]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/power/main.c
ae47b2ec84b47ddfc7ef5d0f562025b515514349
[mirror_ubuntu-bionic-kernel.git] / drivers / base / power / main.c
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/timer.h>
37
38 #include "../base.h"
39 #include "power.h"
40
41 typedef int (*pm_callback_t)(struct device *);
42
43 /*
44 * The entries in the dpm_list list are in a depth first order, simply
45 * because children are guaranteed to be discovered after parents, and
46 * are inserted at the back of the list on discovery.
47 *
48 * Since device_pm_add() may be called with a device lock held,
49 * we must never try to acquire a device lock while holding
50 * dpm_list_mutex.
51 */
52
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58
59 struct suspend_stats suspend_stats;
60 static DEFINE_MUTEX(dpm_list_mtx);
61 static pm_message_t pm_transition;
62
63 static int async_error;
64
65 static const char *pm_verb(int event)
66 {
67 switch (event) {
68 case PM_EVENT_SUSPEND:
69 return "suspend";
70 case PM_EVENT_RESUME:
71 return "resume";
72 case PM_EVENT_FREEZE:
73 return "freeze";
74 case PM_EVENT_QUIESCE:
75 return "quiesce";
76 case PM_EVENT_HIBERNATE:
77 return "hibernate";
78 case PM_EVENT_THAW:
79 return "thaw";
80 case PM_EVENT_RESTORE:
81 return "restore";
82 case PM_EVENT_RECOVER:
83 return "recover";
84 default:
85 return "(unknown PM event)";
86 }
87 }
88
89 /**
90 * device_pm_sleep_init - Initialize system suspend-related device fields.
91 * @dev: Device object being initialized.
92 */
93 void device_pm_sleep_init(struct device *dev)
94 {
95 dev->power.is_prepared = false;
96 dev->power.is_suspended = false;
97 dev->power.is_noirq_suspended = false;
98 dev->power.is_late_suspended = false;
99 init_completion(&dev->power.completion);
100 complete_all(&dev->power.completion);
101 dev->power.wakeup = NULL;
102 INIT_LIST_HEAD(&dev->power.entry);
103 }
104
105 /**
106 * device_pm_lock - Lock the list of active devices used by the PM core.
107 */
108 void device_pm_lock(void)
109 {
110 mutex_lock(&dpm_list_mtx);
111 }
112
113 /**
114 * device_pm_unlock - Unlock the list of active devices used by the PM core.
115 */
116 void device_pm_unlock(void)
117 {
118 mutex_unlock(&dpm_list_mtx);
119 }
120
121 /**
122 * device_pm_add - Add a device to the PM core's list of active devices.
123 * @dev: Device to add to the list.
124 */
125 void device_pm_add(struct device *dev)
126 {
127 pr_debug("PM: Adding info for %s:%s\n",
128 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
129 device_pm_check_callbacks(dev);
130 mutex_lock(&dpm_list_mtx);
131 if (dev->parent && dev->parent->power.is_prepared)
132 dev_warn(dev, "parent %s should not be sleeping\n",
133 dev_name(dev->parent));
134 list_add_tail(&dev->power.entry, &dpm_list);
135 dev->power.in_dpm_list = true;
136 mutex_unlock(&dpm_list_mtx);
137 }
138
139 /**
140 * device_pm_remove - Remove a device from the PM core's list of active devices.
141 * @dev: Device to be removed from the list.
142 */
143 void device_pm_remove(struct device *dev)
144 {
145 pr_debug("PM: Removing info for %s:%s\n",
146 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
147 complete_all(&dev->power.completion);
148 mutex_lock(&dpm_list_mtx);
149 list_del_init(&dev->power.entry);
150 dev->power.in_dpm_list = false;
151 mutex_unlock(&dpm_list_mtx);
152 device_wakeup_disable(dev);
153 pm_runtime_remove(dev);
154 device_pm_check_callbacks(dev);
155 }
156
157 /**
158 * device_pm_move_before - Move device in the PM core's list of active devices.
159 * @deva: Device to move in dpm_list.
160 * @devb: Device @deva should come before.
161 */
162 void device_pm_move_before(struct device *deva, struct device *devb)
163 {
164 pr_debug("PM: Moving %s:%s before %s:%s\n",
165 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
166 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
167 /* Delete deva from dpm_list and reinsert before devb. */
168 list_move_tail(&deva->power.entry, &devb->power.entry);
169 }
170
171 /**
172 * device_pm_move_after - Move device in the PM core's list of active devices.
173 * @deva: Device to move in dpm_list.
174 * @devb: Device @deva should come after.
175 */
176 void device_pm_move_after(struct device *deva, struct device *devb)
177 {
178 pr_debug("PM: Moving %s:%s after %s:%s\n",
179 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
180 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
181 /* Delete deva from dpm_list and reinsert after devb. */
182 list_move(&deva->power.entry, &devb->power.entry);
183 }
184
185 /**
186 * device_pm_move_last - Move device to end of the PM core's list of devices.
187 * @dev: Device to move in dpm_list.
188 */
189 void device_pm_move_last(struct device *dev)
190 {
191 pr_debug("PM: Moving %s:%s to end of list\n",
192 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
193 list_move_tail(&dev->power.entry, &dpm_list);
194 }
195
196 static ktime_t initcall_debug_start(struct device *dev)
197 {
198 ktime_t calltime = 0;
199
200 if (pm_print_times_enabled) {
201 pr_info("calling %s+ @ %i, parent: %s\n",
202 dev_name(dev), task_pid_nr(current),
203 dev->parent ? dev_name(dev->parent) : "none");
204 calltime = ktime_get();
205 }
206
207 return calltime;
208 }
209
210 static void initcall_debug_report(struct device *dev, ktime_t calltime,
211 int error, pm_message_t state,
212 const char *info)
213 {
214 ktime_t rettime;
215 s64 nsecs;
216
217 rettime = ktime_get();
218 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
219
220 if (pm_print_times_enabled) {
221 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
222 error, (unsigned long long)nsecs >> 10);
223 }
224 }
225
226 /**
227 * dpm_wait - Wait for a PM operation to complete.
228 * @dev: Device to wait for.
229 * @async: If unset, wait only if the device's power.async_suspend flag is set.
230 */
231 static void dpm_wait(struct device *dev, bool async)
232 {
233 if (!dev)
234 return;
235
236 if (async || (pm_async_enabled && dev->power.async_suspend))
237 wait_for_completion(&dev->power.completion);
238 }
239
240 static int dpm_wait_fn(struct device *dev, void *async_ptr)
241 {
242 dpm_wait(dev, *((bool *)async_ptr));
243 return 0;
244 }
245
246 static void dpm_wait_for_children(struct device *dev, bool async)
247 {
248 device_for_each_child(dev, &async, dpm_wait_fn);
249 }
250
251 static void dpm_wait_for_suppliers(struct device *dev, bool async)
252 {
253 struct device_link *link;
254 int idx;
255
256 idx = device_links_read_lock();
257
258 /*
259 * If the supplier goes away right after we've checked the link to it,
260 * we'll wait for its completion to change the state, but that's fine,
261 * because the only things that will block as a result are the SRCU
262 * callbacks freeing the link objects for the links in the list we're
263 * walking.
