]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/base/core.c
Merge tag 'backlight-next-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / drivers / base / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31
32 #include "base.h"
33 #include "power/power.h"
34
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47
48 /* Device links support. */
49 static LIST_HEAD(deferred_sync);
50 static unsigned int defer_sync_state_count = 1;
51 static DEFINE_MUTEX(fwnode_link_lock);
52 static bool fw_devlink_is_permissive(void);
53
54 /**
55 * fwnode_link_add - Create a link between two fwnode_handles.
56 * @con: Consumer end of the link.
57 * @sup: Supplier end of the link.
58 *
59 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
60 * represents the detail that the firmware lists @sup fwnode as supplying a
61 * resource to @con.
62 *
63 * The driver core will use the fwnode link to create a device link between the
64 * two device objects corresponding to @con and @sup when they are created. The
65 * driver core will automatically delete the fwnode link between @con and @sup
66 * after doing that.
67 *
68 * Attempts to create duplicate links between the same pair of fwnode handles
69 * are ignored and there is no reference counting.
70 */
71 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
72 {
73 struct fwnode_link *link;
74 int ret = 0;
75
76 mutex_lock(&fwnode_link_lock);
77
78 list_for_each_entry(link, &sup->consumers, s_hook)
79 if (link->consumer == con)
80 goto out;
81
82 link = kzalloc(sizeof(*link), GFP_KERNEL);
83 if (!link) {
84 ret = -ENOMEM;
85 goto out;
86 }
87
88 link->supplier = sup;
89 INIT_LIST_HEAD(&link->s_hook);
90 link->consumer = con;
91 INIT_LIST_HEAD(&link->c_hook);
92
93 list_add(&link->s_hook, &sup->consumers);
94 list_add(&link->c_hook, &con->suppliers);
95 out:
96 mutex_unlock(&fwnode_link_lock);
97
98 return ret;
99 }
100
101 /**
102 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
103 * @fwnode: fwnode whose supplier links need to be deleted
104 *
105 * Deletes all supplier links connecting directly to @fwnode.
106 */
107 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
108 {
109 struct fwnode_link *link, *tmp;
110
111 mutex_lock(&fwnode_link_lock);
112 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
113 list_del(&link->s_hook);
114 list_del(&link->c_hook);
115 kfree(link);
116 }
117 mutex_unlock(&fwnode_link_lock);
118 }
119
120 /**
121 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
122 * @fwnode: fwnode whose consumer links need to be deleted
123 *
124 * Deletes all consumer links connecting directly to @fwnode.
125 */
126 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
127 {
128 struct fwnode_link *link, *tmp;
129
130 mutex_lock(&fwnode_link_lock);
131 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
132 list_del(&link->s_hook);
133 list_del(&link->c_hook);
134 kfree(link);
135 }
136 mutex_unlock(&fwnode_link_lock);
137 }
138
139 /**
140 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
141 * @fwnode: fwnode whose links needs to be deleted
142 *
143 * Deletes all links connecting directly to a fwnode.
144 */
145 void fwnode_links_purge(struct fwnode_handle *fwnode)
146 {
147 fwnode_links_purge_suppliers(fwnode);
148 fwnode_links_purge_consumers(fwnode);
149 }
150
151 #ifdef CONFIG_SRCU
152 static DEFINE_MUTEX(device_links_lock);
153 DEFINE_STATIC_SRCU(device_links_srcu);
154
155 static inline void device_links_write_lock(void)
156 {
157 mutex_lock(&device_links_lock);
158 }
159
160 static inline void device_links_write_unlock(void)
161 {
162 mutex_unlock(&device_links_lock);
163 }
164
165 int device_links_read_lock(void) __acquires(&device_links_srcu)
166 {
167 return srcu_read_lock(&device_links_srcu);
168 }
169
170 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
171 {
172 srcu_read_unlock(&device_links_srcu, idx);
173 }
174
175 int device_links_read_lock_held(void)
176 {
177 return srcu_read_lock_held(&device_links_srcu);
178 }
179 #else /* !CONFIG_SRCU */
180 static DECLARE_RWSEM(device_links_lock);
181
182 static inline void device_links_write_lock(void)
183 {
184 down_write(&device_links_lock);
185 }
186
187 static inline void device_links_write_unlock(void)
188 {
189 up_write(&device_links_lock);
190 }
191
192 int device_links_read_lock(void)
193 {
194 down_read(&device_links_lock);
195 return 0;
196 }
197
198 void device_links_read_unlock(int not_used)
199 {
200 up_read(&device_links_lock);
201 }
202
203 #ifdef CONFIG_DEBUG_LOCK_ALLOC
204 int device_links_read_lock_held(void)
205 {
206 return lockdep_is_held(&device_links_lock);
207 }
208 #endif
209 #endif /* !CONFIG_SRCU */
210
211 /**
212 * device_is_dependent - Check if one device depends on another one
213 * @dev: Device to check dependencies for.
214 * @target: Device to check against.
215 *
216 * Check if @target depends on @dev or any device dependent on it (its child or
217 * its consumer etc). Return 1 if that is the case or 0 otherwise.
218 */
219 int device_is_dependent(struct device *dev, void *target)
220 {
221 struct device_link *link;
222 int ret;
223
224 if (dev == target)
225 return 1;
226
227 ret = device_for_each_child(dev, target, device_is_dependent);
228 if (ret)
229 return ret;
230
231 list_for_each_entry(link, &dev->links.consumers, s_node) {
232 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
233 continue;
234
235 if (link->consumer == target)
236 return 1;
237
238 ret = device_is_dependent(link->consumer, target);
239 if (ret)
240 break;
241 }
242 return ret;
243 }
244
245 static void device_link_init_status(struct device_link *link,
246 struct device *consumer,
247 struct device *supplier)
248 {
249 switch (supplier->links.status) {
250 case DL_DEV_PROBING:
251 switch (consumer->links.status) {
252 case DL_DEV_PROBING:
253 /*
254 * A consumer driver can create a link to a supplier
255 * that has not completed its probing yet as long as it
256 * knows that the supplier is already functional (for
257 * example, it has just acquired some resources from the
258 * supplier).
259 */
260 link->status = DL_STATE_CONSUMER_PROBE;
261 break;
262 default:
263 link->status = DL_STATE_DORMANT;
264 break;
265 }
266 break;
267 case DL_DEV_DRIVER_BOUND:
268 switch (consumer->links.status) {
269 case DL_DEV_PROBING:
270 link->status = DL_STATE_CONSUMER_PROBE;
271 break;
272 case DL_DEV_DRIVER_BOUND:
273 link->status = DL_STATE_ACTIVE;
274 break;
275 default:
276 link->status = DL_STATE_AVAILABLE;
277 break;
278 }
279 break;
280 case DL_DEV_UNBINDING:
281 link->status = DL_STATE_SUPPLIER_UNBIND;
282 break;
283 default:
284 link->status = DL_STATE_DORMANT;
285 break;
286 }
287 }
288
289 static int device_reorder_to_tail(struct device *dev, void *not_used)
290 {
291 struct device_link *link;
292
293 /*
294 * Devices that have not been registered yet will be put to the ends
295 * of the lists during the registration, so skip them here.
296 */
297 if (device_is_registered(dev))
298 devices_kset_move_last(dev);
299
300 if (device_pm_initialized(dev))
301 device_pm_move_last(dev);
302
303 device_for_each_child(dev, NULL, device_reorder_to_tail);
304 list_for_each_entry(link, &dev->links.consumers, s_node) {
305 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
306 continue;
307 device_reorder_to_tail(link->consumer, NULL);
308 }
309
310 return 0;
311 }
312
313 /**
314 * device_pm_move_to_tail - Move set of devices to the end of device lists
315 * @dev: Device to move
316 *
317 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
318 *
319 * It moves the @dev along with all of its children and all of its consumers
320 * to the ends of the device_kset and dpm_list, recursively.
321 */
322 void device_pm_move_to_tail(struct device *dev)
323 {
324 int idx;
325
326 idx = device_links_read_lock();
327 device_pm_lock();
328 device_reorder_to_tail(dev, NULL);
329 device_pm_unlock();
330 device_links_read_unlock(idx);
331 }
332
333 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
334
335 static ssize_t status_show(struct device *dev,
336 struct device_attribute *attr, char *buf)
337 {
338 const char *output;
339
340 switch (to_devlink(dev)->status) {
341 case DL_STATE_NONE:
342 output = "not tracked";
343 break;
344 case DL_STATE_DORMANT:
345 output = "dormant";
346 break;
347 case DL_STATE_AVAILABLE:
348 output = "available";
349 break;
350 case DL_STATE_CONSUMER_PROBE:
351 output = "consumer probing";
352 break;
353 case DL_STATE_ACTIVE:
354 output = "active";
355 break;
356 case DL_STATE_SUPPLIER_UNBIND:
357 output = "supplier unbinding";
358 break;
359 default:
360 output = "unknown";
361 break;
362 }
363
364 return sysfs_emit(buf, "%s\n", output);
365 }
366 static DEVICE_ATTR_RO(status);
367
368 static ssize_t auto_remove_on_show(struct device *dev,
369 struct device_attribute *attr, char *buf)
370 {
371 struct device_link *link = to_devlink(dev);
372 const char *output;
373
374 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
375 output = "supplier unbind";
376 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
377 output = "consumer unbind";
378 else
379 output = "never";
380
381 return sysfs_emit(buf, "%s\n", output);
382 }
383 static DEVICE_ATTR_RO(auto_remove_on);
384
385 static ssize_t runtime_pm_show(struct device *dev,
386 struct device_attribute *attr, char *buf)
387 {
388 struct device_link *link = to_devlink(dev);
389
390 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
391 }
392 static DEVICE_ATTR_RO(runtime_pm);
393
394 static ssize_t sync_state_only_show(struct device *dev,
395 struct device_attribute *attr, char *buf)
396 {
397 struct device_link *link = to_devlink(dev);
398
399 return sysfs_emit(buf, "%d\n",
400 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
401 }
402 static DEVICE_ATTR_RO(sync_state_only);
403
404 static struct attribute *devlink_attrs[] = {
405 &dev_attr_status.attr,
406 &dev_attr_auto_remove_on.attr,
407 &dev_attr_runtime_pm.attr,
408 &dev_attr_sync_state_only.attr,
409 NULL,
410 };
411 ATTRIBUTE_GROUPS(devlink);
412
413 static void device_link_free(struct device_link *link)
414 {
415 while (refcount_dec_not_one(&link->rpm_active))
416 pm_runtime_put(link->supplier);
417
418 put_device(link->consumer);
419 put_device(link->supplier);
420 kfree(link);
421 }
422
423 #ifdef CONFIG_SRCU
424 static void __device_link_free_srcu(struct rcu_head *rhead)
425 {
426 device_link_free(container_of(rhead, struct device_link, rcu_head));
427 }
428
429 static void devlink_dev_release(struct device *dev)
430 {
431 struct device_link *link = to_devlink(dev);
432
433 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
434 }
435 #else
436 static void devlink_dev_release(struct device *dev)
437 {
438 device_link_free(to_devlink(dev));
439 }
440 #endif
441
442 static struct class devlink_class = {
443 .name = "devlink",
444 .owner = THIS_MODULE,
445 .dev_groups = devlink_groups,
446 .dev_release = devlink_dev_release,
447 };
448
449 static int devlink_add_symlinks(struct device *dev,
450 struct class_interface *class_intf)
451 {
452 int ret;
453 size_t len;
454 struct device_link *link = to_devlink(dev);
455 struct device *sup = link->supplier;
456 struct device *con = link->consumer;
457 char *buf;
458
459 len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
460 len += strlen("supplier:") + 1;
461 buf = kzalloc(len, GFP_KERNEL);
462 if (!buf)
463 return -ENOMEM;
464
465 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
466 if (ret)
467 goto out;
468
469 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
470 if (ret)
471 goto err_con;
472
473 snprintf(buf, len, "consumer:%s", dev_name(con));
474 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
475 if (ret)
476 goto err_con_dev;
477
478 snprintf(buf, len, "supplier:%s", dev_name(sup));
479 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
480 if (ret)
481 goto err_sup_dev;
482
483 goto out;
484
485 err_sup_dev:
486 snprintf(buf, len, "consumer:%s", dev_name(con));
487 sysfs_remove_link(&sup->kobj, buf);
488 err_con_dev:
489 sysfs_remove_link(&link->link_dev.kobj, "consumer");
490 err_con:
491 sysfs_remove_link(&link->link_dev.kobj, "supplier");
492 out:
493 kfree(buf);
494 return ret;
495 }
496
497 static void devlink_remove_symlinks(struct device *dev,
498 struct class_interface *class_intf)
499 {
500 struct device_link *link = to_devlink(dev);
501 size_t len;
502 struct device *sup = link->supplier;
503 struct device *con = link->consumer;
504 char *buf;
505
506 sysfs_remove_link(&link->link_dev.kobj, "consumer");
507 sysfs_remove_link(&link->link_dev.kobj, "supplier");
508
509 len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
510 len += strlen("supplier:") + 1;
511 buf = kzalloc(len, GFP_KERNEL);
512 if (!buf) {
513 WARN(1, "Unable to properly free device link symlinks!\n");
514 return;
515 }
516
517 snprintf(buf, len, "supplier:%s", dev_name(sup));
518 sysfs_remove_link(&con->kobj, buf);
519 snprintf(buf, len, "consumer:%s", dev_name(con));
520 sysfs_remove_link(&sup->kobj, buf);
521 kfree(buf);
522 }
523
524 static struct class_interface devlink_class_intf = {
525 .class = &devlink_class,
526 .add_dev = devlink_add_symlinks,
527 .remove_dev = devlink_remove_symlinks,
528 };
529
530 static int __init devlink_class_init(void)
531 {
532 int ret;
533
534 ret = class_register(&devlink_class);
535 if (ret)
536 return ret;
537
538 ret = class_interface_register(&devlink_class_intf);
539 if (ret)
540 class_unregister(&devlink_class);
541
542 return ret;
543 }
544 postcore_initcall(devlink_class_init);
545
546 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
547 DL_FLAG_AUTOREMOVE_SUPPLIER | \
548 DL_FLAG_AUTOPROBE_CONSUMER | \
549 DL_FLAG_SYNC_STATE_ONLY)
550
551 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
552 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
553
554 /**
555 * device_link_add - Create a link between two devices.
556 * @consumer: Consumer end of the link.
557 * @supplier: Supplier end of the link.
558 * @flags: Link flags.
559 *
560 * The caller is responsible for the proper synchronization of the link creation
561 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
562 * runtime PM framework to take the link into account. Second, if the
563 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
564 * be forced into the active meta state and reference-counted upon the creation
565 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
566 * ignored.
567 *
568 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
569 * expected to release the link returned by it directly with the help of either
570 * device_link_del() or device_link_remove().
571 *
572 * If that flag is not set, however, the caller of this function is handing the
573 * management of the link over to the driver core entirely and its return value
574 * can only be used to check whether or not the link is present. In that case,
575 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
576 * flags can be used to indicate to the driver core when the link can be safely
577 * deleted. Namely, setting one of them in @flags indicates to the driver core
578 * that the link is not going to be used (by the given caller of this function)
579 * after unbinding the consumer or supplier driver, respectively, from its
580 * device, so the link can be deleted at that point. If none of them is set,
581 * the link will be maintained until one of the devices pointed to by it (either
582 * the consumer or the supplier) is unregistered.
583 *
584 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
585 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
586 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
587 * be used to request the driver core to automatically probe for a consumer
588 * driver after successfully binding a driver to the supplier device.
589 *
590 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
591 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
592 * the same time is invalid and will cause NULL to be returned upfront.
593 * However, if a device link between the given @consumer and @supplier pair
594 * exists already when this function is called for them, the existing link will
595 * be returned regardless of its current type and status (the link's flags may
596 * be modified then). The caller of this function is then expected to treat
597 * the link as though it has just been created, so (in particular) if
598 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
599 * explicitly when not needed any more (as stated above).
600 *
601 * A side effect of the link creation is re-ordering of dpm_list and the
602 * devices_kset list by moving the consumer device and all devices depending
603 * on it to the ends of these lists (that does not happen to devices that have
604 * not been registered when this function is called).
605 *
606 * The supplier device is required to be registered when this function is called
607 * and NULL will be returned if that is not the case. The consumer device need
608 * not be registered, however.
609 */
610 struct device_link *device_link_add(struct device *consumer,
611 struct device *supplier, u32 flags)
612 {
613 struct device_link *link;
614
615 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
616 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
617 (flags & DL_FLAG_SYNC_STATE_ONLY &&
618 flags != DL_FLAG_SYNC_STATE_ONLY) ||
619 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
620 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
621 DL_FLAG_AUTOREMOVE_SUPPLIER)))
622 return NULL;
623
624 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
625 if (pm_runtime_get_sync(supplier) < 0) {
626 pm_runtime_put_noidle(supplier);
627 return NULL;
628 }
629 }
630
631 if (!(flags & DL_FLAG_STATELESS))
632 flags |= DL_FLAG_MANAGED;
633
634 device_links_write_lock();
635 device_pm_lock();
636
637 /*
638 * If the supplier has not been fully registered yet or there is a
639 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
640 * the supplier already in the graph, return NULL. If the link is a
641 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
642 * because it only affects sync_state() callbacks.
