]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/base/core.c
Merge tag 'optee-fix-for-v5.15' of git://git.linaro.org/people/jens.wiklander/linux...
[mirror_ubuntu-jammy-kernel.git] / drivers / base / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33
34 #include "base.h"
35 #include "power/power.h"
36
37 #ifdef CONFIG_SYSFS_DEPRECATED
38 #ifdef CONFIG_SYSFS_DEPRECATED_V2
39 long sysfs_deprecated = 1;
40 #else
41 long sysfs_deprecated = 0;
42 #endif
43 static int __init sysfs_deprecated_setup(char *arg)
44 {
45 return kstrtol(arg, 10, &sysfs_deprecated);
46 }
47 early_param("sysfs.deprecated", sysfs_deprecated_setup);
48 #endif
49
50 /* Device links support. */
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static DEFINE_MUTEX(fwnode_link_lock);
54 static bool fw_devlink_is_permissive(void);
55 static bool fw_devlink_drv_reg_done;
56
57 /**
58 * fwnode_link_add - Create a link between two fwnode_handles.
59 * @con: Consumer end of the link.
60 * @sup: Supplier end of the link.
61 *
62 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
63 * represents the detail that the firmware lists @sup fwnode as supplying a
64 * resource to @con.
65 *
66 * The driver core will use the fwnode link to create a device link between the
67 * two device objects corresponding to @con and @sup when they are created. The
68 * driver core will automatically delete the fwnode link between @con and @sup
69 * after doing that.
70 *
71 * Attempts to create duplicate links between the same pair of fwnode handles
72 * are ignored and there is no reference counting.
73 */
74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
75 {
76 struct fwnode_link *link;
77 int ret = 0;
78
79 mutex_lock(&fwnode_link_lock);
80
81 list_for_each_entry(link, &sup->consumers, s_hook)
82 if (link->consumer == con)
83 goto out;
84
85 link = kzalloc(sizeof(*link), GFP_KERNEL);
86 if (!link) {
87 ret = -ENOMEM;
88 goto out;
89 }
90
91 link->supplier = sup;
92 INIT_LIST_HEAD(&link->s_hook);
93 link->consumer = con;
94 INIT_LIST_HEAD(&link->c_hook);
95
96 list_add(&link->s_hook, &sup->consumers);
97 list_add(&link->c_hook, &con->suppliers);
98 out:
99 mutex_unlock(&fwnode_link_lock);
100
101 return ret;
102 }
103
104 /**
105 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
106 * @fwnode: fwnode whose supplier links need to be deleted
107 *
108 * Deletes all supplier links connecting directly to @fwnode.
109 */
110 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
111 {
112 struct fwnode_link *link, *tmp;
113
114 mutex_lock(&fwnode_link_lock);
115 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
116 list_del(&link->s_hook);
117 list_del(&link->c_hook);
118 kfree(link);
119 }
120 mutex_unlock(&fwnode_link_lock);
121 }
122
123 /**
124 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
125 * @fwnode: fwnode whose consumer links need to be deleted
126 *
127 * Deletes all consumer links connecting directly to @fwnode.
128 */
129 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
130 {
131 struct fwnode_link *link, *tmp;
132
133 mutex_lock(&fwnode_link_lock);
134 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
135 list_del(&link->s_hook);
136 list_del(&link->c_hook);
137 kfree(link);
138 }
139 mutex_unlock(&fwnode_link_lock);
140 }
141
142 /**
143 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
144 * @fwnode: fwnode whose links needs to be deleted
145 *
146 * Deletes all links connecting directly to a fwnode.
147 */
148 void fwnode_links_purge(struct fwnode_handle *fwnode)
149 {
150 fwnode_links_purge_suppliers(fwnode);
151 fwnode_links_purge_consumers(fwnode);
152 }
153
154 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
155 {
156 struct fwnode_handle *child;
157
158 /* Don't purge consumer links of an added child */
159 if (fwnode->dev)
160 return;
161
162 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
163 fwnode_links_purge_consumers(fwnode);
164
165 fwnode_for_each_available_child_node(fwnode, child)
166 fw_devlink_purge_absent_suppliers(child);
167 }
168 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
169
170 #ifdef CONFIG_SRCU
171 static DEFINE_MUTEX(device_links_lock);
172 DEFINE_STATIC_SRCU(device_links_srcu);
173
174 static inline void device_links_write_lock(void)
175 {
176 mutex_lock(&device_links_lock);
177 }
178
179 static inline void device_links_write_unlock(void)
180 {
181 mutex_unlock(&device_links_lock);
182 }
183
184 int device_links_read_lock(void) __acquires(&device_links_srcu)
185 {
186 return srcu_read_lock(&device_links_srcu);
187 }
188
189 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
190 {
191 srcu_read_unlock(&device_links_srcu, idx);
192 }
193
194 int device_links_read_lock_held(void)
195 {
196 return srcu_read_lock_held(&device_links_srcu);
197 }
198
199 static void device_link_synchronize_removal(void)
200 {
201 synchronize_srcu(&device_links_srcu);
202 }
203
204 static void device_link_remove_from_lists(struct device_link *link)
205 {
206 list_del_rcu(&link->s_node);
207 list_del_rcu(&link->c_node);
208 }
209 #else /* !CONFIG_SRCU */
210 static DECLARE_RWSEM(device_links_lock);
211
212 static inline void device_links_write_lock(void)
213 {
214 down_write(&device_links_lock);
215 }
216
217 static inline void device_links_write_unlock(void)
218 {
219 up_write(&device_links_lock);
220 }
221
222 int device_links_read_lock(void)
223 {
224 down_read(&device_links_lock);
225 return 0;
226 }
227
228 void device_links_read_unlock(int not_used)
229 {
230 up_read(&device_links_lock);
231 }
232
233 #ifdef CONFIG_DEBUG_LOCK_ALLOC
234 int device_links_read_lock_held(void)
235 {
236 return lockdep_is_held(&device_links_lock);
237 }
238 #endif
239
240 static inline void device_link_synchronize_removal(void)
241 {
242 }
243
244 static void device_link_remove_from_lists(struct device_link *link)
245 {
246 list_del(&link->s_node);
247 list_del(&link->c_node);
248 }
249 #endif /* !CONFIG_SRCU */
250
251 static bool device_is_ancestor(struct device *dev, struct device *target)
252 {
253 while (target->parent) {
254 target = target->parent;
255 if (dev == target)
256 return true;
257 }
258 return false;
259 }
260
261 /**
262 * device_is_dependent - Check if one device depends on another one
263 * @dev: Device to check dependencies for.
264 * @target: Device to check against.
265 *
266 * Check if @target depends on @dev or any device dependent on it (its child or
267 * its consumer etc). Return 1 if that is the case or 0 otherwise.
268 */
269 int device_is_dependent(struct device *dev, void *target)
270 {
271 struct device_link *link;
272 int ret;
273
274 /*
275 * The "ancestors" check is needed to catch the case when the target
276 * device has not been completely initialized yet and it is still
277 * missing from the list of children of its parent device.
278 */
279 if (dev == target || device_is_ancestor(dev, target))
280 return 1;
281
282 ret = device_for_each_child(dev, target, device_is_dependent);
283 if (ret)
284 return ret;
285
286 list_for_each_entry(link, &dev->links.consumers, s_node) {
287 if ((link->flags & ~DL_FLAG_INFERRED) ==
288 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
289 continue;
290
291 if (link->consumer == target)
292 return 1;
293
294 ret = device_is_dependent(link->consumer, target);
295 if (ret)
296 break;
297 }
298 return ret;
299 }
300
301 static void device_link_init_status(struct device_link *link,
302 struct device *consumer,
303 struct device *supplier)
304 {
305 switch (supplier->links.status) {
306 case DL_DEV_PROBING:
307 switch (consumer->links.status) {
308 case DL_DEV_PROBING:
309 /*
310 * A consumer driver can create a link to a supplier
311 * that has not completed its probing yet as long as it
312 * knows that the supplier is already functional (for
313 * example, it has just acquired some resources from the
314 * supplier).
315 */
316 link->status = DL_STATE_CONSUMER_PROBE;
317 break;
318 default:
319 link->status = DL_STATE_DORMANT;
320 break;
321 }
322 break;
323 case DL_DEV_DRIVER_BOUND:
324 switch (consumer->links.status) {
325 case DL_DEV_PROBING:
326 link->status = DL_STATE_CONSUMER_PROBE;
327 break;
328 case DL_DEV_DRIVER_BOUND:
329 link->status = DL_STATE_ACTIVE;
330 break;
331 default:
332 link->status = DL_STATE_AVAILABLE;
333 break;
334 }
335 break;
336 case DL_DEV_UNBINDING:
337 link->status = DL_STATE_SUPPLIER_UNBIND;
338 break;
339 default:
340 link->status = DL_STATE_DORMANT;
341 break;
342 }
343 }
344
345 static int device_reorder_to_tail(struct device *dev, void *not_used)
346 {
347 struct device_link *link;
348
349 /*
350 * Devices that have not been registered yet will be put to the ends
351 * of the lists during the registration, so skip them here.
352 */
353 if (device_is_registered(dev))
354 devices_kset_move_last(dev);
355
356 if (device_pm_initialized(dev))
357 device_pm_move_last(dev);
358
359 device_for_each_child(dev, NULL, device_reorder_to_tail);
360 list_for_each_entry(link, &dev->links.consumers, s_node) {
361 if ((link->flags & ~DL_FLAG_INFERRED) ==
362 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
363 continue;
364 device_reorder_to_tail(link->consumer, NULL);
365 }
366
367 return 0;
368 }
369
370 /**
371 * device_pm_move_to_tail - Move set of devices to the end of device lists
372 * @dev: Device to move
373 *
374 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
375 *
376 * It moves the @dev along with all of its children and all of its consumers
377 * to the ends of the device_kset and dpm_list, recursively.
378 */
379 void device_pm_move_to_tail(struct device *dev)
380 {
381 int idx;
382
383 idx = device_links_read_lock();
384 device_pm_lock();
385 device_reorder_to_tail(dev, NULL);
386 device_pm_unlock();
387 device_links_read_unlock(idx);
388 }
389
390 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
391
392 static ssize_t status_show(struct device *dev,
393 struct device_attribute *attr, char *buf)
394 {
395 const char *output;
396
397 switch (to_devlink(dev)->status) {
398 case DL_STATE_NONE:
399 output = "not tracked";
400 break;
401 case DL_STATE_DORMANT:
402 output = "dormant";
403 break;
404 case DL_STATE_AVAILABLE:
405 output = "available";
406 break;
407 case DL_STATE_CONSUMER_PROBE:
408 output = "consumer probing";
409 break;
410 case DL_STATE_ACTIVE:
411 output = "active";
412 break;
413 case DL_STATE_SUPPLIER_UNBIND:
414 output = "supplier unbinding";
415 break;
416 default:
417 output = "unknown";
418 break;
419 }
420
421 return sysfs_emit(buf, "%s\n", output);
422 }
423 static DEVICE_ATTR_RO(status);
424
425 static ssize_t auto_remove_on_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
427 {
428 struct device_link *link = to_devlink(dev);
429 const char *output;
430
431 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
432 output = "supplier unbind";
433 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
434 output = "consumer unbind";
435 else
436 output = "never";
437
438 return sysfs_emit(buf, "%s\n", output);
439 }
440 static DEVICE_ATTR_RO(auto_remove_on);
441
442 static ssize_t runtime_pm_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
444 {
445 struct device_link *link = to_devlink(dev);
446
447 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
448 }
449 static DEVICE_ATTR_RO(runtime_pm);
450
451 static ssize_t sync_state_only_show(struct device *dev,
452 struct device_attribute *attr, char *buf)
453 {
454 struct device_link *link = to_devlink(dev);
455
456 return sysfs_emit(buf, "%d\n",
457 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
458 }
459 static DEVICE_ATTR_RO(sync_state_only);
460
461 static struct attribute *devlink_attrs[] = {
462 &dev_attr_status.attr,
463 &dev_attr_auto_remove_on.attr,
464 &dev_attr_runtime_pm.attr,
465 &dev_attr_sync_state_only.attr,
466 NULL,
467 };
468 ATTRIBUTE_GROUPS(devlink);
469
470 static void device_link_release_fn(struct work_struct *work)
471 {
472 struct device_link *link = container_of(work, struct device_link, rm_work);
473
474 /* Ensure that all references to the link object have been dropped. */
475 device_link_synchronize_removal();
476
477 while (refcount_dec_not_one(&link->rpm_active))
478 pm_runtime_put(link->supplier);
479
480 put_device(link->consumer);
481 put_device(link->supplier);
482 kfree(link);
483 }
484
485 static void devlink_dev_release(struct device *dev)
486 {
487 struct device_link *link = to_devlink(dev);
488
489 INIT_WORK(&link->rm_work, device_link_release_fn);
490 /*
491 * It may take a while to complete this work because of the SRCU
492 * synchronization in device_link_release_fn() and if the consumer or
493 * supplier devices get deleted when it runs, so put it into the "long"
494 * workqueue.
495 */
496 queue_work(system_long_wq, &link->rm_work);
497 }
498
499 static struct class devlink_class = {
500 .name = "devlink",
501 .owner = THIS_MODULE,
502 .dev_groups = devlink_groups,
503 .dev_release = devlink_dev_release,
504 };
505
506 static int devlink_add_symlinks(struct device *dev,
507 struct class_interface *class_intf)
508 {
509 int ret;
510 size_t len;
511 struct device_link *link = to_devlink(dev);
512 struct device *sup = link->supplier;
513 struct device *con = link->consumer;
514 char *buf;
515
516 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
517 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
518 len += strlen(":");
519 len += strlen("supplier:") + 1;
520 buf = kzalloc(len, GFP_KERNEL);
521 if (!buf)
522 return -ENOMEM;
523
524 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
525 if (ret)
526 goto out;
527
528 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
529 if (ret)
530 goto err_con;
531
532 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
533 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
534 if (ret)
535 goto err_con_dev;
536
537 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
538 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
539 if (ret)
540 goto err_sup_dev;
541
542 goto out;
543
544 err_sup_dev:
545 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
546 sysfs_remove_link(&sup->kobj, buf);
547 err_con_dev:
548 sysfs_remove_link(&link->link_dev.kobj, "consumer");
549 err_con:
550 sysfs_remove_link(&link->link_dev.kobj, "supplier");
551 out:
552 kfree(buf);
553 return ret;
554 }
555
556 static void devlink_remove_symlinks(struct device *dev,
557 struct class_interface *class_intf)
558 {
559 struct device_link *link = to_devlink(dev);
560 size_t len;
561 struct device *sup = link->supplier;
562 struct device *con = link->consumer;
563 char *buf;
564
565 sysfs_remove_link(&link->link_dev.kobj, "consumer");
566 sysfs_remove_link(&link->link_dev.kobj, "supplier");
567
568 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
569 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
570 len += strlen(":");
571 len += strlen("supplier:") + 1;
572 buf = kzalloc(len, GFP_KERNEL);
573 if (!buf) {
574 WARN(1, "Unable to properly free device link symlinks!\n");
575 return;
576 }
577
578 if (device_is_registered(con)) {
579 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
580 sysfs_remove_link(&con->kobj, buf);
581 }
582 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
583 sysfs_remove_link(&sup->kobj, buf);
584 kfree(buf);
585 }
586
587 static struct class_interface devlink_class_intf = {
588 .class = &devlink_class,
589 .add_dev = devlink_add_symlinks,
590 .remove_dev = devlink_remove_symlinks,
591 };
592
593 static int __init devlink_class_init(void)
594 {
595 int ret;
596
597 ret = class_register(&devlink_class);
598 if (ret)
599 return ret;
600
601 ret = class_interface_register(&devlink_class_intf);
602 if (ret)
603 class_unregister(&devlink_class);
604
605 return ret;
606 }
607 postcore_initcall(devlink_class_init);
608
609 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
610 DL_FLAG_AUTOREMOVE_SUPPLIER | \
611 DL_FLAG_AUTOPROBE_CONSUMER | \
612 DL_FLAG_SYNC_STATE_ONLY | \
613 DL_FLAG_INFERRED)
614
615 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
616 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
617
618 /**
619 * device_link_add - Create a link between two devices.
620 * @consumer: Consumer end of the link.
621 * @supplier: Supplier end of the link.
622 * @flags: Link flags.
623 *
624 * The caller is responsible for the proper synchronization of the link creation
625 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
626 * runtime PM framework to take the link into account. Second, if the
627 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
628 * be forced into the active meta state and reference-counted upon the creation
629 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
630 * ignored.
631 *
632 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
633 * expected to release the link returned by it directly with the help of either
634 * device_link_del() or device_link_remove().
635 *
636 * If that flag is not set, however, the caller of this function is handing the
637 * management of the link over to the driver core entirely and its return value
638 * can only be used to check whether or not the link is present. In that case,
639 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
640 * flags can be used to indicate to the driver core when the link can be safely
641 * deleted. Namely, setting one of them in @flags indicates to the driver core
642 * that the link is not going to be used (by the given caller of this function)
643 * after unbinding the consumer or supplier driver, respectively, from its
644 * device, so the link can be deleted at that point. If none of them is set,
645 * the link will be maintained until one of the devices pointed to by it (either
646 * the consumer or the supplier) is unregistered.
647 *
648 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
649 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
650 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
651 * be used to request the driver core to automatically probe for a consumer
652 * driver after successfully binding a driver to the supplier device.
653 *
654 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
655 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
656 * the same time is invalid and will cause NULL to be returned upfront.
657 * However, if a device link between the given @consumer and @supplier pair
658 * exists already when this function is called for them, the existing link will
659 * be returned regardless of its current type and status (the link's flags may
660 * be modified then). The caller of this function is then expected to treat
661 * the link as though it has just been created, so (in particular) if
662 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
663 * explicitly when not needed any more (as stated above).
664 *
665 * A side effect of the link creation is re-ordering of dpm_list and the
666 * devices_kset list by moving the consumer device and all devices depending
667 * on it to the ends of these lists (that does not happen to devices that have
668 * not been registered when this function is called).
