]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/base/power/main.c
Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[mirror_ubuntu-focal-kernel.git] / drivers / base / power / main.c
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/timer.h>
37
38 #include "../base.h"
39 #include "power.h"
40
41 typedef int (*pm_callback_t)(struct device *);
42
43 /*
44 * The entries in the dpm_list list are in a depth first order, simply
45 * because children are guaranteed to be discovered after parents, and
46 * are inserted at the back of the list on discovery.
47 *
48 * Since device_pm_add() may be called with a device lock held,
49 * we must never try to acquire a device lock while holding
50 * dpm_list_mutex.
51 */
52
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58
59 struct suspend_stats suspend_stats;
60 static DEFINE_MUTEX(dpm_list_mtx);
61 static pm_message_t pm_transition;
62
63 static int async_error;
64
65 static const char *pm_verb(int event)
66 {
67 switch (event) {
68 case PM_EVENT_SUSPEND:
69 return "suspend";
70 case PM_EVENT_RESUME:
71 return "resume";
72 case PM_EVENT_FREEZE:
73 return "freeze";
74 case PM_EVENT_QUIESCE:
75 return "quiesce";
76 case PM_EVENT_HIBERNATE:
77 return "hibernate";
78 case PM_EVENT_THAW:
79 return "thaw";
80 case PM_EVENT_RESTORE:
81 return "restore";
82 case PM_EVENT_RECOVER:
83 return "recover";
84 default:
85 return "(unknown PM event)";
86 }
87 }
88
89 /**
90 * device_pm_sleep_init - Initialize system suspend-related device fields.
91 * @dev: Device object being initialized.
92 */
93 void device_pm_sleep_init(struct device *dev)
94 {
95 dev->power.is_prepared = false;
96 dev->power.is_suspended = false;
97 dev->power.is_noirq_suspended = false;
98 dev->power.is_late_suspended = false;
99 init_completion(&dev->power.completion);
100 complete_all(&dev->power.completion);
101 dev->power.wakeup = NULL;
102 INIT_LIST_HEAD(&dev->power.entry);
103 }
104
105 /**
106 * device_pm_lock - Lock the list of active devices used by the PM core.
107 */
108 void device_pm_lock(void)
109 {
110 mutex_lock(&dpm_list_mtx);
111 }
112
113 /**
114 * device_pm_unlock - Unlock the list of active devices used by the PM core.
115 */
116 void device_pm_unlock(void)
117 {
118 mutex_unlock(&dpm_list_mtx);
119 }
120
121 /**
122 * device_pm_add - Add a device to the PM core's list of active devices.
123 * @dev: Device to add to the list.
124 */
125 void device_pm_add(struct device *dev)
126 {
127 pr_debug("PM: Adding info for %s:%s\n",
128 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
129 device_pm_check_callbacks(dev);
130 mutex_lock(&dpm_list_mtx);
131 if (dev->parent && dev->parent->power.is_prepared)
132 dev_warn(dev, "parent %s should not be sleeping\n",
133 dev_name(dev->parent));
134 list_add_tail(&dev->power.entry, &dpm_list);
135 dev->power.in_dpm_list = true;
136 mutex_unlock(&dpm_list_mtx);
137 }
138
139 /**
140 * device_pm_remove - Remove a device from the PM core's list of active devices.
141 * @dev: Device to be removed from the list.
142 */
143 void device_pm_remove(struct device *dev)
144 {
145 pr_debug("PM: Removing info for %s:%s\n",
146 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
147 complete_all(&dev->power.completion);
148 mutex_lock(&dpm_list_mtx);
149 list_del_init(&dev->power.entry);
150 dev->power.in_dpm_list = false;
151 mutex_unlock(&dpm_list_mtx);
152 device_wakeup_disable(dev);
153 pm_runtime_remove(dev);
154 device_pm_check_callbacks(dev);
155 }
156
157 /**
158 * device_pm_move_before - Move device in the PM core's list of active devices.
159 * @deva: Device to move in dpm_list.
160 * @devb: Device @deva should come before.
161 */
162 void device_pm_move_before(struct device *deva, struct device *devb)
163 {
164 pr_debug("PM: Moving %s:%s before %s:%s\n",
165 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
166 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
167 /* Delete deva from dpm_list and reinsert before devb. */
168 list_move_tail(&deva->power.entry, &devb->power.entry);
169 }
170
171 /**
172 * device_pm_move_after - Move device in the PM core's list of active devices.
173 * @deva: Device to move in dpm_list.
174 * @devb: Device @deva should come after.
175 */
176 void device_pm_move_after(struct device *deva, struct device *devb)
177 {
178 pr_debug("PM: Moving %s:%s after %s:%s\n",
179 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
180 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
181 /* Delete deva from dpm_list and reinsert after devb. */
182 list_move(&deva->power.entry, &devb->power.entry);
183 }
184
185 /**
186 * device_pm_move_last - Move device to end of the PM core's list of devices.
187 * @dev: Device to move in dpm_list.
188 */
189 void device_pm_move_last(struct device *dev)
190 {
191 pr_debug("PM: Moving %s:%s to end of list\n",
192 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
193 list_move_tail(&dev->power.entry, &dpm_list);
194 }
195
196 static ktime_t initcall_debug_start(struct device *dev)
197 {
198 ktime_t calltime = 0;
199
200 if (pm_print_times_enabled) {
201 pr_info("calling %s+ @ %i, parent: %s\n",
202 dev_name(dev), task_pid_nr(current),
203 dev->parent ? dev_name(dev->parent) : "none");
204 calltime = ktime_get();
205 }
206
207 return calltime;
208 }
209
210 static void initcall_debug_report(struct device *dev, ktime_t calltime,
211 int error, pm_message_t state,
212 const char *info)
213 {
214 ktime_t rettime;
215 s64 nsecs;
216
217 rettime = ktime_get();
218 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
219
220 if (pm_print_times_enabled) {
221 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
222 error, (unsigned long long)nsecs >> 10);
223 }
224 }
225
226 /**
227 * dpm_wait - Wait for a PM operation to complete.
228 * @dev: Device to wait for.
229 * @async: If unset, wait only if the device's power.async_suspend flag is set.
230 */
231 static void dpm_wait(struct device *dev, bool async)
232 {
233 if (!dev)
234 return;
235
236 if (async || (pm_async_enabled && dev->power.async_suspend))
237 wait_for_completion(&dev->power.completion);
238 }
239
240 static int dpm_wait_fn(struct device *dev, void *async_ptr)
241 {
242 dpm_wait(dev, *((bool *)async_ptr));
243 return 0;
244 }
245
246 static void dpm_wait_for_children(struct device *dev, bool async)
247 {
248 device_for_each_child(dev, &async, dpm_wait_fn);
249 }
250
251 static void dpm_wait_for_suppliers(struct device *dev, bool async)
252 {
253 struct device_link *link;
254 int idx;
255
256 idx = device_links_read_lock();
257
258 /*
259 * If the supplier goes away right after we've checked the link to it,
260 * we'll wait for its completion to change the state, but that's fine,
261 * because the only things that will block as a result are the SRCU
262 * callbacks freeing the link objects for the links in the list we're
263 * walking.