264 */
265 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
266 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
267 dpm_wait(link->supplier, async);
268
269 device_links_read_unlock(idx);
270 }
271
272 static void dpm_wait_for_superior(struct device *dev, bool async)
273 {
274 dpm_wait(dev->parent, async);
275 dpm_wait_for_suppliers(dev, async);
276 }
277
278 static void dpm_wait_for_consumers(struct device *dev, bool async)
279 {
280 struct device_link *link;
281 int idx;
282
283 idx = device_links_read_lock();
284
285 /*
286 * The status of a device link can only be changed from "dormant" by a
287 * probe, but that cannot happen during system suspend/resume. In
288 * theory it can change to "dormant" at that time, but then it is
289 * reasonable to wait for the target device anyway (eg. if it goes
290 * away, it's better to wait for it to go away completely and then
291 * continue instead of trying to continue in parallel with its
292 * unregistration).
293 */
294 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
295 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
296 dpm_wait(link->consumer, async);
297
298 device_links_read_unlock(idx);
299 }
300
301 static void dpm_wait_for_subordinate(struct device *dev, bool async)
302 {
303 dpm_wait_for_children(dev, async);
304 dpm_wait_for_consumers(dev, async);
305 }
306
307 /**
308 * pm_op - Return the PM operation appropriate for given PM event.
309 * @ops: PM operations to choose from.
310 * @state: PM transition of the system being carried out.
311 */
312 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
313 {
314 switch (state.event) {
315 #ifdef CONFIG_SUSPEND
316 case PM_EVENT_SUSPEND:
317 return ops->suspend;
318 case PM_EVENT_RESUME:
319 return ops->resume;
320 #endif /* CONFIG_SUSPEND */
321 #ifdef CONFIG_HIBERNATE_CALLBACKS
322 case PM_EVENT_FREEZE:
323 case PM_EVENT_QUIESCE:
324 return ops->freeze;
325 case PM_EVENT_HIBERNATE:
326 return ops->poweroff;
327 case PM_EVENT_THAW:
328 case PM_EVENT_RECOVER:
329 return ops->thaw;
330 break;
331 case PM_EVENT_RESTORE:
332 return ops->restore;
333 #endif /* CONFIG_HIBERNATE_CALLBACKS */
334 }
335
336 return NULL;
337 }
338
339 /**
340 * pm_late_early_op - Return the PM operation appropriate for given PM event.
341 * @ops: PM operations to choose from.
342 * @state: PM transition of the system being carried out.
343 *
344 * Runtime PM is disabled for @dev while this function is being executed.
345 */
346 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
347 pm_message_t state)
348 {
349 switch (state.event) {
350 #ifdef CONFIG_SUSPEND
351 case PM_EVENT_SUSPEND:
352 return ops->suspend_late;
353 case PM_EVENT_RESUME:
354 return ops->resume_early;
355 #endif /* CONFIG_SUSPEND */
356 #ifdef CONFIG_HIBERNATE_CALLBACKS
357 case PM_EVENT_FREEZE:
358 case PM_EVENT_QUIESCE:
359 return ops->freeze_late;
360 case PM_EVENT_HIBERNATE:
361 return ops->poweroff_late;
362 case PM_EVENT_THAW:
363 case PM_EVENT_RECOVER:
364 return ops->thaw_early;
365 case PM_EVENT_RESTORE:
366 return ops->restore_early;
367 #endif /* CONFIG_HIBERNATE_CALLBACKS */
368 }
369
370 return NULL;
371 }
372
373 /**
374 * pm_noirq_op - Return the PM operation appropriate for given PM event.
375 * @ops: PM operations to choose from.
376 * @state: PM transition of the system being carried out.
377 *
378 * The driver of @dev will not receive interrupts while this function is being
379 * executed.
380 */
381 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
382 {
383 switch (state.event) {
384 #ifdef CONFIG_SUSPEND
385 case PM_EVENT_SUSPEND:
386 return ops->suspend_noirq;
387 case PM_EVENT_RESUME:
388 return ops->resume_noirq;
389 #endif /* CONFIG_SUSPEND */
390 #ifdef CONFIG_HIBERNATE_CALLBACKS
391 case PM_EVENT_FREEZE:
392 case PM_EVENT_QUIESCE:
393 return ops->freeze_noirq;
394 case PM_EVENT_HIBERNATE:
395 return ops->poweroff_noirq;
396 case PM_EVENT_THAW:
397 case PM_EVENT_RECOVER:
398 return ops->thaw_noirq;
399 case PM_EVENT_RESTORE:
400 return ops->restore_noirq;
401 #endif /* CONFIG_HIBERNATE_CALLBACKS */
402 }
403
404 return NULL;
405 }
406
407 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
408 {
409 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
410 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
411 ", may wakeup" : "");
412 }
413
414 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
415 int error)
416 {
417 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
418 dev_name(dev), pm_verb(state.event), info, error);
419 }
420
421 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
422 const char *info)
423 {
424 ktime_t calltime;
425 u64 usecs64;
426 int usecs;
427
428 calltime = ktime_get();
429 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
430 do_div(usecs64, NSEC_PER_USEC);
431 usecs = usecs64;
432 if (usecs == 0)
433 usecs = 1;
434
435 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
436 info ?: "", info ? " " : "", pm_verb(state.event),
437 error ? "aborted" : "complete",
438 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
439 }
440
441 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
442 pm_message_t state, const char *info)
443 {
444 ktime_t calltime;
445 int error;
446
447 if (!cb)
448 return 0;
449
450 calltime = initcall_debug_start(dev);
451
452 pm_dev_dbg(dev, state, info);
453 trace_device_pm_callback_start(dev, info, state.event);
454 error = cb(dev);
455 trace_device_pm_callback_end(dev, error);
456 suspend_report_result(cb, error);
457
458 initcall_debug_report(dev, calltime, error, state, info);
459
460 return error;
461 }
462
463 #ifdef CONFIG_DPM_WATCHDOG
464 struct dpm_watchdog {
465 struct device *dev;
466 struct task_struct *tsk;
467 struct timer_list timer;
468 };
469
470 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
471 struct dpm_watchdog wd
472
473 /**
474 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
475 * @data: Watchdog object address.
476 *
477 * Called when a driver has timed out suspending or resuming.
478 * There's not much we can do here to recover so panic() to
479 * capture a crash-dump in pstore.
