]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/base/dma-mapping.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / base / dma-mapping.c
1 /*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3 *
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
6 *
7 * This file is released under the GPLv2.
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 /*
19 * Managed DMA API
20 */
21 struct dma_devres {
22 size_t size;
23 void *vaddr;
24 dma_addr_t dma_handle;
25 unsigned long attrs;
26 };
27
28 static void dmam_release(struct device *dev, void *res)
29 {
30 struct dma_devres *this = res;
31
32 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 this->attrs);
34 }
35
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46 }
47
48 /**
49 * dmam_alloc_coherent - Managed dma_alloc_coherent()
50 * @dev: Device to allocate coherent memory for
51 * @size: Size of allocation
52 * @dma_handle: Out argument for allocated DMA handle
53 * @gfp: Allocation flags
54 *
55 * Managed dma_alloc_coherent(). Memory allocated using this function
56 * will be automatically released on driver detach.
57 *
58 * RETURNS:
59 * Pointer to allocated memory on success, NULL on failure.
60 */
61 void *dmam_alloc_coherent(struct device *dev, size_t size,
62 dma_addr_t *dma_handle, gfp_t gfp)
63 {
64 struct dma_devres *dr;
65 void *vaddr;
66
67 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
68 if (!dr)
69 return NULL;
70
71 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
72 if (!vaddr) {
73 devres_free(dr);
74 return NULL;
75 }
76
77 dr->vaddr = vaddr;
78 dr->dma_handle = *dma_handle;
79 dr->size = size;
80
81 devres_add(dev, dr);
82
83 return vaddr;
84 }
85 EXPORT_SYMBOL(dmam_alloc_coherent);
86
87 /**
88 * dmam_free_coherent - Managed dma_free_coherent()
89 * @dev: Device to free coherent memory for
90 * @size: Size of allocation
91 * @vaddr: Virtual address of the memory to free
92 * @dma_handle: DMA handle of the memory to free
93 *
94 * Managed dma_free_coherent().
95 */
96 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
97 dma_addr_t dma_handle)
98 {
99 struct dma_devres match_data = { size, vaddr, dma_handle };
100
101 dma_free_coherent(dev, size, vaddr, dma_handle);
102 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
103 }
104 EXPORT_SYMBOL(dmam_free_coherent);
105
106 /**
107 * dmam_alloc_attrs - Managed dma_alloc_attrs()
108 * @dev: Device to allocate non_coherent memory for
109 * @size: Size of allocation
110 * @dma_handle: Out argument for allocated DMA handle
111 * @gfp: Allocation flags
112 * @attrs: Flags in the DMA_ATTR_* namespace.
113 *
114 * Managed dma_alloc_attrs(). Memory allocated using this function will be
115 * automatically released on driver detach.
116 *
117 * RETURNS:
118 * Pointer to allocated memory on success, NULL on failure.
119 */
120 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
121 gfp_t gfp, unsigned long attrs)
122 {
123 struct dma_devres *dr;
124 void *vaddr;
125
126 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
127 if (!dr)
128 return NULL;
129
130 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
131 if (!vaddr) {
132 devres_free(dr);
133 return NULL;
134 }
135
136 dr->vaddr = vaddr;
137 dr->dma_handle = *dma_handle;
138 dr->size = size;
139 dr->attrs = attrs;
140
141 devres_add(dev, dr);
142
143 return vaddr;
144 }
145 EXPORT_SYMBOL(dmam_alloc_attrs);
146
147 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
148
149 static void dmam_coherent_decl_release(struct device *dev, void *res)
150 {
151 dma_release_declared_memory(dev);
152 }
153
154 /**
155 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
156 * @dev: Device to declare coherent memory for
157 * @phys_addr: Physical address of coherent memory to be declared
158 * @device_addr: Device address of coherent memory to be declared
159 * @size: Size of coherent memory to be declared
160 * @flags: Flags
161 *
162 * Managed dma_declare_coherent_memory().
163 *
164 * RETURNS:
165 * 0 on success, -errno on failure.
166 */
167 int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
168 dma_addr_t device_addr, size_t size, int flags)
169 {
170 void *res;
171 int rc;
172
173 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
174 if (!res)
175 return -ENOMEM;
176
177 rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
178 flags);
179 if (rc) {
180 devres_add(dev, res);
181 rc = 0;
182 } else {
183 devres_free(res);
184 rc = -ENOMEM;
185 }
186
187 return rc;
188 }
189 EXPORT_SYMBOL(dmam_declare_coherent_memory);
190
191 /**
192 * dmam_release_declared_memory - Managed dma_release_declared_memory().
193 * @dev: Device to release declared coherent memory for
194 *
195 * Managed dmam_release_declared_memory().
