2 * drivers/base/dd.c - The core device/driver interactions.
4 * This file contains the (sometimes tricky) code that controls the
5 * interactions between devices and drivers, which primarily includes
6 * driver binding and unbinding.
8 * All of this code used to exist in drivers/base/bus.c, but was
9 * relocated to here in the name of compartmentalization (since it wasn't
10 * strictly code just for the 'struct bus_type'.
12 * Copyright (c) 2002-5 Patrick Mochel
13 * Copyright (c) 2002-3 Open Source Development Labs
14 * Copyright (c) 2007-2009 Greg Kroah-Hartman <gregkh@suse.de>
15 * Copyright (c) 2007-2009 Novell Inc.
17 * This file is released under the GPLv2
20 #include <linux/device.h>
21 #include <linux/delay.h>
22 #include <linux/module.h>
23 #include <linux/kthread.h>
24 #include <linux/wait.h>
25 #include <linux/async.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pinctrl/devinfo.h>
30 #include "power/power.h"
33 * Deferred Probe infrastructure.
35 * Sometimes driver probe order matters, but the kernel doesn't always have
36 * dependency information which means some drivers will get probed before a
37 * resource it depends on is available. For example, an SDHCI driver may
38 * first need a GPIO line from an i2c GPIO controller before it can be
39 * initialized. If a required resource is not available yet, a driver can
40 * request probing to be deferred by returning -EPROBE_DEFER from its probe hook
42 * Deferred probe maintains two lists of devices, a pending list and an active
43 * list. A driver returning -EPROBE_DEFER causes the device to be added to the
44 * pending list. A successful driver probe will trigger moving all devices
45 * from the pending to the active list so that the workqueue will eventually
48 * The deferred_probe_mutex must be held any time the deferred_probe_*_list
49 * of the (struct device*)->p->deferred_probe pointers are manipulated
51 static DEFINE_MUTEX(deferred_probe_mutex
);
52 static LIST_HEAD(deferred_probe_pending_list
);
53 static LIST_HEAD(deferred_probe_active_list
);
54 static atomic_t deferred_trigger_count
= ATOMIC_INIT(0);
57 * In some cases, like suspend to RAM or hibernation, It might be reasonable
58 * to prohibit probing of devices as it could be unsafe.
59 * Once defer_all_probes is true all drivers probes will be forcibly deferred.
61 static bool defer_all_probes
;
64 * deferred_probe_work_func() - Retry probing devices in the active list.
66 static void deferred_probe_work_func(struct work_struct
*work
)
69 struct device_private
*private;
71 * This block processes every device in the deferred 'active' list.
72 * Each device is removed from the active list and passed to
73 * bus_probe_device() to re-attempt the probe. The loop continues
74 * until every device in the active list is removed and retried.
76 * Note: Once the device is removed from the list and the mutex is
77 * released, it is possible for the device get freed by another thread
78 * and cause a illegal pointer dereference. This code uses
79 * get/put_device() to ensure the device structure cannot disappear
80 * from under our feet.
82 mutex_lock(&deferred_probe_mutex
);
83 while (!list_empty(&deferred_probe_active_list
)) {
84 private = list_first_entry(&deferred_probe_active_list
,
85 typeof(*dev
->p
), deferred_probe
);
86 dev
= private->device
;
87 list_del_init(&private->deferred_probe
);
92 * Drop the mutex while probing each device; the probe path may
93 * manipulate the deferred list
95 mutex_unlock(&deferred_probe_mutex
);
98 * Force the device to the end of the dpm_list since
99 * the PM code assumes that the order we add things to
100 * the list is a good order for suspend but deferred
101 * probe makes that very unsafe.
