]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/base/power/main.c
power_supply: Correct kerneldoc copy paste errors
[mirror_ubuntu-focal-kernel.git] / drivers / base / power / main.c
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
35
36 #include "../base.h"
37 #include "power.h"
38
39 typedef int (*pm_callback_t)(struct device *);
40
41 /*
42 * The entries in the dpm_list list are in a depth first order, simply
43 * because children are guaranteed to be discovered after parents, and
44 * are inserted at the back of the list on discovery.
45 *
46 * Since device_pm_add() may be called with a device lock held,
47 * we must never try to acquire a device lock while holding
48 * dpm_list_mutex.
49 */
50
51 LIST_HEAD(dpm_list);
52 static LIST_HEAD(dpm_prepared_list);
53 static LIST_HEAD(dpm_suspended_list);
54 static LIST_HEAD(dpm_late_early_list);
55 static LIST_HEAD(dpm_noirq_list);
56
57 struct suspend_stats suspend_stats;
58 static DEFINE_MUTEX(dpm_list_mtx);
59 static pm_message_t pm_transition;
60
61 static int async_error;
62
63 static char *pm_verb(int event)
64 {
65 switch (event) {
66 case PM_EVENT_SUSPEND:
67 return "suspend";
68 case PM_EVENT_RESUME:
69 return "resume";
70 case PM_EVENT_FREEZE:
71 return "freeze";
72 case PM_EVENT_QUIESCE:
73 return "quiesce";
74 case PM_EVENT_HIBERNATE:
75 return "hibernate";
76 case PM_EVENT_THAW:
77 return "thaw";
78 case PM_EVENT_RESTORE:
79 return "restore";
80 case PM_EVENT_RECOVER:
81 return "recover";
82 default:
83 return "(unknown PM event)";
84 }
85 }
86
87 /**
88 * device_pm_sleep_init - Initialize system suspend-related device fields.
89 * @dev: Device object being initialized.
90 */
91 void device_pm_sleep_init(struct device *dev)
92 {
93 dev->power.is_prepared = false;
94 dev->power.is_suspended = false;
95 dev->power.is_noirq_suspended = false;
96 dev->power.is_late_suspended = false;
97 init_completion(&dev->power.completion);
98 complete_all(&dev->power.completion);
99 dev->power.wakeup = NULL;
100 INIT_LIST_HEAD(&dev->power.entry);
101 }
102
103 /**
104 * device_pm_lock - Lock the list of active devices used by the PM core.
105 */
106 void device_pm_lock(void)
107 {
108 mutex_lock(&dpm_list_mtx);
109 }
110
111 /**
112 * device_pm_unlock - Unlock the list of active devices used by the PM core.
113 */
114 void device_pm_unlock(void)
115 {
116 mutex_unlock(&dpm_list_mtx);
117 }
118
119 /**
120 * device_pm_add - Add a device to the PM core's list of active devices.
121 * @dev: Device to add to the list.
122 */
123 void device_pm_add(struct device *dev)
124 {
125 pr_debug("PM: Adding info for %s:%s\n",
126 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127 mutex_lock(&dpm_list_mtx);
128 if (dev->parent && dev->parent->power.is_prepared)
129 dev_warn(dev, "parent %s should not be sleeping\n",
130 dev_name(dev->parent));
131 list_add_tail(&dev->power.entry, &dpm_list);
132 mutex_unlock(&dpm_list_mtx);
133 }
134
135 /**
136 * device_pm_remove - Remove a device from the PM core's list of active devices.
137 * @dev: Device to be removed from the list.
138 */
139 void device_pm_remove(struct device *dev)
140 {
141 pr_debug("PM: Removing info for %s:%s\n",
142 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143 complete_all(&dev->power.completion);
144 mutex_lock(&dpm_list_mtx);
145 list_del_init(&dev->power.entry);
146 mutex_unlock(&dpm_list_mtx);
147 device_wakeup_disable(dev);
148 pm_runtime_remove(dev);
149 }
150
151 /**
152 * device_pm_move_before - Move device in the PM core's list of active devices.
153 * @deva: Device to move in dpm_list.
154 * @devb: Device @deva should come before.
155 */
156 void device_pm_move_before(struct device *deva, struct device *devb)
157 {
158 pr_debug("PM: Moving %s:%s before %s:%s\n",
159 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
160 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161 /* Delete deva from dpm_list and reinsert before devb. */
162 list_move_tail(&deva->power.entry, &devb->power.entry);
163 }
164
165 /**
166 * device_pm_move_after - Move device in the PM core's list of active devices.
167 * @deva: Device to move in dpm_list.
168 * @devb: Device @deva should come after.
169 */
170 void device_pm_move_after(struct device *deva, struct device *devb)
171 {
172 pr_debug("PM: Moving %s:%s after %s:%s\n",
173 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
174 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175 /* Delete deva from dpm_list and reinsert after devb. */
176 list_move(&deva->power.entry, &devb->power.entry);
177 }
178
179 /**
180 * device_pm_move_last - Move device to end of the PM core's list of devices.
181 * @dev: Device to move in dpm_list.
182 */
183 void device_pm_move_last(struct device *dev)
184 {
185 pr_debug("PM: Moving %s:%s to end of list\n",
186 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187 list_move_tail(&dev->power.entry, &dpm_list);
188 }
189
190 static ktime_t initcall_debug_start(struct device *dev)
191 {
192 ktime_t calltime = ktime_set(0, 0);
193
194 if (pm_print_times_enabled) {
195 pr_info("calling %s+ @ %i, parent: %s\n",
196 dev_name(dev), task_pid_nr(current),
197 dev->parent ? dev_name(dev->parent) : "none");
198 calltime = ktime_get();
199 }
200
201 return calltime;
202 }
203
204 static void initcall_debug_report(struct device *dev, ktime_t calltime,
205 int error, pm_message_t state, char *info)
206 {
207 ktime_t rettime;
208 s64 nsecs;
209
210 rettime = ktime_get();
211 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
212
213 if (pm_print_times_enabled) {
214 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215 error, (unsigned long long)nsecs >> 10);
216 }
217 }
218
219 /**
220 * dpm_wait - Wait for a PM operation to complete.
221 * @dev: Device to wait for.
222 * @async: If unset, wait only if the device's power.async_suspend flag is set.
