]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/base/property.c
device property: Add a function to obtain a node's prefix
[mirror_ubuntu-hirsute-kernel.git] / drivers / base / property.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20
21 struct fwnode_handle *dev_fwnode(struct device *dev)
22 {
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 &dev->of_node->fwnode : dev->fwnode;
25 }
26 EXPORT_SYMBOL_GPL(dev_fwnode);
27
28 /**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
35 bool device_property_present(struct device *dev, const char *propname)
36 {
37 return fwnode_property_present(dev_fwnode(dev), propname);
38 }
39 EXPORT_SYMBOL_GPL(device_property_present);
40
41 /**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
46 bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 const char *propname)
48 {
49 bool ret;
50
51 ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 !IS_ERR_OR_NULL(fwnode->secondary))
54 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 propname);
56 return ret;
57 }
58 EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60 /**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 * %0 if the property was found (success),
72 * %-EINVAL if given arguments are not valid,
73 * %-ENODATA if the property does not have a value,
74 * %-EPROTO if the property is not an array of numbers,
75 * %-EOVERFLOW if the size of the property is not as expected.
76 * %-ENXIO if no suitable firmware interface is present.
77 */
78 int device_property_read_u8_array(struct device *dev, const char *propname,
79 u8 *val, size_t nval)
80 {
81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82 }
83 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85 /**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 * %0 if the property was found (success),
97 * %-EINVAL if given arguments are not valid,
98 * %-ENODATA if the property does not have a value,
99 * %-EPROTO if the property is not an array of numbers,
100 * %-EOVERFLOW if the size of the property is not as expected.
101 * %-ENXIO if no suitable firmware interface is present.
102 */
103 int device_property_read_u16_array(struct device *dev, const char *propname,
104 u16 *val, size_t nval)
105 {
106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107 }
108 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110 /**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 * %0 if the property was found (success),
122 * %-EINVAL if given arguments are not valid,
123 * %-ENODATA if the property does not have a value,
124 * %-EPROTO if the property is not an array of numbers,
125 * %-EOVERFLOW if the size of the property is not as expected.
126 * %-ENXIO if no suitable firmware interface is present.
127 */
128 int device_property_read_u32_array(struct device *dev, const char *propname,
129 u32 *val, size_t nval)
130 {
131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132 }
133 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135 /**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 * %0 if the property was found (success),
147 * %-EINVAL if given arguments are not valid,
148 * %-ENODATA if the property does not have a value,
149 * %-EPROTO if the property is not an array of numbers,
150 * %-EOVERFLOW if the size of the property is not as expected.
151 * %-ENXIO if no suitable firmware interface is present.
152 */
153 int device_property_read_u64_array(struct device *dev, const char *propname,
154 u64 *val, size_t nval)
155 {
156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157 }
158 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160 /**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 * number of values available on success if @val is NULL,
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178 int device_property_read_string_array(struct device *dev, const char *propname,
179 const char **val, size_t nval)
180 {
181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182 }
183 EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185 /**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property type is not a string.
198 * %-ENXIO if no suitable firmware interface is present.
199 */
200 int device_property_read_string(struct device *dev, const char *propname,
201 const char **val)
202 {
203 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204 }
205 EXPORT_SYMBOL_GPL(device_property_read_string);
206
207 /**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 * %-EINVAL if given arguments are not valid,
218 * %-ENODATA if the property does not have a value,
219 * %-EPROTO if the property is not an array of strings,
220 * %-ENXIO if no suitable firmware interface is present.
