release devres here to avoid
815 * possible memory leak.
816 */
817 devres_release_all(dev);
818
819 if (dev->release)
820 dev->release(dev);
821 else if (dev->type && dev->type->release)
822 dev->type->release(dev);
823 else if (dev->class && dev->class->dev_release)
824 dev->class->dev_release(dev);
825 else
826 WARN(1, KERN_ERR "Device '%s' does not have a release() "
827 "function, it is broken and must be fixed.\n",
828 dev_name(dev));
829 kfree(p);
830 }
831
832 static const void *device_namespace(struct kobject *kobj)
833 {
834 struct device *dev = kobj_to_dev(kobj);
835 const void *ns = NULL;
836
837 if (dev->class && dev->class->ns_type)
838 ns = dev->class->namespace(dev);
839
840 return ns;
841 }
842
843 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
844 {
845 struct device *dev = kobj_to_dev(kobj);
846
847 if (dev->class && dev->class->get_ownership)
848 dev->class->get_ownership(dev, uid, gid);
849 }
850
851 static struct kobj_type device_ktype = {
852 .release = device_release,
853 .sysfs_ops = &dev_sysfs_ops,
854 .namespace = device_namespace,
855 .get_ownership = device_get_ownership,
856 };
857
858
859 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
860 {
861 struct kobj_type *ktype = get_ktype(kobj);
862
863 if (ktype == &device_ktype) {
864 struct device *dev = kobj_to_dev(kobj);
865 if (dev->bus)
866 return 1;
867 if (dev->class)
868 return 1;
869 }
870 return 0;
871 }
872
873 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
874 {
875 struct device *dev = kobj_to_dev(kobj);
876
877 if (dev->bus)
878 return dev->bus->name;
879 if (dev->class)
880 return dev->class->name;
881 return NULL;
882 }
883
884 static int dev_uevent(struct kset *kset, struct kobject *kobj,
885 struct kobj_uevent_env *env)
886 {
887 struct device *dev = kobj_to_dev(kobj);
888 int retval = 0;
889
890 /* add device node properties if present */
891 if (MAJOR(dev->devt)) {
892 const char *tmp;
893 const char *name;
894 umode_t mode = 0;
895 kuid_t uid = GLOBAL_ROOT_UID;
896 kgid_t gid = GLOBAL_ROOT_GID;
897
898 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
899 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
900 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
901 if (name) {
902 add_uevent_var(env, "DEVNAME=%s", name);
903 if (mode)
904 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
905 if (!uid_eq(uid, GLOBAL_ROOT_UID))
906 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
907 if (!gid_eq(gid, GLOBAL_ROOT_GID))
908 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
909 kfree(tmp);
910 }
911 }
912
913 if (dev->type && dev->type->name)
914 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
915
916 if (dev->driver)
917 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
918
919 /* Add common DT information about the device */
920 of_device_uevent(dev, env);
921
922 /* have the bus specific function add its stuff */
923 if (dev->bus && dev->bus->uevent) {
924 retval = dev->bus->uevent(dev, env);
925 if (retval)
926 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
927 dev_name(dev), __func__, retval);
928 }
929
930 /* have the class specific function add its stuff */
931 if (dev->class && dev->class->dev_uevent) {
932 retval = dev->class->dev_uevent(dev, env);
933 if (retval)
934 pr_debug("device: '%s': %s: class uevent() "
935 "returned %d\n", dev_name(dev),
936 __func__, retval);
937 }
938
939 /* have the device type specific function add its stuff */
940 if (dev->type && dev->type->uevent) {
941 retval = dev->type->uevent(dev, env);
942 if (retval)
943 pr_debug("device: '%s': %s: dev_type uevent() "
944 "returned %d\n", dev_name(dev),
945 __func__, retval);
946 }
947
948 return retval;
949 }
950
951 static const struct kset_uevent_ops device_uevent_ops = {
952 .filter = dev_uevent_filter,
953 .name = dev_uevent_name,
954 .uevent = dev_uevent,
955 };
956
957 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
958 char *buf)
959 {
960 struct kobject *top_kobj;
961 struct kset *kset;
962 struct kobj_uevent_env *env = NULL;
963 int i;
964 size_t count = 0;
965 int retval;
966
967 /* search the kset, the device belongs to */
968 top_kobj = &dev->kobj;
969 while (!top_kobj->kset && top_kobj->parent)
970 top_kobj = top_kobj->parent;
971 if (!top_kobj->kset)
972 goto out;
973
974 kset = top_kobj->kset;
975 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
976 goto out;
977
978 /* respect filter */
979 if (kset->uevent_ops && kset->uevent_ops->filter)
980 if (!kset->uevent_ops->filter(kset, &dev->kobj))
981 goto out;
982
983 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
984 if (!env)
985 return -ENOMEM;
986
987 /* let the kset specific function add its keys */
988 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
989 if (retval)
990 goto out;
991
992 /* copy keys to file */
993 for (i = 0; i < env->envp_idx; i++)
994 count += sprintf(&buf[count], "%s\n", env->envp[i]);
995 out:
996 kfree(env);
997 return count;
998 }
999
1000 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1001 const char *buf, size_t count)
1002 {
1003 int rc;
1004
1005 rc = kobject_synth_uevent(&dev->kobj, buf, count);
1006
1007 if (rc) {
1008 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1009 return rc;
1010 }
1011
1012 return count;
1013 }
1014 static DEVICE_ATTR_RW(uevent);
1015
1016 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1017 char *buf)
1018 {
1019 bool val;
1020
1021 device_lock(dev);
1022 val = !dev->offline;
1023 device_unlock(dev);
1024 return sprintf(buf, "%u\n", val);
1025 }
1026
1027 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1028 const char *buf, size_t count)
1029 {
1030 bool val;
1031 int ret;
1032
1033 ret = strtobool(buf, &val);
1034 if (ret < 0)
1035 return ret;
1036
1037 ret = lock_device_hotplug_sysfs();
1038 if (ret)
1039 return ret;
1040
1041 ret = val ? device_online(dev) : device_offline(dev);
1042 unlock_device_hotplug();
1043 return ret < 0 ? ret : count;
1044 }
1045 static DEVICE_ATTR_RW(online);
1046
1047 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1048 {
1049 return sysfs_create_groups(&dev->kobj, groups);
1050 }
1051 EXPORT_SYMBOL_GPL(device_add_groups);
1052
1053 void device_remove_groups(struct device *dev,
1054 const struct attribute_group **groups)
1055 {
1056 sysfs_remove_groups(&dev->kobj, groups);
1057 }
1058 EXPORT_SYMBOL_GPL(device_remove_groups);
1059
1060 union device_attr_group_devres {
1061 const struct attribute_group *group;
1062 const struct attribute_group **groups;
1063 };
1064
1065 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1066 {
1067 return ((union device_attr_group_devres *)res)->group == data;
1068 }
1069
1070 static void devm_attr_group_remove(struct device *dev, void *res)
1071 {
1072 union device_attr_group_devres *devres = res;
1073 const struct attribute_group *group = devres->group;
1074
1075 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1076 sysfs_remove_group(&dev->kobj, group);
1077 }
1078
1079 static void devm_attr_groups_remove(struct device *dev, void *res)
1080 {
1081 union device_attr_group_devres *devres = res;
1082 const struct attribute_group **groups = devres->groups;
1083
1084 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1085 sysfs_remove_groups(&dev->kobj, groups);
1086 }
1087
1088 /**
1089 * devm_device_add_group - given a device, create a managed attribute group
1090 * @dev: The device to create the group for
1091 * @grp: The attribute group to create
1092 *
1093 * This function creates a group for the first time. It will explicitly
1094 * warn and error if any of the attribute files being created already exist.
1095 *
1096 * Returns 0 on success or error code on failure.
1097 */
1098 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1099 {
1100 union device_attr_group_devres *devres;
1101 int error;
1102
1103 devres = devres_alloc(devm_attr_group_remove,
1104 sizeof(*devres), GFP_KERNEL);
1105 if (!devres)
1106 return -ENOMEM;
1107
1108 error = sysfs_create_group(&dev->kobj, grp);
1109 if (error) {
1110 devres_free(devres);
1111 return error;
1112 }
1113
1114 devres->group = grp;
1115 devres_add(dev, devres);
1116 return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(devm_device_add_group);
1119
1120 /**
1121 * devm_device_remove_group: remove a managed group from a device
1122 * @dev: device to remove the group from
1123 * @grp: group to remove
1124 *
1125 * This function removes a group of attributes from a device. The attributes
1126 * previously have to have been created for this group, otherwise it will fail.
