]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/base/power/main.c
tree-wide: fix comment/printk typos
[mirror_ubuntu-artful-kernel.git] / drivers / base / power / main.c
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/resume-trace.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/async.h>
29
30 #include "../base.h"
31 #include "power.h"
32
33 /*
34 * The entries in the dpm_list list are in a depth first order, simply
35 * because children are guaranteed to be discovered after parents, and
36 * are inserted at the back of the list on discovery.
37 *
38 * Since device_pm_add() may be called with a device lock held,
39 * we must never try to acquire a device lock while holding
40 * dpm_list_mutex.
41 */
42
43 LIST_HEAD(dpm_list);
44
45 static DEFINE_MUTEX(dpm_list_mtx);
46 static pm_message_t pm_transition;
47
48 /*
49 * Set once the preparation of devices for a PM transition has started, reset
50 * before starting to resume devices. Protected by dpm_list_mtx.
51 */
52 static bool transition_started;
53
54 static int async_error;
55
56 /**
57 * device_pm_init - Initialize the PM-related part of a device object.
58 * @dev: Device object being initialized.
59 */
60 void device_pm_init(struct device *dev)
61 {
62 dev->power.status = DPM_ON;
63 init_completion(&dev->power.completion);
64 complete_all(&dev->power.completion);
65 dev->power.wakeup = NULL;
66 spin_lock_init(&dev->power.lock);
67 pm_runtime_init(dev);
68 }
69
70 /**
71 * device_pm_lock - Lock the list of active devices used by the PM core.
72 */
73 void device_pm_lock(void)
74 {
75 mutex_lock(&dpm_list_mtx);
76 }
77
78 /**
79 * device_pm_unlock - Unlock the list of active devices used by the PM core.
80 */
81 void device_pm_unlock(void)
82 {
83 mutex_unlock(&dpm_list_mtx);
84 }
85
86 /**
87 * device_pm_add - Add a device to the PM core's list of active devices.
88 * @dev: Device to add to the list.
89 */
90 void device_pm_add(struct device *dev)
91 {
92 pr_debug("PM: Adding info for %s:%s\n",
93 dev->bus ? dev->bus->name : "No Bus",
94 kobject_name(&dev->kobj));
95 mutex_lock(&dpm_list_mtx);
96 if (dev->parent) {
97 if (dev->parent->power.status >= DPM_SUSPENDING)
98 dev_warn(dev, "parent %s should not be sleeping\n",
99 dev_name(dev->parent));
100 } else if (transition_started) {
101 /*
102 * We refuse to register parentless devices while a PM
103 * transition is in progress in order to avoid leaving them
104 * unhandled down the road
105 */
106 dev_WARN(dev, "Parentless device registered during a PM transaction\n");
107 }
108
109 list_add_tail(&dev->power.entry, &dpm_list);
110 mutex_unlock(&dpm_list_mtx);
111 }
112
113 /**
114 * device_pm_remove - Remove a device from the PM core's list of active devices.
115 * @dev: Device to be removed from the list.
116 */
117 void device_pm_remove(struct device *dev)
118 {
119 pr_debug("PM: Removing info for %s:%s\n",
120 dev->bus ? dev->bus->name : "No Bus",
121 kobject_name(&dev->kobj));
122 complete_all(&dev->power.completion);
123 mutex_lock(&dpm_list_mtx);
124 list_del_init(&dev->power.entry);
125 mutex_unlock(&dpm_list_mtx);
126 device_wakeup_disable(dev);
127 pm_runtime_remove(dev);
128 }
129
130 /**
131 * device_pm_move_before - Move device in the PM core's list of active devices.
132 * @deva: Device to move in dpm_list.
133 * @devb: Device @deva should come before.
134 */
135 void device_pm_move_before(struct device *deva, struct device *devb)
136 {
137 pr_debug("PM: Moving %s:%s before %s:%s\n",
138 deva->bus ? deva->bus->name : "No Bus",
139 kobject_name(&deva->kobj),
140 devb->bus ? devb->bus->name : "No Bus",
141 kobject_name(&devb->kobj));
142 /* Delete deva from dpm_list and reinsert before devb. */
143 list_move_tail(&deva->power.entry, &devb->power.entry);
144 }
145
146 /**
147 * device_pm_move_after - Move device in the PM core's list of active devices.