264 */
265 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
266 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
267 dpm_wait(link->supplier, async);
268
269 device_links_read_unlock(idx);
270 }
271
272 static void dpm_wait_for_superior(struct device *dev, bool async)
273 {
274 dpm_wait(dev->parent, async);
275 dpm_wait_for_suppliers(dev, async);
276 }
277
278 static void dpm_wait_for_consumers(struct device *dev, bool async)
279 {
280 struct device_link *link;
281 int idx;
282
283 idx = device_links_read_lock();
284
285 /*
286 * The status of a device link can only be changed from "dormant" by a
287 * probe, but that cannot happen during system suspend/resume. In
288 * theory it can change to "dormant" at that time, but then it is
289 * reasonable to wait for the target device anyway (eg. if it goes
290 * away, it's better to wait for it to go away completely and then
291 * continue instead of trying to continue in parallel with its
292 * unregistration).
293 */
294 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
295 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
296 dpm_wait(link->consumer, async);
297
298 device_links_read_unlock(idx);
299 }
300
301 static void dpm_wait_for_subordinate(struct device *dev, bool async)
302 {
303 dpm_wait_for_children(dev, async);
304 dpm_wait_for_consumers(dev, async);
305 }
306
307 /**
308 * pm_op - Return the PM operation appropriate for given PM event.
309 * @ops: PM operations to choose from.
310 * @state: PM transition of the system being carried out.
311 */
312 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
313 {
314 switch (state.event) {
315 #ifdef CONFIG_SUSPEND
316 case PM_EVENT_SUSPEND:
317 return ops->suspend;
318 case PM_EVENT_RESUME:
319 return ops->resume;
320 #endif /* CONFIG_SUSPEND */
321 #ifdef CONFIG_HIBERNATE_CALLBACKS
322 case PM_EVENT_FREEZE:
323 case PM_EVENT_QUIESCE:
324 return ops->freeze;
325 case PM_EVENT_HIBERNATE:
326 return ops->poweroff;
327 case PM_EVENT_THAW:
328 case PM_EVENT_RECOVER:
329 return ops->thaw;
330 break;
331 case PM_EVENT_RESTORE:
332 return ops->restore;
333 #endif /* CONFIG_HIBERNATE_CALLBACKS */
334 }
335
336 return NULL;
337 }
338
339 /**
340 * pm_late_early_op - Return the PM operation appropriate for given PM event.
341 * @ops: PM operations to choose from.
342 * @state: PM transition of the system being carried out.
343 *
344 * Runtime PM is disabled for @dev while this function is being executed.
345 */
346 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
347 pm_message_t state)
348 {
349 switch (state.event) {
350 #ifdef CONFIG_SUSPEND
351 case PM_EVENT_SUSPEND:
352 return ops->suspend_late;
353 case PM_EVENT_RESUME:
354 return ops->resume_early;
355 #endif /* CONFIG_SUSPEND */
356 #ifdef CONFIG_HIBERNATE_CALLBACKS
357 case PM_EVENT_FREEZE:
358 case PM_EVENT_QUIESCE:
359 return ops->freeze_late;
360 case PM_EVENT_HIBERNATE:
361 return ops->poweroff_late;
362 case PM_EVENT_THAW:
363 case PM_EVENT_RECOVER:
364 return ops->thaw_early;
365 case PM_EVENT_RESTORE:
366 return ops->restore_early;
367 #endif /* CONFIG_HIBERNATE_CALLBACKS */
368 }
369
370 return NULL;
371 }
372
373 /**
374 * pm_noirq_op - Return the PM operation appropriate for given PM event.
375 * @ops: PM operations to choose from.
376 * @state: PM transition of the system being carried out.
377 *
378 * The driver of @dev will not receive interrupts while this function is being
379 * executed.
380 */
381 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
382 {
383 switch (state.event) {
384 #ifdef CONFIG_SUSPEND
385 case PM_EVENT_SUSPEND:
386 return ops->suspend_noirq;
387 case PM_EVENT_RESUME:
388 return ops->resume_noirq;
389 #endif /* CONFIG_SUSPEND */
390 #ifdef CONFIG_HIBERNATE_CALLBACKS
391 case PM_EVENT_FREEZE:
392 case PM_EVENT_QUIESCE:
393 return ops->freeze_noirq;
394 case PM_EVENT_HIBERNATE:
395 return ops->poweroff_noirq;
396 case PM_EVENT_THAW:
397 case PM_EVENT_RECOVER:
398 return ops->thaw_noirq;
399 case PM_EVENT_RESTORE:
400 return ops->restore_noirq;
401 #endif /* CONFIG_HIBERNATE_CALLBACKS */
402 }
403
404 return NULL;
405 }
406
407 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
408 {
409 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
410 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
411 ", may wakeup" : "");
412 }
413
414 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
415 int error)
416 {
417 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
418 dev_name(dev), pm_verb(state.event), info, error);
419 }
420
421 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
422 const char *info)
423 {
424 ktime_t calltime;
425 u64 usecs64;
426 int usecs;
427
428 calltime = ktime_get();
429 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
430 do_div(usecs64, NSEC_PER_USEC);
431 usecs = usecs64;
432 if (usecs == 0)
433 usecs = 1;
434
435 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
436 info ?: "", info ? " " : "", pm_verb(state.event),
437 error ? "aborted" : "complete",
438 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
439 }
440
441 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
442 pm_message_t state, const char *info)
443 {
444 ktime_t calltime;
445 int error;
446
447 if (!cb)
448 return 0;
449
450 calltime = initcall_debug_start(dev);
451
452 pm_dev_dbg(dev, state, info);
453 trace_device_pm_callback_start(dev, info, state.event);
454 error = cb(dev);
455 trace_device_pm_callback_end(dev, error);
456 suspend_report_result(cb, error);
457
458 initcall_debug_report(dev, calltime, error, state, info);
459
460 return error;
461 }
462
463 #ifdef CONFIG_DPM_WATCHDOG
464 struct dpm_watchdog {
465 struct device *dev;
466 struct task_struct *tsk;
467 struct timer_list timer;
468 };
469
470 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
471 struct dpm_watchdog wd
472
473 /**
474 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
475 * @data: Watchdog object address.
476 *
477 * Called when a driver has timed out suspending or resuming.
478 * There's not much we can do here to recover so panic() to
479 * capture a crash-dump in pstore.
480 */
481 static void dpm_watchdog_handler(unsigned long data)
482 {
483 struct dpm_watchdog *wd = (void *)data;
484
485 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
486 show_stack(wd->tsk, NULL);
487 panic("%s %s: unrecoverable failure\n",
488 dev_driver_string(wd->dev), dev_name(wd->dev));
489 }
490
491 /**
492 * dpm_watchdog_set - Enable pm watchdog for given device.
