]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/base/dma-coherent.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / base / dma-coherent.c
1 /*
2 * Coherent per-device memory handling.
3 * Borrowed from i386
4 */
5 #include <linux/io.h>
6 #include <linux/slab.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/dma-mapping.h>
10
11 struct dma_coherent_mem {
12 void *virt_base;
13 dma_addr_t device_base;
14 unsigned long pfn_base;
15 int size;
16 int flags;
17 unsigned long *bitmap;
18 spinlock_t spinlock;
19 bool use_dev_dma_pfn_offset;
20 };
21
22 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
23
24 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
25 {
26 if (dev && dev->dma_mem)
27 return dev->dma_mem;
28 return dma_coherent_default_memory;
29 }
30
31 static inline dma_addr_t dma_get_device_base(struct device *dev,
32 struct dma_coherent_mem * mem)
33 {
34 if (mem->use_dev_dma_pfn_offset)
35 return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
36 else
37 return mem->device_base;
38 }
39
40 static bool dma_init_coherent_memory(
41 phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags,
42 struct dma_coherent_mem **mem)
43 {
44 struct dma_coherent_mem *dma_mem = NULL;
45 void __iomem *mem_base = NULL;
46 int pages = size >> PAGE_SHIFT;
47 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48
49 if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
50 goto out;
51 if (!size)
52 goto out;
53
54 if (flags & DMA_MEMORY_MAP)
55 mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56 else
57 mem_base = ioremap(phys_addr, size);
58 if (!mem_base)
59 goto out;
60
61 dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
62 if (!dma_mem)
63 goto out;
64 dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
65 if (!dma_mem->bitmap)
66 goto out;
67
68 dma_mem->virt_base = mem_base;
69 dma_mem->device_base = device_addr;
70 dma_mem->pfn_base = PFN_DOWN(phys_addr);
71 dma_mem->size = pages;
72 dma_mem->flags = flags;
73 spin_lock_init(&dma_mem->spinlock);
74
75 *mem = dma_mem;
76 return true;
77
78 out:
79 kfree(dma_mem);
80 if (mem_base) {
81 if (flags & DMA_MEMORY_MAP)
82 memunmap(mem_base);
83 else
84 iounmap(mem_base);
85 }
86 return false;
87 }
88
89 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
90 {
91 if (!mem)
92 return;
93
94 if (mem->flags & DMA_MEMORY_MAP)
95 memunmap(mem->virt_base);
96 else
97 iounmap(mem->virt_base);
98 kfree(mem->bitmap);
99 kfree(mem);
100 }
101
102 static int dma_assign_coherent_memory(struct device *dev,
103 struct dma_coherent_mem *mem)
104 {
105 if (!dev)
106 return -ENODEV;
107
108 if (dev->dma_mem)
109 return -EBUSY;
110
111 dev->dma_mem = mem;
112 /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
113
114 return 0;
115 }
116
117 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
118 dma_addr_t device_addr, size_t size, int flags)
119 {
120 struct dma_coherent_mem *mem;
121
122 if (!dma_init_coherent_memory(phys_addr, device_addr, size, flags,
123 &mem))
124 return 0;
125
126 if (dma_assign_coherent_memory(dev, mem) == 0)
127 return flags & DMA_MEMORY_MAP ? DMA_MEMORY_MAP : DMA_MEMORY_IO;
128
129 dma_release_coherent_memory(mem);
130 return 0;
131 }
132 EXPORT_SYMBOL(dma_declare_coherent_memory);
133
134 void dma_release_declared_memory(struct device *dev)
135 {
136 struct dma_coherent_mem *mem = dev->dma_mem;
137
138 if (!mem)
139 return;
140 dma_release_coherent_memory(mem);
141 dev->dma_mem = NULL;
142 }
143 EXPORT_SYMBOL(dma_release_declared_memory);
144
145 void *dma_mark_declared_memory_occupied(struct device *dev,
146 dma_addr_t device_addr, size_t size)
147 {
148 struct dma_coherent_mem *mem = dev->dma_mem;
149 unsigned long flags;
150 int pos, err;
151
152 size += device_addr & ~PAGE_MASK;
153
154 if (!mem)
155 return ERR_PTR(-EINVAL);
156
157 spin_lock_irqsave(&mem->spinlock, flags);
158 pos = PFN_DOWN(device_addr - dma_get_device_base(dev, mem));
159 err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
160 spin_unlock_irqrestore(&mem->spinlock, flags);
161
162 if (err != 0)
163 return ERR_PTR(err);
164 return mem->virt_base + (pos << PAGE_SHIFT);
165 }
166 EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
167
168 /**
169 * dma_alloc_from_coherent() - try to allocate memory from the per-device coherent area
170 *
171 * @dev: device from which we allocate memory
172 * @size: size of requested memory area
173 * @dma_handle: This will be filled with the correct dma handle
174 * @ret: This pointer will be filled with the virtual address
175 * to allocated area.