148 * @deva: Device to move in dpm_list.
149 * @devb: Device @deva should come after.
150 */
151 void device_pm_move_after(struct device *deva, struct device *devb)
152 {
153 pr_debug("PM: Moving %s:%s after %s:%s\n",
154 deva->bus ? deva->bus->name : "No Bus",
155 kobject_name(&deva->kobj),
156 devb->bus ? devb->bus->name : "No Bus",
157 kobject_name(&devb->kobj));
158 /* Delete deva from dpm_list and reinsert after devb. */
159 list_move(&deva->power.entry, &devb->power.entry);
160 }
161
162 /**
163 * device_pm_move_last - Move device to end of the PM core's list of devices.
164 * @dev: Device to move in dpm_list.
165 */
166 void device_pm_move_last(struct device *dev)
167 {
168 pr_debug("PM: Moving %s:%s to end of list\n",
169 dev->bus ? dev->bus->name : "No Bus",
170 kobject_name(&dev->kobj));
171 list_move_tail(&dev->power.entry, &dpm_list);
172 }
173
174 static ktime_t initcall_debug_start(struct device *dev)
175 {
176 ktime_t calltime = ktime_set(0, 0);
177
178 if (initcall_debug) {
179 pr_info("calling %s+ @ %i\n",
180 dev_name(dev), task_pid_nr(current));
181 calltime = ktime_get();
182 }
183
184 return calltime;
185 }
186
187 static void initcall_debug_report(struct device *dev, ktime_t calltime,
188 int error)
189 {
190 ktime_t delta, rettime;
191
192 if (initcall_debug) {
193 rettime = ktime_get();
194 delta = ktime_sub(rettime, calltime);
195 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
196 error, (unsigned long long)ktime_to_ns(delta) >> 10);
197 }
198 }
199
200 /**
201 * dpm_wait - Wait for a PM operation to complete.
202 * @dev: Device to wait for.
203 * @async: If unset, wait only if the device's power.async_suspend flag is set.
204 */
205 static void dpm_wait(struct device *dev, bool async)
206 {
207 if (!dev)
208 return;
209
210 if (async || (pm_async_enabled && dev->power.async_suspend))
211 wait_for_completion(&dev->power.completion);
212 }
213
214 static int dpm_wait_fn(struct device *dev, void *async_ptr)
215 {
216 dpm_wait(dev, *((bool *)async_ptr));
217 return 0;
218 }
219
220 static void dpm_wait_for_children(struct device *dev, bool async)
221 {
222 device_for_each_child(dev, &async, dpm_wait_fn);
223 }
224
225 /**
226 * pm_op - Execute the PM operation appropriate for given PM event.
227 * @dev: Device to handle.
228 * @ops: PM operations to choose from.
229 * @state: PM transition of the system being carried out.
230 */
231 static int pm_op(struct device *dev,
232 const struct dev_pm_ops *ops,
233 pm_message_t state)
234 {
235 int error = 0;
236 ktime_t calltime;
237
238 calltime = initcall_debug_start(dev);
239
240 switch (state.event) {
241 #ifdef CONFIG_SUSPEND
242 case PM_EVENT_SUSPEND:
243 if (ops->suspend) {
244 error = ops->suspend(dev);
245 suspend_report_result(ops->suspend, error);
246 }
247 break;
248 case PM_EVENT_RESUME:
249 if (ops->resume) {
250 error = ops->resume(dev);
251 suspend_report_result(ops->resume, error);
252 }
253 break;
254 #endif /* CONFIG_SUSPEND */
255 #ifdef CONFIG_HIBERNATION
256 case PM_EVENT_FREEZE:
257 case PM_EVENT_QUIESCE:
258 if (ops->freeze) {
259 error = ops->freeze(dev);
260 suspend_report_result(ops->freeze, error);
261 }
262 break;
263 case PM_EVENT_HIBERNATE:
264 if (ops->poweroff) {
265 error = ops->poweroff(dev);
266 suspend_report_result(ops->poweroff, error);
267 }
268 break;
269 case PM_EVENT_THAW:
270 case PM_EVENT_RECOVER:
271 if (ops->thaw) {
272 error = ops->thaw(dev);
273 suspend_report_result(ops->thaw, error);
274 }
275 break;
276 case PM_EVENT_RESTORE:
277 if (ops->restore) {
278 error = ops->restore(dev);
279 suspend_report_result(ops->restore, error);
280 }
281 break;
282 #endif /* CONFIG_HIBERNATION */
283 default:
284 error = -EINVAL;
285 }
286
287 initcall_debug_report(dev, calltime, error);
288
289 return error;
290 }
291
292 /**
293 * pm_noirq_op - Execute the PM operation appropriate for given PM event.
