]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/base/power/main.c
firmware: Correct handling of fw_state_wait() return value
[mirror_ubuntu-zesty-kernel.git] / drivers / base / power / main.c
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/timer.h>
36
37 #include "../base.h"
38 #include "power.h"
39
40 typedef int (*pm_callback_t)(struct device *);
41
42 /*
43 * The entries in the dpm_list list are in a depth first order, simply
44 * because children are guaranteed to be discovered after parents, and
45 * are inserted at the back of the list on discovery.
46 *
47 * Since device_pm_add() may be called with a device lock held,
48 * we must never try to acquire a device lock while holding
49 * dpm_list_mutex.
50 */
51
52 LIST_HEAD(dpm_list);
53 static LIST_HEAD(dpm_prepared_list);
54 static LIST_HEAD(dpm_suspended_list);
55 static LIST_HEAD(dpm_late_early_list);
56 static LIST_HEAD(dpm_noirq_list);
57
58 struct suspend_stats suspend_stats;
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
61
62 static int async_error;
63
64 static char *pm_verb(int event)
65 {
66 switch (event) {
67 case PM_EVENT_SUSPEND:
68 return "suspend";
69 case PM_EVENT_RESUME:
70 return "resume";
71 case PM_EVENT_FREEZE:
72 return "freeze";
73 case PM_EVENT_QUIESCE:
74 return "quiesce";
75 case PM_EVENT_HIBERNATE:
76 return "hibernate";
77 case PM_EVENT_THAW:
78 return "thaw";
79 case PM_EVENT_RESTORE:
80 return "restore";
81 case PM_EVENT_RECOVER:
82 return "recover";
83 default:
84 return "(unknown PM event)";
85 }
86 }
87
88 /**
89 * device_pm_sleep_init - Initialize system suspend-related device fields.
90 * @dev: Device object being initialized.
91 */
92 void device_pm_sleep_init(struct device *dev)
93 {
94 dev->power.is_prepared = false;
95 dev->power.is_suspended = false;
96 dev->power.is_noirq_suspended = false;
97 dev->power.is_late_suspended = false;
98 init_completion(&dev->power.completion);
99 complete_all(&dev->power.completion);
100 dev->power.wakeup = NULL;
101 INIT_LIST_HEAD(&dev->power.entry);
102 }
103
104 /**
105 * device_pm_lock - Lock the list of active devices used by the PM core.
106 */
107 void device_pm_lock(void)
108 {
109 mutex_lock(&dpm_list_mtx);
110 }
111
112 /**
113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
114 */
115 void device_pm_unlock(void)
116 {
117 mutex_unlock(&dpm_list_mtx);
118 }
119
120 /**
121 * device_pm_add - Add a device to the PM core's list of active devices.
122 * @dev: Device to add to the list.
123 */
124 void device_pm_add(struct device *dev)
125 {
126 pr_debug("PM: Adding info for %s:%s\n",
127 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 device_pm_check_callbacks(dev);
129 mutex_lock(&dpm_list_mtx);
130 if (dev->parent && dev->parent->power.is_prepared)
131 dev_warn(dev, "parent %s should not be sleeping\n",
132 dev_name(dev->parent));
133 list_add_tail(&dev->power.entry, &dpm_list);
134 dev->power.in_dpm_list = true;
135 mutex_unlock(&dpm_list_mtx);
136 }
137
138 /**
139 * device_pm_remove - Remove a device from the PM core's list of active devices.
140 * @dev: Device to be removed from the list.
141 */
142 void device_pm_remove(struct device *dev)
143 {
144 pr_debug("PM: Removing info for %s:%s\n",
145 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
146 complete_all(&dev->power.completion);
147 mutex_lock(&dpm_list_mtx);
148 list_del_init(&dev->power.entry);
149 dev->power.in_dpm_list = false;
150 mutex_unlock(&dpm_list_mtx);
151 device_wakeup_disable(dev);
152 pm_runtime_remove(dev);
153 device_pm_check_callbacks(dev);
154 }
155
156 /**
157 * device_pm_move_before - Move device in the PM core's list of active devices.
158 * @deva: Device to move in dpm_list.
159 * @devb: Device @deva should come before.
160 */
161 void device_pm_move_before(struct device *deva, struct device *devb)
162 {
163 pr_debug("PM: Moving %s:%s before %s:%s\n",
164 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
165 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
166 /* Delete deva from dpm_list and reinsert before devb. */
167 list_move_tail(&deva->power.entry, &devb->power.entry);
168 }
169
170 /**
171 * device_pm_move_after - Move device in the PM core's list of active devices.
172 * @deva: Device to move in dpm_list.
173 * @devb: Device @deva should come after.
174 */
175 void device_pm_move_after(struct device *deva, struct device *devb)
176 {
177 pr_debug("PM: Moving %s:%s after %s:%s\n",
178 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
179 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
180 /* Delete deva from dpm_list and reinsert after devb. */
181 list_move(&deva->power.entry, &devb->power.entry);
182 }
183
184 /**
185 * device_pm_move_last - Move device to end of the PM core's list of devices.
186 * @dev: Device to move in dpm_list.
187 */
188 void device_pm_move_last(struct device *dev)
189 {
190 pr_debug("PM: Moving %s:%s to end of list\n",
191 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
192 list_move_tail(&dev->power.entry, &dpm_list);
193 }
194
195 static ktime_t initcall_debug_start(struct device *dev)
196 {
197 ktime_t calltime = ktime_set(0, 0);
198
199 if (pm_print_times_enabled) {
200 pr_info("calling %s+ @ %i, parent: %s\n",
201 dev_name(dev), task_pid_nr(current),
202 dev->parent ? dev_name(dev->parent) : "none");
203 calltime = ktime_get();
204 }
205
206 return calltime;
207 }
208
209 static void initcall_debug_report(struct device *dev, ktime_t calltime,
210 int error, pm_message_t state, char *info)
211 {
212 ktime_t rettime;
213 s64 nsecs;
214
215 rettime = ktime_get();
216 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
217
218 if (pm_print_times_enabled) {
219 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
220 error, (unsigned long long)nsecs >> 10);
221 }
222 }
223
224 /**
225 * dpm_wait - Wait for a PM operation to complete.
226 * @dev: Device to wait for.
227 * @async: If unset, wait only if the device's power.async_suspend flag is set.
