]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/platform.c
Merge tag 'for-4.15-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-bionic-kernel.git] / drivers / base / platform.c
1 /*
2 * platform.c - platform 'pseudo' bus for legacy devices
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 *
7 * This file is released under the GPLv2
8 *
9 * Please see Documentation/driver-model/platform.txt for more
10 * information.
11 */
12
13 #include <linux/string.h>
14 #include <linux/platform_device.h>
15 #include <linux/of_device.h>
16 #include <linux/of_irq.h>
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/bootmem.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/idr.h>
26 #include <linux/acpi.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/limits.h>
29 #include <linux/property.h>
30
31 #include "base.h"
32 #include "power/power.h"
33
34 /* For automatically allocated device IDs */
35 static DEFINE_IDA(platform_devid_ida);
36
37 struct device platform_bus = {
38 .init_name = "platform",
39 };
40 EXPORT_SYMBOL_GPL(platform_bus);
41
42 /**
43 * arch_setup_pdev_archdata - Allow manipulation of archdata before its used
44 * @pdev: platform device
45 *
46 * This is called before platform_device_add() such that any pdev_archdata may
47 * be setup before the platform_notifier is called. So if a user needs to
48 * manipulate any relevant information in the pdev_archdata they can do:
49 *
50 * platform_device_alloc()
51 * ... manipulate ...
52 * platform_device_add()
53 *
54 * And if they don't care they can just call platform_device_register() and
55 * everything will just work out.
56 */
57 void __weak arch_setup_pdev_archdata(struct platform_device *pdev)
58 {
59 }
60
61 /**
62 * platform_get_resource - get a resource for a device
63 * @dev: platform device
64 * @type: resource type
65 * @num: resource index
66 */
67 struct resource *platform_get_resource(struct platform_device *dev,
68 unsigned int type, unsigned int num)
69 {
70 int i;
71
72 for (i = 0; i < dev->num_resources; i++) {
73 struct resource *r = &dev->resource[i];
74
75 if (type == resource_type(r) && num-- == 0)
76 return r;
77 }
78 return NULL;
79 }
80 EXPORT_SYMBOL_GPL(platform_get_resource);
81
82 /**
83 * platform_get_irq - get an IRQ for a device
84 * @dev: platform device
85 * @num: IRQ number index
86 */
87 int platform_get_irq(struct platform_device *dev, unsigned int num)
88 {
89 #ifdef CONFIG_SPARC
90 /* sparc does not have irqs represented as IORESOURCE_IRQ resources */
91 if (!dev || num >= dev->archdata.num_irqs)
92 return -ENXIO;
93 return dev->archdata.irqs[num];
94 #else
95 struct resource *r;
96 if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
97 int ret;
98
99 ret = of_irq_get(dev->dev.of_node, num);
100 if (ret > 0 || ret == -EPROBE_DEFER)
101 return ret;
102 }
103
104 r = platform_get_resource(dev, IORESOURCE_IRQ, num);
105 if (has_acpi_companion(&dev->dev)) {
106 if (r && r->flags & IORESOURCE_DISABLED) {
107 int ret;
108
109 ret = acpi_irq_get(ACPI_HANDLE(&dev->dev), num, r);
110 if (ret)
111 return ret;
112 }
113 }
114
115 /*
116 * The resources may pass trigger flags to the irqs that need
117 * to be set up. It so happens that the trigger flags for
118 * IORESOURCE_BITS correspond 1-to-1 to the IRQF_TRIGGER*
119 * settings.
120 */
121 if (r && r->flags & IORESOURCE_BITS) {
122 struct irq_data *irqd;
123
124 irqd = irq_get_irq_data(r->start);
125 if (!irqd)
126 return -ENXIO;
127 irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);
128 }
129
130 return r ? r->start : -ENXIO;
131 #endif
132 }
133 EXPORT_SYMBOL_GPL(platform_get_irq);
134
135 /**
136 * platform_irq_count - Count the number of IRQs a platform device uses
137 * @dev: platform device
138 *
139 * Return: Number of IRQs a platform device uses or EPROBE_DEFER
140 */
141 int platform_irq_count(struct platform_device *dev)
142 {
143 int ret, nr = 0;
144
145 while ((ret = platform_get_irq(dev, nr)) >= 0)
146 nr++;
147
148 if (ret == -EPROBE_DEFER)
149 return ret;
150
151 return nr;
152 }
153 EXPORT_SYMBOL_GPL(platform_irq_count);
154
155 /**
156 * platform_get_resource_byname - get a resource for a device by name
157 * @dev: platform device
158 * @type: resource type
159 * @name: resource name
160 */
161 struct resource *platform_get_resource_byname(struct platform_device *dev,
162 unsigned int type,
163 const char *name)
164 {
165 int i;
166
167 for (i = 0; i < dev->num_resources; i++) {
168 struct resource *r = &dev->resource[i];
169
170 if (unlikely(!r->name))
171 continue;
172
173 if (type == resource_type(r) && !strcmp(r->name, name))
174 return r;
175 }
176 return NULL;
177 }
178 EXPORT_SYMBOL_GPL(platform_get_resource_byname);
179
180 /**
181 * platform_get_irq_byname - get an IRQ for a device by name
182 * @dev: platform device
183 * @name: IRQ name
184 */
185 int platform_get_irq_byname(struct platform_device *dev, const char *name)
186 {
187 struct resource *r;
188
189 if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
190 int ret;
191
192 ret = of_irq_get_byname(dev->dev.of_node, name);
193 if (ret > 0 || ret == -EPROBE_DEFER)
194 return ret;
195 }
196
197 r = platform_get_resource_byname(dev, IORESOURCE_IRQ, name);
198 return r ? r->start : -ENXIO;
199 }
200 EXPORT_SYMBOL_GPL(platform_get_irq_byname);
201
202 /**
203 * platform_add_devices - add a numbers of platform devices
204 * @devs: array of platform devices to add
205 * @num: number of platform devices in array
206 */
207 int platform_add_devices(struct platform_device **devs, int num)
208 {
209 int i, ret = 0;
210
211 for (i = 0; i < num; i++) {
212 ret = platform_device_register(devs[i]);
213 if (ret) {
214 while (--i >= 0)
215 platform_device_unregister(devs[i]);
216 break;
217 }
218 }
219
220 return ret;
221 }
222 EXPORT_SYMBOL_GPL(platform_add_devices);
223
224 struct platform_object {
225 struct platform_device pdev;
226 char name[];
227 };
228
229 /**
230 * platform_device_put - destroy a platform device
231 * @pdev: platform device to free
232 *
233 * Free all memory associated with a platform device. This function must
234 * _only_ be externally called in error cases. All other usage is a bug.