669 *
670 * The supplier device is required to be registered when this function is called
671 * and NULL will be returned if that is not the case. The consumer device need
672 * not be registered, however.
673 */
674 struct device_link *device_link_add(struct device *consumer,
675 struct device *supplier, u32 flags)
676 {
677 struct device_link *link;
678
679 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
680 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
681 (flags & DL_FLAG_SYNC_STATE_ONLY &&
682 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
683 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
684 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
685 DL_FLAG_AUTOREMOVE_SUPPLIER)))
686 return NULL;
687
688 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
689 if (pm_runtime_get_sync(supplier) < 0) {
690 pm_runtime_put_noidle(supplier);
691 return NULL;
692 }
693 }
694
695 if (!(flags & DL_FLAG_STATELESS))
696 flags |= DL_FLAG_MANAGED;
697
698 device_links_write_lock();
699 device_pm_lock();
700
701 /*
702 * If the supplier has not been fully registered yet or there is a
703 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
704 * the supplier already in the graph, return NULL. If the link is a
705 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
706 * because it only affects sync_state() callbacks.
707 */
708 if (!device_pm_initialized(supplier)
709 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
710 device_is_dependent(consumer, supplier))) {
711 link = NULL;
712 goto out;
713 }
714
715 /*
716 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
717 * So, only create it if the consumer hasn't probed yet.
718 */
719 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
720 consumer->links.status != DL_DEV_NO_DRIVER &&
721 consumer->links.status != DL_DEV_PROBING) {
722 link = NULL;
723 goto out;
724 }
725
726 /*
727 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
728 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
729 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
730 */
731 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
732 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
733
734 list_for_each_entry(link, &supplier->links.consumers, s_node) {
735 if (link->consumer != consumer)
736 continue;
737
738 if (link->flags & DL_FLAG_INFERRED &&
739 !(flags & DL_FLAG_INFERRED))
740 link->flags &= ~DL_FLAG_INFERRED;
741
742 if (flags & DL_FLAG_PM_RUNTIME) {
743 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
744 pm_runtime_new_link(consumer);
745 link->flags |= DL_FLAG_PM_RUNTIME;
746 }
747 if (flags & DL_FLAG_RPM_ACTIVE)
748 refcount_inc(&link->rpm_active);
749 }
750
751 if (flags & DL_FLAG_STATELESS) {
752 kref_get(&link->kref);
753 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
754 !(link->flags & DL_FLAG_STATELESS)) {
755 link->flags |= DL_FLAG_STATELESS;
756 goto reorder;
757 } else {
758 link->flags |= DL_FLAG_STATELESS;
759 goto out;
760 }
761 }
762
763 /*
764 * If the life time of the link following from the new flags is
765 * longer than indicated by the flags of the existing link,
766 * update the existing link to stay around longer.
767 */
768 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
769 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
770 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
771 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
772 }
773 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
774 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
775 DL_FLAG_AUTOREMOVE_SUPPLIER);
776 }
777 if (!(link->flags & DL_FLAG_MANAGED)) {
778 kref_get(&link->kref);
779 link->flags |= DL_FLAG_MANAGED;
780 device_link_init_status(link, consumer, supplier);
781 }
782 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
783 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
784 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
785 goto reorder;
786 }
787
788 goto out;
789 }
790
791 link = kzalloc(sizeof(*link), GFP_KERNEL);
792 if (!link)
793 goto out;
794
795 refcount_set(&link->rpm_active, 1);
796
797 get_device(supplier);
798 link->supplier = supplier;
799 INIT_LIST_HEAD(&link->s_node);
800 get_device(consumer);
801 link->consumer = consumer;
802 INIT_LIST_HEAD(&link->c_node);
803 link->flags = flags;
804 kref_init(&link->kref);
805
806 link->link_dev.class = &devlink_class;
807 device_set_pm_not_required(&link->link_dev);
808 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
809 dev_bus_name(supplier), dev_name(supplier),
810 dev_bus_name(consumer), dev_name(consumer));
811 if (device_register(&link->link_dev)) {
812 put_device(consumer);
813 put_device(supplier);
814 kfree(link);
815 link = NULL;
816 goto out;
817 }
818
819 if (flags & DL_FLAG_PM_RUNTIME) {
820 if (flags & DL_FLAG_RPM_ACTIVE)
821 refcount_inc(&link->rpm_active);
822
823 pm_runtime_new_link(consumer);
824 }
825
826 /* Determine the initial link state. */
827 if (flags & DL_FLAG_STATELESS)
828 link->status = DL_STATE_NONE;
829 else
830 device_link_init_status(link, consumer, supplier);
831
832 /*
833 * Some callers expect the link creation during consumer driver probe to
834 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
835 */
836 if (link->status == DL_STATE_CONSUMER_PROBE &&
837 flags & DL_FLAG_PM_RUNTIME)
838 pm_runtime_resume(supplier);
839
840 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
841 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
842
843 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
844 dev_dbg(consumer,
845 "Linked as a sync state only consumer to %s\n",
846 dev_name(supplier));
847 goto out;
848 }
849
850 reorder:
851 /*
852 * Move the consumer and all of the devices depending on it to the end
853 * of dpm_list and the devices_kset list.
854 *
855 * It is necessary to hold dpm_list locked throughout all that or else
856 * we may end up suspending with a wrong ordering of it.
857 */
858 device_reorder_to_tail(consumer, NULL);
859
860 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
861
862 out:
863 device_pm_unlock();
864 device_links_write_unlock();
865
866 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
867 pm_runtime_put(supplier);
868
869 return link;
870 }
871 EXPORT_SYMBOL_GPL(device_link_add);
872
873 static void __device_link_del(struct kref *kref)
874 {
875 struct device_link *link = container_of(kref, struct device_link, kref);
876
877 dev_dbg(link->consumer, "Dropping the link to %s\n",
878 dev_name(link->supplier));
879
880 pm_runtime_drop_link(link);
881
882 device_link_remove_from_lists(link);
883 device_unregister(&link->link_dev);
884 }
885
886 static void device_link_put_kref(struct device_link *link)
887 {
888 if (link->flags & DL_FLAG_STATELESS)
889 kref_put(&link->kref, __device_link_del);
890 else if (!device_is_registered(link->consumer))
891 __device_link_del(&link->kref);
892 else
893 WARN(1, "Unable to drop a managed device link reference\n");
894 }
895
896 /**
897 * device_link_del - Delete a stateless link between two devices.
898 * @link: Device link to delete.
899 *
900 * The caller must ensure proper synchronization of this function with runtime
901 * PM. If the link was added multiple times, it needs to be deleted as often.
902 * Care is required for hotplugged devices: Their links are purged on removal
903 * and calling device_link_del() is then no longer allowed.
904 */
905 void device_link_del(struct device_link *link)
906 {
907 device_links_write_lock();
908 device_link_put_kref(link);
909 device_links_write_unlock();
910 }
911 EXPORT_SYMBOL_GPL(device_link_del);
912
913 /**
914 * device_link_remove - Delete a stateless link between two devices.
915 * @consumer: Consumer end of the link.
916 * @supplier: Supplier end of the link.
917 *
918 * The caller must ensure proper synchronization of this function with runtime
919 * PM.
920 */
921 void device_link_remove(void *consumer, struct device *supplier)
922 {
923 struct device_link *link;
924
925 if (WARN_ON(consumer == supplier))
926 return;
927
928 device_links_write_lock();
929
930 list_for_each_entry(link, &supplier->links.consumers, s_node) {
931 if (link->consumer == consumer) {
932 device_link_put_kref(link);
933 break;
934 }
935 }
936
937 device_links_write_unlock();
938 }
939 EXPORT_SYMBOL_GPL(device_link_remove);
940
941 static void device_links_missing_supplier(struct device *dev)
942 {
943 struct device_link *link;
944
945 list_for_each_entry(link, &dev->links.suppliers, c_node) {
946 if (link->status != DL_STATE_CONSUMER_PROBE)
947 continue;
948
949 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
950 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
951 } else {
952 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
953 WRITE_ONCE(link->status, DL_STATE_DORMANT);
954 }
955 }
956 }
957
958 /**
959 * device_links_check_suppliers - Check presence of supplier drivers.
960 * @dev: Consumer device.
961 *
962 * Check links from this device to any suppliers. Walk the list of the device's
963 * links to suppliers and see if all of them are available. If not, simply
964 * return -EPROBE_DEFER.
965 *
966 * We need to guarantee that the supplier will not go away after the check has
967 * been positive here. It only can go away in __device_release_driver() and
968 * that function checks the device's links to consumers. This means we need to
969 * mark the link as "consumer probe in progress" to make the supplier removal
970 * wait for us to complete (or bad things may happen).
971 *
972 * Links without the DL_FLAG_MANAGED flag set are ignored.
973 */
974 int device_links_check_suppliers(struct device *dev)
975 {
976 struct device_link *link;
977 int ret = 0;
978
979 /*
980 * Device waiting for supplier to become available is not allowed to
981 * probe.
982 */
983 mutex_lock(&fwnode_link_lock);
984 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
985 !fw_devlink_is_permissive()) {
986 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
987 list_first_entry(&dev->fwnode->suppliers,
988 struct fwnode_link,
989 c_hook)->supplier);
990 mutex_unlock(&fwnode_link_lock);
991 return -EPROBE_DEFER;
992 }
993 mutex_unlock(&fwnode_link_lock);
994
995 device_links_write_lock();
996
997 list_for_each_entry(link, &dev->links.suppliers, c_node) {
998 if (!(link->flags & DL_FLAG_MANAGED))
999 continue;
1000
1001 if (link->status != DL_STATE_AVAILABLE &&
1002 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1003 device_links_missing_supplier(dev);
1004 dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1005 dev_name(link->supplier));
1006 ret = -EPROBE_DEFER;
1007 break;
1008 }
1009 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1010 }
1011 dev->links.status = DL_DEV_PROBING;
1012
1013 device_links_write_unlock();
1014 return ret;
1015 }
1016
1017 /**
1018 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1019 * @dev: Device to call sync_state() on
1020 * @list: List head to queue the @dev on
1021 *
1022 * Queues a device for a sync_state() callback when the device links write lock
1023 * isn't held. This allows the sync_state() execution flow to use device links
1024 * APIs. The caller must ensure this function is called with
1025 * device_links_write_lock() held.
1026 *
1027 * This function does a get_device() to make sure the device is not freed while
1028 * on this list.
1029 *
1030 * So the caller must also ensure that device_links_flush_sync_list() is called
1031 * as soon as the caller releases device_links_write_lock(). This is necessary
1032 * to make sure the sync_state() is called in a timely fashion and the
1033 * put_device() is called on this device.
1034 */
1035 static void __device_links_queue_sync_state(struct device *dev,
1036 struct list_head *list)
1037 {
1038 struct device_link *link;
1039
1040 if (!dev_has_sync_state(dev))
1041 return;
1042 if (dev->state_synced)
1043 return;
1044
1045 list_for_each_entry(link, &dev->links.consumers, s_node) {
1046 if (!(link->flags & DL_FLAG_MANAGED))
1047 continue;
1048 if (link->status != DL_STATE_ACTIVE)
1049 return;
1050 }
1051
1052 /*
1053 * Set the flag here to avoid adding the same device to a list more
1054 * than once. This can happen if new consumers get added to the device
1055 * and probed before the list is flushed.
1056 */
1057 dev->state_synced = true;
1058
1059 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1060 return;
1061
1062 get_device(dev);
1063 list_add_tail(&dev->links.defer_sync, list);
1064 }
1065
1066 /**
1067 * device_links_flush_sync_list - Call sync_state() on a list of devices
1068 * @list: List of devices to call sync_state() on
1069 * @dont_lock_dev: Device for which lock is already held by the caller
1070 *
1071 * Calls sync_state() on all the devices that have been queued for it. This
1072 * function is used in conjunction with __device_links_queue_sync_state(). The
1073 * @dont_lock_dev parameter is useful when this function is called from a
1074 * context where a device lock is already held.
1075 */
1076 static void device_links_flush_sync_list(struct list_head *list,
1077 struct device *dont_lock_dev)
1078 {
1079 struct device *dev, *tmp;
1080
1081 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1082 list_del_init(&dev->links.defer_sync);
1083
1084 if (dev != dont_lock_dev)
1085 device_lock(dev);
1086
1087 if (dev->bus->sync_state)
1088 dev->bus->sync_state(dev);
1089 else if (dev->driver && dev->driver->sync_state)
1090 dev->driver->sync_state(dev);
1091
1092 if (dev != dont_lock_dev)
1093 device_unlock(dev);
1094
1095 put_device(dev);
1096 }
1097 }
1098
1099 void device_links_supplier_sync_state_pause(void)
1100 {
1101 device_links_write_lock();
1102 defer_sync_state_count++;
1103 device_links_write_unlock();
1104 }
1105
1106 void device_links_supplier_sync_state_resume(void)
1107 {
1108 struct device *dev, *tmp;
1109 LIST_HEAD(sync_list);
1110
1111 device_links_write_lock();
1112 if (!defer_sync_state_count) {
1113 WARN(true, "Unmatched sync_state pause/resume!");
1114 goto out;
1115 }
1116 defer_sync_state_count--;
1117 if (defer_sync_state_count)
1118 goto out;
1119
1120 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1121 /*
1122 * Delete from deferred_sync list before queuing it to
1123 * sync_list because defer_sync is used for both lists.
1124 */
1125 list_del_init(&dev->links.defer_sync);
1126 __device_links_queue_sync_state(dev, &sync_list);
1127 }
1128 out:
1129 device_links_write_unlock();
1130
1131 device_links_flush_sync_list(&sync_list, NULL);
1132 }
1133
1134 static int sync_state_resume_initcall(void)
1135 {
1136 device_links_supplier_sync_state_resume();
1137 return 0;
1138 }
1139 late_initcall(sync_state_resume_initcall);
1140
1141 static void __device_links_supplier_defer_sync(struct device *sup)
1142 {
1143 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1144 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1145 }
1146
1147 static void device_link_drop_managed(struct device_link *link)
1148 {
1149 link->flags &= ~DL_FLAG_MANAGED;
1150 WRITE_ONCE(link->status, DL_STATE_NONE);
1151 kref_put(&link->kref, __device_link_del);
1152 }
1153
1154 static ssize_t waiting_for_supplier_show(struct device *dev,
1155 struct device_attribute *attr,
1156 char *buf)
1157 {
1158 bool val;
1159
1160 device_lock(dev);
1161 val = !list_empty(&dev->fwnode->suppliers);
1162 device_unlock(dev);
1163 return sysfs_emit(buf, "%u\n", val);
1164 }
1165 static DEVICE_ATTR_RO(waiting_for_supplier);
1166
1167 /**
1168 * device_links_force_bind - Prepares device to be force bound
1169 * @dev: Consumer device.
1170 *
1171 * device_bind_driver() force binds a device to a driver without calling any
1172 * driver probe functions. So the consumer really isn't going to wait for any
1173 * supplier before it's bound to the driver. We still want the device link
1174 * states to be sensible when this happens.
1175 *
1176 * In preparation for device_bind_driver(), this function goes through each
1177 * supplier device links and checks if the supplier is bound. If it is, then
1178 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1179 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1180 */
1181 void device_links_force_bind(struct device *dev)
1182 {
1183 struct device_link *link, *ln;
1184
1185 device_links_write_lock();
1186
1187 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1188 if (!(link->flags & DL_FLAG_MANAGED))
1189 continue;
1190
1191 if (link->status != DL_STATE_AVAILABLE) {
1192 device_link_drop_managed(link);
1193 continue;
1194 }
1195 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1196 }
1197 dev->links.status = DL_DEV_PROBING;
1198
1199 device_links_write_unlock();
1200 }
1201
1202 /**
1203 * device_links_driver_bound - Update device links after probing its driver.
1204 * @dev: Device to update the links for.
1205 *
1206 * The probe has been successful, so update links from this device to any
1207 * consumers by changing their status to "available".
1208 *
1209 * Also change the status of @dev's links to suppliers to "active".
1210 *
1211 * Links without the DL_FLAG_MANAGED flag set are ignored.
1212 */
1213 void device_links_driver_bound(struct device *dev)
1214 {
1215 struct device_link *link, *ln;
1216 LIST_HEAD(sync_list);
1217
1218 /*
1219 * If a device binds successfully, it's expected to have created all
1220 * the device links it needs to or make new device links as it needs
1221 * them. So, fw_devlink no longer needs to create device links to any
1222 * of the device's suppliers.
1223 *
1224 * Also, if a child firmware node of this bound device is not added as
1225 * a device by now, assume it is never going to be added and make sure
1226 * other devices don't defer probe indefinitely by waiting for such a
1227 * child device.
1228 */
1229 if (dev->fwnode && dev->fwnode->dev == dev) {
1230 struct fwnode_handle *child;
1231 fwnode_links_purge_suppliers(dev->fwnode);
1232 fwnode_for_each_available_child_node(dev->fwnode, child)
1233 fw_devlink_purge_absent_suppliers(child);
1234 }
1235 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1236
1237 device_links_write_lock();
1238
1239 list_for_each_entry(link, &dev->links.consumers, s_node) {
1240 if (!(link->flags & DL_FLAG_MANAGED))
1241 continue;
1242
1243 /*
1244 * Links created during consumer probe may be in the "consumer
1245 * probe" state to start with if the supplier is still probing
1246 * when they are created and they may become "active" if the
1247 * consumer probe returns first. Skip them here.
1248 */
1249 if (link->status == DL_STATE_CONSUMER_PROBE ||
1250 link->status == DL_STATE_ACTIVE)
1251 continue;
1252
1253 WARN_ON(link->status != DL_STATE_DORMANT);
1254 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1255
1256 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1257 driver_deferred_probe_add(link->consumer);
1258 }
1259
1260 if (defer_sync_state_count)
1261 __device_links_supplier_defer_sync(dev);
1262 else
1263 __device_links_queue_sync_state(dev, &sync_list);
1264
1265 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1266 struct device *supplier;
1267
1268 if (!(link->flags & DL_FLAG_MANAGED))
1269 continue;
1270
1271 supplier = link->supplier;
1272 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1273 /*
1274 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1275 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1276 * save to drop the managed link completely.