104 device_pm_move_last(dev
);
107 dev_dbg(dev
, "Retrying from deferred list\n");
108 bus_probe_device(dev
);
110 mutex_lock(&deferred_probe_mutex
);
114 mutex_unlock(&deferred_probe_mutex
);
116 static DECLARE_WORK(deferred_probe_work
, deferred_probe_work_func
);
118 static void driver_deferred_probe_add(struct device
*dev
)
120 mutex_lock(&deferred_probe_mutex
);
121 if (list_empty(&dev
->p
->deferred_probe
)) {
122 dev_dbg(dev
, "Added to deferred list\n");
123 list_add_tail(&dev
->p
->deferred_probe
, &deferred_probe_pending_list
);
125 mutex_unlock(&deferred_probe_mutex
);
128 void driver_deferred_probe_del(struct device
*dev
)
130 mutex_lock(&deferred_probe_mutex
);
131 if (!list_empty(&dev
->p
->deferred_probe
)) {
132 dev_dbg(dev
, "Removed from deferred list\n");
133 list_del_init(&dev
->p
->deferred_probe
);
135 mutex_unlock(&deferred_probe_mutex
);
138 static bool driver_deferred_probe_enable
= false;
140 * driver_deferred_probe_trigger() - Kick off re-probing deferred devices
142 * This functions moves all devices from the pending list to the active
143 * list and schedules the deferred probe workqueue to process them. It
144 * should be called anytime a driver is successfully bound to a device.
146 * Note, there is a race condition in multi-threaded probe. In the case where
147 * more than one device is probing at the same time, it is possible for one
148 * probe to complete successfully while another is about to defer. If the second
149 * depends on the first, then it will get put on the pending list after the
150 * trigger event has already occurred and will be stuck there.
152 * The atomic 'deferred_trigger_count' is used to determine if a successful
153 * trigger has occurred in the midst of probing a driver. If the trigger count
154 * changes in the midst of a probe, then deferred processing should be triggered
157 static void driver_deferred_probe_trigger(void)
159 if (!driver_deferred_probe_enable
)
163 * A successful probe means that all the devices in the pending list
164 * should be triggered to be reprobed. Move all the deferred devices
165 * into the active list so they can be retried by the workqueue
167 mutex_lock(&deferred_probe_mutex
);
168 atomic_inc(&deferred_trigger_count
);
169 list_splice_tail_init(&deferred_probe_pending_list
,
170 &deferred_probe_active_list
);
171 mutex_unlock(&deferred_probe_mutex
);
174 * Kick the re-probe thread. It may already be scheduled, but it is
175 * safe to kick it again.
177 schedule_work(&deferred_probe_work
);
181 * device_block_probing() - Block/defere device's probes
183 * It will disable probing of devices and defer their probes instead.
185 void device_block_probing(void)
187 defer_all_probes
= true;
188 /* sync with probes to avoid races. */
189 wait_for_device_probe();
193 * device_unblock_probing() - Unblock/enable device's probes
195 * It will restore normal behavior and trigger re-probing of deferred
198 void device_unblock_probing(void)
200 defer_all_probes
= false;
201 driver_deferred_probe_trigger();
205 * deferred_probe_initcall() - Enable probing of deferred devices
207 * We don't want to get in the way when the bulk of drivers are getting probed.
208 * Instead, this initcall makes sure that deferred probing is delayed until
209 * late_initcall time.
211 static int deferred_probe_initcall(void)
213 driver_deferred_probe_enable
= true;
214 driver_deferred_probe_trigger();
215 /* Sort as many dependencies as possible before exiting initcalls */
216 flush_work(&deferred_probe_work
);
219 late_initcall(deferred_probe_initcall
);
222 * device_is_bound() - Check if device is bound to a driver
223 * @dev: device to check
225 * Returns true if passed device has already finished probing successfully
228 * This function must be called with the device lock held.