235 */
236 void platform_device_put(struct platform_device *pdev)
237 {
238 if (pdev)
239 put_device(&pdev->dev);
240 }
241 EXPORT_SYMBOL_GPL(platform_device_put);
242
243 static void platform_device_release(struct device *dev)
244 {
245 struct platform_object *pa = container_of(dev, struct platform_object,
246 pdev.dev);
247
248 of_device_node_put(&pa->pdev.dev);
249 kfree(pa->pdev.dev.platform_data);
250 kfree(pa->pdev.mfd_cell);
251 kfree(pa->pdev.resource);
252 kfree(pa->pdev.driver_override);
253 kfree(pa);
254 }
255
256 /**
257 * platform_device_alloc - create a platform device
258 * @name: base name of the device we're adding
259 * @id: instance id
260 *
261 * Create a platform device object which can have other objects attached
262 * to it, and which will have attached objects freed when it is released.
263 */
264 struct platform_device *platform_device_alloc(const char *name, int id)
265 {
266 struct platform_object *pa;
267
268 pa = kzalloc(sizeof(*pa) + strlen(name) + 1, GFP_KERNEL);
269 if (pa) {
270 strcpy(pa->name, name);
271 pa->pdev.name = pa->name;
272 pa->pdev.id = id;
273 device_initialize(&pa->pdev.dev);
274 pa->pdev.dev.release = platform_device_release;
275 arch_setup_pdev_archdata(&pa->pdev);
276 }
277
278 return pa ? &pa->pdev : NULL;
279 }
280 EXPORT_SYMBOL_GPL(platform_device_alloc);
281
282 /**
283 * platform_device_add_resources - add resources to a platform device
284 * @pdev: platform device allocated by platform_device_alloc to add resources to
285 * @res: set of resources that needs to be allocated for the device
286 * @num: number of resources
287 *
288 * Add a copy of the resources to the platform device. The memory
289 * associated with the resources will be freed when the platform device is
290 * released.
291 */
292 int platform_device_add_resources(struct platform_device *pdev,
293 const struct resource *res, unsigned int num)
294 {
295 struct resource *r = NULL;
296
297 if (res) {
298 r = kmemdup(res, sizeof(struct resource) * num, GFP_KERNEL);
299 if (!r)
300 return -ENOMEM;
301 }
302
303 kfree(pdev->resource);
304 pdev->resource = r;
305 pdev->num_resources = num;
306 return 0;
307 }
308 EXPORT_SYMBOL_GPL(platform_device_add_resources);
309
310 /**
311 * platform_device_add_data - add platform-specific data to a platform device
312 * @pdev: platform device allocated by platform_device_alloc to add resources to
313 * @data: platform specific data for this platform device
314 * @size: size of platform specific data
315 *
316 * Add a copy of platform specific data to the platform device's
317 * platform_data pointer. The memory associated with the platform data
318 * will be freed when the platform device is released.
319 */
320 int platform_device_add_data(struct platform_device *pdev, const void *data,
321 size_t size)
322 {
323 void *d = NULL;
324
325 if (data) {
326 d = kmemdup(data, size, GFP_KERNEL);
327 if (!d)
328 return -ENOMEM;
329 }
330
331 kfree(pdev->dev.platform_data);
332 pdev->dev.platform_data = d;
333 return 0;
334 }
335 EXPORT_SYMBOL_GPL(platform_device_add_data);
336
337 /**
338 * platform_device_add_properties - add built-in properties to a platform device
339 * @pdev: platform device to add properties to
340 * @properties: null terminated array of properties to add
341 *
342 * The function will take deep copy of @properties and attach the copy to the
343 * platform device. The memory associated with properties will be freed when the
344 * platform device is released.
345 */
346 int platform_device_add_properties(struct platform_device *pdev,
347 const struct property_entry *properties)
348 {
349 return device_add_properties(&pdev->dev, properties);
350 }
351 EXPORT_SYMBOL_GPL(platform_device_add_properties);
352
353 /**
354 * platform_device_add - add a platform device to device hierarchy
355 * @pdev: platform device we're adding
356 *
357 * This is part 2 of platform_device_register(), though may be called
358 * separately _iff_ pdev was allocated by platform_device_alloc().
359 */
360 int platform_device_add(struct platform_device *pdev)
361 {
362 int i, ret;
363
364 if (!pdev)
365 return -EINVAL;
366
367 if (!pdev->dev.parent)
368 pdev->dev.parent = &platform_bus;
369
370 pdev->dev.bus = &platform_bus_type;
371
372 switch (pdev->id) {
373 default:
374 dev_set_name(&pdev->dev, "%s.%d", pdev->name, pdev->id);
375 break;
376 case PLATFORM_DEVID_NONE:
377 dev_set_name(&pdev->dev, "%s", pdev->name);
378 break;
379 case PLATFORM_DEVID_AUTO:
380 /*
381 * Automatically allocated device ID. We mark it as such so
382 * that we remember it must be freed, and we append a suffix
383 * to avoid namespace collision with explicit IDs.
