]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/power/main.c
PM / Sleep: use resume event when call dpm_resume_early
[mirror_ubuntu-bionic-kernel.git] / drivers / base / power / main.c
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <linux/cpuidle.h>
32 #include "../base.h"
33 #include "power.h"
34
35 typedef int (*pm_callback_t)(struct device *);
36
37 /*
38 * The entries in the dpm_list list are in a depth first order, simply
39 * because children are guaranteed to be discovered after parents, and
40 * are inserted at the back of the list on discovery.
41 *
42 * Since device_pm_add() may be called with a device lock held,
43 * we must never try to acquire a device lock while holding
44 * dpm_list_mutex.
45 */
46
47 LIST_HEAD(dpm_list);
48 static LIST_HEAD(dpm_prepared_list);
49 static LIST_HEAD(dpm_suspended_list);
50 static LIST_HEAD(dpm_late_early_list);
51 static LIST_HEAD(dpm_noirq_list);
52
53 struct suspend_stats suspend_stats;
54 static DEFINE_MUTEX(dpm_list_mtx);
55 static pm_message_t pm_transition;
56
57 static int async_error;
58
59 /**
60 * device_pm_init - Initialize the PM-related part of a device object.
61 * @dev: Device object being initialized.
62 */
63 void device_pm_init(struct device *dev)
64 {
65 dev->power.is_prepared = false;
66 dev->power.is_suspended = false;
67 init_completion(&dev->power.completion);
68 complete_all(&dev->power.completion);
69 dev->power.wakeup = NULL;
70 spin_lock_init(&dev->power.lock);
71 pm_runtime_init(dev);
72 INIT_LIST_HEAD(&dev->power.entry);
73 dev->power.power_state = PMSG_INVALID;
74 }
75
76 /**
77 * device_pm_lock - Lock the list of active devices used by the PM core.
78 */
79 void device_pm_lock(void)
80 {
81 mutex_lock(&dpm_list_mtx);
82 }
83
84 /**
85 * device_pm_unlock - Unlock the list of active devices used by the PM core.
86 */
87 void device_pm_unlock(void)
88 {
89 mutex_unlock(&dpm_list_mtx);
90 }
91
92 /**
93 * device_pm_add - Add a device to the PM core's list of active devices.
94 * @dev: Device to add to the list.
95 */
96 void device_pm_add(struct device *dev)
97 {
98 pr_debug("PM: Adding info for %s:%s\n",
99 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
100 mutex_lock(&dpm_list_mtx);
101 if (dev->parent && dev->parent->power.is_prepared)
102 dev_warn(dev, "parent %s should not be sleeping\n",
103 dev_name(dev->parent));
104 list_add_tail(&dev->power.entry, &dpm_list);
105 dev_pm_qos_constraints_init(dev);
106 mutex_unlock(&dpm_list_mtx);
107 }
108
109 /**
110 * device_pm_remove - Remove a device from the PM core's list of active devices.
111 * @dev: Device to be removed from the list.
112 */
113 void device_pm_remove(struct device *dev)
114 {
115 pr_debug("PM: Removing info for %s:%s\n",
116 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
117 complete_all(&dev->power.completion);
118 mutex_lock(&dpm_list_mtx);
119 dev_pm_qos_constraints_destroy(dev);
120 list_del_init(&dev->power.entry);
121 mutex_unlock(&dpm_list_mtx);
122 device_wakeup_disable(dev);
123 pm_runtime_remove(dev);
124 }
125
126 /**
127 * device_pm_move_before - Move device in the PM core's list of active devices.
128 * @deva: Device to move in dpm_list.
129 * @devb: Device @deva should come before.
130 */
131 void device_pm_move_before(struct device *deva, struct device *devb)
132 {
133 pr_debug("PM: Moving %s:%s before %s:%s\n",
134 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
135 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
136 /* Delete deva from dpm_list and reinsert before devb. */
137 list_move_tail(&deva->power.entry, &devb->power.entry);
138 }
139
140 /**
141 * device_pm_move_after - Move device in the PM core's list of active devices.
142 * @deva: Device to move in dpm_list.
143 * @devb: Device @deva should come after.
144 */
145 void device_pm_move_after(struct device *deva, struct device *devb)
146 {
147 pr_debug("PM: Moving %s:%s after %s:%s\n",
148 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
149 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
150 /* Delete deva from dpm_list and reinsert after devb. */
151 list_move(&deva->power.entry, &devb->power.entry);
152 }
153
154 /**
155 * device_pm_move_last - Move device to end of the PM core's list of devices.
156 * @dev: Device to move in dpm_list.