480 */
481 static void dpm_watchdog_handler(struct timer_list *t)
482 {
483 struct dpm_watchdog *wd = from_timer(wd, t, timer);
484
485 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
486 show_stack(wd->tsk, NULL);
487 panic("%s %s: unrecoverable failure\n",
488 dev_driver_string(wd->dev), dev_name(wd->dev));
489 }
490
491 /**
492 * dpm_watchdog_set - Enable pm watchdog for given device.
493 * @wd: Watchdog. Must be allocated on the stack.
494 * @dev: Device to handle.
495 */
496 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
497 {
498 struct timer_list *timer = &wd->timer;
499
500 wd->dev = dev;
501 wd->tsk = current;
502
503 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
504 /* use same timeout value for both suspend and resume */
505 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
506 add_timer(timer);
507 }
508
509 /**
510 * dpm_watchdog_clear - Disable suspend/resume watchdog.
511 * @wd: Watchdog to disable.
512 */
513 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
514 {
515 struct timer_list *timer = &wd->timer;
516
517 del_timer_sync(timer);
518 destroy_timer_on_stack(timer);
519 }
520 #else
521 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
522 #define dpm_watchdog_set(x, y)
523 #define dpm_watchdog_clear(x)
524 #endif
525
526 /*------------------------- Resume routines -------------------------*/
527
528 /**
529 * device_resume_noirq - Execute an "early resume" callback for given device.
530 * @dev: Device to handle.
531 * @state: PM transition of the system being carried out.
532 * @async: If true, the device is being resumed asynchronously.
533 *
534 * The driver of @dev will not receive interrupts while this function is being
535 * executed.
536 */
537 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
538 {
539 pm_callback_t callback = NULL;
540 const char *info = NULL;
541 int error = 0;
542
543 TRACE_DEVICE(dev);
544 TRACE_RESUME(0);
545
546 if (dev->power.syscore || dev->power.direct_complete)
547 goto Out;
548
549 if (!dev->power.is_noirq_suspended)
550 goto Out;
551
552 dpm_wait_for_superior(dev, async);
553
554 if (dev->pm_domain) {
555 info = "noirq power domain ";
556 callback = pm_noirq_op(&dev->pm_domain->ops, state);
557 } else if (dev->type && dev->type->pm) {
558 info = "noirq type ";
559 callback = pm_noirq_op(dev->type->pm, state);
560 } else if (dev->class && dev->class->pm) {
561 info = "noirq class ";
562 callback = pm_noirq_op(dev->class->pm, state);
563 } else if (dev->bus && dev->bus->pm) {
564 info = "noirq bus ";
565 callback = pm_noirq_op(dev->bus->pm, state);
566 }
567
568 if (!callback && dev->driver && dev->driver->pm) {
569 info = "noirq driver ";
570 callback = pm_noirq_op(dev->driver->pm, state);
571 }
572
573 error = dpm_run_callback(callback, dev, state, info);
574 dev->power.is_noirq_suspended = false;
575
576 Out:
577 complete_all(&dev->power.completion);
578 TRACE_RESUME(error);
579 return error;
580 }
581
582 static bool is_async(struct device *dev)
583 {
584 return dev->power.async_suspend && pm_async_enabled
585 && !pm_trace_is_enabled();
586 }
587
588 static void async_resume_noirq(void *data, async_cookie_t cookie)
589 {
590 struct device *dev = (struct device *)data;
591 int error;
592
593 error = device_resume_noirq(dev, pm_transition, true);
594 if (error)
595 pm_dev_err(dev, pm_transition, " async", error);
596
597 put_device(dev);
598 }
599
600 void dpm_noirq_resume_devices(pm_message_t state)
601 {
602 struct device *dev;
603 ktime_t starttime = ktime_get();
604
605 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
606 mutex_lock(&dpm_list_mtx);
607 pm_transition = state;
608
609 /*
610 * Advanced the async threads upfront,
611 * in case the starting of async threads is
612 * delayed by non-async resuming devices.
613 */
614 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
615 reinit_completion(&dev->power.completion);
616 if (is_async(dev)) {
617 get_device(dev);
618 async_schedule(async_resume_noirq, dev);
619 }
620 }
621
622 while (!list_empty(&dpm_noirq_list)) {
623 dev = to_device(dpm_noirq_list.next);
624 get_device(dev);
625 list_move_tail(&dev->power.entry, &dpm_late_early_list);
626 mutex_unlock(&dpm_list_mtx);
627
628 if (!is_async(dev)) {
629 int error;
630
631 error = device_resume_noirq(dev, state, false);
632 if (error) {
633 suspend_stats.failed_resume_noirq++;
634 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
635 dpm_save_failed_dev(dev_name(dev));
636 pm_dev_err(dev, state, " noirq", error);
637 }
638 }
639
640 mutex_lock(&dpm_list_mtx);
641 put_device(dev);
642 }
643 mutex_unlock(&dpm_list_mtx);
644 async_synchronize_full();
645 dpm_show_time(starttime, state, 0, "noirq");
646 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
647 }
648
649 void dpm_noirq_end(void)
650 {
651 resume_device_irqs();
652 device_wakeup_disarm_wake_irqs();
653 cpuidle_resume();
654 }
655
656 /**
657 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
658 * @state: PM transition of the system being carried out.
659 *
660 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
661 * allow device drivers' interrupt handlers to be called.
662 */
663 void dpm_resume_noirq(pm_message_t state)
664 {
665 dpm_noirq_resume_devices(state);
666 dpm_noirq_end();
667 }
668
669 /**
670 * device_resume_early - Execute an "early resume" callback for given device.
671 * @dev: Device to handle.
672 * @state: PM transition of the system being carried out.
673 * @async: If true, the device is being resumed asynchronously.
674 *
675 * Runtime PM is disabled for @dev while this function is being executed.
676 */
677 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
678 {
679 pm_callback_t callback = NULL;
680 const char *info = NULL;
681 int error = 0;
682
683 TRACE_DEVICE(dev);
684 TRACE_RESUME(0);
685
686 if (dev->power.syscore || dev->power.direct_complete)
687 goto Out;
688
689 if (!dev->power.is_late_suspended)
690 goto Out;
691
692 dpm_wait_for_superior(dev, async);
693
694 if (dev->pm_domain) {
695 info = "early power domain ";
696 callback = pm_late_early_op(&dev->pm_domain->ops, state);
697 } else if (dev->type && dev->type->pm) {
698 info = "early type ";
699 callback = pm_late_early_op(dev->type->pm, state);
700 } else if (dev->class && dev->class->pm) {
701 info = "early class ";
702 callback = pm_late_early_op(dev->class->pm, state);
703 } else if (dev->bus && dev->bus->pm) {
704 info = "early bus ";
705 callback = pm_late_early_op(dev->bus->pm, state);
706 }
707
708 if (!callback && dev->driver && dev->driver->pm) {
709 info = "early driver ";
710 callback = pm_late_early_op(dev->driver->pm, state);
711 }
712
713 error = dpm_run_callback(callback, dev, state, info);
714 dev->power.is_late_suspended = false;
715
716 Out:
717 TRACE_RESUME(error);
718
719 pm_runtime_enable(dev);
720 complete_all(&dev->power.completion);
721 return error;
722 }
723
724 static void async_resume_early(void *data, async_cookie_t cookie)
725 {
726 struct device *dev = (struct device *)data;
727 int error;
728
729 error = device_resume_early(dev, pm_transition, true);
730 if (error)
731 pm_dev_err(dev, pm_transition, " async", error);
732
733 put_device(dev);
734 }
735
736 /**
737 * dpm_resume_early - Execute "early resume" callbacks for all devices.
