]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/base/firmware_class.c
cpufreq: intel_pstate: report correct CPU frequencies during trace
[mirror_ubuntu-artful-kernel.git] / drivers / base / firmware_class.c
1 /*
2 * firmware_class.c - Multi purpose firmware loading support
3 *
4 * Copyright (c) 2003 Manuel Estrada Sainz
5 *
6 * Please see Documentation/firmware_class/ for more information.
7 *
8 */
9
10 #include <linux/capability.h>
11 #include <linux/device.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/timer.h>
15 #include <linux/vmalloc.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/mutex.h>
19 #include <linux/workqueue.h>
20 #include <linux/highmem.h>
21 #include <linux/firmware.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/file.h>
25 #include <linux/list.h>
26 #include <linux/fs.h>
27 #include <linux/async.h>
28 #include <linux/pm.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/reboot.h>
32 #include <linux/security.h>
33 #include <linux/swait.h>
34
35 #include <generated/utsrelease.h>
36
37 #include "base.h"
38
39 MODULE_AUTHOR("Manuel Estrada Sainz");
40 MODULE_DESCRIPTION("Multi purpose firmware loading support");
41 MODULE_LICENSE("GPL");
42
43 /* Builtin firmware support */
44
45 #ifdef CONFIG_FW_LOADER
46
47 extern struct builtin_fw __start_builtin_fw[];
48 extern struct builtin_fw __end_builtin_fw[];
49
50 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
51 void *buf, size_t size)
52 {
53 struct builtin_fw *b_fw;
54
55 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
56 if (strcmp(name, b_fw->name) == 0) {
57 fw->size = b_fw->size;
58 fw->data = b_fw->data;
59
60 if (buf && fw->size <= size)
61 memcpy(buf, fw->data, fw->size);
62 return true;
63 }
64 }
65
66 return false;
67 }
68
69 static bool fw_is_builtin_firmware(const struct firmware *fw)
70 {
71 struct builtin_fw *b_fw;
72
73 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
74 if (fw->data == b_fw->data)
75 return true;
76
77 return false;
78 }
79
80 #else /* Module case - no builtin firmware support */
81
82 static inline bool fw_get_builtin_firmware(struct firmware *fw,
83 const char *name, void *buf,
84 size_t size)
85 {
86 return false;
87 }
88
89 static inline bool fw_is_builtin_firmware(const struct firmware *fw)
90 {
91 return false;
92 }
93 #endif
94
95 enum fw_status {
96 FW_STATUS_UNKNOWN,
97 FW_STATUS_LOADING,
98 FW_STATUS_DONE,
99 FW_STATUS_ABORTED,
100 };
101
102 static int loading_timeout = 60; /* In seconds */
103
104 static inline long firmware_loading_timeout(void)
105 {
106 return loading_timeout > 0 ? loading_timeout * HZ : MAX_JIFFY_OFFSET;
107 }
108
109 /*
110 * Concurrent request_firmware() for the same firmware need to be
111 * serialized. struct fw_state is simple state machine which hold the
112 * state of the firmware loading.
113 */
114 struct fw_state {
115 struct swait_queue_head wq;
116 enum fw_status status;
117 };
118
119 static void fw_state_init(struct fw_state *fw_st)
120 {
121 init_swait_queue_head(&fw_st->wq);
122 fw_st->status = FW_STATUS_UNKNOWN;
123 }
124
125 static inline bool __fw_state_is_done(enum fw_status status)
126 {
127 return status == FW_STATUS_DONE || status == FW_STATUS_ABORTED;
128 }
129
130 static int __fw_state_wait_common(struct fw_state *fw_st, long timeout)
131 {
132 long ret;
133
134 ret = swait_event_interruptible_timeout(fw_st->wq,
135 __fw_state_is_done(READ_ONCE(fw_st->status)),
136 timeout);
137 if (ret != 0 && fw_st->status == FW_STATUS_ABORTED)
138 return -ENOENT;
139 if (!ret)
140 return -ETIMEDOUT;
141
142 return ret < 0 ? ret : 0;
143 }
144
145 static void __fw_state_set(struct fw_state *fw_st,
146 enum fw_status status)
147 {
148 WRITE_ONCE(fw_st->status, status);
149
150 if (status == FW_STATUS_DONE || status == FW_STATUS_ABORTED)
151 swake_up(&fw_st->wq);
152 }
153
154 #define fw_state_start(fw_st) \
155 __fw_state_set(fw_st, FW_STATUS_LOADING)
156 #define fw_state_done(fw_st) \
157 __fw_state_set(fw_st, FW_STATUS_DONE)
158 #define fw_state_wait(fw_st) \
159 __fw_state_wait_common(fw_st, MAX_SCHEDULE_TIMEOUT)
160
161 #ifndef CONFIG_FW_LOADER_USER_HELPER
162
163 #define fw_state_is_aborted(fw_st) false
164
165 #else /* CONFIG_FW_LOADER_USER_HELPER */
166
167 static int __fw_state_check(struct fw_state *fw_st, enum fw_status status)
168 {
169 return fw_st->status == status;
170 }
171
172 #define fw_state_aborted(fw_st) \
173 __fw_state_set(fw_st, FW_STATUS_ABORTED)
174 #define fw_state_is_done(fw_st) \
175 __fw_state_check(fw_st, FW_STATUS_DONE)
176 #define fw_state_is_loading(fw_st) \
177 __fw_state_check(fw_st, FW_STATUS_LOADING)
178 #define fw_state_is_aborted(fw_st) \
179 __fw_state_check(fw_st, FW_STATUS_ABORTED)
180 #define fw_state_wait_timeout(fw_st, timeout) \
181 __fw_state_wait_common(fw_st, timeout)
182
183 #endif /* CONFIG_FW_LOADER_USER_HELPER */
184
185 /* firmware behavior options */
186 #define FW_OPT_UEVENT (1U << 0)
187 #define FW_OPT_NOWAIT (1U << 1)
188 #ifdef CONFIG_FW_LOADER_USER_HELPER
189 #define FW_OPT_USERHELPER (1U << 2)
190 #else
191 #define FW_OPT_USERHELPER 0
192 #endif
193 #ifdef CONFIG_FW_LOADER_USER_HELPER_FALLBACK
194 #define FW_OPT_FALLBACK FW_OPT_USERHELPER
195 #else
196 #define FW_OPT_FALLBACK 0
197 #endif
198 #define FW_OPT_NO_WARN (1U << 3)
199 #define FW_OPT_NOCACHE (1U << 4)
200
201 struct firmware_cache {
202 /* firmware_buf instance will be added into the below list */
203 spinlock_t lock;
204 struct list_head head;
205 int state;
206
207 #ifdef CONFIG_PM_SLEEP
208 /*
209 * Names of firmware images which have been cached successfully
210 * will be added into the below list so that device uncache
211 * helper can trace which firmware images have been cached
212 * before.
213 */
214 spinlock_t name_lock;
215 struct list_head fw_names;
216
217 struct delayed_work work;
218
219 struct notifier_block pm_notify;
220 #endif
221 };
222
223 struct firmware_buf {
224 struct kref ref;
225 struct list_head list;
226 struct firmware_cache *fwc;
227 struct fw_state fw_st;
228 void *data;
229 size_t size;
230 size_t allocated_size;
231 #ifdef CONFIG_FW_LOADER_USER_HELPER
232 bool is_paged_buf;
233 bool need_uevent;
234 struct page **pages;
235 int nr_pages;
236 int page_array_size;
237 struct list_head pending_list;
238 #endif
239 const char *fw_id;
240 };
241
242 struct fw_cache_entry {
243 struct list_head list;
244 const char *name;
245 };
246
247 struct fw_name_devm {
248 unsigned long magic;
249 const char *name;
250 };
251
252 #define to_fwbuf(d) container_of(d, struct firmware_buf, ref)
253
254 #define FW_LOADER_NO_CACHE 0
255 #define FW_LOADER_START_CACHE 1
256
257 static int fw_cache_piggyback_on_request(const char *name);
258
259 /* fw_lock could be moved to 'struct firmware_priv' but since it is just
260 * guarding for corner cases a global lock should be OK */
261 static DEFINE_MUTEX(fw_lock);
262
263 static bool __enable_firmware = false;
264
265 static void enable_firmware(void)
266 {
267 mutex_lock(&fw_lock);
268 __enable_firmware = true;
269 mutex_unlock(&fw_lock);
270 }
271
272 static void disable_firmware(void)
273 {
274 mutex_lock(&fw_lock);
275 __enable_firmware = false;
276 mutex_unlock(&fw_lock);
277 }
278
279 /*
280 * When disabled only the built-in firmware and the firmware cache will be
281 * used to look for firmware.