294 * @dev: Device to handle.
295 * @ops: PM operations to choose from.
296 * @state: PM transition of the system being carried out.
297 *
298 * The driver of @dev will not receive interrupts while this function is being
299 * executed.
300 */
301 static int pm_noirq_op(struct device *dev,
302 const struct dev_pm_ops *ops,
303 pm_message_t state)
304 {
305 int error = 0;
306 ktime_t calltime, delta, rettime;
307
308 if (initcall_debug) {
309 pr_info("calling %s+ @ %i, parent: %s\n",
310 dev_name(dev), task_pid_nr(current),
311 dev->parent ? dev_name(dev->parent) : "none");
312 calltime = ktime_get();
313 }
314
315 switch (state.event) {
316 #ifdef CONFIG_SUSPEND
317 case PM_EVENT_SUSPEND:
318 if (ops->suspend_noirq) {
319 error = ops->suspend_noirq(dev);
320 suspend_report_result(ops->suspend_noirq, error);
321 }
322 break;
323 case PM_EVENT_RESUME:
324 if (ops->resume_noirq) {
325 error = ops->resume_noirq(dev);
326 suspend_report_result(ops->resume_noirq, error);
327 }
328 break;
329 #endif /* CONFIG_SUSPEND */
330 #ifdef CONFIG_HIBERNATION
331 case PM_EVENT_FREEZE:
332 case PM_EVENT_QUIESCE:
333 if (ops->freeze_noirq) {
334 error = ops->freeze_noirq(dev);
335 suspend_report_result(ops->freeze_noirq, error);
336 }
337 break;
338 case PM_EVENT_HIBERNATE:
339 if (ops->poweroff_noirq) {
340 error = ops->poweroff_noirq(dev);
341 suspend_report_result(ops->poweroff_noirq, error);
342 }
343 break;
344 case PM_EVENT_THAW:
345 case PM_EVENT_RECOVER:
346 if (ops->thaw_noirq) {
347 error = ops->thaw_noirq(dev);
348 suspend_report_result(ops->thaw_noirq, error);
349 }
350 break;
351 case PM_EVENT_RESTORE:
352 if (ops->restore_noirq) {
353 error = ops->restore_noirq(dev);
354 suspend_report_result(ops->restore_noirq, error);
355 }
356 break;
357 #endif /* CONFIG_HIBERNATION */
358 default:
359 error = -EINVAL;
360 }
361
362 if (initcall_debug) {
363 rettime = ktime_get();
364 delta = ktime_sub(rettime, calltime);
365 printk("initcall %s_i+ returned %d after %Ld usecs\n",
366 dev_name(dev), error,
367 (unsigned long long)ktime_to_ns(delta) >> 10);
368 }
369
370 return error;
371 }
372
373 static char *pm_verb(int event)
374 {
375 switch (event) {
376 case PM_EVENT_SUSPEND:
377 return "suspend";
378 case PM_EVENT_RESUME:
379 return "resume";
380 case PM_EVENT_FREEZE:
381 return "freeze";
382 case PM_EVENT_QUIESCE:
383 return "quiesce";
384 case PM_EVENT_HIBERNATE:
385 return "hibernate";
386 case PM_EVENT_THAW:
387 return "thaw";
388 case PM_EVENT_RESTORE:
389 return "restore";
390 case PM_EVENT_RECOVER:
391 return "recover";
392 default:
393 return "(unknown PM event)";
394 }
395 }
396
397 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
398 {
399 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
400 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
401 ", may wakeup" : "");
402 }
403
404 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
405 int error)
406 {
407 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
408 kobject_name(&dev->kobj), pm_verb(state.event), info, error);
409 }
410
411 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
412 {
413 ktime_t calltime;
414 u64 usecs64;
415 int usecs;
416
417 calltime = ktime_get();
418 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
419 do_div(usecs64, NSEC_PER_USEC);
420 usecs = usecs64;
421 if (usecs == 0)
422 usecs = 1;
423 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
424 info ?: "", info ? " " : "", pm_verb(state.event),
425 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
426 }
427
428 /*------------------------- Resume routines -------------------------*/
429
430 /**
431 * device_resume_noirq - Execute an "early resume" callback for given device.