223 */
224 static void dpm_wait(struct device *dev, bool async)
225 {
226 if (!dev)
227 return;
228
229 if (async || (pm_async_enabled && dev->power.async_suspend))
230 wait_for_completion(&dev->power.completion);
231 }
232
233 static int dpm_wait_fn(struct device *dev, void *async_ptr)
234 {
235 dpm_wait(dev, *((bool *)async_ptr));
236 return 0;
237 }
238
239 static void dpm_wait_for_children(struct device *dev, bool async)
240 {
241 device_for_each_child(dev, &async, dpm_wait_fn);
242 }
243
244 /**
245 * pm_op - Return the PM operation appropriate for given PM event.
246 * @ops: PM operations to choose from.
247 * @state: PM transition of the system being carried out.
248 */
249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
250 {
251 switch (state.event) {
252 #ifdef CONFIG_SUSPEND
253 case PM_EVENT_SUSPEND:
254 return ops->suspend;
255 case PM_EVENT_RESUME:
256 return ops->resume;
257 #endif /* CONFIG_SUSPEND */
258 #ifdef CONFIG_HIBERNATE_CALLBACKS
259 case PM_EVENT_FREEZE:
260 case PM_EVENT_QUIESCE:
261 return ops->freeze;
262 case PM_EVENT_HIBERNATE:
263 return ops->poweroff;
264 case PM_EVENT_THAW:
265 case PM_EVENT_RECOVER:
266 return ops->thaw;
267 break;
268 case PM_EVENT_RESTORE:
269 return ops->restore;
270 #endif /* CONFIG_HIBERNATE_CALLBACKS */
271 }
272
273 return NULL;
274 }
275
276 /**
277 * pm_late_early_op - Return the PM operation appropriate for given PM event.
278 * @ops: PM operations to choose from.
279 * @state: PM transition of the system being carried out.
280 *
281 * Runtime PM is disabled for @dev while this function is being executed.
282 */
283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
284 pm_message_t state)
285 {
286 switch (state.event) {
287 #ifdef CONFIG_SUSPEND
288 case PM_EVENT_SUSPEND:
289 return ops->suspend_late;
290 case PM_EVENT_RESUME:
291 return ops->resume_early;
292 #endif /* CONFIG_SUSPEND */
293 #ifdef CONFIG_HIBERNATE_CALLBACKS
294 case PM_EVENT_FREEZE:
295 case PM_EVENT_QUIESCE:
296 return ops->freeze_late;
297 case PM_EVENT_HIBERNATE:
298 return ops->poweroff_late;
299 case PM_EVENT_THAW:
300 case PM_EVENT_RECOVER:
301 return ops->thaw_early;
302 case PM_EVENT_RESTORE:
303 return ops->restore_early;
304 #endif /* CONFIG_HIBERNATE_CALLBACKS */
305 }
306
307 return NULL;
308 }
309
310 /**
311 * pm_noirq_op - Return the PM operation appropriate for given PM event.
312 * @ops: PM operations to choose from.
313 * @state: PM transition of the system being carried out.
314 *
315 * The driver of @dev will not receive interrupts while this function is being
316 * executed.
317 */
318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
319 {
320 switch (state.event) {
321 #ifdef CONFIG_SUSPEND
322 case PM_EVENT_SUSPEND:
323 return ops->suspend_noirq;
324 case PM_EVENT_RESUME:
325 return ops->resume_noirq;
326 #endif /* CONFIG_SUSPEND */
327 #ifdef CONFIG_HIBERNATE_CALLBACKS
328 case PM_EVENT_FREEZE:
329 case PM_EVENT_QUIESCE:
330 return ops->freeze_noirq;
331 case PM_EVENT_HIBERNATE:
332 return ops->poweroff_noirq;
333 case PM_EVENT_THAW:
334 case PM_EVENT_RECOVER:
335 return ops->thaw_noirq;
336 case PM_EVENT_RESTORE:
337 return ops->restore_noirq;
338 #endif /* CONFIG_HIBERNATE_CALLBACKS */
339 }
340
341 return NULL;
342 }
343
344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
345 {
346 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
347 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
348 ", may wakeup" : "");
349 }
350
351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
352 int error)
353 {
354 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
355 dev_name(dev), pm_verb(state.event), info, error);
356 }
357
358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
359 {
360 ktime_t calltime;
361 u64 usecs64;
362 int usecs;
363
364 calltime = ktime_get();
365 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
366 do_div(usecs64, NSEC_PER_USEC);
367 usecs = usecs64;
368 if (usecs == 0)
369 usecs = 1;
370 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
371 info ?: "", info ? " " : "", pm_verb(state.event),
372 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
373 }
374
375 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
376 pm_message_t state, char *info)
377 {
378 ktime_t calltime;
379 int error;
380
381 if (!cb)
382 return 0;
383
384 calltime = initcall_debug_start(dev);
385
386 pm_dev_dbg(dev, state, info);
387 trace_device_pm_callback_start(dev, info, state.event);
388 error = cb(dev);
389 trace_device_pm_callback_end(dev, error);
390 suspend_report_result(cb, error);
391
392 initcall_debug_report(dev, calltime, error, state, info);
393
394 return error;
395 }
396
397 #ifdef CONFIG_DPM_WATCHDOG
398 struct dpm_watchdog {
399 struct device *dev;
400 struct task_struct *tsk;
401 struct timer_list timer;
402 };
403
404 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
405 struct dpm_watchdog wd
406
407 /**
408 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
409 * @data: Watchdog object address.
410 *
411 * Called when a driver has timed out suspending or resuming.
412 * There's not much we can do here to recover so panic() to
413 * capture a crash-dump in pstore.
414 */
415 static void dpm_watchdog_handler(unsigned long data)
416 {
417 struct dpm_watchdog *wd = (void *)data;
418
419 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
420 show_stack(wd->tsk, NULL);
421 panic("%s %s: unrecoverable failure\n",
422 dev_driver_string(wd->dev), dev_name(wd->dev));
423 }
424
425 /**
426 * dpm_watchdog_set - Enable pm watchdog for given device.
427 * @wd: Watchdog. Must be allocated on the stack.
428 * @dev: Device to handle.
429 */
430 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
431 {
432 struct timer_list *timer = &wd->timer;
433
434 wd->dev = dev;
435 wd->tsk = current;
436
437 init_timer_on_stack(timer);
438 /* use same timeout value for both suspend and resume */
439 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
440 timer->function = dpm_watchdog_handler;
441 timer->data = (unsigned long)wd;
442 add_timer(timer);
443 }
444
445 /**
446 * dpm_watchdog_clear - Disable suspend/resume watchdog.