176 *
177 * This function should be only called from per-arch dma_alloc_coherent()
178 * to support allocation from per-device coherent memory pools.
179 *
180 * Returns 0 if dma_alloc_coherent should continue with allocating from
181 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
182 */
183 int dma_alloc_from_coherent(struct device *dev, ssize_t size,
184 dma_addr_t *dma_handle, void **ret)
185 {
186 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
187 int order = get_order(size);
188 unsigned long flags;
189 int pageno;
190 int dma_memory_map;
191
192 if (!mem)
193 return 0;
194
195 *ret = NULL;
196 spin_lock_irqsave(&mem->spinlock, flags);
197
198 if (unlikely(size > (mem->size << PAGE_SHIFT)))
199 goto err;
200
201 pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
202 if (unlikely(pageno < 0))
203 goto err;
204
205 /*
206 * Memory was found in the per-device area.
207 */
208 *dma_handle = dma_get_device_base(dev, mem) + (pageno << PAGE_SHIFT);
209 *ret = mem->virt_base + (pageno << PAGE_SHIFT);
210 dma_memory_map = (mem->flags & DMA_MEMORY_MAP);
211 spin_unlock_irqrestore(&mem->spinlock, flags);
212 if (dma_memory_map)
213 memset(*ret, 0, size);
214 else
215 memset_io(*ret, 0, size);
216
217 return 1;
218
219 err:
220 spin_unlock_irqrestore(&mem->spinlock, flags);
221 /*
222 * In the case where the allocation can not be satisfied from the
223 * per-device area, try to fall back to generic memory if the
224 * constraints allow it.
225 */
226 return mem->flags & DMA_MEMORY_EXCLUSIVE;
227 }
228 EXPORT_SYMBOL(dma_alloc_from_coherent);
229
230 /**
231 * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool
232 * @dev: device from which the memory was allocated
233 * @order: the order of pages allocated
234 * @vaddr: virtual address of allocated pages
235 *
236 * This checks whether the memory was allocated from the per-device
237 * coherent memory pool and if so, releases that memory.
238 *
239 * Returns 1 if we correctly released the memory, or 0 if
240 * dma_release_coherent() should proceed with releasing memory from
241 * generic pools.
242 */
243 int dma_release_from_coherent(struct device *dev, int order, void *vaddr)
244 {
245 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
246
247 if (mem && vaddr >= mem->virt_base && vaddr <
248 (mem->virt_base + (mem->size << PAGE_SHIFT))) {
249 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
250 unsigned long flags;
251
252 spin_lock_irqsave(&mem->spinlock, flags);
253 bitmap_release_region(mem->bitmap, page, order);
254 spin_unlock_irqrestore(&mem->spinlock, flags);
255 return 1;
256 }
257 return 0;
258 }
259 EXPORT_SYMBOL(dma_release_from_coherent);
260
261 /**
262 * dma_mmap_from_coherent() - try to mmap the memory allocated from
263 * per-device coherent memory pool to userspace
264 * @dev: device from which the memory was allocated
265 * @vma: vm_area for the userspace memory
266 * @vaddr: cpu address returned by dma_alloc_from_coherent
267 * @size: size of the memory buffer allocated by dma_alloc_from_coherent
268 * @ret: result from remap_pfn_range()
269 *
270 * This checks whether the memory was allocated from the per-device
271 * coherent memory pool and if so, maps that memory to the provided vma.