1127 */
1128 void devm_device_remove_group(struct device *dev,
1129 const struct attribute_group *grp)
1130 {
1131 WARN_ON(devres_release(dev, devm_attr_group_remove,
1132 devm_attr_group_match,
1133 /* cast away const */ (void *)grp));
1134 }
1135 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1136
1137 /**
1138 * devm_device_add_groups - create a bunch of managed attribute groups
1139 * @dev: The device to create the group for
1140 * @groups: The attribute groups to create, NULL terminated
1141 *
1142 * This function creates a bunch of managed attribute groups. If an error
1143 * occurs when creating a group, all previously created groups will be
1144 * removed, unwinding everything back to the original state when this
1145 * function was called. It will explicitly warn and error if any of the
1146 * attribute files being created already exist.
1147 *
1148 * Returns 0 on success or error code from sysfs_create_group on failure.
1149 */
1150 int devm_device_add_groups(struct device *dev,
1151 const struct attribute_group **groups)
1152 {
1153 union device_attr_group_devres *devres;
1154 int error;
1155
1156 devres = devres_alloc(devm_attr_groups_remove,
1157 sizeof(*devres), GFP_KERNEL);
1158 if (!devres)
1159 return -ENOMEM;
1160
1161 error = sysfs_create_groups(&dev->kobj, groups);
1162 if (error) {
1163 devres_free(devres);
1164 return error;
1165 }
1166
1167 devres->groups = groups;
1168 devres_add(dev, devres);
1169 return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1172
1173 /**
1174 * devm_device_remove_groups - remove a list of managed groups
1175 *
1176 * @dev: The device for the groups to be removed from
1177 * @groups: NULL terminated list of groups to be removed
1178 *
1179 * If groups is not NULL, remove the specified groups from the device.
1180 */
1181 void devm_device_remove_groups(struct device *dev,
1182 const struct attribute_group **groups)
1183 {
1184 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1185 devm_attr_group_match,
1186 /* cast away const */ (void *)groups));
1187 }
1188 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1189
1190 static int device_add_attrs(struct device *dev)
1191 {
1192 struct class *class = dev->class;
1193 const struct device_type *type = dev->type;
1194 int error;
1195
1196 if (class) {
1197 error = device_add_groups(dev, class->dev_groups);
1198 if (error)
1199 return error;
1200 }
1201
1202 if (type) {
1203 error = device_add_groups(dev, type->groups);
1204 if (error)
1205 goto err_remove_class_groups;
1206 }
1207
1208 error = device_add_groups(dev, dev->groups);
1209 if (error)
1210 goto err_remove_type_groups;
1211
1212 if (device_supports_offline(dev) && !dev->offline_disabled) {
1213 error = device_create_file(dev, &dev_attr_online);
1214 if (error)
1215 goto err_remove_dev_groups;
1216 }
1217
1218 return 0;
1219
1220 err_remove_dev_groups:
1221 device_remove_groups(dev, dev->groups);
1222 err_remove_type_groups:
1223 if (type)
1224 device_remove_groups(dev, type->groups);
1225 err_remove_class_groups:
1226 if (class)
1227 device_remove_groups(dev, class->dev_groups);
1228
1229 return error;
1230 }
1231
1232 static void device_remove_attrs(struct device *dev)
1233 {
1234 struct class *class = dev->class;
1235 const struct device_type *type = dev->type;
1236
1237 device_remove_file(dev, &dev_attr_online);
1238 device_remove_groups(dev, dev->groups);
1239
1240 if (type)
1241 device_remove_groups(dev, type->groups);
1242
1243 if (class)
1244 device_remove_groups(dev, class->dev_groups);
1245 }
1246
1247 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1248 char *buf)
1249 {
1250 return print_dev_t(buf, dev->devt);
1251 }
1252 static DEVICE_ATTR_RO(dev);
1253
1254 /* /sys/devices/ */
1255 struct kset *devices_kset;
1256
1257 /**
1258 * devices_kset_move_before - Move device in the devices_kset's list.
1259 * @deva: Device to move.
1260 * @devb: Device @deva should come before.
1261 */
1262 static void devices_kset_move_before(struct device *deva, struct device *devb)
1263 {
1264 if (!devices_kset)
1265 return;
1266 pr_debug("devices_kset: Moving %s before %s\n",
1267 dev_name(deva), dev_name(devb));
1268 spin_lock(&devices_kset->list_lock);
1269 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1270 spin_unlock(&devices_kset->list_lock);
1271 }
1272
1273 /**
1274 * devices_kset_move_after - Move device in the devices_kset's list.
1275 * @deva: Device to move
1276 * @devb: Device @deva should come after.
1277 */
1278 static void devices_kset_move_after(struct device *deva, struct device *devb)
1279 {
1280 if (!devices_kset)
1281 return;
1282 pr_debug("devices_kset: Moving %s after %s\n",
1283 dev_name(deva), dev_name(devb));
1284 spin_lock(&devices_kset->list_lock);
1285 list_move(&deva->kobj.entry, &devb->kobj.entry);
1286 spin_unlock(&devices_kset->list_lock);
1287 }
1288
1289 /**
1290 * devices_kset_move_last - move the device to the end of devices_kset's list.
1291 * @dev: device to move
1292 */
1293 void devices_kset_move_last(struct device *dev)
1294 {
1295 if (!devices_kset)
1296 return;
1297 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1298 spin_lock(&devices_kset->list_lock);
1299 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1300 spin_unlock(&devices_kset->list_lock);
1301 }
1302
1303 /**
1304 * device_create_file - create sysfs attribute file for device.
1305 * @dev: device.
1306 * @attr: device attribute descriptor.
1307 */
1308 int device_create_file(struct device *dev,
1309 const struct device_attribute *attr)
1310 {
1311 int error = 0;
1312
1313 if (dev) {
1314 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1315 "Attribute %s: write permission without 'store'\n",
1316 attr->attr.name);
1317 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1318 "Attribute %s: read permission without 'show'\n",
1319 attr->attr.name);
1320 error = sysfs_create_file(&dev->kobj, &attr->attr);
1321 }
1322
1323 return error;
1324 }
1325 EXPORT_SYMBOL_GPL(device_create_file);
1326
1327 /**
1328 * device_remove_file - remove sysfs attribute file.
1329 * @dev: device.
1330 * @attr: device attribute descriptor.
1331 */
1332 void device_remove_file(struct device *dev,
1333 const struct device_attribute *attr)
1334 {
1335 if (dev)
1336 sysfs_remove_file(&dev->kobj, &attr->attr);
1337 }
1338 EXPORT_SYMBOL_GPL(device_remove_file);
1339
1340 /**
1341 * device_remove_file_self - remove sysfs attribute file from its own method.
1342 * @dev: device.
1343 * @attr: device attribute descriptor.
1344 *
1345 * See kernfs_remove_self() for details.
1346 */
1347 bool device_remove_file_self(struct device *dev,
1348 const struct device_attribute *attr)
1349 {
1350 if (dev)
1351 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1352 else
1353 return false;
1354 }
1355 EXPORT_SYMBOL_GPL(device_remove_file_self);
1356
1357 /**
1358 * device_create_bin_file - create sysfs binary attribute file for device.
1359 * @dev: device.
1360 * @attr: device binary attribute descriptor.
1361 */
1362 int device_create_bin_file(struct device *dev,
1363 const struct bin_attribute *attr)
1364 {
1365 int error = -EINVAL;
1366 if (dev)
1367 error = sysfs_create_bin_file(&dev->kobj, attr);
1368 return error;
1369 }
1370 EXPORT_SYMBOL_GPL(device_create_bin_file);
1371
1372 /**
1373 * device_remove_bin_file - remove sysfs binary attribute file
1374 * @dev: device.
1375 * @attr: device binary attribute descriptor.
1376 */
1377 void device_remove_bin_file(struct device *dev,
1378 const struct bin_attribute *attr)
1379 {
1380 if (dev)
1381 sysfs_remove_bin_file(&dev->kobj, attr);
1382 }
1383 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1384
1385 static void klist_children_get(struct klist_node *n)
1386 {
1387 struct device_private *p = to_device_private_parent(n);
1388 struct device *dev = p->device;
1389
1390 get_device(dev);
1391 }
1392
1393 static void klist_children_put(struct klist_node *n)
1394 {
1395 struct device_private *p = to_device_private_parent(n);
1396 struct device *dev = p->device;
1397
1398 put_device(dev);
1399 }
1400
1401 /**
1402 * device_initialize - init device structure.
1403 * @dev: device.
1404 *
1405 * This prepares the device for use by other layers by initializing
1406 * its fields.
1407 * It is the first half of device_register(), if called by
1408 * that function, though it can also be called separately, so one
1409 * may use @dev's fields. In particular, get_device()/put_device()
1410 * may be used for reference counting of @dev after calling this
1411 * function.
1412 *
1413 * All fields in @dev must be initialized by the caller to 0, except
1414 * for those explicitly set to some other value. The simplest
1415 * approach is to use kzalloc() to allocate the structure containing
1416 * @dev.
1417 *
1418 * NOTE: Use put_device() to give up your reference instead of freeing
1419 * @dev directly once you have called this function.