643 */
644 if (!device_pm_initialized(supplier)
645 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
646 device_is_dependent(consumer, supplier))) {
647 link = NULL;
648 goto out;
649 }
650
651 /*
652 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
653 * So, only create it if the consumer hasn't probed yet.
654 */
655 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
656 consumer->links.status != DL_DEV_NO_DRIVER &&
657 consumer->links.status != DL_DEV_PROBING) {
658 link = NULL;
659 goto out;
660 }
661
662 /*
663 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
664 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
665 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
666 */
667 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
668 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
669
670 list_for_each_entry(link, &supplier->links.consumers, s_node) {
671 if (link->consumer != consumer)
672 continue;
673
674 if (flags & DL_FLAG_PM_RUNTIME) {
675 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
676 pm_runtime_new_link(consumer);
677 link->flags |= DL_FLAG_PM_RUNTIME;
678 }
679 if (flags & DL_FLAG_RPM_ACTIVE)
680 refcount_inc(&link->rpm_active);
681 }
682
683 if (flags & DL_FLAG_STATELESS) {
684 kref_get(&link->kref);
685 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
686 !(link->flags & DL_FLAG_STATELESS)) {
687 link->flags |= DL_FLAG_STATELESS;
688 goto reorder;
689 } else {
690 link->flags |= DL_FLAG_STATELESS;
691 goto out;
692 }
693 }
694
695 /*
696 * If the life time of the link following from the new flags is
697 * longer than indicated by the flags of the existing link,
698 * update the existing link to stay around longer.
699 */
700 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
701 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
702 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
703 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
704 }
705 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
706 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
707 DL_FLAG_AUTOREMOVE_SUPPLIER);
708 }
709 if (!(link->flags & DL_FLAG_MANAGED)) {
710 kref_get(&link->kref);
711 link->flags |= DL_FLAG_MANAGED;
712 device_link_init_status(link, consumer, supplier);
713 }
714 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
715 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
716 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
717 goto reorder;
718 }
719
720 goto out;
721 }
722
723 link = kzalloc(sizeof(*link), GFP_KERNEL);
724 if (!link)
725 goto out;
726
727 refcount_set(&link->rpm_active, 1);
728
729 get_device(supplier);
730 link->supplier = supplier;
731 INIT_LIST_HEAD(&link->s_node);
732 get_device(consumer);
733 link->consumer = consumer;
734 INIT_LIST_HEAD(&link->c_node);
735 link->flags = flags;
736 kref_init(&link->kref);
737
738 link->link_dev.class = &devlink_class;
739 device_set_pm_not_required(&link->link_dev);
740 dev_set_name(&link->link_dev, "%s--%s",
741 dev_name(supplier), dev_name(consumer));
742 if (device_register(&link->link_dev)) {
743 put_device(consumer);
744 put_device(supplier);
745 kfree(link);
746 link = NULL;
747 goto out;
748 }
749
750 if (flags & DL_FLAG_PM_RUNTIME) {
751 if (flags & DL_FLAG_RPM_ACTIVE)
752 refcount_inc(&link->rpm_active);
753
754 pm_runtime_new_link(consumer);
755 }
756
757 /* Determine the initial link state. */
758 if (flags & DL_FLAG_STATELESS)
759 link->status = DL_STATE_NONE;
760 else
761 device_link_init_status(link, consumer, supplier);
762
763 /*
764 * Some callers expect the link creation during consumer driver probe to
765 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
766 */
767 if (link->status == DL_STATE_CONSUMER_PROBE &&
768 flags & DL_FLAG_PM_RUNTIME)
769 pm_runtime_resume(supplier);
770
771 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
772 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
773
774 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
775 dev_dbg(consumer,
776 "Linked as a sync state only consumer to %s\n",
777 dev_name(supplier));
778 goto out;
779 }
780
781 reorder:
782 /*
783 * Move the consumer and all of the devices depending on it to the end
784 * of dpm_list and the devices_kset list.
785 *
786 * It is necessary to hold dpm_list locked throughout all that or else
787 * we may end up suspending with a wrong ordering of it.
788 */
789 device_reorder_to_tail(consumer, NULL);
790
791 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
792
793 out:
794 device_pm_unlock();
795 device_links_write_unlock();
796
797 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
798 pm_runtime_put(supplier);
799
800 return link;
801 }
802 EXPORT_SYMBOL_GPL(device_link_add);
803
804 #ifdef CONFIG_SRCU
805 static void __device_link_del(struct kref *kref)
806 {
807 struct device_link *link = container_of(kref, struct device_link, kref);
808
809 dev_dbg(link->consumer, "Dropping the link to %s\n",
810 dev_name(link->supplier));
811
812 pm_runtime_drop_link(link);
813
814 list_del_rcu(&link->s_node);
815 list_del_rcu(&link->c_node);
816 device_unregister(&link->link_dev);
817 }
818 #else /* !CONFIG_SRCU */
819 static void __device_link_del(struct kref *kref)
820 {
821 struct device_link *link = container_of(kref, struct device_link, kref);
822
823 dev_info(link->consumer, "Dropping the link to %s\n",
824 dev_name(link->supplier));
825
826 pm_runtime_drop_link(link);
827
828 list_del(&link->s_node);
829 list_del(&link->c_node);
830 device_unregister(&link->link_dev);
831 }
832 #endif /* !CONFIG_SRCU */
833
834 static void device_link_put_kref(struct device_link *link)
835 {
836 if (link->flags & DL_FLAG_STATELESS)
837 kref_put(&link->kref, __device_link_del);
838 else
839 WARN(1, "Unable to drop a managed device link reference\n");
840 }
841
842 /**
843 * device_link_del - Delete a stateless link between two devices.
844 * @link: Device link to delete.
845 *
846 * The caller must ensure proper synchronization of this function with runtime
847 * PM. If the link was added multiple times, it needs to be deleted as often.
848 * Care is required for hotplugged devices: Their links are purged on removal
849 * and calling device_link_del() is then no longer allowed.
850 */
851 void device_link_del(struct device_link *link)
852 {
853 device_links_write_lock();
854 device_link_put_kref(link);
855 device_links_write_unlock();
856 }
857 EXPORT_SYMBOL_GPL(device_link_del);
858
859 /**
860 * device_link_remove - Delete a stateless link between two devices.
861 * @consumer: Consumer end of the link.
862 * @supplier: Supplier end of the link.
863 *
864 * The caller must ensure proper synchronization of this function with runtime
865 * PM.
866 */
867 void device_link_remove(void *consumer, struct device *supplier)
868 {
869 struct device_link *link;
870
871 if (WARN_ON(consumer == supplier))
872 return;
873
874 device_links_write_lock();
875
876 list_for_each_entry(link, &supplier->links.consumers, s_node) {
877 if (link->consumer == consumer) {
878 device_link_put_kref(link);
879 break;
880 }
881 }
882
883 device_links_write_unlock();
884 }
885 EXPORT_SYMBOL_GPL(device_link_remove);
886
887 static void device_links_missing_supplier(struct device *dev)
888 {
889 struct device_link *link;
890
891 list_for_each_entry(link, &dev->links.suppliers, c_node) {
892 if (link->status != DL_STATE_CONSUMER_PROBE)
893 continue;
894
895 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
896 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
897 } else {
898 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
899 WRITE_ONCE(link->status, DL_STATE_DORMANT);
900 }
901 }
902 }
903
904 /**
905 * device_links_check_suppliers - Check presence of supplier drivers.
906 * @dev: Consumer device.
907 *
908 * Check links from this device to any suppliers. Walk the list of the device's
909 * links to suppliers and see if all of them are available. If not, simply
910 * return -EPROBE_DEFER.
911 *
912 * We need to guarantee that the supplier will not go away after the check has
913 * been positive here. It only can go away in __device_release_driver() and
914 * that function checks the device's links to consumers. This means we need to
915 * mark the link as "consumer probe in progress" to make the supplier removal
916 * wait for us to complete (or bad things may happen).
917 *
918 * Links without the DL_FLAG_MANAGED flag set are ignored.
919 */
920 int device_links_check_suppliers(struct device *dev)
921 {
922 struct device_link *link;
923 int ret = 0;
924
925 /*
926 * Device waiting for supplier to become available is not allowed to
927 * probe.
928 */
929 mutex_lock(&fwnode_link_lock);
930 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
931 !fw_devlink_is_permissive()) {
932 mutex_unlock(&fwnode_link_lock);
933 return -EPROBE_DEFER;
934 }
935 mutex_unlock(&fwnode_link_lock);
936
937 device_links_write_lock();
938
939 list_for_each_entry(link, &dev->links.suppliers, c_node) {
940 if (!(link->flags & DL_FLAG_MANAGED))
941 continue;
942
943 if (link->status != DL_STATE_AVAILABLE &&
944 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
945 device_links_missing_supplier(dev);
946 ret = -EPROBE_DEFER;
947 break;
948 }
949 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
950 }
951 dev->links.status = DL_DEV_PROBING;
952
953 device_links_write_unlock();
954 return ret;
955 }
956
957 /**
958 * __device_links_queue_sync_state - Queue a device for sync_state() callback
959 * @dev: Device to call sync_state() on
960 * @list: List head to queue the @dev on
961 *
962 * Queues a device for a sync_state() callback when the device links write lock
963 * isn't held. This allows the sync_state() execution flow to use device links
964 * APIs. The caller must ensure this function is called with
965 * device_links_write_lock() held.
966 *
967 * This function does a get_device() to make sure the device is not freed while
968 * on this list.
969 *
970 * So the caller must also ensure that device_links_flush_sync_list() is called
971 * as soon as the caller releases device_links_write_lock(). This is necessary
972 * to make sure the sync_state() is called in a timely fashion and the
973 * put_device() is called on this device.
974 */
975 static void __device_links_queue_sync_state(struct device *dev,
976 struct list_head *list)
977 {
978 struct device_link *link;
979
980 if (!dev_has_sync_state(dev))
981 return;
982 if (dev->state_synced)
983 return;
984
985 list_for_each_entry(link, &dev->links.consumers, s_node) {
986 if (!(link->flags & DL_FLAG_MANAGED))
987 continue;
988 if (link->status != DL_STATE_ACTIVE)
989 return;
990 }
991
992 /*
993 * Set the flag here to avoid adding the same device to a list more
994 * than once. This can happen if new consumers get added to the device
995 * and probed before the list is flushed.
996 */
997 dev->state_synced = true;
998
999 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1000 return;
1001
1002 get_device(dev);
1003 list_add_tail(&dev->links.defer_sync, list);
1004 }
1005
1006 /**
1007 * device_links_flush_sync_list - Call sync_state() on a list of devices
1008 * @list: List of devices to call sync_state() on
1009 * @dont_lock_dev: Device for which lock is already held by the caller
1010 *
1011 * Calls sync_state() on all the devices that have been queued for it. This
1012 * function is used in conjunction with __device_links_queue_sync_state(). The
1013 * @dont_lock_dev parameter is useful when this function is called from a
1014 * context where a device lock is already held.
1015 */
1016 static void device_links_flush_sync_list(struct list_head *list,
1017 struct device *dont_lock_dev)
1018 {
1019 struct device *dev, *tmp;
1020
1021 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1022 list_del_init(&dev->links.defer_sync);
1023
1024 if (dev != dont_lock_dev)
1025 device_lock(dev);
1026
1027 if (dev->bus->sync_state)
1028 dev->bus->sync_state(dev);
1029 else if (dev->driver && dev->driver->sync_state)
1030 dev->driver->sync_state(dev);
1031
1032 if (dev != dont_lock_dev)
1033 device_unlock(dev);
1034
1035 put_device(dev);
1036 }
1037 }
1038
1039 void device_links_supplier_sync_state_pause(void)
1040 {
1041 device_links_write_lock();
1042 defer_sync_state_count++;
1043 device_links_write_unlock();
1044 }
1045
1046 void device_links_supplier_sync_state_resume(void)
1047 {
1048 struct device *dev, *tmp;
1049 LIST_HEAD(sync_list);
1050
1051 device_links_write_lock();
1052 if (!defer_sync_state_count) {
1053 WARN(true, "Unmatched sync_state pause/resume!");
1054 goto out;
1055 }
1056 defer_sync_state_count--;
1057 if (defer_sync_state_count)
1058 goto out;
1059
1060 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1061 /*
1062 * Delete from deferred_sync list before queuing it to
1063 * sync_list because defer_sync is used for both lists.
1064 */
1065 list_del_init(&dev->links.defer_sync);
1066 __device_links_queue_sync_state(dev, &sync_list);
1067 }
1068 out:
1069 device_links_write_unlock();
1070
1071 device_links_flush_sync_list(&sync_list, NULL);
1072 }
1073
1074 static int sync_state_resume_initcall(void)
1075 {
1076 device_links_supplier_sync_state_resume();
1077 return 0;
1078 }
1079 late_initcall(sync_state_resume_initcall);
1080
1081 static void __device_links_supplier_defer_sync(struct device *sup)
1082 {
1083 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1084 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1085 }
1086
1087 static void device_link_drop_managed(struct device_link *link)
1088 {
1089 link->flags &= ~DL_FLAG_MANAGED;
1090 WRITE_ONCE(link->status, DL_STATE_NONE);
1091 kref_put(&link->kref, __device_link_del);
1092 }
1093
1094 static ssize_t waiting_for_supplier_show(struct device *dev,
1095 struct device_attribute *attr,
1096 char *buf)
1097 {
1098 bool val;
1099
1100 device_lock(dev);
1101 val = !list_empty(&dev->fwnode->suppliers);
1102 device_unlock(dev);
1103 return sysfs_emit(buf, "%u\n", val);
1104 }
1105 static DEVICE_ATTR_RO(waiting_for_supplier);
1106
1107 /**
1108 * device_links_driver_bound - Update device links after probing its driver.
1109 * @dev: Device to update the links for.
1110 *
1111 * The probe has been successful, so update links from this device to any
1112 * consumers by changing their status to "available".
1113 *
1114 * Also change the status of @dev's links to suppliers to "active".
1115 *
1116 * Links without the DL_FLAG_MANAGED flag set are ignored.
1117 */
1118 void device_links_driver_bound(struct device *dev)
1119 {
1120 struct device_link *link, *ln;
1121 LIST_HEAD(sync_list);
1122
1123 /*
1124 * If a device probes successfully, it's expected to have created all
1125 * the device links it needs to or make new device links as it needs
1126 * them. So, it no longer needs to wait on any suppliers.
1127 */
1128 if (dev->fwnode && dev->fwnode->dev == dev)
1129 fwnode_links_purge_suppliers(dev->fwnode);
1130 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1131
1132 device_links_write_lock();
1133
1134 list_for_each_entry(link, &dev->links.consumers, s_node) {
1135 if (!(link->flags & DL_FLAG_MANAGED))
1136 continue;
1137
1138 /*
1139 * Links created during consumer probe may be in the "consumer
1140 * probe" state to start with if the supplier is still probing
1141 * when they are created and they may become "active" if the
1142 * consumer probe returns first. Skip them here.
1143 */
1144 if (link->status == DL_STATE_CONSUMER_PROBE ||
1145 link->status == DL_STATE_ACTIVE)
1146 continue;
1147
1148 WARN_ON(link->status != DL_STATE_DORMANT);
1149 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1150
1151 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1152 driver_deferred_probe_add(link->consumer);
1153 }
1154
1155 if (defer_sync_state_count)
1156 __device_links_supplier_defer_sync(dev);
1157 else
1158 __device_links_queue_sync_state(dev, &sync_list);
1159
1160 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1161 struct device *supplier;
1162
1163 if (!(link->flags & DL_FLAG_MANAGED))
1164 continue;
1165
1166 supplier = link->supplier;
1167 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1168 /*
1169 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1170 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1171 * save to drop the managed link completely.
1172 */
1173 device_link_drop_managed(link);
1174 } else {
1175 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1176 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1177 }
1178
1179 /*
1180 * This needs to be done even for the deleted
1181 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1182 * device link that was preventing the supplier from getting a
1183 * sync_state() call.
1184 */
1185 if (defer_sync_state_count)
1186 __device_links_supplier_defer_sync(supplier);
1187 else
1188 __device_links_queue_sync_state(supplier, &sync_list);
1189 }
1190
1191 dev->links.status = DL_DEV_DRIVER_BOUND;
1192
1193 device_links_write_unlock();
1194
1195 device_links_flush_sync_list(&sync_list, dev);
1196 }
1197
1198 /**
1199 * __device_links_no_driver - Update links of a device without a driver.
1200 * @dev: Device without a drvier.
1201 *
1202 * Delete all non-persistent links from this device to any suppliers.