282 */
283 static bool firmware_enabled(void)
284 {
285 bool enabled = false;
286
287 mutex_lock(&fw_lock);
288 if (__enable_firmware)
289 enabled = true;
290 mutex_unlock(&fw_lock);
291
292 return enabled;
293 }
294
295 static struct firmware_cache fw_cache;
296
297 static struct firmware_buf *__allocate_fw_buf(const char *fw_name,
298 struct firmware_cache *fwc,
299 void *dbuf, size_t size)
300 {
301 struct firmware_buf *buf;
302
303 buf = kzalloc(sizeof(*buf), GFP_ATOMIC);
304 if (!buf)
305 return NULL;
306
307 buf->fw_id = kstrdup_const(fw_name, GFP_ATOMIC);
308 if (!buf->fw_id) {
309 kfree(buf);
310 return NULL;
311 }
312
313 kref_init(&buf->ref);
314 buf->fwc = fwc;
315 buf->data = dbuf;
316 buf->allocated_size = size;
317 fw_state_init(&buf->fw_st);
318 #ifdef CONFIG_FW_LOADER_USER_HELPER
319 INIT_LIST_HEAD(&buf->pending_list);
320 #endif
321
322 pr_debug("%s: fw-%s buf=%p\n", __func__, fw_name, buf);
323
324 return buf;
325 }
326
327 static struct firmware_buf *__fw_lookup_buf(const char *fw_name)
328 {
329 struct firmware_buf *tmp;
330 struct firmware_cache *fwc = &fw_cache;
331
332 list_for_each_entry(tmp, &fwc->head, list)
333 if (!strcmp(tmp->fw_id, fw_name))
334 return tmp;
335 return NULL;
336 }
337
338 static int fw_lookup_and_allocate_buf(const char *fw_name,
339 struct firmware_cache *fwc,
340 struct firmware_buf **buf, void *dbuf,
341 size_t size)
342 {
343 struct firmware_buf *tmp;
344
345 spin_lock(&fwc->lock);
346 tmp = __fw_lookup_buf(fw_name);
347 if (tmp) {
348 kref_get(&tmp->ref);
349 spin_unlock(&fwc->lock);
350 *buf = tmp;
351 return 1;
352 }
353 tmp = __allocate_fw_buf(fw_name, fwc, dbuf, size);
354 if (tmp)
355 list_add(&tmp->list, &fwc->head);
356 spin_unlock(&fwc->lock);
357
358 *buf = tmp;
359
360 return tmp ? 0 : -ENOMEM;
361 }
362
363 static void __fw_free_buf(struct kref *ref)
364 __releases(&fwc->lock)
365 {
366 struct firmware_buf *buf = to_fwbuf(ref);
367 struct firmware_cache *fwc = buf->fwc;
368
369 pr_debug("%s: fw-%s buf=%p data=%p size=%u\n",
370 __func__, buf->fw_id, buf, buf->data,
371 (unsigned int)buf->size);
372
373 list_del(&buf->list);
374 spin_unlock(&fwc->lock);
375
376 #ifdef CONFIG_FW_LOADER_USER_HELPER
377 if (buf->is_paged_buf) {
378 int i;
379 vunmap(buf->data);
380 for (i = 0; i < buf->nr_pages; i++)
381 __free_page(buf->pages[i]);
382 vfree(buf->pages);
383 } else
384 #endif
385 if (!buf->allocated_size)
386 vfree(buf->data);
387 kfree_const(buf->fw_id);
388 kfree(buf);
389 }
390
391 static void fw_free_buf(struct firmware_buf *buf)
392 {
393 struct firmware_cache *fwc = buf->fwc;
394 spin_lock(&fwc->lock);
395 if (!kref_put(&buf->ref, __fw_free_buf))
396 spin_unlock(&fwc->lock);
397 }
398
399 /* direct firmware loading support */
400 static char fw_path_para[256];
401 static const char * const fw_path[] = {
402 fw_path_para,
403 "/lib/firmware/updates/" UTS_RELEASE,
404 "/lib/firmware/updates",
405 "/lib/firmware/" UTS_RELEASE,
406 "/lib/firmware"
407 };
408
409 /*
410 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
411 * from kernel command line because firmware_class is generally built in
412 * kernel instead of module.
413 */
414 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
415 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
416
417 static int
418 fw_get_filesystem_firmware(struct device *device, struct firmware_buf *buf)
419 {
420 loff_t size;
421 int i, len;
422 int rc = -ENOENT;
423 char *path;
424 enum kernel_read_file_id id = READING_FIRMWARE;
425 size_t msize = INT_MAX;
426
427 /* Already populated data member means we're loading into a buffer */
428 if (buf->data) {
429 id = READING_FIRMWARE_PREALLOC_BUFFER;
430 msize = buf->allocated_size;
431 }
432
433 path = __getname();
434 if (!path)
435 return -ENOMEM;
436
437 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
438 /* skip the unset customized path */
439 if (!fw_path[i][0])
440 continue;
441
442 len = snprintf(path, PATH_MAX, "%s/%s",
443 fw_path[i], buf->fw_id);
444 if (len >= PATH_MAX) {
445 rc = -ENAMETOOLONG;
446 break;
447 }
448
449 buf->size = 0;
450 rc = kernel_read_file_from_path(path, &buf->data, &size, msize,
451 id);
452 if (rc) {
453 if (rc == -ENOENT)
454 dev_dbg(device, "loading %s failed with error %d\n",
455 path, rc);
456 else
457 dev_warn(device, "loading %s failed with error %d\n",
458 path, rc);
459 continue;
460 }
461 dev_dbg(device, "direct-loading %s\n", buf->fw_id);
462 buf->size = size;
463 fw_state_done(&buf->fw_st);
464 break;
465 }
466 __putname(path);
467
468 return rc;
469 }
470
471 /* firmware holds the ownership of pages */
472 static void firmware_free_data(const struct firmware *fw)
473 {
474 /* Loaded directly? */
475 if (!fw->priv) {
476 vfree(fw->data);
477 return;
478 }
479 fw_free_buf(fw->priv);
480 }
481
482 /* store the pages buffer info firmware from buf */
483 static void fw_set_page_data(struct firmware_buf *buf, struct firmware *fw)
484 {
485 fw->priv = buf;
486 #ifdef CONFIG_FW_LOADER_USER_HELPER
487 fw->pages = buf->pages;
488 #endif
489 fw->size = buf->size;
490 fw->data = buf->data;
491
492 pr_debug("%s: fw-%s buf=%p data=%p size=%u\n",
493 __func__, buf->fw_id, buf, buf->data,
494 (unsigned int)buf->size);
495 }
496
497 #ifdef CONFIG_PM_SLEEP
498 static void fw_name_devm_release(struct device *dev, void *res)
499 {
500 struct fw_name_devm *fwn = res;
501
502 if (fwn->magic == (unsigned long)&fw_cache)
503 pr_debug("%s: fw_name-%s devm-%p released\n",
504 __func__, fwn->name, res);
505 kfree_const(fwn->name);
506 }
507
508 static int fw_devm_match(struct device *dev, void *res,
509 void *match_data)
510 {
511 struct fw_name_devm *fwn = res;
512
513 return (fwn->magic == (unsigned long)&fw_cache) &&
514 !strcmp(fwn->name, match_data);
515 }
516
517 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
518 const char *name)
519 {
520 struct fw_name_devm *fwn;
521
522 fwn = devres_find(dev, fw_name_devm_release,
523 fw_devm_match, (void *)name);
524 return fwn;
525 }
526
527 /* add firmware name into devres list */
528 static int fw_add_devm_name(struct device *dev, const char *name)
529 {
530 struct fw_name_devm *fwn;
531
532 fwn = fw_find_devm_name(dev, name);
533 if (fwn)
534 return 1;
535
536 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
537 GFP_KERNEL);
538 if (!fwn)
539 return -ENOMEM;
540 fwn->name = kstrdup_const(name, GFP_KERNEL);
541 if (!fwn->name) {
542 devres_free(fwn);
543 return -ENOMEM;
544 }
545
546 fwn->magic = (unsigned long)&fw_cache;
547 devres_add(dev, fwn);
548
549 return 0;
550 }
551 #else
552 static int fw_add_devm_name(struct device *dev, const char *name)
553 {
554 return 0;
555 }
556 #endif
557
558 static int assign_firmware_buf(struct firmware *fw, struct device *device,
559 unsigned int opt_flags)
560 {
561 struct firmware_buf *buf = fw->priv;
562
563 mutex_lock(&fw_lock);
564 if (!buf->size || fw_state_is_aborted(&buf->fw_st)) {
565 mutex_unlock(&fw_lock);
566 return -ENOENT;
567 }
568
569 /*
570 * add firmware name into devres list so that we can auto cache
571 * and uncache firmware for device.