447 * @wd: Watchdog to disable.
448 */
449 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
450 {
451 struct timer_list *timer = &wd->timer;
452
453 del_timer_sync(timer);
454 destroy_timer_on_stack(timer);
455 }
456 #else
457 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
458 #define dpm_watchdog_set(x, y)
459 #define dpm_watchdog_clear(x)
460 #endif
461
462 /*------------------------- Resume routines -------------------------*/
463
464 /**
465 * device_resume_noirq - Execute an "early resume" callback for given device.
466 * @dev: Device to handle.
467 * @state: PM transition of the system being carried out.
468 * @async: If true, the device is being resumed asynchronously.
469 *
470 * The driver of @dev will not receive interrupts while this function is being
471 * executed.
472 */
473 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
474 {
475 pm_callback_t callback = NULL;
476 char *info = NULL;
477 int error = 0;
478
479 TRACE_DEVICE(dev);
480 TRACE_RESUME(0);
481
482 if (dev->power.syscore || dev->power.direct_complete)
483 goto Out;
484
485 if (!dev->power.is_noirq_suspended)
486 goto Out;
487
488 dpm_wait(dev->parent, async);
489
490 if (dev->pm_domain) {
491 info = "noirq power domain ";
492 callback = pm_noirq_op(&dev->pm_domain->ops, state);
493 } else if (dev->type && dev->type->pm) {
494 info = "noirq type ";
495 callback = pm_noirq_op(dev->type->pm, state);
496 } else if (dev->class && dev->class->pm) {
497 info = "noirq class ";
498 callback = pm_noirq_op(dev->class->pm, state);
499 } else if (dev->bus && dev->bus->pm) {
500 info = "noirq bus ";
501 callback = pm_noirq_op(dev->bus->pm, state);
502 }
503
504 if (!callback && dev->driver && dev->driver->pm) {
505 info = "noirq driver ";
506 callback = pm_noirq_op(dev->driver->pm, state);
507 }
508
509 error = dpm_run_callback(callback, dev, state, info);
510 dev->power.is_noirq_suspended = false;
511
512 Out:
513 complete_all(&dev->power.completion);
514 TRACE_RESUME(error);
515 return error;
516 }
517
518 static bool is_async(struct device *dev)
519 {
520 return dev->power.async_suspend && pm_async_enabled
521 && !pm_trace_is_enabled();
522 }
523
524 static void async_resume_noirq(void *data, async_cookie_t cookie)
525 {
526 struct device *dev = (struct device *)data;
527 int error;
528
529 error = device_resume_noirq(dev, pm_transition, true);
530 if (error)
531 pm_dev_err(dev, pm_transition, " async", error);
532
533 put_device(dev);
534 }
535
536 /**
537 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
538 * @state: PM transition of the system being carried out.
539 *
540 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
541 * enable device drivers to receive interrupts.
542 */
543 void dpm_resume_noirq(pm_message_t state)
544 {
545 struct device *dev;
546 ktime_t starttime = ktime_get();
547
548 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
549 mutex_lock(&dpm_list_mtx);
550 pm_transition = state;
551
552 /*
553 * Advanced the async threads upfront,
554 * in case the starting of async threads is
555 * delayed by non-async resuming devices.
556 */
557 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
558 reinit_completion(&dev->power.completion);
559 if (is_async(dev)) {
560 get_device(dev);
561 async_schedule(async_resume_noirq, dev);
562 }
563 }
564
565 while (!list_empty(&dpm_noirq_list)) {
566 dev = to_device(dpm_noirq_list.next);
567 get_device(dev);
568 list_move_tail(&dev->power.entry, &dpm_late_early_list);
569 mutex_unlock(&dpm_list_mtx);
570
571 if (!is_async(dev)) {
572 int error;
573
574 error = device_resume_noirq(dev, state, false);
575 if (error) {
576 suspend_stats.failed_resume_noirq++;
577 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
578 dpm_save_failed_dev(dev_name(dev));
579 pm_dev_err(dev, state, " noirq", error);
580 }
581 }
582
583 mutex_lock(&dpm_list_mtx);
584 put_device(dev);
585 }
586 mutex_unlock(&dpm_list_mtx);
587 async_synchronize_full();
588 dpm_show_time(starttime, state, "noirq");
589 resume_device_irqs();
590 cpuidle_resume();
591 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
592 }
593
594 /**
595 * device_resume_early - Execute an "early resume" callback for given device.
596 * @dev: Device to handle.
597 * @state: PM transition of the system being carried out.
598 * @async: If true, the device is being resumed asynchronously.
599 *
600 * Runtime PM is disabled for @dev while this function is being executed.
601 */
602 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
603 {
604 pm_callback_t callback = NULL;
605 char *info = NULL;
606 int error = 0;
607
608 TRACE_DEVICE(dev);
609 TRACE_RESUME(0);
610
611 if (dev->power.syscore || dev->power.direct_complete)
612 goto Out;
613
614 if (!dev->power.is_late_suspended)
615 goto Out;
616
617 dpm_wait(dev->parent, async);
618
619 if (dev->pm_domain) {
620 info = "early power domain ";
621 callback = pm_late_early_op(&dev->pm_domain->ops, state);
622 } else if (dev->type && dev->type->pm) {
623 info = "early type ";
624 callback = pm_late_early_op(dev->type->pm, state);
625 } else if (dev->class && dev->class->pm) {
626 info = "early class ";
627 callback = pm_late_early_op(dev->class->pm, state);
628 } else if (dev->bus && dev->bus->pm) {
629 info = "early bus ";
630 callback = pm_late_early_op(dev->bus->pm, state);
631 }
632
633 if (!callback && dev->driver && dev->driver->pm) {
634 info = "early driver ";
635 callback = pm_late_early_op(dev->driver->pm, state);
636 }
637
638 error = dpm_run_callback(callback, dev, state, info);
639 dev->power.is_late_suspended = false;
640
641 Out:
642 TRACE_RESUME(error);
643
644 pm_runtime_enable(dev);
645 complete_all(&dev->power.completion);
646 return error;
647 }
648
649 static void async_resume_early(void *data, async_cookie_t cookie)
650 {
651 struct device *dev = (struct device *)data;
652 int error;
653
654 error = device_resume_early(dev, pm_transition, true);
655 if (error)
656 pm_dev_err(dev, pm_transition, " async", error);
657
658 put_device(dev);
659 }
660
661 /**
662 * dpm_resume_early - Execute "early resume" callbacks for all devices.