230 bool device_is_bound(struct device
*dev
)
232 return dev
->p
&& klist_node_attached(&dev
->p
->knode_driver
);
235 static void driver_bound(struct device
*dev
)
237 if (device_is_bound(dev
)) {
238 printk(KERN_WARNING
"%s: device %s already bound\n",
239 __func__
, kobject_name(&dev
->kobj
));
243 pr_debug("driver: '%s': %s: bound to device '%s'\n", dev
->driver
->name
,
244 __func__
, dev_name(dev
));
246 klist_add_tail(&dev
->p
->knode_driver
, &dev
->driver
->p
->klist_devices
);
248 device_pm_check_callbacks(dev
);
251 * Make sure the device is no longer in one of the deferred lists and
252 * kick off retrying all pending devices
254 driver_deferred_probe_del(dev
);
255 driver_deferred_probe_trigger();
258 blocking_notifier_call_chain(&dev
->bus
->p
->bus_notifier
,
259 BUS_NOTIFY_BOUND_DRIVER
, dev
);
262 static int driver_sysfs_add(struct device
*dev
)
267 blocking_notifier_call_chain(&dev
->bus
->p
->bus_notifier
,
268 BUS_NOTIFY_BIND_DRIVER
, dev
);
270 ret
= sysfs_create_link(&dev
->driver
->p
->kobj
, &dev
->kobj
,
271 kobject_name(&dev
->kobj
));
273 ret
= sysfs_create_link(&dev
->kobj
, &dev
->driver
->p
->kobj
,
276 sysfs_remove_link(&dev
->driver
->p
->kobj
,
277 kobject_name(&dev
->kobj
));
282 static void driver_sysfs_remove(struct device
*dev
)
284 struct device_driver
*drv
= dev
->driver
;
287 sysfs_remove_link(&drv
->p
->kobj
, kobject_name(&dev
->kobj
));
288 sysfs_remove_link(&dev
->kobj
, "driver");
293 * device_bind_driver - bind a driver to one device.
296 * Allow manual attachment of a driver to a device.
297 * Caller must have already set @dev->driver.
299 * Note that this does not modify the bus reference count
300 * nor take the bus's rwsem. Please verify those are accounted
301 * for before calling this. (It is ok to call with no other effort
302 * from a driver's probe() method.)
304 * This function must be called with the device lock held.
306 int device_bind_driver(struct device
*dev
)
310 ret
= driver_sysfs_add(dev
);
314 blocking_notifier_call_chain(&dev
->bus
->p
->bus_notifier
,
315 BUS_NOTIFY_DRIVER_NOT_BOUND
, dev
);
318 EXPORT_SYMBOL_GPL(device_bind_driver
);
320 static atomic_t probe_count
= ATOMIC_INIT(0);
321 static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue
);
323 static int really_probe(struct device
*dev
, struct device_driver
*drv
)
325 int ret
= -EPROBE_DEFER
;
326 int local_trigger_count
= atomic_read(&deferred_trigger_count
);
327 bool test_remove
= IS_ENABLED(CONFIG_DEBUG_TEST_DRIVER_REMOVE
);
329 if (defer_all_probes
) {
331 * Value of defer_all_probes can be set only by
332 * device_defer_all_probes_enable() which, in turn, will call
333 * wait_for_device_probe() right after that to avoid any races.
335 dev_dbg(dev
, "Driver %s force probe deferral\n", drv
->name
);
336 driver_deferred_probe_add(dev
);
340 atomic_inc(&probe_count
);
341 pr_debug("bus: '%s': %s: probing driver %s with device %s\n",
342 drv
->bus
->name
, __func__
, drv
->name
, dev_name(dev
));
343 WARN_ON(!list_empty(&dev
->devres_head
));
348 /* If using pinctrl, bind pins now before probing */
349 ret
= pinctrl_bind_pins(dev
);
351 goto pinctrl_bind_failed
;
353 if (driver_sysfs_add(dev
)) {
354 printk(KERN_ERR
"%s: driver_sysfs_add(%s) failed\n",
355 __func__
, dev_name(dev
));
359 if (dev
->pm_domain
&& dev
->pm_domain
->activate
) {
360 ret
= dev
->pm_domain
->activate(dev
);
366 * Ensure devices are listed in devices_kset in correct order
367 * It's important to move Dev to the end of devices_kset before
368 * calling .probe, because it could be recursive and parent Dev
369 * should always go first
371 devices_kset_move_last(dev
);
373 if (dev
->bus
->probe
) {
374 ret
= dev
->bus
->probe(dev
);
377 } else if (drv
->probe
) {
378 ret
= drv
->probe(dev