157 */
158 void device_pm_move_last(struct device *dev)
159 {
160 pr_debug("PM: Moving %s:%s to end of list\n",
161 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
162 list_move_tail(&dev->power.entry, &dpm_list);
163 }
164
165 static ktime_t initcall_debug_start(struct device *dev)
166 {
167 ktime_t calltime = ktime_set(0, 0);
168
169 if (pm_print_times_enabled) {
170 pr_info("calling %s+ @ %i, parent: %s\n",
171 dev_name(dev), task_pid_nr(current),
172 dev->parent ? dev_name(dev->parent) : "none");
173 calltime = ktime_get();
174 }
175
176 return calltime;
177 }
178
179 static void initcall_debug_report(struct device *dev, ktime_t calltime,
180 int error)
181 {
182 ktime_t delta, rettime;
183
184 if (pm_print_times_enabled) {
185 rettime = ktime_get();
186 delta = ktime_sub(rettime, calltime);
187 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
188 error, (unsigned long long)ktime_to_ns(delta) >> 10);
189 }
190 }
191
192 /**
193 * dpm_wait - Wait for a PM operation to complete.
194 * @dev: Device to wait for.
195 * @async: If unset, wait only if the device's power.async_suspend flag is set.
196 */
197 static void dpm_wait(struct device *dev, bool async)
198 {
199 if (!dev)
200 return;
201
202 if (async || (pm_async_enabled && dev->power.async_suspend))
203 wait_for_completion(&dev->power.completion);
204 }
205
206 static int dpm_wait_fn(struct device *dev, void *async_ptr)
207 {
208 dpm_wait(dev, *((bool *)async_ptr));
209 return 0;
210 }
211
212 static void dpm_wait_for_children(struct device *dev, bool async)
213 {
214 device_for_each_child(dev, &async, dpm_wait_fn);
215 }
216
217 /**
218 * pm_op - Return the PM operation appropriate for given PM event.
219 * @ops: PM operations to choose from.
220 * @state: PM transition of the system being carried out.
221 */
222 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
223 {
224 switch (state.event) {
225 #ifdef CONFIG_SUSPEND
226 case PM_EVENT_SUSPEND:
227 return ops->suspend;
228 case PM_EVENT_RESUME:
229 return ops->resume;
230 #endif /* CONFIG_SUSPEND */
231 #ifdef CONFIG_HIBERNATE_CALLBACKS
232 case PM_EVENT_FREEZE:
233 case PM_EVENT_QUIESCE:
234 return ops->freeze;
235 case PM_EVENT_HIBERNATE:
236 return ops->poweroff;
237 case PM_EVENT_THAW:
238 case PM_EVENT_RECOVER:
239 return ops->thaw;
240 break;
241 case PM_EVENT_RESTORE:
242 return ops->restore;
243 #endif /* CONFIG_HIBERNATE_CALLBACKS */
244 }
245
246 return NULL;
247 }
248
249 /**
250 * pm_late_early_op - Return the PM operation appropriate for given PM event.
251 * @ops: PM operations to choose from.
252 * @state: PM transition of the system being carried out.
253 *
254 * Runtime PM is disabled for @dev while this function is being executed.
255 */
256 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
257 pm_message_t state)
258 {
259 switch (state.event) {
260 #ifdef CONFIG_SUSPEND
261 case PM_EVENT_SUSPEND:
262 return ops->suspend_late;
263 case PM_EVENT_RESUME:
264 return ops->resume_early;
265 #endif /* CONFIG_SUSPEND */
266 #ifdef CONFIG_HIBERNATE_CALLBACKS
267 case PM_EVENT_FREEZE:
268 case PM_EVENT_QUIESCE:
269 return ops->freeze_late;
270 case PM_EVENT_HIBERNATE:
271 return ops->poweroff_late;
272 case PM_EVENT_THAW:
273 case PM_EVENT_RECOVER:
274 return ops->thaw_early;
275 case PM_EVENT_RESTORE:
276 return ops->restore_early;
277 #endif /* CONFIG_HIBERNATE_CALLBACKS */
278 }
279
280 return NULL;
281 }
282
283 /**
284 * pm_noirq_op - Return the PM operation appropriate for given PM event.
285 * @ops: PM operations to choose from.
286 * @state: PM transition of the system being carried out.
287 *
288 * The driver of @dev will not receive interrupts while this function is being
289 * executed.