572 *
573 * device may has been deleted already, but the problem
574 * should be fixed in devres or driver core.
575 */
576 /* don't cache firmware handled without uevent */
577 if (device && (opt_flags & FW_OPT_UEVENT) &&
578 !(opt_flags & FW_OPT_NOCACHE))
579 fw_add_devm_name(device, buf->fw_id);
580
581 /*
582 * After caching firmware image is started, let it piggyback
583 * on request firmware.
584 */
585 if (!(opt_flags & FW_OPT_NOCACHE) &&
586 buf->fwc->state == FW_LOADER_START_CACHE) {
587 if (fw_cache_piggyback_on_request(buf->fw_id))
588 kref_get(&buf->ref);
589 }
590
591 /* pass the pages buffer to driver at the last minute */
592 fw_set_page_data(buf, fw);
593 mutex_unlock(&fw_lock);
594 return 0;
595 }
596
597 /*
598 * user-mode helper code
599 */
600 #ifdef CONFIG_FW_LOADER_USER_HELPER
601 struct firmware_priv {
602 bool nowait;
603 struct device dev;
604 struct firmware_buf *buf;
605 struct firmware *fw;
606 };
607
608 static struct firmware_priv *to_firmware_priv(struct device *dev)
609 {
610 return container_of(dev, struct firmware_priv, dev);
611 }
612
613 static void __fw_load_abort(struct firmware_buf *buf)
614 {
615 /*
616 * There is a small window in which user can write to 'loading'
617 * between loading done and disappearance of 'loading'
618 */
619 if (fw_state_is_done(&buf->fw_st))
620 return;
621
622 list_del_init(&buf->pending_list);
623 fw_state_aborted(&buf->fw_st);
624 }
625
626 static void fw_load_abort(struct firmware_priv *fw_priv)
627 {
628 struct firmware_buf *buf = fw_priv->buf;
629
630 __fw_load_abort(buf);
631 }
632
633 static LIST_HEAD(pending_fw_head);
634
635 static void kill_pending_fw_fallback_reqs(bool only_kill_custom)
636 {
637 struct firmware_buf *buf;
638 struct firmware_buf *next;
639
640 mutex_lock(&fw_lock);
641 list_for_each_entry_safe(buf, next, &pending_fw_head, pending_list) {
642 if (!buf->need_uevent || !only_kill_custom)
643 __fw_load_abort(buf);
644 }
645 mutex_unlock(&fw_lock);
646 }
647
648 static ssize_t timeout_show(struct class *class, struct class_attribute *attr,
649 char *buf)
650 {
651 return sprintf(buf, "%d\n", loading_timeout);
652 }
653
654 /**
655 * firmware_timeout_store - set number of seconds to wait for firmware
656 * @class: device class pointer
657 * @attr: device attribute pointer
658 * @buf: buffer to scan for timeout value
659 * @count: number of bytes in @buf
660 *
661 * Sets the number of seconds to wait for the firmware. Once
662 * this expires an error will be returned to the driver and no
663 * firmware will be provided.
664 *
665 * Note: zero means 'wait forever'.
666 **/
667 static ssize_t timeout_store(struct class *class, struct class_attribute *attr,
668 const char *buf, size_t count)
669 {
670 loading_timeout = simple_strtol(buf, NULL, 10);
671 if (loading_timeout < 0)
672 loading_timeout = 0;
673
674 return count;
675 }
676 static CLASS_ATTR_RW(timeout);
677
678 static struct attribute *firmware_class_attrs[] = {
679 &class_attr_timeout.attr,
680 NULL,
681 };
682 ATTRIBUTE_GROUPS(firmware_class);
683
684 static void fw_dev_release(struct device *dev)
685 {
686 struct firmware_priv *fw_priv = to_firmware_priv(dev);
687
688 kfree(fw_priv);
689 }
690
691 static int do_firmware_uevent(struct firmware_priv *fw_priv, struct kobj_uevent_env *env)
692 {
693 if (add_uevent_var(env, "FIRMWARE=%s", fw_priv->buf->fw_id))
694 return -ENOMEM;
695 if (add_uevent_var(env, "TIMEOUT=%i", loading_timeout))
696 return -ENOMEM;
697 if (add_uevent_var(env, "ASYNC=%d", fw_priv->nowait))
698 return -ENOMEM;
699
700 return 0;
701 }
702
703 static int firmware_uevent(struct device *dev, struct kobj_uevent_env *env)
704 {
705 struct firmware_priv *fw_priv = to_firmware_priv(dev);
706 int err = 0;
707
708 mutex_lock(&fw_lock);
709 if (fw_priv->buf)
710 err = do_firmware_uevent(fw_priv, env);
711 mutex_unlock(&fw_lock);
712 return err;
713 }
714
715 static struct class firmware_class = {
716 .name = "firmware",
717 .class_groups = firmware_class_groups,
718 .dev_uevent = firmware_uevent,
719 .dev_release = fw_dev_release,
720 };
721
722 static ssize_t firmware_loading_show(struct device *dev,
723 struct device_attribute *attr, char *buf)
724 {
725 struct firmware_priv *fw_priv = to_firmware_priv(dev);
726 int loading = 0;
727
728 mutex_lock(&fw_lock);
729 if (fw_priv->buf)
730 loading = fw_state_is_loading(&fw_priv->buf->fw_st);
731 mutex_unlock(&fw_lock);
732
733 return sprintf(buf, "%d\n", loading);
734 }
735
736 /* Some architectures don't have PAGE_KERNEL_RO */
737 #ifndef PAGE_KERNEL_RO
738 #define PAGE_KERNEL_RO PAGE_KERNEL
739 #endif
740
741 /* one pages buffer should be mapped/unmapped only once */
742 static int fw_map_pages_buf(struct firmware_buf *buf)
743 {
744 if (!buf->is_paged_buf)
745 return 0;
746
747 vunmap(buf->data);
748 buf->data = vmap(buf->pages, buf->nr_pages, 0, PAGE_KERNEL_RO);
749 if (!buf->data)
750 return -ENOMEM;
751 return 0;
752 }
753
754 /**
755 * firmware_loading_store - set value in the 'loading' control file
756 * @dev: device pointer
757 * @attr: device attribute pointer
758 * @buf: buffer to scan for loading control value
759 * @count: number of bytes in @buf
760 *
761 * The relevant values are:
762 *
763 * 1: Start a load, discarding any previous partial load.