493 * @wd: Watchdog. Must be allocated on the stack.
494 * @dev: Device to handle.
495 */
496 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
497 {
498 struct timer_list *timer = &wd->timer;
499
500 wd->dev = dev;
501 wd->tsk = current;
502
503 init_timer_on_stack(timer);
504 /* use same timeout value for both suspend and resume */
505 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
506 timer->function = dpm_watchdog_handler;
507 timer->data = (unsigned long)wd;
508 add_timer(timer);
509 }
510
511 /**
512 * dpm_watchdog_clear - Disable suspend/resume watchdog.
513 * @wd: Watchdog to disable.
514 */
515 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
516 {
517 struct timer_list *timer = &wd->timer;
518
519 del_timer_sync(timer);
520 destroy_timer_on_stack(timer);
521 }
522 #else
523 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
524 #define dpm_watchdog_set(x, y)
525 #define dpm_watchdog_clear(x)
526 #endif
527
528 /*------------------------- Resume routines -------------------------*/
529
530 /**
531 * device_resume_noirq - Execute an "early resume" callback for given device.
532 * @dev: Device to handle.
533 * @state: PM transition of the system being carried out.
534 * @async: If true, the device is being resumed asynchronously.
535 *
536 * The driver of @dev will not receive interrupts while this function is being
537 * executed.
538 */
539 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
540 {
541 pm_callback_t callback = NULL;
542 const char *info = NULL;
543 int error = 0;
544
545 TRACE_DEVICE(dev);
546 TRACE_RESUME(0);
547
548 if (dev->power.syscore || dev->power.direct_complete)
549 goto Out;
550
551 if (!dev->power.is_noirq_suspended)
552 goto Out;
553
554 dpm_wait_for_superior(dev, async);
555
556 if (dev->pm_domain) {
557 info = "noirq power domain ";
558 callback = pm_noirq_op(&dev->pm_domain->ops, state);
559 } else if (dev->type && dev->type->pm) {
560 info = "noirq type ";
561 callback = pm_noirq_op(dev->type->pm, state);
562 } else if (dev->class && dev->class->pm) {
563 info = "noirq class ";
564 callback = pm_noirq_op(dev->class->pm, state);
565 } else if (dev->bus && dev->bus->pm) {
566 info = "noirq bus ";
567 callback = pm_noirq_op(dev->bus->pm, state);
568 }
569
570 if (!callback && dev->driver && dev->driver->pm) {
571 info = "noirq driver ";
572 callback = pm_noirq_op(dev->driver->pm, state);
573 }
574
575 error = dpm_run_callback(callback, dev, state, info);
576 dev->power.is_noirq_suspended = false;
577
578 Out:
579 complete_all(&dev->power.completion);
580 TRACE_RESUME(error);
581 return error;
582 }
583
584 static bool is_async(struct device *dev)
585 {
586 return dev->power.async_suspend && pm_async_enabled
587 && !pm_trace_is_enabled();
588 }
589
590 static void async_resume_noirq(void *data, async_cookie_t cookie)
591 {
592 struct device *dev = (struct device *)data;
593 int error;
594
595 error = device_resume_noirq(dev, pm_transition, true);
596 if (error)
597 pm_dev_err(dev, pm_transition, " async", error);
598
599 put_device(dev);
600 }
601
602 void dpm_noirq_resume_devices(pm_message_t state)
603 {
604 struct device *dev;
605 ktime_t starttime = ktime_get();
606
607 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
608 mutex_lock(&dpm_list_mtx);
609 pm_transition = state;
610
611 /*
612 * Advanced the async threads upfront,
613 * in case the starting of async threads is
614 * delayed by non-async resuming devices.
615 */
616 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
617 reinit_completion(&dev->power.completion);
618 if (is_async(dev)) {
619 get_device(dev);
620 async_schedule(async_resume_noirq, dev);
621 }
622 }
623
624 while (!list_empty(&dpm_noirq_list)) {
625 dev = to_device(dpm_noirq_list.next);
626 get_device(dev);
627 list_move_tail(&dev->power.entry, &dpm_late_early_list);
628 mutex_unlock(&dpm_list_mtx);
629
630 if (!is_async(dev)) {
631 int error;
632
633 error = device_resume_noirq(dev, state, false);
634 if (error) {
635 suspend_stats.failed_resume_noirq++;
636 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
637 dpm_save_failed_dev(dev_name(dev));
638 pm_dev_err(dev, state, " noirq", error);
639 }
640 }
641
642 mutex_lock(&dpm_list_mtx);
643 put_device(dev);
644 }
645 mutex_unlock(&dpm_list_mtx);
646 async_synchronize_full();
647 dpm_show_time(starttime, state, 0, "noirq");
648 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
649 }
650
651 void dpm_noirq_end(void)
652 {
653 resume_device_irqs();
654 device_wakeup_disarm_wake_irqs();
655 cpuidle_resume();
656 }
657
658 /**
659 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
660 * @state: PM transition of the system being carried out.
661 *
662 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
663 * allow device drivers' interrupt handlers to be called.
664 */
665 void dpm_resume_noirq(pm_message_t state)
666 {
667 dpm_noirq_resume_devices(state);
668 dpm_noirq_end();
669 }
670
671 /**
672 * device_resume_early - Execute an "early resume" callback for given device.
673 * @dev: Device to handle.
674 * @state: PM transition of the system being carried out.
675 * @async: If true, the device is being resumed asynchronously.
676 *
677 * Runtime PM is disabled for @dev while this function is being executed.
678 */
679 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
680 {
681 pm_callback_t callback = NULL;
682 const char *info = NULL;
683 int error = 0;
684
685 TRACE_DEVICE(dev);
686 TRACE_RESUME(0);
687
688 if (dev->power.syscore || dev->power.direct_complete)
689 goto Out;
690
691 if (!dev->power.is_late_suspended)
692 goto Out;
693
694 dpm_wait_for_superior(dev, async);
695
696 if (dev->pm_domain) {
697 info = "early power domain ";
698 callback = pm_late_early_op(&dev->pm_domain->ops, state);
699 } else if (dev->type && dev->type->pm) {
700 info = "early type ";
701 callback = pm_late_early_op(dev->type->pm, state);
702 } else if (dev->class && dev->class->pm) {
703 info = "early class ";
704 callback = pm_late_early_op(dev->class->pm, state);
705 } else if (dev->bus && dev->bus->pm) {
706 info = "early bus ";
707 callback = pm_late_early_op(dev->bus->pm, state);
708 }
709
710 if (!callback && dev->driver && dev->driver->pm) {
711 info = "early driver ";
712 callback = pm_late_early_op(dev->driver->pm, state);
713 }
714
715 error = dpm_run_callback(callback, dev, state, info);
716 dev->power.is_late_suspended = false;
717
718 Out:
719 TRACE_RESUME(error);
720
721 pm_runtime_enable(dev);
722 complete_all(&dev->power.completion);
723 return error;
724 }
725
726 static void async_resume_early(void *data, async_cookie_t cookie)
727 {
728 struct device *dev = (struct device *)data;
729 int error;
730
731 error = device_resume_early(dev, pm_transition, true);
732 if (error)
733 pm_dev_err(dev, pm_transition, " async", error);
734
735 put_device(dev);
736 }
737
738 /**
739 * dpm_resume_early - Execute "early resume" callbacks for all devices.