272 *
273 * Returns 1 if we correctly mapped the memory, or 0 if the caller should
274 * proceed with mapping memory from generic pools.
275 */
276 int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma,
277 void *vaddr, size_t size, int *ret)
278 {
279 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
280
281 if (mem && vaddr >= mem->virt_base && vaddr + size <=
282 (mem->virt_base + (mem->size << PAGE_SHIFT))) {
283 unsigned long off = vma->vm_pgoff;
284 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
285 int user_count = vma_pages(vma);
286 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
287
288 *ret = -ENXIO;
289 if (off < count && user_count <= count - off) {
290 unsigned long pfn = mem->pfn_base + start + off;
291 *ret = remap_pfn_range(vma, vma->vm_start, pfn,
292 user_count << PAGE_SHIFT,
293 vma->vm_page_prot);
294 }
295 return 1;
296 }
297 return 0;
298 }
299 EXPORT_SYMBOL(dma_mmap_from_coherent);
300
301 /*
302 * Support for reserved memory regions defined in device tree
303 */
304 #ifdef CONFIG_OF_RESERVED_MEM
305 #include <linux/of.h>
306 #include <linux/of_fdt.h>
307 #include <linux/of_reserved_mem.h>
308
309 static struct reserved_mem *dma_reserved_default_memory __initdata;
310
311 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
312 {
313 struct dma_coherent_mem *mem = rmem->priv;
314
315 if (!mem &&
316 !dma_init_coherent_memory(rmem->base, rmem->base, rmem->size,
317 DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE,
318 &mem)) {
319 pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
320 &rmem->base, (unsigned long)rmem->size / SZ_1M);
321 return -ENODEV;
322 }
323 mem->use_dev_dma_pfn_offset = true;
324 rmem->priv = mem;
325 dma_assign_coherent_memory(dev, mem);
326 return 0;
327 }
328
329 static void rmem_dma_device_release(struct reserved_mem *rmem,
330 struct device *dev)
331 {
332 if (dev)
333 dev->dma_mem = NULL;
334 }
335
336 static const struct reserved_mem_ops rmem_dma_ops = {
337 .device_init = rmem_dma_device_init,
338 .device_release = rmem_dma_device_release,
339 };
340
341 static int __init rmem_dma_setup(struct reserved_mem *rmem)
342 {
343 unsigned long node = rmem->fdt_node;
344
345 if (of_get_flat_dt_prop(node, "reusable", NULL))
346 return -EINVAL;
347
348 #ifdef CONFIG_ARM
349 if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
350 pr_err("Reserved memory: regions without no-map are not yet supported\n");
351 return -EINVAL;
352 }
353
354 if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
355 WARN(dma_reserved_default_memory,
356 "Reserved memory: region for default DMA coherent area is redefined\n");
357 dma_reserved_default_memory = rmem;
358 }
359 #endif
360
361 rmem->ops = &rmem_dma_ops;
362 pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
363 &rmem->base, (unsigned long)rmem->size / SZ_1M);
364 return 0;
365 }
366
367 static int __init dma_init_reserved_memory(void)
368 {
369 const struct reserved_mem_ops *ops;
370 int ret;
371
372 if (!dma_reserved_default_memory)
373 return -ENOMEM;
374
375 ops = dma_reserved_default_memory->ops;
376
377 /*
378 * We rely on rmem_dma_device_init() does not propagate error of
379 * dma_assign_coherent_memory() for "NULL" device.
380 */
381 ret = ops->device_init(dma_reserved_default_memory, NULL);
382
383 if (!ret) {
384 dma_coherent_default_memory = dma_reserved_default_memory->priv;
385 pr_info("DMA: default coherent area is set\n");
386 }
387
388 return ret;
389 }
390
391 core_initcall(dma_init_reserved_memory);
392
393 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
394 #endif