384 */
385 ret = ida_simple_get(&platform_devid_ida, 0, 0, GFP_KERNEL);
386 if (ret < 0)
387 goto err_out;
388 pdev->id = ret;
389 pdev->id_auto = true;
390 dev_set_name(&pdev->dev, "%s.%d.auto", pdev->name, pdev->id);
391 break;
392 }
393
394 for (i = 0; i < pdev->num_resources; i++) {
395 struct resource *p, *r = &pdev->resource[i];
396
397 if (r->name == NULL)
398 r->name = dev_name(&pdev->dev);
399
400 p = r->parent;
401 if (!p) {
402 if (resource_type(r) == IORESOURCE_MEM)
403 p = &iomem_resource;
404 else if (resource_type(r) == IORESOURCE_IO)
405 p = &ioport_resource;
406 }
407
408 if (p && insert_resource(p, r)) {
409 dev_err(&pdev->dev, "failed to claim resource %d: %pR\n", i, r);
410 ret = -EBUSY;
411 goto failed;
412 }
413 }
414
415 pr_debug("Registering platform device '%s'. Parent at %s\n",
416 dev_name(&pdev->dev), dev_name(pdev->dev.parent));
417
418 ret = device_add(&pdev->dev);
419 if (ret == 0)
420 return ret;
421
422 failed:
423 if (pdev->id_auto) {
424 ida_simple_remove(&platform_devid_ida, pdev->id);
425 pdev->id = PLATFORM_DEVID_AUTO;
426 }
427
428 while (--i >= 0) {
429 struct resource *r = &pdev->resource[i];
430 if (r->parent)
431 release_resource(r);
432 }
433
434 err_out:
435 return ret;
436 }
437 EXPORT_SYMBOL_GPL(platform_device_add);
438
439 /**
440 * platform_device_del - remove a platform-level device
441 * @pdev: platform device we're removing
442 *
443 * Note that this function will also release all memory- and port-based
444 * resources owned by the device (@dev->resource). This function must
445 * _only_ be externally called in error cases. All other usage is a bug.
446 */
447 void platform_device_del(struct platform_device *pdev)
448 {
449 int i;
450
451 if (pdev) {
452 device_remove_properties(&pdev->dev);
453 device_del(&pdev->dev);
454
455 if (pdev->id_auto) {
456 ida_simple_remove(&platform_devid_ida, pdev->id);
457 pdev->id = PLATFORM_DEVID_AUTO;
458 }
459
460 for (i = 0; i < pdev->num_resources; i++) {
461 struct resource *r = &pdev->resource[i];
462 if (r->parent)
463 release_resource(r);
464 }
465 }
466 }
467 EXPORT_SYMBOL_GPL(platform_device_del);
468
469 /**
470 * platform_device_register - add a platform-level device
471 * @pdev: platform device we're adding
472 */
473 int platform_device_register(struct platform_device *pdev)
474 {
475 device_initialize(&pdev->dev);
476 arch_setup_pdev_archdata(pdev);
477 return platform_device_add(pdev);
478 }
479 EXPORT_SYMBOL_GPL(platform_device_register);
480
481 /**
482 * platform_device_unregister - unregister a platform-level device
483 * @pdev: platform device we're unregistering
484 *
485 * Unregistration is done in 2 steps. First we release all resources
486 * and remove it from the subsystem, then we drop reference count by
487 * calling platform_device_put().
488 */
489 void platform_device_unregister(struct platform_device *pdev)
490 {
491 platform_device_del(pdev);
492 platform_device_put(pdev);
493 }
494 EXPORT_SYMBOL_GPL(platform_device_unregister);
495
496 /**
497 * platform_device_register_full - add a platform-level device with
498 * resources and platform-specific data
499 *
500 * @pdevinfo: data used to create device
501 *
502 * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
503 */
504 struct platform_device *platform_device_register_full(
505 const struct platform_device_info *pdevinfo)
506 {
507 int ret = -ENOMEM;
508 struct platform_device *pdev;
509
510 pdev = platform_device_alloc(pdevinfo->name, pdevinfo->id);
511 if (!pdev)
512 goto err_alloc;
513
514 pdev->dev.parent = pdevinfo->parent;
515 pdev->dev.fwnode = pdevinfo->fwnode;
516
517 if (pdevinfo->dma_mask) {
518 /*
519 * This memory isn't freed when the device is put,
520 * I don't have a nice idea for that though. Conceptually
521 * dma_mask in struct device should not be a pointer.