740 * @state: PM transition of the system being carried out.
741 */
742 void dpm_resume_early(pm_message_t state)
743 {
744 struct device *dev;
745 ktime_t starttime = ktime_get();
746
747 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
748 mutex_lock(&dpm_list_mtx);
749 pm_transition = state;
750
751 /*
752 * Advanced the async threads upfront,
753 * in case the starting of async threads is
754 * delayed by non-async resuming devices.
755 */
756 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
757 reinit_completion(&dev->power.completion);
758 if (is_async(dev)) {
759 get_device(dev);
760 async_schedule(async_resume_early, dev);
761 }
762 }
763
764 while (!list_empty(&dpm_late_early_list)) {
765 dev = to_device(dpm_late_early_list.next);
766 get_device(dev);
767 list_move_tail(&dev->power.entry, &dpm_suspended_list);
768 mutex_unlock(&dpm_list_mtx);
769
770 if (!is_async(dev)) {
771 int error;
772
773 error = device_resume_early(dev, state, false);
774 if (error) {
775 suspend_stats.failed_resume_early++;
776 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
777 dpm_save_failed_dev(dev_name(dev));
778 pm_dev_err(dev, state, " early", error);
779 }
780 }
781 mutex_lock(&dpm_list_mtx);
782 put_device(dev);
783 }
784 mutex_unlock(&dpm_list_mtx);
785 async_synchronize_full();
786 dpm_show_time(starttime, state, 0, "early");
787 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
788 }
789
790 /**
791 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
792 * @state: PM transition of the system being carried out.
793 */
794 void dpm_resume_start(pm_message_t state)
795 {
796 dpm_resume_noirq(state);
797 dpm_resume_early(state);
798 }
799 EXPORT_SYMBOL_GPL(dpm_resume_start);
800
801 /**
802 * device_resume - Execute "resume" callbacks for given device.
803 * @dev: Device to handle.
804 * @state: PM transition of the system being carried out.
805 * @async: If true, the device is being resumed asynchronously.
806 */
807 static int device_resume(struct device *dev, pm_message_t state, bool async)
808 {
809 pm_callback_t callback = NULL;
810 const char *info = NULL;
811 int error = 0;
812 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
813
814 TRACE_DEVICE(dev);
815 TRACE_RESUME(0);
816
817 if (dev->power.syscore)
818 goto Complete;
819
820 if (dev->power.direct_complete) {
821 /* Match the pm_runtime_disable() in __device_suspend(). */
822 pm_runtime_enable(dev);
823 goto Complete;
824 }
825
826 dpm_wait_for_superior(dev, async);
827 dpm_watchdog_set(&wd, dev);
828 device_lock(dev);
829
830 /*
831 * This is a fib. But we'll allow new children to be added below
832 * a resumed device, even if the device hasn't been completed yet.
833 */
834 dev->power.is_prepared = false;
835
836 if (!dev->power.is_suspended)
837 goto Unlock;
838
839 if (dev->pm_domain) {
840 info = "power domain ";
841 callback = pm_op(&dev->pm_domain->ops, state);
842 goto Driver;
843 }
844
845 if (dev->type && dev->type->pm) {
846 info = "type ";
847 callback = pm_op(dev->type->pm, state);
848 goto Driver;
849 }
850
851 if (dev->class) {
852 if (dev->class->pm) {
853 info = "class ";
854 callback = pm_op(dev->class->pm, state);
855 goto Driver;
856 } else if (dev->class->resume) {
857 info = "legacy class ";
858 callback = dev->class->resume;
859 goto End;
860 }
861 }
862
863 if (dev->bus) {
864 if (dev->bus->pm) {
865 info = "bus ";
866 callback = pm_op(dev->bus->pm, state);
867 } else if (dev->bus->resume) {
868 info = "legacy bus ";
869 callback = dev->bus->resume;
870 goto End;
871 }
872 }
873
874 Driver:
875 if (!callback && dev->driver && dev->driver->pm) {
876 info = "driver ";
877 callback = pm_op(dev->driver->pm, state);
878 }
879
880 End:
881 error = dpm_run_callback(callback, dev, state, info);
882 dev->power.is_suspended = false;
883
884 Unlock:
885 device_unlock(dev);
886 dpm_watchdog_clear(&wd);
887
888 Complete:
889 complete_all(&dev->power.completion);
890
891 TRACE_RESUME(error);
892
893 return error;
894 }
895
896 static void async_resume(void *data, async_cookie_t cookie)
897 {
898 struct device *dev = (struct device *)data;
899 int error;
900
901 error = device_resume(dev, pm_transition, true);
902 if (error)
903 pm_dev_err(dev, pm_transition, " async", error);
904 put_device(dev);
905 }
906
907 /**
908 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
909 * @state: PM transition of the system being carried out.
910 *
911 * Execute the appropriate "resume" callback for all devices whose status
912 * indicates that they are suspended.
913 */
914 void dpm_resume(pm_message_t state)
915 {
916 struct device *dev;
917 ktime_t starttime = ktime_get();
918
919 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
920 might_sleep();
921
922 mutex_lock(&dpm_list_mtx);
923 pm_transition = state;
924 async_error = 0;
925
926 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
927 reinit_completion(&dev->power.completion);
928 if (is_async(dev)) {
929 get_device(dev);
930 async_schedule(async_resume, dev);
931 }
932 }
933
934 while (!list_empty(&dpm_suspended_list)) {
935 dev = to_device(dpm_suspended_list.next);
936 get_device(dev);
937 if (!is_async(dev)) {
938 int error;
939
940 mutex_unlock(&dpm_list_mtx);
941
942 error = device_resume(dev, state, false);
943 if (error) {
944 suspend_stats.failed_resume++;
945 dpm_save_failed_step(SUSPEND_RESUME);
946 dpm_save_failed_dev(dev_name(dev));
947 pm_dev_err(dev, state, "", error);
948 }
949
950 mutex_lock(&dpm_list_mtx);
951 }
952 if (!list_empty(&dev->power.entry))
953 list_move_tail(&dev->power.entry, &dpm_prepared_list);
954 put_device(dev);
955 }
956 mutex_unlock(&dpm_list_mtx);
957 async_synchronize_full();
958 dpm_show_time(starttime, state, 0, NULL);
959
960 cpufreq_resume();
961 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
962 }
963
964 /**
965 * device_complete - Complete a PM transition for given device.