432 * @dev: Device to handle.
433 * @state: PM transition of the system being carried out.
434 *
435 * The driver of @dev will not receive interrupts while this function is being
436 * executed.
437 */
438 static int device_resume_noirq(struct device *dev, pm_message_t state)
439 {
440 int error = 0;
441
442 TRACE_DEVICE(dev);
443 TRACE_RESUME(0);
444
445 if (dev->bus && dev->bus->pm) {
446 pm_dev_dbg(dev, state, "EARLY ");
447 error = pm_noirq_op(dev, dev->bus->pm, state);
448 if (error)
449 goto End;
450 }
451
452 if (dev->type && dev->type->pm) {
453 pm_dev_dbg(dev, state, "EARLY type ");
454 error = pm_noirq_op(dev, dev->type->pm, state);
455 if (error)
456 goto End;
457 }
458
459 if (dev->class && dev->class->pm) {
460 pm_dev_dbg(dev, state, "EARLY class ");
461 error = pm_noirq_op(dev, dev->class->pm, state);
462 }
463
464 End:
465 TRACE_RESUME(error);
466 return error;
467 }
468
469 /**
470 * dpm_resume_noirq - Execute "early resume" callbacks for non-sysdev devices.
471 * @state: PM transition of the system being carried out.
472 *
473 * Call the "noirq" resume handlers for all devices marked as DPM_OFF_IRQ and
474 * enable device drivers to receive interrupts.
475 */
476 void dpm_resume_noirq(pm_message_t state)
477 {
478 struct device *dev;
479 ktime_t starttime = ktime_get();
480
481 mutex_lock(&dpm_list_mtx);
482 transition_started = false;
483 list_for_each_entry(dev, &dpm_list, power.entry)
484 if (dev->power.status > DPM_OFF) {
485 int error;
486
487 dev->power.status = DPM_OFF;
488 error = device_resume_noirq(dev, state);
489 if (error)
490 pm_dev_err(dev, state, " early", error);
491 }
492 mutex_unlock(&dpm_list_mtx);
493 dpm_show_time(starttime, state, "early");
494 resume_device_irqs();
495 }
496 EXPORT_SYMBOL_GPL(dpm_resume_noirq);
497
498 /**
499 * legacy_resume - Execute a legacy (bus or class) resume callback for device.
500 * @dev: Device to resume.
501 * @cb: Resume callback to execute.
502 */
503 static int legacy_resume(struct device *dev, int (*cb)(struct device *dev))
504 {
505 int error;
506 ktime_t calltime;
507
508 calltime = initcall_debug_start(dev);
509
510 error = cb(dev);
511 suspend_report_result(cb, error);
512
513 initcall_debug_report(dev, calltime, error);
514
515 return error;
516 }
517
518 /**
519 * device_resume - Execute "resume" callbacks for given device.
520 * @dev: Device to handle.
521 * @state: PM transition of the system being carried out.
522 * @async: If true, the device is being resumed asynchronously.