290 */
291 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
292 {
293 switch (state.event) {
294 #ifdef CONFIG_SUSPEND
295 case PM_EVENT_SUSPEND:
296 return ops->suspend_noirq;
297 case PM_EVENT_RESUME:
298 return ops->resume_noirq;
299 #endif /* CONFIG_SUSPEND */
300 #ifdef CONFIG_HIBERNATE_CALLBACKS
301 case PM_EVENT_FREEZE:
302 case PM_EVENT_QUIESCE:
303 return ops->freeze_noirq;
304 case PM_EVENT_HIBERNATE:
305 return ops->poweroff_noirq;
306 case PM_EVENT_THAW:
307 case PM_EVENT_RECOVER:
308 return ops->thaw_noirq;
309 case PM_EVENT_RESTORE:
310 return ops->restore_noirq;
311 #endif /* CONFIG_HIBERNATE_CALLBACKS */
312 }
313
314 return NULL;
315 }
316
317 static char *pm_verb(int event)
318 {
319 switch (event) {
320 case PM_EVENT_SUSPEND:
321 return "suspend";
322 case PM_EVENT_RESUME:
323 return "resume";
324 case PM_EVENT_FREEZE:
325 return "freeze";
326 case PM_EVENT_QUIESCE:
327 return "quiesce";
328 case PM_EVENT_HIBERNATE:
329 return "hibernate";
330 case PM_EVENT_THAW:
331 return "thaw";
332 case PM_EVENT_RESTORE:
333 return "restore";
334 case PM_EVENT_RECOVER:
335 return "recover";
336 default:
337 return "(unknown PM event)";
338 }
339 }
340
341 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
342 {
343 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
344 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
345 ", may wakeup" : "");
346 }
347
348 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
349 int error)
350 {
351 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
352 dev_name(dev), pm_verb(state.event), info, error);
353 }
354
355 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
356 {
357 ktime_t calltime;
358 u64 usecs64;
359 int usecs;
360
361 calltime = ktime_get();
362 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
363 do_div(usecs64, NSEC_PER_USEC);
364 usecs = usecs64;
365 if (usecs == 0)
366 usecs = 1;
367 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
368 info ?: "", info ? " " : "", pm_verb(state.event),
369 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
370 }
371
372 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
373 pm_message_t state, char *info)
374 {
375 ktime_t calltime;
376 int error;
377
378 if (!cb)
379 return 0;
380
381 calltime = initcall_debug_start(dev);
382
383 pm_dev_dbg(dev, state, info);
384 error = cb(dev);
385 suspend_report_result(cb, error);
386
387 initcall_debug_report(dev, calltime, error);
388
389 return error;
390 }
391
392 /*------------------------- Resume routines -------------------------*/
393
394 /**
395 * device_resume_noirq - Execute an "early resume" callback for given device.
396 * @dev: Device to handle.
397 * @state: PM transition of the system being carried out.
398 *
399 * The driver of @dev will not receive interrupts while this function is being
400 * executed.
401 */
402 static int device_resume_noirq(struct device *dev, pm_message_t state)
403 {
404 pm_callback_t callback = NULL;
405 char *info = NULL;
406 int error = 0;
407
408 TRACE_DEVICE(dev);
409 TRACE_RESUME(0);
410
411 if (dev->pm_domain) {
412 info = "noirq power domain ";
413 callback = pm_noirq_op(&dev->pm_domain->ops, state);
414 } else if (dev->type && dev->type->pm) {
415 info = "noirq type ";
416 callback = pm_noirq_op(dev->type->pm, state);
417 } else if (dev->class && dev->class->pm) {
418 info = "noirq class ";
419 callback = pm_noirq_op(dev->class->pm, state);
420 } else if (dev->bus && dev->bus->pm) {
421 info = "noirq bus ";
422 callback = pm_noirq_op(dev->bus->pm, state);
423 }
424
425 if (!callback && dev->driver && dev->driver->pm) {
426 info = "noirq driver ";
427 callback = pm_noirq_op(dev->driver->pm, state);
428 }
429
430 error = dpm_run_callback(callback, dev, state, info);
431
432 TRACE_RESUME(error);
433 return error;
434 }
435
436 /**
437 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
438 * @state: PM transition of the system being carried out.
439 *
440 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
441 * enable device drivers to receive interrupts.
442 */
443 static void dpm_resume_noirq(pm_message_t state)
444 {
445 ktime_t starttime = ktime_get();
446
447 mutex_lock(&dpm_list_mtx);
448 while (!list_empty(&dpm_noirq_list)) {
449 struct device *dev = to_device(dpm_noirq_list.next);
450 int error;
451
452 get_device(dev);
453 list_move_tail(&dev->power.entry, &dpm_late_early_list);
454 mutex_unlock(&dpm_list_mtx);
455
456 error = device_resume_noirq(dev, state);
457 if (error) {
458 suspend_stats.failed_resume_noirq++;
459 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
460 dpm_save_failed_dev(dev_name(dev));
461 pm_dev_err(dev, state, " noirq", error);
462 }
463
464 mutex_lock(&dpm_list_mtx);
465 put_device(dev);
466 }
467 mutex_unlock(&dpm_list_mtx);
468 dpm_show_time(starttime, state, "noirq");
469 resume_device_irqs();
470 cpuidle_resume();
471 }
472
473 /**
474 * device_resume_early - Execute an "early resume" callback for given device.
475 * @dev: Device to handle.
476 * @state: PM transition of the system being carried out.
477 *
478 * Runtime PM is disabled for @dev while this function is being executed.