196 */
197 void dmam_release_declared_memory(struct device *dev)
198 {
199 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
200 }
201 EXPORT_SYMBOL(dmam_release_declared_memory);
202
203 #endif
204
205 /*
206 * Create scatter-list for the already allocated DMA buffer.
207 */
208 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
209 void *cpu_addr, dma_addr_t handle, size_t size)
210 {
211 struct page *page = virt_to_page(cpu_addr);
212 int ret;
213
214 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
215 if (unlikely(ret))
216 return ret;
217
218 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
219 return 0;
220 }
221 EXPORT_SYMBOL(dma_common_get_sgtable);
222
223 /*
224 * Create userspace mapping for the DMA-coherent memory.
225 */
226 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
227 void *cpu_addr, dma_addr_t dma_addr, size_t size)
228 {
229 int ret = -ENXIO;
230 #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
231 unsigned long user_count = vma_pages(vma);
232 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
233 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
234 unsigned long off = vma->vm_pgoff;
235
236 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
237
238 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
239 return ret;
240
241 if (off < count && user_count <= (count - off)) {
242 ret = remap_pfn_range(vma, vma->vm_start,
243 pfn + off,
244 user_count << PAGE_SHIFT,
245 vma->vm_page_prot);
246 }
247 #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
248
249 return ret;
250 }
251 EXPORT_SYMBOL(dma_common_mmap);
252
253 #ifdef CONFIG_MMU
254 static struct vm_struct *__dma_common_pages_remap(struct page **pages,
255 size_t size, unsigned long vm_flags, pgprot_t prot,
256 const void *caller)
257 {
258 struct vm_struct *area;
259
260 area = get_vm_area_caller(size, vm_flags, caller);
261 if (!area)
262 return NULL;
263
264 if (map_vm_area(area, prot, pages)) {
265 vunmap(area->addr);
266 return NULL;
267 }
268
269 return area;
270 }
271
272 /*
273 * remaps an array of PAGE_SIZE pages into another vm_area
274 * Cannot be used in non-sleeping contexts
275 */
276 void *dma_common_pages_remap(struct page **pages, size_t size,
277 unsigned long vm_flags, pgprot_t prot,
278 const void *caller)
279 {
280 struct vm_struct *area;
281
282 area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
283 if (!area)
284 return NULL;
285
286 area->pages = pages;
287
288 return area->addr;
289 }
290
291 /*
292 * remaps an allocated contiguous region into another vm_area.
293 * Cannot be used in non-sleeping contexts
294 */
295
296 void *dma_common_contiguous_remap(struct page *page, size_t size,
297 unsigned long vm_flags,
298 pgprot_t prot, const void *caller)
299 {
300 int i;
301 struct page **pages;
302 struct vm_struct *area;
303
304 pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
305 if (!pages)
306 return NULL;
307
308 for (i = 0; i < (size >> PAGE_SHIFT); i++)
309 pages[i] = nth_page(page, i);
310
311 area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
312
313 kfree(pages);
314
315 if (!area)
316 return NULL;
317 return area->addr;
318 }
319
320 /*
321 * unmaps a range previously mapped by dma_common_*_remap
322 */
323 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
324 {
325 struct vm_struct *area = find_vm_area(cpu_addr);
326
327 if (!area || (area->flags & vm_flags) != vm_flags) {
328 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
329 return;
330 }
331
332 unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
333 vunmap(cpu_addr);
334 }
335 #endif
336
337 /*
338 * Common configuration to enable DMA API use for a device
339 */
340 #include <linux/pci.h>
341
342 int dma_configure(struct device *dev)
343 {
344 struct device *bridge = NULL, *dma_dev = dev;
345 enum dev_dma_attr attr;
346 int ret = 0;
347
348 if (dev_is_pci(dev)) {
349 bridge = pci_get_host_bridge_device(to_pci_dev(dev));
350 dma_dev = bridge;
351 if (IS_ENABLED(CONFIG_OF) && dma_dev->parent &&
352 dma_dev->parent->of_node)
353 dma_dev = dma_dev->parent;
354 }
355
356 if (dma_dev->of_node) {
357 ret = of_dma_configure(dev, dma_dev->of_node);
358 } else if (has_acpi_companion(dma_dev)) {
359 attr = acpi_get_dma_attr(to_acpi_device_node(dma_dev->fwnode));
360 if (attr != DEV_DMA_NOT_SUPPORTED)
361 ret = acpi_dma_configure(dev, attr);
362 }
363
364 if (bridge)
365 pci_put_host_bridge_device(bridge);
366
367 return ret;
368 }
369
370 void dma_deconfigure(struct device *dev)
371 {
372 of_dma_deconfigure(dev);
373 acpi_dma_deconfigure(dev);
374 }