221 */
222 int device_property_match_string(struct device *dev, const char *propname,
223 const char *string)
224 {
225 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226 }
227 EXPORT_SYMBOL_GPL(device_property_match_string);
228
229 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 const char *propname,
231 unsigned int elem_size, void *val,
232 size_t nval)
233 {
234 int ret;
235
236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 elem_size, val, nval);
238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 !IS_ERR_OR_NULL(fwnode->secondary))
240 ret = fwnode_call_int_op(
241 fwnode->secondary, property_read_int_array, propname,
242 elem_size, val, nval);
243
244 return ret;
245 }
246
247 /**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 * %0 if the property was found (success),
259 * %-EINVAL if given arguments are not valid,
260 * %-ENODATA if the property does not have a value,
261 * %-EPROTO if the property is not an array of numbers,
262 * %-EOVERFLOW if the size of the property is not as expected,
263 * %-ENXIO if no suitable firmware interface is present.
264 */
265 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 const char *propname, u8 *val, size_t nval)
267 {
268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 val, nval);
270 }
271 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273 /**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 * %0 if the property was found (success),
285 * %-EINVAL if given arguments are not valid,
286 * %-ENODATA if the property does not have a value,
287 * %-EPROTO if the property is not an array of numbers,
288 * %-EOVERFLOW if the size of the property is not as expected,
289 * %-ENXIO if no suitable firmware interface is present.
290 */
291 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 const char *propname, u16 *val, size_t nval)
293 {
294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 val, nval);
296 }
297 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299 /**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 * %0 if the property was found (success),
311 * %-EINVAL if given arguments are not valid,
312 * %-ENODATA if the property does not have a value,
313 * %-EPROTO if the property is not an array of numbers,
314 * %-EOVERFLOW if the size of the property is not as expected,
315 * %-ENXIO if no suitable firmware interface is present.
316 */
317 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 const char *propname, u32 *val, size_t nval)
319 {
320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 val, nval);
322 }
323 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325 /**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 * %0 if the property was found (success),
337 * %-EINVAL if given arguments are not valid,
338 * %-ENODATA if the property does not have a value,
339 * %-EPROTO if the property is not an array of numbers,
340 * %-EOVERFLOW if the size of the property is not as expected,
341 * %-ENXIO if no suitable firmware interface is present.
342 */
343 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 const char *propname, u64 *val, size_t nval)
345 {
346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 val, nval);
348 }
349 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351 /**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 * number of values available on success if @val is NULL,
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 * %-EOVERFLOW if the size of the property is not as expected,
367 * %-ENXIO if no suitable firmware interface is present.
368 */
369 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 const char *propname, const char **val,
371 size_t nval)
372 {
373 int ret;
374
375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 val, nval);
377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 !IS_ERR_OR_NULL(fwnode->secondary))
379 ret = fwnode_call_int_op(fwnode->secondary,
380 property_read_string_array, propname,
381 val, nval);
382 return ret;
383 }
384 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386 /**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found. The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 * %-EINVAL if given arguments are not valid,
397 * %-ENODATA if the property does not have a value,
398 * %-EPROTO or %-EILSEQ if the property is not a string,
399 * %-ENXIO if no suitable firmware interface is present.
400 */
401 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 const char *propname, const char **val)
403 {
404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406 return ret < 0 ? ret : 0;
407 }
408 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410 /**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 * %-EINVAL if given arguments are not valid,
421 * %-ENODATA if the property does not have a value,
422 * %-EPROTO if the property is not an array of strings,
423 * %-ENXIO if no suitable firmware interface is present.
424 */
425 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 const char *propname, const char *string)
427 {
428 const char **values;
429 int nval, ret;
430
431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 if (nval < 0)
433 return nval;
434
435 if (nval == 0)
436 return -ENODATA;
437
438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 if (!values)
440 return -ENOMEM;
441
442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 if (ret < 0)
444 goto out;
445
446 ret = match_string(values, nval, string);
447 if (ret < 0)
448 ret = -ENODATA;
449 out:
450 kfree(values);
451 return ret;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455 /**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode: Firmware node where to look for the reference
458 * @prop: The name of the property
459 * @nargs_prop: The name of the property telling the number of
460 * arguments in the referred node. NULL if @nargs is known,
461 * otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index: Index of the reference, from zero onwards.