966 * @dev: Device to handle.
967 * @state: PM transition of the system being carried out.
968 */
969 static void device_complete(struct device *dev, pm_message_t state)
970 {
971 void (*callback)(struct device *) = NULL;
972 const char *info = NULL;
973
974 if (dev->power.syscore)
975 return;
976
977 device_lock(dev);
978
979 if (dev->pm_domain) {
980 info = "completing power domain ";
981 callback = dev->pm_domain->ops.complete;
982 } else if (dev->type && dev->type->pm) {
983 info = "completing type ";
984 callback = dev->type->pm->complete;
985 } else if (dev->class && dev->class->pm) {
986 info = "completing class ";
987 callback = dev->class->pm->complete;
988 } else if (dev->bus && dev->bus->pm) {
989 info = "completing bus ";
990 callback = dev->bus->pm->complete;
991 }
992
993 if (!callback && dev->driver && dev->driver->pm) {
994 info = "completing driver ";
995 callback = dev->driver->pm->complete;
996 }
997
998 if (callback) {
999 pm_dev_dbg(dev, state, info);
1000 callback(dev);
1001 }
1002
1003 device_unlock(dev);
1004
1005 pm_runtime_put(dev);
1006 }
1007
1008 /**
1009 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1010 * @state: PM transition of the system being carried out.
1011 *
1012 * Execute the ->complete() callbacks for all devices whose PM status is not
1013 * DPM_ON (this allows new devices to be registered).
1014 */
1015 void dpm_complete(pm_message_t state)
1016 {
1017 struct list_head list;
1018
1019 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1020 might_sleep();
1021
1022 INIT_LIST_HEAD(&list);
1023 mutex_lock(&dpm_list_mtx);
1024 while (!list_empty(&dpm_prepared_list)) {
1025 struct device *dev = to_device(dpm_prepared_list.prev);
1026
1027 get_device(dev);
1028 dev->power.is_prepared = false;
1029 list_move(&dev->power.entry, &list);
1030 mutex_unlock(&dpm_list_mtx);
1031
1032 trace_device_pm_callback_start(dev, "", state.event);
1033 device_complete(dev, state);
1034 trace_device_pm_callback_end(dev, 0);
1035
1036 mutex_lock(&dpm_list_mtx);
1037 put_device(dev);
1038 }
1039 list_splice(&list, &dpm_list);
1040 mutex_unlock(&dpm_list_mtx);
1041
1042 /* Allow device probing and trigger re-probing of deferred devices */
1043 device_unblock_probing();
1044 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1045 }
1046
1047 /**
1048 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1049 * @state: PM transition of the system being carried out.
1050 *
1051 * Execute "resume" callbacks for all devices and complete the PM transition of
1052 * the system.
1053 */
1054 void dpm_resume_end(pm_message_t state)
1055 {
1056 dpm_resume(state);
1057 dpm_complete(state);
1058 }
1059 EXPORT_SYMBOL_GPL(dpm_resume_end);
1060
1061
1062 /*------------------------- Suspend routines -------------------------*/
1063
1064 /**
1065 * resume_event - Return a "resume" message for given "suspend" sleep state.
1066 * @sleep_state: PM message representing a sleep state.
1067 *
1068 * Return a PM message representing the resume event corresponding to given
1069 * sleep state.
1070 */
1071 static pm_message_t resume_event(pm_message_t sleep_state)
1072 {
1073 switch (sleep_state.event) {
1074 case PM_EVENT_SUSPEND:
1075 return PMSG_RESUME;
1076 case PM_EVENT_FREEZE:
1077 case PM_EVENT_QUIESCE:
1078 return PMSG_RECOVER;
1079 case PM_EVENT_HIBERNATE:
1080 return PMSG_RESTORE;
1081 }
1082 return PMSG_ON;
1083 }
1084
1085 /**
1086 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1087 * @dev: Device to handle.
1088 * @state: PM transition of the system being carried out.
1089 * @async: If true, the device is being suspended asynchronously.
1090 *
1091 * The driver of @dev will not receive interrupts while this function is being
1092 * executed.
1093 */
1094 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1095 {
1096 pm_callback_t callback = NULL;
1097 const char *info = NULL;
1098 int error = 0;
1099
1100 TRACE_DEVICE(dev);
1101 TRACE_SUSPEND(0);
1102
1103 dpm_wait_for_subordinate(dev, async);
1104
1105 if (async_error)
1106 goto Complete;
1107
1108 if (pm_wakeup_pending()) {
1109 async_error = -EBUSY;
1110 goto Complete;
1111 }
1112
1113 if (dev->power.syscore || dev->power.direct_complete)
1114 goto Complete;
1115
1116 if (dev->pm_domain) {
1117 info = "noirq power domain ";
1118 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1119 } else if (dev->type && dev->type->pm) {
1120 info = "noirq type ";
1121 callback = pm_noirq_op(dev->type->pm, state);
1122 } else if (dev->class && dev->class->pm) {
1123 info = "noirq class ";
1124 callback = pm_noirq_op(dev->class->pm, state);
1125 } else if (dev->bus && dev->bus->pm) {
1126 info = "noirq bus ";
1127 callback = pm_noirq_op(dev->bus->pm, state);
1128 }
1129
1130 if (!callback && dev->driver && dev->driver->pm) {
1131 info = "noirq driver ";
1132 callback = pm_noirq_op(dev->driver->pm, state);
1133 }
1134
1135 error = dpm_run_callback(callback, dev, state, info);
1136 if (!error)
1137 dev->power.is_noirq_suspended = true;
1138 else
1139 async_error = error;
1140
1141 Complete:
1142 complete_all(&dev->power.completion);
1143 TRACE_SUSPEND(error);
1144 return error;
1145 }
1146
1147 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1148 {
1149 struct device *dev = (struct device *)data;
1150 int error;
1151
1152 error = __device_suspend_noirq(dev, pm_transition, true);
1153 if (error) {
1154 dpm_save_failed_dev(dev_name(dev));
1155 pm_dev_err(dev, pm_transition, " async", error);
1156 }
1157
1158 put_device(dev);
1159 }
1160
1161 static int device_suspend_noirq(struct device *dev)
1162 {
1163 reinit_completion(&dev->power.completion);
1164
1165 if (is_async(dev)) {
1166 get_device(dev);
1167 async_schedule(async_suspend_noirq, dev);
1168 return 0;
1169 }
1170 return __device_suspend_noirq(dev, pm_transition, false);
1171 }
1172
1173 void dpm_noirq_begin(void)
1174 {
1175 cpuidle_pause();
1176 device_wakeup_arm_wake_irqs();
1177 suspend_device_irqs();
1178 }
1179
1180 int dpm_noirq_suspend_devices(pm_message_t state)
1181 {
1182 ktime_t starttime = ktime_get();
1183 int error = 0;
1184
1185 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1186 mutex_lock(&dpm_list_mtx);
1187 pm_transition = state;
1188 async_error = 0;
1189
1190 while (!list_empty(&dpm_late_early_list)) {
1191 struct device *dev = to_device(dpm_late_early_list.prev);
1192
1193 get_device(dev);
1194 mutex_unlock(&dpm_list_mtx);
1195
1196 error = device_suspend_noirq(dev);
1197
1198 mutex_lock(&dpm_list_mtx);
1199 if (error) {
1200 pm_dev_err(dev, state, " noirq", error);
1201 dpm_save_failed_dev(dev_name(dev));
1202 put_device(dev);
1203 break;
1204 }
1205 if (!list_empty(&dev->power.entry))
1206 list_move(&dev->power.entry, &dpm_noirq_list);
1207 put_device(dev);
1208
1209 if (async_error)
1210 break;
1211 }
1212 mutex_unlock(&dpm_list_mtx);
1213 async_synchronize_full();
1214 if (!error)
1215 error = async_error;
1216
1217 if (error) {
1218 suspend_stats.failed_suspend_noirq++;
1219 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1220 }
1221 dpm_show_time(starttime, state, error, "noirq");
1222 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1223 return error;
1224 }
1225
1226 /**
1227 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1228 * @state: PM transition of the system being carried out.