1420 */
1421 void device_initialize(struct device *dev)
1422 {
1423 dev->kobj.kset = devices_kset;
1424 kobject_init(&dev->kobj, &device_ktype);
1425 INIT_LIST_HEAD(&dev->dma_pools);
1426 mutex_init(&dev->mutex);
1427 lockdep_set_novalidate_class(&dev->mutex);
1428 spin_lock_init(&dev->devres_lock);
1429 INIT_LIST_HEAD(&dev->devres_head);
1430 device_pm_init(dev);
1431 set_dev_node(dev, -1);
1432 #ifdef CONFIG_GENERIC_MSI_IRQ
1433 INIT_LIST_HEAD(&dev->msi_list);
1434 #endif
1435 INIT_LIST_HEAD(&dev->links.consumers);
1436 INIT_LIST_HEAD(&dev->links.suppliers);
1437 dev->links.status = DL_DEV_NO_DRIVER;
1438 }
1439 EXPORT_SYMBOL_GPL(device_initialize);
1440
1441 struct kobject *virtual_device_parent(struct device *dev)
1442 {
1443 static struct kobject *virtual_dir = NULL;
1444
1445 if (!virtual_dir)
1446 virtual_dir = kobject_create_and_add("virtual",
1447 &devices_kset->kobj);
1448
1449 return virtual_dir;
1450 }
1451
1452 struct class_dir {
1453 struct kobject kobj;
1454 struct class *class;
1455 };
1456
1457 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1458
1459 static void class_dir_release(struct kobject *kobj)
1460 {
1461 struct class_dir *dir = to_class_dir(kobj);
1462 kfree(dir);
1463 }
1464
1465 static const
1466 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1467 {
1468 struct class_dir *dir = to_class_dir(kobj);
1469 return dir->class->ns_type;
1470 }
1471
1472 static struct kobj_type class_dir_ktype = {
1473 .release = class_dir_release,
1474 .sysfs_ops = &kobj_sysfs_ops,
1475 .child_ns_type = class_dir_child_ns_type
1476 };
1477
1478 static struct kobject *
1479 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1480 {
1481 struct class_dir *dir;
1482 int retval;
1483
1484 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1485 if (!dir)
1486 return ERR_PTR(-ENOMEM);
1487
1488 dir->class = class;
1489 kobject_init(&dir->kobj, &class_dir_ktype);
1490
1491 dir->kobj.kset = &class->p->glue_dirs;
1492
1493 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1494 if (retval < 0) {
1495 kobject_put(&dir->kobj);
1496 return ERR_PTR(retval);
1497 }
1498 return &dir->kobj;
1499 }
1500
1501 static DEFINE_MUTEX(gdp_mutex);
1502
1503 static struct kobject *get_device_parent(struct device *dev,
1504 struct device *parent)
1505 {
1506 if (dev->class) {
1507 struct kobject *kobj = NULL;
1508 struct kobject *parent_kobj;
1509 struct kobject *k;
1510
1511 #ifdef CONFIG_BLOCK
1512 /* block disks show up in /sys/block */
1513 if (sysfs_deprecated && dev->class == &block_class) {
1514 if (parent && parent->class == &block_class)
1515 return &parent->kobj;
1516 return &block_class.p->subsys.kobj;
1517 }
1518 #endif
1519
1520 /*
1521 * If we have no parent, we live in "virtual".
1522 * Class-devices with a non class-device as parent, live
1523 * in a "glue" directory to prevent namespace collisions.
1524 */
1525 if (parent == NULL)
1526 parent_kobj = virtual_device_parent(dev);
1527 else if (parent->class && !dev->class->ns_type)
1528 return &parent->kobj;
1529 else
1530 parent_kobj = &parent->kobj;
1531
1532 mutex_lock(&gdp_mutex);
1533
1534 /* find our class-directory at the parent and reference it */
1535 spin_lock(&dev->class->p->glue_dirs.list_lock);
1536 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1537 if (k->parent == parent_kobj) {
1538 kobj = kobject_get(k);
1539 break;
1540 }
1541 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1542 if (kobj) {
1543 mutex_unlock(&gdp_mutex);
1544 return kobj;
1545 }
1546
1547 /* or create a new class-directory at the parent device */
1548 k = class_dir_create_and_add(dev->class, parent_kobj);
1549 /* do not emit an uevent for this simple "glue" directory */
1550 mutex_unlock(&gdp_mutex);
1551 return k;
1552 }
1553
1554 /* subsystems can specify a default root directory for their devices */
1555 if (!parent && dev->bus && dev->bus->dev_root)
1556 return &dev->bus->dev_root->kobj;
1557
1558 if (parent)
1559 return &parent->kobj;
1560 return NULL;
1561 }
1562
1563 static inline bool live_in_glue_dir(struct kobject *kobj,
1564 struct device *dev)
1565 {
1566 if (!kobj || !dev->class ||
1567 kobj->kset != &dev->class->p->glue_dirs)
1568 return false;
1569 return true;
1570 }
1571
1572 static inline struct kobject *get_glue_dir(struct device *dev)
1573 {
1574 return dev->kobj.parent;
1575 }
1576
1577 /*
1578 * make sure cleaning up dir as the last step, we need to make
1579 * sure .release handler of kobject is run with holding the
1580 * global lock
1581 */
1582 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1583 {
1584 /* see if we live in a "glue" directory */
1585 if (!live_in_glue_dir(glue_dir, dev))
1586 return;
1587
1588 mutex_lock(&gdp_mutex);
1589 if (!kobject_has_children(glue_dir))
1590 kobject_del(glue_dir);
1591 kobject_put(glue_dir);
1592 mutex_unlock(&gdp_mutex);
1593 }
1594
1595 static int device_add_class_symlinks(struct device *dev)
1596 {
1597 struct device_node *of_node = dev_of_node(dev);
1598 int error;
1599
1600 if (of_node) {
1601 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1602 if (error)
1603 dev_warn(dev, "Error %d creating of_node link\n",error);
1604 /* An error here doesn't warrant bringing down the device */
1605 }
1606
1607 if (!dev->class)
1608 return 0;
1609
1610 error = sysfs_create_link(&dev->kobj,
1611 &dev->class->p->subsys.kobj,
1612 "subsystem");
1613 if (error)
1614 goto out_devnode;
1615
1616 if (dev->parent && device_is_not_partition(dev)) {
1617 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1618 "device");
1619 if (error)
1620 goto out_subsys;
1621 }
1622
1623 #ifdef CONFIG_BLOCK
1624 /* /sys/block has directories and does not need symlinks */
1625 if (sysfs_deprecated && dev->class == &block_class)
1626 return 0;
1627 #endif
1628
1629 /* link in the class directory pointing to the device */
1630 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1631 &dev->kobj, dev_name(dev));
1632 if (error)
1633 goto out_device;
1634
1635 return 0;
1636
1637 out_device:
1638 sysfs_remove_link(&dev->kobj, "device");
1639
1640 out_subsys:
1641 sysfs_remove_link(&dev->kobj, "subsystem");
1642 out_devnode:
1643 sysfs_remove_link(&dev->kobj, "of_node");
1644 return error;
1645 }
1646
1647 static void device_remove_class_symlinks(struct device *dev)
1648 {
1649 if (dev_of_node(dev))
1650 sysfs_remove_link(&dev->kobj, "of_node");
1651
1652 if (!dev->class)
1653 return;
1654
1655 if (dev->parent && device_is_not_partition(dev))
1656 sysfs_remove_link(&dev->kobj, "device");
1657 sysfs_remove_link(&dev->kobj, "subsystem");
1658 #ifdef CONFIG_BLOCK
1659 if (sysfs_deprecated && dev->class == &block_class)
1660 return;
1661 #endif
1662 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1663 }
1664
1665 /**
1666 * dev_set_name - set a device name
1667 * @dev: device
1668 * @fmt: format string for the device's name
1669 */
1670 int dev_set_name(struct device *dev, const char *fmt, ...)
1671 {
1672 va_list vargs;
1673 int err;
1674
1675 va_start(vargs, fmt);
1676 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1677 va_end(vargs);
1678 return err;
1679 }
1680 EXPORT_SYMBOL_GPL(dev_set_name);
1681
1682 /**
1683 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1684 * @dev: device
1685 *
1686 * By default we select char/ for new entries. Setting class->dev_obj
1687 * to NULL prevents an entry from being created. class->dev_kobj must
1688 * be set (or cleared) before any devices are registered to the class
1689 * otherwise device_create_sys_dev_entry() and
1690 * device_remove_sys_dev_entry() will disagree about the presence of
1691 * the link.