764 * 0: Conclude the load and hand the data to the driver code.
765 * -1: Conclude the load with an error and discard any written data.
766 **/
767 static ssize_t firmware_loading_store(struct device *dev,
768 struct device_attribute *attr,
769 const char *buf, size_t count)
770 {
771 struct firmware_priv *fw_priv = to_firmware_priv(dev);
772 struct firmware_buf *fw_buf;
773 ssize_t written = count;
774 int loading = simple_strtol(buf, NULL, 10);
775 int i;
776
777 mutex_lock(&fw_lock);
778 fw_buf = fw_priv->buf;
779 if (fw_state_is_aborted(&fw_buf->fw_st))
780 goto out;
781
782 switch (loading) {
783 case 1:
784 /* discarding any previous partial load */
785 if (!fw_state_is_done(&fw_buf->fw_st)) {
786 for (i = 0; i < fw_buf->nr_pages; i++)
787 __free_page(fw_buf->pages[i]);
788 vfree(fw_buf->pages);
789 fw_buf->pages = NULL;
790 fw_buf->page_array_size = 0;
791 fw_buf->nr_pages = 0;
792 fw_state_start(&fw_buf->fw_st);
793 }
794 break;
795 case 0:
796 if (fw_state_is_loading(&fw_buf->fw_st)) {
797 int rc;
798
799 /*
800 * Several loading requests may be pending on
801 * one same firmware buf, so let all requests
802 * see the mapped 'buf->data' once the loading
803 * is completed.
804 * */
805 rc = fw_map_pages_buf(fw_buf);
806 if (rc)
807 dev_err(dev, "%s: map pages failed\n",
808 __func__);
809 else
810 rc = security_kernel_post_read_file(NULL,
811 fw_buf->data, fw_buf->size,
812 READING_FIRMWARE);
813
814 /*
815 * Same logic as fw_load_abort, only the DONE bit
816 * is ignored and we set ABORT only on failure.
817 */
818 list_del_init(&fw_buf->pending_list);
819 if (rc) {
820 fw_state_aborted(&fw_buf->fw_st);
821 written = rc;
822 } else {
823 fw_state_done(&fw_buf->fw_st);
824 }
825 break;
826 }
827 /* fallthrough */
828 default:
829 dev_err(dev, "%s: unexpected value (%d)\n", __func__, loading);
830 /* fallthrough */
831 case -1:
832 fw_load_abort(fw_priv);
833 break;
834 }
835 out:
836 mutex_unlock(&fw_lock);
837 return written;
838 }
839
840 static DEVICE_ATTR(loading, 0644, firmware_loading_show, firmware_loading_store);
841
842 static void firmware_rw_buf(struct firmware_buf *buf, char *buffer,
843 loff_t offset, size_t count, bool read)
844 {
845 if (read)
846 memcpy(buffer, buf->data + offset, count);
847 else
848 memcpy(buf->data + offset, buffer, count);
849 }
850
851 static void firmware_rw(struct firmware_buf *buf, char *buffer,
852 loff_t offset, size_t count, bool read)
853 {
854 while (count) {
855 void *page_data;
856 int page_nr = offset >> PAGE_SHIFT;
857 int page_ofs = offset & (PAGE_SIZE-1);
858 int page_cnt = min_t(size_t, PAGE_SIZE - page_ofs, count);
859
860 page_data = kmap(buf->pages[page_nr]);
861
862 if (read)
863 memcpy(buffer, page_data + page_ofs, page_cnt);
864 else
865 memcpy(page_data + page_ofs, buffer, page_cnt);
866
867 kunmap(buf->pages[page_nr]);
868 buffer += page_cnt;
869 offset += page_cnt;
870 count -= page_cnt;
871 }
872 }
873
874 static ssize_t firmware_data_read(struct file *filp, struct kobject *kobj,
875 struct bin_attribute *bin_attr,
876 char *buffer, loff_t offset, size_t count)
877 {
878 struct device *dev = kobj_to_dev(kobj);
879 struct firmware_priv *fw_priv = to_firmware_priv(dev);
880 struct firmware_buf *buf;
881 ssize_t ret_count;
882
883 mutex_lock(&fw_lock);
884 buf = fw_priv->buf;
885 if (!buf || fw_state_is_done(&buf->fw_st)) {
886 ret_count = -ENODEV;
887 goto out;
888 }
889 if (offset > buf->size) {
890 ret_count = 0;
891 goto out;
892 }
893 if (count > buf->size - offset)
894 count = buf->size - offset;
895
896 ret_count = count;
897
898 if (buf->data)
899 firmware_rw_buf(buf, buffer, offset, count, true);
900 else
901 firmware_rw(buf, buffer, offset, count, true);
902
903 out:
904 mutex_unlock(&fw_lock);
905 return ret_count;
906 }
907
908 static int fw_realloc_buffer(struct firmware_priv *fw_priv, int min_size)
909 {
910 struct firmware_buf *buf = fw_priv->buf;
911 int pages_needed = PAGE_ALIGN(min_size) >> PAGE_SHIFT;
912
913 /* If the array of pages is too small, grow it... */
914 if (buf->page_array_size < pages_needed) {
915 int new_array_size = max(pages_needed,
916 buf->page_array_size * 2);
917 struct page **new_pages;
918
919 new_pages = vmalloc(new_array_size * sizeof(void *));
920 if (!new_pages) {
921 fw_load_abort(fw_priv);
922 return -ENOMEM;
923 }
924 memcpy(new_pages, buf->pages,
925 buf->page_array_size * sizeof(void *));
926 memset(&new_pages[buf->page_array_size], 0, sizeof(void *) *
927 (new_array_size - buf->page_array_size));
928 vfree(buf->pages);
929 buf->pages = new_pages;
930 buf->page_array_size = new_array_size;
931 }
932
933 while (buf->nr_pages < pages_needed) {
934 buf->pages[buf->nr_pages] =
935 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
936
937 if (!buf->pages[buf->nr_pages]) {
938 fw_load_abort(fw_priv);
939 return -ENOMEM;
940 }
941 buf->nr_pages++;
942 }
943 return 0;
944 }
945
946 /**
947 * firmware_data_write - write method for firmware
948 * @filp: open sysfs file
949 * @kobj: kobject for the device
950 * @bin_attr: bin_attr structure
951 * @buffer: buffer being written
952 * @offset: buffer offset for write in total data store area
953 * @count: buffer size
954 *
955 * Data written to the 'data' attribute will be later handed to
956 * the driver as a firmware image.