228 */
229 static void dpm_wait(struct device *dev, bool async)
230 {
231 if (!dev)
232 return;
233
234 if (async || (pm_async_enabled && dev->power.async_suspend))
235 wait_for_completion(&dev->power.completion);
236 }
237
238 static int dpm_wait_fn(struct device *dev, void *async_ptr)
239 {
240 dpm_wait(dev, *((bool *)async_ptr));
241 return 0;
242 }
243
244 static void dpm_wait_for_children(struct device *dev, bool async)
245 {
246 device_for_each_child(dev, &async, dpm_wait_fn);
247 }
248
249 static void dpm_wait_for_suppliers(struct device *dev, bool async)
250 {
251 struct device_link *link;
252 int idx;
253
254 idx = device_links_read_lock();
255
256 /*
257 * If the supplier goes away right after we've checked the link to it,
258 * we'll wait for its completion to change the state, but that's fine,
259 * because the only things that will block as a result are the SRCU
260 * callbacks freeing the link objects for the links in the list we're
261 * walking.
262 */
263 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
264 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
265 dpm_wait(link->supplier, async);
266
267 device_links_read_unlock(idx);
268 }
269
270 static void dpm_wait_for_superior(struct device *dev, bool async)
271 {
272 dpm_wait(dev->parent, async);
273 dpm_wait_for_suppliers(dev, async);
274 }
275
276 static void dpm_wait_for_consumers(struct device *dev, bool async)
277 {
278 struct device_link *link;
279 int idx;
280
281 idx = device_links_read_lock();
282
283 /*
284 * The status of a device link can only be changed from "dormant" by a
285 * probe, but that cannot happen during system suspend/resume. In
286 * theory it can change to "dormant" at that time, but then it is
287 * reasonable to wait for the target device anyway (eg. if it goes
288 * away, it's better to wait for it to go away completely and then
289 * continue instead of trying to continue in parallel with its
290 * unregistration).
291 */
292 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
293 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
294 dpm_wait(link->consumer, async);
295
296 device_links_read_unlock(idx);
297 }
298
299 static void dpm_wait_for_subordinate(struct device *dev, bool async)
300 {
301 dpm_wait_for_children(dev, async);
302 dpm_wait_for_consumers(dev, async);
303 }
304
305 /**
306 * pm_op - Return the PM operation appropriate for given PM event.
307 * @ops: PM operations to choose from.
308 * @state: PM transition of the system being carried out.
309 */
310 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
311 {
312 switch (state.event) {
313 #ifdef CONFIG_SUSPEND
314 case PM_EVENT_SUSPEND:
315 return ops->suspend;
316 case PM_EVENT_RESUME:
317 return ops->resume;
318 #endif /* CONFIG_SUSPEND */
319 #ifdef CONFIG_HIBERNATE_CALLBACKS
320 case PM_EVENT_FREEZE:
321 case PM_EVENT_QUIESCE:
322 return ops->freeze;
323 case PM_EVENT_HIBERNATE:
324 return ops->poweroff;
325 case PM_EVENT_THAW:
326 case PM_EVENT_RECOVER:
327 return ops->thaw;
328 break;
329 case PM_EVENT_RESTORE:
330 return ops->restore;
331 #endif /* CONFIG_HIBERNATE_CALLBACKS */
332 }
333
334 return NULL;
335 }
336
337 /**
338 * pm_late_early_op - Return the PM operation appropriate for given PM event.
339 * @ops: PM operations to choose from.
340 * @state: PM transition of the system being carried out.
341 *
342 * Runtime PM is disabled for @dev while this function is being executed.
343 */
344 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
345 pm_message_t state)
346 {
347 switch (state.event) {
348 #ifdef CONFIG_SUSPEND
349 case PM_EVENT_SUSPEND:
350 return ops->suspend_late;
351 case PM_EVENT_RESUME:
352 return ops->resume_early;
353 #endif /* CONFIG_SUSPEND */
354 #ifdef CONFIG_HIBERNATE_CALLBACKS
355 case PM_EVENT_FREEZE:
356 case PM_EVENT_QUIESCE:
357 return ops->freeze_late;
358 case PM_EVENT_HIBERNATE:
359 return ops->poweroff_late;
360 case PM_EVENT_THAW:
361 case PM_EVENT_RECOVER:
362 return ops->thaw_early;
363 case PM_EVENT_RESTORE:
364 return ops->restore_early;
365 #endif /* CONFIG_HIBERNATE_CALLBACKS */
366 }
367
368 return NULL;
369 }
370
371 /**
372 * pm_noirq_op - Return the PM operation appropriate for given PM event.
373 * @ops: PM operations to choose from.
374 * @state: PM transition of the system being carried out.
375 *
376 * The driver of @dev will not receive interrupts while this function is being
377 * executed.
378 */
379 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
380 {
381 switch (state.event) {
382 #ifdef CONFIG_SUSPEND
383 case PM_EVENT_SUSPEND:
384 return ops->suspend_noirq;
385 case PM_EVENT_RESUME:
386 return ops->resume_noirq;
387 #endif /* CONFIG_SUSPEND */
388 #ifdef CONFIG_HIBERNATE_CALLBACKS
389 case PM_EVENT_FREEZE:
390 case PM_EVENT_QUIESCE:
391 return ops->freeze_noirq;
392 case PM_EVENT_HIBERNATE:
393 return ops->poweroff_noirq;
394 case PM_EVENT_THAW:
395 case PM_EVENT_RECOVER:
396 return ops->thaw_noirq;
397 case PM_EVENT_RESTORE:
398 return ops->restore_noirq;
399 #endif /* CONFIG_HIBERNATE_CALLBACKS */
400 }
401
402 return NULL;
403 }
404
405 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
406 {
407 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
408 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
409 ", may wakeup" : "");
410 }
411
412 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
413 int error)
414 {
415 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
416 dev_name(dev), pm_verb(state.event), info, error);
417 }
418
419 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
420 {
421 ktime_t calltime;
422 u64 usecs64;
423 int usecs;
424
425 calltime = ktime_get();
426 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
427 do_div(usecs64, NSEC_PER_USEC);
428 usecs = usecs64;
429 if (usecs == 0)
430 usecs = 1;
431 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
432 info ?: "", info ? " " : "", pm_verb(state.event),
433 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
434 }
435
436 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
437 pm_message_t state, char *info)
438 {
439 ktime_t calltime;
440 int error;
441
442 if (!cb)
443 return 0;
444
445 calltime = initcall_debug_start(dev);
446
447 pm_dev_dbg(dev, state, info);
448 trace_device_pm_callback_start(dev, info, state.event);
449 error = cb(dev);
450 trace_device_pm_callback_end(dev, error);
451 suspend_report_result(cb, error);
452
453 initcall_debug_report(dev, calltime, error, state, info);
454
455 return error;
456 }
457
458 #ifdef CONFIG_DPM_WATCHDOG
459 struct dpm_watchdog {
460 struct device *dev;
461 struct task_struct *tsk;
462 struct timer_list timer;
463 };
464
465 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
466 struct dpm_watchdog wd
467
468 /**
469 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
470 * @data: Watchdog object address.
471 *
472 * Called when a driver has timed out suspending or resuming.
473 * There's not much we can do here to recover so panic() to
474 * capture a crash-dump in pstore.