738 * @state: PM transition of the system being carried out.
739 */
740 void dpm_resume_early(pm_message_t state)
741 {
742 struct device *dev;
743 ktime_t starttime = ktime_get();
744
745 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
746 mutex_lock(&dpm_list_mtx);
747 pm_transition = state;
748
749 /*
750 * Advanced the async threads upfront,
751 * in case the starting of async threads is
752 * delayed by non-async resuming devices.
753 */
754 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
755 reinit_completion(&dev->power.completion);
756 if (is_async(dev)) {
757 get_device(dev);
758 async_schedule(async_resume_early, dev);
759 }
760 }
761
762 while (!list_empty(&dpm_late_early_list)) {
763 dev = to_device(dpm_late_early_list.next);
764 get_device(dev);
765 list_move_tail(&dev->power.entry, &dpm_suspended_list);
766 mutex_unlock(&dpm_list_mtx);
767
768 if (!is_async(dev)) {
769 int error;
770
771 error = device_resume_early(dev, state, false);
772 if (error) {
773 suspend_stats.failed_resume_early++;
774 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
775 dpm_save_failed_dev(dev_name(dev));
776 pm_dev_err(dev, state, " early", error);
777 }
778 }
779 mutex_lock(&dpm_list_mtx);
780 put_device(dev);
781 }
782 mutex_unlock(&dpm_list_mtx);
783 async_synchronize_full();
784 dpm_show_time(starttime, state, 0, "early");
785 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
786 }
787
788 /**
789 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
790 * @state: PM transition of the system being carried out.
791 */
792 void dpm_resume_start(pm_message_t state)
793 {
794 dpm_resume_noirq(state);
795 dpm_resume_early(state);
796 }
797 EXPORT_SYMBOL_GPL(dpm_resume_start);
798
799 /**
800 * device_resume - Execute "resume" callbacks for given device.
801 * @dev: Device to handle.
802 * @state: PM transition of the system being carried out.
803 * @async: If true, the device is being resumed asynchronously.
804 */
805 static int device_resume(struct device *dev, pm_message_t state, bool async)
806 {
807 pm_callback_t callback = NULL;
808 const char *info = NULL;
809 int error = 0;
810 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
811
812 TRACE_DEVICE(dev);
813 TRACE_RESUME(0);
814
815 if (dev->power.syscore)
816 goto Complete;
817
818 if (dev->power.direct_complete) {
819 /* Match the pm_runtime_disable() in __device_suspend(). */
820 pm_runtime_enable(dev);
821 goto Complete;
822 }
823
824 dpm_wait_for_superior(dev, async);
825 dpm_watchdog_set(&wd, dev);
826 device_lock(dev);
827
828 /*
829 * This is a fib. But we'll allow new children to be added below
830 * a resumed device, even if the device hasn't been completed yet.
831 */
832 dev->power.is_prepared = false;
833
834 if (!dev->power.is_suspended)
835 goto Unlock;
836
837 if (dev->pm_domain) {
838 info = "power domain ";
839 callback = pm_op(&dev->pm_domain->ops, state);
840 goto Driver;
841 }
842
843 if (dev->type && dev->type->pm) {
844 info = "type ";
845 callback = pm_op(dev->type->pm, state);
846 goto Driver;
847 }
848
849 if (dev->class) {
850 if (dev->class->pm) {
851 info = "class ";
852 callback = pm_op(dev->class->pm, state);
853 goto Driver;
854 } else if (dev->class->resume) {
855 info = "legacy class ";
856 callback = dev->class->resume;
857 goto End;
858 }
859 }
860
861 if (dev->bus) {
862 if (dev->bus->pm) {
863 info = "bus ";
864 callback = pm_op(dev->bus->pm, state);
865 } else if (dev->bus->resume) {
866 info = "legacy bus ";
867 callback = dev->bus->resume;
868 goto End;
869 }
870 }
871
872 Driver:
873 if (!callback && dev->driver && dev->driver->pm) {
874 info = "driver ";
875 callback = pm_op(dev->driver->pm, state);
876 }
877
878 End:
879 error = dpm_run_callback(callback, dev, state, info);
880 dev->power.is_suspended = false;
881
882 Unlock:
883 device_unlock(dev);
884 dpm_watchdog_clear(&wd);
885
886 Complete:
887 complete_all(&dev->power.completion);
888
889 TRACE_RESUME(error);
890
891 return error;
892 }
893
894 static void async_resume(void *data, async_cookie_t cookie)
895 {
896 struct device *dev = (struct device *)data;
897 int error;
898
899 error = device_resume(dev, pm_transition, true);
900 if (error)
901 pm_dev_err(dev, pm_transition, " async", error);
902 put_device(dev);
903 }
904
905 /**
906 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
907 * @state: PM transition of the system being carried out.
908 *
909 * Execute the appropriate "resume" callback for all devices whose status
910 * indicates that they are suspended.
911 */
912 void dpm_resume(pm_message_t state)
913 {
914 struct device *dev;
915 ktime_t starttime = ktime_get();
916
917 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
918 might_sleep();
919
920 mutex_lock(&dpm_list_mtx);
921 pm_transition = state;
922 async_error = 0;
923
924 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
925 reinit_completion(&dev->power.completion);
926 if (is_async(dev)) {
927 get_device(dev);
928 async_schedule(async_resume, dev);
929 }
930 }
931
932 while (!list_empty(&dpm_suspended_list)) {
933 dev = to_device(dpm_suspended_list.next);
934 get_device(dev);
935 if (!is_async(dev)) {
936 int error;
937
938 mutex_unlock(&dpm_list_mtx);
939
940 error = device_resume(dev, state, false);
941 if (error) {
942 suspend_stats.failed_resume++;
943 dpm_save_failed_step(SUSPEND_RESUME);
944 dpm_save_failed_dev(dev_name(dev));
945 pm_dev_err(dev, state, "", error);
946 }
947
948 mutex_lock(&dpm_list_mtx);
949 }
950 if (!list_empty(&dev->power.entry))
951 list_move_tail(&dev->power.entry, &dpm_prepared_list);
952 put_device(dev);
953 }
954 mutex_unlock(&dpm_list_mtx);
955 async_synchronize_full();
956 dpm_show_time(starttime, state, 0, NULL);
957
958 cpufreq_resume();
959 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
960 }
961
962 /**
963 * device_complete - Complete a PM transition for given device.