957 **/
958 static ssize_t firmware_data_write(struct file *filp, struct kobject *kobj,
959 struct bin_attribute *bin_attr,
960 char *buffer, loff_t offset, size_t count)
961 {
962 struct device *dev = kobj_to_dev(kobj);
963 struct firmware_priv *fw_priv = to_firmware_priv(dev);
964 struct firmware_buf *buf;
965 ssize_t retval;
966
967 if (!capable(CAP_SYS_RAWIO))
968 return -EPERM;
969
970 mutex_lock(&fw_lock);
971 buf = fw_priv->buf;
972 if (!buf || fw_state_is_done(&buf->fw_st)) {
973 retval = -ENODEV;
974 goto out;
975 }
976
977 if (buf->data) {
978 if (offset + count > buf->allocated_size) {
979 retval = -ENOMEM;
980 goto out;
981 }
982 firmware_rw_buf(buf, buffer, offset, count, false);
983 retval = count;
984 } else {
985 retval = fw_realloc_buffer(fw_priv, offset + count);
986 if (retval)
987 goto out;
988
989 retval = count;
990 firmware_rw(buf, buffer, offset, count, false);
991 }
992
993 buf->size = max_t(size_t, offset + count, buf->size);
994 out:
995 mutex_unlock(&fw_lock);
996 return retval;
997 }
998
999 static struct bin_attribute firmware_attr_data = {
1000 .attr = { .name = "data", .mode = 0644 },
1001 .size = 0,
1002 .read = firmware_data_read,
1003 .write = firmware_data_write,
1004 };
1005
1006 static struct attribute *fw_dev_attrs[] = {
1007 &dev_attr_loading.attr,
1008 NULL
1009 };
1010
1011 static struct bin_attribute *fw_dev_bin_attrs[] = {
1012 &firmware_attr_data,
1013 NULL
1014 };
1015
1016 static const struct attribute_group fw_dev_attr_group = {
1017 .attrs = fw_dev_attrs,
1018 .bin_attrs = fw_dev_bin_attrs,
1019 };
1020
1021 static const struct attribute_group *fw_dev_attr_groups[] = {
1022 &fw_dev_attr_group,
1023 NULL
1024 };
1025
1026 static struct firmware_priv *
1027 fw_create_instance(struct firmware *firmware, const char *fw_name,
1028 struct device *device, unsigned int opt_flags)
1029 {
1030 struct firmware_priv *fw_priv;
1031 struct device *f_dev;
1032
1033 fw_priv = kzalloc(sizeof(*fw_priv), GFP_KERNEL);
1034 if (!fw_priv) {
1035 fw_priv = ERR_PTR(-ENOMEM);
1036 goto exit;
1037 }
1038
1039 fw_priv->nowait = !!(opt_flags & FW_OPT_NOWAIT);
1040 fw_priv->fw = firmware;
1041 f_dev = &fw_priv->dev;
1042
1043 device_initialize(f_dev);
1044 dev_set_name(f_dev, "%s", fw_name);
1045 f_dev->parent = device;
1046 f_dev->class = &firmware_class;
1047 f_dev->groups = fw_dev_attr_groups;
1048 exit:
1049 return fw_priv;
1050 }
1051
1052 /* load a firmware via user helper */
1053 static int _request_firmware_load(struct firmware_priv *fw_priv,
1054 unsigned int opt_flags, long timeout)
1055 {
1056 int retval = 0;
1057 struct device *f_dev = &fw_priv->dev;
1058 struct firmware_buf *buf = fw_priv->buf;
1059
1060 /* fall back on userspace loading */
1061 if (!buf->data)
1062 buf->is_paged_buf = true;
1063
1064 dev_set_uevent_suppress(f_dev, true);
1065
1066 retval = device_add(f_dev);
1067 if (retval) {
1068 dev_err(f_dev, "%s: device_register failed\n", __func__);
1069 goto err_put_dev;
1070 }
1071
1072 mutex_lock(&fw_lock);
1073 list_add(&buf->pending_list, &pending_fw_head);
1074 mutex_unlock(&fw_lock);
1075
1076 if (opt_flags & FW_OPT_UEVENT) {
1077 buf->need_uevent = true;
1078 dev_set_uevent_suppress(f_dev, false);
1079 dev_dbg(f_dev, "firmware: requesting %s\n", buf->fw_id);
1080 kobject_uevent(&fw_priv->dev.kobj, KOBJ_ADD);
1081 } else {
1082 timeout = MAX_JIFFY_OFFSET;
1083 }
1084
1085 retval = fw_state_wait_timeout(&buf->fw_st, timeout);
1086 if (retval < 0) {
1087 mutex_lock(&fw_lock);
1088 fw_load_abort(fw_priv);
1089 mutex_unlock(&fw_lock);
1090 }
1091
1092 if (fw_state_is_aborted(&buf->fw_st))
1093 retval = -EAGAIN;
1094 else if (buf->is_paged_buf && !buf->data)
1095 retval = -ENOMEM;
1096
1097 device_del(f_dev);
1098 err_put_dev:
1099 put_device(f_dev);
1100 return retval;
1101 }
1102
1103 static int fw_load_from_user_helper(struct firmware *firmware,
1104 const char *name, struct device *device,
1105 unsigned int opt_flags)
1106 {
1107 struct firmware_priv *fw_priv;
1108 long timeout;
1109 int ret;
1110
1111 timeout = firmware_loading_timeout();
1112 if (opt_flags & FW_OPT_NOWAIT) {
1113 timeout = usermodehelper_read_lock_wait(timeout);
1114 if (!timeout) {
1115 dev_dbg(device, "firmware: %s loading timed out\n",
1116 name);
1117 return -EBUSY;
1118 }
1119 } else {
1120 ret = usermodehelper_read_trylock();
1121 if (WARN_ON(ret)) {
1122 dev_err(device, "firmware: %s will not be loaded\n",
1123 name);
1124 return ret;
1125 }
1126 }
1127
1128 fw_priv = fw_create_instance(firmware, name, device, opt_flags);
1129 if (IS_ERR(fw_priv)) {
1130 ret = PTR_ERR(fw_priv);
1131 goto out_unlock;
1132 }
1133
1134 fw_priv->buf = firmware->priv;
1135 ret = _request_firmware_load(fw_priv, opt_flags, timeout);
1136
1137 if (!ret)
1138 ret = assign_firmware_buf(firmware, device, opt_flags);
1139
1140 out_unlock:
1141 usermodehelper_read_unlock();
1142
1143 return ret;
1144 }
1145
1146 #else /* CONFIG_FW_LOADER_USER_HELPER */
1147 static inline int
1148 fw_load_from_user_helper(struct firmware *firmware, const char *name,
1149 struct device *device, unsigned int opt_flags)
1150 {
1151 return -ENOENT;
1152 }
1153
1154 static inline void kill_pending_fw_fallback_reqs(bool only_kill_custom) { }
1155
1156 #endif /* CONFIG_FW_LOADER_USER_HELPER */
1157
1158 /* prepare firmware and firmware_buf structs;
1159 * return 0 if a firmware is already assigned, 1 if need to load one,
1160 * or a negative error code
1161 */
1162 static int
1163 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
1164 struct device *device, void *dbuf, size_t size)
1165 {
1166 struct firmware *firmware;
1167 struct firmware_buf *buf;
1168 int ret;
1169
1170 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
1171 if (!firmware) {
1172 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
1173 __func__);
1174 return -ENOMEM;
1175 }
1176
1177 if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
1178 dev_dbg(device, "using built-in %s\n", name);
1179 return 0; /* assigned */
1180 }
1181
1182 ret = fw_lookup_and_allocate_buf(name, &fw_cache, &buf, dbuf, size);
1183
1184 /*
1185 * bind with 'buf' now to avoid warning in failure path
1186 * of requesting firmware.