1229 *
1230 * Prevent device drivers' interrupt handlers from being called and invoke
1231 * "noirq" suspend callbacks for all non-sysdev devices.
1232 */
1233 int dpm_suspend_noirq(pm_message_t state)
1234 {
1235 int ret;
1236
1237 dpm_noirq_begin();
1238 ret = dpm_noirq_suspend_devices(state);
1239 if (ret)
1240 dpm_resume_noirq(resume_event(state));
1241
1242 return ret;
1243 }
1244
1245 /**
1246 * device_suspend_late - Execute a "late suspend" callback for given device.
1247 * @dev: Device to handle.
1248 * @state: PM transition of the system being carried out.
1249 * @async: If true, the device is being suspended asynchronously.
1250 *
1251 * Runtime PM is disabled for @dev while this function is being executed.
1252 */
1253 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1254 {
1255 pm_callback_t callback = NULL;
1256 const char *info = NULL;
1257 int error = 0;
1258
1259 TRACE_DEVICE(dev);
1260 TRACE_SUSPEND(0);
1261
1262 __pm_runtime_disable(dev, false);
1263
1264 dpm_wait_for_subordinate(dev, async);
1265
1266 if (async_error)
1267 goto Complete;
1268
1269 if (pm_wakeup_pending()) {
1270 async_error = -EBUSY;
1271 goto Complete;
1272 }
1273
1274 if (dev->power.syscore || dev->power.direct_complete)
1275 goto Complete;
1276
1277 if (dev->pm_domain) {
1278 info = "late power domain ";
1279 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1280 } else if (dev->type && dev->type->pm) {
1281 info = "late type ";
1282 callback = pm_late_early_op(dev->type->pm, state);
1283 } else if (dev->class && dev->class->pm) {
1284 info = "late class ";
1285 callback = pm_late_early_op(dev->class->pm, state);
1286 } else if (dev->bus && dev->bus->pm) {
1287 info = "late bus ";
1288 callback = pm_late_early_op(dev->bus->pm, state);
1289 }
1290
1291 if (!callback && dev->driver && dev->driver->pm) {
1292 info = "late driver ";
1293 callback = pm_late_early_op(dev->driver->pm, state);
1294 }
1295
1296 error = dpm_run_callback(callback, dev, state, info);
1297 if (!error)
1298 dev->power.is_late_suspended = true;
1299 else
1300 async_error = error;
1301
1302 Complete:
1303 TRACE_SUSPEND(error);
1304 complete_all(&dev->power.completion);
1305 return error;
1306 }
1307
1308 static void async_suspend_late(void *data, async_cookie_t cookie)
1309 {
1310 struct device *dev = (struct device *)data;
1311 int error;
1312
1313 error = __device_suspend_late(dev, pm_transition, true);
1314 if (error) {
1315 dpm_save_failed_dev(dev_name(dev));
1316 pm_dev_err(dev, pm_transition, " async", error);
1317 }
1318 put_device(dev);
1319 }
1320
1321 static int device_suspend_late(struct device *dev)
1322 {
1323 reinit_completion(&dev->power.completion);
1324
1325 if (is_async(dev)) {
1326 get_device(dev);
1327 async_schedule(async_suspend_late, dev);
1328 return 0;
1329 }
1330
1331 return __device_suspend_late(dev, pm_transition, false);
1332 }
1333
1334 /**
1335 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1336 * @state: PM transition of the system being carried out.
1337 */
1338 int dpm_suspend_late(pm_message_t state)
1339 {
1340 ktime_t starttime = ktime_get();
1341 int error = 0;
1342
1343 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1344 mutex_lock(&dpm_list_mtx);
1345 pm_transition = state;
1346 async_error = 0;
1347
1348 while (!list_empty(&dpm_suspended_list)) {
1349 struct device *dev = to_device(dpm_suspended_list.prev);
1350
1351 get_device(dev);
1352 mutex_unlock(&dpm_list_mtx);
1353
1354 error = device_suspend_late(dev);
1355
1356 mutex_lock(&dpm_list_mtx);
1357 if (!list_empty(&dev->power.entry))
1358 list_move(&dev->power.entry, &dpm_late_early_list);
1359
1360 if (error) {
1361 pm_dev_err(dev, state, " late", error);
1362 dpm_save_failed_dev(dev_name(dev));
1363 put_device(dev);
1364 break;
1365 }
1366 put_device(dev);
1367
1368 if (async_error)
1369 break;
1370 }
1371 mutex_unlock(&dpm_list_mtx);
1372 async_synchronize_full();
1373 if (!error)
1374 error = async_error;
1375 if (error) {
1376 suspend_stats.failed_suspend_late++;
1377 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1378 dpm_resume_early(resume_event(state));
1379 }
1380 dpm_show_time(starttime, state, error, "late");
1381 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1382 return error;
1383 }
1384
1385 /**
1386 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1387 * @state: PM transition of the system being carried out.
1388 */
1389 int dpm_suspend_end(pm_message_t state)
1390 {
1391 int error = dpm_suspend_late(state);
1392 if (error)
1393 return error;
1394
1395 error = dpm_suspend_noirq(state);
1396 if (error) {
1397 dpm_resume_early(resume_event(state));
1398 return error;
1399 }
1400
1401 return 0;
1402 }
1403 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1404
1405 /**
1406 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1407 * @dev: Device to suspend.
1408 * @state: PM transition of the system being carried out.
1409 * @cb: Suspend callback to execute.
1410 * @info: string description of caller.