1277 */
1278 device_link_drop_managed(link);
1279 } else {
1280 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1281 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1282 }
1283
1284 /*
1285 * This needs to be done even for the deleted
1286 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1287 * device link that was preventing the supplier from getting a
1288 * sync_state() call.
1289 */
1290 if (defer_sync_state_count)
1291 __device_links_supplier_defer_sync(supplier);
1292 else
1293 __device_links_queue_sync_state(supplier, &sync_list);
1294 }
1295
1296 dev->links.status = DL_DEV_DRIVER_BOUND;
1297
1298 device_links_write_unlock();
1299
1300 device_links_flush_sync_list(&sync_list, dev);
1301 }
1302
1303 /**
1304 * __device_links_no_driver - Update links of a device without a driver.
1305 * @dev: Device without a drvier.
1306 *
1307 * Delete all non-persistent links from this device to any suppliers.
1308 *
1309 * Persistent links stay around, but their status is changed to "available",
1310 * unless they already are in the "supplier unbind in progress" state in which
1311 * case they need not be updated.
1312 *
1313 * Links without the DL_FLAG_MANAGED flag set are ignored.
1314 */
1315 static void __device_links_no_driver(struct device *dev)
1316 {
1317 struct device_link *link, *ln;
1318
1319 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1320 if (!(link->flags & DL_FLAG_MANAGED))
1321 continue;
1322
1323 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1324 device_link_drop_managed(link);
1325 continue;
1326 }
1327
1328 if (link->status != DL_STATE_CONSUMER_PROBE &&
1329 link->status != DL_STATE_ACTIVE)
1330 continue;
1331
1332 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1333 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1334 } else {
1335 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1336 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1337 }
1338 }
1339
1340 dev->links.status = DL_DEV_NO_DRIVER;
1341 }
1342
1343 /**
1344 * device_links_no_driver - Update links after failing driver probe.
1345 * @dev: Device whose driver has just failed to probe.
1346 *
1347 * Clean up leftover links to consumers for @dev and invoke
1348 * %__device_links_no_driver() to update links to suppliers for it as
1349 * appropriate.
1350 *
1351 * Links without the DL_FLAG_MANAGED flag set are ignored.
1352 */
1353 void device_links_no_driver(struct device *dev)
1354 {
1355 struct device_link *link;
1356
1357 device_links_write_lock();
1358
1359 list_for_each_entry(link, &dev->links.consumers, s_node) {
1360 if (!(link->flags & DL_FLAG_MANAGED))
1361 continue;
1362
1363 /*
1364 * The probe has failed, so if the status of the link is
1365 * "consumer probe" or "active", it must have been added by
1366 * a probing consumer while this device was still probing.
1367 * Change its state to "dormant", as it represents a valid
1368 * relationship, but it is not functionally meaningful.
1369 */
1370 if (link->status == DL_STATE_CONSUMER_PROBE ||
1371 link->status == DL_STATE_ACTIVE)
1372 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1373 }
1374
1375 __device_links_no_driver(dev);
1376
1377 device_links_write_unlock();
1378 }
1379
1380 /**
1381 * device_links_driver_cleanup - Update links after driver removal.
1382 * @dev: Device whose driver has just gone away.
1383 *
1384 * Update links to consumers for @dev by changing their status to "dormant" and
1385 * invoke %__device_links_no_driver() to update links to suppliers for it as
1386 * appropriate.
1387 *
1388 * Links without the DL_FLAG_MANAGED flag set are ignored.
1389 */
1390 void device_links_driver_cleanup(struct device *dev)
1391 {
1392 struct device_link *link, *ln;
1393
1394 device_links_write_lock();
1395
1396 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1397 if (!(link->flags & DL_FLAG_MANAGED))
1398 continue;
1399
1400 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1401 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1402
1403 /*
1404 * autoremove the links between this @dev and its consumer
1405 * devices that are not active, i.e. where the link state
1406 * has moved to DL_STATE_SUPPLIER_UNBIND.
1407 */
1408 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1409 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1410 device_link_drop_managed(link);
1411
1412 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1413 }
1414
1415 list_del_init(&dev->links.defer_sync);
1416 __device_links_no_driver(dev);
1417
1418 device_links_write_unlock();
1419 }
1420
1421 /**
1422 * device_links_busy - Check if there are any busy links to consumers.
1423 * @dev: Device to check.
1424 *
1425 * Check each consumer of the device and return 'true' if its link's status
1426 * is one of "consumer probe" or "active" (meaning that the given consumer is
1427 * probing right now or its driver is present). Otherwise, change the link
1428 * state to "supplier unbind" to prevent the consumer from being probed
1429 * successfully going forward.
1430 *
1431 * Return 'false' if there are no probing or active consumers.
1432 *
1433 * Links without the DL_FLAG_MANAGED flag set are ignored.
1434 */
1435 bool device_links_busy(struct device *dev)
1436 {
1437 struct device_link *link;
1438 bool ret = false;
1439
1440 device_links_write_lock();
1441
1442 list_for_each_entry(link, &dev->links.consumers, s_node) {
1443 if (!(link->flags & DL_FLAG_MANAGED))
1444 continue;
1445
1446 if (link->status == DL_STATE_CONSUMER_PROBE
1447 || link->status == DL_STATE_ACTIVE) {
1448 ret = true;
1449 break;
1450 }
1451 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1452 }
1453
1454 dev->links.status = DL_DEV_UNBINDING;
1455
1456 device_links_write_unlock();
1457 return ret;
1458 }
1459
1460 /**
1461 * device_links_unbind_consumers - Force unbind consumers of the given device.
1462 * @dev: Device to unbind the consumers of.
1463 *
1464 * Walk the list of links to consumers for @dev and if any of them is in the
1465 * "consumer probe" state, wait for all device probes in progress to complete
1466 * and start over.
1467 *
1468 * If that's not the case, change the status of the link to "supplier unbind"
1469 * and check if the link was in the "active" state. If so, force the consumer
1470 * driver to unbind and start over (the consumer will not re-probe as we have
1471 * changed the state of the link already).
1472 *
1473 * Links without the DL_FLAG_MANAGED flag set are ignored.
1474 */
1475 void device_links_unbind_consumers(struct device *dev)
1476 {
1477 struct device_link *link;
1478
1479 start:
1480 device_links_write_lock();
1481
1482 list_for_each_entry(link, &dev->links.consumers, s_node) {
1483 enum device_link_state status;
1484
1485 if (!(link->flags & DL_FLAG_MANAGED) ||
1486 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1487 continue;
1488
1489 status = link->status;
1490 if (status == DL_STATE_CONSUMER_PROBE) {
1491 device_links_write_unlock();
1492
1493 wait_for_device_probe();
1494 goto start;
1495 }
1496 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1497 if (status == DL_STATE_ACTIVE) {
1498 struct device *consumer = link->consumer;
1499
1500 get_device(consumer);
1501
1502 device_links_write_unlock();
1503
1504 device_release_driver_internal(consumer, NULL,
1505 consumer->parent);
1506 put_device(consumer);
1507 goto start;
1508 }
1509 }
1510
1511 device_links_write_unlock();
1512 }
1513
1514 /**
1515 * device_links_purge - Delete existing links to other devices.
1516 * @dev: Target device.
1517 */
1518 static void device_links_purge(struct device *dev)
1519 {
1520 struct device_link *link, *ln;
1521
1522 if (dev->class == &devlink_class)
1523 return;
1524
1525 /*
1526 * Delete all of the remaining links from this device to any other
1527 * devices (either consumers or suppliers).
1528 */
1529 device_links_write_lock();
1530
1531 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1532 WARN_ON(link->status == DL_STATE_ACTIVE);
1533 __device_link_del(&link->kref);
1534 }
1535
1536 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1537 WARN_ON(link->status != DL_STATE_DORMANT &&
1538 link->status != DL_STATE_NONE);
1539 __device_link_del(&link->kref);
1540 }
1541
1542 device_links_write_unlock();
1543 }
1544
1545 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1546 DL_FLAG_SYNC_STATE_ONLY)
1547 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1548 DL_FLAG_AUTOPROBE_CONSUMER)
1549 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1550 DL_FLAG_PM_RUNTIME)
1551
1552 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1553 static int __init fw_devlink_setup(char *arg)
1554 {
1555 if (!arg)
1556 return -EINVAL;
1557
1558 if (strcmp(arg, "off") == 0) {
1559 fw_devlink_flags = 0;
1560 } else if (strcmp(arg, "permissive") == 0) {
1561 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1562 } else if (strcmp(arg, "on") == 0) {
1563 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1564 } else if (strcmp(arg, "rpm") == 0) {
1565 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1566 }
1567 return 0;
1568 }
1569 early_param("fw_devlink", fw_devlink_setup);
1570
1571 static bool fw_devlink_strict;
1572 static int __init fw_devlink_strict_setup(char *arg)
1573 {
1574 return strtobool(arg, &fw_devlink_strict);
1575 }
1576 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1577
1578 u32 fw_devlink_get_flags(void)
1579 {
1580 return fw_devlink_flags;
1581 }
1582
1583 static bool fw_devlink_is_permissive(void)
1584 {
1585 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1586 }
1587
1588 bool fw_devlink_is_strict(void)
1589 {
1590 return fw_devlink_strict && !fw_devlink_is_permissive();
1591 }
1592
1593 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1594 {
1595 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1596 return;
1597
1598 fwnode_call_int_op(fwnode, add_links);
1599 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1600 }
1601
1602 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1603 {
1604 struct fwnode_handle *child = NULL;
1605
1606 fw_devlink_parse_fwnode(fwnode);
1607
1608 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1609 fw_devlink_parse_fwtree(child);
1610 }
1611
1612 static void fw_devlink_relax_link(struct device_link *link)
1613 {
1614 if (!(link->flags & DL_FLAG_INFERRED))
1615 return;
1616
1617 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1618 return;
1619
1620 pm_runtime_drop_link(link);
1621 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1622 dev_dbg(link->consumer, "Relaxing link with %s\n",
1623 dev_name(link->supplier));
1624 }
1625
1626 static int fw_devlink_no_driver(struct device *dev, void *data)
1627 {
1628 struct device_link *link = to_devlink(dev);
1629
1630 if (!link->supplier->can_match)
1631 fw_devlink_relax_link(link);
1632
1633 return 0;
1634 }
1635
1636 void fw_devlink_drivers_done(void)
1637 {
1638 fw_devlink_drv_reg_done = true;
1639 device_links_write_lock();
1640 class_for_each_device(&devlink_class, NULL, NULL,
1641 fw_devlink_no_driver);
1642 device_links_write_unlock();
1643 }
1644
1645 static void fw_devlink_unblock_consumers(struct device *dev)
1646 {
1647 struct device_link *link;
1648
1649 if (!fw_devlink_flags || fw_devlink_is_permissive())
1650 return;
1651
1652 device_links_write_lock();
1653 list_for_each_entry(link, &dev->links.consumers, s_node)
1654 fw_devlink_relax_link(link);
1655 device_links_write_unlock();
1656 }
1657
1658 /**
1659 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1660 * @con: Device to check dependencies for.
1661 * @sup: Device to check against.
1662 *
1663 * Check if @sup depends on @con or any device dependent on it (its child or
1664 * its consumer etc). When such a cyclic dependency is found, convert all
1665 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1666 * This is the equivalent of doing fw_devlink=permissive just between the
1667 * devices in the cycle. We need to do this because, at this point, fw_devlink
1668 * can't tell which of these dependencies is not a real dependency.
1669 *
1670 * Return 1 if a cycle is found. Otherwise, return 0.
1671 */
1672 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1673 {
1674 struct device_link *link;
1675 int ret;
1676
1677 if (con == sup)
1678 return 1;
1679
1680 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1681 if (ret)
1682 return ret;
1683
1684 list_for_each_entry(link, &con->links.consumers, s_node) {
1685 if ((link->flags & ~DL_FLAG_INFERRED) ==
1686 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1687 continue;
1688
1689 if (!fw_devlink_relax_cycle(link->consumer, sup))
1690 continue;
1691
1692 ret = 1;
1693
1694 fw_devlink_relax_link(link);
1695 }
1696 return ret;
1697 }
1698
1699 /**
1700 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1701 * @con: consumer device for the device link
1702 * @sup_handle: fwnode handle of supplier
1703 * @flags: devlink flags
1704 *
1705 * This function will try to create a device link between the consumer device
1706 * @con and the supplier device represented by @sup_handle.
1707 *
1708 * The supplier has to be provided as a fwnode because incorrect cycles in
1709 * fwnode links can sometimes cause the supplier device to never be created.
1710 * This function detects such cases and returns an error if it cannot create a
1711 * device link from the consumer to a missing supplier.
1712 *
1713 * Returns,
1714 * 0 on successfully creating a device link
1715 * -EINVAL if the device link cannot be created as expected
1716 * -EAGAIN if the device link cannot be created right now, but it may be
1717 * possible to do that in the future
1718 */
1719 static int fw_devlink_create_devlink(struct device *con,
1720 struct fwnode_handle *sup_handle, u32 flags)
1721 {
1722 struct device *sup_dev;
1723 int ret = 0;
1724
1725 sup_dev = get_dev_from_fwnode(sup_handle);
1726 if (sup_dev) {
1727 /*
1728 * If it's one of those drivers that don't actually bind to
1729 * their device using driver core, then don't wait on this
1730 * supplier device indefinitely.
1731 */
1732 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1733 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1734 ret = -EINVAL;
1735 goto out;
1736 }
1737
1738 /*
1739 * If this fails, it is due to cycles in device links. Just
1740 * give up on this link and treat it as invalid.
1741 */
1742 if (!device_link_add(con, sup_dev, flags) &&
1743 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1744 dev_info(con, "Fixing up cyclic dependency with %s\n",
1745 dev_name(sup_dev));
1746 device_links_write_lock();
1747 fw_devlink_relax_cycle(con, sup_dev);
1748 device_links_write_unlock();
1749 device_link_add(con, sup_dev,
1750 FW_DEVLINK_FLAGS_PERMISSIVE);
1751 ret = -EINVAL;
1752 }
1753
1754 goto out;
1755 }
1756
1757 /* Supplier that's already initialized without a struct device. */
1758 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1759 return -EINVAL;
1760
1761 /*
1762 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1763 * cycles. So cycle detection isn't necessary and shouldn't be
1764 * done.
1765 */
1766 if (flags & DL_FLAG_SYNC_STATE_ONLY)
1767 return -EAGAIN;
1768
1769 /*
1770 * If we can't find the supplier device from its fwnode, it might be
1771 * due to a cyclic dependency between fwnodes. Some of these cycles can
1772 * be broken by applying logic. Check for these types of cycles and
1773 * break them so that devices in the cycle probe properly.
1774 *
1775 * If the supplier's parent is dependent on the consumer, then
1776 * the consumer-supplier dependency is a false dependency. So,
1777 * treat it as an invalid link.
1778 */
1779 sup_dev = fwnode_get_next_parent_dev(sup_handle);
1780 if (sup_dev && device_is_dependent(con, sup_dev)) {
1781 dev_dbg(con, "Not linking to %pfwP - False link\n",
1782 sup_handle);
1783 ret = -EINVAL;
1784 } else {
1785 /*
1786 * Can't check for cycles or no cycles. So let's try
1787 * again later.
1788 */
1789 ret = -EAGAIN;
1790 }
1791
1792 out:
1793 put_device(sup_dev);
1794 return ret;
1795 }
1796
1797 /**
1798 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1799 * @dev: Device that needs to be linked to its consumers
1800 *
1801 * This function looks at all the consumer fwnodes of @dev and creates device
1802 * links between the consumer device and @dev (supplier).
1803 *
1804 * If the consumer device has not been added yet, then this function creates a
1805 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1806 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1807 * sync_state() callback before the real consumer device gets to be added and
1808 * then probed.
1809 *
1810 * Once device links are created from the real consumer to @dev (supplier), the
1811 * fwnode links are deleted.
1812 */
1813 static void __fw_devlink_link_to_consumers(struct device *dev)
1814 {
1815 struct fwnode_handle *fwnode = dev->fwnode;
1816 struct fwnode_link *link, *tmp;
1817
1818 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1819 u32 dl_flags = fw_devlink_get_flags();
1820 struct device *con_dev;
1821 bool own_link = true;
1822 int ret;
1823
1824 con_dev = get_dev_from_fwnode(link->consumer);
1825 /*
1826 * If consumer device is not available yet, make a "proxy"
1827 * SYNC_STATE_ONLY link from the consumer's parent device to
1828 * the supplier device. This is necessary to make sure the
1829 * supplier doesn't get a sync_state() callback before the real
1830 * consumer can create a device link to the supplier.
1831 *
1832 * This proxy link step is needed to handle the case where the
1833 * consumer's parent device is added before the supplier.
1834 */
1835 if (!con_dev) {
1836 con_dev = fwnode_get_next_parent_dev(link->consumer);
1837 /*
1838 * However, if the consumer's parent device is also the
1839 * parent of the supplier, don't create a
1840 * consumer-supplier link from the parent to its child
1841 * device. Such a dependency is impossible.
1842 */
1843 if (con_dev &&
1844 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1845 put_device(con_dev);
1846 con_dev = NULL;
1847 } else {
1848 own_link = false;
1849 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1850 }
1851 }
1852
1853 if (!con_dev)
1854 continue;
1855
1856 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1857 put_device(con_dev);
1858 if (!own_link || ret == -EAGAIN)
1859 continue;
1860
1861 list_del(&link->s_hook);
1862 list_del(&link->c_hook);
1863 kfree(link);
1864 }
1865 }
1866
1867 /**
1868 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1869 * @dev: The consumer device that needs to be linked to its suppliers
1870 * @fwnode: Root of the fwnode tree that is used to create device links
1871 *
1872 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1873 * @fwnode and creates device links between @dev (consumer) and all the
1874 * supplier devices of the entire fwnode tree at @fwnode.