1692 */
1693 static struct kobject *device_to_dev_kobj(struct device *dev)
1694 {
1695 struct kobject *kobj;
1696
1697 if (dev->class)
1698 kobj = dev->class->dev_kobj;
1699 else
1700 kobj = sysfs_dev_char_kobj;
1701
1702 return kobj;
1703 }
1704
1705 static int device_create_sys_dev_entry(struct device *dev)
1706 {
1707 struct kobject *kobj = device_to_dev_kobj(dev);
1708 int error = 0;
1709 char devt_str[15];
1710
1711 if (kobj) {
1712 format_dev_t(devt_str, dev->devt);
1713 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1714 }
1715
1716 return error;
1717 }
1718
1719 static void device_remove_sys_dev_entry(struct device *dev)
1720 {
1721 struct kobject *kobj = device_to_dev_kobj(dev);
1722 char devt_str[15];
1723
1724 if (kobj) {
1725 format_dev_t(devt_str, dev->devt);
1726 sysfs_remove_link(kobj, devt_str);
1727 }
1728 }
1729
1730 int device_private_init(struct device *dev)
1731 {
1732 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1733 if (!dev->p)
1734 return -ENOMEM;
1735 dev->p->device = dev;
1736 klist_init(&dev->p->klist_children, klist_children_get,
1737 klist_children_put);
1738 INIT_LIST_HEAD(&dev->p->deferred_probe);
1739 return 0;
1740 }
1741
1742 /**
1743 * device_add - add device to device hierarchy.
1744 * @dev: device.
1745 *
1746 * This is part 2 of device_register(), though may be called
1747 * separately _iff_ device_initialize() has been called separately.
1748 *
1749 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1750 * to the global and sibling lists for the device, then
1751 * adds it to the other relevant subsystems of the driver model.
1752 *
1753 * Do not call this routine or device_register() more than once for
1754 * any device structure. The driver model core is not designed to work
1755 * with devices that get unregistered and then spring back to life.
1756 * (Among other things, it's very hard to guarantee that all references
1757 * to the previous incarnation of @dev have been dropped.) Allocate
1758 * and register a fresh new struct device instead.
1759 *
1760 * NOTE: _Never_ directly free @dev after calling this function, even
1761 * if it returned an error! Always use put_device() to give up your
1762 * reference instead.
1763 */
1764 int device_add(struct device *dev)
1765 {
1766 struct device *parent;
1767 struct kobject *kobj;
1768 struct class_interface *class_intf;
1769 int error = -EINVAL;
1770 struct kobject *glue_dir = NULL;
1771
1772 dev = get_device(dev);
1773 if (!dev)
1774 goto done;
1775
1776 if (!dev->p) {
1777 error = device_private_init(dev);
1778 if (error)
1779 goto done;
1780 }
1781
1782 /*
1783 * for statically allocated devices, which should all be converted
1784 * some day, we need to initialize the name. We prevent reading back
1785 * the name, and force the use of dev_name()
1786 */
1787 if (dev->init_name) {
1788 dev_set_name(dev, "%s", dev->init_name);
1789 dev->init_name = NULL;
1790 }
1791
1792 /* subsystems can specify simple device enumeration */
1793 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1794 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1795
1796 if (!dev_name(dev)) {
1797 error = -EINVAL;
1798 goto name_error;
1799 }
1800
1801 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1802
1803 parent = get_device(dev->parent);
1804 kobj = get_device_parent(dev, parent);
1805 if (IS_ERR(kobj)) {
1806 error = PTR_ERR(kobj);
1807 goto parent_error;
1808 }
1809 if (kobj)
1810 dev->kobj.parent = kobj;
1811
1812 /* use parent numa_node */
1813 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1814 set_dev_node(dev, dev_to_node(parent));
1815
1816 /* first, register with generic layer. */
1817 /* we require the name to be set before, and pass NULL */
1818 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1819 if (error) {
1820 glue_dir = get_glue_dir(dev);
1821 goto Error;
1822 }
1823
1824 /* notify platform of device entry */
1825 if (platform_notify)
1826 platform_notify(dev);
1827
1828 error = device_create_file(dev, &dev_attr_uevent);
1829 if (error)
1830 goto attrError;
1831
1832 error = device_add_class_symlinks(dev);
1833 if (error)
1834 goto SymlinkError;
1835 error = device_add_attrs(dev);
1836 if (error)
1837 goto AttrsError;
1838 error = bus_add_device(dev);
1839 if (error)
1840 goto BusError;
1841 error = dpm_sysfs_add(dev);
1842 if (error)
1843 goto DPMError;
1844 device_pm_add(dev);
1845
1846 if (MAJOR(dev->devt)) {
1847 error = device_create_file(dev, &dev_attr_dev);
1848 if (error)
1849 goto DevAttrError;
1850
1851 error = device_create_sys_dev_entry(dev);
1852 if (error)
1853 goto SysEntryError;
1854
1855 devtmpfs_create_node(dev);
1856 }
1857
1858 /* Notify clients of device addition. This call must come
1859 * after dpm_sysfs_add() and before kobject_uevent().
1860 */
1861 if (dev->bus)
1862 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1863 BUS_NOTIFY_ADD_DEVICE, dev);
1864
1865 kobject_uevent(&dev->kobj, KOBJ_ADD);
1866 bus_probe_device(dev);
1867 if (parent)
1868 klist_add_tail(&dev->p->knode_parent,
1869 &parent->p->klist_children);
1870
1871 if (dev->class) {
1872 mutex_lock(&dev->class->p->mutex);
1873 /* tie the class to the device */
1874 klist_add_tail(&dev->knode_class,
1875 &dev->class->p->klist_devices);
1876
1877 /* notify any interfaces that the device is here */
1878 list_for_each_entry(class_intf,
1879 &dev->class->p->interfaces, node)
1880 if (class_intf->add_dev)
1881 class_intf->add_dev(dev, class_intf);
1882 mutex_unlock(&dev->class->p->mutex);
1883 }
1884 done:
1885 put_device(dev);
1886 return error;
1887 SysEntryError:
1888 if (MAJOR(dev->devt))
1889 device_remove_file(dev, &dev_attr_dev);
1890 DevAttrError:
1891 device_pm_remove(dev);
1892 dpm_sysfs_remove(dev);
1893 DPMError:
1894 bus_remove_device(dev);
1895 BusError:
1896 device_remove_attrs(dev);
1897 AttrsError:
1898 device_remove_class_symlinks(dev);
1899 SymlinkError:
1900 device_remove_file(dev, &dev_attr_uevent);
1901 attrError:
1902 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1903 glue_dir = get_glue_dir(dev);
1904 kobject_del(&dev->kobj);
1905 Error:
1906 cleanup_glue_dir(dev, glue_dir);
1907 parent_error:
1908 put_device(parent);
1909 name_error:
1910 kfree(dev->p);
1911 dev->p = NULL;
1912 goto done;
1913 }
1914 EXPORT_SYMBOL_GPL(device_add);
1915
1916 /**
1917 * device_register - register a device with the system.
1918 * @dev: pointer to the device structure
1919 *
1920 * This happens in two clean steps - initialize the device
1921 * and add it to the system. The two steps can be called
1922 * separately, but this is the easiest and most common.
1923 * I.e. you should only call the two helpers separately if
1924 * have a clearly defined need to use and refcount the device
1925 * before it is added to the hierarchy.
1926 *
1927 * For more information, see the kerneldoc for device_initialize()
1928 * and device_add().
1929 *
1930 * NOTE: _Never_ directly free @dev after calling this function, even
1931 * if it returned an error! Always use put_device() to give up the
1932 * reference initialized in this function instead.
1933 */
1934 int device_register(struct device *dev)
1935 {
1936 device_initialize(dev);
1937 return device_add(dev);
1938 }
1939 EXPORT_SYMBOL_GPL(device_register);
1940
1941 /**
1942 * get_device - increment reference count for device.
1943 * @dev: device.
1944 *
1945 * This simply forwards the call to kobject_get(), though
1946 * we do take care to provide for the case that we get a NULL
1947 * pointer passed in.
1948 */
1949 struct device *get_device(struct device *dev)
1950 {
1951 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1952 }
1953 EXPORT_SYMBOL_GPL(get_device);
1954
1955 /**
1956 * put_device - decrement reference count.
1957 * @dev: device in question.
1958 */
1959 void put_device(struct device *dev)
1960 {
1961 /* might_sleep(); */
1962 if (dev)
1963 kobject_put(&dev->kobj);
1964 }
1965 EXPORT_SYMBOL_GPL(put_device);
1966
1967 bool kill_device(struct device *dev)
1968 {
1969 /*
1970 * Require the device lock and set the "dead" flag to guarantee that
1971 * the update behavior is consistent with the other bitfields near
1972 * it and that we cannot have an asynchronous probe routine trying
1973 * to run while we are tearing out the bus/class/sysfs from
1974 * underneath the device.
1975 */
1976 lockdep_assert_held(&dev->mutex);
1977
1978 if (dev->p->dead)
1979 return false;
1980 dev->p->dead = true;
1981 return true;
1982 }
1983 EXPORT_SYMBOL_GPL(kill_device);
1984
1985 /**
1986 * device_del - delete device from system.