479 */
480 static int device_resume_early(struct device *dev, pm_message_t state)
481 {
482 pm_callback_t callback = NULL;
483 char *info = NULL;
484 int error = 0;
485
486 TRACE_DEVICE(dev);
487 TRACE_RESUME(0);
488
489 if (dev->pm_domain) {
490 info = "early power domain ";
491 callback = pm_late_early_op(&dev->pm_domain->ops, state);
492 } else if (dev->type && dev->type->pm) {
493 info = "early type ";
494 callback = pm_late_early_op(dev->type->pm, state);
495 } else if (dev->class && dev->class->pm) {
496 info = "early class ";
497 callback = pm_late_early_op(dev->class->pm, state);
498 } else if (dev->bus && dev->bus->pm) {
499 info = "early bus ";
500 callback = pm_late_early_op(dev->bus->pm, state);
501 }
502
503 if (!callback && dev->driver && dev->driver->pm) {
504 info = "early driver ";
505 callback = pm_late_early_op(dev->driver->pm, state);
506 }
507
508 error = dpm_run_callback(callback, dev, state, info);
509
510 TRACE_RESUME(error);
511 return error;
512 }
513
514 /**
515 * dpm_resume_early - Execute "early resume" callbacks for all devices.
516 * @state: PM transition of the system being carried out.
517 */
518 static void dpm_resume_early(pm_message_t state)
519 {
520 ktime_t starttime = ktime_get();
521
522 mutex_lock(&dpm_list_mtx);
523 while (!list_empty(&dpm_late_early_list)) {
524 struct device *dev = to_device(dpm_late_early_list.next);
525 int error;
526
527 get_device(dev);
528 list_move_tail(&dev->power.entry, &dpm_suspended_list);
529 mutex_unlock(&dpm_list_mtx);
530
531 error = device_resume_early(dev, state);
532 if (error) {
533 suspend_stats.failed_resume_early++;
534 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
535 dpm_save_failed_dev(dev_name(dev));
536 pm_dev_err(dev, state, " early", error);
537 }
538
539 mutex_lock(&dpm_list_mtx);
540 put_device(dev);
541 }
542 mutex_unlock(&dpm_list_mtx);
543 dpm_show_time(starttime, state, "early");
544 }
545
546 /**
547 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
548 * @state: PM transition of the system being carried out.
549 */
550 void dpm_resume_start(pm_message_t state)
551 {
552 dpm_resume_noirq(state);
553 dpm_resume_early(state);
554 }
555 EXPORT_SYMBOL_GPL(dpm_resume_start);
556
557 /**
558 * device_resume - Execute "resume" callbacks for given device.
559 * @dev: Device to handle.
560 * @state: PM transition of the system being carried out.
561 * @async: If true, the device is being resumed asynchronously.
562 */
563 static int device_resume(struct device *dev, pm_message_t state, bool async)
564 {
565 pm_callback_t callback = NULL;
566 char *info = NULL;
567 int error = 0;
568 bool put = false;
569
570 TRACE_DEVICE(dev);
571 TRACE_RESUME(0);
572
573 dpm_wait(dev->parent, async);
574 device_lock(dev);
575
576 /*
577 * This is a fib. But we'll allow new children to be added below
578 * a resumed device, even if the device hasn't been completed yet.
579 */
580 dev->power.is_prepared = false;
581
582 if (!dev->power.is_suspended)
583 goto Unlock;
584
585 pm_runtime_enable(dev);
586 put = true;
587
588 if (dev->pm_domain) {
589 info = "power domain ";
590 callback = pm_op(&dev->pm_domain->ops, state);
591 goto Driver;
592 }
593
594 if (dev->type && dev->type->pm) {
595 info = "type ";
596 callback = pm_op(dev->type->pm, state);
597 goto Driver;
598 }
599
600 if (dev->class) {
601 if (dev->class->pm) {
602 info = "class ";
603 callback = pm_op(dev->class->pm, state);
604 goto Driver;
605 } else if (dev->class->resume) {
606 info = "legacy class ";
607 callback = dev->class->resume;
608 goto End;
609 }
610 }
611
612 if (dev->bus) {
613 if (dev->bus->pm) {
614 info = "bus ";
615 callback = pm_op(dev->bus->pm, state);
616 } else if (dev->bus->resume) {
617 info = "legacy bus ";
618 callback = dev->bus->resume;
619 goto End;
620 }
621 }
622
623 Driver:
624 if (!callback && dev->driver && dev->driver->pm) {
625 info = "driver ";
626 callback = pm_op(dev->driver->pm, state);
627 }
628
629 End:
630 error = dpm_run_callback(callback, dev, state, info);
631 dev->power.is_suspended = false;
632
633 Unlock:
634 device_unlock(dev);
635 complete_all(&dev->power.completion);
636
637 TRACE_RESUME(error);
638
639 if (put)
640 pm_runtime_put_sync(dev);
641
642 return error;
643 }
644
645 static void async_resume(void *data, async_cookie_t cookie)
646 {
647 struct device *dev = (struct device *)data;
648 int error;
649
650 error = device_resume(dev, pm_transition, true);
651 if (error)
652 pm_dev_err(dev, pm_transition, " async", error);
653 put_device(dev);
654 }
655
656 static bool is_async(struct device *dev)
657 {
658 return dev->power.async_suspend && pm_async_enabled
659 && !pm_trace_is_enabled();
660 }
661
662 /**
663 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
664 * @state: PM transition of the system being carried out.
665 *
666 * Execute the appropriate "resume" callback for all devices whose status
667 * indicates that they are suspended.