1203 *
1204 * Persistent links stay around, but their status is changed to "available",
1205 * unless they already are in the "supplier unbind in progress" state in which
1206 * case they need not be updated.
1207 *
1208 * Links without the DL_FLAG_MANAGED flag set are ignored.
1209 */
1210 static void __device_links_no_driver(struct device *dev)
1211 {
1212 struct device_link *link, *ln;
1213
1214 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1215 if (!(link->flags & DL_FLAG_MANAGED))
1216 continue;
1217
1218 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1219 device_link_drop_managed(link);
1220 continue;
1221 }
1222
1223 if (link->status != DL_STATE_CONSUMER_PROBE &&
1224 link->status != DL_STATE_ACTIVE)
1225 continue;
1226
1227 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1228 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1229 } else {
1230 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1231 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1232 }
1233 }
1234
1235 dev->links.status = DL_DEV_NO_DRIVER;
1236 }
1237
1238 /**
1239 * device_links_no_driver - Update links after failing driver probe.
1240 * @dev: Device whose driver has just failed to probe.
1241 *
1242 * Clean up leftover links to consumers for @dev and invoke
1243 * %__device_links_no_driver() to update links to suppliers for it as
1244 * appropriate.
1245 *
1246 * Links without the DL_FLAG_MANAGED flag set are ignored.
1247 */
1248 void device_links_no_driver(struct device *dev)
1249 {
1250 struct device_link *link;
1251
1252 device_links_write_lock();
1253
1254 list_for_each_entry(link, &dev->links.consumers, s_node) {
1255 if (!(link->flags & DL_FLAG_MANAGED))
1256 continue;
1257
1258 /*
1259 * The probe has failed, so if the status of the link is
1260 * "consumer probe" or "active", it must have been added by
1261 * a probing consumer while this device was still probing.
1262 * Change its state to "dormant", as it represents a valid
1263 * relationship, but it is not functionally meaningful.
1264 */
1265 if (link->status == DL_STATE_CONSUMER_PROBE ||
1266 link->status == DL_STATE_ACTIVE)
1267 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268 }
1269
1270 __device_links_no_driver(dev);
1271
1272 device_links_write_unlock();
1273 }
1274
1275 /**
1276 * device_links_driver_cleanup - Update links after driver removal.
1277 * @dev: Device whose driver has just gone away.
1278 *
1279 * Update links to consumers for @dev by changing their status to "dormant" and
1280 * invoke %__device_links_no_driver() to update links to suppliers for it as
1281 * appropriate.
1282 *
1283 * Links without the DL_FLAG_MANAGED flag set are ignored.
1284 */
1285 void device_links_driver_cleanup(struct device *dev)
1286 {
1287 struct device_link *link, *ln;
1288
1289 device_links_write_lock();
1290
1291 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1292 if (!(link->flags & DL_FLAG_MANAGED))
1293 continue;
1294
1295 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1296 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1297
1298 /*
1299 * autoremove the links between this @dev and its consumer
1300 * devices that are not active, i.e. where the link state
1301 * has moved to DL_STATE_SUPPLIER_UNBIND.
1302 */
1303 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1304 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1305 device_link_drop_managed(link);
1306
1307 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1308 }
1309
1310 list_del_init(&dev->links.defer_sync);
1311 __device_links_no_driver(dev);
1312
1313 device_links_write_unlock();
1314 }
1315
1316 /**
1317 * device_links_busy - Check if there are any busy links to consumers.
1318 * @dev: Device to check.
1319 *
1320 * Check each consumer of the device and return 'true' if its link's status
1321 * is one of "consumer probe" or "active" (meaning that the given consumer is
1322 * probing right now or its driver is present). Otherwise, change the link
1323 * state to "supplier unbind" to prevent the consumer from being probed
1324 * successfully going forward.
1325 *
1326 * Return 'false' if there are no probing or active consumers.
1327 *
1328 * Links without the DL_FLAG_MANAGED flag set are ignored.
1329 */
1330 bool device_links_busy(struct device *dev)
1331 {
1332 struct device_link *link;
1333 bool ret = false;
1334
1335 device_links_write_lock();
1336
1337 list_for_each_entry(link, &dev->links.consumers, s_node) {
1338 if (!(link->flags & DL_FLAG_MANAGED))
1339 continue;
1340
1341 if (link->status == DL_STATE_CONSUMER_PROBE
1342 || link->status == DL_STATE_ACTIVE) {
1343 ret = true;
1344 break;
1345 }
1346 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1347 }
1348
1349 dev->links.status = DL_DEV_UNBINDING;
1350
1351 device_links_write_unlock();
1352 return ret;
1353 }
1354
1355 /**
1356 * device_links_unbind_consumers - Force unbind consumers of the given device.
1357 * @dev: Device to unbind the consumers of.
1358 *
1359 * Walk the list of links to consumers for @dev and if any of them is in the
1360 * "consumer probe" state, wait for all device probes in progress to complete
1361 * and start over.
1362 *
1363 * If that's not the case, change the status of the link to "supplier unbind"
1364 * and check if the link was in the "active" state. If so, force the consumer
1365 * driver to unbind and start over (the consumer will not re-probe as we have
1366 * changed the state of the link already).
1367 *
1368 * Links without the DL_FLAG_MANAGED flag set are ignored.
1369 */
1370 void device_links_unbind_consumers(struct device *dev)
1371 {
1372 struct device_link *link;
1373
1374 start:
1375 device_links_write_lock();
1376
1377 list_for_each_entry(link, &dev->links.consumers, s_node) {
1378 enum device_link_state status;
1379
1380 if (!(link->flags & DL_FLAG_MANAGED) ||
1381 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1382 continue;
1383
1384 status = link->status;
1385 if (status == DL_STATE_CONSUMER_PROBE) {
1386 device_links_write_unlock();
1387
1388 wait_for_device_probe();
1389 goto start;
1390 }
1391 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1392 if (status == DL_STATE_ACTIVE) {
1393 struct device *consumer = link->consumer;
1394
1395 get_device(consumer);
1396
1397 device_links_write_unlock();
1398
1399 device_release_driver_internal(consumer, NULL,
1400 consumer->parent);
1401 put_device(consumer);
1402 goto start;
1403 }
1404 }
1405
1406 device_links_write_unlock();
1407 }
1408
1409 /**
1410 * device_links_purge - Delete existing links to other devices.
1411 * @dev: Target device.
1412 */
1413 static void device_links_purge(struct device *dev)
1414 {
1415 struct device_link *link, *ln;
1416
1417 if (dev->class == &devlink_class)
1418 return;
1419
1420 /*
1421 * Delete all of the remaining links from this device to any other
1422 * devices (either consumers or suppliers).
1423 */
1424 device_links_write_lock();
1425
1426 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1427 WARN_ON(link->status == DL_STATE_ACTIVE);
1428 __device_link_del(&link->kref);
1429 }
1430
1431 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1432 WARN_ON(link->status != DL_STATE_DORMANT &&
1433 link->status != DL_STATE_NONE);
1434 __device_link_del(&link->kref);
1435 }
1436
1437 device_links_write_unlock();
1438 }
1439
1440 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1441 static int __init fw_devlink_setup(char *arg)
1442 {
1443 if (!arg)
1444 return -EINVAL;
1445
1446 if (strcmp(arg, "off") == 0) {
1447 fw_devlink_flags = 0;
1448 } else if (strcmp(arg, "permissive") == 0) {
1449 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1450 } else if (strcmp(arg, "on") == 0) {
1451 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1452 } else if (strcmp(arg, "rpm") == 0) {
1453 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1454 DL_FLAG_PM_RUNTIME;
1455 }
1456 return 0;
1457 }
1458 early_param("fw_devlink", fw_devlink_setup);
1459
1460 u32 fw_devlink_get_flags(void)
1461 {
1462 return fw_devlink_flags;
1463 }
1464
1465 static bool fw_devlink_is_permissive(void)
1466 {
1467 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1468 }
1469
1470 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1471 {
1472 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1473 return;
1474
1475 fwnode_call_int_op(fwnode, add_links);
1476 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1477 }
1478
1479 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1480 {
1481 struct fwnode_handle *child = NULL;
1482
1483 fw_devlink_parse_fwnode(fwnode);
1484
1485 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1486 fw_devlink_parse_fwtree(child);
1487 }
1488
1489 /**
1490 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1491 * @con - Consumer device for the device link
1492 * @sup_handle - fwnode handle of supplier
1493 *
1494 * This function will try to create a device link between the consumer device
1495 * @con and the supplier device represented by @sup_handle.
1496 *
1497 * The supplier has to be provided as a fwnode because incorrect cycles in
1498 * fwnode links can sometimes cause the supplier device to never be created.
1499 * This function detects such cases and returns an error if it cannot create a
1500 * device link from the consumer to a missing supplier.
1501 *
1502 * Returns,
1503 * 0 on successfully creating a device link
1504 * -EINVAL if the device link cannot be created as expected
1505 * -EAGAIN if the device link cannot be created right now, but it may be
1506 * possible to do that in the future
1507 */
1508 static int fw_devlink_create_devlink(struct device *con,
1509 struct fwnode_handle *sup_handle, u32 flags)
1510 {
1511 struct device *sup_dev;
1512 int ret = 0;
1513
1514 sup_dev = get_dev_from_fwnode(sup_handle);
1515 if (sup_dev) {
1516 /*
1517 * If this fails, it is due to cycles in device links. Just
1518 * give up on this link and treat it as invalid.
1519 */
1520 if (!device_link_add(con, sup_dev, flags))
1521 ret = -EINVAL;
1522
1523 goto out;
1524 }
1525
1526 /*
1527 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1528 * cycles. So cycle detection isn't necessary and shouldn't be
1529 * done.
1530 */
1531 if (flags & DL_FLAG_SYNC_STATE_ONLY)
1532 return -EAGAIN;
1533
1534 /*
1535 * If we can't find the supplier device from its fwnode, it might be
1536 * due to a cyclic dependency between fwnodes. Some of these cycles can
1537 * be broken by applying logic. Check for these types of cycles and
1538 * break them so that devices in the cycle probe properly.
1539 *
1540 * If the supplier's parent is dependent on the consumer, then
1541 * the consumer-supplier dependency is a false dependency. So,
1542 * treat it as an invalid link.
1543 */
1544 sup_dev = fwnode_get_next_parent_dev(sup_handle);
1545 if (sup_dev && device_is_dependent(con, sup_dev)) {
1546 dev_dbg(con, "Not linking to %pfwP - False link\n",
1547 sup_handle);
1548 ret = -EINVAL;
1549 } else {
1550 /*
1551 * Can't check for cycles or no cycles. So let's try
1552 * again later.
1553 */
1554 ret = -EAGAIN;
1555 }
1556
1557 out:
1558 put_device(sup_dev);
1559 return ret;
1560 }
1561
1562 /**
1563 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1564 * @dev - Device that needs to be linked to its consumers
1565 *
1566 * This function looks at all the consumer fwnodes of @dev and creates device
1567 * links between the consumer device and @dev (supplier).
1568 *
1569 * If the consumer device has not been added yet, then this function creates a
1570 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1571 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1572 * sync_state() callback before the real consumer device gets to be added and
1573 * then probed.
1574 *
1575 * Once device links are created from the real consumer to @dev (supplier), the
1576 * fwnode links are deleted.
1577 */
1578 static void __fw_devlink_link_to_consumers(struct device *dev)
1579 {
1580 struct fwnode_handle *fwnode = dev->fwnode;
1581 struct fwnode_link *link, *tmp;
1582
1583 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1584 u32 dl_flags = fw_devlink_get_flags();
1585 struct device *con_dev;
1586 bool own_link = true;
1587 int ret;
1588
1589 con_dev = get_dev_from_fwnode(link->consumer);
1590 /*
1591 * If consumer device is not available yet, make a "proxy"
1592 * SYNC_STATE_ONLY link from the consumer's parent device to
1593 * the supplier device. This is necessary to make sure the
1594 * supplier doesn't get a sync_state() callback before the real
1595 * consumer can create a device link to the supplier.
1596 *
1597 * This proxy link step is needed to handle the case where the
1598 * consumer's parent device is added before the supplier.
1599 */
1600 if (!con_dev) {
1601 con_dev = fwnode_get_next_parent_dev(link->consumer);
1602 /*
1603 * However, if the consumer's parent device is also the
1604 * parent of the supplier, don't create a
1605 * consumer-supplier link from the parent to its child
1606 * device. Such a dependency is impossible.
1607 */
1608 if (con_dev &&
1609 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1610 put_device(con_dev);
1611 con_dev = NULL;
1612 } else {
1613 own_link = false;
1614 dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1615 }
1616 }
1617
1618 if (!con_dev)
1619 continue;
1620
1621 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1622 put_device(con_dev);
1623 if (!own_link || ret == -EAGAIN)
1624 continue;
1625
1626 list_del(&link->s_hook);
1627 list_del(&link->c_hook);
1628 kfree(link);
1629 }
1630 }
1631
1632 /**
1633 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1634 * @dev - The consumer device that needs to be linked to its suppliers
1635 * @fwnode - Root of the fwnode tree that is used to create device links
1636 *
1637 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1638 * @fwnode and creates device links between @dev (consumer) and all the
1639 * supplier devices of the entire fwnode tree at @fwnode.
1640 *
1641 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1642 * and the real suppliers of @dev. Once these device links are created, the
1643 * fwnode links are deleted. When such device links are successfully created,
1644 * this function is called recursively on those supplier devices. This is
1645 * needed to detect and break some invalid cycles in fwnode links. See
1646 * fw_devlink_create_devlink() for more details.
1647 *
1648 * In addition, it also looks at all the suppliers of the entire fwnode tree
1649 * because some of the child devices of @dev that have not been added yet
1650 * (because @dev hasn't probed) might already have their suppliers added to
1651 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1652 * @dev (consumer) and these suppliers to make sure they don't execute their
1653 * sync_state() callbacks before these child devices have a chance to create
1654 * their device links. The fwnode links that correspond to the child devices
1655 * aren't delete because they are needed later to create the device links
1656 * between the real consumer and supplier devices.
1657 */
1658 static void __fw_devlink_link_to_suppliers(struct device *dev,
1659 struct fwnode_handle *fwnode)
1660 {
1661 bool own_link = (dev->fwnode == fwnode);
1662 struct fwnode_link *link, *tmp;
1663 struct fwnode_handle *child = NULL;
1664 u32 dl_flags;
1665
1666 if (own_link)
1667 dl_flags = fw_devlink_get_flags();
1668 else
1669 dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1670
1671 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1672 int ret;
1673 struct device *sup_dev;
1674 struct fwnode_handle *sup = link->supplier;
1675
1676 ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1677 if (!own_link || ret == -EAGAIN)
1678 continue;
1679
1680 list_del(&link->s_hook);
1681 list_del(&link->c_hook);
1682 kfree(link);
1683
1684 /* If no device link was created, nothing more to do. */
1685 if (ret)
1686 continue;
1687
1688 /*
1689 * If a device link was successfully created to a supplier, we
1690 * now need to try and link the supplier to all its suppliers.
1691 *
1692 * This is needed to detect and delete false dependencies in
1693 * fwnode links that haven't been converted to a device link
1694 * yet. See comments in fw_devlink_create_devlink() for more
1695 * details on the false dependency.
1696 *
1697 * Without deleting these false dependencies, some devices will
1698 * never probe because they'll keep waiting for their false
1699 * dependency fwnode links to be converted to device links.
1700 */
1701 sup_dev = get_dev_from_fwnode(sup);
1702 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1703 put_device(sup_dev);
1704 }
1705
1706 /*
1707 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1708 * all the descendants. This proxy link step is needed to handle the
1709 * case where the supplier is added before the consumer's parent device
1710 * (@dev).