964 * @dev: Device to handle.
965 * @state: PM transition of the system being carried out.
966 */
967 static void device_complete(struct device *dev, pm_message_t state)
968 {
969 void (*callback)(struct device *) = NULL;
970 const char *info = NULL;
971
972 if (dev->power.syscore)
973 return;
974
975 device_lock(dev);
976
977 if (dev->pm_domain) {
978 info = "completing power domain ";
979 callback = dev->pm_domain->ops.complete;
980 } else if (dev->type && dev->type->pm) {
981 info = "completing type ";
982 callback = dev->type->pm->complete;
983 } else if (dev->class && dev->class->pm) {
984 info = "completing class ";
985 callback = dev->class->pm->complete;
986 } else if (dev->bus && dev->bus->pm) {
987 info = "completing bus ";
988 callback = dev->bus->pm->complete;
989 }
990
991 if (!callback && dev->driver && dev->driver->pm) {
992 info = "completing driver ";
993 callback = dev->driver->pm->complete;
994 }
995
996 if (callback) {
997 pm_dev_dbg(dev, state, info);
998 callback(dev);
999 }
1000
1001 device_unlock(dev);
1002
1003 pm_runtime_put(dev);
1004 }
1005
1006 /**
1007 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1008 * @state: PM transition of the system being carried out.
1009 *
1010 * Execute the ->complete() callbacks for all devices whose PM status is not
1011 * DPM_ON (this allows new devices to be registered).
1012 */
1013 void dpm_complete(pm_message_t state)
1014 {
1015 struct list_head list;
1016
1017 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1018 might_sleep();
1019
1020 INIT_LIST_HEAD(&list);
1021 mutex_lock(&dpm_list_mtx);
1022 while (!list_empty(&dpm_prepared_list)) {
1023 struct device *dev = to_device(dpm_prepared_list.prev);
1024
1025 get_device(dev);
1026 dev->power.is_prepared = false;
1027 list_move(&dev->power.entry, &list);
1028 mutex_unlock(&dpm_list_mtx);
1029
1030 trace_device_pm_callback_start(dev, "", state.event);
1031 device_complete(dev, state);
1032 trace_device_pm_callback_end(dev, 0);
1033
1034 mutex_lock(&dpm_list_mtx);
1035 put_device(dev);
1036 }
1037 list_splice(&list, &dpm_list);
1038 mutex_unlock(&dpm_list_mtx);
1039
1040 /* Allow device probing and trigger re-probing of deferred devices */
1041 device_unblock_probing();
1042 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1043 }
1044
1045 /**
1046 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1047 * @state: PM transition of the system being carried out.
1048 *
1049 * Execute "resume" callbacks for all devices and complete the PM transition of
1050 * the system.
1051 */
1052 void dpm_resume_end(pm_message_t state)
1053 {
1054 dpm_resume(state);
1055 dpm_complete(state);
1056 }
1057 EXPORT_SYMBOL_GPL(dpm_resume_end);
1058
1059
1060 /*------------------------- Suspend routines -------------------------*/
1061
1062 /**
1063 * resume_event - Return a "resume" message for given "suspend" sleep state.
1064 * @sleep_state: PM message representing a sleep state.
1065 *
1066 * Return a PM message representing the resume event corresponding to given
1067 * sleep state.
1068 */
1069 static pm_message_t resume_event(pm_message_t sleep_state)
1070 {
1071 switch (sleep_state.event) {
1072 case PM_EVENT_SUSPEND:
1073 return PMSG_RESUME;
1074 case PM_EVENT_FREEZE:
1075 case PM_EVENT_QUIESCE:
1076 return PMSG_RECOVER;
1077 case PM_EVENT_HIBERNATE:
1078 return PMSG_RESTORE;
1079 }
1080 return PMSG_ON;
1081 }
1082
1083 /**
1084 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1085 * @dev: Device to handle.
1086 * @state: PM transition of the system being carried out.
1087 * @async: If true, the device is being suspended asynchronously.
1088 *
1089 * The driver of @dev will not receive interrupts while this function is being
1090 * executed.
1091 */
1092 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1093 {
1094 pm_callback_t callback = NULL;
1095 const char *info = NULL;
1096 int error = 0;
1097
1098 TRACE_DEVICE(dev);
1099 TRACE_SUSPEND(0);
1100
1101 dpm_wait_for_subordinate(dev, async);
1102
1103 if (async_error)
1104 goto Complete;
1105
1106 if (pm_wakeup_pending()) {
1107 async_error = -EBUSY;
1108 goto Complete;
1109 }
1110
1111 if (dev->power.syscore || dev->power.direct_complete)
1112 goto Complete;
1113
1114 if (dev->pm_domain) {
1115 info = "noirq power domain ";
1116 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1117 } else if (dev->type && dev->type->pm) {
1118 info = "noirq type ";
1119 callback = pm_noirq_op(dev->type->pm, state);
1120 } else if (dev->class && dev->class->pm) {
1121 info = "noirq class ";
1122 callback = pm_noirq_op(dev->class->pm, state);
1123 } else if (dev->bus && dev->bus->pm) {
1124 info = "noirq bus ";
1125 callback = pm_noirq_op(dev->bus->pm, state);
1126 }
1127
1128 if (!callback && dev->driver && dev->driver->pm) {
1129 info = "noirq driver ";
1130 callback = pm_noirq_op(dev->driver->pm, state);
1131 }
1132
1133 error = dpm_run_callback(callback, dev, state, info);
1134 if (!error)
1135 dev->power.is_noirq_suspended = true;
1136 else
1137 async_error = error;
1138
1139 Complete:
1140 complete_all(&dev->power.completion);
1141 TRACE_SUSPEND(error);
1142 return error;
1143 }
1144
1145 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1146 {
1147 struct device *dev = (struct device *)data;
1148 int error;
1149
1150 error = __device_suspend_noirq(dev, pm_transition, true);
1151 if (error) {
1152 dpm_save_failed_dev(dev_name(dev));
1153 pm_dev_err(dev, pm_transition, " async", error);
1154 }
1155
1156 put_device(dev);
1157 }
1158
1159 static int device_suspend_noirq(struct device *dev)
1160 {
1161 reinit_completion(&dev->power.completion);
1162
1163 if (is_async(dev)) {
1164 get_device(dev);
1165 async_schedule(async_suspend_noirq, dev);
1166 return 0;
1167 }
1168 return __device_suspend_noirq(dev, pm_transition, false);
1169 }
1170
1171 void dpm_noirq_begin(void)
1172 {
1173 cpuidle_pause();
1174 device_wakeup_arm_wake_irqs();
1175 suspend_device_irqs();
1176 }
1177
1178 int dpm_noirq_suspend_devices(pm_message_t state)
1179 {
1180 ktime_t starttime = ktime_get();
1181 int error = 0;
1182
1183 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1184 mutex_lock(&dpm_list_mtx);
1185 pm_transition = state;
1186 async_error = 0;
1187
1188 while (!list_empty(&dpm_late_early_list)) {
1189 struct device *dev = to_device(dpm_late_early_list.prev);
1190
1191 get_device(dev);
1192 mutex_unlock(&dpm_list_mtx);
1193
1194 error = device_suspend_noirq(dev);
1195
1196 mutex_lock(&dpm_list_mtx);
1197 if (error) {
1198 pm_dev_err(dev, state, " noirq", error);
1199 dpm_save_failed_dev(dev_name(dev));
1200 put_device(dev);
1201 break;
1202 }
1203 if (!list_empty(&dev->power.entry))
1204 list_move(&dev->power.entry, &dpm_noirq_list);
1205 put_device(dev);
1206
1207 if (async_error)
1208 break;
1209 }
1210 mutex_unlock(&dpm_list_mtx);
1211 async_synchronize_full();
1212 if (!error)
1213 error = async_error;
1214
1215 if (error) {
1216 suspend_stats.failed_suspend_noirq++;
1217 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1218 }
1219 dpm_show_time(starttime, state, error, "noirq");
1220 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1221 return error;
1222 }
1223
1224 /**
1225 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1226 * @state: PM transition of the system being carried out.