464 * @args: Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 * %-ENOENT when the index is out of bounds, the index has an empty
474 * reference or the property was not found
475 * %-EINVAL on parse error
476 */
477 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 const char *prop, const char *nargs_prop,
479 unsigned int nargs, unsigned int index,
480 struct fwnode_reference_args *args)
481 {
482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 nargs, index, args);
484 }
485 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487 /**
488 * fwnode_find_reference - Find named reference to a fwnode_handle
489 * @fwnode: Firmware node where to look for the reference
490 * @name: The name of the reference
491 * @index: Index of the reference
492 *
493 * @index can be used when the named reference holds a table of references.
494 *
495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496 * call fwnode_handle_put() on the returned fwnode pointer.
497 */
498 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 const char *name,
500 unsigned int index)
501 {
502 struct fwnode_reference_args args;
503 int ret;
504
505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 &args);
507 return ret ? ERR_PTR(ret) : args.fwnode;
508 }
509 EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511 /**
512 * device_remove_properties - Remove properties from a device object.
513 * @dev: Device whose properties to remove.
514 *
515 * The function removes properties previously associated to the device
516 * firmware node with device_add_properties(). Memory allocated to the
517 * properties will also be released.
518 */
519 void device_remove_properties(struct device *dev)
520 {
521 struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523 if (!fwnode)
524 return;
525
526 if (is_software_node(fwnode->secondary)) {
527 fwnode_remove_software_node(fwnode->secondary);
528 set_secondary_fwnode(dev, NULL);
529 }
530 }
531 EXPORT_SYMBOL_GPL(device_remove_properties);
532
533 /**
534 * device_add_properties - Add a collection of properties to a device object.
535 * @dev: Device to add properties to.
536 * @properties: Collection of properties to add.
537 *
538 * Associate a collection of device properties represented by @properties with
539 * @dev. The function takes a copy of @properties.
540 *
541 * WARNING: The callers should not use this function if it is known that there
542 * is no real firmware node associated with @dev! In that case the callers
543 * should create a software node and assign it to @dev directly.
544 */
545 int device_add_properties(struct device *dev,
546 const struct property_entry *properties)
547 {
548 struct fwnode_handle *fwnode;
549
550 fwnode = fwnode_create_software_node(properties, NULL);
551 if (IS_ERR(fwnode))
552 return PTR_ERR(fwnode);
553
554 set_secondary_fwnode(dev, fwnode);
555 return 0;
556 }
557 EXPORT_SYMBOL_GPL(device_add_properties);
558
559 /**
560 * fwnode_get_name - Return the name of a node
561 * @fwnode: The firmware node
562 *
563 * Returns a pointer to the node name.
564 */
565 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566 {
567 return fwnode_call_ptr_op(fwnode, get_name);
568 }
569
570 /**
571 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
572 * @fwnode: The firmware node
573 *
574 * Returns the prefix of a node, intended to be printed right before the node.
575 * The prefix works also as a separator between the nodes.
576 */
577 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
578 {
579 return fwnode_call_ptr_op(fwnode, get_name_prefix);
580 }
581
582 /**
583 * fwnode_get_parent - Return parent firwmare node
584 * @fwnode: Firmware whose parent is retrieved
585 *
586 * Return parent firmware node of the given node if possible or %NULL if no
587 * parent was available.
588 */
589 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
590 {
591 return fwnode_call_ptr_op(fwnode, get_parent);
592 }
593 EXPORT_SYMBOL_GPL(fwnode_get_parent);
594
595 /**
596 * fwnode_get_next_parent - Iterate to the node's parent
597 * @fwnode: Firmware whose parent is retrieved
598 *
599 * This is like fwnode_get_parent() except that it drops the refcount
600 * on the passed node, making it suitable for iterating through a
601 * node's parents.
602 *
603 * Returns a node pointer with refcount incremented, use
604 * fwnode_handle_node() on it when done.