475 */
476 static void dpm_watchdog_handler(unsigned long data)
477 {
478 struct dpm_watchdog *wd = (void *)data;
479
480 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
481 show_stack(wd->tsk, NULL);
482 panic("%s %s: unrecoverable failure\n",
483 dev_driver_string(wd->dev), dev_name(wd->dev));
484 }
485
486 /**
487 * dpm_watchdog_set - Enable pm watchdog for given device.
488 * @wd: Watchdog. Must be allocated on the stack.
489 * @dev: Device to handle.
490 */
491 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
492 {
493 struct timer_list *timer = &wd->timer;
494
495 wd->dev = dev;
496 wd->tsk = current;
497
498 init_timer_on_stack(timer);
499 /* use same timeout value for both suspend and resume */
500 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
501 timer->function = dpm_watchdog_handler;
502 timer->data = (unsigned long)wd;
503 add_timer(timer);
504 }
505
506 /**
507 * dpm_watchdog_clear - Disable suspend/resume watchdog.
508 * @wd: Watchdog to disable.
509 */
510 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
511 {
512 struct timer_list *timer = &wd->timer;
513
514 del_timer_sync(timer);
515 destroy_timer_on_stack(timer);
516 }
517 #else
518 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
519 #define dpm_watchdog_set(x, y)
520 #define dpm_watchdog_clear(x)
521 #endif
522
523 /*------------------------- Resume routines -------------------------*/
524
525 /**
526 * device_resume_noirq - Execute an "early resume" callback for given device.
527 * @dev: Device to handle.
528 * @state: PM transition of the system being carried out.
529 * @async: If true, the device is being resumed asynchronously.
530 *
531 * The driver of @dev will not receive interrupts while this function is being
532 * executed.
533 */
534 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
535 {
536 pm_callback_t callback = NULL;
537 char *info = NULL;
538 int error = 0;
539
540 TRACE_DEVICE(dev);
541 TRACE_RESUME(0);
542
543 if (dev->power.syscore || dev->power.direct_complete)
544 goto Out;
545
546 if (!dev->power.is_noirq_suspended)
547 goto Out;
548
549 dpm_wait_for_superior(dev, async);
550
551 if (dev->pm_domain) {
552 info = "noirq power domain ";
553 callback = pm_noirq_op(&dev->pm_domain->ops, state);
554 } else if (dev->type && dev->type->pm) {
555 info = "noirq type ";
556 callback = pm_noirq_op(dev->type->pm, state);
557 } else if (dev->class && dev->class->pm) {
558 info = "noirq class ";
559 callback = pm_noirq_op(dev->class->pm, state);
560 } else if (dev->bus && dev->bus->pm) {
561 info = "noirq bus ";
562 callback = pm_noirq_op(dev->bus->pm, state);
563 }
564
565 if (!callback && dev->driver && dev->driver->pm) {
566 info = "noirq driver ";
567 callback = pm_noirq_op(dev->driver->pm, state);
568 }
569
570 error = dpm_run_callback(callback, dev, state, info);
571 dev->power.is_noirq_suspended = false;
572
573 Out:
574 complete_all(&dev->power.completion);
575 TRACE_RESUME(error);
576 return error;
577 }
578
579 static bool is_async(struct device *dev)
580 {
581 return dev->power.async_suspend && pm_async_enabled
582 && !pm_trace_is_enabled();
583 }
584
585 static void async_resume_noirq(void *data, async_cookie_t cookie)
586 {
587 struct device *dev = (struct device *)data;
588 int error;
589
590 error = device_resume_noirq(dev, pm_transition, true);
591 if (error)
592 pm_dev_err(dev, pm_transition, " async", error);
593
594 put_device(dev);
595 }
596
597 /**
598 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
599 * @state: PM transition of the system being carried out.
600 *
601 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
602 * enable device drivers to receive interrupts.
603 */
604 void dpm_resume_noirq(pm_message_t state)
605 {
606 struct device *dev;
607 ktime_t starttime = ktime_get();
608
609 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
610 mutex_lock(&dpm_list_mtx);
611 pm_transition = state;
612
613 /*
614 * Advanced the async threads upfront,
615 * in case the starting of async threads is
616 * delayed by non-async resuming devices.
617 */
618 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
619 reinit_completion(&dev->power.completion);
620 if (is_async(dev)) {
621 get_device(dev);
622 async_schedule(async_resume_noirq, dev);
623 }
624 }
625
626 while (!list_empty(&dpm_noirq_list)) {
627 dev = to_device(dpm_noirq_list.next);
628 get_device(dev);
629 list_move_tail(&dev->power.entry, &dpm_late_early_list);
630 mutex_unlock(&dpm_list_mtx);
631
632 if (!is_async(dev)) {
633 int error;
634
635 error = device_resume_noirq(dev, state, false);
636 if (error) {
637 suspend_stats.failed_resume_noirq++;
638 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
639 dpm_save_failed_dev(dev_name(dev));
640 pm_dev_err(dev, state, " noirq", error);
641 }
642 }
643
644 mutex_lock(&dpm_list_mtx);
645 put_device(dev);
646 }
647 mutex_unlock(&dpm_list_mtx);
648 async_synchronize_full();
649 dpm_show_time(starttime, state, "noirq");
650 resume_device_irqs();
651 device_wakeup_disarm_wake_irqs();
652 cpuidle_resume();
653 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
654 }
655
656 /**
657 * device_resume_early - Execute an "early resume" callback for given device.
658 * @dev: Device to handle.
659 * @state: PM transition of the system being carried out.
660 * @async: If true, the device is being resumed asynchronously.
661 *
662 * Runtime PM is disabled for @dev while this function is being executed.
663 */
664 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
665 {
666 pm_callback_t callback = NULL;
667 char *info = NULL;
668 int error = 0;
669
670 TRACE_DEVICE(dev);
671 TRACE_RESUME(0);
672
673 if (dev->power.syscore || dev->power.direct_complete)
674 goto Out;
675
676 if (!dev->power.is_late_suspended)
677 goto Out;
678
679 dpm_wait_for_superior(dev, async);
680
681 if (dev->pm_domain) {
682 info = "early power domain ";
683 callback = pm_late_early_op(&dev->pm_domain->ops, state);
684 } else if (dev->type && dev->type->pm) {
685 info = "early type ";
686 callback = pm_late_early_op(dev->type->pm, state);
687 } else if (dev->class && dev->class->pm) {
688 info = "early class ";
689 callback = pm_late_early_op(dev->class->pm, state);
690 } else if (dev->bus && dev->bus->pm) {
691 info = "early bus ";
692 callback = pm_late_early_op(dev->bus->pm, state);
693 }
694
695 if (!callback && dev->driver && dev->driver->pm) {
696 info = "early driver ";
697 callback = pm_late_early_op(dev->driver->pm, state);
698 }
699
700 error = dpm_run_callback(callback, dev, state, info);
701 dev->power.is_late_suspended = false;
702
703 Out:
704 TRACE_RESUME(error);
705
706 pm_runtime_enable(dev);
707 complete_all(&dev->power.completion);
708 return error;
709 }
710
711 static void async_resume_early(void *data, async_cookie_t cookie)
712 {
713 struct device *dev = (struct device *)data;
714 int error;
715
716 error = device_resume_early(dev, pm_transition, true);
717 if (error)
718 pm_dev_err(dev, pm_transition, " async", error);
719
720 put_device(dev);
721 }
722
723 /**
724 * dpm_resume_early - Execute "early resume" callbacks for all devices.