1987 * @dev: device.
1988 *
1989 * This is the first part of the device unregistration
1990 * sequence. This removes the device from the lists we control
1991 * from here, has it removed from the other driver model
1992 * subsystems it was added to in device_add(), and removes it
1993 * from the kobject hierarchy.
1994 *
1995 * NOTE: this should be called manually _iff_ device_add() was
1996 * also called manually.
1997 */
1998 void device_del(struct device *dev)
1999 {
2000 struct device *parent = dev->parent;
2001 struct kobject *glue_dir = NULL;
2002 struct class_interface *class_intf;
2003
2004 device_lock(dev);
2005 kill_device(dev);
2006 device_unlock(dev);
2007
2008 /* Notify clients of device removal. This call must come
2009 * before dpm_sysfs_remove().
2010 */
2011 if (dev->bus)
2012 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2013 BUS_NOTIFY_DEL_DEVICE, dev);
2014
2015 dpm_sysfs_remove(dev);
2016 if (parent)
2017 klist_del(&dev->p->knode_parent);
2018 if (MAJOR(dev->devt)) {
2019 devtmpfs_delete_node(dev);
2020 device_remove_sys_dev_entry(dev);
2021 device_remove_file(dev, &dev_attr_dev);
2022 }
2023 if (dev->class) {
2024 device_remove_class_symlinks(dev);
2025
2026 mutex_lock(&dev->class->p->mutex);
2027 /* notify any interfaces that the device is now gone */
2028 list_for_each_entry(class_intf,
2029 &dev->class->p->interfaces, node)
2030 if (class_intf->remove_dev)
2031 class_intf->remove_dev(dev, class_intf);
2032 /* remove the device from the class list */
2033 klist_del(&dev->knode_class);
2034 mutex_unlock(&dev->class->p->mutex);
2035 }
2036 device_remove_file(dev, &dev_attr_uevent);
2037 device_remove_attrs(dev);
2038 bus_remove_device(dev);
2039 device_pm_remove(dev);
2040 driver_deferred_probe_del(dev);
2041 device_remove_properties(dev);
2042 device_links_purge(dev);
2043
2044 /* Notify the platform of the removal, in case they
2045 * need to do anything...
2046 */
2047 if (platform_notify_remove)
2048 platform_notify_remove(dev);
2049 if (dev->bus)
2050 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2051 BUS_NOTIFY_REMOVED_DEVICE, dev);
2052 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2053 glue_dir = get_glue_dir(dev);
2054 kobject_del(&dev->kobj);
2055 cleanup_glue_dir(dev, glue_dir);
2056 put_device(parent);
2057 }
2058 EXPORT_SYMBOL_GPL(device_del);
2059
2060 /**
2061 * device_unregister - unregister device from system.
2062 * @dev: device going away.
2063 *
2064 * We do this in two parts, like we do device_register(). First,
2065 * we remove it from all the subsystems with device_del(), then
2066 * we decrement the reference count via put_device(). If that
2067 * is the final reference count, the device will be cleaned up
2068 * via device_release() above. Otherwise, the structure will
2069 * stick around until the final reference to the device is dropped.
2070 */
2071 void device_unregister(struct device *dev)
2072 {
2073 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2074 device_del(dev);
2075 put_device(dev);
2076 }
2077 EXPORT_SYMBOL_GPL(device_unregister);
2078
2079 static struct device *prev_device(struct klist_iter *i)
2080 {
2081 struct klist_node *n = klist_prev(i);
2082 struct device *dev = NULL;
2083 struct device_private *p;
2084
2085 if (n) {
2086 p = to_device_private_parent(n);
2087 dev = p->device;
2088 }
2089 return dev;
2090 }
2091
2092 static struct device *next_device(struct klist_iter *i)
2093 {
2094 struct klist_node *n = klist_next(i);
2095 struct device *dev = NULL;
2096 struct device_private *p;
2097
2098 if (n) {
2099 p = to_device_private_parent(n);
2100 dev = p->device;
2101 }
2102 return dev;
2103 }
2104
2105 /**
2106 * device_get_devnode - path of device node file
2107 * @dev: device
2108 * @mode: returned file access mode
2109 * @uid: returned file owner
2110 * @gid: returned file group
2111 * @tmp: possibly allocated string
2112 *
2113 * Return the relative path of a possible device node.
2114 * Non-default names may need to allocate a memory to compose
2115 * a name. This memory is returned in tmp and needs to be
2116 * freed by the caller.
2117 */
2118 const char *device_get_devnode(struct device *dev,
2119 umode_t *mode, kuid_t *uid, kgid_t *gid,
2120 const char **tmp)
2121 {
2122 char *s;
2123
2124 *tmp = NULL;
2125
2126 /* the device type may provide a specific name */
2127 if (dev->type && dev->type->devnode)
2128 *tmp = dev->type->devnode(dev, mode, uid, gid);
2129 if (*tmp)
2130 return *tmp;
2131
2132 /* the class may provide a specific name */
2133 if (dev->class && dev->class->devnode)
2134 *tmp = dev->class->devnode(dev, mode);
2135 if (*tmp)
2136 return *tmp;
2137
2138 /* return name without allocation, tmp == NULL */
2139 if (strchr(dev_name(dev), '!') == NULL)
2140 return dev_name(dev);
2141
2142 /* replace '!' in the name with '/' */
2143 s = kstrdup(dev_name(dev), GFP_KERNEL);
2144 if (!s)
2145 return NULL;
2146 strreplace(s, '!', '/');
2147 return *tmp = s;
2148 }
2149
2150 /**
2151 * device_for_each_child - device child iterator.
2152 * @parent: parent struct device.
2153 * @fn: function to be called for each device.
2154 * @data: data for the callback.
2155 *
2156 * Iterate over @parent's child devices, and call @fn for each,
2157 * passing it @data.
2158 *
2159 * We check the return of @fn each time. If it returns anything
2160 * other than 0, we break out and return that value.
2161 */
2162 int device_for_each_child(struct device *parent, void *data,
2163 int (*fn)(struct device *dev, void *data))
2164 {
2165 struct klist_iter i;
2166 struct device *child;
2167 int error = 0;
2168
2169 if (!parent->p)
2170 return 0;
2171
2172 klist_iter_init(&parent->p->klist_children, &i);
2173 while ((child = next_device(&i)) && !error)
2174 error = fn(child, data);
2175 klist_iter_exit(&i);
2176 return error;
2177 }
2178 EXPORT_SYMBOL_GPL(device_for_each_child);
2179
2180 /**
2181 * device_for_each_child_reverse - device child iterator in reversed order.
2182 * @parent: parent struct device.
2183 * @fn: function to be called for each device.
2184 * @data: data for the callback.
2185 *
2186 * Iterate over @parent's child devices, and call @fn for each,
2187 * passing it @data.
2188 *
2189 * We check the return of @fn each time. If it returns anything
2190 * other than 0, we break out and return that value.
2191 */
2192 int device_for_each_child_reverse(struct device *parent, void *data,
2193 int (*fn)(struct device *dev, void *data))
2194 {
2195 struct klist_iter i;
2196 struct device *child;
2197 int error = 0;
2198
2199 if (!parent->p)
2200 return 0;
2201
2202 klist_iter_init(&parent->p->klist_children, &i);
2203 while ((child = prev_device(&i)) && !error)
2204 error = fn(child, data);
2205 klist_iter_exit(&i);
2206 return error;
2207 }
2208 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2209
2210 /**
2211 * device_find_child - device iterator for locating a particular device.
2212 * @parent: parent struct device
2213 * @match: Callback function to check device
2214 * @data: Data to pass to match function
2215 *
2216 * This is similar to the device_for_each_child() function above, but it
2217 * returns a reference to a device that is 'found' for later use, as
2218 * determined by the @match callback.
2219 *
2220 * The callback should return 0 if the device doesn't match and non-zero
2221 * if it does. If the callback returns non-zero and a reference to the
2222 * current device can be obtained, this function will return to the caller
2223 * and not iterate over any more devices.
2224 *
2225 * NOTE: you will need to drop the reference with put_device() after use.