1875 *
1876 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1877 * and the real suppliers of @dev. Once these device links are created, the
1878 * fwnode links are deleted. When such device links are successfully created,
1879 * this function is called recursively on those supplier devices. This is
1880 * needed to detect and break some invalid cycles in fwnode links. See
1881 * fw_devlink_create_devlink() for more details.
1882 *
1883 * In addition, it also looks at all the suppliers of the entire fwnode tree
1884 * because some of the child devices of @dev that have not been added yet
1885 * (because @dev hasn't probed) might already have their suppliers added to
1886 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1887 * @dev (consumer) and these suppliers to make sure they don't execute their
1888 * sync_state() callbacks before these child devices have a chance to create
1889 * their device links. The fwnode links that correspond to the child devices
1890 * aren't delete because they are needed later to create the device links
1891 * between the real consumer and supplier devices.
1892 */
1893 static void __fw_devlink_link_to_suppliers(struct device *dev,
1894 struct fwnode_handle *fwnode)
1895 {
1896 bool own_link = (dev->fwnode == fwnode);
1897 struct fwnode_link *link, *tmp;
1898 struct fwnode_handle *child = NULL;
1899 u32 dl_flags;
1900
1901 if (own_link)
1902 dl_flags = fw_devlink_get_flags();
1903 else
1904 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1905
1906 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1907 int ret;
1908 struct device *sup_dev;
1909 struct fwnode_handle *sup = link->supplier;
1910
1911 ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1912 if (!own_link || ret == -EAGAIN)
1913 continue;
1914
1915 list_del(&link->s_hook);
1916 list_del(&link->c_hook);
1917 kfree(link);
1918
1919 /* If no device link was created, nothing more to do. */
1920 if (ret)
1921 continue;
1922
1923 /*
1924 * If a device link was successfully created to a supplier, we
1925 * now need to try and link the supplier to all its suppliers.
1926 *
1927 * This is needed to detect and delete false dependencies in
1928 * fwnode links that haven't been converted to a device link
1929 * yet. See comments in fw_devlink_create_devlink() for more
1930 * details on the false dependency.
1931 *
1932 * Without deleting these false dependencies, some devices will
1933 * never probe because they'll keep waiting for their false
1934 * dependency fwnode links to be converted to device links.
1935 */
1936 sup_dev = get_dev_from_fwnode(sup);
1937 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1938 put_device(sup_dev);
1939 }
1940
1941 /*
1942 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1943 * all the descendants. This proxy link step is needed to handle the
1944 * case where the supplier is added before the consumer's parent device
1945 * (@dev).
1946 */
1947 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1948 __fw_devlink_link_to_suppliers(dev, child);
1949 }
1950
1951 static void fw_devlink_link_device(struct device *dev)
1952 {
1953 struct fwnode_handle *fwnode = dev->fwnode;
1954
1955 if (!fw_devlink_flags)
1956 return;
1957
1958 fw_devlink_parse_fwtree(fwnode);
1959
1960 mutex_lock(&fwnode_link_lock);
1961 __fw_devlink_link_to_consumers(dev);
1962 __fw_devlink_link_to_suppliers(dev, fwnode);
1963 mutex_unlock(&fwnode_link_lock);
1964 }
1965
1966 /* Device links support end. */
1967
1968 int (*platform_notify)(struct device *dev) = NULL;
1969 int (*platform_notify_remove)(struct device *dev) = NULL;
1970 static struct kobject *dev_kobj;
1971 struct kobject *sysfs_dev_char_kobj;
1972 struct kobject *sysfs_dev_block_kobj;
1973
1974 static DEFINE_MUTEX(device_hotplug_lock);
1975
1976 void lock_device_hotplug(void)
1977 {
1978 mutex_lock(&device_hotplug_lock);
1979 }
1980
1981 void unlock_device_hotplug(void)
1982 {
1983 mutex_unlock(&device_hotplug_lock);
1984 }
1985
1986 int lock_device_hotplug_sysfs(void)
1987 {
1988 if (mutex_trylock(&device_hotplug_lock))
1989 return 0;
1990
1991 /* Avoid busy looping (5 ms of sleep should do). */
1992 msleep(5);
1993 return restart_syscall();
1994 }
1995
1996 #ifdef CONFIG_BLOCK
1997 static inline int device_is_not_partition(struct device *dev)
1998 {
1999 return !(dev->type == &part_type);
2000 }
2001 #else
2002 static inline int device_is_not_partition(struct device *dev)
2003 {
2004 return 1;
2005 }
2006 #endif
2007
2008 static void device_platform_notify(struct device *dev)
2009 {
2010 acpi_device_notify(dev);
2011
2012 software_node_notify(dev);
2013
2014 if (platform_notify)
2015 platform_notify(dev);
2016 }
2017
2018 static void device_platform_notify_remove(struct device *dev)
2019 {
2020 acpi_device_notify_remove(dev);
2021
2022 software_node_notify_remove(dev);
2023
2024 if (platform_notify_remove)
2025 platform_notify_remove(dev);
2026 }
2027
2028 /**
2029 * dev_driver_string - Return a device's driver name, if at all possible
2030 * @dev: struct device to get the name of
2031 *
2032 * Will return the device's driver's name if it is bound to a device. If
2033 * the device is not bound to a driver, it will return the name of the bus
2034 * it is attached to. If it is not attached to a bus either, an empty
2035 * string will be returned.
2036 */
2037 const char *dev_driver_string(const struct device *dev)
2038 {
2039 struct device_driver *drv;
2040
2041 /* dev->driver can change to NULL underneath us because of unbinding,
2042 * so be careful about accessing it. dev->bus and dev->class should
2043 * never change once they are set, so they don't need special care.
2044 */
2045 drv = READ_ONCE(dev->driver);
2046 return drv ? drv->name : dev_bus_name(dev);
2047 }
2048 EXPORT_SYMBOL(dev_driver_string);
2049
2050 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2051
2052 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2053 char *buf)
2054 {
2055 struct device_attribute *dev_attr = to_dev_attr(attr);
2056 struct device *dev = kobj_to_dev(kobj);
2057 ssize_t ret = -EIO;
2058
2059 if (dev_attr->show)
2060 ret = dev_attr->show(dev, dev_attr, buf);
2061 if (ret >= (ssize_t)PAGE_SIZE) {
2062 printk("dev_attr_show: %pS returned bad count\n",
2063 dev_attr->show);
2064 }
2065 return ret;
2066 }
2067
2068 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2069 const char *buf, size_t count)
2070 {
2071 struct device_attribute *dev_attr = to_dev_attr(attr);
2072 struct device *dev = kobj_to_dev(kobj);
2073 ssize_t ret = -EIO;
2074
2075 if (dev_attr->store)
2076 ret = dev_attr->store(dev, dev_attr, buf, count);
2077 return ret;
2078 }
2079
2080 static const struct sysfs_ops dev_sysfs_ops = {
2081 .show = dev_attr_show,
2082 .store = dev_attr_store,
2083 };
2084
2085 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2086
2087 ssize_t device_store_ulong(struct device *dev,
2088 struct device_attribute *attr,
2089 const char *buf, size_t size)
2090 {
2091 struct dev_ext_attribute *ea = to_ext_attr(attr);
2092 int ret;
2093 unsigned long new;
2094
2095 ret = kstrtoul(buf, 0, &new);
2096 if (ret)
2097 return ret;
2098 *(unsigned long *)(ea->var) = new;
2099 /* Always return full write size even if we didn't consume all */
2100 return size;
2101 }
2102 EXPORT_SYMBOL_GPL(device_store_ulong);
2103
2104 ssize_t device_show_ulong(struct device *dev,
2105 struct device_attribute *attr,
2106 char *buf)
2107 {
2108 struct dev_ext_attribute *ea = to_ext_attr(attr);
2109 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2110 }
2111 EXPORT_SYMBOL_GPL(device_show_ulong);
2112
2113 ssize_t device_store_int(struct device *dev,
2114 struct device_attribute *attr,
2115 const char *buf, size_t size)
2116 {
2117 struct dev_ext_attribute *ea = to_ext_attr(attr);
2118 int ret;
2119 long new;
2120
2121 ret = kstrtol(buf, 0, &new);
2122 if (ret)
2123 return ret;
2124
2125 if (new > INT_MAX || new < INT_MIN)
2126 return -EINVAL;
2127 *(int *)(ea->var) = new;
2128 /* Always return full write size even if we didn't consume all */
2129 return size;
2130 }
2131 EXPORT_SYMBOL_GPL(device_store_int);
2132
2133 ssize_t device_show_int(struct device *dev,
2134 struct device_attribute *attr,
2135 char *buf)
2136 {
2137 struct dev_ext_attribute *ea = to_ext_attr(attr);
2138
2139 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2140 }
2141 EXPORT_SYMBOL_GPL(device_show_int);
2142
2143 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2144 const char *buf, size_t size)
2145 {
2146 struct dev_ext_attribute *ea = to_ext_attr(attr);
2147
2148 if (strtobool(buf, ea->var) < 0)
2149 return -EINVAL;
2150
2151 return size;
2152 }
2153 EXPORT_SYMBOL_GPL(device_store_bool);
2154
2155 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2156 char *buf)
2157 {
2158 struct dev_ext_attribute *ea = to_ext_attr(attr);
2159
2160 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2161 }
2162 EXPORT_SYMBOL_GPL(device_show_bool);
2163
2164 /**
2165 * device_release - free device structure.
2166 * @kobj: device's kobject.
2167 *
2168 * This is called once the reference count for the object
2169 * reaches 0. We forward the call to the device's release
2170 * method, which should handle actually freeing the structure.
2171 */
2172 static void device_release(struct kobject *kobj)
2173 {
2174 struct device *dev = kobj_to_dev(kobj);
2175 struct device_private *p = dev->p;
2176
2177 /*
2178 * Some platform devices are driven without driver attached
2179 * and managed resources may have been acquired. Make sure
2180 * all resources are released.
2181 *
2182 * Drivers still can add resources into device after device
2183 * is deleted but alive, so release devres here to avoid
2184 * possible memory leak.
2185 */
2186 devres_release_all(dev);
2187
2188 kfree(dev->dma_range_map);
2189
2190 if (dev->release)
2191 dev->release(dev);
2192 else if (dev->type && dev->type->release)
2193 dev->type->release(dev);
2194 else if (dev->class && dev->class->dev_release)
2195 dev->class->dev_release(dev);
2196 else
2197 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2198 dev_name(dev));
2199 kfree(p);
2200 }
2201
2202 static const void *device_namespace(struct kobject *kobj)
2203 {
2204 struct device *dev = kobj_to_dev(kobj);
2205 const void *ns = NULL;
2206
2207 if (dev->class && dev->class->ns_type)
2208 ns = dev->class->namespace(dev);
2209
2210 return ns;
2211 }
2212
2213 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2214 {
2215 struct device *dev = kobj_to_dev(kobj);
2216
2217 if (dev->class && dev->class->get_ownership)
2218 dev->class->get_ownership(dev, uid, gid);
2219 }
2220
2221 static struct kobj_type device_ktype = {
2222 .release = device_release,
2223 .sysfs_ops = &dev_sysfs_ops,
2224 .namespace = device_namespace,
2225 .get_ownership = device_get_ownership,
2226 };
2227
2228
2229 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2230 {
2231 struct kobj_type *ktype = get_ktype(kobj);
2232
2233 if (ktype == &device_ktype) {
2234 struct device *dev = kobj_to_dev(kobj);
2235 if (dev->bus)
2236 return 1;
2237 if (dev->class)
2238 return 1;
2239 }
2240 return 0;
2241 }
2242
2243 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2244 {
2245 struct device *dev = kobj_to_dev(kobj);
2246
2247 if (dev->bus)
2248 return dev->bus->name;
2249 if (dev->class)
2250 return dev->class->name;
2251 return NULL;
2252 }
2253
2254 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2255 struct kobj_uevent_env *env)
2256 {
2257 struct device *dev = kobj_to_dev(kobj);
2258 int retval = 0;
2259
2260 /* add device node properties if present */
2261 if (MAJOR(dev->devt)) {
2262 const char *tmp;
2263 const char *name;
2264 umode_t mode = 0;
2265 kuid_t uid = GLOBAL_ROOT_UID;
2266 kgid_t gid = GLOBAL_ROOT_GID;
2267
2268 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2269 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2270 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2271 if (name) {
2272 add_uevent_var(env, "DEVNAME=%s", name);
2273 if (mode)
2274 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2275 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2276 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2277 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2278 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2279 kfree(tmp);
2280 }
2281 }
2282
2283 if (dev->type && dev->type->name)
2284 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2285
2286 if (dev->driver)
2287 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2288
2289 /* Add common DT information about the device */
2290 of_device_uevent(dev, env);
2291
2292 /* have the bus specific function add its stuff */
2293 if (dev->bus && dev->bus->uevent) {
2294 retval = dev->bus->uevent(dev, env);
2295 if (retval)
2296 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2297 dev_name(dev), __func__, retval);
2298 }
2299
2300 /* have the class specific function add its stuff */
2301 if (dev->class && dev->class->dev_uevent) {
2302 retval = dev->class->dev_uevent(dev, env);
2303 if (retval)
2304 pr_debug("device: '%s': %s: class uevent() "
2305 "returned %d\n", dev_name(dev),
2306 __func__, retval);
2307 }
2308
2309 /* have the device type specific function add its stuff */
2310 if (dev->type && dev->type->uevent) {
2311 retval = dev->type->uevent(dev, env);
2312 if (retval)
2313 pr_debug("device: '%s': %s: dev_type uevent() "
2314 "returned %d\n", dev_name(dev),
2315 __func__, retval);
2316 }
2317
2318 return retval;
2319 }
2320
2321 static const struct kset_uevent_ops device_uevent_ops = {
2322 .filter = dev_uevent_filter,
2323 .name = dev_uevent_name,
2324 .uevent = dev_uevent,
2325 };
2326
2327 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2328 char *buf)
2329 {
2330 struct kobject *top_kobj;
2331 struct kset *kset;
2332 struct kobj_uevent_env *env = NULL;
2333 int i;
2334 int len = 0;
2335 int retval;
2336
2337 /* search the kset, the device belongs to */
2338 top_kobj = &dev->kobj;
2339 while (!top_kobj->kset && top_kobj->parent)
2340 top_kobj = top_kobj->parent;
2341 if (!top_kobj->kset)
2342 goto out;
2343
2344 kset = top_kobj->kset;
2345 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2346 goto out;
2347
2348 /* respect filter */
2349 if (kset->uevent_ops && kset->uevent_ops->filter)
2350 if (!kset->uevent_ops->filter(kset, &dev->kobj))
2351 goto out;
2352
2353 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2354 if (!env)
2355 return -ENOMEM;
2356
2357 /* let the kset specific function add its keys */
2358 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2359 if (retval)
2360 goto out;
2361
2362 /* copy keys to file */
2363 for (i = 0; i < env->envp_idx; i++)
2364 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2365 out:
2366 kfree(env);
2367 return len;
2368 }
2369
2370 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2371 const char *buf, size_t count)
2372 {
2373 int rc;
2374
2375 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2376
2377 if (rc) {
2378 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2379 return rc;
2380 }
2381
2382 return count;
2383 }
2384 static DEVICE_ATTR_RW(uevent);
2385
2386 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2387 char *buf)
2388 {
2389 bool val;
2390
2391 device_lock(dev);
2392 val = !dev->offline;
2393 device_unlock(dev);
2394 return sysfs_emit(buf, "%u\n", val);
2395 }
2396
2397 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2398 const char *buf, size_t count)
2399 {
2400 bool val;
2401 int ret;
2402
2403 ret = strtobool(buf, &val);
2404 if (ret < 0)
2405 return ret;
2406
2407 ret = lock_device_hotplug_sysfs();
2408 if (ret)
2409 return ret;
2410
2411 ret = val ? device_online(dev) : device_offline(dev);
2412 unlock_device_hotplug();
2413 return ret < 0 ? ret : count;
2414 }
2415 static DEVICE_ATTR_RW(online);
2416
2417 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2418 char *buf)
2419 {
2420 const char *loc;
2421
2422 switch (dev->removable) {
2423 case DEVICE_REMOVABLE:
2424 loc = "removable";
2425 break;
2426 case DEVICE_FIXED:
2427 loc = "fixed";
2428 break;
2429 default:
2430 loc = "unknown";
2431 }
2432 return sysfs_emit(buf, "%s\n", loc);
2433 }
2434 static DEVICE_ATTR_RO(removable);
2435
2436 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2437 {
2438 return sysfs_create_groups(&dev->kobj, groups);
2439 }
2440 EXPORT_SYMBOL_GPL(device_add_groups);
2441
2442 void device_remove_groups(struct device *dev,
2443 const struct attribute_group **groups)
2444 {
2445 sysfs_remove_groups(&dev->kobj, groups);
2446 }
2447 EXPORT_SYMBOL_GPL(device_remove_groups);
2448
2449 union device_attr_group_devres {
2450 const struct attribute_group *group;
2451 const struct attribute_group **groups;
2452 };
2453
2454 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2455 {
2456 return ((union device_attr_group_devres *)res)->group == data;
2457 }
2458
2459 static void devm_attr_group_remove(struct device *dev, void *res)
2460 {
2461 union device_attr_group_devres *devres = res;
2462 const struct attribute_group *group = devres->group;
2463
2464 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2465 sysfs_remove_group(&dev->kobj, group);
2466 }
2467
2468 static void devm_attr_groups_remove(struct device *dev, void *res)
2469 {
2470 union device_attr_group_devres *devres = res;
2471 const struct attribute_group **groups = devres->groups;
2472
2473 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2474 sysfs_remove_groups(&dev->kobj, groups);
2475 }
2476
2477 /**
2478 * devm_device_add_group - given a device, create a managed attribute group
2479 * @dev: The device to create the group for
2480 * @grp: The attribute group to create
2481 *
2482 * This function creates a group for the first time. It will explicitly
2483 * warn and error if any of the attribute files being created already exist.