663 * @state: PM transition of the system being carried out.
664 */
665 void dpm_resume_early(pm_message_t state)
666 {
667 struct device *dev;
668 ktime_t starttime = ktime_get();
669
670 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
671 mutex_lock(&dpm_list_mtx);
672 pm_transition = state;
673
674 /*
675 * Advanced the async threads upfront,
676 * in case the starting of async threads is
677 * delayed by non-async resuming devices.
678 */
679 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
680 reinit_completion(&dev->power.completion);
681 if (is_async(dev)) {
682 get_device(dev);
683 async_schedule(async_resume_early, dev);
684 }
685 }
686
687 while (!list_empty(&dpm_late_early_list)) {
688 dev = to_device(dpm_late_early_list.next);
689 get_device(dev);
690 list_move_tail(&dev->power.entry, &dpm_suspended_list);
691 mutex_unlock(&dpm_list_mtx);
692
693 if (!is_async(dev)) {
694 int error;
695
696 error = device_resume_early(dev, state, false);
697 if (error) {
698 suspend_stats.failed_resume_early++;
699 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
700 dpm_save_failed_dev(dev_name(dev));
701 pm_dev_err(dev, state, " early", error);
702 }
703 }
704 mutex_lock(&dpm_list_mtx);
705 put_device(dev);
706 }
707 mutex_unlock(&dpm_list_mtx);
708 async_synchronize_full();
709 dpm_show_time(starttime, state, "early");
710 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
711 }
712
713 /**
714 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
715 * @state: PM transition of the system being carried out.
716 */
717 void dpm_resume_start(pm_message_t state)
718 {
719 dpm_resume_noirq(state);
720 dpm_resume_early(state);
721 }
722 EXPORT_SYMBOL_GPL(dpm_resume_start);
723
724 /**
725 * device_resume - Execute "resume" callbacks for given device.
726 * @dev: Device to handle.
727 * @state: PM transition of the system being carried out.
728 * @async: If true, the device is being resumed asynchronously.
729 */
730 static int device_resume(struct device *dev, pm_message_t state, bool async)
731 {
732 pm_callback_t callback = NULL;
733 char *info = NULL;
734 int error = 0;
735 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
736
737 TRACE_DEVICE(dev);
738 TRACE_RESUME(0);
739
740 if (dev->power.syscore)
741 goto Complete;
742
743 if (dev->power.direct_complete) {
744 /* Match the pm_runtime_disable() in __device_suspend(). */
745 pm_runtime_enable(dev);
746 goto Complete;
747 }
748
749 dpm_wait(dev->parent, async);
750 dpm_watchdog_set(&wd, dev);
751 device_lock(dev);
752
753 /*
754 * This is a fib. But we'll allow new children to be added below
755 * a resumed device, even if the device hasn't been completed yet.
756 */
757 dev->power.is_prepared = false;
758
759 if (!dev->power.is_suspended)
760 goto Unlock;
761
762 if (dev->pm_domain) {
763 info = "power domain ";
764 callback = pm_op(&dev->pm_domain->ops, state);
765 goto Driver;
766 }
767
768 if (dev->type && dev->type->pm) {
769 info = "type ";
770 callback = pm_op(dev->type->pm, state);
771 goto Driver;
772 }
773
774 if (dev->class) {
775 if (dev->class->pm) {
776 info = "class ";
777 callback = pm_op(dev->class->pm, state);
778 goto Driver;
779 } else if (dev->class->resume) {
780 info = "legacy class ";
781 callback = dev->class->resume;
782 goto End;
783 }
784 }
785
786 if (dev->bus) {
787 if (dev->bus->pm) {
788 info = "bus ";
789 callback = pm_op(dev->bus->pm, state);
790 } else if (dev->bus->resume) {
791 info = "legacy bus ";
792 callback = dev->bus->resume;
793 goto End;
794 }
795 }
796
797 Driver:
798 if (!callback && dev->driver && dev->driver->pm) {
799 info = "driver ";
800 callback = pm_op(dev->driver->pm, state);
801 }
802
803 End:
804 error = dpm_run_callback(callback, dev, state, info);
805 dev->power.is_suspended = false;
806
807 Unlock:
808 device_unlock(dev);
809 dpm_watchdog_clear(&wd);
810
811 Complete:
812 complete_all(&dev->power.completion);
813
814 TRACE_RESUME(error);
815
816 return error;
817 }
818
819 static void async_resume(void *data, async_cookie_t cookie)
820 {
821 struct device *dev = (struct device *)data;
822 int error;
823
824 error = device_resume(dev, pm_transition, true);
825 if (error)
826 pm_dev_err(dev, pm_transition, " async", error);
827 put_device(dev);
828 }
829
830 /**
831 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
832 * @state: PM transition of the system being carried out.
833 *
834 * Execute the appropriate "resume" callback for all devices whose status
835 * indicates that they are suspended.
836 */
837 void dpm_resume(pm_message_t state)
838 {
839 struct device *dev;
840 ktime_t starttime = ktime_get();
841
842 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
843 might_sleep();
844
845 mutex_lock(&dpm_list_mtx);
846 pm_transition = state;
847 async_error = 0;
848
849 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
850 reinit_completion(&dev->power.completion);
851 if (is_async(dev)) {
852 get_device(dev);
853 async_schedule(async_resume, dev);
854 }
855 }
856
857 while (!list_empty(&dpm_suspended_list)) {
858 dev = to_device(dpm_suspended_list.next);
859 get_device(dev);
860 if (!is_async(dev)) {
861 int error;
862
863 mutex_unlock(&dpm_list_mtx);
864
865 error = device_resume(dev, state, false);
866 if (error) {
867 suspend_stats.failed_resume++;
868 dpm_save_failed_step(SUSPEND_RESUME);
869 dpm_save_failed_dev(dev_name(dev));
870 pm_dev_err(dev, state, "", error);
871 }
872
873 mutex_lock(&dpm_list_mtx);
874 }
875 if (!list_empty(&dev->power.entry))
876 list_move_tail(&dev->power.entry, &dpm_prepared_list);
877 put_device(dev);
878 }
879 mutex_unlock(&dpm_list_mtx);
880 async_synchronize_full();
881 dpm_show_time(starttime, state, NULL);
882
883 cpufreq_resume();
884 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
885 }
886
887 /**
888 * device_complete - Complete a PM transition for given device.