522 * See http://thread.gmane.org/gmane.linux.kernel.pci/9081
523 */
524 pdev->dev.dma_mask =
525 kmalloc(sizeof(*pdev->dev.dma_mask), GFP_KERNEL);
526 if (!pdev->dev.dma_mask)
527 goto err;
528
529 *pdev->dev.dma_mask = pdevinfo->dma_mask;
530 pdev->dev.coherent_dma_mask = pdevinfo->dma_mask;
531 }
532
533 ret = platform_device_add_resources(pdev,
534 pdevinfo->res, pdevinfo->num_res);
535 if (ret)
536 goto err;
537
538 ret = platform_device_add_data(pdev,
539 pdevinfo->data, pdevinfo->size_data);
540 if (ret)
541 goto err;
542
543 if (pdevinfo->properties) {
544 ret = platform_device_add_properties(pdev,
545 pdevinfo->properties);
546 if (ret)
547 goto err;
548 }
549
550 ret = platform_device_add(pdev);
551 if (ret) {
552 err:
553 ACPI_COMPANION_SET(&pdev->dev, NULL);
554 kfree(pdev->dev.dma_mask);
555
556 err_alloc:
557 platform_device_put(pdev);
558 return ERR_PTR(ret);
559 }
560
561 return pdev;
562 }
563 EXPORT_SYMBOL_GPL(platform_device_register_full);
564
565 static int platform_drv_probe(struct device *_dev)
566 {
567 struct platform_driver *drv = to_platform_driver(_dev->driver);
568 struct platform_device *dev = to_platform_device(_dev);
569 int ret;
570
571 ret = of_clk_set_defaults(_dev->of_node, false);
572 if (ret < 0)
573 return ret;
574
575 ret = dev_pm_domain_attach(_dev, true);
576 if (ret != -EPROBE_DEFER) {
577 if (drv->probe) {
578 ret = drv->probe(dev);
579 if (ret)
580 dev_pm_domain_detach(_dev, true);
581 } else {
582 /* don't fail if just dev_pm_domain_attach failed */
583 ret = 0;
584 }
585 }
586
587 if (drv->prevent_deferred_probe && ret == -EPROBE_DEFER) {
588 dev_warn(_dev, "probe deferral not supported\n");
589 ret = -ENXIO;
590 }
591
592 return ret;
593 }
594
595 static int platform_drv_probe_fail(struct device *_dev)
596 {
597 return -ENXIO;
598 }
599
600 static int platform_drv_remove(struct device *_dev)
601 {
602 struct platform_driver *drv = to_platform_driver(_dev->driver);
603 struct platform_device *dev = to_platform_device(_dev);
604 int ret = 0;
605
606 if (drv->remove)
607 ret = drv->remove(dev);
608 dev_pm_domain_detach(_dev, true);
609
610 return ret;
611 }
612
613 static void platform_drv_shutdown(struct device *_dev)
614 {
615 struct platform_driver *drv = to_platform_driver(_dev->driver);
616 struct platform_device *dev = to_platform_device(_dev);
617
618 if (drv->shutdown)
619 drv->shutdown(dev);
620 }
621
622 /**
623 * __platform_driver_register - register a driver for platform-level devices
624 * @drv: platform driver structure
625 * @owner: owning module/driver
626 */
627 int __platform_driver_register(struct platform_driver *drv,
628 struct module *owner)
629 {
630 drv->driver.owner = owner;
631 drv->driver.bus = &platform_bus_type;
632 drv->driver.probe = platform_drv_probe;
633 drv->driver.remove = platform_drv_remove;
634 drv->driver.shutdown = platform_drv_shutdown;
635
636 return driver_register(&drv->driver);
637 }
638 EXPORT_SYMBOL_GPL(__platform_driver_register);
639
640 /**
641 * platform_driver_unregister - unregister a driver for platform-level devices
642 * @drv: platform driver structure
643 */
644 void platform_driver_unregister(struct platform_driver *drv)
645 {
646 driver_unregister(&drv->driver);
647 }
648 EXPORT_SYMBOL_GPL(platform_driver_unregister);
649
650 /**
651 * __platform_driver_probe - register driver for non-hotpluggable device
652 * @drv: platform driver structure
653 * @probe: the driver probe routine, probably from an __init section
654 * @module: module which will be the owner of the driver
655 *
656 * Use this instead of platform_driver_register() when you know the device
657 * is not hotpluggable and has already been registered, and you want to
658 * remove its run-once probe() infrastructure from memory after the driver
659 * has bound to the device.
660 *
661 * One typical use for this would be with drivers for controllers integrated
662 * into system-on-chip processors, where the controller devices have been
663 * configured as part of board setup.
664 *
665 * Note that this is incompatible with deferred probing.
666 *
667 * Returns zero if the driver registered and bound to a device, else returns
668 * a negative error code and with the driver not registered.
669 */
670 int __init_or_module __platform_driver_probe(struct platform_driver *drv,
671 int (*probe)(struct platform_device *), struct module *module)
672 {
673 int retval, code;
674
675 if (drv->driver.probe_type == PROBE_PREFER_ASYNCHRONOUS) {
676 pr_err("%s: drivers registered with %s can not be probed asynchronously\n",
677 drv->driver.name, __func__);
678 return -EINVAL;
679 }
680
681 /*
682 * We have to run our probes synchronously because we check if
683 * we find any devices to bind to and exit with error if there
684 * are any.
685 */
686 drv->driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
687
688 /*
689 * Prevent driver from requesting probe deferral to avoid further
690 * futile probe attempts.
691 */
692 drv->prevent_deferred_probe = true;
693
694 /* make sure driver won't have bind/unbind attributes */
695 drv->driver.suppress_bind_attrs = true;
696
697 /* temporary section violation during probe() */
698 drv->probe = probe;
699 retval = code = __platform_driver_register(drv, module);
700
701 /*
702 * Fixup that section violation, being paranoid about code scanning
703 * the list of drivers in order to probe new devices. Check to see
704 * if the probe was successful, and make sure any forced probes of
705 * new devices fail.
706 */
707 spin_lock(&drv->driver.bus->p->klist_drivers.k_lock);
708 drv->probe = NULL;
709 if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list))
710 retval = -ENODEV;
711 drv->driver.probe = platform_drv_probe_fail;
712 spin_unlock(&drv->driver.bus->p->klist_drivers.k_lock);
713
714 if (code != retval)
715 platform_driver_unregister(drv);
716 return retval;
717 }
718 EXPORT_SYMBOL_GPL(__platform_driver_probe);
719
720 /**
721 * __platform_create_bundle - register driver and create corresponding device
722 * @driver: platform driver structure
723 * @probe: the driver probe routine, probably from an __init section
724 * @res: set of resources that needs to be allocated for the device
725 * @n_res: number of resources
726 * @data: platform specific data for this platform device
727 * @size: size of platform specific data
728 * @module: module which will be the owner of the driver
729 *
730 * Use this in legacy-style modules that probe hardware directly and
731 * register a single platform device and corresponding platform driver.