523 */
524 static int device_resume(struct device *dev, pm_message_t state, bool async)
525 {
526 int error = 0;
527
528 TRACE_DEVICE(dev);
529 TRACE_RESUME(0);
530
531 dpm_wait(dev->parent, async);
532 device_lock(dev);
533
534 dev->power.status = DPM_RESUMING;
535
536 if (dev->bus) {
537 if (dev->bus->pm) {
538 pm_dev_dbg(dev, state, "");
539 error = pm_op(dev, dev->bus->pm, state);
540 } else if (dev->bus->resume) {
541 pm_dev_dbg(dev, state, "legacy ");
542 error = legacy_resume(dev, dev->bus->resume);
543 }
544 if (error)
545 goto End;
546 }
547
548 if (dev->type) {
549 if (dev->type->pm) {
550 pm_dev_dbg(dev, state, "type ");
551 error = pm_op(dev, dev->type->pm, state);
552 }
553 if (error)
554 goto End;
555 }
556
557 if (dev->class) {
558 if (dev->class->pm) {
559 pm_dev_dbg(dev, state, "class ");
560 error = pm_op(dev, dev->class->pm, state);
561 } else if (dev->class->resume) {
562 pm_dev_dbg(dev, state, "legacy class ");
563 error = legacy_resume(dev, dev->class->resume);
564 }
565 }
566 End:
567 device_unlock(dev);
568 complete_all(&dev->power.completion);
569
570 TRACE_RESUME(error);
571 return error;
572 }
573
574 static void async_resume(void *data, async_cookie_t cookie)
575 {
576 struct device *dev = (struct device *)data;
577 int error;
578
579 error = device_resume(dev, pm_transition, true);
580 if (error)
581 pm_dev_err(dev, pm_transition, " async", error);
582 put_device(dev);
583 }
584
585 static bool is_async(struct device *dev)
586 {
587 return dev->power.async_suspend && pm_async_enabled
588 && !pm_trace_is_enabled();
589 }
590
591 /**
592 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
593 * @state: PM transition of the system being carried out.
594 *
595 * Execute the appropriate "resume" callback for all devices whose status
596 * indicates that they are suspended.
597 */
598 static void dpm_resume(pm_message_t state)
599 {
600 struct list_head list;
601 struct device *dev;
602 ktime_t starttime = ktime_get();
603
604 INIT_LIST_HEAD(&list);
605 mutex_lock(&dpm_list_mtx);
606 pm_transition = state;
607 async_error = 0;
608
609 list_for_each_entry(dev, &dpm_list, power.entry) {
610 if (dev->power.status < DPM_OFF)
611 continue;
612
613 INIT_COMPLETION(dev->power.completion);
614 if (is_async(dev)) {
615 get_device(dev);
616 async_schedule(async_resume, dev);
617 }
618 }
619
620 while (!list_empty(&dpm_list)) {
621 dev = to_device(dpm_list.next);
622 get_device(dev);
623 if (dev->power.status >= DPM_OFF && !is_async(dev)) {
624 int error;
625
626 mutex_unlock(&dpm_list_mtx);
627
628 error = device_resume(dev, state, false);
629
630 mutex_lock(&dpm_list_mtx);
631 if (error)
632 pm_dev_err(dev, state, "", error);
633 } else if (dev->power.status == DPM_SUSPENDING) {
634 /* Allow new children of the device to be registered */
635 dev->power.status = DPM_RESUMING;
636 }
637 if (!list_empty(&dev->power.entry))
638 list_move_tail(&dev->power.entry, &list);
639 put_device(dev);
640 }
641 list_splice(&list, &dpm_list);
642 mutex_unlock(&dpm_list_mtx);
643 async_synchronize_full();
644 dpm_show_time(starttime, state, NULL);
645 }
646
647 /**
648 * device_complete - Complete a PM transition for given device.
649 * @dev: Device to handle.
650 * @state: PM transition of the system being carried out.
651 */
652 static void device_complete(struct device *dev, pm_message_t state)
653 {
654 device_lock(dev);
655
656 if (dev->class && dev->class->pm && dev->class->pm->complete) {
657 pm_dev_dbg(dev, state, "completing class ");
658 dev->class->pm->complete(dev);
659 }
660
661 if (dev->type && dev->type->pm && dev->type->pm->complete) {
662 pm_dev_dbg(dev, state, "completing type ");
663 dev->type->pm->complete(dev);
664 }
665
666 if (dev->bus && dev->bus->pm && dev->bus->pm->complete) {
667 pm_dev_dbg(dev, state, "completing ");
668 dev->bus->pm->complete(dev);
669 }
670
671 device_unlock(dev);
672 }
673
674 /**
675 * dpm_complete - Complete a PM transition for all non-sysdev devices.
676 * @state: PM transition of the system being carried out.