605 */
606 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
607 {
608 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
609
610 fwnode_handle_put(fwnode);
611
612 return parent;
613 }
614 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
615
616 /**
617 * fwnode_count_parents - Return the number of parents a node has
618 * @fwnode: The node the parents of which are to be counted
619 *
620 * Returns the number of parents a node has.
621 */
622 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
623 {
624 struct fwnode_handle *__fwnode;
625 unsigned int count;
626
627 __fwnode = fwnode_get_parent(fwnode);
628
629 for (count = 0; __fwnode; count++)
630 __fwnode = fwnode_get_next_parent(__fwnode);
631
632 return count;
633 }
634 EXPORT_SYMBOL_GPL(fwnode_count_parents);
635
636 /**
637 * fwnode_get_nth_parent - Return an nth parent of a node
638 * @fwnode: The node the parent of which is requested
639 * @depth: Distance of the parent from the node
640 *
641 * Returns the nth parent of a node. If there is no parent at the requested
642 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
643 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
644 *
645 * The caller is responsible for calling fwnode_handle_put() for the returned
646 * node.
647 */
648 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
649 unsigned int depth)
650 {
651 unsigned int i;
652
653 fwnode_handle_get(fwnode);
654
655 for (i = 0; i < depth && fwnode; i++)
656 fwnode = fwnode_get_next_parent(fwnode);
657
658 return fwnode;
659 }
660 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
661
662 /**
663 * fwnode_get_next_child_node - Return the next child node handle for a node
664 * @fwnode: Firmware node to find the next child node for.
665 * @child: Handle to one of the node's child nodes or a %NULL handle.
666 */
667 struct fwnode_handle *
668 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
669 struct fwnode_handle *child)
670 {
671 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
672 }
673 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
674
675 /**
676 * fwnode_get_next_available_child_node - Return the next
677 * available child node handle for a node
678 * @fwnode: Firmware node to find the next child node for.
679 * @child: Handle to one of the node's child nodes or a %NULL handle.
680 */
681 struct fwnode_handle *
682 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
683 struct fwnode_handle *child)
684 {
685 struct fwnode_handle *next_child = child;
686
687 if (!fwnode)
688 return NULL;
689
690 do {
691 next_child = fwnode_get_next_child_node(fwnode, next_child);
692
693 if (!next_child || fwnode_device_is_available(next_child))
694 break;
695 } while (next_child);
696
697 return next_child;
698 }
699 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
700
701 /**
702 * device_get_next_child_node - Return the next child node handle for a device
703 * @dev: Device to find the next child node for.
704 * @child: Handle to one of the device's child nodes or a null handle.
705 */
706 struct fwnode_handle *device_get_next_child_node(struct device *dev,
707 struct fwnode_handle *child)
708 {
709 struct acpi_device *adev = ACPI_COMPANION(dev);
710 struct fwnode_handle *fwnode = NULL;
711
712 if (dev->of_node)
713 fwnode = &dev->of_node->fwnode;
714 else if (adev)
715 fwnode = acpi_fwnode_handle(adev);
716
717 return fwnode_get_next_child_node(fwnode, child);
718 }
719 EXPORT_SYMBOL_GPL(device_get_next_child_node);
720
721 /**
722 * fwnode_get_named_child_node - Return first matching named child node handle
723 * @fwnode: Firmware node to find the named child node for.
724 * @childname: String to match child node name against.
725 */
726 struct fwnode_handle *
727 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
728 const char *childname)
729 {
730 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
731 }
732 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
733
734 /**
735 * device_get_named_child_node - Return first matching named child node handle
736 * @dev: Device to find the named child node for.
737 * @childname: String to match child node name against.
738 */
739 struct fwnode_handle *device_get_named_child_node(struct device *dev,
740 const char *childname)
741 {
742 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
743 }
744 EXPORT_SYMBOL_GPL(device_get_named_child_node);
745
746 /**
747 * fwnode_handle_get - Obtain a reference to a device node
748 * @fwnode: Pointer to the device node to obtain the reference to.