1711 */
1712 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1713 __fw_devlink_link_to_suppliers(dev, child);
1714 }
1715
1716 static void fw_devlink_link_device(struct device *dev)
1717 {
1718 struct fwnode_handle *fwnode = dev->fwnode;
1719
1720 if (!fw_devlink_flags)
1721 return;
1722
1723 fw_devlink_parse_fwtree(fwnode);
1724
1725 mutex_lock(&fwnode_link_lock);
1726 __fw_devlink_link_to_consumers(dev);
1727 __fw_devlink_link_to_suppliers(dev, fwnode);
1728 mutex_unlock(&fwnode_link_lock);
1729 }
1730
1731 /* Device links support end. */
1732
1733 int (*platform_notify)(struct device *dev) = NULL;
1734 int (*platform_notify_remove)(struct device *dev) = NULL;
1735 static struct kobject *dev_kobj;
1736 struct kobject *sysfs_dev_char_kobj;
1737 struct kobject *sysfs_dev_block_kobj;
1738
1739 static DEFINE_MUTEX(device_hotplug_lock);
1740
1741 void lock_device_hotplug(void)
1742 {
1743 mutex_lock(&device_hotplug_lock);
1744 }
1745
1746 void unlock_device_hotplug(void)
1747 {
1748 mutex_unlock(&device_hotplug_lock);
1749 }
1750
1751 int lock_device_hotplug_sysfs(void)
1752 {
1753 if (mutex_trylock(&device_hotplug_lock))
1754 return 0;
1755
1756 /* Avoid busy looping (5 ms of sleep should do). */
1757 msleep(5);
1758 return restart_syscall();
1759 }
1760
1761 #ifdef CONFIG_BLOCK
1762 static inline int device_is_not_partition(struct device *dev)
1763 {
1764 return !(dev->type == &part_type);
1765 }
1766 #else
1767 static inline int device_is_not_partition(struct device *dev)
1768 {
1769 return 1;
1770 }
1771 #endif
1772
1773 static int
1774 device_platform_notify(struct device *dev, enum kobject_action action)
1775 {
1776 int ret;
1777
1778 ret = acpi_platform_notify(dev, action);
1779 if (ret)
1780 return ret;
1781
1782 ret = software_node_notify(dev, action);
1783 if (ret)
1784 return ret;
1785
1786 if (platform_notify && action == KOBJ_ADD)
1787 platform_notify(dev);
1788 else if (platform_notify_remove && action == KOBJ_REMOVE)
1789 platform_notify_remove(dev);
1790 return 0;
1791 }
1792
1793 /**
1794 * dev_driver_string - Return a device's driver name, if at all possible
1795 * @dev: struct device to get the name of
1796 *
1797 * Will return the device's driver's name if it is bound to a device. If
1798 * the device is not bound to a driver, it will return the name of the bus
1799 * it is attached to. If it is not attached to a bus either, an empty
1800 * string will be returned.
1801 */
1802 const char *dev_driver_string(const struct device *dev)
1803 {
1804 struct device_driver *drv;
1805
1806 /* dev->driver can change to NULL underneath us because of unbinding,
1807 * so be careful about accessing it. dev->bus and dev->class should
1808 * never change once they are set, so they don't need special care.
1809 */
1810 drv = READ_ONCE(dev->driver);
1811 return drv ? drv->name :
1812 (dev->bus ? dev->bus->name :
1813 (dev->class ? dev->class->name : ""));
1814 }
1815 EXPORT_SYMBOL(dev_driver_string);
1816
1817 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1818
1819 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1820 char *buf)
1821 {
1822 struct device_attribute *dev_attr = to_dev_attr(attr);
1823 struct device *dev = kobj_to_dev(kobj);
1824 ssize_t ret = -EIO;
1825
1826 if (dev_attr->show)
1827 ret = dev_attr->show(dev, dev_attr, buf);
1828 if (ret >= (ssize_t)PAGE_SIZE) {
1829 printk("dev_attr_show: %pS returned bad count\n",
1830 dev_attr->show);
1831 }
1832 return ret;
1833 }
1834
1835 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1836 const char *buf, size_t count)
1837 {
1838 struct device_attribute *dev_attr = to_dev_attr(attr);
1839 struct device *dev = kobj_to_dev(kobj);
1840 ssize_t ret = -EIO;
1841
1842 if (dev_attr->store)
1843 ret = dev_attr->store(dev, dev_attr, buf, count);
1844 return ret;
1845 }
1846
1847 static const struct sysfs_ops dev_sysfs_ops = {
1848 .show = dev_attr_show,
1849 .store = dev_attr_store,
1850 };
1851
1852 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1853
1854 ssize_t device_store_ulong(struct device *dev,
1855 struct device_attribute *attr,
1856 const char *buf, size_t size)
1857 {
1858 struct dev_ext_attribute *ea = to_ext_attr(attr);
1859 int ret;
1860 unsigned long new;
1861
1862 ret = kstrtoul(buf, 0, &new);
1863 if (ret)
1864 return ret;
1865 *(unsigned long *)(ea->var) = new;
1866 /* Always return full write size even if we didn't consume all */
1867 return size;
1868 }
1869 EXPORT_SYMBOL_GPL(device_store_ulong);
1870
1871 ssize_t device_show_ulong(struct device *dev,
1872 struct device_attribute *attr,
1873 char *buf)
1874 {
1875 struct dev_ext_attribute *ea = to_ext_attr(attr);
1876 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1877 }
1878 EXPORT_SYMBOL_GPL(device_show_ulong);
1879
1880 ssize_t device_store_int(struct device *dev,
1881 struct device_attribute *attr,
1882 const char *buf, size_t size)
1883 {
1884 struct dev_ext_attribute *ea = to_ext_attr(attr);
1885 int ret;
1886 long new;
1887
1888 ret = kstrtol(buf, 0, &new);
1889 if (ret)
1890 return ret;
1891
1892 if (new > INT_MAX || new < INT_MIN)
1893 return -EINVAL;
1894 *(int *)(ea->var) = new;
1895 /* Always return full write size even if we didn't consume all */
1896 return size;
1897 }
1898 EXPORT_SYMBOL_GPL(device_store_int);
1899
1900 ssize_t device_show_int(struct device *dev,
1901 struct device_attribute *attr,
1902 char *buf)
1903 {
1904 struct dev_ext_attribute *ea = to_ext_attr(attr);
1905
1906 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1907 }
1908 EXPORT_SYMBOL_GPL(device_show_int);
1909
1910 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1911 const char *buf, size_t size)
1912 {
1913 struct dev_ext_attribute *ea = to_ext_attr(attr);
1914
1915 if (strtobool(buf, ea->var) < 0)
1916 return -EINVAL;
1917
1918 return size;
1919 }
1920 EXPORT_SYMBOL_GPL(device_store_bool);
1921
1922 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1923 char *buf)
1924 {
1925 struct dev_ext_attribute *ea = to_ext_attr(attr);
1926
1927 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1928 }
1929 EXPORT_SYMBOL_GPL(device_show_bool);
1930
1931 /**
1932 * device_release - free device structure.
1933 * @kobj: device's kobject.
1934 *
1935 * This is called once the reference count for the object
1936 * reaches 0. We forward the call to the device's release
1937 * method, which should handle actually freeing the structure.
1938 */
1939 static void device_release(struct kobject *kobj)
1940 {
1941 struct device *dev = kobj_to_dev(kobj);
1942 struct device_private *p = dev->p;
1943
1944 /*
1945 * Some platform devices are driven without driver attached
1946 * and managed resources may have been acquired. Make sure
1947 * all resources are released.
1948 *
1949 * Drivers still can add resources into device after device
1950 * is deleted but alive, so release devres here to avoid
1951 * possible memory leak.
1952 */
1953 devres_release_all(dev);
1954
1955 kfree(dev->dma_range_map);
1956
1957 if (dev->release)
1958 dev->release(dev);
1959 else if (dev->type && dev->type->release)
1960 dev->type->release(dev);
1961 else if (dev->class && dev->class->dev_release)
1962 dev->class->dev_release(dev);
1963 else
1964 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1965 dev_name(dev));
1966 kfree(p);
1967 }
1968
1969 static const void *device_namespace(struct kobject *kobj)
1970 {
1971 struct device *dev = kobj_to_dev(kobj);
1972 const void *ns = NULL;
1973
1974 if (dev->class && dev->class->ns_type)
1975 ns = dev->class->namespace(dev);
1976
1977 return ns;
1978 }
1979
1980 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1981 {
1982 struct device *dev = kobj_to_dev(kobj);
1983
1984 if (dev->class && dev->class->get_ownership)
1985 dev->class->get_ownership(dev, uid, gid);
1986 }
1987
1988 static struct kobj_type device_ktype = {
1989 .release = device_release,
1990 .sysfs_ops = &dev_sysfs_ops,
1991 .namespace = device_namespace,
1992 .get_ownership = device_get_ownership,
1993 };
1994
1995
1996 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1997 {
1998 struct kobj_type *ktype = get_ktype(kobj);
1999
2000 if (ktype == &device_ktype) {
2001 struct device *dev = kobj_to_dev(kobj);
2002 if (dev->bus)
2003 return 1;
2004 if (dev->class)
2005 return 1;
2006 }
2007 return 0;
2008 }
2009
2010 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2011 {
2012 struct device *dev = kobj_to_dev(kobj);
2013
2014 if (dev->bus)
2015 return dev->bus->name;
2016 if (dev->class)
2017 return dev->class->name;
2018 return NULL;
2019 }
2020
2021 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2022 struct kobj_uevent_env *env)
2023 {
2024 struct device *dev = kobj_to_dev(kobj);
2025 int retval = 0;
2026
2027 /* add device node properties if present */
2028 if (MAJOR(dev->devt)) {
2029 const char *tmp;
2030 const char *name;
2031 umode_t mode = 0;
2032 kuid_t uid = GLOBAL_ROOT_UID;
2033 kgid_t gid = GLOBAL_ROOT_GID;
2034
2035 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2036 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2037 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2038 if (name) {
2039 add_uevent_var(env, "DEVNAME=%s", name);
2040 if (mode)
2041 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2042 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2043 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2044 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2045 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2046 kfree(tmp);
2047 }
2048 }
2049
2050 if (dev->type && dev->type->name)
2051 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2052
2053 if (dev->driver)
2054 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2055
2056 /* Add common DT information about the device */
2057 of_device_uevent(dev, env);
2058
2059 /* have the bus specific function add its stuff */
2060 if (dev->bus && dev->bus->uevent) {
2061 retval = dev->bus->uevent(dev, env);
2062 if (retval)
2063 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2064 dev_name(dev), __func__, retval);
2065 }
2066
2067 /* have the class specific function add its stuff */
2068 if (dev->class && dev->class->dev_uevent) {
2069 retval = dev->class->dev_uevent(dev, env);
2070 if (retval)
2071 pr_debug("device: '%s': %s: class uevent() "
2072 "returned %d\n", dev_name(dev),
2073 __func__, retval);
2074 }
2075
2076 /* have the device type specific function add its stuff */
2077 if (dev->type && dev->type->uevent) {
2078 retval = dev->type->uevent(dev, env);
2079 if (retval)
2080 pr_debug("device: '%s': %s: dev_type uevent() "
2081 "returned %d\n", dev_name(dev),
2082 __func__, retval);
2083 }
2084
2085 return retval;
2086 }
2087
2088 static const struct kset_uevent_ops device_uevent_ops = {
2089 .filter = dev_uevent_filter,
2090 .name = dev_uevent_name,
2091 .uevent = dev_uevent,
2092 };
2093
2094 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2095 char *buf)
2096 {
2097 struct kobject *top_kobj;
2098 struct kset *kset;
2099 struct kobj_uevent_env *env = NULL;
2100 int i;
2101 int len = 0;
2102 int retval;
2103
2104 /* search the kset, the device belongs to */
2105 top_kobj = &dev->kobj;
2106 while (!top_kobj->kset && top_kobj->parent)
2107 top_kobj = top_kobj->parent;
2108 if (!top_kobj->kset)
2109 goto out;
2110
2111 kset = top_kobj->kset;
2112 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2113 goto out;
2114
2115 /* respect filter */
2116 if (kset->uevent_ops && kset->uevent_ops->filter)
2117 if (!kset->uevent_ops->filter(kset, &dev->kobj))
2118 goto out;
2119
2120 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2121 if (!env)
2122 return -ENOMEM;
2123
2124 /* let the kset specific function add its keys */
2125 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2126 if (retval)
2127 goto out;
2128
2129 /* copy keys to file */
2130 for (i = 0; i < env->envp_idx; i++)
2131 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2132 out:
2133 kfree(env);
2134 return len;
2135 }
2136
2137 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2138 const char *buf, size_t count)
2139 {
2140 int rc;
2141
2142 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2143
2144 if (rc) {
2145 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2146 return rc;
2147 }
2148
2149 return count;
2150 }
2151 static DEVICE_ATTR_RW(uevent);
2152
2153 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2154 char *buf)
2155 {
2156 bool val;
2157
2158 device_lock(dev);
2159 val = !dev->offline;
2160 device_unlock(dev);
2161 return sysfs_emit(buf, "%u\n", val);
2162 }
2163
2164 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2165 const char *buf, size_t count)
2166 {
2167 bool val;
2168 int ret;
2169
2170 ret = strtobool(buf, &val);
2171 if (ret < 0)
2172 return ret;
2173
2174 ret = lock_device_hotplug_sysfs();
2175 if (ret)
2176 return ret;
2177
2178 ret = val ? device_online(dev) : device_offline(dev);
2179 unlock_device_hotplug();
2180 return ret < 0 ? ret : count;
2181 }
2182 static DEVICE_ATTR_RW(online);
2183
2184 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2185 {
2186 return sysfs_create_groups(&dev->kobj, groups);
2187 }
2188 EXPORT_SYMBOL_GPL(device_add_groups);
2189
2190 void device_remove_groups(struct device *dev,
2191 const struct attribute_group **groups)
2192 {
2193 sysfs_remove_groups(&dev->kobj, groups);
2194 }
2195 EXPORT_SYMBOL_GPL(device_remove_groups);
2196
2197 union device_attr_group_devres {
2198 const struct attribute_group *group;
2199 const struct attribute_group **groups;
2200 };
2201
2202 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2203 {
2204 return ((union device_attr_group_devres *)res)->group == data;
2205 }
2206
2207 static void devm_attr_group_remove(struct device *dev, void *res)
2208 {
2209 union device_attr_group_devres *devres = res;
2210 const struct attribute_group *group = devres->group;
2211
2212 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2213 sysfs_remove_group(&dev->kobj, group);
2214 }
2215
2216 static void devm_attr_groups_remove(struct device *dev, void *res)
2217 {
2218 union device_attr_group_devres *devres = res;
2219 const struct attribute_group **groups = devres->groups;
2220
2221 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2222 sysfs_remove_groups(&dev->kobj, groups);
2223 }
2224
2225 /**
2226 * devm_device_add_group - given a device, create a managed attribute group
2227 * @dev: The device to create the group for
2228 * @grp: The attribute group to create
2229 *
2230 * This function creates a group for the first time. It will explicitly
2231 * warn and error if any of the attribute files being created already exist.
2232 *
2233 * Returns 0 on success or error code on failure.
2234 */
2235 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2236 {
2237 union device_attr_group_devres *devres;
2238 int error;
2239
2240 devres = devres_alloc(devm_attr_group_remove,
2241 sizeof(*devres), GFP_KERNEL);
2242 if (!devres)
2243 return -ENOMEM;
2244
2245 error = sysfs_create_group(&dev->kobj, grp);
2246 if (error) {
2247 devres_free(devres);
2248 return error;
2249 }
2250
2251 devres->group = grp;
2252 devres_add(dev, devres);
2253 return 0;
2254 }
2255 EXPORT_SYMBOL_GPL(devm_device_add_group);
2256
2257 /**
2258 * devm_device_remove_group: remove a managed group from a device
2259 * @dev: device to remove the group from
2260 * @grp: group to remove
2261 *
2262 * This function removes a group of attributes from a device. The attributes
2263 * previously have to have been created for this group, otherwise it will fail.
2264 */
2265 void devm_device_remove_group(struct device *dev,
2266 const struct attribute_group *grp)
2267 {
2268 WARN_ON(devres_release(dev, devm_attr_group_remove,
2269 devm_attr_group_match,
2270 /* cast away const */ (void *)grp));
2271 }
2272 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2273
2274 /**
2275 * devm_device_add_groups - create a bunch of managed attribute groups
2276 * @dev: The device to create the group for
2277 * @groups: The attribute groups to create, NULL terminated
2278 *
2279 * This function creates a bunch of managed attribute groups. If an error
2280 * occurs when creating a group, all previously created groups will be
2281 * removed, unwinding everything back to the original state when this
2282 * function was called. It will explicitly warn and error if any of the
2283 * attribute files being created already exist.
2284 *
2285 * Returns 0 on success or error code from sysfs_create_group on failure.
2286 */
2287 int devm_device_add_groups(struct device *dev,
2288 const struct attribute_group **groups)
2289 {
2290 union device_attr_group_devres *devres;
2291 int error;
2292
2293 devres = devres_alloc(devm_attr_groups_remove,
2294 sizeof(*devres), GFP_KERNEL);
2295 if (!devres)
2296 return -ENOMEM;
2297
2298 error = sysfs_create_groups(&dev->kobj, groups);
2299 if (error) {
2300 devres_free(devres);
2301 return error;
2302 }
2303
2304 devres->groups = groups;
2305 devres_add(dev, devres);
2306 return 0;
2307 }
2308 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2309
2310 /**
2311 * devm_device_remove_groups - remove a list of managed groups
2312 *
2313 * @dev: The device for the groups to be removed from
2314 * @groups: NULL terminated list of groups to be removed
2315 *
2316 * If groups is not NULL, remove the specified groups from the device.