725 * @state: PM transition of the system being carried out.
726 */
727 void dpm_resume_early(pm_message_t state)
728 {
729 struct device *dev;
730 ktime_t starttime = ktime_get();
731
732 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
733 mutex_lock(&dpm_list_mtx);
734 pm_transition = state;
735
736 /*
737 * Advanced the async threads upfront,
738 * in case the starting of async threads is
739 * delayed by non-async resuming devices.
740 */
741 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
742 reinit_completion(&dev->power.completion);
743 if (is_async(dev)) {
744 get_device(dev);
745 async_schedule(async_resume_early, dev);
746 }
747 }
748
749 while (!list_empty(&dpm_late_early_list)) {
750 dev = to_device(dpm_late_early_list.next);
751 get_device(dev);
752 list_move_tail(&dev->power.entry, &dpm_suspended_list);
753 mutex_unlock(&dpm_list_mtx);
754
755 if (!is_async(dev)) {
756 int error;
757
758 error = device_resume_early(dev, state, false);
759 if (error) {
760 suspend_stats.failed_resume_early++;
761 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
762 dpm_save_failed_dev(dev_name(dev));
763 pm_dev_err(dev, state, " early", error);
764 }
765 }
766 mutex_lock(&dpm_list_mtx);
767 put_device(dev);
768 }
769 mutex_unlock(&dpm_list_mtx);
770 async_synchronize_full();
771 dpm_show_time(starttime, state, "early");
772 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
773 }
774
775 /**
776 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
777 * @state: PM transition of the system being carried out.
778 */
779 void dpm_resume_start(pm_message_t state)
780 {
781 dpm_resume_noirq(state);
782 dpm_resume_early(state);
783 }
784 EXPORT_SYMBOL_GPL(dpm_resume_start);
785
786 /**
787 * device_resume - Execute "resume" callbacks for given device.
788 * @dev: Device to handle.
789 * @state: PM transition of the system being carried out.
790 * @async: If true, the device is being resumed asynchronously.
791 */
792 static int device_resume(struct device *dev, pm_message_t state, bool async)
793 {
794 pm_callback_t callback = NULL;
795 char *info = NULL;
796 int error = 0;
797 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
798
799 TRACE_DEVICE(dev);
800 TRACE_RESUME(0);
801
802 if (dev->power.syscore)
803 goto Complete;
804
805 if (dev->power.direct_complete) {
806 /* Match the pm_runtime_disable() in __device_suspend(). */
807 pm_runtime_enable(dev);
808 goto Complete;
809 }
810
811 dpm_wait_for_superior(dev, async);
812 dpm_watchdog_set(&wd, dev);
813 device_lock(dev);
814
815 /*
816 * This is a fib. But we'll allow new children to be added below
817 * a resumed device, even if the device hasn't been completed yet.
818 */
819 dev->power.is_prepared = false;
820
821 if (!dev->power.is_suspended)
822 goto Unlock;
823
824 if (dev->pm_domain) {
825 info = "power domain ";
826 callback = pm_op(&dev->pm_domain->ops, state);
827 goto Driver;
828 }
829
830 if (dev->type && dev->type->pm) {
831 info = "type ";
832 callback = pm_op(dev->type->pm, state);
833 goto Driver;
834 }
835
836 if (dev->class) {
837 if (dev->class->pm) {
838 info = "class ";
839 callback = pm_op(dev->class->pm, state);
840 goto Driver;
841 } else if (dev->class->resume) {
842 info = "legacy class ";
843 callback = dev->class->resume;
844 goto End;
845 }
846 }
847
848 if (dev->bus) {
849 if (dev->bus->pm) {
850 info = "bus ";
851 callback = pm_op(dev->bus->pm, state);
852 } else if (dev->bus->resume) {
853 info = "legacy bus ";
854 callback = dev->bus->resume;
855 goto End;
856 }
857 }
858
859 Driver:
860 if (!callback && dev->driver && dev->driver->pm) {
861 info = "driver ";
862 callback = pm_op(dev->driver->pm, state);
863 }
864
865 End:
866 error = dpm_run_callback(callback, dev, state, info);
867 dev->power.is_suspended = false;
868
869 Unlock:
870 device_unlock(dev);
871 dpm_watchdog_clear(&wd);
872
873 Complete:
874 complete_all(&dev->power.completion);
875
876 TRACE_RESUME(error);
877
878 return error;
879 }
880
881 static void async_resume(void *data, async_cookie_t cookie)
882 {
883 struct device *dev = (struct device *)data;
884 int error;
885
886 error = device_resume(dev, pm_transition, true);
887 if (error)
888 pm_dev_err(dev, pm_transition, " async", error);
889 put_device(dev);
890 }
891
892 /**
893 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
894 * @state: PM transition of the system being carried out.
895 *
896 * Execute the appropriate "resume" callback for all devices whose status
897 * indicates that they are suspended.
898 */
899 void dpm_resume(pm_message_t state)
900 {
901 struct device *dev;
902 ktime_t starttime = ktime_get();
903
904 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
905 might_sleep();
906
907 mutex_lock(&dpm_list_mtx);
908 pm_transition = state;
909 async_error = 0;
910
911 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
912 reinit_completion(&dev->power.completion);
913 if (is_async(dev)) {
914 get_device(dev);
915 async_schedule(async_resume, dev);
916 }
917 }
918
919 while (!list_empty(&dpm_suspended_list)) {
920 dev = to_device(dpm_suspended_list.next);
921 get_device(dev);
922 if (!is_async(dev)) {
923 int error;
924
925 mutex_unlock(&dpm_list_mtx);
926
927 error = device_resume(dev, state, false);
928 if (error) {
929 suspend_stats.failed_resume++;
930 dpm_save_failed_step(SUSPEND_RESUME);
931 dpm_save_failed_dev(dev_name(dev));
932 pm_dev_err(dev, state, "", error);
933 }
934
935 mutex_lock(&dpm_list_mtx);
936 }
937 if (!list_empty(&dev->power.entry))
938 list_move_tail(&dev->power.entry, &dpm_prepared_list);
939 put_device(dev);
940 }
941 mutex_unlock(&dpm_list_mtx);
942 async_synchronize_full();
943 dpm_show_time(starttime, state, NULL);
944
945 cpufreq_resume();
946 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
947 }
948
949 /**
950 * device_complete - Complete a PM transition for given device.