2484 *
2485 * Returns 0 on success or error code on failure.
2486 */
2487 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2488 {
2489 union device_attr_group_devres *devres;
2490 int error;
2491
2492 devres = devres_alloc(devm_attr_group_remove,
2493 sizeof(*devres), GFP_KERNEL);
2494 if (!devres)
2495 return -ENOMEM;
2496
2497 error = sysfs_create_group(&dev->kobj, grp);
2498 if (error) {
2499 devres_free(devres);
2500 return error;
2501 }
2502
2503 devres->group = grp;
2504 devres_add(dev, devres);
2505 return 0;
2506 }
2507 EXPORT_SYMBOL_GPL(devm_device_add_group);
2508
2509 /**
2510 * devm_device_remove_group: remove a managed group from a device
2511 * @dev: device to remove the group from
2512 * @grp: group to remove
2513 *
2514 * This function removes a group of attributes from a device. The attributes
2515 * previously have to have been created for this group, otherwise it will fail.
2516 */
2517 void devm_device_remove_group(struct device *dev,
2518 const struct attribute_group *grp)
2519 {
2520 WARN_ON(devres_release(dev, devm_attr_group_remove,
2521 devm_attr_group_match,
2522 /* cast away const */ (void *)grp));
2523 }
2524 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2525
2526 /**
2527 * devm_device_add_groups - create a bunch of managed attribute groups
2528 * @dev: The device to create the group for
2529 * @groups: The attribute groups to create, NULL terminated
2530 *
2531 * This function creates a bunch of managed attribute groups. If an error
2532 * occurs when creating a group, all previously created groups will be
2533 * removed, unwinding everything back to the original state when this
2534 * function was called. It will explicitly warn and error if any of the
2535 * attribute files being created already exist.
2536 *
2537 * Returns 0 on success or error code from sysfs_create_group on failure.
2538 */
2539 int devm_device_add_groups(struct device *dev,
2540 const struct attribute_group **groups)
2541 {
2542 union device_attr_group_devres *devres;
2543 int error;
2544
2545 devres = devres_alloc(devm_attr_groups_remove,
2546 sizeof(*devres), GFP_KERNEL);
2547 if (!devres)
2548 return -ENOMEM;
2549
2550 error = sysfs_create_groups(&dev->kobj, groups);
2551 if (error) {
2552 devres_free(devres);
2553 return error;
2554 }
2555
2556 devres->groups = groups;
2557 devres_add(dev, devres);
2558 return 0;
2559 }
2560 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2561
2562 /**
2563 * devm_device_remove_groups - remove a list of managed groups
2564 *
2565 * @dev: The device for the groups to be removed from
2566 * @groups: NULL terminated list of groups to be removed
2567 *
2568 * If groups is not NULL, remove the specified groups from the device.
2569 */
2570 void devm_device_remove_groups(struct device *dev,
2571 const struct attribute_group **groups)
2572 {
2573 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2574 devm_attr_group_match,
2575 /* cast away const */ (void *)groups));
2576 }
2577 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2578
2579 static int device_add_attrs(struct device *dev)
2580 {
2581 struct class *class = dev->class;
2582 const struct device_type *type = dev->type;
2583 int error;
2584
2585 if (class) {
2586 error = device_add_groups(dev, class->dev_groups);
2587 if (error)
2588 return error;
2589 }
2590
2591 if (type) {
2592 error = device_add_groups(dev, type->groups);
2593 if (error)
2594 goto err_remove_class_groups;
2595 }
2596
2597 error = device_add_groups(dev, dev->groups);
2598 if (error)
2599 goto err_remove_type_groups;
2600
2601 if (device_supports_offline(dev) && !dev->offline_disabled) {
2602 error = device_create_file(dev, &dev_attr_online);
2603 if (error)
2604 goto err_remove_dev_groups;
2605 }
2606
2607 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2608 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2609 if (error)
2610 goto err_remove_dev_online;
2611 }
2612
2613 if (dev_removable_is_valid(dev)) {
2614 error = device_create_file(dev, &dev_attr_removable);
2615 if (error)
2616 goto err_remove_dev_waiting_for_supplier;
2617 }
2618
2619 return 0;
2620
2621 err_remove_dev_waiting_for_supplier:
2622 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2623 err_remove_dev_online:
2624 device_remove_file(dev, &dev_attr_online);
2625 err_remove_dev_groups:
2626 device_remove_groups(dev, dev->groups);
2627 err_remove_type_groups:
2628 if (type)
2629 device_remove_groups(dev, type->groups);
2630 err_remove_class_groups:
2631 if (class)
2632 device_remove_groups(dev, class->dev_groups);
2633
2634 return error;
2635 }
2636
2637 static void device_remove_attrs(struct device *dev)
2638 {
2639 struct class *class = dev->class;
2640 const struct device_type *type = dev->type;
2641
2642 device_remove_file(dev, &dev_attr_removable);
2643 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2644 device_remove_file(dev, &dev_attr_online);
2645 device_remove_groups(dev, dev->groups);
2646
2647 if (type)
2648 device_remove_groups(dev, type->groups);
2649
2650 if (class)
2651 device_remove_groups(dev, class->dev_groups);
2652 }
2653
2654 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2655 char *buf)
2656 {
2657 return print_dev_t(buf, dev->devt);
2658 }
2659 static DEVICE_ATTR_RO(dev);
2660
2661 /* /sys/devices/ */
2662 struct kset *devices_kset;
2663
2664 /**
2665 * devices_kset_move_before - Move device in the devices_kset's list.
2666 * @deva: Device to move.
2667 * @devb: Device @deva should come before.
2668 */
2669 static void devices_kset_move_before(struct device *deva, struct device *devb)
2670 {
2671 if (!devices_kset)
2672 return;
2673 pr_debug("devices_kset: Moving %s before %s\n",
2674 dev_name(deva), dev_name(devb));
2675 spin_lock(&devices_kset->list_lock);
2676 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2677 spin_unlock(&devices_kset->list_lock);
2678 }
2679
2680 /**
2681 * devices_kset_move_after - Move device in the devices_kset's list.
2682 * @deva: Device to move
2683 * @devb: Device @deva should come after.
2684 */
2685 static void devices_kset_move_after(struct device *deva, struct device *devb)
2686 {
2687 if (!devices_kset)
2688 return;
2689 pr_debug("devices_kset: Moving %s after %s\n",
2690 dev_name(deva), dev_name(devb));
2691 spin_lock(&devices_kset->list_lock);
2692 list_move(&deva->kobj.entry, &devb->kobj.entry);
2693 spin_unlock(&devices_kset->list_lock);
2694 }
2695
2696 /**
2697 * devices_kset_move_last - move the device to the end of devices_kset's list.
2698 * @dev: device to move
2699 */
2700 void devices_kset_move_last(struct device *dev)
2701 {
2702 if (!devices_kset)
2703 return;
2704 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2705 spin_lock(&devices_kset->list_lock);
2706 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2707 spin_unlock(&devices_kset->list_lock);
2708 }
2709
2710 /**
2711 * device_create_file - create sysfs attribute file for device.
2712 * @dev: device.
2713 * @attr: device attribute descriptor.
2714 */
2715 int device_create_file(struct device *dev,
2716 const struct device_attribute *attr)
2717 {
2718 int error = 0;
2719
2720 if (dev) {
2721 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2722 "Attribute %s: write permission without 'store'\n",
2723 attr->attr.name);
2724 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2725 "Attribute %s: read permission without 'show'\n",
2726 attr->attr.name);
2727 error = sysfs_create_file(&dev->kobj, &attr->attr);
2728 }
2729
2730 return error;
2731 }
2732 EXPORT_SYMBOL_GPL(device_create_file);
2733
2734 /**
2735 * device_remove_file - remove sysfs attribute file.
2736 * @dev: device.
2737 * @attr: device attribute descriptor.
2738 */
2739 void device_remove_file(struct device *dev,
2740 const struct device_attribute *attr)
2741 {
2742 if (dev)
2743 sysfs_remove_file(&dev->kobj, &attr->attr);
2744 }
2745 EXPORT_SYMBOL_GPL(device_remove_file);
2746
2747 /**
2748 * device_remove_file_self - remove sysfs attribute file from its own method.
2749 * @dev: device.
2750 * @attr: device attribute descriptor.
2751 *
2752 * See kernfs_remove_self() for details.
2753 */
2754 bool device_remove_file_self(struct device *dev,
2755 const struct device_attribute *attr)
2756 {
2757 if (dev)
2758 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2759 else
2760 return false;
2761 }
2762 EXPORT_SYMBOL_GPL(device_remove_file_self);
2763
2764 /**
2765 * device_create_bin_file - create sysfs binary attribute file for device.
2766 * @dev: device.
2767 * @attr: device binary attribute descriptor.
2768 */
2769 int device_create_bin_file(struct device *dev,
2770 const struct bin_attribute *attr)
2771 {
2772 int error = -EINVAL;
2773 if (dev)
2774 error = sysfs_create_bin_file(&dev->kobj, attr);
2775 return error;
2776 }
2777 EXPORT_SYMBOL_GPL(device_create_bin_file);
2778
2779 /**
2780 * device_remove_bin_file - remove sysfs binary attribute file
2781 * @dev: device.
2782 * @attr: device binary attribute descriptor.
2783 */
2784 void device_remove_bin_file(struct device *dev,
2785 const struct bin_attribute *attr)
2786 {
2787 if (dev)
2788 sysfs_remove_bin_file(&dev->kobj, attr);
2789 }
2790 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2791
2792 static void klist_children_get(struct klist_node *n)
2793 {
2794 struct device_private *p = to_device_private_parent(n);
2795 struct device *dev = p->device;
2796
2797 get_device(dev);
2798 }
2799
2800 static void klist_children_put(struct klist_node *n)
2801 {
2802 struct device_private *p = to_device_private_parent(n);
2803 struct device *dev = p->device;
2804
2805 put_device(dev);
2806 }
2807
2808 /**
2809 * device_initialize - init device structure.
2810 * @dev: device.
2811 *
2812 * This prepares the device for use by other layers by initializing
2813 * its fields.
2814 * It is the first half of device_register(), if called by
2815 * that function, though it can also be called separately, so one
2816 * may use @dev's fields. In particular, get_device()/put_device()
2817 * may be used for reference counting of @dev after calling this
2818 * function.
2819 *
2820 * All fields in @dev must be initialized by the caller to 0, except
2821 * for those explicitly set to some other value. The simplest
2822 * approach is to use kzalloc() to allocate the structure containing
2823 * @dev.
2824 *
2825 * NOTE: Use put_device() to give up your reference instead of freeing
2826 * @dev directly once you have called this function.
2827 */
2828 void device_initialize(struct device *dev)
2829 {
2830 dev->kobj.kset = devices_kset;
2831 kobject_init(&dev->kobj, &device_ktype);
2832 INIT_LIST_HEAD(&dev->dma_pools);
2833 mutex_init(&dev->mutex);
2834 #ifdef CONFIG_PROVE_LOCKING
2835 mutex_init(&dev->lockdep_mutex);
2836 #endif
2837 lockdep_set_novalidate_class(&dev->mutex);
2838 spin_lock_init(&dev->devres_lock);
2839 INIT_LIST_HEAD(&dev->devres_head);
2840 device_pm_init(dev);
2841 set_dev_node(dev, -1);
2842 #ifdef CONFIG_GENERIC_MSI_IRQ
2843 raw_spin_lock_init(&dev->msi_lock);
2844 INIT_LIST_HEAD(&dev->msi_list);
2845 #endif
2846 INIT_LIST_HEAD(&dev->links.consumers);
2847 INIT_LIST_HEAD(&dev->links.suppliers);
2848 INIT_LIST_HEAD(&dev->links.defer_sync);
2849 dev->links.status = DL_DEV_NO_DRIVER;
2850 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2851 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2852 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2853 dev->dma_coherent = dma_default_coherent;
2854 #endif
2855 #ifdef CONFIG_SWIOTLB
2856 dev->dma_io_tlb_mem = &io_tlb_default_mem;
2857 #endif
2858 }
2859 EXPORT_SYMBOL_GPL(device_initialize);
2860
2861 struct kobject *virtual_device_parent(struct device *dev)
2862 {
2863 static struct kobject *virtual_dir = NULL;
2864
2865 if (!virtual_dir)
2866 virtual_dir = kobject_create_and_add("virtual",
2867 &devices_kset->kobj);
2868
2869 return virtual_dir;
2870 }
2871
2872 struct class_dir {
2873 struct kobject kobj;
2874 struct class *class;
2875 };
2876
2877 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2878
2879 static void class_dir_release(struct kobject *kobj)
2880 {
2881 struct class_dir *dir = to_class_dir(kobj);
2882 kfree(dir);
2883 }
2884
2885 static const
2886 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2887 {
2888 struct class_dir *dir = to_class_dir(kobj);
2889 return dir->class->ns_type;
2890 }
2891
2892 static struct kobj_type class_dir_ktype = {
2893 .release = class_dir_release,
2894 .sysfs_ops = &kobj_sysfs_ops,
2895 .child_ns_type = class_dir_child_ns_type
2896 };
2897
2898 static struct kobject *
2899 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2900 {
2901 struct class_dir *dir;
2902 int retval;
2903
2904 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2905 if (!dir)
2906 return ERR_PTR(-ENOMEM);
2907
2908 dir->class = class;
2909 kobject_init(&dir->kobj, &class_dir_ktype);
2910
2911 dir->kobj.kset = &class->p->glue_dirs;
2912
2913 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2914 if (retval < 0) {
2915 kobject_put(&dir->kobj);
2916 return ERR_PTR(retval);
2917 }
2918 return &dir->kobj;
2919 }
2920
2921 static DEFINE_MUTEX(gdp_mutex);
2922
2923 static struct kobject *get_device_parent(struct device *dev,
2924 struct device *parent)
2925 {
2926 if (dev->class) {
2927 struct kobject *kobj = NULL;
2928 struct kobject *parent_kobj;
2929 struct kobject *k;
2930
2931 #ifdef CONFIG_BLOCK
2932 /* block disks show up in /sys/block */
2933 if (sysfs_deprecated && dev->class == &block_class) {
2934 if (parent && parent->class == &block_class)
2935 return &parent->kobj;
2936 return &block_class.p->subsys.kobj;
2937 }
2938 #endif
2939
2940 /*
2941 * If we have no parent, we live in "virtual".
2942 * Class-devices with a non class-device as parent, live
2943 * in a "glue" directory to prevent namespace collisions.
2944 */
2945 if (parent == NULL)
2946 parent_kobj = virtual_device_parent(dev);
2947 else if (parent->class && !dev->class->ns_type)
2948 return &parent->kobj;
2949 else
2950 parent_kobj = &parent->kobj;
2951
2952 mutex_lock(&gdp_mutex);
2953
2954 /* find our class-directory at the parent and reference it */
2955 spin_lock(&dev->class->p->glue_dirs.list_lock);
2956 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2957 if (k->parent == parent_kobj) {
2958 kobj = kobject_get(k);
2959 break;
2960 }
2961 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2962 if (kobj) {
2963 mutex_unlock(&gdp_mutex);
2964 return kobj;
2965 }
2966
2967 /* or create a new class-directory at the parent device */
2968 k = class_dir_create_and_add(dev->class, parent_kobj);
2969 /* do not emit an uevent for this simple "glue" directory */
2970 mutex_unlock(&gdp_mutex);
2971 return k;
2972 }
2973
2974 /* subsystems can specify a default root directory for their devices */
2975 if (!parent && dev->bus && dev->bus->dev_root)
2976 return &dev->bus->dev_root->kobj;
2977
2978 if (parent)
2979 return &parent->kobj;
2980 return NULL;
2981 }
2982
2983 static inline bool live_in_glue_dir(struct kobject *kobj,
2984 struct device *dev)
2985 {
2986 if (!kobj || !dev->class ||
2987 kobj->kset != &dev->class->p->glue_dirs)
2988 return false;
2989 return true;
2990 }
2991
2992 static inline struct kobject *get_glue_dir(struct device *dev)
2993 {
2994 return dev->kobj.parent;
2995 }
2996
2997 /*
2998 * make sure cleaning up dir as the last step, we need to make
2999 * sure .release handler of kobject is run with holding the
3000 * global lock
3001 */
3002 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3003 {
3004 unsigned int ref;
3005
3006 /* see if we live in a "glue" directory */
3007 if (!live_in_glue_dir(glue_dir, dev))
3008 return;
3009
3010 mutex_lock(&gdp_mutex);
3011 /**
3012 * There is a race condition between removing glue directory
3013 * and adding a new device under the glue directory.
3014 *
3015 * CPU1: CPU2:
3016 *
3017 * device_add()
3018 * get_device_parent()
3019 * class_dir_create_and_add()
3020 * kobject_add_internal()
3021 * create_dir() // create glue_dir
3022 *
3023 * device_add()
3024 * get_device_parent()
3025 * kobject_get() // get glue_dir
3026 *
3027 * device_del()
3028 * cleanup_glue_dir()
3029 * kobject_del(glue_dir)
3030 *
3031 * kobject_add()
3032 * kobject_add_internal()
3033 * create_dir() // in glue_dir
3034 * sysfs_create_dir_ns()
3035 * kernfs_create_dir_ns(sd)
3036 *
3037 * sysfs_remove_dir() // glue_dir->sd=NULL
3038 * sysfs_put() // free glue_dir->sd
3039 *
3040 * // sd is freed
3041 * kernfs_new_node(sd)
3042 * kernfs_get(glue_dir)
3043 * kernfs_add_one()
3044 * kernfs_put()
3045 *
3046 * Before CPU1 remove last child device under glue dir, if CPU2 add
3047 * a new device under glue dir, the glue_dir kobject reference count
3048 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3049 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3050 * and sysfs_put(). This result in glue_dir->sd is freed.
3051 *
3052 * Then the CPU2 will see a stale "empty" but still potentially used
3053 * glue dir around in kernfs_new_node().
3054 *
3055 * In order to avoid this happening, we also should make sure that
3056 * kernfs_node for glue_dir is released in CPU1 only when refcount
3057 * for glue_dir kobj is 1.