1227 *
1228 * Prevent device drivers' interrupt handlers from being called and invoke
1229 * "noirq" suspend callbacks for all non-sysdev devices.
1230 */
1231 int dpm_suspend_noirq(pm_message_t state)
1232 {
1233 int ret;
1234
1235 dpm_noirq_begin();
1236 ret = dpm_noirq_suspend_devices(state);
1237 if (ret)
1238 dpm_resume_noirq(resume_event(state));
1239
1240 return ret;
1241 }
1242
1243 /**
1244 * device_suspend_late - Execute a "late suspend" callback for given device.
1245 * @dev: Device to handle.
1246 * @state: PM transition of the system being carried out.
1247 * @async: If true, the device is being suspended asynchronously.
1248 *
1249 * Runtime PM is disabled for @dev while this function is being executed.
1250 */
1251 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1252 {
1253 pm_callback_t callback = NULL;
1254 const char *info = NULL;
1255 int error = 0;
1256
1257 TRACE_DEVICE(dev);
1258 TRACE_SUSPEND(0);
1259
1260 __pm_runtime_disable(dev, false);
1261
1262 dpm_wait_for_subordinate(dev, async);
1263
1264 if (async_error)
1265 goto Complete;
1266
1267 if (pm_wakeup_pending()) {
1268 async_error = -EBUSY;
1269 goto Complete;
1270 }
1271
1272 if (dev->power.syscore || dev->power.direct_complete)
1273 goto Complete;
1274
1275 if (dev->pm_domain) {
1276 info = "late power domain ";
1277 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1278 } else if (dev->type && dev->type->pm) {
1279 info = "late type ";
1280 callback = pm_late_early_op(dev->type->pm, state);
1281 } else if (dev->class && dev->class->pm) {
1282 info = "late class ";
1283 callback = pm_late_early_op(dev->class->pm, state);
1284 } else if (dev->bus && dev->bus->pm) {
1285 info = "late bus ";
1286 callback = pm_late_early_op(dev->bus->pm, state);
1287 }
1288
1289 if (!callback && dev->driver && dev->driver->pm) {
1290 info = "late driver ";
1291 callback = pm_late_early_op(dev->driver->pm, state);
1292 }
1293
1294 error = dpm_run_callback(callback, dev, state, info);
1295 if (!error)
1296 dev->power.is_late_suspended = true;
1297 else
1298 async_error = error;
1299
1300 Complete:
1301 TRACE_SUSPEND(error);
1302 complete_all(&dev->power.completion);
1303 return error;
1304 }
1305
1306 static void async_suspend_late(void *data, async_cookie_t cookie)
1307 {
1308 struct device *dev = (struct device *)data;
1309 int error;
1310
1311 error = __device_suspend_late(dev, pm_transition, true);
1312 if (error) {
1313 dpm_save_failed_dev(dev_name(dev));
1314 pm_dev_err(dev, pm_transition, " async", error);
1315 }
1316 put_device(dev);
1317 }
1318
1319 static int device_suspend_late(struct device *dev)
1320 {
1321 reinit_completion(&dev->power.completion);
1322
1323 if (is_async(dev)) {
1324 get_device(dev);
1325 async_schedule(async_suspend_late, dev);
1326 return 0;
1327 }
1328
1329 return __device_suspend_late(dev, pm_transition, false);
1330 }
1331
1332 /**
1333 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1334 * @state: PM transition of the system being carried out.
1335 */
1336 int dpm_suspend_late(pm_message_t state)
1337 {
1338 ktime_t starttime = ktime_get();
1339 int error = 0;
1340
1341 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1342 mutex_lock(&dpm_list_mtx);
1343 pm_transition = state;
1344 async_error = 0;
1345
1346 while (!list_empty(&dpm_suspended_list)) {
1347 struct device *dev = to_device(dpm_suspended_list.prev);
1348
1349 get_device(dev);
1350 mutex_unlock(&dpm_list_mtx);
1351
1352 error = device_suspend_late(dev);
1353
1354 mutex_lock(&dpm_list_mtx);
1355 if (!list_empty(&dev->power.entry))
1356 list_move(&dev->power.entry, &dpm_late_early_list);
1357
1358 if (error) {
1359 pm_dev_err(dev, state, " late", error);
1360 dpm_save_failed_dev(dev_name(dev));
1361 put_device(dev);
1362 break;
1363 }
1364 put_device(dev);
1365
1366 if (async_error)
1367 break;
1368 }
1369 mutex_unlock(&dpm_list_mtx);
1370 async_synchronize_full();
1371 if (!error)
1372 error = async_error;
1373 if (error) {
1374 suspend_stats.failed_suspend_late++;
1375 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1376 dpm_resume_early(resume_event(state));
1377 }
1378 dpm_show_time(starttime, state, error, "late");
1379 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1380 return error;
1381 }
1382
1383 /**
1384 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1385 * @state: PM transition of the system being carried out.
1386 */
1387 int dpm_suspend_end(pm_message_t state)
1388 {
1389 int error = dpm_suspend_late(state);
1390 if (error)
1391 return error;
1392
1393 error = dpm_suspend_noirq(state);
1394 if (error) {
1395 dpm_resume_early(resume_event(state));
1396 return error;
1397 }
1398
1399 return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1402
1403 /**
1404 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1405 * @dev: Device to suspend.
1406 * @state: PM transition of the system being carried out.
1407 * @cb: Suspend callback to execute.
1408 * @info: string description of caller.