951 * @dev: Device to handle.
952 * @state: PM transition of the system being carried out.
953 */
954 static void device_complete(struct device *dev, pm_message_t state)
955 {
956 void (*callback)(struct device *) = NULL;
957 char *info = NULL;
958
959 if (dev->power.syscore)
960 return;
961
962 device_lock(dev);
963
964 if (dev->pm_domain) {
965 info = "completing power domain ";
966 callback = dev->pm_domain->ops.complete;
967 } else if (dev->type && dev->type->pm) {
968 info = "completing type ";
969 callback = dev->type->pm->complete;
970 } else if (dev->class && dev->class->pm) {
971 info = "completing class ";
972 callback = dev->class->pm->complete;
973 } else if (dev->bus && dev->bus->pm) {
974 info = "completing bus ";
975 callback = dev->bus->pm->complete;
976 }
977
978 if (!callback && dev->driver && dev->driver->pm) {
979 info = "completing driver ";
980 callback = dev->driver->pm->complete;
981 }
982
983 if (callback) {
984 pm_dev_dbg(dev, state, info);
985 callback(dev);
986 }
987
988 device_unlock(dev);
989
990 pm_runtime_put(dev);
991 }
992
993 /**
994 * dpm_complete - Complete a PM transition for all non-sysdev devices.
995 * @state: PM transition of the system being carried out.
996 *
997 * Execute the ->complete() callbacks for all devices whose PM status is not
998 * DPM_ON (this allows new devices to be registered).
999 */
1000 void dpm_complete(pm_message_t state)
1001 {
1002 struct list_head list;
1003
1004 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1005 might_sleep();
1006
1007 INIT_LIST_HEAD(&list);
1008 mutex_lock(&dpm_list_mtx);
1009 while (!list_empty(&dpm_prepared_list)) {
1010 struct device *dev = to_device(dpm_prepared_list.prev);
1011
1012 get_device(dev);
1013 dev->power.is_prepared = false;
1014 list_move(&dev->power.entry, &list);
1015 mutex_unlock(&dpm_list_mtx);
1016
1017 trace_device_pm_callback_start(dev, "", state.event);
1018 device_complete(dev, state);
1019 trace_device_pm_callback_end(dev, 0);
1020
1021 mutex_lock(&dpm_list_mtx);
1022 put_device(dev);
1023 }
1024 list_splice(&list, &dpm_list);
1025 mutex_unlock(&dpm_list_mtx);
1026
1027 /* Allow device probing and trigger re-probing of deferred devices */
1028 device_unblock_probing();
1029 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1030 }
1031
1032 /**
1033 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1034 * @state: PM transition of the system being carried out.
1035 *
1036 * Execute "resume" callbacks for all devices and complete the PM transition of
1037 * the system.
1038 */
1039 void dpm_resume_end(pm_message_t state)
1040 {
1041 dpm_resume(state);
1042 dpm_complete(state);
1043 }
1044 EXPORT_SYMBOL_GPL(dpm_resume_end);
1045
1046
1047 /*------------------------- Suspend routines -------------------------*/
1048
1049 /**
1050 * resume_event - Return a "resume" message for given "suspend" sleep state.
1051 * @sleep_state: PM message representing a sleep state.
1052 *
1053 * Return a PM message representing the resume event corresponding to given
1054 * sleep state.
1055 */
1056 static pm_message_t resume_event(pm_message_t sleep_state)
1057 {
1058 switch (sleep_state.event) {
1059 case PM_EVENT_SUSPEND:
1060 return PMSG_RESUME;
1061 case PM_EVENT_FREEZE:
1062 case PM_EVENT_QUIESCE:
1063 return PMSG_RECOVER;
1064 case PM_EVENT_HIBERNATE:
1065 return PMSG_RESTORE;
1066 }
1067 return PMSG_ON;
1068 }
1069
1070 /**
1071 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1072 * @dev: Device to handle.
1073 * @state: PM transition of the system being carried out.
1074 * @async: If true, the device is being suspended asynchronously.
1075 *
1076 * The driver of @dev will not receive interrupts while this function is being
1077 * executed.
1078 */
1079 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1080 {
1081 pm_callback_t callback = NULL;
1082 char *info = NULL;
1083 int error = 0;
1084
1085 TRACE_DEVICE(dev);
1086 TRACE_SUSPEND(0);
1087
1088 if (async_error)
1089 goto Complete;
1090
1091 if (pm_wakeup_pending()) {
1092 async_error = -EBUSY;
1093 goto Complete;
1094 }
1095
1096 if (dev->power.syscore || dev->power.direct_complete)
1097 goto Complete;
1098
1099 dpm_wait_for_subordinate(dev, async);
1100
1101 if (dev->pm_domain) {
1102 info = "noirq power domain ";
1103 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1104 } else if (dev->type && dev->type->pm) {
1105 info = "noirq type ";
1106 callback = pm_noirq_op(dev->type->pm, state);
1107 } else if (dev->class && dev->class->pm) {
1108 info = "noirq class ";
1109 callback = pm_noirq_op(dev->class->pm, state);
1110 } else if (dev->bus && dev->bus->pm) {
1111 info = "noirq bus ";
1112 callback = pm_noirq_op(dev->bus->pm, state);
1113 }
1114
1115 if (!callback && dev->driver && dev->driver->pm) {
1116 info = "noirq driver ";
1117 callback = pm_noirq_op(dev->driver->pm, state);
1118 }
1119
1120 error = dpm_run_callback(callback, dev, state, info);
1121 if (!error)
1122 dev->power.is_noirq_suspended = true;
1123 else
1124 async_error = error;
1125
1126 Complete:
1127 complete_all(&dev->power.completion);
1128 TRACE_SUSPEND(error);
1129 return error;
1130 }
1131
1132 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1133 {
1134 struct device *dev = (struct device *)data;
1135 int error;
1136
1137 error = __device_suspend_noirq(dev, pm_transition, true);
1138 if (error) {
1139 dpm_save_failed_dev(dev_name(dev));
1140 pm_dev_err(dev, pm_transition, " async", error);
1141 }
1142
1143 put_device(dev);
1144 }
1145
1146 static int device_suspend_noirq(struct device *dev)
1147 {
1148 reinit_completion(&dev->power.completion);
1149
1150 if (is_async(dev)) {
1151 get_device(dev);
1152 async_schedule(async_suspend_noirq, dev);
1153 return 0;
1154 }
1155 return __device_suspend_noirq(dev, pm_transition, false);
1156 }
1157
1158 /**
1159 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1160 * @state: PM transition of the system being carried out.