668 */
669 void dpm_resume(pm_message_t state)
670 {
671 struct device *dev;
672 ktime_t starttime = ktime_get();
673
674 might_sleep();
675
676 mutex_lock(&dpm_list_mtx);
677 pm_transition = state;
678 async_error = 0;
679
680 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
681 INIT_COMPLETION(dev->power.completion);
682 if (is_async(dev)) {
683 get_device(dev);
684 async_schedule(async_resume, dev);
685 }
686 }
687
688 while (!list_empty(&dpm_suspended_list)) {
689 dev = to_device(dpm_suspended_list.next);
690 get_device(dev);
691 if (!is_async(dev)) {
692 int error;
693
694 mutex_unlock(&dpm_list_mtx);
695
696 error = device_resume(dev, state, false);
697 if (error) {
698 suspend_stats.failed_resume++;
699 dpm_save_failed_step(SUSPEND_RESUME);
700 dpm_save_failed_dev(dev_name(dev));
701 pm_dev_err(dev, state, "", error);
702 }
703
704 mutex_lock(&dpm_list_mtx);
705 }
706 if (!list_empty(&dev->power.entry))
707 list_move_tail(&dev->power.entry, &dpm_prepared_list);
708 put_device(dev);
709 }
710 mutex_unlock(&dpm_list_mtx);
711 async_synchronize_full();
712 dpm_show_time(starttime, state, NULL);
713 }
714
715 /**
716 * device_complete - Complete a PM transition for given device.
717 * @dev: Device to handle.
718 * @state: PM transition of the system being carried out.
719 */
720 static void device_complete(struct device *dev, pm_message_t state)
721 {
722 void (*callback)(struct device *) = NULL;
723 char *info = NULL;
724
725 device_lock(dev);
726
727 if (dev->pm_domain) {
728 info = "completing power domain ";
729 callback = dev->pm_domain->ops.complete;
730 } else if (dev->type && dev->type->pm) {
731 info = "completing type ";
732 callback = dev->type->pm->complete;
733 } else if (dev->class && dev->class->pm) {
734 info = "completing class ";
735 callback = dev->class->pm->complete;
736 } else if (dev->bus && dev->bus->pm) {
737 info = "completing bus ";
738 callback = dev->bus->pm->complete;
739 }
740
741 if (!callback && dev->driver && dev->driver->pm) {
742 info = "completing driver ";
743 callback = dev->driver->pm->complete;
744 }
745
746 if (callback) {
747 pm_dev_dbg(dev, state, info);
748 callback(dev);
749 }
750
751 device_unlock(dev);
752 }
753
754 /**
755 * dpm_complete - Complete a PM transition for all non-sysdev devices.
756 * @state: PM transition of the system being carried out.
757 *
758 * Execute the ->complete() callbacks for all devices whose PM status is not
759 * DPM_ON (this allows new devices to be registered).
760 */
761 void dpm_complete(pm_message_t state)
762 {
763 struct list_head list;
764
765 might_sleep();
766
767 INIT_LIST_HEAD(&list);
768 mutex_lock(&dpm_list_mtx);
769 while (!list_empty(&dpm_prepared_list)) {
770 struct device *dev = to_device(dpm_prepared_list.prev);
771
772 get_device(dev);
773 dev->power.is_prepared = false;
774 list_move(&dev->power.entry, &list);
775 mutex_unlock(&dpm_list_mtx);
776
777 device_complete(dev, state);
778
779 mutex_lock(&dpm_list_mtx);
780 put_device(dev);
781 }
782 list_splice(&list, &dpm_list);
783 mutex_unlock(&dpm_list_mtx);
784 }
785
786 /**
787 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
788 * @state: PM transition of the system being carried out.
789 *
790 * Execute "resume" callbacks for all devices and complete the PM transition of
791 * the system.
792 */
793 void dpm_resume_end(pm_message_t state)
794 {
795 dpm_resume(state);
796 dpm_complete(state);
797 }
798 EXPORT_SYMBOL_GPL(dpm_resume_end);
799
800
801 /*------------------------- Suspend routines -------------------------*/
802
803 /**
804 * resume_event - Return a "resume" message for given "suspend" sleep state.
805 * @sleep_state: PM message representing a sleep state.
806 *
807 * Return a PM message representing the resume event corresponding to given
808 * sleep state.
809 */
810 static pm_message_t resume_event(pm_message_t sleep_state)
811 {
812 switch (sleep_state.event) {
813 case PM_EVENT_SUSPEND:
814 return PMSG_RESUME;
815 case PM_EVENT_FREEZE:
816 case PM_EVENT_QUIESCE:
817 return PMSG_RECOVER;
818 case PM_EVENT_HIBERNATE:
819 return PMSG_RESTORE;
820 }
821 return PMSG_ON;
822 }
823
824 /**
825 * device_suspend_noirq - Execute a "late suspend" callback for given device.
826 * @dev: Device to handle.
827 * @state: PM transition of the system being carried out.
828 *
829 * The driver of @dev will not receive interrupts while this function is being
830 * executed.