749 *
750 * Returns the fwnode handle.
751 */
752 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
753 {
754 if (!fwnode_has_op(fwnode, get))
755 return fwnode;
756
757 return fwnode_call_ptr_op(fwnode, get);
758 }
759 EXPORT_SYMBOL_GPL(fwnode_handle_get);
760
761 /**
762 * fwnode_handle_put - Drop reference to a device node
763 * @fwnode: Pointer to the device node to drop the reference to.
764 *
765 * This has to be used when terminating device_for_each_child_node() iteration
766 * with break or return to prevent stale device node references from being left
767 * behind.
768 */
769 void fwnode_handle_put(struct fwnode_handle *fwnode)
770 {
771 fwnode_call_void_op(fwnode, put);
772 }
773 EXPORT_SYMBOL_GPL(fwnode_handle_put);
774
775 /**
776 * fwnode_device_is_available - check if a device is available for use
777 * @fwnode: Pointer to the fwnode of the device.
778 */
779 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
780 {
781 return fwnode_call_bool_op(fwnode, device_is_available);
782 }
783 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
784
785 /**
786 * device_get_child_node_count - return the number of child nodes for device
787 * @dev: Device to cound the child nodes for
788 */
789 unsigned int device_get_child_node_count(struct device *dev)
790 {
791 struct fwnode_handle *child;
792 unsigned int count = 0;
793
794 device_for_each_child_node(dev, child)
795 count++;
796
797 return count;
798 }
799 EXPORT_SYMBOL_GPL(device_get_child_node_count);
800
801 bool device_dma_supported(struct device *dev)
802 {
803 /* For DT, this is always supported.
804 * For ACPI, this depends on CCA, which
805 * is determined by the acpi_dma_supported().
806 */
807 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
808 return true;
809
810 return acpi_dma_supported(ACPI_COMPANION(dev));
811 }
812 EXPORT_SYMBOL_GPL(device_dma_supported);
813
814 enum dev_dma_attr device_get_dma_attr(struct device *dev)
815 {
816 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
817
818 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
819 if (of_dma_is_coherent(dev->of_node))
820 attr = DEV_DMA_COHERENT;
821 else
822 attr = DEV_DMA_NON_COHERENT;
823 } else
824 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
825
826 return attr;
827 }
828 EXPORT_SYMBOL_GPL(device_get_dma_attr);
829
830 /**
831 * fwnode_get_phy_mode - Get phy mode for given firmware node
832 * @fwnode: Pointer to the given node
833 *
834 * The function gets phy interface string from property 'phy-mode' or
835 * 'phy-connection-type', and return its index in phy_modes table, or errno in
836 * error case.
837 */
838 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
839 {
840 const char *pm;
841 int err, i;
842
843 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
844 if (err < 0)
845 err = fwnode_property_read_string(fwnode,
846 "phy-connection-type", &pm);
847 if (err < 0)
848 return err;
849
850 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
851 if (!strcasecmp(pm, phy_modes(i)))
852 return i;
853
854 return -ENODEV;
855 }
856 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
857
858 /**
859 * device_get_phy_mode - Get phy mode for given device
860 * @dev: Pointer to the given device
861 *
862 * The function gets phy interface string from property 'phy-mode' or
863 * 'phy-connection-type', and return its index in phy_modes table, or errno in
864 * error case.
865 */
866 int device_get_phy_mode(struct device *dev)
867 {
868 return fwnode_get_phy_mode(dev_fwnode(dev));
869 }
870 EXPORT_SYMBOL_GPL(device_get_phy_mode);
871
872 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
873 const char *name, char *addr,
874 int alen)
875 {
876 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
877
878 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
879 return addr;
880 return NULL;
881 }
882
883 /**
884 * fwnode_get_mac_address - Get the MAC from the firmware node
885 * @fwnode: Pointer to the firmware node
886 * @addr: Address of buffer to store the MAC in
887 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
888 *
889 * Search the firmware node for the best MAC address to use. 'mac-address' is
890 * checked first, because that is supposed to contain to "most recent" MAC
891 * address. If that isn't set, then 'local-mac-address' is checked next,
892 * because that is the default address. If that isn't set, then the obsolete
893 * 'address' is checked, just in case we're using an old device tree.