1161 *
1162 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1163 * handlers for all non-sysdev devices.
1164 */
1165 int dpm_suspend_noirq(pm_message_t state)
1166 {
1167 ktime_t starttime = ktime_get();
1168 int error = 0;
1169
1170 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1171 cpuidle_pause();
1172 device_wakeup_arm_wake_irqs();
1173 suspend_device_irqs();
1174 mutex_lock(&dpm_list_mtx);
1175 pm_transition = state;
1176 async_error = 0;
1177
1178 while (!list_empty(&dpm_late_early_list)) {
1179 struct device *dev = to_device(dpm_late_early_list.prev);
1180
1181 get_device(dev);
1182 mutex_unlock(&dpm_list_mtx);
1183
1184 error = device_suspend_noirq(dev);
1185
1186 mutex_lock(&dpm_list_mtx);
1187 if (error) {
1188 pm_dev_err(dev, state, " noirq", error);
1189 dpm_save_failed_dev(dev_name(dev));
1190 put_device(dev);
1191 break;
1192 }
1193 if (!list_empty(&dev->power.entry))
1194 list_move(&dev->power.entry, &dpm_noirq_list);
1195 put_device(dev);
1196
1197 if (async_error)
1198 break;
1199 }
1200 mutex_unlock(&dpm_list_mtx);
1201 async_synchronize_full();
1202 if (!error)
1203 error = async_error;
1204
1205 if (error) {
1206 suspend_stats.failed_suspend_noirq++;
1207 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1208 dpm_resume_noirq(resume_event(state));
1209 } else {
1210 dpm_show_time(starttime, state, "noirq");
1211 }
1212 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1213 return error;
1214 }
1215
1216 /**
1217 * device_suspend_late - Execute a "late suspend" callback for given device.
1218 * @dev: Device to handle.
1219 * @state: PM transition of the system being carried out.
1220 * @async: If true, the device is being suspended asynchronously.
1221 *
1222 * Runtime PM is disabled for @dev while this function is being executed.
1223 */
1224 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1225 {
1226 pm_callback_t callback = NULL;
1227 char *info = NULL;
1228 int error = 0;
1229
1230 TRACE_DEVICE(dev);
1231 TRACE_SUSPEND(0);
1232
1233 __pm_runtime_disable(dev, false);
1234
1235 if (async_error)
1236 goto Complete;
1237
1238 if (pm_wakeup_pending()) {
1239 async_error = -EBUSY;
1240 goto Complete;
1241 }
1242
1243 if (dev->power.syscore || dev->power.direct_complete)
1244 goto Complete;
1245
1246 dpm_wait_for_subordinate(dev, async);
1247
1248 if (dev->pm_domain) {
1249 info = "late power domain ";
1250 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1251 } else if (dev->type && dev->type->pm) {
1252 info = "late type ";
1253 callback = pm_late_early_op(dev->type->pm, state);
1254 } else if (dev->class && dev->class->pm) {
1255 info = "late class ";
1256 callback = pm_late_early_op(dev->class->pm, state);
1257 } else if (dev->bus && dev->bus->pm) {
1258 info = "late bus ";
1259 callback = pm_late_early_op(dev->bus->pm, state);
1260 }
1261
1262 if (!callback && dev->driver && dev->driver->pm) {
1263 info = "late driver ";
1264 callback = pm_late_early_op(dev->driver->pm, state);
1265 }
1266
1267 error = dpm_run_callback(callback, dev, state, info);
1268 if (!error)
1269 dev->power.is_late_suspended = true;
1270 else
1271 async_error = error;
1272
1273 Complete:
1274 TRACE_SUSPEND(error);
1275 complete_all(&dev->power.completion);
1276 return error;
1277 }
1278
1279 static void async_suspend_late(void *data, async_cookie_t cookie)
1280 {
1281 struct device *dev = (struct device *)data;
1282 int error;
1283
1284 error = __device_suspend_late(dev, pm_transition, true);
1285 if (error) {
1286 dpm_save_failed_dev(dev_name(dev));
1287 pm_dev_err(dev, pm_transition, " async", error);
1288 }
1289 put_device(dev);
1290 }
1291
1292 static int device_suspend_late(struct device *dev)
1293 {
1294 reinit_completion(&dev->power.completion);
1295
1296 if (is_async(dev)) {
1297 get_device(dev);
1298 async_schedule(async_suspend_late, dev);
1299 return 0;
1300 }
1301
1302 return __device_suspend_late(dev, pm_transition, false);
1303 }
1304
1305 /**
1306 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1307 * @state: PM transition of the system being carried out.
1308 */
1309 int dpm_suspend_late(pm_message_t state)
1310 {
1311 ktime_t starttime = ktime_get();
1312 int error = 0;
1313
1314 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1315 mutex_lock(&dpm_list_mtx);
1316 pm_transition = state;
1317 async_error = 0;
1318
1319 while (!list_empty(&dpm_suspended_list)) {
1320 struct device *dev = to_device(dpm_suspended_list.prev);
1321
1322 get_device(dev);
1323 mutex_unlock(&dpm_list_mtx);
1324
1325 error = device_suspend_late(dev);
1326
1327 mutex_lock(&dpm_list_mtx);
1328 if (!list_empty(&dev->power.entry))
1329 list_move(&dev->power.entry, &dpm_late_early_list);
1330
1331 if (error) {
1332 pm_dev_err(dev, state, " late", error);
1333 dpm_save_failed_dev(dev_name(dev));
1334 put_device(dev);
1335 break;
1336 }
1337 put_device(dev);
1338
1339 if (async_error)
1340 break;
1341 }
1342 mutex_unlock(&dpm_list_mtx);
1343 async_synchronize_full();
1344 if (!error)
1345 error = async_error;
1346 if (error) {
1347 suspend_stats.failed_suspend_late++;
1348 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1349 dpm_resume_early(resume_event(state));
1350 } else {
1351 dpm_show_time(starttime, state, "late");
1352 }
1353 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1354 return error;
1355 }
1356
1357 /**
1358 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1359 * @state: PM transition of the system being carried out.
1360 */
1361 int dpm_suspend_end(pm_message_t state)
1362 {
1363 int error = dpm_suspend_late(state);
1364 if (error)
1365 return error;
1366
1367 error = dpm_suspend_noirq(state);
1368 if (error) {
1369 dpm_resume_early(resume_event(state));
1370 return error;
1371 }
1372
1373 return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1376
1377 /**
1378 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1379 * @dev: Device to suspend.
1380 * @state: PM transition of the system being carried out.
1381 * @cb: Suspend callback to execute.
1382 * @info: string description of caller.