677 *
678 * Execute the ->complete() callbacks for all devices whose PM status is not
679 * DPM_ON (this allows new devices to be registered).
680 */
681 static void dpm_complete(pm_message_t state)
682 {
683 struct list_head list;
684
685 INIT_LIST_HEAD(&list);
686 mutex_lock(&dpm_list_mtx);
687 transition_started = false;
688 while (!list_empty(&dpm_list)) {
689 struct device *dev = to_device(dpm_list.prev);
690
691 get_device(dev);
692 if (dev->power.status > DPM_ON) {
693 dev->power.status = DPM_ON;
694 mutex_unlock(&dpm_list_mtx);
695
696 device_complete(dev, state);
697 pm_runtime_put_sync(dev);
698
699 mutex_lock(&dpm_list_mtx);
700 }
701 if (!list_empty(&dev->power.entry))
702 list_move(&dev->power.entry, &list);
703 put_device(dev);
704 }
705 list_splice(&list, &dpm_list);
706 mutex_unlock(&dpm_list_mtx);
707 }
708
709 /**
710 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
711 * @state: PM transition of the system being carried out.
712 *
713 * Execute "resume" callbacks for all devices and complete the PM transition of
714 * the system.
715 */
716 void dpm_resume_end(pm_message_t state)
717 {
718 might_sleep();
719 dpm_resume(state);
720 dpm_complete(state);
721 }
722 EXPORT_SYMBOL_GPL(dpm_resume_end);
723
724
725 /*------------------------- Suspend routines -------------------------*/
726
727 /**
728 * resume_event - Return a "resume" message for given "suspend" sleep state.
729 * @sleep_state: PM message representing a sleep state.
730 *
731 * Return a PM message representing the resume event corresponding to given
732 * sleep state.
733 */
734 static pm_message_t resume_event(pm_message_t sleep_state)
735 {
736 switch (sleep_state.event) {
737 case PM_EVENT_SUSPEND:
738 return PMSG_RESUME;
739 case PM_EVENT_FREEZE:
740 case PM_EVENT_QUIESCE:
741 return PMSG_RECOVER;
742 case PM_EVENT_HIBERNATE:
743 return PMSG_RESTORE;
744 }
745 return PMSG_ON;
746 }
747
748 /**
749 * device_suspend_noirq - Execute a "late suspend" callback for given device.
750 * @dev: Device to handle.
751 * @state: PM transition of the system being carried out.
752 *
753 * The driver of @dev will not receive interrupts while this function is being
754 * executed.
755 */
756 static int device_suspend_noirq(struct device *dev, pm_message_t state)
757 {
758 int error = 0;
759
760 if (dev->class && dev->class->pm) {
761 pm_dev_dbg(dev, state, "LATE class ");
762 error = pm_noirq_op(dev, dev->class->pm, state);
763 if (error)
764 goto End;
765 }
766
767 if (dev->type && dev->type->pm) {
768 pm_dev_dbg(dev, state, "LATE type ");
769 error = pm_noirq_op(dev, dev->type->pm, state);
770 if (error)
771 goto End;
772 }
773
774 if (dev->bus && dev->bus->pm) {
775 pm_dev_dbg(dev, state, "LATE ");
776 error = pm_noirq_op(dev, dev->bus->pm, state);
777 }
778
779 End:
780 return error;
781 }
782
783 /**
784 * dpm_suspend_noirq - Execute "late suspend" callbacks for non-sysdev devices.
785 * @state: PM transition of the system being carried out.
786 *
787 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
788 * handlers for all non-sysdev devices.
789 */
790 int dpm_suspend_noirq(pm_message_t state)
791 {
792 struct device *dev;
793 ktime_t starttime = ktime_get();
794 int error = 0;
795
796 suspend_device_irqs();
797 mutex_lock(&dpm_list_mtx);
798 list_for_each_entry_reverse(dev, &dpm_list, power.entry) {
799 error = device_suspend_noirq(dev, state);
800 if (error) {
801 pm_dev_err(dev, state, " late", error);
802 break;
803 }
804 dev->power.status = DPM_OFF_IRQ;
805 }
806 mutex_unlock(&dpm_list_mtx);
807 if (error)
808 dpm_resume_noirq(resume_event(state));
809 else
810 dpm_show_time(starttime, state, "late");
811 return error;
812 }
813 EXPORT_SYMBOL_GPL(dpm_suspend_noirq);
814
815 /**
816 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
817 * @dev: Device to suspend.