1409 */
1410 static int legacy_suspend(struct device *dev, pm_message_t state,
1411 int (*cb)(struct device *dev, pm_message_t state),
1412 const char *info)
1413 {
1414 int error;
1415 ktime_t calltime;
1416
1417 calltime = initcall_debug_start(dev);
1418
1419 trace_device_pm_callback_start(dev, info, state.event);
1420 error = cb(dev, state);
1421 trace_device_pm_callback_end(dev, error);
1422 suspend_report_result(cb, error);
1423
1424 initcall_debug_report(dev, calltime, error, state, info);
1425
1426 return error;
1427 }
1428
1429 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1430 {
1431 struct device_link *link;
1432 int idx;
1433
1434 idx = device_links_read_lock();
1435
1436 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1437 spin_lock_irq(&link->supplier->power.lock);
1438 link->supplier->power.direct_complete = false;
1439 spin_unlock_irq(&link->supplier->power.lock);
1440 }
1441
1442 device_links_read_unlock(idx);
1443 }
1444
1445 /**
1446 * device_suspend - Execute "suspend" callbacks for given device.
1447 * @dev: Device to handle.
1448 * @state: PM transition of the system being carried out.
1449 * @async: If true, the device is being suspended asynchronously.
1450 */
1451 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1452 {
1453 pm_callback_t callback = NULL;
1454 const char *info = NULL;
1455 int error = 0;
1456 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1457
1458 TRACE_DEVICE(dev);
1459 TRACE_SUSPEND(0);
1460
1461 dpm_wait_for_subordinate(dev, async);
1462
1463 if (async_error)
1464 goto Complete;
1465
1466 /*
1467 * If a device configured to wake up the system from sleep states
1468 * has been suspended at run time and there's a resume request pending
1469 * for it, this is equivalent to the device signaling wakeup, so the
1470 * system suspend operation should be aborted.
1471 */
1472 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1473 pm_wakeup_event(dev, 0);
1474
1475 if (pm_wakeup_pending()) {
1476 async_error = -EBUSY;
1477 goto Complete;
1478 }
1479
1480 if (dev->power.syscore)
1481 goto Complete;
1482
1483 if (dev->power.direct_complete) {
1484 if (pm_runtime_status_suspended(dev)) {
1485 pm_runtime_disable(dev);
1486 if (pm_runtime_status_suspended(dev))
1487 goto Complete;
1488
1489 pm_runtime_enable(dev);
1490 }
1491 dev->power.direct_complete = false;
1492 }
1493
1494 dpm_watchdog_set(&wd, dev);
1495 device_lock(dev);
1496
1497 if (dev->pm_domain) {
1498 info = "power domain ";
1499 callback = pm_op(&dev->pm_domain->ops, state);
1500 goto Run;
1501 }
1502
1503 if (dev->type && dev->type->pm) {
1504 info = "type ";
1505 callback = pm_op(dev->type->pm, state);
1506 goto Run;
1507 }
1508
1509 if (dev->class) {
1510 if (dev->class->pm) {
1511 info = "class ";
1512 callback = pm_op(dev->class->pm, state);
1513 goto Run;
1514 } else if (dev->class->suspend) {
1515 pm_dev_dbg(dev, state, "legacy class ");
1516 error = legacy_suspend(dev, state, dev->class->suspend,
1517 "legacy class ");
1518 goto End;
1519 }
1520 }
1521
1522 if (dev->bus) {
1523 if (dev->bus->pm) {
1524 info = "bus ";
1525 callback = pm_op(dev->bus->pm, state);
1526 } else if (dev->bus->suspend) {
1527 pm_dev_dbg(dev, state, "legacy bus ");
1528 error = legacy_suspend(dev, state, dev->bus->suspend,
1529 "legacy bus ");
1530 goto End;
1531 }
1532 }
1533
1534 Run:
1535 if (!callback && dev->driver && dev->driver->pm) {
1536 info = "driver ";
1537 callback = pm_op(dev->driver->pm, state);
1538 }
1539
1540 error = dpm_run_callback(callback, dev, state, info);
1541
1542 End:
1543 if (!error) {
1544 struct device *parent = dev->parent;
1545
1546 dev->power.is_suspended = true;
1547 if (parent) {
1548 spin_lock_irq(&parent->power.lock);
1549
1550 dev->parent->power.direct_complete = false;
1551 if (dev->power.wakeup_path
1552 && !dev->parent->power.ignore_children)
1553 dev->parent->power.wakeup_path = true;
1554
1555 spin_unlock_irq(&parent->power.lock);
1556 }
1557 dpm_clear_suppliers_direct_complete(dev);
1558 }
1559
1560 device_unlock(dev);
1561 dpm_watchdog_clear(&wd);
1562
1563 Complete:
1564 if (error)
1565 async_error = error;
1566
1567 complete_all(&dev->power.completion);
1568 TRACE_SUSPEND(error);
1569 return error;
1570 }
1571
1572 static void async_suspend(void *data, async_cookie_t cookie)
1573 {
1574 struct device *dev = (struct device *)data;
1575 int error;
1576
1577 error = __device_suspend(dev, pm_transition, true);
1578 if (error) {
1579 dpm_save_failed_dev(dev_name(dev));
1580 pm_dev_err(dev, pm_transition, " async", error);
1581 }
1582
1583 put_device(dev);
1584 }
1585
1586 static int device_suspend(struct device *dev)
1587 {
1588 reinit_completion(&dev->power.completion);
1589
1590 if (is_async(dev)) {
1591 get_device(dev);
1592 async_schedule(async_suspend, dev);
1593 return 0;
1594 }
1595
1596 return __device_suspend(dev, pm_transition, false);
1597 }
1598
1599 /**
1600 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1601 * @state: PM transition of the system being carried out.
1602 */
1603 int dpm_suspend(pm_message_t state)
1604 {
1605 ktime_t starttime = ktime_get();
1606 int error = 0;
1607
1608 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1609 might_sleep();
1610
1611 cpufreq_suspend();
1612
1613 mutex_lock(&dpm_list_mtx);
1614 pm_transition = state;
1615 async_error = 0;
1616 while (!list_empty(&dpm_prepared_list)) {
1617 struct device *dev = to_device(dpm_prepared_list.prev);
1618
1619 get_device(dev);
1620 mutex_unlock(&dpm_list_mtx);
1621
1622 error = device_suspend(dev);
1623
1624 mutex_lock(&dpm_list_mtx);
1625 if (error) {
1626 pm_dev_err(dev, state, "", error);
1627 dpm_save_failed_dev(dev_name(dev));
1628 put_device(dev);
1629 break;
1630 }
1631 if (!list_empty(&dev->power.entry))
1632 list_move(&dev->power.entry, &dpm_suspended_list);
1633 put_device(dev);
1634 if (async_error)
1635 break;
1636 }
1637 mutex_unlock(&dpm_list_mtx);
1638 async_synchronize_full();
1639 if (!error)
1640 error = async_error;
1641 if (error) {
1642 suspend_stats.failed_suspend++;
1643 dpm_save_failed_step(SUSPEND_SUSPEND);
1644 }
1645 dpm_show_time(starttime, state, error, NULL);
1646 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1647 return error;
1648 }
1649
1650 /**
1651 * device_prepare - Prepare a device for system power transition.