732 *
733 * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
734 */
735 struct platform_device * __init_or_module __platform_create_bundle(
736 struct platform_driver *driver,
737 int (*probe)(struct platform_device *),
738 struct resource *res, unsigned int n_res,
739 const void *data, size_t size, struct module *module)
740 {
741 struct platform_device *pdev;
742 int error;
743
744 pdev = platform_device_alloc(driver->driver.name, -1);
745 if (!pdev) {
746 error = -ENOMEM;
747 goto err_out;
748 }
749
750 error = platform_device_add_resources(pdev, res, n_res);
751 if (error)
752 goto err_pdev_put;
753
754 error = platform_device_add_data(pdev, data, size);
755 if (error)
756 goto err_pdev_put;
757
758 error = platform_device_add(pdev);
759 if (error)
760 goto err_pdev_put;
761
762 error = __platform_driver_probe(driver, probe, module);
763 if (error)
764 goto err_pdev_del;
765
766 return pdev;
767
768 err_pdev_del:
769 platform_device_del(pdev);
770 err_pdev_put:
771 platform_device_put(pdev);
772 err_out:
773 return ERR_PTR(error);
774 }
775 EXPORT_SYMBOL_GPL(__platform_create_bundle);
776
777 /**
778 * __platform_register_drivers - register an array of platform drivers
779 * @drivers: an array of drivers to register
780 * @count: the number of drivers to register
781 * @owner: module owning the drivers
782 *
783 * Registers platform drivers specified by an array. On failure to register a
784 * driver, all previously registered drivers will be unregistered. Callers of
785 * this API should use platform_unregister_drivers() to unregister drivers in
786 * the reverse order.
787 *
788 * Returns: 0 on success or a negative error code on failure.
789 */
790 int __platform_register_drivers(struct platform_driver * const *drivers,
791 unsigned int count, struct module *owner)
792 {
793 unsigned int i;
794 int err;
795
796 for (i = 0; i < count; i++) {
797 pr_debug("registering platform driver %ps\n", drivers[i]);
798
799 err = __platform_driver_register(drivers[i], owner);
800 if (err < 0) {
801 pr_err("failed to register platform driver %ps: %d\n",
802 drivers[i], err);
803 goto error;
804 }
805 }
806
807 return 0;
808
809 error:
810 while (i--) {
811 pr_debug("unregistering platform driver %ps\n", drivers[i]);
812 platform_driver_unregister(drivers[i]);
813 }
814
815 return err;
816 }
817 EXPORT_SYMBOL_GPL(__platform_register_drivers);
818
819 /**
820 * platform_unregister_drivers - unregister an array of platform drivers
821 * @drivers: an array of drivers to unregister
822 * @count: the number of drivers to unregister
823 *
824 * Unegisters platform drivers specified by an array. This is typically used
825 * to complement an earlier call to platform_register_drivers(). Drivers are
826 * unregistered in the reverse order in which they were registered.
827 */
828 void platform_unregister_drivers(struct platform_driver * const *drivers,
829 unsigned int count)
830 {
831 while (count--) {
832 pr_debug("unregistering platform driver %ps\n", drivers[count]);
833 platform_driver_unregister(drivers[count]);
834 }
835 }
836 EXPORT_SYMBOL_GPL(platform_unregister_drivers);
837
838 /* modalias support enables more hands-off userspace setup:
839 * (a) environment variable lets new-style hotplug events work once system is
840 * fully running: "modprobe $MODALIAS"
841 * (b) sysfs attribute lets new-style coldplug recover from hotplug events
842 * mishandled before system is fully running: "modprobe $(cat modalias)"
843 */
844 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
845 char *buf)
846 {
847 struct platform_device *pdev = to_platform_device(dev);
848 int len;
849
850 len = of_device_modalias(dev, buf, PAGE_SIZE);
851 if (len != -ENODEV)
852 return len;
853
854 len = acpi_device_modalias(dev, buf, PAGE_SIZE -1);
855 if (len != -ENODEV)
856 return len;
857
858 len = snprintf(buf, PAGE_SIZE, "platform:%s\n", pdev->name);
859
860 return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len;
861 }
862 static DEVICE_ATTR_RO(modalias);
863
864 static ssize_t driver_override_store(struct device *dev,
865 struct device_attribute *attr,
866 const char *buf, size_t count)
867 {
868 struct platform_device *pdev = to_platform_device(dev);
869 char *driver_override, *old, *cp;
870
871 /* We need to keep extra room for a newline */
872 if (count >= (PAGE_SIZE - 1))
873 return -EINVAL;
874
875 driver_override = kstrndup(buf, count, GFP_KERNEL);
876 if (!driver_override)
877 return -ENOMEM;
878
879 cp = strchr(driver_override, '\n');
880 if (cp)
881 *cp = '\0';
882
883 device_lock(dev);
884 old = pdev->driver_override;
885 if (strlen(driver_override)) {
886 pdev->driver_override = driver_override;
887 } else {
888 kfree(driver_override);
889 pdev->driver_override = NULL;
890 }
891 device_unlock(dev);
892
893 kfree(old);
894
895 return count;
896 }
897
898 static ssize_t driver_override_show(struct device *dev,
899 struct device_attribute *attr, char *buf)
900 {
901 struct platform_device *pdev = to_platform_device(dev);
902 ssize_t len;
903
904 device_lock(dev);
905 len = sprintf(buf, "%s\n", pdev->driver_override);
906 device_unlock(dev);
907 return len;
908 }
909 static DEVICE_ATTR_RW(driver_override);
910
911
912 static struct attribute *platform_dev_attrs[] = {
913 &dev_attr_modalias.attr,
914 &dev_attr_driver_override.attr,
915 NULL,
916 };
917 ATTRIBUTE_GROUPS(platform_dev);
918
919 static int platform_uevent(struct device *dev, struct kobj_uevent_env *env)
920 {
921 struct platform_device *pdev = to_platform_device(dev);
922 int rc;
923
924 /* Some devices have extra OF data and an OF-style MODALIAS */
925 rc = of_device_uevent_modalias(dev, env);
926 if (rc != -ENODEV)
927 return rc;
928
929 rc = acpi_device_uevent_modalias(dev, env);
930 if (rc != -ENODEV)
931 return rc;
932
933 add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX,
934 pdev->name);
935 return 0;
936 }
937
938 static const struct platform_device_id *platform_match_id(
939 const struct platform_device_id *id,
940 struct platform_device *pdev)
941 {
942 while (id->name[0]) {
943 if (strcmp(pdev->name, id->name) == 0) {
944 pdev->id_entry = id;
945 return id;
946 }
947 id++;
948 }
949 return NULL;
950 }
951
952 /**
953 * platform_match - bind platform device to platform driver.