818 * @state: PM transition of the system being carried out.
819 * @cb: Suspend callback to execute.
820 */
821 static int legacy_suspend(struct device *dev, pm_message_t state,
822 int (*cb)(struct device *dev, pm_message_t state))
823 {
824 int error;
825 ktime_t calltime;
826
827 calltime = initcall_debug_start(dev);
828
829 error = cb(dev, state);
830 suspend_report_result(cb, error);
831
832 initcall_debug_report(dev, calltime, error);
833
834 return error;
835 }
836
837 /**
838 * device_suspend - Execute "suspend" callbacks for given device.
839 * @dev: Device to handle.
840 * @state: PM transition of the system being carried out.
841 * @async: If true, the device is being suspended asynchronously.
842 */
843 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
844 {
845 int error = 0;
846
847 dpm_wait_for_children(dev, async);
848 device_lock(dev);
849
850 if (async_error)
851 goto End;
852
853 if (dev->class) {
854 if (dev->class->pm) {
855 pm_dev_dbg(dev, state, "class ");
856 error = pm_op(dev, dev->class->pm, state);
857 } else if (dev->class->suspend) {
858 pm_dev_dbg(dev, state, "legacy class ");
859 error = legacy_suspend(dev, state, dev->class->suspend);
860 }
861 if (error)
862 goto End;
863 }
864
865 if (dev->type) {
866 if (dev->type->pm) {
867 pm_dev_dbg(dev, state, "type ");
868 error = pm_op(dev, dev->type->pm, state);
869 }
870 if (error)
871 goto End;
872 }
873
874 if (dev->bus) {
875 if (dev->bus->pm) {
876 pm_dev_dbg(dev, state, "");
877 error = pm_op(dev, dev->bus->pm, state);
878 } else if (dev->bus->suspend) {
879 pm_dev_dbg(dev, state, "legacy ");
880 error = legacy_suspend(dev, state, dev->bus->suspend);
881 }
882 }
883
884 if (!error)
885 dev->power.status = DPM_OFF;
886
887 End:
888 device_unlock(dev);
889 complete_all(&dev->power.completion);
890
891 if (error)
892 async_error = error;
893
894 return error;
895 }
896
897 static void async_suspend(void *data, async_cookie_t cookie)
898 {
899 struct device *dev = (struct device *)data;
900 int error;
901
902 error = __device_suspend(dev, pm_transition, true);
903 if (error)
904 pm_dev_err(dev, pm_transition, " async", error);
905
906 put_device(dev);
907 }
908
909 static int device_suspend(struct device *dev)
910 {
911 INIT_COMPLETION(dev->power.completion);
912
913 if (pm_async_enabled && dev->power.async_suspend) {
914 get_device(dev);
915 async_schedule(async_suspend, dev);
916 return 0;
917 }
918
919 return __device_suspend(dev, pm_transition, false);
920 }
921
922 /**
923 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
924 * @state: PM transition of the system being carried out.
925 */
926 static int dpm_suspend(pm_message_t state)
927 {
928 struct list_head list;
929 ktime_t starttime = ktime_get();
930 int error = 0;
931
932 INIT_LIST_HEAD(&list);
933 mutex_lock(&dpm_list_mtx);
934 pm_transition = state;
935 async_error = 0;
936 while (!list_empty(&dpm_list)) {
937 struct device *dev = to_device(dpm_list.prev);
938
939 get_device(dev);
940 mutex_unlock(&dpm_list_mtx);
941
942 error = device_suspend(dev);
943
944 mutex_lock(&dpm_list_mtx);
945 if (error) {
946 pm_dev_err(dev, state, "", error);
947 put_device(dev);
948 break;
949 }
950 if (!list_empty(&dev->power.entry))
951 list_move(&dev->power.entry, &list);
952 put_device(dev);
953 if (async_error)
954 break;
955 }
956 list_splice(&list, dpm_list.prev);
957 mutex_unlock(&dpm_list_mtx);
958 async_synchronize_full();
959 if (!error)
960 error = async_error;
961 if (!error)
962 dpm_show_time(starttime, state, NULL);
963 return error;
964 }
965
966 /**
967 * device_prepare - Prepare a device for system power transition.