3058 */
3059 ref = kref_read(&glue_dir->kref);
3060 if (!kobject_has_children(glue_dir) && !--ref)
3061 kobject_del(glue_dir);
3062 kobject_put(glue_dir);
3063 mutex_unlock(&gdp_mutex);
3064 }
3065
3066 static int device_add_class_symlinks(struct device *dev)
3067 {
3068 struct device_node *of_node = dev_of_node(dev);
3069 int error;
3070
3071 if (of_node) {
3072 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3073 if (error)
3074 dev_warn(dev, "Error %d creating of_node link\n",error);
3075 /* An error here doesn't warrant bringing down the device */
3076 }
3077
3078 if (!dev->class)
3079 return 0;
3080
3081 error = sysfs_create_link(&dev->kobj,
3082 &dev->class->p->subsys.kobj,
3083 "subsystem");
3084 if (error)
3085 goto out_devnode;
3086
3087 if (dev->parent && device_is_not_partition(dev)) {
3088 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3089 "device");
3090 if (error)
3091 goto out_subsys;
3092 }
3093
3094 #ifdef CONFIG_BLOCK
3095 /* /sys/block has directories and does not need symlinks */
3096 if (sysfs_deprecated && dev->class == &block_class)
3097 return 0;
3098 #endif
3099
3100 /* link in the class directory pointing to the device */
3101 error = sysfs_create_link(&dev->class->p->subsys.kobj,
3102 &dev->kobj, dev_name(dev));
3103 if (error)
3104 goto out_device;
3105
3106 return 0;
3107
3108 out_device:
3109 sysfs_remove_link(&dev->kobj, "device");
3110
3111 out_subsys:
3112 sysfs_remove_link(&dev->kobj, "subsystem");
3113 out_devnode:
3114 sysfs_remove_link(&dev->kobj, "of_node");
3115 return error;
3116 }
3117
3118 static void device_remove_class_symlinks(struct device *dev)
3119 {
3120 if (dev_of_node(dev))
3121 sysfs_remove_link(&dev->kobj, "of_node");
3122
3123 if (!dev->class)
3124 return;
3125
3126 if (dev->parent && device_is_not_partition(dev))
3127 sysfs_remove_link(&dev->kobj, "device");
3128 sysfs_remove_link(&dev->kobj, "subsystem");
3129 #ifdef CONFIG_BLOCK
3130 if (sysfs_deprecated && dev->class == &block_class)
3131 return;
3132 #endif
3133 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3134 }
3135
3136 /**
3137 * dev_set_name - set a device name
3138 * @dev: device
3139 * @fmt: format string for the device's name
3140 */
3141 int dev_set_name(struct device *dev, const char *fmt, ...)
3142 {
3143 va_list vargs;
3144 int err;
3145
3146 va_start(vargs, fmt);
3147 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3148 va_end(vargs);
3149 return err;
3150 }
3151 EXPORT_SYMBOL_GPL(dev_set_name);
3152
3153 /**
3154 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3155 * @dev: device
3156 *
3157 * By default we select char/ for new entries. Setting class->dev_obj
3158 * to NULL prevents an entry from being created. class->dev_kobj must
3159 * be set (or cleared) before any devices are registered to the class
3160 * otherwise device_create_sys_dev_entry() and
3161 * device_remove_sys_dev_entry() will disagree about the presence of
3162 * the link.
3163 */
3164 static struct kobject *device_to_dev_kobj(struct device *dev)
3165 {
3166 struct kobject *kobj;
3167
3168 if (dev->class)
3169 kobj = dev->class->dev_kobj;
3170 else
3171 kobj = sysfs_dev_char_kobj;
3172
3173 return kobj;
3174 }
3175
3176 static int device_create_sys_dev_entry(struct device *dev)
3177 {
3178 struct kobject *kobj = device_to_dev_kobj(dev);
3179 int error = 0;
3180 char devt_str[15];
3181
3182 if (kobj) {
3183 format_dev_t(devt_str, dev->devt);
3184 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3185 }
3186
3187 return error;
3188 }
3189
3190 static void device_remove_sys_dev_entry(struct device *dev)
3191 {
3192 struct kobject *kobj = device_to_dev_kobj(dev);
3193 char devt_str[15];
3194
3195 if (kobj) {
3196 format_dev_t(devt_str, dev->devt);
3197 sysfs_remove_link(kobj, devt_str);
3198 }
3199 }
3200
3201 static int device_private_init(struct device *dev)
3202 {
3203 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3204 if (!dev->p)
3205 return -ENOMEM;
3206 dev->p->device = dev;
3207 klist_init(&dev->p->klist_children, klist_children_get,
3208 klist_children_put);
3209 INIT_LIST_HEAD(&dev->p->deferred_probe);
3210 return 0;
3211 }
3212
3213 /**
3214 * device_add - add device to device hierarchy.
3215 * @dev: device.
3216 *
3217 * This is part 2 of device_register(), though may be called
3218 * separately _iff_ device_initialize() has been called separately.
3219 *
3220 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3221 * to the global and sibling lists for the device, then
3222 * adds it to the other relevant subsystems of the driver model.
3223 *
3224 * Do not call this routine or device_register() more than once for
3225 * any device structure. The driver model core is not designed to work
3226 * with devices that get unregistered and then spring back to life.
3227 * (Among other things, it's very hard to guarantee that all references
3228 * to the previous incarnation of @dev have been dropped.) Allocate
3229 * and register a fresh new struct device instead.
3230 *
3231 * NOTE: _Never_ directly free @dev after calling this function, even
3232 * if it returned an error! Always use put_device() to give up your
3233 * reference instead.
3234 *
3235 * Rule of thumb is: if device_add() succeeds, you should call
3236 * device_del() when you want to get rid of it. If device_add() has
3237 * *not* succeeded, use *only* put_device() to drop the reference
3238 * count.
3239 */
3240 int device_add(struct device *dev)
3241 {
3242 struct device *parent;
3243 struct kobject *kobj;
3244 struct class_interface *class_intf;
3245 int error = -EINVAL;
3246 struct kobject *glue_dir = NULL;
3247
3248 dev = get_device(dev);
3249 if (!dev)
3250 goto done;
3251
3252 if (!dev->p) {
3253 error = device_private_init(dev);
3254 if (error)
3255 goto done;
3256 }
3257
3258 /*
3259 * for statically allocated devices, which should all be converted
3260 * some day, we need to initialize the name. We prevent reading back
3261 * the name, and force the use of dev_name()
3262 */
3263 if (dev->init_name) {
3264 dev_set_name(dev, "%s", dev->init_name);
3265 dev->init_name = NULL;
3266 }
3267
3268 /* subsystems can specify simple device enumeration */
3269 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3270 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3271
3272 if (!dev_name(dev)) {
3273 error = -EINVAL;
3274 goto name_error;
3275 }
3276
3277 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3278
3279 parent = get_device(dev->parent);
3280 kobj = get_device_parent(dev, parent);
3281 if (IS_ERR(kobj)) {
3282 error = PTR_ERR(kobj);
3283 goto parent_error;
3284 }
3285 if (kobj)
3286 dev->kobj.parent = kobj;
3287
3288 /* use parent numa_node */
3289 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3290 set_dev_node(dev, dev_to_node(parent));
3291
3292 /* first, register with generic layer. */
3293 /* we require the name to be set before, and pass NULL */
3294 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3295 if (error) {
3296 glue_dir = get_glue_dir(dev);
3297 goto Error;
3298 }
3299
3300 /* notify platform of device entry */
3301 device_platform_notify(dev);
3302
3303 error = device_create_file(dev, &dev_attr_uevent);
3304 if (error)
3305 goto attrError;
3306
3307 error = device_add_class_symlinks(dev);
3308 if (error)
3309 goto SymlinkError;
3310 error = device_add_attrs(dev);
3311 if (error)
3312 goto AttrsError;
3313 error = bus_add_device(dev);
3314 if (error)
3315 goto BusError;
3316 error = dpm_sysfs_add(dev);
3317 if (error)
3318 goto DPMError;
3319 device_pm_add(dev);
3320
3321 if (MAJOR(dev->devt)) {
3322 error = device_create_file(dev, &dev_attr_dev);
3323 if (error)
3324 goto DevAttrError;
3325
3326 error = device_create_sys_dev_entry(dev);
3327 if (error)
3328 goto SysEntryError;
3329
3330 devtmpfs_create_node(dev);
3331 }
3332
3333 /* Notify clients of device addition. This call must come
3334 * after dpm_sysfs_add() and before kobject_uevent().
3335 */
3336 if (dev->bus)
3337 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3338 BUS_NOTIFY_ADD_DEVICE, dev);
3339
3340 kobject_uevent(&dev->kobj, KOBJ_ADD);
3341
3342 /*
3343 * Check if any of the other devices (consumers) have been waiting for
3344 * this device (supplier) to be added so that they can create a device
3345 * link to it.
3346 *
3347 * This needs to happen after device_pm_add() because device_link_add()
3348 * requires the supplier be registered before it's called.
3349 *
3350 * But this also needs to happen before bus_probe_device() to make sure
3351 * waiting consumers can link to it before the driver is bound to the
3352 * device and the driver sync_state callback is called for this device.
3353 */
3354 if (dev->fwnode && !dev->fwnode->dev) {
3355 dev->fwnode->dev = dev;
3356 fw_devlink_link_device(dev);
3357 }
3358
3359 bus_probe_device(dev);
3360
3361 /*
3362 * If all driver registration is done and a newly added device doesn't
3363 * match with any driver, don't block its consumers from probing in
3364 * case the consumer device is able to operate without this supplier.
3365 */
3366 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3367 fw_devlink_unblock_consumers(dev);
3368
3369 if (parent)
3370 klist_add_tail(&dev->p->knode_parent,
3371 &parent->p->klist_children);
3372
3373 if (dev->class) {
3374 mutex_lock(&dev->class->p->mutex);
3375 /* tie the class to the device */
3376 klist_add_tail(&dev->p->knode_class,
3377 &dev->class->p->klist_devices);
3378
3379 /* notify any interfaces that the device is here */
3380 list_for_each_entry(class_intf,
3381 &dev->class->p->interfaces, node)
3382 if (class_intf->add_dev)
3383 class_intf->add_dev(dev, class_intf);
3384 mutex_unlock(&dev->class->p->mutex);
3385 }
3386 done:
3387 put_device(dev);
3388 return error;
3389 SysEntryError:
3390 if (MAJOR(dev->devt))
3391 device_remove_file(dev, &dev_attr_dev);
3392 DevAttrError:
3393 device_pm_remove(dev);
3394 dpm_sysfs_remove(dev);
3395 DPMError:
3396 bus_remove_device(dev);
3397 BusError:
3398 device_remove_attrs(dev);
3399 AttrsError:
3400 device_remove_class_symlinks(dev);
3401 SymlinkError:
3402 device_remove_file(dev, &dev_attr_uevent);
3403 attrError:
3404 device_platform_notify_remove(dev);
3405 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3406 glue_dir = get_glue_dir(dev);
3407 kobject_del(&dev->kobj);
3408 Error:
3409 cleanup_glue_dir(dev, glue_dir);
3410 parent_error:
3411 put_device(parent);
3412 name_error:
3413 kfree(dev->p);
3414 dev->p = NULL;
3415 goto done;
3416 }
3417 EXPORT_SYMBOL_GPL(device_add);
3418
3419 /**
3420 * device_register - register a device with the system.
3421 * @dev: pointer to the device structure
3422 *
3423 * This happens in two clean steps - initialize the device
3424 * and add it to the system. The two steps can be called
3425 * separately, but this is the easiest and most common.
3426 * I.e. you should only call the two helpers separately if
3427 * have a clearly defined need to use and refcount the device
3428 * before it is added to the hierarchy.
3429 *
3430 * For more information, see the kerneldoc for device_initialize()
3431 * and device_add().
3432 *
3433 * NOTE: _Never_ directly free @dev after calling this function, even
3434 * if it returned an error! Always use put_device() to give up the
3435 * reference initialized in this function instead.
3436 */
3437 int device_register(struct device *dev)
3438 {
3439 device_initialize(dev);
3440 return device_add(dev);
3441 }
3442 EXPORT_SYMBOL_GPL(device_register);
3443
3444 /**
3445 * get_device - increment reference count for device.
3446 * @dev: device.
3447 *
3448 * This simply forwards the call to kobject_get(), though
3449 * we do take care to provide for the case that we get a NULL
3450 * pointer passed in.
3451 */
3452 struct device *get_device(struct device *dev)
3453 {
3454 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3455 }
3456 EXPORT_SYMBOL_GPL(get_device);
3457
3458 /**
3459 * put_device - decrement reference count.
3460 * @dev: device in question.
3461 */
3462 void put_device(struct device *dev)
3463 {
3464 /* might_sleep(); */
3465 if (dev)
3466 kobject_put(&dev->kobj);
3467 }
3468 EXPORT_SYMBOL_GPL(put_device);
3469
3470 bool kill_device(struct device *dev)
3471 {
3472 /*
3473 * Require the device lock and set the "dead" flag to guarantee that
3474 * the update behavior is consistent with the other bitfields near
3475 * it and that we cannot have an asynchronous probe routine trying
3476 * to run while we are tearing out the bus/class/sysfs from
3477 * underneath the device.
3478 */
3479 device_lock_assert(dev);
3480
3481 if (dev->p->dead)
3482 return false;
3483 dev->p->dead = true;
3484 return true;
3485 }
3486 EXPORT_SYMBOL_GPL(kill_device);
3487
3488 /**
3489 * device_del - delete device from system.
3490 * @dev: device.
3491 *
3492 * This is the first part of the device unregistration
3493 * sequence. This removes the device from the lists we control
3494 * from here, has it removed from the other driver model
3495 * subsystems it was added to in device_add(), and removes it
3496 * from the kobject hierarchy.
3497 *
3498 * NOTE: this should be called manually _iff_ device_add() was
3499 * also called manually.
3500 */
3501 void device_del(struct device *dev)
3502 {
3503 struct device *parent = dev->parent;
3504 struct kobject *glue_dir = NULL;
3505 struct class_interface *class_intf;
3506 unsigned int noio_flag;
3507
3508 device_lock(dev);
3509 kill_device(dev);
3510 device_unlock(dev);
3511
3512 if (dev->fwnode && dev->fwnode->dev == dev)
3513 dev->fwnode->dev = NULL;
3514
3515 /* Notify clients of device removal. This call must come
3516 * before dpm_sysfs_remove().
3517 */
3518 noio_flag = memalloc_noio_save();
3519 if (dev->bus)
3520 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3521 BUS_NOTIFY_DEL_DEVICE, dev);
3522
3523 dpm_sysfs_remove(dev);
3524 if (parent)
3525 klist_del(&dev->p->knode_parent);
3526 if (MAJOR(dev->devt)) {
3527 devtmpfs_delete_node(dev);
3528 device_remove_sys_dev_entry(dev);
3529 device_remove_file(dev, &dev_attr_dev);
3530 }
3531 if (dev->class) {
3532 device_remove_class_symlinks(dev);
3533
3534 mutex_lock(&dev->class->p->mutex);
3535 /* notify any interfaces that the device is now gone */
3536 list_for_each_entry(class_intf,
3537 &dev->class->p->interfaces, node)
3538 if (class_intf->remove_dev)
3539 class_intf->remove_dev(dev, class_intf);
3540 /* remove the device from the class list */
3541 klist_del(&dev->p->knode_class);
3542 mutex_unlock(&dev->class->p->mutex);
3543 }
3544 device_remove_file(dev, &dev_attr_uevent);
3545 device_remove_attrs(dev);
3546 bus_remove_device(dev);
3547 device_pm_remove(dev);
3548 driver_deferred_probe_del(dev);
3549 device_platform_notify_remove(dev);
3550 device_remove_properties(dev);
3551 device_links_purge(dev);
3552
3553 if (dev->bus)
3554 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3555 BUS_NOTIFY_REMOVED_DEVICE, dev);
3556 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3557 glue_dir = get_glue_dir(dev);
3558 kobject_del(&dev->kobj);
3559 cleanup_glue_dir(dev, glue_dir);
3560 memalloc_noio_restore(noio_flag);
3561 put_device(parent);
3562 }
3563 EXPORT_SYMBOL_GPL(device_del);
3564
3565 /**
3566 * device_unregister - unregister device from system.
3567 * @dev: device going away.
3568 *
3569 * We do this in two parts, like we do device_register(). First,
3570 * we remove it from all the subsystems with device_del(), then
3571 * we decrement the reference count via put_device(). If that
3572 * is the final reference count, the device will be cleaned up
3573 * via device_release() above. Otherwise, the structure will
3574 * stick around until the final reference to the device is dropped.
3575 */
3576 void device_unregister(struct device *dev)
3577 {
3578 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3579 device_del(dev);
3580 put_device(dev);
3581 }
3582 EXPORT_SYMBOL_GPL(device_unregister);
3583
3584 static struct device *prev_device(struct klist_iter *i)
3585 {
3586 struct klist_node *n = klist_prev(i);
3587 struct device *dev = NULL;
3588 struct device_private *p;
3589
3590 if (n) {
3591 p = to_device_private_parent(n);
3592 dev = p->device;
3593 }
3594 return dev;
3595 }
3596
3597 static struct device *next_device(struct klist_iter *i)
3598 {
3599 struct klist_node *n = klist_next(i);
3600 struct device *dev = NULL;
3601 struct device_private *p;
3602
3603 if (n) {
3604 p = to_device_private_parent(n);
3605 dev = p->device;
3606 }
3607 return dev;
3608 }
3609
3610 /**
3611 * device_get_devnode - path of device node file
3612 * @dev: device
3613 * @mode: returned file access mode
3614 * @uid: returned file owner
3615 * @gid: returned file group
3616 * @tmp: possibly allocated string
3617 *
3618 * Return the relative path of a possible device node.
3619 * Non-default names may need to allocate a memory to compose
3620 * a name. This memory is returned in tmp and needs to be
3621 * freed by the caller.