831 */
832 static int device_suspend_noirq(struct device *dev, pm_message_t state)
833 {
834 pm_callback_t callback = NULL;
835 char *info = NULL;
836
837 if (dev->pm_domain) {
838 info = "noirq power domain ";
839 callback = pm_noirq_op(&dev->pm_domain->ops, state);
840 } else if (dev->type && dev->type->pm) {
841 info = "noirq type ";
842 callback = pm_noirq_op(dev->type->pm, state);
843 } else if (dev->class && dev->class->pm) {
844 info = "noirq class ";
845 callback = pm_noirq_op(dev->class->pm, state);
846 } else if (dev->bus && dev->bus->pm) {
847 info = "noirq bus ";
848 callback = pm_noirq_op(dev->bus->pm, state);
849 }
850
851 if (!callback && dev->driver && dev->driver->pm) {
852 info = "noirq driver ";
853 callback = pm_noirq_op(dev->driver->pm, state);
854 }
855
856 return dpm_run_callback(callback, dev, state, info);
857 }
858
859 /**
860 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
861 * @state: PM transition of the system being carried out.
862 *
863 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
864 * handlers for all non-sysdev devices.
865 */
866 static int dpm_suspend_noirq(pm_message_t state)
867 {
868 ktime_t starttime = ktime_get();
869 int error = 0;
870
871 cpuidle_pause();
872 suspend_device_irqs();
873 mutex_lock(&dpm_list_mtx);
874 while (!list_empty(&dpm_late_early_list)) {
875 struct device *dev = to_device(dpm_late_early_list.prev);
876
877 get_device(dev);
878 mutex_unlock(&dpm_list_mtx);
879
880 error = device_suspend_noirq(dev, state);
881
882 mutex_lock(&dpm_list_mtx);
883 if (error) {
884 pm_dev_err(dev, state, " noirq", error);
885 suspend_stats.failed_suspend_noirq++;
886 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
887 dpm_save_failed_dev(dev_name(dev));
888 put_device(dev);
889 break;
890 }
891 if (!list_empty(&dev->power.entry))
892 list_move(&dev->power.entry, &dpm_noirq_list);
893 put_device(dev);
894
895 if (pm_wakeup_pending()) {
896 error = -EBUSY;
897 break;
898 }
899 }
900 mutex_unlock(&dpm_list_mtx);
901 if (error)
902 dpm_resume_noirq(resume_event(state));
903 else
904 dpm_show_time(starttime, state, "noirq");
905 return error;
906 }
907
908 /**
909 * device_suspend_late - Execute a "late suspend" callback for given device.
910 * @dev: Device to handle.
911 * @state: PM transition of the system being carried out.
912 *
913 * Runtime PM is disabled for @dev while this function is being executed.
914 */
915 static int device_suspend_late(struct device *dev, pm_message_t state)
916 {
917 pm_callback_t callback = NULL;
918 char *info = NULL;
919
920 if (dev->pm_domain) {
921 info = "late power domain ";
922 callback = pm_late_early_op(&dev->pm_domain->ops, state);
923 } else if (dev->type && dev->type->pm) {
924 info = "late type ";
925 callback = pm_late_early_op(dev->type->pm, state);
926 } else if (dev->class && dev->class->pm) {
927 info = "late class ";
928 callback = pm_late_early_op(dev->class->pm, state);
929 } else if (dev->bus && dev->bus->pm) {
930 info = "late bus ";
931 callback = pm_late_early_op(dev->bus->pm, state);
932 }
933
934 if (!callback && dev->driver && dev->driver->pm) {
935 info = "late driver ";
936 callback = pm_late_early_op(dev->driver->pm, state);
937 }
938
939 return dpm_run_callback(callback, dev, state, info);
940 }
941
942 /**
943 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
944 * @state: PM transition of the system being carried out.
945 */
946 static int dpm_suspend_late(pm_message_t state)
947 {
948 ktime_t starttime = ktime_get();
949 int error = 0;
950
951 mutex_lock(&dpm_list_mtx);
952 while (!list_empty(&dpm_suspended_list)) {
953 struct device *dev = to_device(dpm_suspended_list.prev);
954
955 get_device(dev);
956 mutex_unlock(&dpm_list_mtx);
957
958 error = device_suspend_late(dev, state);
959
960 mutex_lock(&dpm_list_mtx);
961 if (error) {
962 pm_dev_err(dev, state, " late", error);
963 suspend_stats.failed_suspend_late++;
964 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
965 dpm_save_failed_dev(dev_name(dev));
966 put_device(dev);
967 break;
968 }
969 if (!list_empty(&dev->power.entry))
970 list_move(&dev->power.entry, &dpm_late_early_list);
971 put_device(dev);
972
973 if (pm_wakeup_pending()) {
974 error = -EBUSY;
975 break;
976 }
977 }
978 mutex_unlock(&dpm_list_mtx);
979 if (error)
980 dpm_resume_early(resume_event(state));
981 else
982 dpm_show_time(starttime, state, "late");
983
984 return error;
985 }
986
987 /**
988 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
989 * @state: PM transition of the system being carried out.