2226 */
2227 struct device *device_find_child(struct device *parent, void *data,
2228 int (*match)(struct device *dev, void *data))
2229 {
2230 struct klist_iter i;
2231 struct device *child;
2232
2233 if (!parent)
2234 return NULL;
2235
2236 klist_iter_init(&parent->p->klist_children, &i);
2237 while ((child = next_device(&i)))
2238 if (match(child, data) && get_device(child))
2239 break;
2240 klist_iter_exit(&i);
2241 return child;
2242 }
2243 EXPORT_SYMBOL_GPL(device_find_child);
2244
2245 int __init devices_init(void)
2246 {
2247 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2248 if (!devices_kset)
2249 return -ENOMEM;
2250 dev_kobj = kobject_create_and_add("dev", NULL);
2251 if (!dev_kobj)
2252 goto dev_kobj_err;
2253 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2254 if (!sysfs_dev_block_kobj)
2255 goto block_kobj_err;
2256 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2257 if (!sysfs_dev_char_kobj)
2258 goto char_kobj_err;
2259
2260 return 0;
2261
2262 char_kobj_err:
2263 kobject_put(sysfs_dev_block_kobj);
2264 block_kobj_err:
2265 kobject_put(dev_kobj);
2266 dev_kobj_err:
2267 kset_unregister(devices_kset);
2268 return -ENOMEM;
2269 }
2270
2271 static int device_check_offline(struct device *dev, void *not_used)
2272 {
2273 int ret;
2274
2275 ret = device_for_each_child(dev, NULL, device_check_offline);
2276 if (ret)
2277 return ret;
2278
2279 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2280 }
2281
2282 /**
2283 * device_offline - Prepare the device for hot-removal.
2284 * @dev: Device to be put offline.
2285 *
2286 * Execute the device bus type's .offline() callback, if present, to prepare
2287 * the device for a subsequent hot-removal. If that succeeds, the device must
2288 * not be used until either it is removed or its bus type's .online() callback
2289 * is executed.
2290 *
2291 * Call under device_hotplug_lock.
2292 */
2293 int device_offline(struct device *dev)
2294 {
2295 int ret;
2296
2297 if (dev->offline_disabled)
2298 return -EPERM;
2299
2300 ret = device_for_each_child(dev, NULL, device_check_offline);
2301 if (ret)
2302 return ret;
2303
2304 device_lock(dev);
2305 if (device_supports_offline(dev)) {
2306 if (dev->offline) {
2307 ret = 1;
2308 } else {
2309 ret = dev->bus->offline(dev);
2310 if (!ret) {
2311 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2312 dev->offline = true;
2313 }
2314 }
2315 }
2316 device_unlock(dev);
2317
2318 return ret;
2319 }
2320
2321 /**
2322 * device_online - Put the device back online after successful device_offline().
2323 * @dev: Device to be put back online.
2324 *
2325 * If device_offline() has been successfully executed for @dev, but the device
2326 * has not been removed subsequently, execute its bus type's .online() callback
2327 * to indicate that the device can be used again.
2328 *
2329 * Call under device_hotplug_lock.
2330 */
2331 int device_online(struct device *dev)
2332 {
2333 int ret = 0;
2334
2335 device_lock(dev);
2336 if (device_supports_offline(dev)) {
2337 if (dev->offline) {
2338 ret = dev->bus->online(dev);
2339 if (!ret) {
2340 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2341 dev->offline = false;
2342 }
2343 } else {
2344 ret = 1;
2345 }
2346 }
2347 device_unlock(dev);
2348
2349 return ret;
2350 }
2351
2352 struct root_device {
2353 struct device dev;
2354 struct module *owner;
2355 };
2356
2357 static inline struct root_device *to_root_device(struct device *d)
2358 {
2359 return container_of(d, struct root_device, dev);
2360 }
2361
2362 static void root_device_release(struct device *dev)
2363 {
2364 kfree(to_root_device(dev));
2365 }
2366
2367 /**
2368 * __root_device_register - allocate and register a root device
2369 * @name: root device name
2370 * @owner: owner module of the root device, usually THIS_MODULE
2371 *
2372 * This function allocates a root device and registers it
2373 * using device_register(). In order to free the returned
2374 * device, use root_device_unregister().
2375 *
2376 * Root devices are dummy devices which allow other devices
2377 * to be grouped under /sys/devices. Use this function to
2378 * allocate a root device and then use it as the parent of
2379 * any device which should appear under /sys/devices/{name}
2380 *
2381 * The /sys/devices/{name} directory will also contain a
2382 * 'module' symlink which points to the @owner directory
2383 * in sysfs.
2384 *
2385 * Returns &struct device pointer on success, or ERR_PTR() on error.
2386 *
2387 * Note: You probably want to use root_device_register().
2388 */
2389 struct device *__root_device_register(const char *name, struct module *owner)
2390 {
2391 struct root_device *root;
2392 int err = -ENOMEM;
2393
2394 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2395 if (!root)
2396 return ERR_PTR(err);
2397
2398 err = dev_set_name(&root->dev, "%s", name);
2399 if (err) {
2400 kfree(root);
2401 return ERR_PTR(err);
2402 }
2403
2404 root->dev.release = root_device_release;
2405
2406 err = device_register(&root->dev);
2407 if (err) {
2408 put_device(&root->dev);
2409 return ERR_PTR(err);
2410 }
2411
2412 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2413 if (owner) {
2414 struct module_kobject *mk = &owner->mkobj;
2415
2416 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2417 if (err) {
2418 device_unregister(&root->dev);
2419 return ERR_PTR(err);
2420 }
2421 root->owner = owner;
2422 }
2423 #endif
2424
2425 return &root->dev;
2426 }
2427 EXPORT_SYMBOL_GPL(__root_device_register);
2428
2429 /**
2430 * root_device_unregister - unregister and free a root device
2431 * @dev: device going away
2432 *
2433 * This function unregisters and cleans up a device that was created by
2434 * root_device_register().
2435 */
2436 void root_device_unregister(struct device *dev)
2437 {
2438 struct root_device *root = to_root_device(dev);
2439
2440 if (root->owner)
2441 sysfs_remove_link(&root->dev.kobj, "module");
2442
2443 device_unregister(dev);
2444 }
2445 EXPORT_SYMBOL_GPL(root_device_unregister);
2446
2447
2448 static void device_create_release(struct device *dev)
2449 {
2450 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2451 kfree(dev);
2452 }
2453
2454 static struct device *
2455 device_create_groups_vargs(struct class *class, struct device *parent,
2456 dev_t devt, void *drvdata,
2457 const struct attribute_group **groups,
2458 const char *fmt, va_list args)
2459 {
2460 struct device *dev = NULL;
2461 int retval = -ENODEV;
2462
2463 if (class == NULL || IS_ERR(class))
2464 goto error;
2465
2466 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2467 if (!dev) {
2468 retval = -ENOMEM;
2469 goto error;
2470 }
2471
2472 device_initialize(dev);
2473 dev->devt = devt;
2474 dev->class = class;
2475 dev->parent = parent;
2476 dev->groups = groups;
2477 dev->release = device_create_release;
2478 dev_set_drvdata(dev, drvdata);
2479
2480 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2481 if (retval)
2482 goto error;
2483
2484 retval = device_add(dev);
2485 if (retval)
2486 goto error;
2487
2488 return dev;
2489
2490 error:
2491 put_device(dev);
2492 return ERR_PTR(retval);
2493 }
2494
2495 /**
2496 * device_create_vargs - creates a device and registers it with sysfs
2497 * @class: pointer to the struct class that this device should be registered to
2498 * @parent: pointer to the parent struct device of this new device, if any
2499 * @devt: the dev_t for the char device to be added
2500 * @drvdata: the data to be added to the device for callbacks
2501 * @fmt: string for the device's name
2502 * @args: va_list for the device's name
2503 *
2504 * This function can be used by char device classes. A struct device
2505 * will be created in sysfs, registered to the specified class.
2506 *
2507 * A "dev" file will be created, showing the dev_t for the device, if
2508 * the dev_t is not 0,0.
2509 * If a pointer to a parent struct device is passed in, the newly created
2510 * struct device will be a child of that device in sysfs.
2511 * The pointer to the struct device will be returned from the call.
2512 * Any further sysfs files that might be required can be created using this
2513 * pointer.
2514 *
2515 * Returns &struct device pointer on success, or ERR_PTR() on error.
2516 *
2517 * Note: the struct class passed to this function must have previously
2518 * been created with a call to class_create().
2519 */
2520 struct device *device_create_vargs(struct class *class, struct device *parent,
2521 dev_t devt, void *drvdata, const char *fmt,
2522 va_list args)
2523 {
2524 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2525 fmt, args);
2526 }
2527 EXPORT_SYMBOL_GPL(device_create_vargs);
2528
2529 /**
2530 * device_create - creates a device and registers it with sysfs
2531 * @class: pointer to the struct class that this device should be registered to
2532 * @parent: pointer to the parent struct device of this new device, if any
2533 * @devt: the dev_t for the char device to be added
2534 * @drvdata: the data to be added to the device for callbacks
2535 * @fmt: string for the device's name
2536 *
2537 * This function can be used by char device classes. A struct device
2538 * will be created in sysfs, registered to the specified class.
2539 *
2540 * A "dev" file will be created, showing the dev_t for the device, if
2541 * the dev_t is not 0,0.
2542 * If a pointer to a parent struct device is passed in, the newly created
2543 * struct device will be a child of that device in sysfs.
2544 * The pointer to the struct device will be returned from the call.
2545 * Any further sysfs files that might be required can be created using this
2546 * pointer.
2547 *
2548 * Returns &struct device pointer on success, or ERR_PTR() on error.