889 * @dev: Device to handle.
890 * @state: PM transition of the system being carried out.
891 */
892 static void device_complete(struct device *dev, pm_message_t state)
893 {
894 void (*callback)(struct device *) = NULL;
895 char *info = NULL;
896
897 if (dev->power.syscore)
898 return;
899
900 device_lock(dev);
901
902 if (dev->pm_domain) {
903 info = "completing power domain ";
904 callback = dev->pm_domain->ops.complete;
905 } else if (dev->type && dev->type->pm) {
906 info = "completing type ";
907 callback = dev->type->pm->complete;
908 } else if (dev->class && dev->class->pm) {
909 info = "completing class ";
910 callback = dev->class->pm->complete;
911 } else if (dev->bus && dev->bus->pm) {
912 info = "completing bus ";
913 callback = dev->bus->pm->complete;
914 }
915
916 if (!callback && dev->driver && dev->driver->pm) {
917 info = "completing driver ";
918 callback = dev->driver->pm->complete;
919 }
920
921 if (callback) {
922 pm_dev_dbg(dev, state, info);
923 trace_device_pm_callback_start(dev, info, state.event);
924 callback(dev);
925 trace_device_pm_callback_end(dev, 0);
926 }
927
928 device_unlock(dev);
929
930 pm_runtime_put(dev);
931 }
932
933 /**
934 * dpm_complete - Complete a PM transition for all non-sysdev devices.
935 * @state: PM transition of the system being carried out.
936 *
937 * Execute the ->complete() callbacks for all devices whose PM status is not
938 * DPM_ON (this allows new devices to be registered).
939 */
940 void dpm_complete(pm_message_t state)
941 {
942 struct list_head list;
943
944 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
945 might_sleep();
946
947 INIT_LIST_HEAD(&list);
948 mutex_lock(&dpm_list_mtx);
949 while (!list_empty(&dpm_prepared_list)) {
950 struct device *dev = to_device(dpm_prepared_list.prev);
951
952 get_device(dev);
953 dev->power.is_prepared = false;
954 list_move(&dev->power.entry, &list);
955 mutex_unlock(&dpm_list_mtx);
956
957 device_complete(dev, state);
958
959 mutex_lock(&dpm_list_mtx);
960 put_device(dev);
961 }
962 list_splice(&list, &dpm_list);
963 mutex_unlock(&dpm_list_mtx);
964 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
965 }
966
967 /**
968 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
969 * @state: PM transition of the system being carried out.
970 *
971 * Execute "resume" callbacks for all devices and complete the PM transition of
972 * the system.
973 */
974 void dpm_resume_end(pm_message_t state)
975 {
976 dpm_resume(state);
977 dpm_complete(state);
978 }
979 EXPORT_SYMBOL_GPL(dpm_resume_end);
980
981
982 /*------------------------- Suspend routines -------------------------*/
983
984 /**
985 * resume_event - Return a "resume" message for given "suspend" sleep state.
986 * @sleep_state: PM message representing a sleep state.
987 *
988 * Return a PM message representing the resume event corresponding to given
989 * sleep state.
990 */
991 static pm_message_t resume_event(pm_message_t sleep_state)
992 {
993 switch (sleep_state.event) {
994 case PM_EVENT_SUSPEND:
995 return PMSG_RESUME;
996 case PM_EVENT_FREEZE:
997 case PM_EVENT_QUIESCE:
998 return PMSG_RECOVER;
999 case PM_EVENT_HIBERNATE:
1000 return PMSG_RESTORE;
1001 }
1002 return PMSG_ON;
1003 }
1004
1005 /**
1006 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1007 * @dev: Device to handle.
1008 * @state: PM transition of the system being carried out.
1009 * @async: If true, the device is being suspended asynchronously.
1010 *
1011 * The driver of @dev will not receive interrupts while this function is being
1012 * executed.
1013 */
1014 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1015 {
1016 pm_callback_t callback = NULL;
1017 char *info = NULL;
1018 int error = 0;
1019
1020 TRACE_DEVICE(dev);
1021 TRACE_SUSPEND(0);
1022
1023 if (async_error)
1024 goto Complete;
1025
1026 if (pm_wakeup_pending()) {
1027 async_error = -EBUSY;
1028 goto Complete;
1029 }
1030
1031 if (dev->power.syscore || dev->power.direct_complete)
1032 goto Complete;
1033
1034 dpm_wait_for_children(dev, async);
1035
1036 if (dev->pm_domain) {
1037 info = "noirq power domain ";
1038 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1039 } else if (dev->type && dev->type->pm) {
1040 info = "noirq type ";
1041 callback = pm_noirq_op(dev->type->pm, state);
1042 } else if (dev->class && dev->class->pm) {
1043 info = "noirq class ";
1044 callback = pm_noirq_op(dev->class->pm, state);
1045 } else if (dev->bus && dev->bus->pm) {
1046 info = "noirq bus ";
1047 callback = pm_noirq_op(dev->bus->pm, state);
1048 }
1049
1050 if (!callback && dev->driver && dev->driver->pm) {
1051 info = "noirq driver ";
1052 callback = pm_noirq_op(dev->driver->pm, state);
1053 }
1054
1055 error = dpm_run_callback(callback, dev, state, info);
1056 if (!error)
1057 dev->power.is_noirq_suspended = true;
1058 else
1059 async_error = error;
1060
1061 Complete:
1062 complete_all(&dev->power.completion);
1063 TRACE_SUSPEND(error);
1064 return error;
1065 }
1066
1067 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1068 {
1069 struct device *dev = (struct device *)data;
1070 int error;
1071
1072 error = __device_suspend_noirq(dev, pm_transition, true);
1073 if (error) {
1074 dpm_save_failed_dev(dev_name(dev));
1075 pm_dev_err(dev, pm_transition, " async", error);
1076 }
1077
1078 put_device(dev);
1079 }
1080
1081 static int device_suspend_noirq(struct device *dev)
1082 {
1083 reinit_completion(&dev->power.completion);
1084
1085 if (is_async(dev)) {
1086 get_device(dev);
1087 async_schedule(async_suspend_noirq, dev);
1088 return 0;
1089 }
1090 return __device_suspend_noirq(dev, pm_transition, false);
1091 }
1092
1093 /**
1094 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1095 * @state: PM transition of the system being carried out.