3622 */
3623 const char *device_get_devnode(struct device *dev,
3624 umode_t *mode, kuid_t *uid, kgid_t *gid,
3625 const char **tmp)
3626 {
3627 char *s;
3628
3629 *tmp = NULL;
3630
3631 /* the device type may provide a specific name */
3632 if (dev->type && dev->type->devnode)
3633 *tmp = dev->type->devnode(dev, mode, uid, gid);
3634 if (*tmp)
3635 return *tmp;
3636
3637 /* the class may provide a specific name */
3638 if (dev->class && dev->class->devnode)
3639 *tmp = dev->class->devnode(dev, mode);
3640 if (*tmp)
3641 return *tmp;
3642
3643 /* return name without allocation, tmp == NULL */
3644 if (strchr(dev_name(dev), '!') == NULL)
3645 return dev_name(dev);
3646
3647 /* replace '!' in the name with '/' */
3648 s = kstrdup(dev_name(dev), GFP_KERNEL);
3649 if (!s)
3650 return NULL;
3651 strreplace(s, '!', '/');
3652 return *tmp = s;
3653 }
3654
3655 /**
3656 * device_for_each_child - device child iterator.
3657 * @parent: parent struct device.
3658 * @fn: function to be called for each device.
3659 * @data: data for the callback.
3660 *
3661 * Iterate over @parent's child devices, and call @fn for each,
3662 * passing it @data.
3663 *
3664 * We check the return of @fn each time. If it returns anything
3665 * other than 0, we break out and return that value.
3666 */
3667 int device_for_each_child(struct device *parent, void *data,
3668 int (*fn)(struct device *dev, void *data))
3669 {
3670 struct klist_iter i;
3671 struct device *child;
3672 int error = 0;
3673
3674 if (!parent->p)
3675 return 0;
3676
3677 klist_iter_init(&parent->p->klist_children, &i);
3678 while (!error && (child = next_device(&i)))
3679 error = fn(child, data);
3680 klist_iter_exit(&i);
3681 return error;
3682 }
3683 EXPORT_SYMBOL_GPL(device_for_each_child);
3684
3685 /**
3686 * device_for_each_child_reverse - device child iterator in reversed order.
3687 * @parent: parent struct device.
3688 * @fn: function to be called for each device.
3689 * @data: data for the callback.
3690 *
3691 * Iterate over @parent's child devices, and call @fn for each,
3692 * passing it @data.
3693 *
3694 * We check the return of @fn each time. If it returns anything
3695 * other than 0, we break out and return that value.
3696 */
3697 int device_for_each_child_reverse(struct device *parent, void *data,
3698 int (*fn)(struct device *dev, void *data))
3699 {
3700 struct klist_iter i;
3701 struct device *child;
3702 int error = 0;
3703
3704 if (!parent->p)
3705 return 0;
3706
3707 klist_iter_init(&parent->p->klist_children, &i);
3708 while ((child = prev_device(&i)) && !error)
3709 error = fn(child, data);
3710 klist_iter_exit(&i);
3711 return error;
3712 }
3713 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3714
3715 /**
3716 * device_find_child - device iterator for locating a particular device.
3717 * @parent: parent struct device
3718 * @match: Callback function to check device
3719 * @data: Data to pass to match function
3720 *
3721 * This is similar to the device_for_each_child() function above, but it
3722 * returns a reference to a device that is 'found' for later use, as
3723 * determined by the @match callback.
3724 *
3725 * The callback should return 0 if the device doesn't match and non-zero
3726 * if it does. If the callback returns non-zero and a reference to the
3727 * current device can be obtained, this function will return to the caller
3728 * and not iterate over any more devices.
3729 *
3730 * NOTE: you will need to drop the reference with put_device() after use.
3731 */
3732 struct device *device_find_child(struct device *parent, void *data,
3733 int (*match)(struct device *dev, void *data))
3734 {
3735 struct klist_iter i;
3736 struct device *child;
3737
3738 if (!parent)
3739 return NULL;
3740
3741 klist_iter_init(&parent->p->klist_children, &i);
3742 while ((child = next_device(&i)))
3743 if (match(child, data) && get_device(child))
3744 break;
3745 klist_iter_exit(&i);
3746 return child;
3747 }
3748 EXPORT_SYMBOL_GPL(device_find_child);
3749
3750 /**
3751 * device_find_child_by_name - device iterator for locating a child device.
3752 * @parent: parent struct device
3753 * @name: name of the child device
3754 *
3755 * This is similar to the device_find_child() function above, but it
3756 * returns a reference to a device that has the name @name.
3757 *
3758 * NOTE: you will need to drop the reference with put_device() after use.
3759 */
3760 struct device *device_find_child_by_name(struct device *parent,
3761 const char *name)
3762 {
3763 struct klist_iter i;
3764 struct device *child;
3765
3766 if (!parent)
3767 return NULL;
3768
3769 klist_iter_init(&parent->p->klist_children, &i);
3770 while ((child = next_device(&i)))
3771 if (sysfs_streq(dev_name(child), name) && get_device(child))
3772 break;
3773 klist_iter_exit(&i);
3774 return child;
3775 }
3776 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3777
3778 int __init devices_init(void)
3779 {
3780 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3781 if (!devices_kset)
3782 return -ENOMEM;
3783 dev_kobj = kobject_create_and_add("dev", NULL);
3784 if (!dev_kobj)
3785 goto dev_kobj_err;
3786 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3787 if (!sysfs_dev_block_kobj)
3788 goto block_kobj_err;
3789 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3790 if (!sysfs_dev_char_kobj)
3791 goto char_kobj_err;
3792
3793 return 0;
3794
3795 char_kobj_err:
3796 kobject_put(sysfs_dev_block_kobj);
3797 block_kobj_err:
3798 kobject_put(dev_kobj);
3799 dev_kobj_err:
3800 kset_unregister(devices_kset);
3801 return -ENOMEM;
3802 }
3803
3804 static int device_check_offline(struct device *dev, void *not_used)
3805 {
3806 int ret;
3807
3808 ret = device_for_each_child(dev, NULL, device_check_offline);
3809 if (ret)
3810 return ret;
3811
3812 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3813 }
3814
3815 /**
3816 * device_offline - Prepare the device for hot-removal.
3817 * @dev: Device to be put offline.
3818 *
3819 * Execute the device bus type's .offline() callback, if present, to prepare
3820 * the device for a subsequent hot-removal. If that succeeds, the device must
3821 * not be used until either it is removed or its bus type's .online() callback
3822 * is executed.
3823 *
3824 * Call under device_hotplug_lock.
3825 */
3826 int device_offline(struct device *dev)
3827 {
3828 int ret;
3829
3830 if (dev->offline_disabled)
3831 return -EPERM;
3832
3833 ret = device_for_each_child(dev, NULL, device_check_offline);
3834 if (ret)
3835 return ret;
3836
3837 device_lock(dev);
3838 if (device_supports_offline(dev)) {
3839 if (dev->offline) {
3840 ret = 1;
3841 } else {
3842 ret = dev->bus->offline(dev);
3843 if (!ret) {
3844 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3845 dev->offline = true;
3846 }
3847 }
3848 }
3849 device_unlock(dev);
3850
3851 return ret;
3852 }
3853
3854 /**
3855 * device_online - Put the device back online after successful device_offline().
3856 * @dev: Device to be put back online.
3857 *
3858 * If device_offline() has been successfully executed for @dev, but the device
3859 * has not been removed subsequently, execute its bus type's .online() callback
3860 * to indicate that the device can be used again.
3861 *
3862 * Call under device_hotplug_lock.
3863 */
3864 int device_online(struct device *dev)
3865 {
3866 int ret = 0;
3867
3868 device_lock(dev);
3869 if (device_supports_offline(dev)) {
3870 if (dev->offline) {
3871 ret = dev->bus->online(dev);
3872 if (!ret) {
3873 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3874 dev->offline = false;
3875 }
3876 } else {
3877 ret = 1;
3878 }
3879 }
3880 device_unlock(dev);
3881
3882 return ret;
3883 }
3884
3885 struct root_device {
3886 struct device dev;
3887 struct module *owner;
3888 };
3889
3890 static inline struct root_device *to_root_device(struct device *d)
3891 {
3892 return container_of(d, struct root_device, dev);
3893 }
3894
3895 static void root_device_release(struct device *dev)
3896 {
3897 kfree(to_root_device(dev));
3898 }
3899
3900 /**
3901 * __root_device_register - allocate and register a root device
3902 * @name: root device name
3903 * @owner: owner module of the root device, usually THIS_MODULE
3904 *
3905 * This function allocates a root device and registers it
3906 * using device_register(). In order to free the returned
3907 * device, use root_device_unregister().
3908 *
3909 * Root devices are dummy devices which allow other devices
3910 * to be grouped under /sys/devices. Use this function to
3911 * allocate a root device and then use it as the parent of
3912 * any device which should appear under /sys/devices/{name}
3913 *
3914 * The /sys/devices/{name} directory will also contain a
3915 * 'module' symlink which points to the @owner directory
3916 * in sysfs.
3917 *
3918 * Returns &struct device pointer on success, or ERR_PTR() on error.
3919 *
3920 * Note: You probably want to use root_device_register().
3921 */
3922 struct device *__root_device_register(const char *name, struct module *owner)
3923 {
3924 struct root_device *root;
3925 int err = -ENOMEM;
3926
3927 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3928 if (!root)
3929 return ERR_PTR(err);
3930
3931 err = dev_set_name(&root->dev, "%s", name);
3932 if (err) {
3933 kfree(root);
3934 return ERR_PTR(err);
3935 }
3936
3937 root->dev.release = root_device_release;
3938
3939 err = device_register(&root->dev);
3940 if (err) {
3941 put_device(&root->dev);
3942 return ERR_PTR(err);
3943 }
3944
3945 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3946 if (owner) {
3947 struct module_kobject *mk = &owner->mkobj;
3948
3949 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3950 if (err) {
3951 device_unregister(&root->dev);
3952 return ERR_PTR(err);
3953 }
3954 root->owner = owner;
3955 }
3956 #endif
3957
3958 return &root->dev;
3959 }
3960 EXPORT_SYMBOL_GPL(__root_device_register);
3961
3962 /**
3963 * root_device_unregister - unregister and free a root device
3964 * @dev: device going away
3965 *
3966 * This function unregisters and cleans up a device that was created by
3967 * root_device_register().
3968 */
3969 void root_device_unregister(struct device *dev)
3970 {
3971 struct root_device *root = to_root_device(dev);
3972
3973 if (root->owner)
3974 sysfs_remove_link(&root->dev.kobj, "module");
3975
3976 device_unregister(dev);
3977 }
3978 EXPORT_SYMBOL_GPL(root_device_unregister);
3979
3980
3981 static void device_create_release(struct device *dev)
3982 {
3983 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3984 kfree(dev);
3985 }
3986
3987 static __printf(6, 0) struct device *
3988 device_create_groups_vargs(struct class *class, struct device *parent,
3989 dev_t devt, void *drvdata,
3990 const struct attribute_group **groups,
3991 const char *fmt, va_list args)
3992 {
3993 struct device *dev = NULL;
3994 int retval = -ENODEV;
3995
3996 if (class == NULL || IS_ERR(class))
3997 goto error;
3998
3999 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4000 if (!dev) {
4001 retval = -ENOMEM;
4002 goto error;
4003 }
4004
4005 device_initialize(dev);
4006 dev->devt = devt;
4007 dev->class = class;
4008 dev->parent = parent;
4009 dev->groups = groups;
4010 dev->release = device_create_release;
4011 dev_set_drvdata(dev, drvdata);
4012
4013 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4014 if (retval)
4015 goto error;
4016
4017 retval = device_add(dev);
4018 if (retval)
4019 goto error;
4020
4021 return dev;
4022
4023 error:
4024 put_device(dev);
4025 return ERR_PTR(retval);
4026 }
4027
4028 /**
4029 * device_create - creates a device and registers it with sysfs
4030 * @class: pointer to the struct class that this device should be registered to
4031 * @parent: pointer to the parent struct device of this new device, if any
4032 * @devt: the dev_t for the char device to be added
4033 * @drvdata: the data to be added to the device for callbacks
4034 * @fmt: string for the device's name
4035 *
4036 * This function can be used by char device classes. A struct device
4037 * will be created in sysfs, registered to the specified class.
4038 *
4039 * A "dev" file will be created, showing the dev_t for the device, if
4040 * the dev_t is not 0,0.
4041 * If a pointer to a parent struct device is passed in, the newly created
4042 * struct device will be a child of that device in sysfs.
4043 * The pointer to the struct device will be returned from the call.
4044 * Any further sysfs files that might be required can be created using this
4045 * pointer.
4046 *
4047 * Returns &struct device pointer on success, or ERR_PTR() on error.
4048 *
4049 * Note: the struct class passed to this function must have previously
4050 * been created with a call to class_create().
4051 */
4052 struct device *device_create(struct class *class, struct device *parent,
4053 dev_t devt, void *drvdata, const char *fmt, ...)
4054 {
4055 va_list vargs;
4056 struct device *dev;
4057
4058 va_start(vargs, fmt);
4059 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4060 fmt, vargs);
4061 va_end(vargs);
4062 return dev;
4063 }
4064 EXPORT_SYMBOL_GPL(device_create);
4065
4066 /**
4067 * device_create_with_groups - creates a device and registers it with sysfs
4068 * @class: pointer to the struct class that this device should be registered to
4069 * @parent: pointer to the parent struct device of this new device, if any
4070 * @devt: the dev_t for the char device to be added
4071 * @drvdata: the data to be added to the device for callbacks
4072 * @groups: NULL-terminated list of attribute groups to be created
4073 * @fmt: string for the device's name
4074 *
4075 * This function can be used by char device classes. A struct device
4076 * will be created in sysfs, registered to the specified class.
4077 * Additional attributes specified in the groups parameter will also
4078 * be created automatically.
4079 *
4080 * A "dev" file will be created, showing the dev_t for the device, if
4081 * the dev_t is not 0,0.
4082 * If a pointer to a parent struct device is passed in, the newly created
4083 * struct device will be a child of that device in sysfs.
4084 * The pointer to the struct device will be returned from the call.
4085 * Any further sysfs files that might be required can be created using this
4086 * pointer.
4087 *
4088 * Returns &struct device pointer on success, or ERR_PTR() on error.
4089 *
4090 * Note: the struct class passed to this function must have previously
4091 * been created with a call to class_create().
4092 */
4093 struct device *device_create_with_groups(struct class *class,
4094 struct device *parent, dev_t devt,
4095 void *drvdata,
4096 const struct attribute_group **groups,
4097 const char *fmt, ...)
4098 {
4099 va_list vargs;
4100 struct device *dev;
4101
4102 va_start(vargs, fmt);
4103 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4104 fmt, vargs);
4105 va_end(vargs);
4106 return dev;
4107 }
4108 EXPORT_SYMBOL_GPL(device_create_with_groups);
4109
4110 /**
4111 * device_destroy - removes a device that was created with device_create()
4112 * @class: pointer to the struct class that this device was registered with
4113 * @devt: the dev_t of the device that was previously registered
4114 *
4115 * This call unregisters and cleans up a device that was created with a
4116 * call to device_create().
4117 */
4118 void device_destroy(struct class *class, dev_t devt)
4119 {
4120 struct device *dev;
4121
4122 dev = class_find_device_by_devt(class, devt);
4123 if (dev) {
4124 put_device(dev);
4125 device_unregister(dev);
4126 }
4127 }
4128 EXPORT_SYMBOL_GPL(device_destroy);
4129
4130 /**
4131 * device_rename - renames a device
4132 * @dev: the pointer to the struct device to be renamed
4133 * @new_name: the new name of the device
4134 *
4135 * It is the responsibility of the caller to provide mutual
4136 * exclusion between two different calls of device_rename
4137 * on the same device to ensure that new_name is valid and
4138 * won't conflict with other devices.
4139 *
4140 * Note: Don't call this function. Currently, the networking layer calls this
4141 * function, but that will change. The following text from Kay Sievers offers
4142 * some insight:
4143 *
4144 * Renaming devices is racy at many levels, symlinks and other stuff are not
4145 * replaced atomically, and you get a "move" uevent, but it's not easy to
4146 * connect the event to the old and new device. Device nodes are not renamed at
4147 * all, there isn't even support for that in the kernel now.
4148 *
4149 * In the meantime, during renaming, your target name might be taken by another
4150 * driver, creating conflicts. Or the old name is taken directly after you
4151 * renamed it -- then you get events for the same DEVPATH, before you even see
4152 * the "move" event. It's just a mess, and nothing new should ever rely on
4153 * kernel device renaming. Besides that, it's not even implemented now for
4154 * other things than (driver-core wise very simple) network devices.
4155 *
4156 * We are currently about to change network renaming in udev to completely
4157 * disallow renaming of devices in the same namespace as the kernel uses,
4158 * because we can't solve the problems properly, that arise with swapping names
4159 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4160 * be allowed to some other name than eth[0-9]*, for the aforementioned
4161 * reasons.