1411 */
1412 static int legacy_suspend(struct device *dev, pm_message_t state,
1413 int (*cb)(struct device *dev, pm_message_t state),
1414 const char *info)
1415 {
1416 int error;
1417 ktime_t calltime;
1418
1419 calltime = initcall_debug_start(dev);
1420
1421 trace_device_pm_callback_start(dev, info, state.event);
1422 error = cb(dev, state);
1423 trace_device_pm_callback_end(dev, error);
1424 suspend_report_result(cb, error);
1425
1426 initcall_debug_report(dev, calltime, error, state, info);
1427
1428 return error;
1429 }
1430
1431 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1432 {
1433 struct device_link *link;
1434 int idx;
1435
1436 idx = device_links_read_lock();
1437
1438 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1439 spin_lock_irq(&link->supplier->power.lock);
1440 link->supplier->power.direct_complete = false;
1441 spin_unlock_irq(&link->supplier->power.lock);
1442 }
1443
1444 device_links_read_unlock(idx);
1445 }
1446
1447 /**
1448 * device_suspend - Execute "suspend" callbacks for given device.
1449 * @dev: Device to handle.
1450 * @state: PM transition of the system being carried out.
1451 * @async: If true, the device is being suspended asynchronously.
1452 */
1453 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1454 {
1455 pm_callback_t callback = NULL;
1456 const char *info = NULL;
1457 int error = 0;
1458 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1459
1460 TRACE_DEVICE(dev);
1461 TRACE_SUSPEND(0);
1462
1463 dpm_wait_for_subordinate(dev, async);
1464
1465 if (async_error)
1466 goto Complete;
1467
1468 /*
1469 * If a device configured to wake up the system from sleep states
1470 * has been suspended at run time and there's a resume request pending
1471 * for it, this is equivalent to the device signaling wakeup, so the
1472 * system suspend operation should be aborted.
1473 */
1474 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1475 pm_wakeup_event(dev, 0);
1476
1477 if (pm_wakeup_pending()) {
1478 async_error = -EBUSY;
1479 goto Complete;
1480 }
1481
1482 if (dev->power.syscore)
1483 goto Complete;
1484
1485 if (dev->power.direct_complete) {
1486 if (pm_runtime_status_suspended(dev)) {
1487 pm_runtime_disable(dev);
1488 if (pm_runtime_status_suspended(dev))
1489 goto Complete;
1490
1491 pm_runtime_enable(dev);
1492 }
1493 dev->power.direct_complete = false;
1494 }
1495
1496 dpm_watchdog_set(&wd, dev);
1497 device_lock(dev);
1498
1499 if (dev->pm_domain) {
1500 info = "power domain ";
1501 callback = pm_op(&dev->pm_domain->ops, state);
1502 goto Run;
1503 }
1504
1505 if (dev->type && dev->type->pm) {
1506 info = "type ";
1507 callback = pm_op(dev->type->pm, state);
1508 goto Run;
1509 }
1510
1511 if (dev->class) {
1512 if (dev->class->pm) {
1513 info = "class ";
1514 callback = pm_op(dev->class->pm, state);
1515 goto Run;
1516 } else if (dev->class->suspend) {
1517 pm_dev_dbg(dev, state, "legacy class ");
1518 error = legacy_suspend(dev, state, dev->class->suspend,
1519 "legacy class ");
1520 goto End;
1521 }
1522 }
1523
1524 if (dev->bus) {
1525 if (dev->bus->pm) {
1526 info = "bus ";
1527 callback = pm_op(dev->bus->pm, state);
1528 } else if (dev->bus->suspend) {
1529 pm_dev_dbg(dev, state, "legacy bus ");
1530 error = legacy_suspend(dev, state, dev->bus->suspend,
1531 "legacy bus ");
1532 goto End;
1533 }
1534 }
1535
1536 Run:
1537 if (!callback && dev->driver && dev->driver->pm) {
1538 info = "driver ";
1539 callback = pm_op(dev->driver->pm, state);
1540 }
1541
1542 error = dpm_run_callback(callback, dev, state, info);
1543
1544 End:
1545 if (!error) {
1546 struct device *parent = dev->parent;
1547
1548 dev->power.is_suspended = true;
1549 if (parent) {
1550 spin_lock_irq(&parent->power.lock);
1551
1552 dev->parent->power.direct_complete = false;
1553 if (dev->power.wakeup_path
1554 && !dev->parent->power.ignore_children)
1555 dev->parent->power.wakeup_path = true;
1556
1557 spin_unlock_irq(&parent->power.lock);
1558 }
1559 dpm_clear_suppliers_direct_complete(dev);
1560 }
1561
1562 device_unlock(dev);
1563 dpm_watchdog_clear(&wd);
1564
1565 Complete:
1566 if (error)
1567 async_error = error;
1568
1569 complete_all(&dev->power.completion);
1570 TRACE_SUSPEND(error);
1571 return error;
1572 }
1573
1574 static void async_suspend(void *data, async_cookie_t cookie)
1575 {
1576 struct device *dev = (struct device *)data;
1577 int error;
1578
1579 error = __device_suspend(dev, pm_transition, true);
1580 if (error) {
1581 dpm_save_failed_dev(dev_name(dev));
1582 pm_dev_err(dev, pm_transition, " async", error);
1583 }
1584
1585 put_device(dev);
1586 }
1587
1588 static int device_suspend(struct device *dev)
1589 {
1590 reinit_completion(&dev->power.completion);
1591
1592 if (is_async(dev)) {
1593 get_device(dev);
1594 async_schedule(async_suspend, dev);
1595 return 0;
1596 }
1597
1598 return __device_suspend(dev, pm_transition, false);
1599 }
1600
1601 /**
1602 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1603 * @state: PM transition of the system being carried out.
1604 */
1605 int dpm_suspend(pm_message_t state)
1606 {
1607 ktime_t starttime = ktime_get();
1608 int error = 0;
1609
1610 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1611 might_sleep();
1612
1613 cpufreq_suspend();
1614
1615 mutex_lock(&dpm_list_mtx);
1616 pm_transition = state;
1617 async_error = 0;
1618 while (!list_empty(&dpm_prepared_list)) {
1619 struct device *dev = to_device(dpm_prepared_list.prev);
1620
1621 get_device(dev);
1622 mutex_unlock(&dpm_list_mtx);
1623
1624 error = device_suspend(dev);
1625
1626 mutex_lock(&dpm_list_mtx);
1627 if (error) {
1628 pm_dev_err(dev, state, "", error);
1629 dpm_save_failed_dev(dev_name(dev));
1630 put_device(dev);
1631 break;
1632 }
1633 if (!list_empty(&dev->power.entry))
1634 list_move(&dev->power.entry, &dpm_suspended_list);
1635 put_device(dev);
1636 if (async_error)
1637 break;
1638 }
1639 mutex_unlock(&dpm_list_mtx);
1640 async_synchronize_full();
1641 if (!error)
1642 error = async_error;
1643 if (error) {
1644 suspend_stats.failed_suspend++;
1645 dpm_save_failed_step(SUSPEND_SUSPEND);
1646 }
1647 dpm_show_time(starttime, state, error, NULL);
1648 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1649 return error;
1650 }
1651
1652 /**
1653 * device_prepare - Prepare a device for system power transition.