968 * @dev: Device to handle.
969 * @state: PM transition of the system being carried out.
970 *
971 * Execute the ->prepare() callback(s) for given device. No new children of the
972 * device may be registered after this function has returned.
973 */
974 static int device_prepare(struct device *dev, pm_message_t state)
975 {
976 int error = 0;
977
978 device_lock(dev);
979
980 if (dev->bus && dev->bus->pm && dev->bus->pm->prepare) {
981 pm_dev_dbg(dev, state, "preparing ");
982 error = dev->bus->pm->prepare(dev);
983 suspend_report_result(dev->bus->pm->prepare, error);
984 if (error)
985 goto End;
986 }
987
988 if (dev->type && dev->type->pm && dev->type->pm->prepare) {
989 pm_dev_dbg(dev, state, "preparing type ");
990 error = dev->type->pm->prepare(dev);
991 suspend_report_result(dev->type->pm->prepare, error);
992 if (error)
993 goto End;
994 }
995
996 if (dev->class && dev->class->pm && dev->class->pm->prepare) {
997 pm_dev_dbg(dev, state, "preparing class ");
998 error = dev->class->pm->prepare(dev);
999 suspend_report_result(dev->class->pm->prepare, error);
1000 }
1001 End:
1002 device_unlock(dev);
1003
1004 return error;
1005 }
1006
1007 /**
1008 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1009 * @state: PM transition of the system being carried out.
1010 *
1011 * Execute the ->prepare() callback(s) for all devices.
1012 */
1013 static int dpm_prepare(pm_message_t state)
1014 {
1015 struct list_head list;
1016 int error = 0;
1017
1018 INIT_LIST_HEAD(&list);
1019 mutex_lock(&dpm_list_mtx);
1020 transition_started = true;
1021 while (!list_empty(&dpm_list)) {
1022 struct device *dev = to_device(dpm_list.next);
1023
1024 get_device(dev);
1025 dev->power.status = DPM_PREPARING;
1026 mutex_unlock(&dpm_list_mtx);
1027
1028 pm_runtime_get_noresume(dev);
1029 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) {
1030 /* Wake-up requested during system sleep transition. */
1031 pm_runtime_put_sync(dev);
1032 error = -EBUSY;
1033 } else {
1034 error = device_prepare(dev, state);
1035 }
1036
1037 mutex_lock(&dpm_list_mtx);
1038 if (error) {
1039 dev->power.status = DPM_ON;
1040 if (error == -EAGAIN) {
1041 put_device(dev);
1042 error = 0;
1043 continue;
1044 }
1045 printk(KERN_ERR "PM: Failed to prepare device %s "
1046 "for power transition: error %d\n",
1047 kobject_name(&dev->kobj), error);
1048 put_device(dev);
1049 break;
1050 }
1051 dev->power.status = DPM_SUSPENDING;
1052 if (!list_empty(&dev->power.entry))
1053 list_move_tail(&dev->power.entry, &list);
1054 put_device(dev);
1055 }
1056 list_splice(&list, &dpm_list);
1057 mutex_unlock(&dpm_list_mtx);
1058 return error;
1059 }
1060
1061 /**
1062 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1063 * @state: PM transition of the system being carried out.
1064 *
1065 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1066 * callbacks for them.
1067 */
1068 int dpm_suspend_start(pm_message_t state)
1069 {
1070 int error;
1071
1072 might_sleep();
1073 error = dpm_prepare(state);
1074 if (!error)
1075 error = dpm_suspend(state);
1076 return error;
1077 }
1078 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1079
1080 void __suspend_report_result(const char *function, void *fn, int ret)
1081 {
1082 if (ret)
1083 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1084 }
1085 EXPORT_SYMBOL_GPL(__suspend_report_result);
1086
1087 /**
1088 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1089 * @dev: Device to wait for.
1090 * @subordinate: Device that needs to wait for @dev.
1091 */
1092 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1093 {
1094 dpm_wait(dev, subordinate->power.async_suspend);
1095 return async_error;
1096 }
1097 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);