);
386 if (dev
->bus
&& dev
->bus
->remove
)
387 dev
->bus
->remove(dev
);
388 else if (drv
->remove
)
391 devres_release_all(dev
);
392 driver_sysfs_remove(dev
);
394 dev_set_drvdata(dev
, NULL
);
395 if (dev
->pm_domain
&& dev
->pm_domain
->dismiss
)
396 dev
->pm_domain
->dismiss(dev
);
397 pm_runtime_reinit(dev
);
402 pinctrl_init_done(dev
);
404 if (dev
->pm_domain
&& dev
->pm_domain
->sync
)
405 dev
->pm_domain
->sync(dev
);
409 pr_debug("bus: '%s': %s: bound device %s to driver %s\n",
410 drv
->bus
->name
, __func__
, dev_name(dev
), drv
->name
);
415 blocking_notifier_call_chain(&dev
->bus
->p
->bus_notifier
,
416 BUS_NOTIFY_DRIVER_NOT_BOUND
, dev
);
418 devres_release_all(dev
);
419 driver_sysfs_remove(dev
);
421 dev_set_drvdata(dev
, NULL
);
422 if (dev
->pm_domain
&& dev
->pm_domain
->dismiss
)
423 dev
->pm_domain
->dismiss(dev
);
424 pm_runtime_reinit(dev
);
428 /* Driver requested deferred probing */
429 dev_dbg(dev
, "Driver %s requests probe deferral\n", drv
->name
);
430 driver_deferred_probe_add(dev
);
431 /* Did a trigger occur while probing? Need to re-trigger if yes */
432 if (local_trigger_count
!= atomic_read(&deferred_trigger_count
))
433 driver_deferred_probe_trigger();
437 pr_debug("%s: probe of %s rejects match %d\n",
438 drv
->name
, dev_name(dev
), ret
);
441 /* driver matched but the probe failed */
443 "%s: probe of %s failed with error %d\n",
444 drv
->name
, dev_name(dev
), ret
);
447 * Ignore errors returned by ->probe so that the next driver can try
452 atomic_dec(&probe_count
);
453 wake_up(&probe_waitqueue
);
459 * Determine if the probe sequence is finished or not.
461 * Should somehow figure out how to use a semaphore, not an atomic variable...
463 int driver_probe_done(void)
465 pr_debug("%s: probe_count = %d\n", __func__
,
466 atomic_read(&probe_count
));
467 if (atomic_read(&probe_count
))
473 * wait_for_device_probe
474 * Wait for device probing to be completed.
476 void wait_for_device_probe(void)
478 /* wait for the deferred probe workqueue to finish */
479 flush_work(&deferred_probe_work
);
481 /* wait for the known devices to complete their probing */
482 wait_event(probe_waitqueue
, atomic_read(&probe_count
) == 0);
483 async_synchronize_full();
485 EXPORT_SYMBOL_GPL(wait_for_device_probe
);
488 * driver_probe_device - attempt to bind device & driver together
489 * @drv: driver to bind a device to
490 * @dev: device to try to bind to the driver
492 * This function returns -ENODEV if the device is not registered,
493 * 1 if the device is bound successfully and 0 otherwise.
495 * This function must be called with @dev lock held. When called for a
496 * USB interface, @dev->parent lock must be held as well.
498 * If the device has a parent, runtime-resume the parent before driver probing.
500 int driver_probe_device(struct device_driver
*drv
, struct device
*dev
)
504 if (!device_is_registered(dev
))
507 pr_debug("bus: '%s': %s: matched device %s with driver %s\n",
508 drv
->bus
->name
, __func__
, dev_name(dev
), drv
->name
);
511 pm_runtime_get_sync(dev
->parent
);
513 pm_runtime_barrier(dev
);
514 ret
= really_probe(dev
, drv
);
515 pm_request_idle(dev
);
518 pm_runtime_put(dev
->parent
);
523 bool driver_allows_async_probing(struct device_driver
*drv
)
525 switch (drv
->probe_type
) {
526 case PROBE_PREFER_ASYNCHRONOUS
:
529 case PROBE_FORCE_SYNCHRONOUS
:
533 if (module_requested_async_probing(drv
->owner
))
540 struct device_attach_data
{
544 * Indicates whether we are are considering asynchronous probing or
545 * not. Only initial binding after device or driver registration
546 * (including deferral processing) may be done asynchronously, the
547 * rest is always synchronous, as we expect it is being done by
548 * request from userspace.