2317 */
2318 void devm_device_remove_groups(struct device *dev,
2319 const struct attribute_group **groups)
2320 {
2321 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2322 devm_attr_group_match,
2323 /* cast away const */ (void *)groups));
2324 }
2325 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2326
2327 static int device_add_attrs(struct device *dev)
2328 {
2329 struct class *class = dev->class;
2330 const struct device_type *type = dev->type;
2331 int error;
2332
2333 if (class) {
2334 error = device_add_groups(dev, class->dev_groups);
2335 if (error)
2336 return error;
2337 }
2338
2339 if (type) {
2340 error = device_add_groups(dev, type->groups);
2341 if (error)
2342 goto err_remove_class_groups;
2343 }
2344
2345 error = device_add_groups(dev, dev->groups);
2346 if (error)
2347 goto err_remove_type_groups;
2348
2349 if (device_supports_offline(dev) && !dev->offline_disabled) {
2350 error = device_create_file(dev, &dev_attr_online);
2351 if (error)
2352 goto err_remove_dev_groups;
2353 }
2354
2355 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2356 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2357 if (error)
2358 goto err_remove_dev_online;
2359 }
2360
2361 return 0;
2362
2363 err_remove_dev_online:
2364 device_remove_file(dev, &dev_attr_online);
2365 err_remove_dev_groups:
2366 device_remove_groups(dev, dev->groups);
2367 err_remove_type_groups:
2368 if (type)
2369 device_remove_groups(dev, type->groups);
2370 err_remove_class_groups:
2371 if (class)
2372 device_remove_groups(dev, class->dev_groups);
2373
2374 return error;
2375 }
2376
2377 static void device_remove_attrs(struct device *dev)
2378 {
2379 struct class *class = dev->class;
2380 const struct device_type *type = dev->type;
2381
2382 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2383 device_remove_file(dev, &dev_attr_online);
2384 device_remove_groups(dev, dev->groups);
2385
2386 if (type)
2387 device_remove_groups(dev, type->groups);
2388
2389 if (class)
2390 device_remove_groups(dev, class->dev_groups);
2391 }
2392
2393 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2394 char *buf)
2395 {
2396 return print_dev_t(buf, dev->devt);
2397 }
2398 static DEVICE_ATTR_RO(dev);
2399
2400 /* /sys/devices/ */
2401 struct kset *devices_kset;
2402
2403 /**
2404 * devices_kset_move_before - Move device in the devices_kset's list.
2405 * @deva: Device to move.
2406 * @devb: Device @deva should come before.
2407 */
2408 static void devices_kset_move_before(struct device *deva, struct device *devb)
2409 {
2410 if (!devices_kset)
2411 return;
2412 pr_debug("devices_kset: Moving %s before %s\n",
2413 dev_name(deva), dev_name(devb));
2414 spin_lock(&devices_kset->list_lock);
2415 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2416 spin_unlock(&devices_kset->list_lock);
2417 }
2418
2419 /**
2420 * devices_kset_move_after - Move device in the devices_kset's list.
2421 * @deva: Device to move
2422 * @devb: Device @deva should come after.
2423 */
2424 static void devices_kset_move_after(struct device *deva, struct device *devb)
2425 {
2426 if (!devices_kset)
2427 return;
2428 pr_debug("devices_kset: Moving %s after %s\n",
2429 dev_name(deva), dev_name(devb));
2430 spin_lock(&devices_kset->list_lock);
2431 list_move(&deva->kobj.entry, &devb->kobj.entry);
2432 spin_unlock(&devices_kset->list_lock);
2433 }
2434
2435 /**
2436 * devices_kset_move_last - move the device to the end of devices_kset's list.
2437 * @dev: device to move
2438 */
2439 void devices_kset_move_last(struct device *dev)
2440 {
2441 if (!devices_kset)
2442 return;
2443 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2444 spin_lock(&devices_kset->list_lock);
2445 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2446 spin_unlock(&devices_kset->list_lock);
2447 }
2448
2449 /**
2450 * device_create_file - create sysfs attribute file for device.
2451 * @dev: device.
2452 * @attr: device attribute descriptor.
2453 */
2454 int device_create_file(struct device *dev,
2455 const struct device_attribute *attr)
2456 {
2457 int error = 0;
2458
2459 if (dev) {
2460 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2461 "Attribute %s: write permission without 'store'\n",
2462 attr->attr.name);
2463 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2464 "Attribute %s: read permission without 'show'\n",
2465 attr->attr.name);
2466 error = sysfs_create_file(&dev->kobj, &attr->attr);
2467 }
2468
2469 return error;
2470 }
2471 EXPORT_SYMBOL_GPL(device_create_file);
2472
2473 /**
2474 * device_remove_file - remove sysfs attribute file.
2475 * @dev: device.
2476 * @attr: device attribute descriptor.
2477 */
2478 void device_remove_file(struct device *dev,
2479 const struct device_attribute *attr)
2480 {
2481 if (dev)
2482 sysfs_remove_file(&dev->kobj, &attr->attr);
2483 }
2484 EXPORT_SYMBOL_GPL(device_remove_file);
2485
2486 /**
2487 * device_remove_file_self - remove sysfs attribute file from its own method.
2488 * @dev: device.
2489 * @attr: device attribute descriptor.
2490 *
2491 * See kernfs_remove_self() for details.
2492 */
2493 bool device_remove_file_self(struct device *dev,
2494 const struct device_attribute *attr)
2495 {
2496 if (dev)
2497 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2498 else
2499 return false;
2500 }
2501 EXPORT_SYMBOL_GPL(device_remove_file_self);
2502
2503 /**
2504 * device_create_bin_file - create sysfs binary attribute file for device.
2505 * @dev: device.
2506 * @attr: device binary attribute descriptor.
2507 */
2508 int device_create_bin_file(struct device *dev,
2509 const struct bin_attribute *attr)
2510 {
2511 int error = -EINVAL;
2512 if (dev)
2513 error = sysfs_create_bin_file(&dev->kobj, attr);
2514 return error;
2515 }
2516 EXPORT_SYMBOL_GPL(device_create_bin_file);
2517
2518 /**
2519 * device_remove_bin_file - remove sysfs binary attribute file
2520 * @dev: device.
2521 * @attr: device binary attribute descriptor.
2522 */
2523 void device_remove_bin_file(struct device *dev,
2524 const struct bin_attribute *attr)
2525 {
2526 if (dev)
2527 sysfs_remove_bin_file(&dev->kobj, attr);
2528 }
2529 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2530
2531 static void klist_children_get(struct klist_node *n)
2532 {
2533 struct device_private *p = to_device_private_parent(n);
2534 struct device *dev = p->device;
2535
2536 get_device(dev);
2537 }
2538
2539 static void klist_children_put(struct klist_node *n)
2540 {
2541 struct device_private *p = to_device_private_parent(n);
2542 struct device *dev = p->device;
2543
2544 put_device(dev);
2545 }
2546
2547 /**
2548 * device_initialize - init device structure.
2549 * @dev: device.
2550 *
2551 * This prepares the device for use by other layers by initializing
2552 * its fields.
2553 * It is the first half of device_register(), if called by
2554 * that function, though it can also be called separately, so one
2555 * may use @dev's fields. In particular, get_device()/put_device()
2556 * may be used for reference counting of @dev after calling this
2557 * function.
2558 *
2559 * All fields in @dev must be initialized by the caller to 0, except
2560 * for those explicitly set to some other value. The simplest
2561 * approach is to use kzalloc() to allocate the structure containing
2562 * @dev.
2563 *
2564 * NOTE: Use put_device() to give up your reference instead of freeing
2565 * @dev directly once you have called this function.
2566 */
2567 void device_initialize(struct device *dev)
2568 {
2569 dev->kobj.kset = devices_kset;
2570 kobject_init(&dev->kobj, &device_ktype);
2571 INIT_LIST_HEAD(&dev->dma_pools);
2572 mutex_init(&dev->mutex);
2573 #ifdef CONFIG_PROVE_LOCKING
2574 mutex_init(&dev->lockdep_mutex);
2575 #endif
2576 lockdep_set_novalidate_class(&dev->mutex);
2577 spin_lock_init(&dev->devres_lock);
2578 INIT_LIST_HEAD(&dev->devres_head);
2579 device_pm_init(dev);
2580 set_dev_node(dev, -1);
2581 #ifdef CONFIG_GENERIC_MSI_IRQ
2582 INIT_LIST_HEAD(&dev->msi_list);
2583 #endif
2584 INIT_LIST_HEAD(&dev->links.consumers);
2585 INIT_LIST_HEAD(&dev->links.suppliers);
2586 INIT_LIST_HEAD(&dev->links.defer_sync);
2587 dev->links.status = DL_DEV_NO_DRIVER;
2588 }
2589 EXPORT_SYMBOL_GPL(device_initialize);
2590
2591 struct kobject *virtual_device_parent(struct device *dev)
2592 {
2593 static struct kobject *virtual_dir = NULL;
2594
2595 if (!virtual_dir)
2596 virtual_dir = kobject_create_and_add("virtual",
2597 &devices_kset->kobj);
2598
2599 return virtual_dir;
2600 }
2601
2602 struct class_dir {
2603 struct kobject kobj;
2604 struct class *class;
2605 };
2606
2607 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2608
2609 static void class_dir_release(struct kobject *kobj)
2610 {
2611 struct class_dir *dir = to_class_dir(kobj);
2612 kfree(dir);
2613 }
2614
2615 static const
2616 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2617 {
2618 struct class_dir *dir = to_class_dir(kobj);
2619 return dir->class->ns_type;
2620 }
2621
2622 static struct kobj_type class_dir_ktype = {
2623 .release = class_dir_release,
2624 .sysfs_ops = &kobj_sysfs_ops,
2625 .child_ns_type = class_dir_child_ns_type
2626 };
2627
2628 static struct kobject *
2629 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2630 {
2631 struct class_dir *dir;
2632 int retval;
2633
2634 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2635 if (!dir)
2636 return ERR_PTR(-ENOMEM);
2637
2638 dir->class = class;
2639 kobject_init(&dir->kobj, &class_dir_ktype);
2640
2641 dir->kobj.kset = &class->p->glue_dirs;
2642
2643 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2644 if (retval < 0) {
2645 kobject_put(&dir->kobj);
2646 return ERR_PTR(retval);
2647 }
2648 return &dir->kobj;
2649 }
2650
2651 static DEFINE_MUTEX(gdp_mutex);
2652
2653 static struct kobject *get_device_parent(struct device *dev,
2654 struct device *parent)
2655 {
2656 if (dev->class) {
2657 struct kobject *kobj = NULL;
2658 struct kobject *parent_kobj;
2659 struct kobject *k;
2660
2661 #ifdef CONFIG_BLOCK
2662 /* block disks show up in /sys/block */
2663 if (sysfs_deprecated && dev->class == &block_class) {
2664 if (parent && parent->class == &block_class)
2665 return &parent->kobj;
2666 return &block_class.p->subsys.kobj;
2667 }
2668 #endif
2669
2670 /*
2671 * If we have no parent, we live in "virtual".
2672 * Class-devices with a non class-device as parent, live
2673 * in a "glue" directory to prevent namespace collisions.
2674 */
2675 if (parent == NULL)
2676 parent_kobj = virtual_device_parent(dev);
2677 else if (parent->class && !dev->class->ns_type)
2678 return &parent->kobj;
2679 else
2680 parent_kobj = &parent->kobj;
2681
2682 mutex_lock(&gdp_mutex);
2683
2684 /* find our class-directory at the parent and reference it */
2685 spin_lock(&dev->class->p->glue_dirs.list_lock);
2686 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2687 if (k->parent == parent_kobj) {
2688 kobj = kobject_get(k);
2689 break;
2690 }
2691 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2692 if (kobj) {
2693 mutex_unlock(&gdp_mutex);
2694 return kobj;
2695 }
2696
2697 /* or create a new class-directory at the parent device */
2698 k = class_dir_create_and_add(dev->class, parent_kobj);
2699 /* do not emit an uevent for this simple "glue" directory */
2700 mutex_unlock(&gdp_mutex);
2701 return k;
2702 }
2703
2704 /* subsystems can specify a default root directory for their devices */
2705 if (!parent && dev->bus && dev->bus->dev_root)
2706 return &dev->bus->dev_root->kobj;
2707
2708 if (parent)
2709 return &parent->kobj;
2710 return NULL;
2711 }
2712
2713 static inline bool live_in_glue_dir(struct kobject *kobj,
2714 struct device *dev)
2715 {
2716 if (!kobj || !dev->class ||
2717 kobj->kset != &dev->class->p->glue_dirs)
2718 return false;
2719 return true;
2720 }
2721
2722 static inline struct kobject *get_glue_dir(struct device *dev)
2723 {
2724 return dev->kobj.parent;
2725 }
2726
2727 /*
2728 * make sure cleaning up dir as the last step, we need to make
2729 * sure .release handler of kobject is run with holding the
2730 * global lock
2731 */
2732 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2733 {
2734 unsigned int ref;
2735
2736 /* see if we live in a "glue" directory */
2737 if (!live_in_glue_dir(glue_dir, dev))
2738 return;
2739
2740 mutex_lock(&gdp_mutex);
2741 /**
2742 * There is a race condition between removing glue directory
2743 * and adding a new device under the glue directory.
2744 *
2745 * CPU1: CPU2:
2746 *
2747 * device_add()
2748 * get_device_parent()
2749 * class_dir_create_and_add()
2750 * kobject_add_internal()
2751 * create_dir() // create glue_dir
2752 *
2753 * device_add()
2754 * get_device_parent()
2755 * kobject_get() // get glue_dir
2756 *
2757 * device_del()
2758 * cleanup_glue_dir()
2759 * kobject_del(glue_dir)
2760 *
2761 * kobject_add()
2762 * kobject_add_internal()
2763 * create_dir() // in glue_dir
2764 * sysfs_create_dir_ns()
2765 * kernfs_create_dir_ns(sd)
2766 *
2767 * sysfs_remove_dir() // glue_dir->sd=NULL
2768 * sysfs_put() // free glue_dir->sd
2769 *
2770 * // sd is freed
2771 * kernfs_new_node(sd)
2772 * kernfs_get(glue_dir)
2773 * kernfs_add_one()
2774 * kernfs_put()
2775 *
2776 * Before CPU1 remove last child device under glue dir, if CPU2 add
2777 * a new device under glue dir, the glue_dir kobject reference count
2778 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2779 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2780 * and sysfs_put(). This result in glue_dir->sd is freed.
2781 *
2782 * Then the CPU2 will see a stale "empty" but still potentially used
2783 * glue dir around in kernfs_new_node().
2784 *
2785 * In order to avoid this happening, we also should make sure that
2786 * kernfs_node for glue_dir is released in CPU1 only when refcount
2787 * for glue_dir kobj is 1.
2788 */
2789 ref = kref_read(&glue_dir->kref);
2790 if (!kobject_has_children(glue_dir) && !--ref)
2791 kobject_del(glue_dir);
2792 kobject_put(glue_dir);
2793 mutex_unlock(&gdp_mutex);
2794 }
2795
2796 static int device_add_class_symlinks(struct device *dev)
2797 {
2798 struct device_node *of_node = dev_of_node(dev);
2799 int error;
2800
2801 if (of_node) {
2802 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2803 if (error)
2804 dev_warn(dev, "Error %d creating of_node link\n",error);
2805 /* An error here doesn't warrant bringing down the device */
2806 }
2807
2808 if (!dev->class)
2809 return 0;
2810
2811 error = sysfs_create_link(&dev->kobj,
2812 &dev->class->p->subsys.kobj,
2813 "subsystem");
2814 if (error)
2815 goto out_devnode;
2816
2817 if (dev->parent && device_is_not_partition(dev)) {
2818 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2819 "device");
2820 if (error)
2821 goto out_subsys;
2822 }
2823
2824 #ifdef CONFIG_BLOCK
2825 /* /sys/block has directories and does not need symlinks */
2826 if (sysfs_deprecated && dev->class == &block_class)
2827 return 0;
2828 #endif
2829
2830 /* link in the class directory pointing to the device */
2831 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2832 &dev->kobj, dev_name(dev));
2833 if (error)
2834 goto out_device;
2835
2836 return 0;
2837
2838 out_device:
2839 sysfs_remove_link(&dev->kobj, "device");
2840
2841 out_subsys:
2842 sysfs_remove_link(&dev->kobj, "subsystem");
2843 out_devnode:
2844 sysfs_remove_link(&dev->kobj, "of_node");
2845 return error;
2846 }
2847
2848 static void device_remove_class_symlinks(struct device *dev)
2849 {
2850 if (dev_of_node(dev))
2851 sysfs_remove_link(&dev->kobj, "of_node");
2852
2853 if (!dev->class)
2854 return;
2855
2856 if (dev->parent && device_is_not_partition(dev))
2857 sysfs_remove_link(&dev->kobj, "device");
2858 sysfs_remove_link(&dev->kobj, "subsystem");
2859 #ifdef CONFIG_BLOCK
2860 if (sysfs_deprecated && dev->class == &block_class)
2861 return;
2862 #endif
2863 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2864 }
2865
2866 /**
2867 * dev_set_name - set a device name
2868 * @dev: device
2869 * @fmt: format string for the device's name
2870 */
2871 int dev_set_name(struct device *dev, const char *fmt, ...)