954 * @dev: device.
955 * @drv: driver.
956 *
957 * Platform device IDs are assumed to be encoded like this:
958 * "<name><instance>", where <name> is a short description of the type of
959 * device, like "pci" or "floppy", and <instance> is the enumerated
960 * instance of the device, like '0' or '42'. Driver IDs are simply
961 * "<name>". So, extract the <name> from the platform_device structure,
962 * and compare it against the name of the driver. Return whether they match
963 * or not.
964 */
965 static int platform_match(struct device *dev, struct device_driver *drv)
966 {
967 struct platform_device *pdev = to_platform_device(dev);
968 struct platform_driver *pdrv = to_platform_driver(drv);
969
970 /* When driver_override is set, only bind to the matching driver */
971 if (pdev->driver_override)
972 return !strcmp(pdev->driver_override, drv->name);
973
974 /* Attempt an OF style match first */
975 if (of_driver_match_device(dev, drv))
976 return 1;
977
978 /* Then try ACPI style match */
979 if (acpi_driver_match_device(dev, drv))
980 return 1;
981
982 /* Then try to match against the id table */
983 if (pdrv->id_table)
984 return platform_match_id(pdrv->id_table, pdev) != NULL;
985
986 /* fall-back to driver name match */
987 return (strcmp(pdev->name, drv->name) == 0);
988 }
989
990 #ifdef CONFIG_PM_SLEEP
991
992 static int platform_legacy_suspend(struct device *dev, pm_message_t mesg)
993 {
994 struct platform_driver *pdrv = to_platform_driver(dev->driver);
995 struct platform_device *pdev = to_platform_device(dev);
996 int ret = 0;
997
998 if (dev->driver && pdrv->suspend)
999 ret = pdrv->suspend(pdev, mesg);
1000
1001 return ret;
1002 }
1003
1004 static int platform_legacy_resume(struct device *dev)
1005 {
1006 struct platform_driver *pdrv = to_platform_driver(dev->driver);
1007 struct platform_device *pdev = to_platform_device(dev);
1008 int ret = 0;
1009
1010 if (dev->driver && pdrv->resume)
1011 ret = pdrv->resume(pdev);
1012
1013 return ret;
1014 }
1015
1016 #endif /* CONFIG_PM_SLEEP */
1017
1018 #ifdef CONFIG_SUSPEND
1019
1020 int platform_pm_suspend(struct device *dev)
1021 {
1022 struct device_driver *drv = dev->driver;
1023 int ret = 0;
1024
1025 if (!drv)
1026 return 0;
1027
1028 if (drv->pm) {
1029 if (drv->pm->suspend)
1030 ret = drv->pm->suspend(dev);
1031 } else {
1032 ret = platform_legacy_suspend(dev, PMSG_SUSPEND);
1033 }
1034
1035 return ret;
1036 }
1037
1038 int platform_pm_resume(struct device *dev)
1039 {
1040 struct device_driver *drv = dev->driver;
1041 int ret = 0;
1042
1043 if (!drv)
1044 return 0;
1045
1046 if (drv->pm) {
1047 if (drv->pm->resume)
1048 ret = drv->pm->resume(dev);
1049 } else {
1050 ret = platform_legacy_resume(dev);
1051 }
1052
1053 return ret;
1054 }
1055
1056 #endif /* CONFIG_SUSPEND */
1057
1058 #ifdef CONFIG_HIBERNATE_CALLBACKS
1059
1060 int platform_pm_freeze(struct device *dev)
1061 {
1062 struct device_driver *drv = dev->driver;
1063 int ret = 0;
1064
1065 if (!drv)
1066 return 0;
1067
1068 if (drv->pm) {
1069 if (drv->pm->freeze)
1070 ret = drv->pm->freeze(dev);
1071 } else {
1072 ret = platform_legacy_suspend(dev, PMSG_FREEZE);
1073 }
1074
1075 return ret;
1076 }
1077
1078 int platform_pm_thaw(struct device *dev)
1079 {
1080 struct device_driver *drv = dev->driver;
1081 int ret = 0;
1082
1083 if (!drv)
1084 return 0;
1085
1086 if (drv->pm) {
1087 if (drv->pm->thaw)
1088 ret = drv->pm->thaw(dev);
1089 } else {
1090 ret = platform_legacy_resume(dev);
1091 }
1092
1093 return ret;
1094 }
1095
1096 int platform_pm_poweroff(struct device *dev)
1097 {
1098 struct device_driver *drv = dev->driver;
1099 int ret = 0;
1100
1101 if (!drv)
1102 return 0;
1103
1104 if (drv->pm) {
1105 if (drv->pm->poweroff)
1106 ret = drv->pm->poweroff(dev);
1107 } else {
1108 ret = platform_legacy_suspend(dev, PMSG_HIBERNATE);
1109 }
1110
1111 return ret;
1112 }
1113
1114 int platform_pm_restore(struct device *dev)
1115 {
1116 struct device_driver *drv = dev->driver;
1117 int ret = 0;
1118
1119 if (!drv)
1120 return 0;
1121
1122 if (drv->pm) {
1123 if (drv->pm->restore)
1124 ret = drv->pm->restore(dev);
1125 } else {
1126 ret = platform_legacy_resume(dev);
1127 }
1128
1129 return ret;
1130 }
1131
1132 #endif /* CONFIG_HIBERNATE_CALLBACKS */
1133
1134 static const struct dev_pm_ops platform_dev_pm_ops = {
1135 .runtime_suspend = pm_generic_runtime_suspend,