990 */
991 int dpm_suspend_end(pm_message_t state)
992 {
993 int error = dpm_suspend_late(state);
994 if (error)
995 return error;
996
997 error = dpm_suspend_noirq(state);
998 if (error) {
999 dpm_resume_early(resume_event(state));
1000 return error;
1001 }
1002
1003 return 0;
1004 }
1005 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1006
1007 /**
1008 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1009 * @dev: Device to suspend.
1010 * @state: PM transition of the system being carried out.
1011 * @cb: Suspend callback to execute.
1012 */
1013 static int legacy_suspend(struct device *dev, pm_message_t state,
1014 int (*cb)(struct device *dev, pm_message_t state))
1015 {
1016 int error;
1017 ktime_t calltime;
1018
1019 calltime = initcall_debug_start(dev);
1020
1021 error = cb(dev, state);
1022 suspend_report_result(cb, error);
1023
1024 initcall_debug_report(dev, calltime, error);
1025
1026 return error;
1027 }
1028
1029 /**
1030 * device_suspend - Execute "suspend" callbacks for given device.
1031 * @dev: Device to handle.
1032 * @state: PM transition of the system being carried out.
1033 * @async: If true, the device is being suspended asynchronously.
1034 */
1035 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1036 {
1037 pm_callback_t callback = NULL;
1038 char *info = NULL;
1039 int error = 0;
1040
1041 dpm_wait_for_children(dev, async);
1042
1043 if (async_error)
1044 goto Complete;
1045
1046 pm_runtime_get_noresume(dev);
1047 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1048 pm_wakeup_event(dev, 0);
1049
1050 if (pm_wakeup_pending()) {
1051 pm_runtime_put_sync(dev);
1052 async_error = -EBUSY;
1053 goto Complete;
1054 }
1055
1056 device_lock(dev);
1057
1058 if (dev->pm_domain) {
1059 info = "power domain ";
1060 callback = pm_op(&dev->pm_domain->ops, state);
1061 goto Run;
1062 }
1063
1064 if (dev->type && dev->type->pm) {
1065 info = "type ";
1066 callback = pm_op(dev->type->pm, state);
1067 goto Run;
1068 }
1069
1070 if (dev->class) {
1071 if (dev->class->pm) {
1072 info = "class ";
1073 callback = pm_op(dev->class->pm, state);
1074 goto Run;
1075 } else if (dev->class->suspend) {
1076 pm_dev_dbg(dev, state, "legacy class ");
1077 error = legacy_suspend(dev, state, dev->class->suspend);
1078 goto End;
1079 }
1080 }
1081
1082 if (dev->bus) {
1083 if (dev->bus->pm) {
1084 info = "bus ";
1085 callback = pm_op(dev->bus->pm, state);
1086 } else if (dev->bus->suspend) {
1087 pm_dev_dbg(dev, state, "legacy bus ");
1088 error = legacy_suspend(dev, state, dev->bus->suspend);
1089 goto End;
1090 }
1091 }
1092
1093 Run:
1094 if (!callback && dev->driver && dev->driver->pm) {
1095 info = "driver ";
1096 callback = pm_op(dev->driver->pm, state);
1097 }
1098
1099 error = dpm_run_callback(callback, dev, state, info);
1100
1101 End:
1102 if (!error) {
1103 dev->power.is_suspended = true;
1104 if (dev->power.wakeup_path
1105 && dev->parent && !dev->parent->power.ignore_children)
1106 dev->parent->power.wakeup_path = true;
1107 }
1108
1109 device_unlock(dev);
1110
1111 Complete:
1112 complete_all(&dev->power.completion);
1113
1114 if (error) {
1115 pm_runtime_put_sync(dev);
1116 async_error = error;
1117 } else if (dev->power.is_suspended) {
1118 __pm_runtime_disable(dev, false);
1119 }
1120
1121 return error;
1122 }
1123
1124 static void async_suspend(void *data, async_cookie_t cookie)
1125 {
1126 struct device *dev = (struct device *)data;
1127 int error;
1128
1129 error = __device_suspend(dev, pm_transition, true);
1130 if (error) {
1131 dpm_save_failed_dev(dev_name(dev));
1132 pm_dev_err(dev, pm_transition, " async", error);
1133 }
1134
1135 put_device(dev);
1136 }
1137
1138 static int device_suspend(struct device *dev)
1139 {
1140 INIT_COMPLETION(dev->power.completion);
1141
1142 if (pm_async_enabled && dev->power.async_suspend) {
1143 get_device(dev);
1144 async_schedule(async_suspend, dev);
1145 return 0;
1146 }
1147
1148 return __device_suspend(dev, pm_transition, false);
1149 }
1150
1151 /**
1152 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1153 * @state: PM transition of the system being carried out.