2872 {
2873 va_list vargs;
2874 int err;
2875
2876 va_start(vargs, fmt);
2877 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2878 va_end(vargs);
2879 return err;
2880 }
2881 EXPORT_SYMBOL_GPL(dev_set_name);
2882
2883 /**
2884 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2885 * @dev: device
2886 *
2887 * By default we select char/ for new entries. Setting class->dev_obj
2888 * to NULL prevents an entry from being created. class->dev_kobj must
2889 * be set (or cleared) before any devices are registered to the class
2890 * otherwise device_create_sys_dev_entry() and
2891 * device_remove_sys_dev_entry() will disagree about the presence of
2892 * the link.
2893 */
2894 static struct kobject *device_to_dev_kobj(struct device *dev)
2895 {
2896 struct kobject *kobj;
2897
2898 if (dev->class)
2899 kobj = dev->class->dev_kobj;
2900 else
2901 kobj = sysfs_dev_char_kobj;
2902
2903 return kobj;
2904 }
2905
2906 static int device_create_sys_dev_entry(struct device *dev)
2907 {
2908 struct kobject *kobj = device_to_dev_kobj(dev);
2909 int error = 0;
2910 char devt_str[15];
2911
2912 if (kobj) {
2913 format_dev_t(devt_str, dev->devt);
2914 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2915 }
2916
2917 return error;
2918 }
2919
2920 static void device_remove_sys_dev_entry(struct device *dev)
2921 {
2922 struct kobject *kobj = device_to_dev_kobj(dev);
2923 char devt_str[15];
2924
2925 if (kobj) {
2926 format_dev_t(devt_str, dev->devt);
2927 sysfs_remove_link(kobj, devt_str);
2928 }
2929 }
2930
2931 static int device_private_init(struct device *dev)
2932 {
2933 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2934 if (!dev->p)
2935 return -ENOMEM;
2936 dev->p->device = dev;
2937 klist_init(&dev->p->klist_children, klist_children_get,
2938 klist_children_put);
2939 INIT_LIST_HEAD(&dev->p->deferred_probe);
2940 return 0;
2941 }
2942
2943 /**
2944 * device_add - add device to device hierarchy.
2945 * @dev: device.
2946 *
2947 * This is part 2 of device_register(), though may be called
2948 * separately _iff_ device_initialize() has been called separately.
2949 *
2950 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2951 * to the global and sibling lists for the device, then
2952 * adds it to the other relevant subsystems of the driver model.
2953 *
2954 * Do not call this routine or device_register() more than once for
2955 * any device structure. The driver model core is not designed to work
2956 * with devices that get unregistered and then spring back to life.
2957 * (Among other things, it's very hard to guarantee that all references
2958 * to the previous incarnation of @dev have been dropped.) Allocate
2959 * and register a fresh new struct device instead.
2960 *
2961 * NOTE: _Never_ directly free @dev after calling this function, even
2962 * if it returned an error! Always use put_device() to give up your
2963 * reference instead.
2964 *
2965 * Rule of thumb is: if device_add() succeeds, you should call
2966 * device_del() when you want to get rid of it. If device_add() has
2967 * *not* succeeded, use *only* put_device() to drop the reference
2968 * count.
2969 */
2970 int device_add(struct device *dev)
2971 {
2972 struct device *parent;
2973 struct kobject *kobj;
2974 struct class_interface *class_intf;
2975 int error = -EINVAL;
2976 struct kobject *glue_dir = NULL;
2977
2978 dev = get_device(dev);
2979 if (!dev)
2980 goto done;
2981
2982 if (!dev->p) {
2983 error = device_private_init(dev);
2984 if (error)
2985 goto done;
2986 }
2987
2988 /*
2989 * for statically allocated devices, which should all be converted
2990 * some day, we need to initialize the name. We prevent reading back
2991 * the name, and force the use of dev_name()
2992 */
2993 if (dev->init_name) {
2994 dev_set_name(dev, "%s", dev->init_name);
2995 dev->init_name = NULL;
2996 }
2997
2998 /* subsystems can specify simple device enumeration */
2999 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3000 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3001
3002 if (!dev_name(dev)) {
3003 error = -EINVAL;
3004 goto name_error;
3005 }
3006
3007 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3008
3009 parent = get_device(dev->parent);
3010 kobj = get_device_parent(dev, parent);
3011 if (IS_ERR(kobj)) {
3012 error = PTR_ERR(kobj);
3013 goto parent_error;
3014 }
3015 if (kobj)
3016 dev->kobj.parent = kobj;
3017
3018 /* use parent numa_node */
3019 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3020 set_dev_node(dev, dev_to_node(parent));
3021
3022 /* first, register with generic layer. */
3023 /* we require the name to be set before, and pass NULL */
3024 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3025 if (error) {
3026 glue_dir = get_glue_dir(dev);
3027 goto Error;
3028 }
3029
3030 /* notify platform of device entry */
3031 error = device_platform_notify(dev, KOBJ_ADD);
3032 if (error)
3033 goto platform_error;
3034
3035 error = device_create_file(dev, &dev_attr_uevent);
3036 if (error)
3037 goto attrError;
3038
3039 error = device_add_class_symlinks(dev);
3040 if (error)
3041 goto SymlinkError;
3042 error = device_add_attrs(dev);
3043 if (error)
3044 goto AttrsError;
3045 error = bus_add_device(dev);
3046 if (error)
3047 goto BusError;
3048 error = dpm_sysfs_add(dev);
3049 if (error)
3050 goto DPMError;
3051 device_pm_add(dev);
3052
3053 if (MAJOR(dev->devt)) {
3054 error = device_create_file(dev, &dev_attr_dev);
3055 if (error)
3056 goto DevAttrError;
3057
3058 error = device_create_sys_dev_entry(dev);
3059 if (error)
3060 goto SysEntryError;
3061
3062 devtmpfs_create_node(dev);
3063 }
3064
3065 /* Notify clients of device addition. This call must come
3066 * after dpm_sysfs_add() and before kobject_uevent().
3067 */
3068 if (dev->bus)
3069 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3070 BUS_NOTIFY_ADD_DEVICE, dev);
3071
3072 kobject_uevent(&dev->kobj, KOBJ_ADD);
3073
3074 /*
3075 * Check if any of the other devices (consumers) have been waiting for
3076 * this device (supplier) to be added so that they can create a device
3077 * link to it.
3078 *
3079 * This needs to happen after device_pm_add() because device_link_add()
3080 * requires the supplier be registered before it's called.
3081 *
3082 * But this also needs to happen before bus_probe_device() to make sure
3083 * waiting consumers can link to it before the driver is bound to the
3084 * device and the driver sync_state callback is called for this device.
3085 */
3086 if (dev->fwnode && !dev->fwnode->dev) {
3087 dev->fwnode->dev = dev;
3088 fw_devlink_link_device(dev);
3089 }
3090
3091 bus_probe_device(dev);
3092 if (parent)
3093 klist_add_tail(&dev->p->knode_parent,
3094 &parent->p->klist_children);
3095
3096 if (dev->class) {
3097 mutex_lock(&dev->class->p->mutex);
3098 /* tie the class to the device */
3099 klist_add_tail(&dev->p->knode_class,
3100 &dev->class->p->klist_devices);
3101
3102 /* notify any interfaces that the device is here */
3103 list_for_each_entry(class_intf,
3104 &dev->class->p->interfaces, node)
3105 if (class_intf->add_dev)
3106 class_intf->add_dev(dev, class_intf);
3107 mutex_unlock(&dev->class->p->mutex);
3108 }
3109 done:
3110 put_device(dev);
3111 return error;
3112 SysEntryError:
3113 if (MAJOR(dev->devt))
3114 device_remove_file(dev, &dev_attr_dev);
3115 DevAttrError:
3116 device_pm_remove(dev);
3117 dpm_sysfs_remove(dev);
3118 DPMError:
3119 bus_remove_device(dev);
3120 BusError:
3121 device_remove_attrs(dev);
3122 AttrsError:
3123 device_remove_class_symlinks(dev);
3124 SymlinkError:
3125 device_remove_file(dev, &dev_attr_uevent);
3126 attrError:
3127 device_platform_notify(dev, KOBJ_REMOVE);
3128 platform_error:
3129 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3130 glue_dir = get_glue_dir(dev);
3131 kobject_del(&dev->kobj);
3132 Error:
3133 cleanup_glue_dir(dev, glue_dir);
3134 parent_error:
3135 put_device(parent);
3136 name_error:
3137 kfree(dev->p);
3138 dev->p = NULL;
3139 goto done;
3140 }
3141 EXPORT_SYMBOL_GPL(device_add);
3142
3143 /**
3144 * device_register - register a device with the system.
3145 * @dev: pointer to the device structure
3146 *
3147 * This happens in two clean steps - initialize the device
3148 * and add it to the system. The two steps can be called
3149 * separately, but this is the easiest and most common.
3150 * I.e. you should only call the two helpers separately if
3151 * have a clearly defined need to use and refcount the device
3152 * before it is added to the hierarchy.
3153 *
3154 * For more information, see the kerneldoc for device_initialize()
3155 * and device_add().
3156 *
3157 * NOTE: _Never_ directly free @dev after calling this function, even
3158 * if it returned an error! Always use put_device() to give up the
3159 * reference initialized in this function instead.
3160 */
3161 int device_register(struct device *dev)
3162 {
3163 device_initialize(dev);
3164 return device_add(dev);
3165 }
3166 EXPORT_SYMBOL_GPL(device_register);
3167
3168 /**
3169 * get_device - increment reference count for device.
3170 * @dev: device.
3171 *
3172 * This simply forwards the call to kobject_get(), though
3173 * we do take care to provide for the case that we get a NULL
3174 * pointer passed in.
3175 */
3176 struct device *get_device(struct device *dev)
3177 {
3178 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3179 }
3180 EXPORT_SYMBOL_GPL(get_device);
3181
3182 /**
3183 * put_device - decrement reference count.
3184 * @dev: device in question.
3185 */
3186 void put_device(struct device *dev)
3187 {
3188 /* might_sleep(); */
3189 if (dev)
3190 kobject_put(&dev->kobj);
3191 }
3192 EXPORT_SYMBOL_GPL(put_device);
3193
3194 bool kill_device(struct device *dev)
3195 {
3196 /*
3197 * Require the device lock and set the "dead" flag to guarantee that
3198 * the update behavior is consistent with the other bitfields near
3199 * it and that we cannot have an asynchronous probe routine trying
3200 * to run while we are tearing out the bus/class/sysfs from
3201 * underneath the device.
3202 */
3203 lockdep_assert_held(&dev->mutex);
3204
3205 if (dev->p->dead)
3206 return false;
3207 dev->p->dead = true;
3208 return true;
3209 }
3210 EXPORT_SYMBOL_GPL(kill_device);
3211
3212 /**
3213 * device_del - delete device from system.
3214 * @dev: device.
3215 *
3216 * This is the first part of the device unregistration
3217 * sequence. This removes the device from the lists we control
3218 * from here, has it removed from the other driver model
3219 * subsystems it was added to in device_add(), and removes it
3220 * from the kobject hierarchy.
3221 *
3222 * NOTE: this should be called manually _iff_ device_add() was
3223 * also called manually.
3224 */
3225 void device_del(struct device *dev)
3226 {
3227 struct device *parent = dev->parent;
3228 struct kobject *glue_dir = NULL;
3229 struct class_interface *class_intf;
3230 unsigned int noio_flag;
3231
3232 device_lock(dev);
3233 kill_device(dev);
3234 device_unlock(dev);
3235
3236 if (dev->fwnode && dev->fwnode->dev == dev)
3237 dev->fwnode->dev = NULL;
3238
3239 /* Notify clients of device removal. This call must come
3240 * before dpm_sysfs_remove().
3241 */
3242 noio_flag = memalloc_noio_save();
3243 if (dev->bus)
3244 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3245 BUS_NOTIFY_DEL_DEVICE, dev);
3246
3247 dpm_sysfs_remove(dev);
3248 if (parent)
3249 klist_del(&dev->p->knode_parent);
3250 if (MAJOR(dev->devt)) {
3251 devtmpfs_delete_node(dev);
3252 device_remove_sys_dev_entry(dev);
3253 device_remove_file(dev, &dev_attr_dev);
3254 }
3255 if (dev->class) {
3256 device_remove_class_symlinks(dev);
3257
3258 mutex_lock(&dev->class->p->mutex);
3259 /* notify any interfaces that the device is now gone */
3260 list_for_each_entry(class_intf,
3261 &dev->class->p->interfaces, node)
3262 if (class_intf->remove_dev)
3263 class_intf->remove_dev(dev, class_intf);
3264 /* remove the device from the class list */
3265 klist_del(&dev->p->knode_class);
3266 mutex_unlock(&dev->class->p->mutex);
3267 }
3268 device_remove_file(dev, &dev_attr_uevent);
3269 device_remove_attrs(dev);
3270 bus_remove_device(dev);
3271 device_pm_remove(dev);
3272 driver_deferred_probe_del(dev);
3273 device_platform_notify(dev, KOBJ_REMOVE);
3274 device_remove_properties(dev);
3275 device_links_purge(dev);
3276
3277 if (dev->bus)
3278 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3279 BUS_NOTIFY_REMOVED_DEVICE, dev);
3280 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3281 glue_dir = get_glue_dir(dev);
3282 kobject_del(&dev->kobj);
3283 cleanup_glue_dir(dev, glue_dir);
3284 memalloc_noio_restore(noio_flag);
3285 put_device(parent);
3286 }
3287 EXPORT_SYMBOL_GPL(device_del);
3288
3289 /**
3290 * device_unregister - unregister device from system.
3291 * @dev: device going away.
3292 *
3293 * We do this in two parts, like we do device_register(). First,
3294 * we remove it from all the subsystems with device_del(), then
3295 * we decrement the reference count via put_device(). If that
3296 * is the final reference count, the device will be cleaned up
3297 * via device_release() above. Otherwise, the structure will
3298 * stick around until the final reference to the device is dropped.
3299 */
3300 void device_unregister(struct device *dev)
3301 {
3302 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3303 device_del(dev);
3304 put_device(dev);
3305 }
3306 EXPORT_SYMBOL_GPL(device_unregister);
3307
3308 static struct device *prev_device(struct klist_iter *i)
3309 {
3310 struct klist_node *n = klist_prev(i);
3311 struct device *dev = NULL;
3312 struct device_private *p;
3313
3314 if (n) {
3315 p = to_device_private_parent(n);
3316 dev = p->device;
3317 }
3318 return dev;
3319 }
3320
3321 static struct device *next_device(struct klist_iter *i)
3322 {
3323 struct klist_node *n = klist_next(i);
3324 struct device *dev = NULL;
3325 struct device_private *p;
3326
3327 if (n) {
3328 p = to_device_private_parent(n);
3329 dev = p->device;
3330 }
3331 return dev;
3332 }
3333
3334 /**
3335 * device_get_devnode - path of device node file
3336 * @dev: device
3337 * @mode: returned file access mode
3338 * @uid: returned file owner
3339 * @gid: returned file group
3340 * @tmp: possibly allocated string
3341 *
3342 * Return the relative path of a possible device node.
3343 * Non-default names may need to allocate a memory to compose
3344 * a name. This memory is returned in tmp and needs to be
3345 * freed by the caller.
3346 */
3347 const char *device_get_devnode(struct device *dev,
3348 umode_t *mode, kuid_t *uid, kgid_t *gid,
3349 const char **tmp)
3350 {
3351 char *s;
3352
3353 *tmp = NULL;
3354
3355 /* the device type may provide a specific name */
3356 if (dev->type && dev->type->devnode)
3357 *tmp = dev->type->devnode(dev, mode, uid, gid);
3358 if (*tmp)
3359 return *tmp;
3360
3361 /* the class may provide a specific name */
3362 if (dev->class && dev->class->devnode)
3363 *tmp = dev->class->devnode(dev, mode);
3364 if (*tmp)
3365 return *tmp;
3366
3367 /* return name without allocation, tmp == NULL */
3368 if (strchr(dev_name(dev), '!') == NULL)
3369 return dev_name(dev);
3370
3371 /* replace '!' in the name with '/' */
3372 s = kstrdup(dev_name(dev), GFP_KERNEL);
3373 if (!s)
3374 return NULL;
3375 strreplace(s, '!', '/');
3376 return *tmp = s;
3377 }
3378
3379 /**
3380 * device_for_each_child - device child iterator.
3381 * @parent: parent struct device.
3382 * @fn: function to be called for each device.
3383 * @data: data for the callback.
3384 *
3385 * Iterate over @parent's child devices, and call @fn for each,
3386 * passing it @data.
3387 *
3388 * We check the return of @fn each time. If it returns anything
3389 * other than 0, we break out and return that value.