1654 * @dev: Device to handle.
1655 * @state: PM transition of the system being carried out.
1656 *
1657 * Execute the ->prepare() callback(s) for given device. No new children of the
1658 * device may be registered after this function has returned.
1659 */
1660 static int device_prepare(struct device *dev, pm_message_t state)
1661 {
1662 int (*callback)(struct device *) = NULL;
1663 int ret = 0;
1664
1665 if (dev->power.syscore)
1666 return 0;
1667
1668 /*
1669 * If a device's parent goes into runtime suspend at the wrong time,
1670 * it won't be possible to resume the device. To prevent this we
1671 * block runtime suspend here, during the prepare phase, and allow
1672 * it again during the complete phase.
1673 */
1674 pm_runtime_get_noresume(dev);
1675
1676 device_lock(dev);
1677
1678 dev->power.wakeup_path = device_may_wakeup(dev);
1679
1680 if (dev->power.no_pm_callbacks) {
1681 ret = 1; /* Let device go direct_complete */
1682 goto unlock;
1683 }
1684
1685 if (dev->pm_domain)
1686 callback = dev->pm_domain->ops.prepare;
1687 else if (dev->type && dev->type->pm)
1688 callback = dev->type->pm->prepare;
1689 else if (dev->class && dev->class->pm)
1690 callback = dev->class->pm->prepare;
1691 else if (dev->bus && dev->bus->pm)
1692 callback = dev->bus->pm->prepare;
1693
1694 if (!callback && dev->driver && dev->driver->pm)
1695 callback = dev->driver->pm->prepare;
1696
1697 if (callback)
1698 ret = callback(dev);
1699
1700 unlock:
1701 device_unlock(dev);
1702
1703 if (ret < 0) {
1704 suspend_report_result(callback, ret);
1705 pm_runtime_put(dev);
1706 return ret;
1707 }
1708 /*
1709 * A positive return value from ->prepare() means "this device appears
1710 * to be runtime-suspended and its state is fine, so if it really is
1711 * runtime-suspended, you can leave it in that state provided that you
1712 * will do the same thing with all of its descendants". This only
1713 * applies to suspend transitions, however.
1714 */
1715 spin_lock_irq(&dev->power.lock);
1716 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1717 spin_unlock_irq(&dev->power.lock);
1718 return 0;
1719 }
1720
1721 /**
1722 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1723 * @state: PM transition of the system being carried out.
1724 *
1725 * Execute the ->prepare() callback(s) for all devices.
1726 */
1727 int dpm_prepare(pm_message_t state)
1728 {
1729 int error = 0;
1730
1731 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1732 might_sleep();
1733
1734 /*
1735 * Give a chance for the known devices to complete their probes, before
1736 * disable probing of devices. This sync point is important at least
1737 * at boot time + hibernation restore.
1738 */
1739 wait_for_device_probe();
1740 /*
1741 * It is unsafe if probing of devices will happen during suspend or
1742 * hibernation and system behavior will be unpredictable in this case.
1743 * So, let's prohibit device's probing here and defer their probes
1744 * instead. The normal behavior will be restored in dpm_complete().
1745 */
1746 device_block_probing();
1747
1748 mutex_lock(&dpm_list_mtx);
1749 while (!list_empty(&dpm_list)) {
1750 struct device *dev = to_device(dpm_list.next);
1751
1752 get_device(dev);
1753 mutex_unlock(&dpm_list_mtx);
1754
1755 trace_device_pm_callback_start(dev, "", state.event);
1756 error = device_prepare(dev, state);
1757 trace_device_pm_callback_end(dev, error);
1758
1759 mutex_lock(&dpm_list_mtx);
1760 if (error) {
1761 if (error == -EAGAIN) {
1762 put_device(dev);
1763 error = 0;
1764 continue;
1765 }
1766 printk(KERN_INFO "PM: Device %s not prepared "
1767 "for power transition: code %d\n",
1768 dev_name(dev), error);
1769 put_device(dev);
1770 break;
1771 }
1772 dev->power.is_prepared = true;
1773 if (!list_empty(&dev->power.entry))
1774 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1775 put_device(dev);
1776 }
1777 mutex_unlock(&dpm_list_mtx);
1778 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1779 return error;
1780 }
1781
1782 /**
1783 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1784 * @state: PM transition of the system being carried out.
1785 *
1786 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1787 * callbacks for them.
1788 */
1789 int dpm_suspend_start(pm_message_t state)
1790 {
1791 int error;
1792
1793 error = dpm_prepare(state);
1794 if (error) {
1795 suspend_stats.failed_prepare++;
1796 dpm_save_failed_step(SUSPEND_PREPARE);
1797 } else
1798 error = dpm_suspend(state);
1799 return error;
1800 }
1801 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1802
1803 void __suspend_report_result(const char *function, void *fn, int ret)
1804 {
1805 if (ret)
1806 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1807 }
1808 EXPORT_SYMBOL_GPL(__suspend_report_result);
1809
1810 /**
1811 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1812 * @dev: Device to wait for.
1813 * @subordinate: Device that needs to wait for @dev.
1814 */
1815 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1816 {
1817 dpm_wait(dev, subordinate->power.async_suspend);
1818 return async_error;
1819 }
1820 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1821
1822 /**
1823 * dpm_for_each_dev - device iterator.
1824 * @data: data for the callback.
1825 * @fn: function to be called for each device.
1826 *
1827 * Iterate over devices in dpm_list, and call @fn for each device,
1828 * passing it @data.
1829 */
1830 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1831 {
1832 struct device *dev;
1833
1834 if (!fn)
1835 return;
1836
1837 device_pm_lock();
1838 list_for_each_entry(dev, &dpm_list, power.entry)
1839 fn(dev, data);
1840 device_pm_unlock();
1841 }
1842 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1843
1844 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1845 {
1846 if (!ops)
1847 return true;
1848
1849 return !ops->prepare &&
1850 !ops->suspend &&
1851 !ops->suspend_late &&
1852 !ops->suspend_noirq &&
1853 !ops->resume_noirq &&
1854 !ops->resume_early &&
1855 !ops->resume &&
1856 !ops->complete;
1857 }
1858
1859 void device_pm_check_callbacks(struct device *dev)
1860 {
1861 spin_lock_irq(&dev->power.lock);
1862 dev->power.no_pm_callbacks =
1863 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1864 !dev->bus->suspend && !dev->bus->resume)) &&
1865 (!dev->class || (pm_ops_is_empty(dev->class->pm) &&
1866 !dev->class->suspend && !dev->class->resume)) &&
1867 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1868 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1869 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
1870 !dev->driver->suspend && !dev->driver->resume));
1871 spin_unlock_irq(&dev->power.lock);
1872 }