553 * Indicates if we are binding synchronous or asynchronous drivers.
554 * When asynchronous probing is enabled we'll execute 2 passes
555 * over drivers: first pass doing synchronous probing and second
556 * doing asynchronous probing (if synchronous did not succeed -
557 * most likely because there was no driver requiring synchronous
558 * probing - and we found asynchronous driver during first pass).
559 * The 2 passes are done because we can't shoot asynchronous
560 * probe for given device and driver from bus_for_each_drv() since
561 * driver pointer is not guaranteed to stay valid once
562 * bus_for_each_drv() iterates to the next driver on the bus.
567 * We'll set have_async to 'true' if, while scanning for matching
568 * driver, we'll encounter one that requests asynchronous probing.
573 static int __device_attach_driver(struct device_driver
*drv
, void *_data
)
575 struct device_attach_data
*data
= _data
;
576 struct device
*dev
= data
->dev
;
581 * Check if device has already been claimed. This may
582 * happen with driver loading, device discovery/registration,
583 * and deferred probe processing happens all at once with
589 ret
= driver_match_device(drv
, dev
);
593 } else if (ret
== -EPROBE_DEFER
) {
594 dev_dbg(dev
, "Device match requests probe deferral\n");
595 driver_deferred_probe_add(dev
);
596 } else if (ret
< 0) {
597 dev_dbg(dev
, "Bus failed to match device: %d", ret
);
599 } /* ret > 0 means positive match */
601 async_allowed
= driver_allows_async_probing(drv
);
604 data
->have_async
= true;
606 if (data
->check_async
&& async_allowed
!= data
->want_async
)
609 return driver_probe_device(drv
, dev
);
612 static void __device_attach_async_helper(void *_dev
, async_cookie_t cookie
)
614 struct device
*dev
= _dev
;
615 struct device_attach_data data
= {
624 pm_runtime_get_sync(dev
->parent
);
626 bus_for_each_drv(dev
->bus
, NULL
, &data
, __device_attach_driver
);
627 dev_dbg(dev
, "async probe completed\n");
629 pm_request_idle(dev
);
632 pm_runtime_put(dev
->parent
);
639 static int __device_attach(struct device
*dev
, bool allow_async
)
645 if (device_is_bound(dev
)) {
649 ret
= device_bind_driver(dev
);
657 struct device_attach_data data
= {
659 .check_async
= allow_async
,
664 pm_runtime_get_sync(dev
->parent
);
666 ret
= bus_for_each_drv(dev
->bus
, NULL
, &data
,
667 __device_attach_driver
);
668 if (!ret
&& allow_async
&& data
.have_async
) {
670 * If we could not find appropriate driver
671 * synchronously and we are allowed to do
672 * async probes and there are drivers that
673 * want to probe asynchronously, we'll
676 dev_dbg(dev
, "scheduling asynchronous probe\n");
678 async_schedule(__device_attach_async_helper
, dev
);
680 pm_request_idle(dev
);
684 pm_runtime_put(dev
->parent
);
692 * device_attach - try to attach device to a driver.
695 * Walk the list of drivers that the bus has and call
696 * driver_probe_device() for each pair. If a compatible
697 * pair is found, break out and return.
699 * Returns 1 if the device was bound to a driver;
700 * 0 if no matching driver was found;
701 * -ENODEV if the device is not registered.
703 * When called for a USB interface, @dev->parent lock must be held.