1187 */
1188 firmware->priv = buf;
1189
1190 if (ret > 0) {
1191 ret = fw_state_wait(&buf->fw_st);
1192 if (!ret) {
1193 fw_set_page_data(buf, firmware);
1194 return 0; /* assigned */
1195 }
1196 }
1197
1198 if (ret < 0)
1199 return ret;
1200 return 1; /* need to load */
1201 }
1202
1203 /* called from request_firmware() and request_firmware_work_func() */
1204 static int
1205 _request_firmware(const struct firmware **firmware_p, const char *name,
1206 struct device *device, void *buf, size_t size,
1207 unsigned int opt_flags)
1208 {
1209 struct firmware *fw = NULL;
1210 int ret;
1211
1212 if (!firmware_p)
1213 return -EINVAL;
1214
1215 if (!name || name[0] == '\0') {
1216 ret = -EINVAL;
1217 goto out;
1218 }
1219
1220 ret = _request_firmware_prepare(&fw, name, device, buf, size);
1221 if (ret <= 0) /* error or already assigned */
1222 goto out;
1223
1224 if (!firmware_enabled()) {
1225 WARN(1, "firmware request while host is not available\n");
1226 ret = -EHOSTDOWN;
1227 goto out;
1228 }
1229
1230 ret = fw_get_filesystem_firmware(device, fw->priv);
1231 if (ret) {
1232 if (!(opt_flags & FW_OPT_NO_WARN))
1233 dev_warn(device,
1234 "Direct firmware load for %s failed with error %d\n",
1235 name, ret);
1236 if (opt_flags & FW_OPT_USERHELPER) {
1237 dev_warn(device, "Falling back to user helper\n");
1238 ret = fw_load_from_user_helper(fw, name, device,
1239 opt_flags);
1240 }
1241 } else
1242 ret = assign_firmware_buf(fw, device, opt_flags);
1243
1244 out:
1245 if (ret < 0) {
1246 release_firmware(fw);
1247 fw = NULL;
1248 }
1249
1250 *firmware_p = fw;
1251 return ret;
1252 }
1253
1254 /**
1255 * request_firmware: - send firmware request and wait for it
1256 * @firmware_p: pointer to firmware image
1257 * @name: name of firmware file
1258 * @device: device for which firmware is being loaded
1259 *
1260 * @firmware_p will be used to return a firmware image by the name
1261 * of @name for device @device.
1262 *
1263 * Should be called from user context where sleeping is allowed.
1264 *
1265 * @name will be used as $FIRMWARE in the uevent environment and
1266 * should be distinctive enough not to be confused with any other
1267 * firmware image for this or any other device.
1268 *
1269 * Caller must hold the reference count of @device.
1270 *
1271 * The function can be called safely inside device's suspend and
1272 * resume callback.
1273 **/
1274 int
1275 request_firmware(const struct firmware **firmware_p, const char *name,
1276 struct device *device)
1277 {
1278 int ret;
1279
1280 /* Need to pin this module until return */
1281 __module_get(THIS_MODULE);
1282 ret = _request_firmware(firmware_p, name, device, NULL, 0,
1283 FW_OPT_UEVENT | FW_OPT_FALLBACK);
1284 module_put(THIS_MODULE);
1285 return ret;
1286 }
1287 EXPORT_SYMBOL(request_firmware);
1288
1289 /**
1290 * request_firmware_direct: - load firmware directly without usermode helper
1291 * @firmware_p: pointer to firmware image
1292 * @name: name of firmware file
1293 * @device: device for which firmware is being loaded
1294 *
1295 * This function works pretty much like request_firmware(), but this doesn't
1296 * fall back to usermode helper even if the firmware couldn't be loaded
1297 * directly from fs. Hence it's useful for loading optional firmwares, which
1298 * aren't always present, without extra long timeouts of udev.
1299 **/
1300 int request_firmware_direct(const struct firmware **firmware_p,
1301 const char *name, struct device *device)
1302 {
1303 int ret;
1304
1305 __module_get(THIS_MODULE);
1306 ret = _request_firmware(firmware_p, name, device, NULL, 0,
1307 FW_OPT_UEVENT | FW_OPT_NO_WARN);
1308 module_put(THIS_MODULE);
1309 return ret;
1310 }
1311 EXPORT_SYMBOL_GPL(request_firmware_direct);
1312
1313 /**
1314 * request_firmware_into_buf - load firmware into a previously allocated buffer
1315 * @firmware_p: pointer to firmware image
1316 * @name: name of firmware file
1317 * @device: device for which firmware is being loaded and DMA region allocated
1318 * @buf: address of buffer to load firmware into
1319 * @size: size of buffer
1320 *
1321 * This function works pretty much like request_firmware(), but it doesn't
1322 * allocate a buffer to hold the firmware data. Instead, the firmware
1323 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1324 * data member is pointed at @buf.
1325 *
1326 * This function doesn't cache firmware either.
1327 */
1328 int
1329 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1330 struct device *device, void *buf, size_t size)
1331 {
1332 int ret;
1333
1334 __module_get(THIS_MODULE);
1335 ret = _request_firmware(firmware_p, name, device, buf, size,
1336 FW_OPT_UEVENT | FW_OPT_FALLBACK |
1337 FW_OPT_NOCACHE);
1338 module_put(THIS_MODULE);
1339 return ret;
1340 }
1341 EXPORT_SYMBOL(request_firmware_into_buf);
1342
1343 /**
1344 * release_firmware: - release the resource associated with a firmware image
1345 * @fw: firmware resource to release
1346 **/
1347 void release_firmware(const struct firmware *fw)
1348 {
1349 if (fw) {
1350 if (!fw_is_builtin_firmware(fw))
1351 firmware_free_data(fw);
1352 kfree(fw);
1353 }
1354 }
1355 EXPORT_SYMBOL(release_firmware);
1356
1357 /* Async support */
1358 struct firmware_work {
1359 struct work_struct work;
1360 struct module *module;
1361 const char *name;
1362 struct device *device;
1363 void *context;
1364 void (*cont)(const struct firmware *fw, void *context);
1365 unsigned int opt_flags;
1366 };
1367
1368 static void request_firmware_work_func(struct work_struct *work)
1369 {
1370 struct firmware_work *fw_work;
1371 const struct firmware *fw;
1372
1373 fw_work = container_of(work, struct firmware_work, work);
1374
1375 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0,
1376 fw_work->opt_flags);
1377 fw_work->cont(fw, fw_work->context);
1378 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1379
1380 module_put(fw_work->module);
1381 kfree_const(fw_work->name);
1382 kfree(fw_work);
1383 }
1384
1385 /**
1386 * request_firmware_nowait - asynchronous version of request_firmware
1387 * @module: module requesting the firmware
1388 * @uevent: sends uevent to copy the firmware image if this flag
1389 * is non-zero else the firmware copy must be done manually.
1390 * @name: name of firmware file
1391 * @device: device for which firmware is being loaded
1392 * @gfp: allocation flags
1393 * @context: will be passed over to @cont, and
1394 * @fw may be %NULL if firmware request fails.
1395 * @cont: function will be called asynchronously when the firmware
1396 * request is over.
1397 *
1398 * Caller must hold the reference count of @device.
1399 *
1400 * Asynchronous variant of request_firmware() for user contexts:
1401 * - sleep for as small periods as possible since it may
1402 * increase kernel boot time of built-in device drivers
1403 * requesting firmware in their ->probe() methods, if
1404 * @gfp is GFP_KERNEL.
1405 *
1406 * - can't sleep at all if @gfp is GFP_ATOMIC.
1407 **/
1408 int
1409 request_firmware_nowait(
1410 struct module *module, bool uevent,
1411 const char *name, struct device *device, gfp_t gfp, void *context,
1412 void (*cont)(const struct firmware *fw, void *context))
1413 {
1414 struct firmware_work *fw_work;
1415
1416 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1417 if (!fw_work)
1418 return -ENOMEM;
1419
1420 fw_work->module = module;
1421 fw_work->name = kstrdup_const(name, gfp);
1422 if (!fw_work->name) {
1423 kfree(fw_work);
1424 return -ENOMEM;
1425 }
1426 fw_work->device = device;
1427 fw_work->context = context;
1428 fw_work->cont = cont;
1429 fw_work->opt_flags = FW_OPT_NOWAIT | FW_OPT_FALLBACK |
1430 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1431
1432 if (!try_module_get(module)) {
1433 kfree_const(fw_work->name);
1434 kfree(fw_work);
1435 return -EFAULT;
1436 }
1437
1438 get_device(fw_work->device);
1439 INIT_WORK(&fw_work->work, request_firmware_work_func);
1440 schedule_work(&fw_work->work);
1441 return 0;
1442 }
1443 EXPORT_SYMBOL(request_firmware_nowait);
1444
1445 #ifdef CONFIG_PM_SLEEP
1446 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1447
1448 /**
1449 * cache_firmware - cache one firmware image in kernel memory space
1450 * @fw_name: the firmware image name
1451 *
1452 * Cache firmware in kernel memory so that drivers can use it when
1453 * system isn't ready for them to request firmware image from userspace.