1383 */
1384 static int legacy_suspend(struct device *dev, pm_message_t state,
1385 int (*cb)(struct device *dev, pm_message_t state),
1386 char *info)
1387 {
1388 int error;
1389 ktime_t calltime;
1390
1391 calltime = initcall_debug_start(dev);
1392
1393 trace_device_pm_callback_start(dev, info, state.event);
1394 error = cb(dev, state);
1395 trace_device_pm_callback_end(dev, error);
1396 suspend_report_result(cb, error);
1397
1398 initcall_debug_report(dev, calltime, error, state, info);
1399
1400 return error;
1401 }
1402
1403 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1404 {
1405 struct device_link *link;
1406 int idx;
1407
1408 idx = device_links_read_lock();
1409
1410 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1411 spin_lock_irq(&link->supplier->power.lock);
1412 link->supplier->power.direct_complete = false;
1413 spin_unlock_irq(&link->supplier->power.lock);
1414 }
1415
1416 device_links_read_unlock(idx);
1417 }
1418
1419 /**
1420 * device_suspend - Execute "suspend" callbacks for given device.
1421 * @dev: Device to handle.
1422 * @state: PM transition of the system being carried out.
1423 * @async: If true, the device is being suspended asynchronously.
1424 */
1425 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1426 {
1427 pm_callback_t callback = NULL;
1428 char *info = NULL;
1429 int error = 0;
1430 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1431
1432 TRACE_DEVICE(dev);
1433 TRACE_SUSPEND(0);
1434
1435 dpm_wait_for_subordinate(dev, async);
1436
1437 if (async_error)
1438 goto Complete;
1439
1440 /*
1441 * If a device configured to wake up the system from sleep states
1442 * has been suspended at run time and there's a resume request pending
1443 * for it, this is equivalent to the device signaling wakeup, so the
1444 * system suspend operation should be aborted.
1445 */
1446 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1447 pm_wakeup_event(dev, 0);
1448
1449 if (pm_wakeup_pending()) {
1450 async_error = -EBUSY;
1451 goto Complete;
1452 }
1453
1454 if (dev->power.syscore)
1455 goto Complete;
1456
1457 if (dev->power.direct_complete) {
1458 if (pm_runtime_status_suspended(dev)) {
1459 pm_runtime_disable(dev);
1460 if (pm_runtime_status_suspended(dev))
1461 goto Complete;
1462
1463 pm_runtime_enable(dev);
1464 }
1465 dev->power.direct_complete = false;
1466 }
1467
1468 dpm_watchdog_set(&wd, dev);
1469 device_lock(dev);
1470
1471 if (dev->pm_domain) {
1472 info = "power domain ";
1473 callback = pm_op(&dev->pm_domain->ops, state);
1474 goto Run;
1475 }
1476
1477 if (dev->type && dev->type->pm) {
1478 info = "type ";
1479 callback = pm_op(dev->type->pm, state);
1480 goto Run;
1481 }
1482
1483 if (dev->class) {
1484 if (dev->class->pm) {
1485 info = "class ";
1486 callback = pm_op(dev->class->pm, state);
1487 goto Run;
1488 } else if (dev->class->suspend) {
1489 pm_dev_dbg(dev, state, "legacy class ");
1490 error = legacy_suspend(dev, state, dev->class->suspend,
1491 "legacy class ");
1492 goto End;
1493 }
1494 }
1495
1496 if (dev->bus) {
1497 if (dev->bus->pm) {
1498 info = "bus ";
1499 callback = pm_op(dev->bus->pm, state);
1500 } else if (dev->bus->suspend) {
1501 pm_dev_dbg(dev, state, "legacy bus ");
1502 error = legacy_suspend(dev, state, dev->bus->suspend,
1503 "legacy bus ");
1504 goto End;
1505 }
1506 }
1507
1508 Run:
1509 if (!callback && dev->driver && dev->driver->pm) {
1510 info = "driver ";
1511 callback = pm_op(dev->driver->pm, state);
1512 }
1513
1514 error = dpm_run_callback(callback, dev, state, info);
1515
1516 End:
1517 if (!error) {
1518 struct device *parent = dev->parent;
1519
1520 dev->power.is_suspended = true;
1521 if (parent) {
1522 spin_lock_irq(&parent->power.lock);
1523
1524 dev->parent->power.direct_complete = false;
1525 if (dev->power.wakeup_path
1526 && !dev->parent->power.ignore_children)
1527 dev->parent->power.wakeup_path = true;
1528
1529 spin_unlock_irq(&parent->power.lock);
1530 }
1531 dpm_clear_suppliers_direct_complete(dev);
1532 }
1533
1534 device_unlock(dev);
1535 dpm_watchdog_clear(&wd);
1536
1537 Complete:
1538 complete_all(&dev->power.completion);
1539 if (error)
1540 async_error = error;
1541
1542 TRACE_SUSPEND(error);
1543 return error;
1544 }
1545
1546 static void async_suspend(void *data, async_cookie_t cookie)
1547 {
1548 struct device *dev = (struct device *)data;
1549 int error;
1550
1551 error = __device_suspend(dev, pm_transition, true);
1552 if (error) {
1553 dpm_save_failed_dev(dev_name(dev));
1554 pm_dev_err(dev, pm_transition, " async", error);
1555 }
1556
1557 put_device(dev);
1558 }
1559
1560 static int device_suspend(struct device *dev)
1561 {
1562 reinit_completion(&dev->power.completion);
1563
1564 if (is_async(dev)) {
1565 get_device(dev);
1566 async_schedule(async_suspend, dev);
1567 return 0;
1568 }
1569
1570 return __device_suspend(dev, pm_transition, false);
1571 }
1572
1573 /**
1574 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1575 * @state: PM transition of the system being carried out.
1576 */
1577 int dpm_suspend(pm_message_t state)
1578 {
1579 ktime_t starttime = ktime_get();
1580 int error = 0;
1581
1582 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1583 might_sleep();
1584
1585 cpufreq_suspend();
1586
1587 mutex_lock(&dpm_list_mtx);
1588 pm_transition = state;
1589 async_error = 0;
1590 while (!list_empty(&dpm_prepared_list)) {
1591 struct device *dev = to_device(dpm_prepared_list.prev);
1592
1593 get_device(dev);
1594 mutex_unlock(&dpm_list_mtx);
1595
1596 error = device_suspend(dev);
1597
1598 mutex_lock(&dpm_list_mtx);
1599 if (error) {
1600 pm_dev_err(dev, state, "", error);
1601 dpm_save_failed_dev(dev_name(dev));
1602 put_device(dev);
1603 break;
1604 }
1605 if (!list_empty(&dev->power.entry))
1606 list_move(&dev->power.entry, &dpm_suspended_list);
1607 put_device(dev);
1608 if (async_error)
1609 break;
1610 }
1611 mutex_unlock(&dpm_list_mtx);
1612 async_synchronize_full();
1613 if (!error)
1614 error = async_error;
1615 if (error) {
1616 suspend_stats.failed_suspend++;
1617 dpm_save_failed_step(SUSPEND_SUSPEND);
1618 } else
1619 dpm_show_time(starttime, state, NULL);
1620 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1621 return error;
1622 }
1623
1624 /**
1625 * device_prepare - Prepare a device for system power transition.