705 int device_attach(struct device
*dev
)
707 return __device_attach(dev
, false);
709 EXPORT_SYMBOL_GPL(device_attach
);
711 void device_initial_probe(struct device
*dev
)
713 __device_attach(dev
, true);
716 static int __driver_attach(struct device
*dev
, void *data
)
718 struct device_driver
*drv
= data
;
722 * Lock device and try to bind to it. We drop the error
723 * here and always return 0, because we need to keep trying
724 * to bind to devices and some drivers will return an error
725 * simply if it didn't support the device.
727 * driver_probe_device() will spit a warning if there
731 ret
= driver_match_device(drv
, dev
);
735 } else if (ret
== -EPROBE_DEFER
) {
736 dev_dbg(dev
, "Device match requests probe deferral\n");
737 driver_deferred_probe_add(dev
);
738 } else if (ret
< 0) {
739 dev_dbg(dev
, "Bus failed to match device: %d", ret
);
741 } /* ret > 0 means positive match */
743 if (dev
->parent
) /* Needed for USB */
744 device_lock(dev
->parent
);
747 driver_probe_device(drv
, dev
);
750 device_unlock(dev
->parent
);
756 * driver_attach - try to bind driver to devices.
759 * Walk the list of devices that the bus has on it and try to
760 * match the driver with each one. If driver_probe_device()
761 * returns 0 and the @dev->driver is set, we've found a
764 int driver_attach(struct device_driver
*drv
)
766 return bus_for_each_dev(drv
->bus
, NULL
, drv
, __driver_attach
);
768 EXPORT_SYMBOL_GPL(driver_attach
);
771 * __device_release_driver() must be called with @dev lock held.
772 * When called for a USB interface, @dev->parent lock must be held as well.
774 static void __device_release_driver(struct device
*dev
)
776 struct device_driver
*drv
;
780 if (driver_allows_async_probing(drv
))
781 async_synchronize_full();
783 pm_runtime_get_sync(dev
);
785 driver_sysfs_remove(dev
);
788 blocking_notifier_call_chain(&dev
->bus
->p
->bus_notifier
,
789 BUS_NOTIFY_UNBIND_DRIVER
,
792 pm_runtime_put_sync(dev
);
794 if (dev
->bus
&& dev
->bus
->remove
)
795 dev
->bus
->remove(dev
);
796 else if (drv
->remove
)
798 devres_release_all(dev
);
800 dev_set_drvdata(dev
, NULL
);
801 if (dev
->pm_domain
&& dev
->pm_domain
->dismiss
)
802 dev
->pm_domain
->dismiss(dev
);
803 pm_runtime_reinit(dev
);
805 klist_remove(&dev
->p
->knode_driver
);
806 device_pm_check_callbacks(dev
);
808 blocking_notifier_call_chain(&dev
->bus
->p
->bus_notifier
,
809 BUS_NOTIFY_UNBOUND_DRIVER
,
815 * device_release_driver - manually detach device from driver.
818 * Manually detach device from driver.
819 * When called for a USB interface, @dev->parent lock must be held.
821 void device_release_driver(struct device
*dev
)
824 * If anyone calls device_release_driver() recursively from
825 * within their ->remove callback for the same device, they
826 * will deadlock right here.
829 __device_release_driver(dev
);
832 EXPORT_SYMBOL_GPL(device_release_driver
);
835 * driver_detach - detach driver from all devices it controls.
838 void driver_detach(struct device_driver
*drv
)
840 struct device_private
*dev_prv
;
844 spin_lock(&drv
->p
->klist_devices
.k_lock
);
845 if (list_empty(&drv
->p
->klist_devices
.k_list
)) {
846 spin_unlock(&drv
->p
->klist_devices
.k_lock
);
849 dev_prv
= list_entry(drv
->p
->klist_devices
.k_list
.prev
,
850 struct device_private
,
851 knode_driver
.n_node
);
852 dev
= dev_prv
->device
;
854 spin_unlock(&drv
->p
->klist_devices
.k_lock
);
856 if (dev
->parent
) /* Needed for USB */
857 device_lock(dev
->parent
);
859 if (dev
->driver
== drv
)
860 __device_release_driver(dev
);
863 device_unlock(dev
->parent
);