1136 .runtime_resume = pm_generic_runtime_resume,
1137 USE_PLATFORM_PM_SLEEP_OPS
1138 };
1139
1140 struct bus_type platform_bus_type = {
1141 .name = "platform",
1142 .dev_groups = platform_dev_groups,
1143 .match = platform_match,
1144 .uevent = platform_uevent,
1145 .pm = &platform_dev_pm_ops,
1146 .force_dma = true,
1147 };
1148 EXPORT_SYMBOL_GPL(platform_bus_type);
1149
1150 int __init platform_bus_init(void)
1151 {
1152 int error;
1153
1154 early_platform_cleanup();
1155
1156 error = device_register(&platform_bus);
1157 if (error)
1158 return error;
1159 error = bus_register(&platform_bus_type);
1160 if (error)
1161 device_unregister(&platform_bus);
1162 of_platform_register_reconfig_notifier();
1163 return error;
1164 }
1165
1166 #ifndef ARCH_HAS_DMA_GET_REQUIRED_MASK
1167 u64 dma_get_required_mask(struct device *dev)
1168 {
1169 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
1170 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
1171 u64 mask;
1172
1173 if (!high_totalram) {
1174 /* convert to mask just covering totalram */
1175 low_totalram = (1 << (fls(low_totalram) - 1));
1176 low_totalram += low_totalram - 1;
1177 mask = low_totalram;
1178 } else {
1179 high_totalram = (1 << (fls(high_totalram) - 1));
1180 high_totalram += high_totalram - 1;
1181 mask = (((u64)high_totalram) << 32) + 0xffffffff;
1182 }
1183 return mask;
1184 }
1185 EXPORT_SYMBOL_GPL(dma_get_required_mask);
1186 #endif
1187
1188 static __initdata LIST_HEAD(early_platform_driver_list);
1189 static __initdata LIST_HEAD(early_platform_device_list);
1190
1191 /**
1192 * early_platform_driver_register - register early platform driver
1193 * @epdrv: early_platform driver structure
1194 * @buf: string passed from early_param()
1195 *
1196 * Helper function for early_platform_init() / early_platform_init_buffer()
1197 */
1198 int __init early_platform_driver_register(struct early_platform_driver *epdrv,
1199 char *buf)
1200 {
1201 char *tmp;
1202 int n;
1203
1204 /* Simply add the driver to the end of the global list.
1205 * Drivers will by default be put on the list in compiled-in order.
1206 */
1207 if (!epdrv->list.next) {
1208 INIT_LIST_HEAD(&epdrv->list);
1209 list_add_tail(&epdrv->list, &early_platform_driver_list);
1210 }
1211
1212 /* If the user has specified device then make sure the driver
1213 * gets prioritized. The driver of the last device specified on
1214 * command line will be put first on the list.
1215 */
1216 n = strlen(epdrv->pdrv->driver.name);
1217 if (buf && !strncmp(buf, epdrv->pdrv->driver.name, n)) {
1218 list_move(&epdrv->list, &early_platform_driver_list);
1219
1220 /* Allow passing parameters after device name */
1221 if (buf[n] == '\0' || buf[n] == ',')
1222 epdrv->requested_id = -1;
1223 else {
1224 epdrv->requested_id = simple_strtoul(&buf[n + 1],
1225 &tmp, 10);
1226
1227 if (buf[n] != '.' || (tmp == &buf[n + 1])) {
1228 epdrv->requested_id = EARLY_PLATFORM_ID_ERROR;
1229 n = 0;
1230 } else
1231 n += strcspn(&buf[n + 1], ",") + 1;
1232 }
1233
1234 if (buf[n] == ',')
1235 n++;
1236
1237 if (epdrv->bufsize) {
1238 memcpy(epdrv->buffer, &buf[n],
1239 min_t(int, epdrv->bufsize, strlen(&buf[n]) + 1));
1240 epdrv->buffer[epdrv->bufsize - 1] = '\0';
1241 }
1242 }
1243
1244 return 0;
1245 }
1246
1247 /**
1248 * early_platform_add_devices - adds a number of early platform devices
1249 * @devs: array of early platform devices to add
1250 * @num: number of early platform devices in array
1251 *
1252 * Used by early architecture code to register early platform devices and
1253 * their platform data.
1254 */
1255 void __init early_platform_add_devices(struct platform_device **devs, int num)
1256 {
1257 struct device *dev;
1258 int i;
1259
1260 /* simply add the devices to list */
1261 for (i = 0; i < num; i++) {
1262 dev = &devs[i]->dev;
1263
1264 if (!dev->devres_head.next) {
1265 pm_runtime_early_init(dev);
1266 INIT_LIST_HEAD(&dev->devres_head);
1267 list_add_tail(&dev->devres_head,
1268 &early_platform_device_list);
1269 }
1270 }
1271 }
1272
1273 /**
1274 * early_platform_driver_register_all - register early platform drivers
1275 * @class_str: string to identify early platform driver class
1276 *
1277 * Used by architecture code to register all early platform drivers
1278 * for a certain class. If omitted then only early platform drivers
1279 * with matching kernel command line class parameters will be registered.