1154 */
1155 int dpm_suspend(pm_message_t state)
1156 {
1157 ktime_t starttime = ktime_get();
1158 int error = 0;
1159
1160 might_sleep();
1161
1162 mutex_lock(&dpm_list_mtx);
1163 pm_transition = state;
1164 async_error = 0;
1165 while (!list_empty(&dpm_prepared_list)) {
1166 struct device *dev = to_device(dpm_prepared_list.prev);
1167
1168 get_device(dev);
1169 mutex_unlock(&dpm_list_mtx);
1170
1171 error = device_suspend(dev);
1172
1173 mutex_lock(&dpm_list_mtx);
1174 if (error) {
1175 pm_dev_err(dev, state, "", error);
1176 dpm_save_failed_dev(dev_name(dev));
1177 put_device(dev);
1178 break;
1179 }
1180 if (!list_empty(&dev->power.entry))
1181 list_move(&dev->power.entry, &dpm_suspended_list);
1182 put_device(dev);
1183 if (async_error)
1184 break;
1185 }
1186 mutex_unlock(&dpm_list_mtx);
1187 async_synchronize_full();
1188 if (!error)
1189 error = async_error;
1190 if (error) {
1191 suspend_stats.failed_suspend++;
1192 dpm_save_failed_step(SUSPEND_SUSPEND);
1193 } else
1194 dpm_show_time(starttime, state, NULL);
1195 return error;
1196 }
1197
1198 /**
1199 * device_prepare - Prepare a device for system power transition.
1200 * @dev: Device to handle.
1201 * @state: PM transition of the system being carried out.
1202 *
1203 * Execute the ->prepare() callback(s) for given device. No new children of the
1204 * device may be registered after this function has returned.
1205 */
1206 static int device_prepare(struct device *dev, pm_message_t state)
1207 {
1208 int (*callback)(struct device *) = NULL;
1209 char *info = NULL;
1210 int error = 0;
1211
1212 device_lock(dev);
1213
1214 dev->power.wakeup_path = device_may_wakeup(dev);
1215
1216 if (dev->pm_domain) {
1217 info = "preparing power domain ";
1218 callback = dev->pm_domain->ops.prepare;
1219 } else if (dev->type && dev->type->pm) {
1220 info = "preparing type ";
1221 callback = dev->type->pm->prepare;
1222 } else if (dev->class && dev->class->pm) {
1223 info = "preparing class ";
1224 callback = dev->class->pm->prepare;
1225 } else if (dev->bus && dev->bus->pm) {
1226 info = "preparing bus ";
1227 callback = dev->bus->pm->prepare;
1228 }
1229
1230 if (!callback && dev->driver && dev->driver->pm) {
1231 info = "preparing driver ";
1232 callback = dev->driver->pm->prepare;
1233 }
1234
1235 if (callback) {
1236 error = callback(dev);
1237 suspend_report_result(callback, error);
1238 }
1239
1240 device_unlock(dev);
1241
1242 return error;
1243 }
1244
1245 /**
1246 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1247 * @state: PM transition of the system being carried out.
1248 *
1249 * Execute the ->prepare() callback(s) for all devices.
1250 */
1251 int dpm_prepare(pm_message_t state)
1252 {
1253 int error = 0;
1254
1255 might_sleep();
1256
1257 mutex_lock(&dpm_list_mtx);
1258 while (!list_empty(&dpm_list)) {
1259 struct device *dev = to_device(dpm_list.next);
1260
1261 get_device(dev);
1262 mutex_unlock(&dpm_list_mtx);
1263
1264 error = device_prepare(dev, state);
1265
1266 mutex_lock(&dpm_list_mtx);
1267 if (error) {
1268 if (error == -EAGAIN) {
1269 put_device(dev);
1270 error = 0;
1271 continue;
1272 }
1273 printk(KERN_INFO "PM: Device %s not prepared "
1274 "for power transition: code %d\n",
1275 dev_name(dev), error);
1276 put_device(dev);
1277 break;
1278 }
1279 dev->power.is_prepared = true;
1280 if (!list_empty(&dev->power.entry))
1281 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1282 put_device(dev);
1283 }
1284 mutex_unlock(&dpm_list_mtx);
1285 return error;
1286 }
1287
1288 /**
1289 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1290 * @state: PM transition of the system being carried out.
1291 *
1292 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1293 * callbacks for them.
1294 */
1295 int dpm_suspend_start(pm_message_t state)
1296 {
1297 int error;
1298
1299 error = dpm_prepare(state);
1300 if (error) {
1301 suspend_stats.failed_prepare++;
1302 dpm_save_failed_step(SUSPEND_PREPARE);
1303 } else
1304 error = dpm_suspend(state);
1305 return error;
1306 }
1307 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1308
1309 void __suspend_report_result(const char *function, void *fn, int ret)
1310 {
1311 if (ret)
1312 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1313 }
1314 EXPORT_SYMBOL_GPL(__suspend_report_result);
1315
1316 /**
1317 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1318 * @dev: Device to wait for.
1319 * @subordinate: Device that needs to wait for @dev.
1320 */
1321 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1322 {
1323 dpm_wait(dev, subordinate->power.async_suspend);
1324 return async_error;
1325 }
1326 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);