894 *
895 * Note that the 'address' property is supposed to contain a virtual address of
896 * the register set, but some DTS files have redefined that property to be the
897 * MAC address.
898 *
899 * All-zero MAC addresses are rejected, because those could be properties that
900 * exist in the firmware tables, but were not updated by the firmware. For
901 * example, the DTS could define 'mac-address' and 'local-mac-address', with
902 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
903 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
904 * exists but is all zeros.
905 */
906 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
907 {
908 char *res;
909
910 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
911 if (res)
912 return res;
913
914 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
915 if (res)
916 return res;
917
918 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
919 }
920 EXPORT_SYMBOL(fwnode_get_mac_address);
921
922 /**
923 * device_get_mac_address - Get the MAC for a given device
924 * @dev: Pointer to the device
925 * @addr: Address of buffer to store the MAC in
926 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
927 */
928 void *device_get_mac_address(struct device *dev, char *addr, int alen)
929 {
930 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
931 }
932 EXPORT_SYMBOL(device_get_mac_address);
933
934 /**
935 * fwnode_irq_get - Get IRQ directly from a fwnode
936 * @fwnode: Pointer to the firmware node
937 * @index: Zero-based index of the IRQ
938 *
939 * Returns Linux IRQ number on success. Other values are determined
940 * accordingly to acpi_/of_ irq_get() operation.
941 */
942 int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
943 {
944 struct device_node *of_node = to_of_node(fwnode);
945 struct resource res;
946 int ret;
947
948 if (IS_ENABLED(CONFIG_OF) && of_node)
949 return of_irq_get(of_node, index);
950
951 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
952 if (ret)
953 return ret;
954
955 return res.start;
956 }
957 EXPORT_SYMBOL(fwnode_irq_get);
958
959 /**
960 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
961 * @fwnode: Pointer to the parent firmware node
962 * @prev: Previous endpoint node or %NULL to get the first
963 *
964 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
965 * are available.
966 */
967 struct fwnode_handle *
968 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
969 struct fwnode_handle *prev)
970 {
971 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
972 }
973 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
974
975 /**
976 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
977 * @endpoint: Endpoint firmware node of the port
978 *
979 * Return: the firmware node of the device the @endpoint belongs to.
980 */
981 struct fwnode_handle *
982 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
983 {
984 struct fwnode_handle *port, *parent;
985
986 port = fwnode_get_parent(endpoint);
987 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
988
989 fwnode_handle_put(port);
990
991 return parent;
992 }
993 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
994
995 /**
996 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
997 * @fwnode: Endpoint firmware node pointing to the remote endpoint
998 *
999 * Extracts firmware node of a remote device the @fwnode points to.
1000 */
1001 struct fwnode_handle *
1002 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1003 {
1004 struct fwnode_handle *endpoint, *parent;
1005
1006 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1007 parent = fwnode_graph_get_port_parent(endpoint);
1008
1009 fwnode_handle_put(endpoint);
1010
1011 return parent;
1012 }
1013 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1014
1015 /**
1016 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1017 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1018 *
1019 * Extracts firmware node of a remote port the @fwnode points to.
1020 */
1021 struct fwnode_handle *
1022 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1023 {
1024 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1025 }
1026 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1027
1028 /**
1029 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1030 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1031 *
1032 * Extracts firmware node of a remote endpoint the @fwnode points to.