1454 * Once it returns successfully, driver can use request_firmware or its
1455 * nowait version to get the cached firmware without any interacting
1456 * with userspace
1457 *
1458 * Return 0 if the firmware image has been cached successfully
1459 * Return !0 otherwise
1460 *
1461 */
1462 static int cache_firmware(const char *fw_name)
1463 {
1464 int ret;
1465 const struct firmware *fw;
1466
1467 pr_debug("%s: %s\n", __func__, fw_name);
1468
1469 ret = request_firmware(&fw, fw_name, NULL);
1470 if (!ret)
1471 kfree(fw);
1472
1473 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1474
1475 return ret;
1476 }
1477
1478 static struct firmware_buf *fw_lookup_buf(const char *fw_name)
1479 {
1480 struct firmware_buf *tmp;
1481 struct firmware_cache *fwc = &fw_cache;
1482
1483 spin_lock(&fwc->lock);
1484 tmp = __fw_lookup_buf(fw_name);
1485 spin_unlock(&fwc->lock);
1486
1487 return tmp;
1488 }
1489
1490 /**
1491 * uncache_firmware - remove one cached firmware image
1492 * @fw_name: the firmware image name
1493 *
1494 * Uncache one firmware image which has been cached successfully
1495 * before.
1496 *
1497 * Return 0 if the firmware cache has been removed successfully
1498 * Return !0 otherwise
1499 *
1500 */
1501 static int uncache_firmware(const char *fw_name)
1502 {
1503 struct firmware_buf *buf;
1504 struct firmware fw;
1505
1506 pr_debug("%s: %s\n", __func__, fw_name);
1507
1508 if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
1509 return 0;
1510
1511 buf = fw_lookup_buf(fw_name);
1512 if (buf) {
1513 fw_free_buf(buf);
1514 return 0;
1515 }
1516
1517 return -EINVAL;
1518 }
1519
1520 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1521 {
1522 struct fw_cache_entry *fce;
1523
1524 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1525 if (!fce)
1526 goto exit;
1527
1528 fce->name = kstrdup_const(name, GFP_ATOMIC);
1529 if (!fce->name) {
1530 kfree(fce);
1531 fce = NULL;
1532 goto exit;
1533 }
1534 exit:
1535 return fce;
1536 }
1537
1538 static int __fw_entry_found(const char *name)
1539 {
1540 struct firmware_cache *fwc = &fw_cache;
1541 struct fw_cache_entry *fce;
1542
1543 list_for_each_entry(fce, &fwc->fw_names, list) {
1544 if (!strcmp(fce->name, name))
1545 return 1;
1546 }
1547 return 0;
1548 }
1549
1550 static int fw_cache_piggyback_on_request(const char *name)
1551 {
1552 struct firmware_cache *fwc = &fw_cache;
1553 struct fw_cache_entry *fce;
1554 int ret = 0;
1555
1556 spin_lock(&fwc->name_lock);
1557 if (__fw_entry_found(name))
1558 goto found;
1559
1560 fce = alloc_fw_cache_entry(name);
1561 if (fce) {
1562 ret = 1;
1563 list_add(&fce->list, &fwc->fw_names);
1564 pr_debug("%s: fw: %s\n", __func__, name);
1565 }
1566 found:
1567 spin_unlock(&fwc->name_lock);
1568 return ret;
1569 }
1570
1571 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1572 {
1573 kfree_const(fce->name);
1574 kfree(fce);
1575 }
1576
1577 static void __async_dev_cache_fw_image(void *fw_entry,
1578 async_cookie_t cookie)
1579 {
1580 struct fw_cache_entry *fce = fw_entry;
1581 struct firmware_cache *fwc = &fw_cache;
1582 int ret;
1583
1584 ret = cache_firmware(fce->name);
1585 if (ret) {
1586 spin_lock(&fwc->name_lock);
1587 list_del(&fce->list);
1588 spin_unlock(&fwc->name_lock);
1589
1590 free_fw_cache_entry(fce);
1591 }
1592 }
1593
1594 /* called with dev->devres_lock held */
1595 static void dev_create_fw_entry(struct device *dev, void *res,
1596 void *data)
1597 {
1598 struct fw_name_devm *fwn = res;
1599 const char *fw_name = fwn->name;
1600 struct list_head *head = data;
1601 struct fw_cache_entry *fce;
1602
1603 fce = alloc_fw_cache_entry(fw_name);
1604 if (fce)
1605 list_add(&fce->list, head);
1606 }
1607
1608 static int devm_name_match(struct device *dev, void *res,
1609 void *match_data)
1610 {
1611 struct fw_name_devm *fwn = res;
1612 return (fwn->magic == (unsigned long)match_data);
1613 }
1614
1615 static void dev_cache_fw_image(struct device *dev, void *data)
1616 {
1617 LIST_HEAD(todo);
1618 struct fw_cache_entry *fce;
1619 struct fw_cache_entry *fce_next;
1620 struct firmware_cache *fwc = &fw_cache;
1621
1622 devres_for_each_res(dev, fw_name_devm_release,
1623 devm_name_match, &fw_cache,
1624 dev_create_fw_entry, &todo);
1625
1626 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1627 list_del(&fce->list);
1628
1629 spin_lock(&fwc->name_lock);
1630 /* only one cache entry for one firmware */
1631 if (!__fw_entry_found(fce->name)) {
1632 list_add(&fce->list, &fwc->fw_names);
1633 } else {
1634 free_fw_cache_entry(fce);
1635 fce = NULL;
1636 }
1637 spin_unlock(&fwc->name_lock);
1638
1639 if (fce)
1640 async_schedule_domain(__async_dev_cache_fw_image,
1641 (void *)fce,
1642 &fw_cache_domain);
1643 }
1644 }
1645
1646 static void __device_uncache_fw_images(void)
1647 {
1648 struct firmware_cache *fwc = &fw_cache;
1649 struct fw_cache_entry *fce;
1650
1651 spin_lock(&fwc->name_lock);
1652 while (!list_empty(&fwc->fw_names)) {
1653 fce = list_entry(fwc->fw_names.next,
1654 struct fw_cache_entry, list);
1655 list_del(&fce->list);
1656 spin_unlock(&fwc->name_lock);
1657
1658 uncache_firmware(fce->name);
1659 free_fw_cache_entry(fce);
1660
1661 spin_lock(&fwc->name_lock);
1662 }
1663 spin_unlock(&fwc->name_lock);
1664 }
1665
1666 /**
1667 * device_cache_fw_images - cache devices' firmware
1668 *
1669 * If one device called request_firmware or its nowait version
1670 * successfully before, the firmware names are recored into the
1671 * device's devres link list, so device_cache_fw_images can call
1672 * cache_firmware() to cache these firmwares for the device,
1673 * then the device driver can load its firmwares easily at
1674 * time when system is not ready to complete loading firmware.
1675 */
1676 static void device_cache_fw_images(void)
1677 {
1678 struct firmware_cache *fwc = &fw_cache;
1679 int old_timeout;
1680 DEFINE_WAIT(wait);
1681
1682 pr_debug("%s\n", __func__);
1683
1684 /* cancel uncache work */
1685 cancel_delayed_work_sync(&fwc->work);
1686
1687 /*
1688 * use small loading timeout for caching devices' firmware
1689 * because all these firmware images have been loaded
1690 * successfully at lease once, also system is ready for
1691 * completing firmware loading now. The maximum size of
1692 * firmware in current distributions is about 2M bytes,
1693 * so 10 secs should be enough.