2549 *
2550 * Note: the struct class passed to this function must have previously
2551 * been created with a call to class_create().
2552 */
2553 struct device *device_create(struct class *class, struct device *parent,
2554 dev_t devt, void *drvdata, const char *fmt, ...)
2555 {
2556 va_list vargs;
2557 struct device *dev;
2558
2559 va_start(vargs, fmt);
2560 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2561 va_end(vargs);
2562 return dev;
2563 }
2564 EXPORT_SYMBOL_GPL(device_create);
2565
2566 /**
2567 * device_create_with_groups - creates a device and registers it with sysfs
2568 * @class: pointer to the struct class that this device should be registered to
2569 * @parent: pointer to the parent struct device of this new device, if any
2570 * @devt: the dev_t for the char device to be added
2571 * @drvdata: the data to be added to the device for callbacks
2572 * @groups: NULL-terminated list of attribute groups to be created
2573 * @fmt: string for the device's name
2574 *
2575 * This function can be used by char device classes. A struct device
2576 * will be created in sysfs, registered to the specified class.
2577 * Additional attributes specified in the groups parameter will also
2578 * be created automatically.
2579 *
2580 * A "dev" file will be created, showing the dev_t for the device, if
2581 * the dev_t is not 0,0.
2582 * If a pointer to a parent struct device is passed in, the newly created
2583 * struct device will be a child of that device in sysfs.
2584 * The pointer to the struct device will be returned from the call.
2585 * Any further sysfs files that might be required can be created using this
2586 * pointer.
2587 *
2588 * Returns &struct device pointer on success, or ERR_PTR() on error.
2589 *
2590 * Note: the struct class passed to this function must have previously
2591 * been created with a call to class_create().
2592 */
2593 struct device *device_create_with_groups(struct class *class,
2594 struct device *parent, dev_t devt,
2595 void *drvdata,
2596 const struct attribute_group **groups,
2597 const char *fmt, ...)
2598 {
2599 va_list vargs;
2600 struct device *dev;
2601
2602 va_start(vargs, fmt);
2603 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2604 fmt, vargs);
2605 va_end(vargs);
2606 return dev;
2607 }
2608 EXPORT_SYMBOL_GPL(device_create_with_groups);
2609
2610 static int __match_devt(struct device *dev, const void *data)
2611 {
2612 const dev_t *devt = data;
2613
2614 return dev->devt == *devt;
2615 }
2616
2617 /**
2618 * device_destroy - removes a device that was created with device_create()
2619 * @class: pointer to the struct class that this device was registered with
2620 * @devt: the dev_t of the device that was previously registered
2621 *
2622 * This call unregisters and cleans up a device that was created with a
2623 * call to device_create().
2624 */
2625 void device_destroy(struct class *class, dev_t devt)
2626 {
2627 struct device *dev;
2628
2629 dev = class_find_device(class, NULL, &devt, __match_devt);
2630 if (dev) {
2631 put_device(dev);
2632 device_unregister(dev);
2633 }
2634 }
2635 EXPORT_SYMBOL_GPL(device_destroy);
2636
2637 /**
2638 * device_rename - renames a device
2639 * @dev: the pointer to the struct device to be renamed
2640 * @new_name: the new name of the device
2641 *
2642 * It is the responsibility of the caller to provide mutual
2643 * exclusion between two different calls of device_rename
2644 * on the same device to ensure that new_name is valid and
2645 * won't conflict with other devices.
2646 *
2647 * Note: Don't call this function. Currently, the networking layer calls this
2648 * function, but that will change. The following text from Kay Sievers offers
2649 * some insight:
2650 *
2651 * Renaming devices is racy at many levels, symlinks and other stuff are not
2652 * replaced atomically, and you get a "move" uevent, but it's not easy to
2653 * connect the event to the old and new device. Device nodes are not renamed at
2654 * all, there isn't even support for that in the kernel now.
2655 *
2656 * In the meantime, during renaming, your target name might be taken by another
2657 * driver, creating conflicts. Or the old name is taken directly after you
2658 * renamed it -- then you get events for the same DEVPATH, before you even see
2659 * the "move" event. It's just a mess, and nothing new should ever rely on
2660 * kernel device renaming. Besides that, it's not even implemented now for
2661 * other things than (driver-core wise very simple) network devices.
2662 *
2663 * We are currently about to change network renaming in udev to completely
2664 * disallow renaming of devices in the same namespace as the kernel uses,
2665 * because we can't solve the problems properly, that arise with swapping names
2666 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2667 * be allowed to some other name than eth[0-9]*, for the aforementioned
2668 * reasons.
2669 *
2670 * Make up a "real" name in the driver before you register anything, or add
2671 * some other attributes for userspace to find the device, or use udev to add
2672 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2673 * don't even want to get into that and try to implement the missing pieces in
2674 * the core. We really have other pieces to fix in the driver core mess. :)
2675 */
2676 int device_rename(struct device *dev, const char *new_name)
2677 {
2678 struct kobject *kobj = &dev->kobj;
2679 char *old_device_name = NULL;
2680 int error;
2681
2682 dev = get_device(dev);
2683 if (!dev)
2684 return -EINVAL;
2685
2686 dev_dbg(dev, "renaming to %s\n", new_name);
2687
2688 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2689 if (!old_device_name) {
2690 error = -ENOMEM;
2691 goto out;
2692 }
2693
2694 if (dev->class) {
2695 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2696 kobj, old_device_name,
2697 new_name, kobject_namespace(kobj));
2698 if (error)
2699 goto out;
2700 }
2701
2702 error = kobject_rename(kobj, new_name);
2703 if (error)
2704 goto out;
2705
2706 out:
2707 put_device(dev);
2708
2709 kfree(old_device_name);
2710
2711 return error;
2712 }
2713 EXPORT_SYMBOL_GPL(device_rename);
2714
2715 static int device_move_class_links(struct device *dev,
2716 struct device *old_parent,
2717 struct device *new_parent)
2718 {
2719 int error = 0;
2720
2721 if (old_parent)
2722 sysfs_remove_link(&dev->kobj, "device");
2723 if (new_parent)
2724 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2725 "device");
2726 return error;
2727 }
2728
2729 /**
2730 * device_move - moves a device to a new parent
2731 * @dev: the pointer to the struct device to be moved
2732 * @new_parent: the new parent of the device (can by NULL)
2733 * @dpm_order: how to reorder the dpm_list
2734 */
2735 int device_move(struct device *dev, struct device *new_parent,
2736 enum dpm_order dpm_order)
2737 {
2738 int error;
2739 struct device *old_parent;
2740 struct kobject *new_parent_kobj;
2741
2742 dev = get_device(dev);
2743 if (!dev)
2744 return -EINVAL;
2745
2746 device_pm_lock();
2747 new_parent = get_device(new_parent);
2748 new_parent_kobj = get_device_parent(dev, new_parent);
2749 if (IS_ERR(new_parent_kobj)) {
2750 error = PTR_ERR(new_parent_kobj);
2751 put_device(new_parent);
2752 goto out;
2753 }
2754
2755 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2756 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2757 error = kobject_move(&dev->kobj, new_parent_kobj);
2758 if (error) {
2759 cleanup_glue_dir(dev, new_parent_kobj);
2760 put_device(new_parent);
2761 goto out;
2762 }
2763 old_parent = dev->parent;
2764 dev->parent = new_parent;
2765 if (old_parent)
2766 klist_remove(&dev->p->knode_parent);
2767 if (new_parent) {
2768 klist_add_tail(&dev->p->knode_parent,
2769 &new_parent->p->klist_children);
2770 set_dev_node(dev, dev_to_node(new_parent));
2771 }
2772
2773 if (dev->class) {
2774 error = device_move_class_links(dev, old_parent, new_parent);
2775 if (error) {
2776 /* We ignore errors on cleanup since we're hosed anyway... */
2777 device_move_class_links(dev, new_parent, old_parent);
2778 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2779 if (new_parent)
2780 klist_remove(&dev->p->knode_parent);
2781 dev->parent = old_parent;
2782 if (old_parent) {
2783 klist_add_tail(&dev->p->knode_parent,
2784 &old_parent->p->klist_children);
2785 set_dev_node(dev, dev_to_node(old_parent));
2786 }
2787 }
2788 cleanup_glue_dir(dev, new_parent_kobj);
2789 put_device(new_parent);
2790 goto out;
2791 }
2792 }
2793 switch (dpm_order) {
2794 case DPM_ORDER_NONE:
2795 break;
2796 case DPM_ORDER_DEV_AFTER_PARENT:
2797 device_pm_move_after(dev, new_parent);
2798 devices_kset_move_after(dev, new_parent);
2799 break;
2800 case DPM_ORDER_PARENT_BEFORE_DEV:
2801 device_pm_move_before(new_parent, dev);
2802 devices_kset_move_before(new_parent, dev);
2803 break;
2804 case DPM_ORDER_DEV_LAST:
2805 device_pm_move_last(dev);
2806 devices_kset_move_last(dev);
2807 break;
2808 }
2809
2810 put_device(old_parent);
2811 out:
2812 device_pm_unlock();
2813 put_device(dev);
2814 return error;
2815 }
2816 EXPORT_SYMBOL_GPL(device_move);
2817
2818 /**
2819 * device_shutdown - call ->shutdown() on each device to shutdown.