4162 *
4163 * Make up a "real" name in the driver before you register anything, or add
4164 * some other attributes for userspace to find the device, or use udev to add
4165 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4166 * don't even want to get into that and try to implement the missing pieces in
4167 * the core. We really have other pieces to fix in the driver core mess. :)
4168 */
4169 int device_rename(struct device *dev, const char *new_name)
4170 {
4171 struct kobject *kobj = &dev->kobj;
4172 char *old_device_name = NULL;
4173 int error;
4174
4175 dev = get_device(dev);
4176 if (!dev)
4177 return -EINVAL;
4178
4179 dev_dbg(dev, "renaming to %s\n", new_name);
4180
4181 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4182 if (!old_device_name) {
4183 error = -ENOMEM;
4184 goto out;
4185 }
4186
4187 if (dev->class) {
4188 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4189 kobj, old_device_name,
4190 new_name, kobject_namespace(kobj));
4191 if (error)
4192 goto out;
4193 }
4194
4195 error = kobject_rename(kobj, new_name);
4196 if (error)
4197 goto out;
4198
4199 out:
4200 put_device(dev);
4201
4202 kfree(old_device_name);
4203
4204 return error;
4205 }
4206 EXPORT_SYMBOL_GPL(device_rename);
4207
4208 static int device_move_class_links(struct device *dev,
4209 struct device *old_parent,
4210 struct device *new_parent)
4211 {
4212 int error = 0;
4213
4214 if (old_parent)
4215 sysfs_remove_link(&dev->kobj, "device");
4216 if (new_parent)
4217 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4218 "device");
4219 return error;
4220 }
4221
4222 /**
4223 * device_move - moves a device to a new parent
4224 * @dev: the pointer to the struct device to be moved
4225 * @new_parent: the new parent of the device (can be NULL)
4226 * @dpm_order: how to reorder the dpm_list
4227 */
4228 int device_move(struct device *dev, struct device *new_parent,
4229 enum dpm_order dpm_order)
4230 {
4231 int error;
4232 struct device *old_parent;
4233 struct kobject *new_parent_kobj;
4234
4235 dev = get_device(dev);
4236 if (!dev)
4237 return -EINVAL;
4238
4239 device_pm_lock();
4240 new_parent = get_device(new_parent);
4241 new_parent_kobj = get_device_parent(dev, new_parent);
4242 if (IS_ERR(new_parent_kobj)) {
4243 error = PTR_ERR(new_parent_kobj);
4244 put_device(new_parent);
4245 goto out;
4246 }
4247
4248 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4249 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4250 error = kobject_move(&dev->kobj, new_parent_kobj);
4251 if (error) {
4252 cleanup_glue_dir(dev, new_parent_kobj);
4253 put_device(new_parent);
4254 goto out;
4255 }
4256 old_parent = dev->parent;
4257 dev->parent = new_parent;
4258 if (old_parent)
4259 klist_remove(&dev->p->knode_parent);
4260 if (new_parent) {
4261 klist_add_tail(&dev->p->knode_parent,
4262 &new_parent->p->klist_children);
4263 set_dev_node(dev, dev_to_node(new_parent));
4264 }
4265
4266 if (dev->class) {
4267 error = device_move_class_links(dev, old_parent, new_parent);
4268 if (error) {
4269 /* We ignore errors on cleanup since we're hosed anyway... */
4270 device_move_class_links(dev, new_parent, old_parent);
4271 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4272 if (new_parent)
4273 klist_remove(&dev->p->knode_parent);
4274 dev->parent = old_parent;
4275 if (old_parent) {
4276 klist_add_tail(&dev->p->knode_parent,
4277 &old_parent->p->klist_children);
4278 set_dev_node(dev, dev_to_node(old_parent));
4279 }
4280 }
4281 cleanup_glue_dir(dev, new_parent_kobj);
4282 put_device(new_parent);
4283 goto out;
4284 }
4285 }
4286 switch (dpm_order) {
4287 case DPM_ORDER_NONE:
4288 break;
4289 case DPM_ORDER_DEV_AFTER_PARENT:
4290 device_pm_move_after(dev, new_parent);
4291 devices_kset_move_after(dev, new_parent);
4292 break;
4293 case DPM_ORDER_PARENT_BEFORE_DEV:
4294 device_pm_move_before(new_parent, dev);
4295 devices_kset_move_before(new_parent, dev);
4296 break;
4297 case DPM_ORDER_DEV_LAST:
4298 device_pm_move_last(dev);
4299 devices_kset_move_last(dev);
4300 break;
4301 }
4302
4303 put_device(old_parent);
4304 out:
4305 device_pm_unlock();
4306 put_device(dev);
4307 return error;
4308 }
4309 EXPORT_SYMBOL_GPL(device_move);
4310
4311 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4312 kgid_t kgid)
4313 {
4314 struct kobject *kobj = &dev->kobj;
4315 struct class *class = dev->class;
4316 const struct device_type *type = dev->type;
4317 int error;
4318
4319 if (class) {
4320 /*
4321 * Change the device groups of the device class for @dev to
4322 * @kuid/@kgid.
4323 */
4324 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4325 kgid);
4326 if (error)
4327 return error;
4328 }
4329
4330 if (type) {
4331 /*
4332 * Change the device groups of the device type for @dev to
4333 * @kuid/@kgid.
4334 */
4335 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4336 kgid);
4337 if (error)
4338 return error;
4339 }
4340
4341 /* Change the device groups of @dev to @kuid/@kgid. */
4342 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4343 if (error)
4344 return error;
4345
4346 if (device_supports_offline(dev) && !dev->offline_disabled) {
4347 /* Change online device attributes of @dev to @kuid/@kgid. */
4348 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4349 kuid, kgid);
4350 if (error)
4351 return error;
4352 }
4353
4354 return 0;
4355 }
4356
4357 /**
4358 * device_change_owner - change the owner of an existing device.
4359 * @dev: device.
4360 * @kuid: new owner's kuid
4361 * @kgid: new owner's kgid
4362 *
4363 * This changes the owner of @dev and its corresponding sysfs entries to
4364 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4365 * core.
4366 *
4367 * Returns 0 on success or error code on failure.
4368 */
4369 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4370 {
4371 int error;
4372 struct kobject *kobj = &dev->kobj;
4373
4374 dev = get_device(dev);
4375 if (!dev)
4376 return -EINVAL;
4377
4378 /*
4379 * Change the kobject and the default attributes and groups of the
4380 * ktype associated with it to @kuid/@kgid.
4381 */
4382 error = sysfs_change_owner(kobj, kuid, kgid);
4383 if (error)
4384 goto out;
4385
4386 /*
4387 * Change the uevent file for @dev to the new owner. The uevent file
4388 * was created in a separate step when @dev got added and we mirror
4389 * that step here.
4390 */
4391 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4392 kgid);
4393 if (error)
4394 goto out;
4395
4396 /*
4397 * Change the device groups, the device groups associated with the
4398 * device class, and the groups associated with the device type of @dev
4399 * to @kuid/@kgid.
4400 */
4401 error = device_attrs_change_owner(dev, kuid, kgid);
4402 if (error)
4403 goto out;
4404
4405 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4406 if (error)
4407 goto out;
4408
4409 #ifdef CONFIG_BLOCK
4410 if (sysfs_deprecated && dev->class == &block_class)
4411 goto out;
4412 #endif
4413
4414 /*
4415 * Change the owner of the symlink located in the class directory of
4416 * the device class associated with @dev which points to the actual
4417 * directory entry for @dev to @kuid/@kgid. This ensures that the
4418 * symlink shows the same permissions as its target.
4419 */
4420 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4421 dev_name(dev), kuid, kgid);
4422 if (error)
4423 goto out;
4424
4425 out:
4426 put_device(dev);
4427 return error;
4428 }
4429 EXPORT_SYMBOL_GPL(device_change_owner);
4430
4431 /**
4432 * device_shutdown - call ->shutdown() on each device to shutdown.
4433 */
4434 void device_shutdown(void)
4435 {
4436 struct device *dev, *parent;
4437
4438 wait_for_device_probe();
4439 device_block_probing();
4440
4441 cpufreq_suspend();
4442
4443 spin_lock(&devices_kset->list_lock);
4444 /*
4445 * Walk the devices list backward, shutting down each in turn.
4446 * Beware that device unplug events may also start pulling
4447 * devices offline, even as the system is shutting down.
4448 */
4449 while (!list_empty(&devices_kset->list)) {
4450 dev = list_entry(devices_kset->list.prev, struct device,
4451 kobj.entry);
4452
4453 /*
4454 * hold reference count of device's parent to
4455 * prevent it from being freed because parent's
4456 * lock is to be held
4457 */
4458 parent = get_device(dev->parent);
4459 get_device(dev);
4460 /*
4461 * Make sure the device is off the kset list, in the
4462 * event that dev->*->shutdown() doesn't remove it.
4463 */
4464 list_del_init(&dev->kobj.entry);
4465 spin_unlock(&devices_kset->list_lock);
4466
4467 /* hold lock to avoid race with probe/release */
4468 if (parent)
4469 device_lock(parent);
4470 device_lock(dev);
4471
4472 /* Don't allow any more runtime suspends */
4473 pm_runtime_get_noresume(dev);
4474 pm_runtime_barrier(dev);
4475
4476 if (dev->class && dev->class->shutdown_pre) {
4477 if (initcall_debug)
4478 dev_info(dev, "shutdown_pre\n");
4479 dev->class->shutdown_pre(dev);
4480 }
4481 if (dev->bus && dev->bus->shutdown) {
4482 if (initcall_debug)
4483 dev_info(dev, "shutdown\n");
4484 dev->bus->shutdown(dev);
4485 } else if (dev->driver && dev->driver->shutdown) {
4486 if (initcall_debug)
4487 dev_info(dev, "shutdown\n");
4488 dev->driver->shutdown(dev);
4489 }
4490
4491 device_unlock(dev);
4492 if (parent)
4493 device_unlock(parent);
4494
4495 put_device(dev);
4496 put_device(parent);
4497
4498 spin_lock(&devices_kset->list_lock);
4499 }
4500 spin_unlock(&devices_kset->list_lock);
4501 }
4502
4503 /*
4504 * Device logging functions
4505 */
4506
4507 #ifdef CONFIG_PRINTK
4508 static void
4509 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4510 {
4511 const char *subsys;
4512
4513 memset(dev_info, 0, sizeof(*dev_info));
4514
4515 if (dev->class)
4516 subsys = dev->class->name;
4517 else if (dev->bus)
4518 subsys = dev->bus->name;
4519 else
4520 return;
4521
4522 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4523
4524 /*
4525 * Add device identifier DEVICE=:
4526 * b12:8 block dev_t
4527 * c127:3 char dev_t
4528 * n8 netdev ifindex
4529 * +sound:card0 subsystem:devname
4530 */
4531 if (MAJOR(dev->devt)) {
4532 char c;
4533
4534 if (strcmp(subsys, "block") == 0)
4535 c = 'b';
4536 else
4537 c = 'c';
4538
4539 snprintf(dev_info->device, sizeof(dev_info->device),
4540 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4541 } else if (strcmp(subsys, "net") == 0) {
4542 struct net_device *net = to_net_dev(dev);
4543
4544 snprintf(dev_info->device, sizeof(dev_info->device),
4545 "n%u", net->ifindex);
4546 } else {
4547 snprintf(dev_info->device, sizeof(dev_info->device),
4548 "+%s:%s", subsys, dev_name(dev));
4549 }
4550 }
4551
4552 int dev_vprintk_emit(int level, const struct device *dev,
4553 const char *fmt, va_list args)
4554 {
4555 struct dev_printk_info dev_info;
4556
4557 set_dev_info(dev, &dev_info);
4558
4559 return vprintk_emit(0, level, &dev_info, fmt, args);
4560 }
4561 EXPORT_SYMBOL(dev_vprintk_emit);
4562
4563 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4564 {
4565 va_list args;
4566 int r;
4567
4568 va_start(args, fmt);
4569
4570 r = dev_vprintk_emit(level, dev, fmt, args);
4571
4572 va_end(args);
4573
4574 return r;
4575 }
4576 EXPORT_SYMBOL(dev_printk_emit);
4577
4578 static void __dev_printk(const char *level, const struct device *dev,
4579 struct va_format *vaf)
4580 {
4581 if (dev)
4582 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4583 dev_driver_string(dev), dev_name(dev), vaf);
4584 else
4585 printk("%s(NULL device *): %pV", level, vaf);
4586 }
4587
4588 void _dev_printk(const char *level, const struct device *dev,
4589 const char *fmt, ...)
4590 {
4591 struct va_format vaf;
4592 va_list args;
4593
4594 va_start(args, fmt);
4595
4596 vaf.fmt = fmt;
4597 vaf.va = &args;
4598
4599 __dev_printk(level, dev, &vaf);
4600
4601 va_end(args);
4602 }
4603 EXPORT_SYMBOL(_dev_printk);
4604
4605 #define define_dev_printk_level(func, kern_level) \
4606 void func(const struct device *dev, const char *fmt, ...) \
4607 { \
4608 struct va_format vaf; \
4609 va_list args; \
4610 \
4611 va_start(args, fmt); \
4612 \
4613 vaf.fmt = fmt; \
4614 vaf.va = &args; \
4615 \
4616 __dev_printk(kern_level, dev, &vaf); \
4617 \
4618 va_end(args); \
4619 } \
4620 EXPORT_SYMBOL(func);
4621
4622 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4623 define_dev_printk_level(_dev_alert, KERN_ALERT);
4624 define_dev_printk_level(_dev_crit, KERN_CRIT);
4625 define_dev_printk_level(_dev_err, KERN_ERR);
4626 define_dev_printk_level(_dev_warn, KERN_WARNING);
4627 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4628 define_dev_printk_level(_dev_info, KERN_INFO);
4629
4630 #endif
4631
4632 /**
4633 * dev_err_probe - probe error check and log helper
4634 * @dev: the pointer to the struct device
4635 * @err: error value to test
4636 * @fmt: printf-style format string
4637 * @...: arguments as specified in the format string
4638 *
4639 * This helper implements common pattern present in probe functions for error
4640 * checking: print debug or error message depending if the error value is
4641 * -EPROBE_DEFER and propagate error upwards.
4642 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4643 * checked later by reading devices_deferred debugfs attribute.
4644 * It replaces code sequence::
4645 *
4646 * if (err != -EPROBE_DEFER)
4647 * dev_err(dev, ...);
4648 * else
4649 * dev_dbg(dev, ...);
4650 * return err;
4651 *
4652 * with::
4653 *
4654 * return dev_err_probe(dev, err, ...);
4655 *
4656 * Returns @err.
4657 *
4658 */
4659 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4660 {
4661 struct va_format vaf;
4662 va_list args;
4663
4664 va_start(args, fmt);
4665 vaf.fmt = fmt;
4666 vaf.va = &args;
4667
4668 if (err != -EPROBE_DEFER) {
4669 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4670 } else {
4671 device_set_deferred_probe_reason(dev, &vaf);
4672 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4673 }
4674
4675 va_end(args);
4676
4677 return err;
4678 }
4679 EXPORT_SYMBOL_GPL(dev_err_probe);
4680
4681 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4682 {
4683 return fwnode && !IS_ERR(fwnode->secondary);
4684 }
4685
4686 /**
4687 * set_primary_fwnode - Change the primary firmware node of a given device.
4688 * @dev: Device to handle.
4689 * @fwnode: New primary firmware node of the device.
4690 *
4691 * Set the device's firmware node pointer to @fwnode, but if a secondary
4692 * firmware node of the device is present, preserve it.
4693 *
4694 * Valid fwnode cases are:
4695 * - primary --> secondary --> -ENODEV
4696 * - primary --> NULL
4697 * - secondary --> -ENODEV
4698 * - NULL
4699 */
4700 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4701 {
4702 struct device *parent = dev->parent;
4703 struct fwnode_handle *fn = dev->fwnode;
4704
4705 if (fwnode) {
4706 if (fwnode_is_primary(fn))
4707 fn = fn->secondary;
4708
4709 if (fn) {
4710 WARN_ON(fwnode->secondary);
4711 fwnode->secondary = fn;
4712 }
4713 dev->fwnode = fwnode;
4714 } else {
4715 if (fwnode_is_primary(fn)) {
4716 dev->fwnode = fn->secondary;
4717 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4718 if (!(parent && fn == parent->fwnode))
4719 fn->secondary = NULL;
4720 } else {
4721 dev->fwnode = NULL;
4722 }
4723 }
4724 }
4725 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4726
4727 /**
4728 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4729 * @dev: Device to handle.
4730 * @fwnode: New secondary firmware node of the device.
4731 *
4732 * If a primary firmware node of the device is present, set its secondary
4733 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4734 * @fwnode.
4735 */
4736 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4737 {
4738 if (fwnode)
4739 fwnode->secondary = ERR_PTR(-ENODEV);
4740
4741 if (fwnode_is_primary(dev->fwnode))
4742 dev->fwnode->secondary = fwnode;
4743 else
4744 dev->fwnode = fwnode;
4745 }
4746 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4747
4748 /**
4749 * device_set_of_node_from_dev - reuse device-tree node of another device
4750 * @dev: device whose device-tree node is being set
4751 * @dev2: device whose device-tree node is being reused
4752 *
4753 * Takes another reference to the new device-tree node after first dropping
4754 * any reference held to the old node.
4755 */
4756 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4757 {
4758 of_node_put(dev->of_node);
4759 dev->of_node = of_node_get(dev2->of_node);
4760 dev->of_node_reused = true;
4761 }
4762 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4763
4764 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4765 {
4766 dev->fwnode = fwnode;
4767 dev->of_node = to_of_node(fwnode);
4768 }
4769 EXPORT_SYMBOL_GPL(device_set_node);
4770
4771 int device_match_name(struct device *dev, const void *name)
4772 {
4773 return sysfs_streq(dev_name(dev), name);
4774 }
4775 EXPORT_SYMBOL_GPL(device_match_name);
4776
4777 int device_match_of_node(struct device *dev, const void *np)
4778 {
4779 return dev->of_node == np;
4780 }
4781 EXPORT_SYMBOL_GPL(device_match_of_node);
4782
4783 int device_match_fwnode(struct device *dev, const void *fwnode)
4784 {
4785 return dev_fwnode(dev) == fwnode;
4786 }
4787 EXPORT_SYMBOL_GPL(device_match_fwnode);
4788
4789 int device_match_devt(struct device *dev, const void *pdevt)
4790 {
4791 return dev->devt == *(dev_t *)pdevt;
4792 }
4793 EXPORT_SYMBOL_GPL(device_match_devt);
4794
4795 int device_match_acpi_dev(struct device *dev, const void *adev)
4796 {
4797 return ACPI_COMPANION(dev) == adev;
4798 }
4799 EXPORT_SYMBOL(device_match_acpi_dev);
4800
4801 int device_match_any(struct device *dev, const void *unused)
4802 {
4803 return 1;
4804 }
4805 EXPORT_SYMBOL_GPL(device_match_any);