1652 * @dev: Device to handle.
1653 * @state: PM transition of the system being carried out.
1654 *
1655 * Execute the ->prepare() callback(s) for given device. No new children of the
1656 * device may be registered after this function has returned.
1657 */
1658 static int device_prepare(struct device *dev, pm_message_t state)
1659 {
1660 int (*callback)(struct device *) = NULL;
1661 int ret = 0;
1662
1663 if (dev->power.syscore)
1664 return 0;
1665
1666 /*
1667 * If a device's parent goes into runtime suspend at the wrong time,
1668 * it won't be possible to resume the device. To prevent this we
1669 * block runtime suspend here, during the prepare phase, and allow
1670 * it again during the complete phase.
1671 */
1672 pm_runtime_get_noresume(dev);
1673
1674 device_lock(dev);
1675
1676 dev->power.wakeup_path = device_may_wakeup(dev);
1677
1678 if (dev->power.no_pm_callbacks) {
1679 ret = 1; /* Let device go direct_complete */
1680 goto unlock;
1681 }
1682
1683 if (dev->pm_domain)
1684 callback = dev->pm_domain->ops.prepare;
1685 else if (dev->type && dev->type->pm)
1686 callback = dev->type->pm->prepare;
1687 else if (dev->class && dev->class->pm)
1688 callback = dev->class->pm->prepare;
1689 else if (dev->bus && dev->bus->pm)
1690 callback = dev->bus->pm->prepare;
1691
1692 if (!callback && dev->driver && dev->driver->pm)
1693 callback = dev->driver->pm->prepare;
1694
1695 if (callback)
1696 ret = callback(dev);
1697
1698 unlock:
1699 device_unlock(dev);
1700
1701 if (ret < 0) {
1702 suspend_report_result(callback, ret);
1703 pm_runtime_put(dev);
1704 return ret;
1705 }
1706 /*
1707 * A positive return value from ->prepare() means "this device appears
1708 * to be runtime-suspended and its state is fine, so if it really is
1709 * runtime-suspended, you can leave it in that state provided that you
1710 * will do the same thing with all of its descendants". This only
1711 * applies to suspend transitions, however.
1712 */
1713 spin_lock_irq(&dev->power.lock);
1714 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1715 spin_unlock_irq(&dev->power.lock);
1716 return 0;
1717 }
1718
1719 /**
1720 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1721 * @state: PM transition of the system being carried out.
1722 *
1723 * Execute the ->prepare() callback(s) for all devices.
1724 */
1725 int dpm_prepare(pm_message_t state)
1726 {
1727 int error = 0;
1728
1729 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1730 might_sleep();
1731
1732 /*
1733 * Give a chance for the known devices to complete their probes, before
1734 * disable probing of devices. This sync point is important at least
1735 * at boot time + hibernation restore.
1736 */
1737 wait_for_device_probe();
1738 /*
1739 * It is unsafe if probing of devices will happen during suspend or
1740 * hibernation and system behavior will be unpredictable in this case.
1741 * So, let's prohibit device's probing here and defer their probes
1742 * instead. The normal behavior will be restored in dpm_complete().
1743 */
1744 device_block_probing();
1745
1746 mutex_lock(&dpm_list_mtx);
1747 while (!list_empty(&dpm_list)) {
1748 struct device *dev = to_device(dpm_list.next);
1749
1750 get_device(dev);
1751 mutex_unlock(&dpm_list_mtx);
1752
1753 trace_device_pm_callback_start(dev, "", state.event);
1754 error = device_prepare(dev, state);
1755 trace_device_pm_callback_end(dev, error);
1756
1757 mutex_lock(&dpm_list_mtx);
1758 if (error) {
1759 if (error == -EAGAIN) {
1760 put_device(dev);
1761 error = 0;
1762 continue;
1763 }
1764 printk(KERN_INFO "PM: Device %s not prepared "
1765 "for power transition: code %d\n",
1766 dev_name(dev), error);
1767 put_device(dev);
1768 break;
1769 }
1770 dev->power.is_prepared = true;
1771 if (!list_empty(&dev->power.entry))
1772 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1773 put_device(dev);
1774 }
1775 mutex_unlock(&dpm_list_mtx);
1776 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1777 return error;
1778 }
1779
1780 /**
1781 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1782 * @state: PM transition of the system being carried out.
1783 *
1784 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1785 * callbacks for them.
1786 */
1787 int dpm_suspend_start(pm_message_t state)
1788 {
1789 int error;
1790
1791 error = dpm_prepare(state);
1792 if (error) {
1793 suspend_stats.failed_prepare++;
1794 dpm_save_failed_step(SUSPEND_PREPARE);
1795 } else
1796 error = dpm_suspend(state);
1797 return error;
1798 }
1799 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1800
1801 void __suspend_report_result(const char *function, void *fn, int ret)
1802 {
1803 if (ret)
1804 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1805 }
1806 EXPORT_SYMBOL_GPL(__suspend_report_result);
1807
1808 /**
1809 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1810 * @dev: Device to wait for.
1811 * @subordinate: Device that needs to wait for @dev.
1812 */
1813 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1814 {
1815 dpm_wait(dev, subordinate->power.async_suspend);
1816 return async_error;
1817 }
1818 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1819
1820 /**
1821 * dpm_for_each_dev - device iterator.
1822 * @data: data for the callback.
1823 * @fn: function to be called for each device.
1824 *
1825 * Iterate over devices in dpm_list, and call @fn for each device,
1826 * passing it @data.
1827 */
1828 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1829 {
1830 struct device *dev;
1831
1832 if (!fn)
1833 return;
1834
1835 device_pm_lock();
1836 list_for_each_entry(dev, &dpm_list, power.entry)
1837 fn(dev, data);
1838 device_pm_unlock();
1839 }
1840 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1841
1842 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1843 {
1844 if (!ops)
1845 return true;
1846
1847 return !ops->prepare &&
1848 !ops->suspend &&
1849 !ops->suspend_late &&
1850 !ops->suspend_noirq &&
1851 !ops->resume_noirq &&
1852 !ops->resume_early &&
1853 !ops->resume &&
1854 !ops->complete;
1855 }
1856
1857 void device_pm_check_callbacks(struct device *dev)
1858 {
1859 spin_lock_irq(&dev->power.lock);
1860 dev->power.no_pm_callbacks =
1861 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1862 !dev->bus->suspend && !dev->bus->resume)) &&
1863 (!dev->class || (pm_ops_is_empty(dev->class->pm) &&
1864 !dev->class->suspend && !dev->class->resume)) &&
1865 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1866 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1867 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
1868 !dev->driver->suspend && !dev->driver->resume));
1869 spin_unlock_irq(&dev->power.lock);
1870 }