1096 *
1097 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1098 * handlers for all non-sysdev devices.
1099 */
1100 int dpm_suspend_noirq(pm_message_t state)
1101 {
1102 ktime_t starttime = ktime_get();
1103 int error = 0;
1104
1105 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1106 cpuidle_pause();
1107 suspend_device_irqs();
1108 mutex_lock(&dpm_list_mtx);
1109 pm_transition = state;
1110 async_error = 0;
1111
1112 while (!list_empty(&dpm_late_early_list)) {
1113 struct device *dev = to_device(dpm_late_early_list.prev);
1114
1115 get_device(dev);
1116 mutex_unlock(&dpm_list_mtx);
1117
1118 error = device_suspend_noirq(dev);
1119
1120 mutex_lock(&dpm_list_mtx);
1121 if (error) {
1122 pm_dev_err(dev, state, " noirq", error);
1123 dpm_save_failed_dev(dev_name(dev));
1124 put_device(dev);
1125 break;
1126 }
1127 if (!list_empty(&dev->power.entry))
1128 list_move(&dev->power.entry, &dpm_noirq_list);
1129 put_device(dev);
1130
1131 if (async_error)
1132 break;
1133 }
1134 mutex_unlock(&dpm_list_mtx);
1135 async_synchronize_full();
1136 if (!error)
1137 error = async_error;
1138
1139 if (error) {
1140 suspend_stats.failed_suspend_noirq++;
1141 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1142 dpm_resume_noirq(resume_event(state));
1143 } else {
1144 dpm_show_time(starttime, state, "noirq");
1145 }
1146 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1147 return error;
1148 }
1149
1150 /**
1151 * device_suspend_late - Execute a "late suspend" callback for given device.
1152 * @dev: Device to handle.
1153 * @state: PM transition of the system being carried out.
1154 * @async: If true, the device is being suspended asynchronously.
1155 *
1156 * Runtime PM is disabled for @dev while this function is being executed.
1157 */
1158 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1159 {
1160 pm_callback_t callback = NULL;
1161 char *info = NULL;
1162 int error = 0;
1163
1164 TRACE_DEVICE(dev);
1165 TRACE_SUSPEND(0);
1166
1167 __pm_runtime_disable(dev, false);
1168
1169 if (async_error)
1170 goto Complete;
1171
1172 if (pm_wakeup_pending()) {
1173 async_error = -EBUSY;
1174 goto Complete;
1175 }
1176
1177 if (dev->power.syscore || dev->power.direct_complete)
1178 goto Complete;
1179
1180 dpm_wait_for_children(dev, async);
1181
1182 if (dev->pm_domain) {
1183 info = "late power domain ";
1184 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1185 } else if (dev->type && dev->type->pm) {
1186 info = "late type ";
1187 callback = pm_late_early_op(dev->type->pm, state);
1188 } else if (dev->class && dev->class->pm) {
1189 info = "late class ";
1190 callback = pm_late_early_op(dev->class->pm, state);
1191 } else if (dev->bus && dev->bus->pm) {
1192 info = "late bus ";
1193 callback = pm_late_early_op(dev->bus->pm, state);
1194 }
1195
1196 if (!callback && dev->driver && dev->driver->pm) {
1197 info = "late driver ";
1198 callback = pm_late_early_op(dev->driver->pm, state);
1199 }
1200
1201 error = dpm_run_callback(callback, dev, state, info);
1202 if (!error)
1203 dev->power.is_late_suspended = true;
1204 else
1205 async_error = error;
1206
1207 Complete:
1208 TRACE_SUSPEND(error);
1209 complete_all(&dev->power.completion);
1210 return error;
1211 }
1212
1213 static void async_suspend_late(void *data, async_cookie_t cookie)
1214 {
1215 struct device *dev = (struct device *)data;
1216 int error;
1217
1218 error = __device_suspend_late(dev, pm_transition, true);
1219 if (error) {
1220 dpm_save_failed_dev(dev_name(dev));
1221 pm_dev_err(dev, pm_transition, " async", error);
1222 }
1223 put_device(dev);
1224 }
1225
1226 static int device_suspend_late(struct device *dev)
1227 {
1228 reinit_completion(&dev->power.completion);
1229
1230 if (is_async(dev)) {
1231 get_device(dev);
1232 async_schedule(async_suspend_late, dev);
1233 return 0;
1234 }
1235
1236 return __device_suspend_late(dev, pm_transition, false);
1237 }
1238
1239 /**
1240 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1241 * @state: PM transition of the system being carried out.
1242 */
1243 int dpm_suspend_late(pm_message_t state)
1244 {
1245 ktime_t starttime = ktime_get();
1246 int error = 0;
1247
1248 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1249 mutex_lock(&dpm_list_mtx);
1250 pm_transition = state;
1251 async_error = 0;
1252
1253 while (!list_empty(&dpm_suspended_list)) {
1254 struct device *dev = to_device(dpm_suspended_list.prev);
1255
1256 get_device(dev);
1257 mutex_unlock(&dpm_list_mtx);
1258
1259 error = device_suspend_late(dev);
1260
1261 mutex_lock(&dpm_list_mtx);
1262 if (error) {
1263 pm_dev_err(dev, state, " late", error);
1264 dpm_save_failed_dev(dev_name(dev));
1265 put_device(dev);
1266 break;
1267 }
1268 if (!list_empty(&dev->power.entry))
1269 list_move(&dev->power.entry, &dpm_late_early_list);
1270 put_device(dev);
1271
1272 if (async_error)
1273 break;
1274 }
1275 mutex_unlock(&dpm_list_mtx);
1276 async_synchronize_full();
1277 if (!error)
1278 error = async_error;
1279 if (error) {
1280 suspend_stats.failed_suspend_late++;
1281 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1282 dpm_resume_early(resume_event(state));
1283 } else {
1284 dpm_show_time(starttime, state, "late");
1285 }
1286 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1287 return error;
1288 }
1289
1290 /**
1291 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1292 * @state: PM transition of the system being carried out.