1033 */
1034 struct fwnode_handle *
1035 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1036 {
1037 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1038 }
1039 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1040
1041 /**
1042 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1043 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1044 * @port_id: identifier of the parent port node
1045 * @endpoint_id: identifier of the endpoint node
1046 *
1047 * Return: Remote fwnode handle associated with remote endpoint node linked
1048 * to @node. Use fwnode_node_put() on it when done.
1049 */
1050 struct fwnode_handle *
1051 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1052 u32 endpoint_id)
1053 {
1054 struct fwnode_handle *endpoint = NULL;
1055
1056 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1057 struct fwnode_endpoint fwnode_ep;
1058 struct fwnode_handle *remote;
1059 int ret;
1060
1061 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1062 if (ret < 0)
1063 continue;
1064
1065 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1066 continue;
1067
1068 remote = fwnode_graph_get_remote_port_parent(endpoint);
1069 if (!remote)
1070 return NULL;
1071
1072 return fwnode_device_is_available(remote) ? remote : NULL;
1073 }
1074
1075 return NULL;
1076 }
1077 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1078
1079 /**
1080 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1081 * @fwnode: parent fwnode_handle containing the graph
1082 * @port: identifier of the port node
1083 * @endpoint: identifier of the endpoint node under the port node
1084 * @flags: fwnode lookup flags
1085 *
1086 * Return the fwnode handle of the local endpoint corresponding the port and
1087 * endpoint IDs or NULL if not found.
1088 *
1089 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1090 * has not been found, look for the closest endpoint ID greater than the
1091 * specified one and return the endpoint that corresponds to it, if present.
1092 *
1093 * Do not return endpoints that belong to disabled devices, unless
1094 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1095 *
1096 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1097 * it when it is not needed any more.
1098 */
1099 struct fwnode_handle *
1100 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1101 u32 port, u32 endpoint, unsigned long flags)
1102 {
1103 struct fwnode_handle *ep = NULL, *best_ep = NULL;
1104 unsigned int best_ep_id = 0;
1105 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1106 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1107
1108 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1109 struct fwnode_endpoint fwnode_ep = { 0 };
1110 int ret;
1111
1112 if (enabled_only) {
1113 struct fwnode_handle *dev_node;
1114 bool available;
1115
1116 dev_node = fwnode_graph_get_remote_port_parent(ep);
1117 available = fwnode_device_is_available(dev_node);
1118 fwnode_handle_put(dev_node);
1119 if (!available)
1120 continue;
1121 }
1122
1123 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1124 if (ret < 0)
1125 continue;
1126
1127 if (fwnode_ep.port != port)
1128 continue;
1129
1130 if (fwnode_ep.id == endpoint)
1131 return ep;
1132
1133 if (!endpoint_next)
1134 continue;
1135
1136 /*
1137 * If the endpoint that has just been found is not the first
1138 * matching one and the ID of the one found previously is closer
1139 * to the requested endpoint ID, skip it.
1140 */
1141 if (fwnode_ep.id < endpoint ||
1142 (best_ep && best_ep_id < fwnode_ep.id))
1143 continue;
1144
1145 fwnode_handle_put(best_ep);
1146 best_ep = fwnode_handle_get(ep);
1147 best_ep_id = fwnode_ep.id;
1148 }
1149
1150 return best_ep;
1151 }
1152 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1153
1154 /**
1155 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1156 * @fwnode: pointer to endpoint fwnode_handle
1157 * @endpoint: pointer to the fwnode endpoint data structure
1158 *
1159 * Parse @fwnode representing a graph endpoint node and store the
1160 * information in @endpoint. The caller must hold a reference to
1161 * @fwnode.
1162 */
1163 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1164 struct fwnode_endpoint *endpoint)
1165 {
1166 memset(endpoint, 0, sizeof(*endpoint));
1167
1168 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1169 }
1170 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1171
1172 const void *device_get_match_data(struct device *dev)
1173 {
1174 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1175 }
1176 EXPORT_SYMBOL_GPL(device_get_match_data);