3390 */
3391 int device_for_each_child(struct device *parent, void *data,
3392 int (*fn)(struct device *dev, void *data))
3393 {
3394 struct klist_iter i;
3395 struct device *child;
3396 int error = 0;
3397
3398 if (!parent->p)
3399 return 0;
3400
3401 klist_iter_init(&parent->p->klist_children, &i);
3402 while (!error && (child = next_device(&i)))
3403 error = fn(child, data);
3404 klist_iter_exit(&i);
3405 return error;
3406 }
3407 EXPORT_SYMBOL_GPL(device_for_each_child);
3408
3409 /**
3410 * device_for_each_child_reverse - device child iterator in reversed order.
3411 * @parent: parent struct device.
3412 * @fn: function to be called for each device.
3413 * @data: data for the callback.
3414 *
3415 * Iterate over @parent's child devices, and call @fn for each,
3416 * passing it @data.
3417 *
3418 * We check the return of @fn each time. If it returns anything
3419 * other than 0, we break out and return that value.
3420 */
3421 int device_for_each_child_reverse(struct device *parent, void *data,
3422 int (*fn)(struct device *dev, void *data))
3423 {
3424 struct klist_iter i;
3425 struct device *child;
3426 int error = 0;
3427
3428 if (!parent->p)
3429 return 0;
3430
3431 klist_iter_init(&parent->p->klist_children, &i);
3432 while ((child = prev_device(&i)) && !error)
3433 error = fn(child, data);
3434 klist_iter_exit(&i);
3435 return error;
3436 }
3437 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3438
3439 /**
3440 * device_find_child - device iterator for locating a particular device.
3441 * @parent: parent struct device
3442 * @match: Callback function to check device
3443 * @data: Data to pass to match function
3444 *
3445 * This is similar to the device_for_each_child() function above, but it
3446 * returns a reference to a device that is 'found' for later use, as
3447 * determined by the @match callback.
3448 *
3449 * The callback should return 0 if the device doesn't match and non-zero
3450 * if it does. If the callback returns non-zero and a reference to the
3451 * current device can be obtained, this function will return to the caller
3452 * and not iterate over any more devices.
3453 *
3454 * NOTE: you will need to drop the reference with put_device() after use.
3455 */
3456 struct device *device_find_child(struct device *parent, void *data,
3457 int (*match)(struct device *dev, void *data))
3458 {
3459 struct klist_iter i;
3460 struct device *child;
3461
3462 if (!parent)
3463 return NULL;
3464
3465 klist_iter_init(&parent->p->klist_children, &i);
3466 while ((child = next_device(&i)))
3467 if (match(child, data) && get_device(child))
3468 break;
3469 klist_iter_exit(&i);
3470 return child;
3471 }
3472 EXPORT_SYMBOL_GPL(device_find_child);
3473
3474 /**
3475 * device_find_child_by_name - device iterator for locating a child device.
3476 * @parent: parent struct device
3477 * @name: name of the child device
3478 *
3479 * This is similar to the device_find_child() function above, but it
3480 * returns a reference to a device that has the name @name.
3481 *
3482 * NOTE: you will need to drop the reference with put_device() after use.
3483 */
3484 struct device *device_find_child_by_name(struct device *parent,
3485 const char *name)
3486 {
3487 struct klist_iter i;
3488 struct device *child;
3489
3490 if (!parent)
3491 return NULL;
3492
3493 klist_iter_init(&parent->p->klist_children, &i);
3494 while ((child = next_device(&i)))
3495 if (sysfs_streq(dev_name(child), name) && get_device(child))
3496 break;
3497 klist_iter_exit(&i);
3498 return child;
3499 }
3500 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3501
3502 int __init devices_init(void)
3503 {
3504 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3505 if (!devices_kset)
3506 return -ENOMEM;
3507 dev_kobj = kobject_create_and_add("dev", NULL);
3508 if (!dev_kobj)
3509 goto dev_kobj_err;
3510 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3511 if (!sysfs_dev_block_kobj)
3512 goto block_kobj_err;
3513 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3514 if (!sysfs_dev_char_kobj)
3515 goto char_kobj_err;
3516
3517 return 0;
3518
3519 char_kobj_err:
3520 kobject_put(sysfs_dev_block_kobj);
3521 block_kobj_err:
3522 kobject_put(dev_kobj);
3523 dev_kobj_err:
3524 kset_unregister(devices_kset);
3525 return -ENOMEM;
3526 }
3527
3528 static int device_check_offline(struct device *dev, void *not_used)
3529 {
3530 int ret;
3531
3532 ret = device_for_each_child(dev, NULL, device_check_offline);
3533 if (ret)
3534 return ret;
3535
3536 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3537 }
3538
3539 /**
3540 * device_offline - Prepare the device for hot-removal.
3541 * @dev: Device to be put offline.
3542 *
3543 * Execute the device bus type's .offline() callback, if present, to prepare
3544 * the device for a subsequent hot-removal. If that succeeds, the device must
3545 * not be used until either it is removed or its bus type's .online() callback
3546 * is executed.
3547 *
3548 * Call under device_hotplug_lock.
3549 */
3550 int device_offline(struct device *dev)
3551 {
3552 int ret;
3553
3554 if (dev->offline_disabled)
3555 return -EPERM;
3556
3557 ret = device_for_each_child(dev, NULL, device_check_offline);
3558 if (ret)
3559 return ret;
3560
3561 device_lock(dev);
3562 if (device_supports_offline(dev)) {
3563 if (dev->offline) {
3564 ret = 1;
3565 } else {
3566 ret = dev->bus->offline(dev);
3567 if (!ret) {
3568 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3569 dev->offline = true;
3570 }
3571 }
3572 }
3573 device_unlock(dev);
3574
3575 return ret;
3576 }
3577
3578 /**
3579 * device_online - Put the device back online after successful device_offline().
3580 * @dev: Device to be put back online.
3581 *
3582 * If device_offline() has been successfully executed for @dev, but the device
3583 * has not been removed subsequently, execute its bus type's .online() callback
3584 * to indicate that the device can be used again.
3585 *
3586 * Call under device_hotplug_lock.
3587 */
3588 int device_online(struct device *dev)
3589 {
3590 int ret = 0;
3591
3592 device_lock(dev);
3593 if (device_supports_offline(dev)) {
3594 if (dev->offline) {
3595 ret = dev->bus->online(dev);
3596 if (!ret) {
3597 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3598 dev->offline = false;
3599 }
3600 } else {
3601 ret = 1;
3602 }
3603 }
3604 device_unlock(dev);
3605
3606 return ret;
3607 }
3608
3609 struct root_device {
3610 struct device dev;
3611 struct module *owner;
3612 };
3613
3614 static inline struct root_device *to_root_device(struct device *d)
3615 {
3616 return container_of(d, struct root_device, dev);
3617 }
3618
3619 static void root_device_release(struct device *dev)
3620 {
3621 kfree(to_root_device(dev));
3622 }
3623
3624 /**
3625 * __root_device_register - allocate and register a root device
3626 * @name: root device name
3627 * @owner: owner module of the root device, usually THIS_MODULE
3628 *
3629 * This function allocates a root device and registers it
3630 * using device_register(). In order to free the returned
3631 * device, use root_device_unregister().
3632 *
3633 * Root devices are dummy devices which allow other devices
3634 * to be grouped under /sys/devices. Use this function to
3635 * allocate a root device and then use it as the parent of
3636 * any device which should appear under /sys/devices/{name}
3637 *
3638 * The /sys/devices/{name} directory will also contain a
3639 * 'module' symlink which points to the @owner directory
3640 * in sysfs.
3641 *
3642 * Returns &struct device pointer on success, or ERR_PTR() on error.
3643 *
3644 * Note: You probably want to use root_device_register().
3645 */
3646 struct device *__root_device_register(const char *name, struct module *owner)
3647 {
3648 struct root_device *root;
3649 int err = -ENOMEM;
3650
3651 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3652 if (!root)
3653 return ERR_PTR(err);
3654
3655 err = dev_set_name(&root->dev, "%s", name);
3656 if (err) {
3657 kfree(root);
3658 return ERR_PTR(err);
3659 }
3660
3661 root->dev.release = root_device_release;
3662
3663 err = device_register(&root->dev);
3664 if (err) {
3665 put_device(&root->dev);
3666 return ERR_PTR(err);
3667 }
3668
3669 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3670 if (owner) {
3671 struct module_kobject *mk = &owner->mkobj;
3672
3673 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3674 if (err) {
3675 device_unregister(&root->dev);
3676 return ERR_PTR(err);
3677 }
3678 root->owner = owner;
3679 }
3680 #endif
3681
3682 return &root->dev;
3683 }
3684 EXPORT_SYMBOL_GPL(__root_device_register);
3685
3686 /**
3687 * root_device_unregister - unregister and free a root device
3688 * @dev: device going away
3689 *
3690 * This function unregisters and cleans up a device that was created by
3691 * root_device_register().
3692 */
3693 void root_device_unregister(struct device *dev)
3694 {
3695 struct root_device *root = to_root_device(dev);
3696
3697 if (root->owner)
3698 sysfs_remove_link(&root->dev.kobj, "module");
3699
3700 device_unregister(dev);
3701 }
3702 EXPORT_SYMBOL_GPL(root_device_unregister);
3703
3704
3705 static void device_create_release(struct device *dev)
3706 {
3707 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3708 kfree(dev);
3709 }
3710
3711 static __printf(6, 0) struct device *
3712 device_create_groups_vargs(struct class *class, struct device *parent,
3713 dev_t devt, void *drvdata,
3714 const struct attribute_group **groups,
3715 const char *fmt, va_list args)
3716 {
3717 struct device *dev = NULL;
3718 int retval = -ENODEV;
3719
3720 if (class == NULL || IS_ERR(class))
3721 goto error;
3722
3723 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3724 if (!dev) {
3725 retval = -ENOMEM;
3726 goto error;
3727 }
3728
3729 device_initialize(dev);
3730 dev->devt = devt;
3731 dev->class = class;
3732 dev->parent = parent;
3733 dev->groups = groups;
3734 dev->release = device_create_release;
3735 dev_set_drvdata(dev, drvdata);
3736
3737 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3738 if (retval)
3739 goto error;
3740
3741 retval = device_add(dev);
3742 if (retval)
3743 goto error;
3744
3745 return dev;
3746
3747 error:
3748 put_device(dev);
3749 return ERR_PTR(retval);
3750 }
3751
3752 /**
3753 * device_create - creates a device and registers it with sysfs
3754 * @class: pointer to the struct class that this device should be registered to
3755 * @parent: pointer to the parent struct device of this new device, if any
3756 * @devt: the dev_t for the char device to be added
3757 * @drvdata: the data to be added to the device for callbacks
3758 * @fmt: string for the device's name
3759 *
3760 * This function can be used by char device classes. A struct device
3761 * will be created in sysfs, registered to the specified class.
3762 *
3763 * A "dev" file will be created, showing the dev_t for the device, if
3764 * the dev_t is not 0,0.
3765 * If a pointer to a parent struct device is passed in, the newly created
3766 * struct device will be a child of that device in sysfs.
3767 * The pointer to the struct device will be returned from the call.
3768 * Any further sysfs files that might be required can be created using this
3769 * pointer.
3770 *
3771 * Returns &struct device pointer on success, or ERR_PTR() on error.
3772 *
3773 * Note: the struct class passed to this function must have previously
3774 * been created with a call to class_create().
3775 */
3776 struct device *device_create(struct class *class, struct device *parent,
3777 dev_t devt, void *drvdata, const char *fmt, ...)
3778 {
3779 va_list vargs;
3780 struct device *dev;
3781
3782 va_start(vargs, fmt);
3783 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3784 fmt, vargs);
3785 va_end(vargs);
3786 return dev;
3787 }
3788 EXPORT_SYMBOL_GPL(device_create);
3789
3790 /**
3791 * device_create_with_groups - creates a device and registers it with sysfs
3792 * @class: pointer to the struct class that this device should be registered to
3793 * @parent: pointer to the parent struct device of this new device, if any
3794 * @devt: the dev_t for the char device to be added
3795 * @drvdata: the data to be added to the device for callbacks
3796 * @groups: NULL-terminated list of attribute groups to be created
3797 * @fmt: string for the device's name
3798 *
3799 * This function can be used by char device classes. A struct device
3800 * will be created in sysfs, registered to the specified class.
3801 * Additional attributes specified in the groups parameter will also
3802 * be created automatically.
3803 *
3804 * A "dev" file will be created, showing the dev_t for the device, if
3805 * the dev_t is not 0,0.
3806 * If a pointer to a parent struct device is passed in, the newly created
3807 * struct device will be a child of that device in sysfs.
3808 * The pointer to the struct device will be returned from the call.
3809 * Any further sysfs files that might be required can be created using this
3810 * pointer.
3811 *
3812 * Returns &struct device pointer on success, or ERR_PTR() on error.
3813 *
3814 * Note: the struct class passed to this function must have previously
3815 * been created with a call to class_create().
3816 */
3817 struct device *device_create_with_groups(struct class *class,
3818 struct device *parent, dev_t devt,
3819 void *drvdata,
3820 const struct attribute_group **groups,
3821 const char *fmt, ...)
3822 {
3823 va_list vargs;
3824 struct device *dev;
3825
3826 va_start(vargs, fmt);
3827 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3828 fmt, vargs);
3829 va_end(vargs);
3830 return dev;
3831 }
3832 EXPORT_SYMBOL_GPL(device_create_with_groups);
3833
3834 /**
3835 * device_destroy - removes a device that was created with device_create()
3836 * @class: pointer to the struct class that this device was registered with
3837 * @devt: the dev_t of the device that was previously registered
3838 *
3839 * This call unregisters and cleans up a device that was created with a
3840 * call to device_create().
3841 */
3842 void device_destroy(struct class *class, dev_t devt)
3843 {
3844 struct device *dev;
3845
3846 dev = class_find_device_by_devt(class, devt);
3847 if (dev) {
3848 put_device(dev);
3849 device_unregister(dev);
3850 }
3851 }
3852 EXPORT_SYMBOL_GPL(device_destroy);
3853
3854 /**
3855 * device_rename - renames a device
3856 * @dev: the pointer to the struct device to be renamed
3857 * @new_name: the new name of the device
3858 *
3859 * It is the responsibility of the caller to provide mutual
3860 * exclusion between two different calls of device_rename
3861 * on the same device to ensure that new_name is valid and
3862 * won't conflict with other devices.
3863 *
3864 * Note: Don't call this function. Currently, the networking layer calls this
3865 * function, but that will change. The following text from Kay Sievers offers
3866 * some insight:
3867 *
3868 * Renaming devices is racy at many levels, symlinks and other stuff are not
3869 * replaced atomically, and you get a "move" uevent, but it's not easy to
3870 * connect the event to the old and new device. Device nodes are not renamed at
3871 * all, there isn't even support for that in the kernel now.
3872 *
3873 * In the meantime, during renaming, your target name might be taken by another
3874 * driver, creating conflicts. Or the old name is taken directly after you
3875 * renamed it -- then you get events for the same DEVPATH, before you even see
3876 * the "move" event. It's just a mess, and nothing new should ever rely on
3877 * kernel device renaming. Besides that, it's not even implemented now for
3878 * other things than (driver-core wise very simple) network devices.
3879 *
3880 * We are currently about to change network renaming in udev to completely
3881 * disallow renaming of devices in the same namespace as the kernel uses,
3882 * because we can't solve the problems properly, that arise with swapping names
3883 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3884 * be allowed to some other name than eth[0-9]*, for the aforementioned
3885 * reasons.