1293 */
1294 int dpm_suspend_end(pm_message_t state)
1295 {
1296 int error = dpm_suspend_late(state);
1297 if (error)
1298 return error;
1299
1300 error = dpm_suspend_noirq(state);
1301 if (error) {
1302 dpm_resume_early(resume_event(state));
1303 return error;
1304 }
1305
1306 return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1309
1310 /**
1311 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1312 * @dev: Device to suspend.
1313 * @state: PM transition of the system being carried out.
1314 * @cb: Suspend callback to execute.
1315 * @info: string description of caller.
1316 */
1317 static int legacy_suspend(struct device *dev, pm_message_t state,
1318 int (*cb)(struct device *dev, pm_message_t state),
1319 char *info)
1320 {
1321 int error;
1322 ktime_t calltime;
1323
1324 calltime = initcall_debug_start(dev);
1325
1326 trace_device_pm_callback_start(dev, info, state.event);
1327 error = cb(dev, state);
1328 trace_device_pm_callback_end(dev, error);
1329 suspend_report_result(cb, error);
1330
1331 initcall_debug_report(dev, calltime, error, state, info);
1332
1333 return error;
1334 }
1335
1336 /**
1337 * device_suspend - Execute "suspend" callbacks for given device.
1338 * @dev: Device to handle.
1339 * @state: PM transition of the system being carried out.
1340 * @async: If true, the device is being suspended asynchronously.
1341 */
1342 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1343 {
1344 pm_callback_t callback = NULL;
1345 char *info = NULL;
1346 int error = 0;
1347 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1348
1349 TRACE_DEVICE(dev);
1350 TRACE_SUSPEND(0);
1351
1352 dpm_wait_for_children(dev, async);
1353
1354 if (async_error)
1355 goto Complete;
1356
1357 /*
1358 * If a device configured to wake up the system from sleep states
1359 * has been suspended at run time and there's a resume request pending
1360 * for it, this is equivalent to the device signaling wakeup, so the
1361 * system suspend operation should be aborted.
1362 */
1363 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1364 pm_wakeup_event(dev, 0);
1365
1366 if (pm_wakeup_pending()) {
1367 async_error = -EBUSY;
1368 goto Complete;
1369 }
1370
1371 if (dev->power.syscore)
1372 goto Complete;
1373
1374 if (dev->power.direct_complete) {
1375 if (pm_runtime_status_suspended(dev)) {
1376 pm_runtime_disable(dev);
1377 if (pm_runtime_suspended_if_enabled(dev))
1378 goto Complete;
1379
1380 pm_runtime_enable(dev);
1381 }
1382 dev->power.direct_complete = false;
1383 }
1384
1385 dpm_watchdog_set(&wd, dev);
1386 device_lock(dev);
1387
1388 if (dev->pm_domain) {
1389 info = "power domain ";
1390 callback = pm_op(&dev->pm_domain->ops, state);
1391 goto Run;
1392 }
1393
1394 if (dev->type && dev->type->pm) {
1395 info = "type ";
1396 callback = pm_op(dev->type->pm, state);
1397 goto Run;
1398 }
1399
1400 if (dev->class) {
1401 if (dev->class->pm) {
1402 info = "class ";
1403 callback = pm_op(dev->class->pm, state);
1404 goto Run;
1405 } else if (dev->class->suspend) {
1406 pm_dev_dbg(dev, state, "legacy class ");
1407 error = legacy_suspend(dev, state, dev->class->suspend,
1408 "legacy class ");
1409 goto End;
1410 }
1411 }
1412
1413 if (dev->bus) {
1414 if (dev->bus->pm) {
1415 info = "bus ";
1416 callback = pm_op(dev->bus->pm, state);
1417 } else if (dev->bus->suspend) {
1418 pm_dev_dbg(dev, state, "legacy bus ");
1419 error = legacy_suspend(dev, state, dev->bus->suspend,
1420 "legacy bus ");
1421 goto End;
1422 }
1423 }
1424
1425 Run:
1426 if (!callback && dev->driver && dev->driver->pm) {
1427 info = "driver ";
1428 callback = pm_op(dev->driver->pm, state);
1429 }
1430
1431 error = dpm_run_callback(callback, dev, state, info);
1432
1433 End:
1434 if (!error) {
1435 struct device *parent = dev->parent;
1436
1437 dev->power.is_suspended = true;
1438 if (parent) {
1439 spin_lock_irq(&parent->power.lock);
1440
1441 dev->parent->power.direct_complete = false;
1442 if (dev->power.wakeup_path
1443 && !dev->parent->power.ignore_children)
1444 dev->parent->power.wakeup_path = true;
1445
1446 spin_unlock_irq(&parent->power.lock);
1447 }
1448 }
1449
1450 device_unlock(dev);
1451 dpm_watchdog_clear(&wd);
1452
1453 Complete:
1454 complete_all(&dev->power.completion);
1455 if (error)
1456 async_error = error;
1457
1458 TRACE_SUSPEND(error);
1459 return error;
1460 }
1461
1462 static void async_suspend(void *data, async_cookie_t cookie)
1463 {
1464 struct device *dev = (struct device *)data;
1465 int error;
1466
1467 error = __device_suspend(dev, pm_transition, true);
1468 if (error) {
1469 dpm_save_failed_dev(dev_name(dev));
1470 pm_dev_err(dev, pm_transition, " async", error);
1471 }
1472
1473 put_device(dev);
1474 }
1475
1476 static int device_suspend(struct device *dev)
1477 {
1478 reinit_completion(&dev->power.completion);
1479
1480 if (is_async(dev)) {
1481 get_device(dev);
1482 async_schedule(async_suspend, dev);
1483 return 0;
1484 }
1485
1486 return __device_suspend(dev, pm_transition, false);
1487 }
1488
1489 /**
1490 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1491 * @state: PM transition of the system being carried out.