1694 */
1695 old_timeout = loading_timeout;
1696 loading_timeout = 10;
1697
1698 mutex_lock(&fw_lock);
1699 fwc->state = FW_LOADER_START_CACHE;
1700 dpm_for_each_dev(NULL, dev_cache_fw_image);
1701 mutex_unlock(&fw_lock);
1702
1703 /* wait for completion of caching firmware for all devices */
1704 async_synchronize_full_domain(&fw_cache_domain);
1705
1706 loading_timeout = old_timeout;
1707 }
1708
1709 /**
1710 * device_uncache_fw_images - uncache devices' firmware
1711 *
1712 * uncache all firmwares which have been cached successfully
1713 * by device_uncache_fw_images earlier
1714 */
1715 static void device_uncache_fw_images(void)
1716 {
1717 pr_debug("%s\n", __func__);
1718 __device_uncache_fw_images();
1719 }
1720
1721 static void device_uncache_fw_images_work(struct work_struct *work)
1722 {
1723 device_uncache_fw_images();
1724 }
1725
1726 /**
1727 * device_uncache_fw_images_delay - uncache devices firmwares
1728 * @delay: number of milliseconds to delay uncache device firmwares
1729 *
1730 * uncache all devices's firmwares which has been cached successfully
1731 * by device_cache_fw_images after @delay milliseconds.
1732 */
1733 static void device_uncache_fw_images_delay(unsigned long delay)
1734 {
1735 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1736 msecs_to_jiffies(delay));
1737 }
1738
1739 /**
1740 * fw_pm_notify - notifier for suspend/resume
1741 * @notify_block: unused
1742 * @mode: mode we are switching to
1743 * @unused: unused
1744 *
1745 * Used to modify the firmware_class state as we move in between states.
1746 * The firmware_class implements a firmware cache to enable device driver
1747 * to fetch firmware upon resume before the root filesystem is ready. We
1748 * disable API calls which do not use the built-in firmware or the firmware
1749 * cache when we know these calls will not work.
1750 *
1751 * The inner logic behind all this is a bit complex so it is worth summarizing
1752 * the kernel's own suspend/resume process with context and focus on how this
1753 * can impact the firmware API.
1754 *
1755 * First a review on how we go to suspend::
1756 *
1757 * pm_suspend() --> enter_state() -->
1758 * sys_sync()
1759 * suspend_prepare() -->
1760 * __pm_notifier_call_chain(PM_SUSPEND_PREPARE, ...);
1761 * suspend_freeze_processes() -->
1762 * freeze_processes() -->
1763 * __usermodehelper_set_disable_depth(UMH_DISABLED);
1764 * freeze all tasks ...
1765 * freeze_kernel_threads()
1766 * suspend_devices_and_enter() -->
1767 * dpm_suspend_start() -->
1768 * dpm_prepare()
1769 * dpm_suspend()
1770 * suspend_enter() -->
1771 * platform_suspend_prepare()
1772 * dpm_suspend_late()
1773 * freeze_enter()
1774 * syscore_suspend()
1775 *
1776 * When we resume we bail out of a loop from suspend_devices_and_enter() and
1777 * unwind back out to the caller enter_state() where we were before as follows::
1778 *
1779 * enter_state() -->
1780 * suspend_devices_and_enter() --> (bail from loop)
1781 * dpm_resume_end() -->
1782 * dpm_resume()
1783 * dpm_complete()
1784 * suspend_finish() -->
1785 * suspend_thaw_processes() -->
1786 * thaw_processes() -->
1787 * __usermodehelper_set_disable_depth(UMH_FREEZING);
1788 * thaw_workqueues();
1789 * thaw all processes ...
1790 * usermodehelper_enable();
1791 * pm_notifier_call_chain(PM_POST_SUSPEND);
1792 *
1793 * fw_pm_notify() works through pm_notifier_call_chain().
1794 */
1795 static int fw_pm_notify(struct notifier_block *notify_block,
1796 unsigned long mode, void *unused)
1797 {
1798 switch (mode) {
1799 case PM_HIBERNATION_PREPARE:
1800 case PM_SUSPEND_PREPARE:
1801 case PM_RESTORE_PREPARE:
1802 /*
1803 * kill pending fallback requests with a custom fallback
1804 * to avoid stalling suspend.
1805 */
1806 kill_pending_fw_fallback_reqs(true);
1807 device_cache_fw_images();
1808 disable_firmware();
1809 break;
1810
1811 case PM_POST_SUSPEND:
1812 case PM_POST_HIBERNATION:
1813 case PM_POST_RESTORE:
1814 /*
1815 * In case that system sleep failed and syscore_suspend is
1816 * not called.
1817 */
1818 mutex_lock(&fw_lock);
1819 fw_cache.state = FW_LOADER_NO_CACHE;
1820 mutex_unlock(&fw_lock);
1821 enable_firmware();
1822
1823 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1824 break;
1825 }
1826
1827 return 0;
1828 }
1829
1830 /* stop caching firmware once syscore_suspend is reached */
1831 static int fw_suspend(void)
1832 {
1833 fw_cache.state = FW_LOADER_NO_CACHE;
1834 return 0;
1835 }
1836
1837 static struct syscore_ops fw_syscore_ops = {
1838 .suspend = fw_suspend,
1839 };
1840 #else
1841 static int fw_cache_piggyback_on_request(const char *name)
1842 {
1843 return 0;
1844 }
1845 #endif
1846
1847 static void __init fw_cache_init(void)
1848 {
1849 spin_lock_init(&fw_cache.lock);
1850 INIT_LIST_HEAD(&fw_cache.head);
1851 fw_cache.state = FW_LOADER_NO_CACHE;
1852
1853 #ifdef CONFIG_PM_SLEEP
1854 spin_lock_init(&fw_cache.name_lock);
1855 INIT_LIST_HEAD(&fw_cache.fw_names);
1856
1857 INIT_DELAYED_WORK(&fw_cache.work,
1858 device_uncache_fw_images_work);
1859
1860 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1861 register_pm_notifier(&fw_cache.pm_notify);
1862
1863 register_syscore_ops(&fw_syscore_ops);
1864 #endif
1865 }
1866
1867 static int fw_shutdown_notify(struct notifier_block *unused1,
1868 unsigned long unused2, void *unused3)
1869 {
1870 disable_firmware();
1871 /*
1872 * Kill all pending fallback requests to avoid both stalling shutdown,
1873 * and avoid a deadlock with the usermode_lock.
1874 */
1875 kill_pending_fw_fallback_reqs(false);
1876
1877 return NOTIFY_DONE;
1878 }
1879
1880 static struct notifier_block fw_shutdown_nb = {
1881 .notifier_call = fw_shutdown_notify,
1882 };
1883
1884 static int __init firmware_class_init(void)
1885 {
1886 enable_firmware();
1887 fw_cache_init();
1888 register_reboot_notifier(&fw_shutdown_nb);
1889 #ifdef CONFIG_FW_LOADER_USER_HELPER
1890 return class_register(&firmware_class);
1891 #else
1892 return 0;
1893 #endif
1894 }
1895
1896 static void __exit firmware_class_exit(void)
1897 {
1898 disable_firmware();
1899 #ifdef CONFIG_PM_SLEEP
1900 unregister_syscore_ops(&fw_syscore_ops);
1901 unregister_pm_notifier(&fw_cache.pm_notify);
1902 #endif
1903 unregister_reboot_notifier(&fw_shutdown_nb);
1904 #ifdef CONFIG_FW_LOADER_USER_HELPER
1905 class_unregister(&firmware_class);
1906 #endif
1907 }
1908
1909 fs_initcall(firmware_class_init);
1910 module_exit(firmware_class_exit);