3886 *
3887 * Make up a "real" name in the driver before you register anything, or add
3888 * some other attributes for userspace to find the device, or use udev to add
3889 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3890 * don't even want to get into that and try to implement the missing pieces in
3891 * the core. We really have other pieces to fix in the driver core mess. :)
3892 */
3893 int device_rename(struct device *dev, const char *new_name)
3894 {
3895 struct kobject *kobj = &dev->kobj;
3896 char *old_device_name = NULL;
3897 int error;
3898
3899 dev = get_device(dev);
3900 if (!dev)
3901 return -EINVAL;
3902
3903 dev_dbg(dev, "renaming to %s\n", new_name);
3904
3905 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3906 if (!old_device_name) {
3907 error = -ENOMEM;
3908 goto out;
3909 }
3910
3911 if (dev->class) {
3912 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3913 kobj, old_device_name,
3914 new_name, kobject_namespace(kobj));
3915 if (error)
3916 goto out;
3917 }
3918
3919 error = kobject_rename(kobj, new_name);
3920 if (error)
3921 goto out;
3922
3923 out:
3924 put_device(dev);
3925
3926 kfree(old_device_name);
3927
3928 return error;
3929 }
3930 EXPORT_SYMBOL_GPL(device_rename);
3931
3932 static int device_move_class_links(struct device *dev,
3933 struct device *old_parent,
3934 struct device *new_parent)
3935 {
3936 int error = 0;
3937
3938 if (old_parent)
3939 sysfs_remove_link(&dev->kobj, "device");
3940 if (new_parent)
3941 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3942 "device");
3943 return error;
3944 }
3945
3946 /**
3947 * device_move - moves a device to a new parent
3948 * @dev: the pointer to the struct device to be moved
3949 * @new_parent: the new parent of the device (can be NULL)
3950 * @dpm_order: how to reorder the dpm_list
3951 */
3952 int device_move(struct device *dev, struct device *new_parent,
3953 enum dpm_order dpm_order)
3954 {
3955 int error;
3956 struct device *old_parent;
3957 struct kobject *new_parent_kobj;
3958
3959 dev = get_device(dev);
3960 if (!dev)
3961 return -EINVAL;
3962
3963 device_pm_lock();
3964 new_parent = get_device(new_parent);
3965 new_parent_kobj = get_device_parent(dev, new_parent);
3966 if (IS_ERR(new_parent_kobj)) {
3967 error = PTR_ERR(new_parent_kobj);
3968 put_device(new_parent);
3969 goto out;
3970 }
3971
3972 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3973 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3974 error = kobject_move(&dev->kobj, new_parent_kobj);
3975 if (error) {
3976 cleanup_glue_dir(dev, new_parent_kobj);
3977 put_device(new_parent);
3978 goto out;
3979 }
3980 old_parent = dev->parent;
3981 dev->parent = new_parent;
3982 if (old_parent)
3983 klist_remove(&dev->p->knode_parent);
3984 if (new_parent) {
3985 klist_add_tail(&dev->p->knode_parent,
3986 &new_parent->p->klist_children);
3987 set_dev_node(dev, dev_to_node(new_parent));
3988 }
3989
3990 if (dev->class) {
3991 error = device_move_class_links(dev, old_parent, new_parent);
3992 if (error) {
3993 /* We ignore errors on cleanup since we're hosed anyway... */
3994 device_move_class_links(dev, new_parent, old_parent);
3995 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3996 if (new_parent)
3997 klist_remove(&dev->p->knode_parent);
3998 dev->parent = old_parent;
3999 if (old_parent) {
4000 klist_add_tail(&dev->p->knode_parent,
4001 &old_parent->p->klist_children);
4002 set_dev_node(dev, dev_to_node(old_parent));
4003 }
4004 }
4005 cleanup_glue_dir(dev, new_parent_kobj);
4006 put_device(new_parent);
4007 goto out;
4008 }
4009 }
4010 switch (dpm_order) {
4011 case DPM_ORDER_NONE:
4012 break;
4013 case DPM_ORDER_DEV_AFTER_PARENT:
4014 device_pm_move_after(dev, new_parent);
4015 devices_kset_move_after(dev, new_parent);
4016 break;
4017 case DPM_ORDER_PARENT_BEFORE_DEV:
4018 device_pm_move_before(new_parent, dev);
4019 devices_kset_move_before(new_parent, dev);
4020 break;
4021 case DPM_ORDER_DEV_LAST:
4022 device_pm_move_last(dev);
4023 devices_kset_move_last(dev);
4024 break;
4025 }
4026
4027 put_device(old_parent);
4028 out:
4029 device_pm_unlock();
4030 put_device(dev);
4031 return error;
4032 }
4033 EXPORT_SYMBOL_GPL(device_move);
4034
4035 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4036 kgid_t kgid)
4037 {
4038 struct kobject *kobj = &dev->kobj;
4039 struct class *class = dev->class;
4040 const struct device_type *type = dev->type;
4041 int error;
4042
4043 if (class) {
4044 /*
4045 * Change the device groups of the device class for @dev to
4046 * @kuid/@kgid.
4047 */
4048 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4049 kgid);
4050 if (error)
4051 return error;
4052 }
4053
4054 if (type) {
4055 /*
4056 * Change the device groups of the device type for @dev to
4057 * @kuid/@kgid.
4058 */
4059 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4060 kgid);
4061 if (error)
4062 return error;
4063 }
4064
4065 /* Change the device groups of @dev to @kuid/@kgid. */
4066 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4067 if (error)
4068 return error;
4069
4070 if (device_supports_offline(dev) && !dev->offline_disabled) {
4071 /* Change online device attributes of @dev to @kuid/@kgid. */
4072 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4073 kuid, kgid);
4074 if (error)
4075 return error;
4076 }
4077
4078 return 0;
4079 }
4080
4081 /**
4082 * device_change_owner - change the owner of an existing device.
4083 * @dev: device.
4084 * @kuid: new owner's kuid
4085 * @kgid: new owner's kgid
4086 *
4087 * This changes the owner of @dev and its corresponding sysfs entries to
4088 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4089 * core.
4090 *
4091 * Returns 0 on success or error code on failure.
4092 */
4093 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4094 {
4095 int error;
4096 struct kobject *kobj = &dev->kobj;
4097
4098 dev = get_device(dev);
4099 if (!dev)
4100 return -EINVAL;
4101
4102 /*
4103 * Change the kobject and the default attributes and groups of the
4104 * ktype associated with it to @kuid/@kgid.
4105 */
4106 error = sysfs_change_owner(kobj, kuid, kgid);
4107 if (error)
4108 goto out;
4109
4110 /*
4111 * Change the uevent file for @dev to the new owner. The uevent file
4112 * was created in a separate step when @dev got added and we mirror
4113 * that step here.
4114 */
4115 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4116 kgid);
4117 if (error)
4118 goto out;
4119
4120 /*
4121 * Change the device groups, the device groups associated with the
4122 * device class, and the groups associated with the device type of @dev
4123 * to @kuid/@kgid.
4124 */
4125 error = device_attrs_change_owner(dev, kuid, kgid);
4126 if (error)
4127 goto out;
4128
4129 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4130 if (error)
4131 goto out;
4132
4133 #ifdef CONFIG_BLOCK
4134 if (sysfs_deprecated && dev->class == &block_class)
4135 goto out;
4136 #endif
4137
4138 /*
4139 * Change the owner of the symlink located in the class directory of
4140 * the device class associated with @dev which points to the actual
4141 * directory entry for @dev to @kuid/@kgid. This ensures that the
4142 * symlink shows the same permissions as its target.
4143 */
4144 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4145 dev_name(dev), kuid, kgid);
4146 if (error)
4147 goto out;
4148
4149 out:
4150 put_device(dev);
4151 return error;
4152 }
4153 EXPORT_SYMBOL_GPL(device_change_owner);
4154
4155 /**
4156 * device_shutdown - call ->shutdown() on each device to shutdown.
4157 */
4158 void device_shutdown(void)
4159 {
4160 struct device *dev, *parent;
4161
4162 wait_for_device_probe();
4163 device_block_probing();
4164
4165 cpufreq_suspend();
4166
4167 spin_lock(&devices_kset->list_lock);
4168 /*
4169 * Walk the devices list backward, shutting down each in turn.
4170 * Beware that device unplug events may also start pulling
4171 * devices offline, even as the system is shutting down.
4172 */
4173 while (!list_empty(&devices_kset->list)) {
4174 dev = list_entry(devices_kset->list.prev, struct device,
4175 kobj.entry);
4176
4177 /*
4178 * hold reference count of device's parent to
4179 * prevent it from being freed because parent's
4180 * lock is to be held
4181 */
4182 parent = get_device(dev->parent);
4183 get_device(dev);
4184 /*
4185 * Make sure the device is off the kset list, in the
4186 * event that dev->*->shutdown() doesn't remove it.
4187 */
4188 list_del_init(&dev->kobj.entry);
4189 spin_unlock(&devices_kset->list_lock);
4190
4191 /* hold lock to avoid race with probe/release */
4192 if (parent)
4193 device_lock(parent);
4194 device_lock(dev);
4195
4196 /* Don't allow any more runtime suspends */
4197 pm_runtime_get_noresume(dev);
4198 pm_runtime_barrier(dev);
4199
4200 if (dev->class && dev->class->shutdown_pre) {
4201 if (initcall_debug)
4202 dev_info(dev, "shutdown_pre\n");
4203 dev->class->shutdown_pre(dev);
4204 }
4205 if (dev->bus && dev->bus->shutdown) {
4206 if (initcall_debug)
4207 dev_info(dev, "shutdown\n");
4208 dev->bus->shutdown(dev);
4209 } else if (dev->driver && dev->driver->shutdown) {
4210 if (initcall_debug)
4211 dev_info(dev, "shutdown\n");
4212 dev->driver->shutdown(dev);
4213 }
4214
4215 device_unlock(dev);
4216 if (parent)
4217 device_unlock(parent);
4218
4219 put_device(dev);
4220 put_device(parent);
4221
4222 spin_lock(&devices_kset->list_lock);
4223 }
4224 spin_unlock(&devices_kset->list_lock);
4225 }
4226
4227 /*
4228 * Device logging functions
4229 */
4230
4231 #ifdef CONFIG_PRINTK
4232 static void
4233 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4234 {
4235 const char *subsys;
4236
4237 memset(dev_info, 0, sizeof(*dev_info));
4238
4239 if (dev->class)
4240 subsys = dev->class->name;
4241 else if (dev->bus)
4242 subsys = dev->bus->name;
4243 else
4244 return;
4245
4246 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4247
4248 /*
4249 * Add device identifier DEVICE=:
4250 * b12:8 block dev_t
4251 * c127:3 char dev_t
4252 * n8 netdev ifindex
4253 * +sound:card0 subsystem:devname
4254 */
4255 if (MAJOR(dev->devt)) {
4256 char c;
4257
4258 if (strcmp(subsys, "block") == 0)
4259 c = 'b';
4260 else
4261 c = 'c';
4262
4263 snprintf(dev_info->device, sizeof(dev_info->device),
4264 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4265 } else if (strcmp(subsys, "net") == 0) {
4266 struct net_device *net = to_net_dev(dev);
4267
4268 snprintf(dev_info->device, sizeof(dev_info->device),
4269 "n%u", net->ifindex);
4270 } else {
4271 snprintf(dev_info->device, sizeof(dev_info->device),
4272 "+%s:%s", subsys, dev_name(dev));
4273 }
4274 }
4275
4276 int dev_vprintk_emit(int level, const struct device *dev,
4277 const char *fmt, va_list args)
4278 {
4279 struct dev_printk_info dev_info;
4280
4281 set_dev_info(dev, &dev_info);
4282
4283 return vprintk_emit(0, level, &dev_info, fmt, args);
4284 }
4285 EXPORT_SYMBOL(dev_vprintk_emit);
4286
4287 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4288 {
4289 va_list args;
4290 int r;
4291
4292 va_start(args, fmt);
4293
4294 r = dev_vprintk_emit(level, dev, fmt, args);
4295
4296 va_end(args);
4297
4298 return r;
4299 }
4300 EXPORT_SYMBOL(dev_printk_emit);
4301
4302 static void __dev_printk(const char *level, const struct device *dev,
4303 struct va_format *vaf)
4304 {
4305 if (dev)
4306 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4307 dev_driver_string(dev), dev_name(dev), vaf);
4308 else
4309 printk("%s(NULL device *): %pV", level, vaf);
4310 }
4311
4312 void dev_printk(const char *level, const struct device *dev,
4313 const char *fmt, ...)
4314 {
4315 struct va_format vaf;
4316 va_list args;
4317
4318 va_start(args, fmt);
4319
4320 vaf.fmt = fmt;
4321 vaf.va = &args;
4322
4323 __dev_printk(level, dev, &vaf);
4324
4325 va_end(args);
4326 }
4327 EXPORT_SYMBOL(dev_printk);
4328
4329 #define define_dev_printk_level(func, kern_level) \
4330 void func(const struct device *dev, const char *fmt, ...) \
4331 { \
4332 struct va_format vaf; \
4333 va_list args; \
4334 \
4335 va_start(args, fmt); \
4336 \
4337 vaf.fmt = fmt; \
4338 vaf.va = &args; \
4339 \
4340 __dev_printk(kern_level, dev, &vaf); \
4341 \
4342 va_end(args); \
4343 } \
4344 EXPORT_SYMBOL(func);
4345
4346 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4347 define_dev_printk_level(_dev_alert, KERN_ALERT);
4348 define_dev_printk_level(_dev_crit, KERN_CRIT);
4349 define_dev_printk_level(_dev_err, KERN_ERR);
4350 define_dev_printk_level(_dev_warn, KERN_WARNING);
4351 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4352 define_dev_printk_level(_dev_info, KERN_INFO);
4353
4354 #endif
4355
4356 /**
4357 * dev_err_probe - probe error check and log helper
4358 * @dev: the pointer to the struct device
4359 * @err: error value to test
4360 * @fmt: printf-style format string
4361 * @...: arguments as specified in the format string
4362 *
4363 * This helper implements common pattern present in probe functions for error
4364 * checking: print debug or error message depending if the error value is
4365 * -EPROBE_DEFER and propagate error upwards.
4366 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4367 * checked later by reading devices_deferred debugfs attribute.
4368 * It replaces code sequence::
4369 *
4370 * if (err != -EPROBE_DEFER)
4371 * dev_err(dev, ...);
4372 * else
4373 * dev_dbg(dev, ...);
4374 * return err;
4375 *
4376 * with::
4377 *
4378 * return dev_err_probe(dev, err, ...);
4379 *
4380 * Returns @err.
4381 *
4382 */
4383 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4384 {
4385 struct va_format vaf;
4386 va_list args;
4387
4388 va_start(args, fmt);
4389 vaf.fmt = fmt;
4390 vaf.va = &args;
4391
4392 if (err != -EPROBE_DEFER) {
4393 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4394 } else {
4395 device_set_deferred_probe_reason(dev, &vaf);
4396 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4397 }
4398
4399 va_end(args);
4400
4401 return err;
4402 }
4403 EXPORT_SYMBOL_GPL(dev_err_probe);
4404
4405 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4406 {
4407 return fwnode && !IS_ERR(fwnode->secondary);
4408 }
4409
4410 /**
4411 * set_primary_fwnode - Change the primary firmware node of a given device.
4412 * @dev: Device to handle.
4413 * @fwnode: New primary firmware node of the device.
4414 *
4415 * Set the device's firmware node pointer to @fwnode, but if a secondary
4416 * firmware node of the device is present, preserve it.
4417 */
4418 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4419 {
4420 struct device *parent = dev->parent;
4421 struct fwnode_handle *fn = dev->fwnode;
4422
4423 if (fwnode) {
4424 if (fwnode_is_primary(fn))
4425 fn = fn->secondary;
4426
4427 if (fn) {
4428 WARN_ON(fwnode->secondary);
4429 fwnode->secondary = fn;
4430 }
4431 dev->fwnode = fwnode;
4432 } else {
4433 if (fwnode_is_primary(fn)) {
4434 dev->fwnode = fn->secondary;
4435 if (!(parent && fn == parent->fwnode))
4436 fn->secondary = ERR_PTR(-ENODEV);
4437 } else {
4438 dev->fwnode = NULL;
4439 }
4440 }
4441 }
4442 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4443
4444 /**
4445 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4446 * @dev: Device to handle.
4447 * @fwnode: New secondary firmware node of the device.
4448 *
4449 * If a primary firmware node of the device is present, set its secondary
4450 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4451 * @fwnode.
4452 */
4453 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4454 {
4455 if (fwnode)
4456 fwnode->secondary = ERR_PTR(-ENODEV);
4457
4458 if (fwnode_is_primary(dev->fwnode))
4459 dev->fwnode->secondary = fwnode;
4460 else
4461 dev->fwnode = fwnode;
4462 }
4463 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4464
4465 /**
4466 * device_set_of_node_from_dev - reuse device-tree node of another device
4467 * @dev: device whose device-tree node is being set
4468 * @dev2: device whose device-tree node is being reused
4469 *
4470 * Takes another reference to the new device-tree node after first dropping
4471 * any reference held to the old node.
4472 */
4473 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4474 {
4475 of_node_put(dev->of_node);
4476 dev->of_node = of_node_get(dev2->of_node);
4477 dev->of_node_reused = true;
4478 }
4479 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4480
4481 int device_match_name(struct device *dev, const void *name)
4482 {
4483 return sysfs_streq(dev_name(dev), name);
4484 }
4485 EXPORT_SYMBOL_GPL(device_match_name);
4486
4487 int device_match_of_node(struct device *dev, const void *np)
4488 {
4489 return dev->of_node == np;
4490 }
4491 EXPORT_SYMBOL_GPL(device_match_of_node);
4492
4493 int device_match_fwnode(struct device *dev, const void *fwnode)
4494 {
4495 return dev_fwnode(dev) == fwnode;
4496 }
4497 EXPORT_SYMBOL_GPL(device_match_fwnode);
4498
4499 int device_match_devt(struct device *dev, const void *pdevt)
4500 {
4501 return dev->devt == *(dev_t *)pdevt;
4502 }
4503 EXPORT_SYMBOL_GPL(device_match_devt);
4504
4505 int device_match_acpi_dev(struct device *dev, const void *adev)
4506 {
4507 return ACPI_COMPANION(dev) == adev;
4508 }
4509 EXPORT_SYMBOL(device_match_acpi_dev);
4510
4511 int device_match_any(struct device *dev, const void *unused)
4512 {
4513 return 1;
4514 }
4515 EXPORT_SYMBOL_GPL(device_match_any);