1626 * @dev: Device to handle.
1627 * @state: PM transition of the system being carried out.
1628 *
1629 * Execute the ->prepare() callback(s) for given device. No new children of the
1630 * device may be registered after this function has returned.
1631 */
1632 static int device_prepare(struct device *dev, pm_message_t state)
1633 {
1634 int (*callback)(struct device *) = NULL;
1635 int ret = 0;
1636
1637 if (dev->power.syscore)
1638 return 0;
1639
1640 /*
1641 * If a device's parent goes into runtime suspend at the wrong time,
1642 * it won't be possible to resume the device. To prevent this we
1643 * block runtime suspend here, during the prepare phase, and allow
1644 * it again during the complete phase.
1645 */
1646 pm_runtime_get_noresume(dev);
1647
1648 device_lock(dev);
1649
1650 dev->power.wakeup_path = device_may_wakeup(dev);
1651
1652 if (dev->power.no_pm_callbacks) {
1653 ret = 1; /* Let device go direct_complete */
1654 goto unlock;
1655 }
1656
1657 if (dev->pm_domain)
1658 callback = dev->pm_domain->ops.prepare;
1659 else if (dev->type && dev->type->pm)
1660 callback = dev->type->pm->prepare;
1661 else if (dev->class && dev->class->pm)
1662 callback = dev->class->pm->prepare;
1663 else if (dev->bus && dev->bus->pm)
1664 callback = dev->bus->pm->prepare;
1665
1666 if (!callback && dev->driver && dev->driver->pm)
1667 callback = dev->driver->pm->prepare;
1668
1669 if (callback)
1670 ret = callback(dev);
1671
1672 unlock:
1673 device_unlock(dev);
1674
1675 if (ret < 0) {
1676 suspend_report_result(callback, ret);
1677 pm_runtime_put(dev);
1678 return ret;
1679 }
1680 /*
1681 * A positive return value from ->prepare() means "this device appears
1682 * to be runtime-suspended and its state is fine, so if it really is
1683 * runtime-suspended, you can leave it in that state provided that you
1684 * will do the same thing with all of its descendants". This only
1685 * applies to suspend transitions, however.
1686 */
1687 spin_lock_irq(&dev->power.lock);
1688 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1689 spin_unlock_irq(&dev->power.lock);
1690 return 0;
1691 }
1692
1693 /**
1694 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1695 * @state: PM transition of the system being carried out.
1696 *
1697 * Execute the ->prepare() callback(s) for all devices.
1698 */
1699 int dpm_prepare(pm_message_t state)
1700 {
1701 int error = 0;
1702
1703 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1704 might_sleep();
1705
1706 /*
1707 * Give a chance for the known devices to complete their probes, before
1708 * disable probing of devices. This sync point is important at least
1709 * at boot time + hibernation restore.
1710 */
1711 wait_for_device_probe();
1712 /*
1713 * It is unsafe if probing of devices will happen during suspend or
1714 * hibernation and system behavior will be unpredictable in this case.
1715 * So, let's prohibit device's probing here and defer their probes
1716 * instead. The normal behavior will be restored in dpm_complete().
1717 */
1718 device_block_probing();
1719
1720 mutex_lock(&dpm_list_mtx);
1721 while (!list_empty(&dpm_list)) {
1722 struct device *dev = to_device(dpm_list.next);
1723
1724 get_device(dev);
1725 mutex_unlock(&dpm_list_mtx);
1726
1727 trace_device_pm_callback_start(dev, "", state.event);
1728 error = device_prepare(dev, state);
1729 trace_device_pm_callback_end(dev, error);
1730
1731 mutex_lock(&dpm_list_mtx);
1732 if (error) {
1733 if (error == -EAGAIN) {
1734 put_device(dev);
1735 error = 0;
1736 continue;
1737 }
1738 printk(KERN_INFO "PM: Device %s not prepared "
1739 "for power transition: code %d\n",
1740 dev_name(dev), error);
1741 put_device(dev);
1742 break;
1743 }
1744 dev->power.is_prepared = true;
1745 if (!list_empty(&dev->power.entry))
1746 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1747 put_device(dev);
1748 }
1749 mutex_unlock(&dpm_list_mtx);
1750 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1751 return error;
1752 }
1753
1754 /**
1755 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1756 * @state: PM transition of the system being carried out.
1757 *
1758 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1759 * callbacks for them.
1760 */
1761 int dpm_suspend_start(pm_message_t state)
1762 {
1763 int error;
1764
1765 error = dpm_prepare(state);
1766 if (error) {
1767 suspend_stats.failed_prepare++;
1768 dpm_save_failed_step(SUSPEND_PREPARE);
1769 } else
1770 error = dpm_suspend(state);
1771 return error;
1772 }
1773 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1774
1775 void __suspend_report_result(const char *function, void *fn, int ret)
1776 {
1777 if (ret)
1778 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1779 }
1780 EXPORT_SYMBOL_GPL(__suspend_report_result);
1781
1782 /**
1783 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1784 * @dev: Device to wait for.
1785 * @subordinate: Device that needs to wait for @dev.
1786 */
1787 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1788 {
1789 dpm_wait(dev, subordinate->power.async_suspend);
1790 return async_error;
1791 }
1792 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1793
1794 /**
1795 * dpm_for_each_dev - device iterator.
1796 * @data: data for the callback.
1797 * @fn: function to be called for each device.
1798 *
1799 * Iterate over devices in dpm_list, and call @fn for each device,
1800 * passing it @data.
1801 */
1802 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1803 {
1804 struct device *dev;
1805
1806 if (!fn)
1807 return;
1808
1809 device_pm_lock();
1810 list_for_each_entry(dev, &dpm_list, power.entry)
1811 fn(dev, data);
1812 device_pm_unlock();
1813 }
1814 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1815
1816 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1817 {
1818 if (!ops)
1819 return true;
1820
1821 return !ops->prepare &&
1822 !ops->suspend &&
1823 !ops->suspend_late &&
1824 !ops->suspend_noirq &&
1825 !ops->resume_noirq &&
1826 !ops->resume_early &&
1827 !ops->resume &&
1828 !ops->complete;
1829 }
1830
1831 void device_pm_check_callbacks(struct device *dev)
1832 {
1833 spin_lock_irq(&dev->power.lock);
1834 dev->power.no_pm_callbacks =
1835 (!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
1836 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1837 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1838 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1839 (!dev->driver || pm_ops_is_empty(dev->driver->pm));
1840 spin_unlock_irq(&dev->power.lock);
1841 }