1280 */
1281 void __init early_platform_driver_register_all(char *class_str)
1282 {
1283 /* The "class_str" parameter may or may not be present on the kernel
1284 * command line. If it is present then there may be more than one
1285 * matching parameter.
1286 *
1287 * Since we register our early platform drivers using early_param()
1288 * we need to make sure that they also get registered in the case
1289 * when the parameter is missing from the kernel command line.
1290 *
1291 * We use parse_early_options() to make sure the early_param() gets
1292 * called at least once. The early_param() may be called more than
1293 * once since the name of the preferred device may be specified on
1294 * the kernel command line. early_platform_driver_register() handles
1295 * this case for us.
1296 */
1297 parse_early_options(class_str);
1298 }
1299
1300 /**
1301 * early_platform_match - find early platform device matching driver
1302 * @epdrv: early platform driver structure
1303 * @id: id to match against
1304 */
1305 static struct platform_device * __init
1306 early_platform_match(struct early_platform_driver *epdrv, int id)
1307 {
1308 struct platform_device *pd;
1309
1310 list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1311 if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1312 if (pd->id == id)
1313 return pd;
1314
1315 return NULL;
1316 }
1317
1318 /**
1319 * early_platform_left - check if early platform driver has matching devices
1320 * @epdrv: early platform driver structure
1321 * @id: return true if id or above exists
1322 */
1323 static int __init early_platform_left(struct early_platform_driver *epdrv,
1324 int id)
1325 {
1326 struct platform_device *pd;
1327
1328 list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1329 if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1330 if (pd->id >= id)
1331 return 1;
1332
1333 return 0;
1334 }
1335
1336 /**
1337 * early_platform_driver_probe_id - probe drivers matching class_str and id
1338 * @class_str: string to identify early platform driver class
1339 * @id: id to match against
1340 * @nr_probe: number of platform devices to successfully probe before exiting
1341 */
1342 static int __init early_platform_driver_probe_id(char *class_str,
1343 int id,
1344 int nr_probe)
1345 {
1346 struct early_platform_driver *epdrv;
1347 struct platform_device *match;
1348 int match_id;
1349 int n = 0;
1350 int left = 0;
1351
1352 list_for_each_entry(epdrv, &early_platform_driver_list, list) {
1353 /* only use drivers matching our class_str */
1354 if (strcmp(class_str, epdrv->class_str))
1355 continue;
1356
1357 if (id == -2) {
1358 match_id = epdrv->requested_id;
1359 left = 1;
1360
1361 } else {
1362 match_id = id;
1363 left += early_platform_left(epdrv, id);
1364
1365 /* skip requested id */
1366 switch (epdrv->requested_id) {
1367 case EARLY_PLATFORM_ID_ERROR:
1368 case EARLY_PLATFORM_ID_UNSET:
1369 break;
1370 default:
1371 if (epdrv->requested_id == id)
1372 match_id = EARLY_PLATFORM_ID_UNSET;
1373 }
1374 }
1375
1376 switch (match_id) {
1377 case EARLY_PLATFORM_ID_ERROR:
1378 pr_warn("%s: unable to parse %s parameter\n",
1379 class_str, epdrv->pdrv->driver.name);
1380 /* fall-through */
1381 case EARLY_PLATFORM_ID_UNSET:
1382 match = NULL;
1383 break;
1384 default:
1385 match = early_platform_match(epdrv, match_id);
1386 }
1387
1388 if (match) {
1389 /*
1390 * Set up a sensible init_name to enable
1391 * dev_name() and others to be used before the
1392 * rest of the driver core is initialized.
1393 */
1394 if (!match->dev.init_name && slab_is_available()) {
1395 if (match->id != -1)
1396 match->dev.init_name =
1397 kasprintf(GFP_KERNEL, "%s.%d",
1398 match->name,
1399 match->id);
1400 else
1401 match->dev.init_name =
1402 kasprintf(GFP_KERNEL, "%s",
1403 match->name);
1404
1405 if (!match->dev.init_name)
1406 return -ENOMEM;
1407 }
1408
1409 if (epdrv->pdrv->probe(match))
1410 pr_warn("%s: unable to probe %s early.\n",
1411 class_str, match->name);
1412 else
1413 n++;
1414 }
1415
1416 if (n >= nr_probe)
1417 break;
1418 }
1419
1420 if (left)
1421 return n;
1422 else
1423 return -ENODEV;
1424 }
1425
1426 /**
1427 * early_platform_driver_probe - probe a class of registered drivers
1428 * @class_str: string to identify early platform driver class
1429 * @nr_probe: number of platform devices to successfully probe before exiting
1430 * @user_only: only probe user specified early platform devices
1431 *
1432 * Used by architecture code to probe registered early platform drivers
1433 * within a certain class. For probe to happen a registered early platform
1434 * device matching a registered early platform driver is needed.
1435 */
1436 int __init early_platform_driver_probe(char *class_str,
1437 int nr_probe,
1438 int user_only)
1439 {
1440 int k, n, i;
1441
1442 n = 0;
1443 for (i = -2; n < nr_probe; i++) {
1444 k = early_platform_driver_probe_id(class_str, i, nr_probe - n);
1445
1446 if (k < 0)
1447 break;
1448
1449 n += k;
1450
1451 if (user_only)
1452 break;
1453 }
1454
1455 return n;
1456 }
1457
1458 /**
1459 * early_platform_cleanup - clean up early platform code
1460 */
1461 void __init early_platform_cleanup(void)
1462 {
1463 struct platform_device *pd, *pd2;
1464
1465 /* clean up the devres list used to chain devices */
1466 list_for_each_entry_safe(pd, pd2, &early_platform_device_list,
1467 dev.devres_head) {
1468 list_del(&pd->dev.devres_head);
1469 memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head));
1470 }
1471 }
1472