1492 */
1493 int dpm_suspend(pm_message_t state)
1494 {
1495 ktime_t starttime = ktime_get();
1496 int error = 0;
1497
1498 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1499 might_sleep();
1500
1501 cpufreq_suspend();
1502
1503 mutex_lock(&dpm_list_mtx);
1504 pm_transition = state;
1505 async_error = 0;
1506 while (!list_empty(&dpm_prepared_list)) {
1507 struct device *dev = to_device(dpm_prepared_list.prev);
1508
1509 get_device(dev);
1510 mutex_unlock(&dpm_list_mtx);
1511
1512 error = device_suspend(dev);
1513
1514 mutex_lock(&dpm_list_mtx);
1515 if (error) {
1516 pm_dev_err(dev, state, "", error);
1517 dpm_save_failed_dev(dev_name(dev));
1518 put_device(dev);
1519 break;
1520 }
1521 if (!list_empty(&dev->power.entry))
1522 list_move(&dev->power.entry, &dpm_suspended_list);
1523 put_device(dev);
1524 if (async_error)
1525 break;
1526 }
1527 mutex_unlock(&dpm_list_mtx);
1528 async_synchronize_full();
1529 if (!error)
1530 error = async_error;
1531 if (error) {
1532 suspend_stats.failed_suspend++;
1533 dpm_save_failed_step(SUSPEND_SUSPEND);
1534 } else
1535 dpm_show_time(starttime, state, NULL);
1536 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1537 return error;
1538 }
1539
1540 /**
1541 * device_prepare - Prepare a device for system power transition.
1542 * @dev: Device to handle.
1543 * @state: PM transition of the system being carried out.
1544 *
1545 * Execute the ->prepare() callback(s) for given device. No new children of the
1546 * device may be registered after this function has returned.
1547 */
1548 static int device_prepare(struct device *dev, pm_message_t state)
1549 {
1550 int (*callback)(struct device *) = NULL;
1551 char *info = NULL;
1552 int ret = 0;
1553
1554 if (dev->power.syscore)
1555 return 0;
1556
1557 /*
1558 * If a device's parent goes into runtime suspend at the wrong time,
1559 * it won't be possible to resume the device. To prevent this we
1560 * block runtime suspend here, during the prepare phase, and allow
1561 * it again during the complete phase.
1562 */
1563 pm_runtime_get_noresume(dev);
1564
1565 device_lock(dev);
1566
1567 dev->power.wakeup_path = device_may_wakeup(dev);
1568
1569 if (dev->pm_domain) {
1570 info = "preparing power domain ";
1571 callback = dev->pm_domain->ops.prepare;
1572 } else if (dev->type && dev->type->pm) {
1573 info = "preparing type ";
1574 callback = dev->type->pm->prepare;
1575 } else if (dev->class && dev->class->pm) {
1576 info = "preparing class ";
1577 callback = dev->class->pm->prepare;
1578 } else if (dev->bus && dev->bus->pm) {
1579 info = "preparing bus ";
1580 callback = dev->bus->pm->prepare;
1581 }
1582
1583 if (!callback && dev->driver && dev->driver->pm) {
1584 info = "preparing driver ";
1585 callback = dev->driver->pm->prepare;
1586 }
1587
1588 if (callback) {
1589 trace_device_pm_callback_start(dev, info, state.event);
1590 ret = callback(dev);
1591 trace_device_pm_callback_end(dev, ret);
1592 }
1593
1594 device_unlock(dev);
1595
1596 if (ret < 0) {
1597 suspend_report_result(callback, ret);
1598 pm_runtime_put(dev);
1599 return ret;
1600 }
1601 /*
1602 * A positive return value from ->prepare() means "this device appears
1603 * to be runtime-suspended and its state is fine, so if it really is
1604 * runtime-suspended, you can leave it in that state provided that you
1605 * will do the same thing with all of its descendants". This only
1606 * applies to suspend transitions, however.
1607 */
1608 spin_lock_irq(&dev->power.lock);
1609 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1610 spin_unlock_irq(&dev->power.lock);
1611 return 0;
1612 }
1613
1614 /**
1615 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1616 * @state: PM transition of the system being carried out.
1617 *
1618 * Execute the ->prepare() callback(s) for all devices.
1619 */
1620 int dpm_prepare(pm_message_t state)
1621 {
1622 int error = 0;
1623
1624 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1625 might_sleep();
1626
1627 mutex_lock(&dpm_list_mtx);
1628 while (!list_empty(&dpm_list)) {
1629 struct device *dev = to_device(dpm_list.next);
1630
1631 get_device(dev);
1632 mutex_unlock(&dpm_list_mtx);
1633
1634 error = device_prepare(dev, state);
1635
1636 mutex_lock(&dpm_list_mtx);
1637 if (error) {
1638 if (error == -EAGAIN) {
1639 put_device(dev);
1640 error = 0;
1641 continue;
1642 }
1643 printk(KERN_INFO "PM: Device %s not prepared "
1644 "for power transition: code %d\n",
1645 dev_name(dev), error);
1646 put_device(dev);
1647 break;
1648 }
1649 dev->power.is_prepared = true;
1650 if (!list_empty(&dev->power.entry))
1651 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1652 put_device(dev);
1653 }
1654 mutex_unlock(&dpm_list_mtx);
1655 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1656 return error;
1657 }
1658
1659 /**
1660 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1661 * @state: PM transition of the system being carried out.
1662 *
1663 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1664 * callbacks for them.
1665 */
1666 int dpm_suspend_start(pm_message_t state)
1667 {
1668 int error;
1669
1670 error = dpm_prepare(state);
1671 if (error) {
1672 suspend_stats.failed_prepare++;
1673 dpm_save_failed_step(SUSPEND_PREPARE);
1674 } else
1675 error = dpm_suspend(state);
1676 return error;
1677 }
1678 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1679
1680 void __suspend_report_result(const char *function, void *fn, int ret)
1681 {
1682 if (ret)
1683 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1684 }
1685 EXPORT_SYMBOL_GPL(__suspend_report_result);
1686
1687 /**
1688 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1689 * @dev: Device to wait for.
1690 * @subordinate: Device that needs to wait for @dev.
1691 */
1692 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1693 {
1694 dpm_wait(dev, subordinate->power.async_suspend);
1695 return async_error;
1696 }
1697 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1698
1699 /**
1700 * dpm_for_each_dev - device iterator.
1701 * @data: data for the callback.
1702 * @fn: function to be called for each device.
1703 *
1704 * Iterate over devices in dpm_list, and call @fn for each device,
1705 * passing it @data.
1706 */
1707 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1708 {
1709 struct device *dev;
1710
1711 if (!fn)
1712 return;
1713
1714 device_pm_lock();
1715 list_for_each_entry(dev, &dpm_list, power.entry)
1716 fn(dev, data);
1717 device_pm_unlock();
1718 }
1719 EXPORT_SYMBOL_GPL(dpm_for_each_dev);