2820 */
2821 void device_shutdown(void)
2822 {
2823 struct device *dev, *parent;
2824
2825 wait_for_device_probe();
2826 device_block_probing();
2827
2828 spin_lock(&devices_kset->list_lock);
2829 /*
2830 * Walk the devices list backward, shutting down each in turn.
2831 * Beware that device unplug events may also start pulling
2832 * devices offline, even as the system is shutting down.
2833 */
2834 while (!list_empty(&devices_kset->list)) {
2835 dev = list_entry(devices_kset->list.prev, struct device,
2836 kobj.entry);
2837
2838 /*
2839 * hold reference count of device's parent to
2840 * prevent it from being freed because parent's
2841 * lock is to be held
2842 */
2843 parent = get_device(dev->parent);
2844 get_device(dev);
2845 /*
2846 * Make sure the device is off the kset list, in the
2847 * event that dev->*->shutdown() doesn't remove it.
2848 */
2849 list_del_init(&dev->kobj.entry);
2850 spin_unlock(&devices_kset->list_lock);
2851
2852 /* hold lock to avoid race with probe/release */
2853 if (parent)
2854 device_lock(parent);
2855 device_lock(dev);
2856
2857 /* Don't allow any more runtime suspends */
2858 pm_runtime_get_noresume(dev);
2859 pm_runtime_barrier(dev);
2860
2861 if (dev->class && dev->class->shutdown_pre) {
2862 if (initcall_debug)
2863 dev_info(dev, "shutdown_pre\n");
2864 dev->class->shutdown_pre(dev);
2865 }
2866 if (dev->bus && dev->bus->shutdown) {
2867 if (initcall_debug)
2868 dev_info(dev, "shutdown\n");
2869 dev->bus->shutdown(dev);
2870 } else if (dev->driver && dev->driver->shutdown) {
2871 if (initcall_debug)
2872 dev_info(dev, "shutdown\n");
2873 dev->driver->shutdown(dev);
2874 }
2875
2876 device_unlock(dev);
2877 if (parent)
2878 device_unlock(parent);
2879
2880 put_device(dev);
2881 put_device(parent);
2882
2883 spin_lock(&devices_kset->list_lock);
2884 }
2885 spin_unlock(&devices_kset->list_lock);
2886 }
2887
2888 /*
2889 * Device logging functions
2890 */
2891
2892 #ifdef CONFIG_PRINTK
2893 static int
2894 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2895 {
2896 const char *subsys;
2897 size_t pos = 0;
2898
2899 if (dev->class)
2900 subsys = dev->class->name;
2901 else if (dev->bus)
2902 subsys = dev->bus->name;
2903 else
2904 return 0;
2905
2906 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2907 if (pos >= hdrlen)
2908 goto overflow;
2909
2910 /*
2911 * Add device identifier DEVICE=:
2912 * b12:8 block dev_t
2913 * c127:3 char dev_t
2914 * n8 netdev ifindex
2915 * +sound:card0 subsystem:devname
2916 */
2917 if (MAJOR(dev->devt)) {
2918 char c;
2919
2920 if (strcmp(subsys, "block") == 0)
2921 c = 'b';
2922 else
2923 c = 'c';
2924 pos++;
2925 pos += snprintf(hdr + pos, hdrlen - pos,
2926 "DEVICE=%c%u:%u",
2927 c, MAJOR(dev->devt), MINOR(dev->devt));
2928 } else if (strcmp(subsys, "net") == 0) {
2929 struct net_device *net = to_net_dev(dev);
2930
2931 pos++;
2932 pos += snprintf(hdr + pos, hdrlen - pos,
2933 "DEVICE=n%u", net->ifindex);
2934 } else {
2935 pos++;
2936 pos += snprintf(hdr + pos, hdrlen - pos,
2937 "DEVICE=+%s:%s", subsys, dev_name(dev));
2938 }
2939
2940 if (pos >= hdrlen)
2941 goto overflow;
2942
2943 return pos;
2944
2945 overflow:
2946 dev_WARN(dev, "device/subsystem name too long");
2947 return 0;
2948 }
2949
2950 int dev_vprintk_emit(int level, const struct device *dev,
2951 const char *fmt, va_list args)
2952 {
2953 char hdr[128];
2954 size_t hdrlen;
2955
2956 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2957
2958 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2959 }
2960 EXPORT_SYMBOL(dev_vprintk_emit);
2961
2962 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2963 {
2964 va_list args;
2965 int r;
2966
2967 va_start(args, fmt);
2968
2969 r = dev_vprintk_emit(level, dev, fmt, args);
2970
2971 va_end(args);
2972
2973 return r;
2974 }
2975 EXPORT_SYMBOL(dev_printk_emit);
2976
2977 static void __dev_printk(const char *level, const struct device *dev,
2978 struct va_format *vaf)
2979 {
2980 if (dev)
2981 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2982 dev_driver_string(dev), dev_name(dev), vaf);
2983 else
2984 printk("%s(NULL device *): %pV", level, vaf);
2985 }
2986
2987 void dev_printk(const char *level, const struct device *dev,
2988 const char *fmt, ...)
2989 {
2990 struct va_format vaf;
2991 va_list args;
2992
2993 va_start(args, fmt);
2994
2995 vaf.fmt = fmt;
2996 vaf.va = &args;
2997
2998 __dev_printk(level, dev, &vaf);
2999
3000 va_end(args);
3001 }
3002 EXPORT_SYMBOL(dev_printk);
3003
3004 #define define_dev_printk_level(func, kern_level) \
3005 void func(const struct device *dev, const char *fmt, ...) \
3006 { \
3007 struct va_format vaf; \
3008 va_list args; \
3009 \
3010 va_start(args, fmt); \
3011 \
3012 vaf.fmt = fmt; \
3013 vaf.va = &args; \
3014 \
3015 __dev_printk(kern_level, dev, &vaf); \
3016 \
3017 va_end(args); \
3018 } \
3019 EXPORT_SYMBOL(func);
3020
3021 define_dev_printk_level(dev_emerg, KERN_EMERG);
3022 define_dev_printk_level(dev_alert, KERN_ALERT);
3023 define_dev_printk_level(dev_crit, KERN_CRIT);
3024 define_dev_printk_level(dev_err, KERN_ERR);
3025 define_dev_printk_level(dev_warn, KERN_WARNING);
3026 define_dev_printk_level(dev_notice, KERN_NOTICE);
3027 define_dev_printk_level(_dev_info, KERN_INFO);
3028
3029 #endif
3030
3031 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3032 {
3033 return fwnode && !IS_ERR(fwnode->secondary);
3034 }
3035
3036 /**
3037 * set_primary_fwnode - Change the primary firmware node of a given device.
3038 * @dev: Device to handle.
3039 * @fwnode: New primary firmware node of the device.
3040 *
3041 * Set the device's firmware node pointer to @fwnode, but if a secondary
3042 * firmware node of the device is present, preserve it.
3043 */
3044 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3045 {
3046 if (fwnode) {
3047 struct fwnode_handle *fn = dev->fwnode;
3048
3049 if (fwnode_is_primary(fn))
3050 fn = fn->secondary;
3051
3052 if (fn) {
3053 WARN_ON(fwnode->secondary);
3054 fwnode->secondary = fn;
3055 }
3056 dev->fwnode = fwnode;
3057 } else {
3058 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3059 dev->fwnode->secondary : NULL;
3060 }
3061 }
3062 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3063
3064 /**
3065 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3066 * @dev: Device to handle.
3067 * @fwnode: New secondary firmware node of the device.
3068 *
3069 * If a primary firmware node of the device is present, set its secondary
3070 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3071 * @fwnode.
3072 */
3073 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3074 {
3075 if (fwnode)
3076 fwnode->secondary = ERR_PTR(-ENODEV);
3077
3078 if (fwnode_is_primary(dev->fwnode))
3079 dev->fwnode->secondary = fwnode;
3080 else
3081 dev->fwnode = fwnode;
3082 }
3083
3084 /**
3085 * device_set_of_node_from_dev - reuse device-tree node of another device
3086 * @dev: device whose device-tree node is being set
3087 * @dev2: device whose device-tree node is being reused
3088 *
3089 * Takes another reference to the new device-tree node after first dropping
3090 * any reference held to the old node.
3091 */
3092 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3093 {
3094 of_node_put(dev->of_node);
3095 dev->of_node = of_node_get(dev2->of_node);
3096 dev->of_node_reused = true;
3097 }
3098 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);